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Abstract

In today’s business environment, unpredictable economic and non-economic forces can affect
firms’ operational costs and discount factors, as well as demand. In this paper, we incorporate
these uncertainties into a single-product, periodic-review, finite-horizon stochastic inventory
system by modeling operational costs, discount factors, and demands as stochastic processes
that evolve over time. We study three stockout protocols and establish conditions under which
(s, S) inventory policies are optimal when discount factors, operational costs, and demands
are stochastic and correlated both to one another and over time. Examples are provided to
demonstrate non-trivial optimal policies in the absence of these sufficient conditions.

1 Introduction

Virtually all research on inventory management to date has assumed that operational costs as well

as discount factors are fixed and known in advance. Under these assumptions, it is well established

that variants of (Q, r) and (s, S) policies are generally optimal (Scarf 1959, Veinott 1966). However,

it has long been recognized that market risks can significantly affect a firm’s operational costs as

well as its discount factor. For example, the purchasing price can fluctuate with the exchange rate if

the product is sourced from a foreign country, and the discount factor can change with the riskiness

of the market in which the business is conducted. Furthermore, customer demand can be highly

correlated with general market conditions (Gaur and Seshadri 2005) or (for certain products such

as skis or air conditioners) the weather. In order to fully capture the dynamic business environment

1Research supported partially by NSF grants DMI-0075627 and DMI-0500263, and the
Querétaro Campus of the Instituto Tecnológico y de Estudios Superiores de Monterrey.

2Research supported partially by the Hong Kong Research Grants Council Grants No.
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and to understand its implications for firms’ operations, it is necessary to treat operational cost

parameters (e.g., inventory holding costs, stockout costs, and purchasing prices), discount factors,

and demands as stochastic processes that are influenced by the state of the world and that evolve

over time. The state of the world can include both economic variables (such as interest rate and

exchange rate) and non-economic variables (such as weather).

Although the literature on inventory management with multiple sources of uncertainty and

volatility is scarce, one line of research examines the non-stationarity of the demand. Gaur and

Seshadri (2005) consider a newsvendor problem where the demand is correlated with the price of

a financial security. They study how to use financial options to construct hedging transactions

to minimize profit variance. Graves (1999) considers a system where the demand process is an

integrated moving average process. Johnson and Thompson (1975) study a discrete-time model

where demand is either an autoregressive or a moving average process, and show that the myopic

policy is sometimes optimal. Iglehart and Karlin (1962) provide optimality algorithms for the case

where the demand follows a Markov process. In a similar but more general problem setting, Song

and Zipkin (1993) study the case when the demand is governed by the state of the world and

follows a Markov process. They show that a state-dependent (r, S) policy is optimal, where r is

the reorder point and S is the order-up-to level. Similar inventory models have also been studied

by Karlin and Fabens (1959), Sethi and Cheng (1997), and Cheng and Sethi (1999), where the

former consider the problem complex and optimize over a restricted class of ordering policies; the

latter two generalize the cost functions and optimize over the class of all history-dependent policies

to show that a state-dependent (s,S) policy is optimal.

While the aforementioned literature focuses on time-varying stochastic demand, Fabian et al.

(1959) examine a raw material inventory problem in a periodic setting where the unit purchasing

price varies over time. Building on this work, Kalymon (1971) studies an inventory system where

the unit purchasing price follows a Markov process and demand is determined by the price. As-

suming the holding and shortage cost function is convex, he shows that a state-dependent (s,S)

policy will be optimal.

To understand the optimal inventory replenishment strategy in an unstable environment, we

incorporate multiple sources of uncertainty into a single-product, periodic-review, finite-horizon

stochastic inventory system by allowing the stochastic discount factors and operational costs to

change over time, based on the evolving state of the world. We also allow (but do not require)

demand to be correlated with the state of the world. In the presence of multiple sources of
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uncertainty within the business environment, it is unclear a priori what type of inventory policy a

firm should follow. Our paper provides comprehensive analyses for three different stockout protocols

(pay-to-order and pay-to-delivery under backlogging, and lost sales) and develop conditions under

which state-dependent (s, S) inventory policies are optimal when discount factors, operational

costs, and demands are stochastic and correlated. These conditions result from the impact that

the state of the world has on the inventory holding and backorder costs, and may fail in turbulent

business environment. Our results enable firms to better manage their inventory in an unstable

business environment, and so improve their profitability. To the best of our knowledge, ours

is the first inventory model that incorporates stochastic discount factors, operational costs, and

demands that all evolve in response to changing business conditions, although the latter two have

been studied in literature with a convexity assumption imposed on the holding and shortage cost

function.

The paper is organized as follows. In Section 2 we introduce an inventory model with stochastic

discount factors and cost parameters. In Section 3 we establish conditions for the optimality of the

(s, S) policy, and discuss the implications of these conditions. In Section 4 we provide examples

of non-trivial policies when the conditions guaranteeing the optimality of (s, S) policies fail. We

summarize in Section 5.

2 Problem Formulation

2.1 Model Description

We consider a periodic review inventory system with a single product. At the beginning of each

period, purchasing decisions and payments to the suppliers are made. At the end of each period,

demand occurs and available inventory is delivered to customers. Holding and stockout costs are

incurred, and revenues are realized.

We consider both the backorder case and the lost sales case (referred to as LS). Under backorder,

we consider two cases: the “pay-to-order” (PTO) case where the customers pay when they place

their orders, and the “pay-to-delivery” (PTD) case where they pay when their orders are delivered.

In both cases, we assume that corporate policy calls for backordered demand to be met as soon as

inventory becomes available.

The following notation will be used in our model. We use boldfaced letters to represent vectors

whose dimensions will be clear from the context.

T = the length of the planning horizon,
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t = the period index, increasing over time,

L = replenishment lead time (assumed to be zero in the LS case),

xt = inventory position at the beginning of period t, before ordering,

yt = inventory position at the beginning of period t, after ordering,

Dt = demand during period t,

Dt,w =
w∑
j=t

Dj , total demand from period t through period w,

Dt:w = (Dt, Dt+1, ..., Dw), vector of demands from periods t through w,

Zt = vector representing the state of the world as of the beginning of period t,

zt = a realization of Zt,

Zt:w = (Zt, · · · ,Zw), set of vectors for the state of the world in periods t through w.

Note that we restrict our attention to the case of zero lead time under Lost Sales. This is

because, with a positive lead time, it is unclear what the optimal policy is even under the traditional

inventory model, due to curse of dimensionality. As such, we focus on the scenario where (s, S)

policies are known to be optimal under the traditional setting.

The State-of-the-World Vector The vector that describes the state of the world, Zt, may

include exchange rates, stock market indices, interest rates, weather conditions, etc. — all of

which evolve over time. We assume that {Zt, 1 ≤ t ≤ T + 1} is a Markov chain, possibly with an

infinite number of states, and possibly time-varying.

In this paper, t will usually refer to the current time period, so that zτ has already been observed

for τ ≤ t. The distributions of Zt+1:T+1 = (Zt+1,Zt+2, ...,ZT+1) and Dt:T = (Dt, Dt+1, ..., DT )

may be conditioned on the current (observed) vector zt. We allow, but do not require, demand to

be correlated with the state of the world.

Stochastic Discount Factors We define βt(zt,Zt+1) to be the discount factor that represents the

value, at the beginning of period t, of a unit cash flow at the beginning of period t+1. It depends

on both zt and Zt+1 and includes a risk premium that reflects the investors’ tolerance to the risky

future cash flows, which may be correlated with systemic market-wide risks. More generally for

t ≤ w, we define βt,w(zt,Zt+1:w+1) to be the discount factor that converts cash flows at the end of

period w to equivalent flows at the beginning of period t,

βt,w(zt,Zt+1:w+1) = βt(zt,Zt+1)
w∏

j=t+1

βj(Zj ,Zj+1).
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Stochastic Cost Parameters Since ordering costs (both fixed and variable) are incurred at the

beginning of each period, we model them as functions of the realized state-of-the-world information,

zt. We assume that salvage is only possible at the end of the planning horizon, so that the salvage

value is a random variable determined by the end-of-horizon state, ZT+1. Note that the fixed and

variable purchasing costs may well vary over time due to fluctuating environment (e.g., exchange

rate change). Thus, we define

Kt(zt) = fixed ordering (and/or setup) cost at the beginning of period t,

ct(zt) = variable purchasing (and/or production) cost at the beginning of period t,

v(ZT+1) = unit salvage value for on-hand inventory at the end of the planning horizon.

Since revenues, holding costs, and backorder costs may be incurred throughout each period, we

model them as functions of both zt and Zt+1. Likewise, the selling prices can vary, e.g., with the

exchange rates or weather conditions, and we denote

ht(zt,Zt+1) = holding cost for carrying one unit of inventory from period t to t+ 1,

valued at the end of period t,

πt(zt,Zt+1) = penalty cost (including the goodwill cost) for one unit of backorders

or lost sales at the end of period t, valued at the end of period t,

pt(zt,Zt+1) = selling price in period t, valued at the end of period t.

To simplify the presentation, we will often make the dependencies on the state of the world

vectors implicit. That is, we will often write Kt, ct, ht, pt, πt, Dt, βt, βt,w and v. Note that

βt:w = βt · βt+1:w. We also define, for general A and B, A+ = max{0, A}, A− = (−A)+, A ∧ B =

min{A,B} = B − (A−B)−, A ∨B = max{A,B}, and

δ(a) =

{
1 if a > 0,
0 otherwise.

2.2 Model Formulation

Let Gt(xt, yt, zt,Zt+1:t+L+1,Dt:t+L) denote the cost incurred in period t+L, given the realized state

(xt, zt), the order-up-to inventory level yt (≥ xt), and the random evolution of state-of-the-world

and demand information between periods. Then, for 1 ≤ t ≤ T − L,

Gt(xt, yt, zt,Zt+1:t+L+1,Dt:t+L)
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= ht+L · (yt −Dt,t+L)
+ + πt+L · (yt −Dt,t+L)

−

−pt+L ·
⎧⎨⎩
yt ∧Dt,t+L, if LS,
(Dt+L + (yt−1 −Dt−1,t+L−1)

− − (yt −Dt,t+L)
−), if PTD,

Dt+L, if PTO,

= ht+L · (yt −Dt,t+L)
+ − pt+L ·Dt+L

+

⎧⎨⎩
(πt+L + pt+L)(yt −Dt,t+L)

−, if LS,
[(πt+L + pt+L)(yt −Dt,t+L)

− − pt+L(yt−1 −Dt−1,t+L−1)
−], if PTD,

πt+L(yt −Dt,t+L)
−, if PTO.

In deriving these expressions, we applied the equality yt ∧ Dt,t+L = Dt,t+L − (yt − Dt,t+L)
−,

and made use of our assumption that L = 0 under lost sales. The number of units delivered

to customers under PTD in period t + L (i.e., the multiplicand of pt+L under PTD in the first

equation of the expression above for Gt) merits some discussion. The maximum possible sales

in period t + L is equal to the demand in that period plus the backlog from the previous period,

Dt+L+(yt−1−Dt−1,t+L−1)
−. The actual sales will be this maximum sales minus the ending backlog,

(yt −Dt,t+L)
−. In other words, sales in period t+ L will be equal to demand minus the change in

backlog, Dt+L + (yt−1 −Dt−1,t+L−1)
− − (yt −Dt,t+L)

−.

Letting βT+1 = 1 and defining

π̂t
.
= πt +

⎧⎨⎩
pt, if LS,
pt − βt+1pt+1 if PTD,
0, if PTO,

(1)

allow us to rewrite this problem in terms of the modified penalty costs π̂t and a single period cost

in period t+ L, 1 ≤ t ≤ T − L, of

Ĝt(yt, zt,Zt+1:t+L+2,Dt:t+L) = ht+L (yt −Dt,t+L)
+ + π̂t+L (yt −Dt,t+L)

− − pt+L Dt+L. (2)

Note that the modified penalty cost also captures changes in revenues resulting from short-

ages. In the PTD case where the modified penalty cost π̂t is a function of both pt(zt,Zt+1) and

pt+1(Zt+1:t+2) (pT+1 and the end of horizon costs will be defined later), it may be negative for some

realizations of the state-of-the-world vectors. This implies that by backlogging instead of satisfying

the demand, the firm may reap a higher revenue. The dynamic programming formulation for the

expected discounted cost at the beginning of period t, 1 ≤ t ≤ T − L, is given by

ft(xt, zt) = −ct xt + min
yt≥xt

{Ktδ(yt − xt) + Vt(yt, zt)}, (3)

Vt(yt, zt) = ct yt + EDt:t+L,Zt+1:t+L+2
[βt,t+LĜt(yt, zt,Zt+1:t+L+2,Dt:t+L)

+βtft+1(γ(yt −Dt),Zt+1)], (4)

where

γ(x)
.
=

{
x+ under LS
x under PTO and PTD

.
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To calculate the end-of-horizon cost, we assume that all outstanding backorders are filled via a

zero-lead-time purchase made at the end of period T at the unit cost of cT−L+1(ZT+1). (The time

index T −L+1 is chosen for notational convenience.) In the PTD case, the end-of-horizon revenue

is received at the beginning of period T + 1 at pT+1(ZT+1) per unit, and is already included in

ĜT−L. Therefore, the end-of-horizon cost that initiates the recursion in (3) and (4) is defined as:

fT−L+1(xT−L+1, zT−L+1) = EDT−L+1,T ,ZT−L+2:T+1

{
βT−L+1,T

[
− v · (xT−L+1 −DT−L+1,T )

+

+

{
0, if lost sales,
cT−L+1 · (xT−L+1 −DT−L+1,T )

−, if backorder

}
. (5)

3 Structural Analyses and Results

When all cost parameters and discount factors are known in advance, it is well known that an

(s, S) policy is optimal for the above problem, provided that a few side conditions are satisfied.

For example, one precondition for the optimality of (s, S) policies is the monotonicity of the fixed

ordering cost, Kt ≥ βt ·Kt+1, which is necessary for Scarf’s (1959) Kt-convexity property to hold.

This condition is one of several that may fail when the business environment is particularly volatile.

In this section, we will provide in Theorem 1 sufficient conditions for an (s, S) policy to be

optimal, and discuss the implications of these conditions. This will help decision-makers understand

when an optimal policy may be non-trivial under multiple uncertainties. We begin this section by

discussing some important properties of the functions defined in the previous section. Throughout

the paper, all the proofs can be found in the Appendix.

3.1 Properties

We start with the finiteness and continuity of the functions Ĝt, ft and Vt, and then discuss the

asymptotic properties of functions with linear growth rates.

3.1.1 Finiteness and Continuity

So far we have allowed the functions defined in Section 2.2 to take on values in �∪{±∞}. We now

consider the finiteness and continuity of the functions defined above. Let ut = E{βt,t+L · [ht+L ∨
βt+L+1 · pt+L+1 ∨ (πt+L + pt+L)]} for 1 ≤ t ≤ T −L, and let UT−L+1 = E{βT−L+1,T [|v| ∨ cT−L+1]}.
The following finiteness conditions are assumed to hold throughout this paper.

Assumption 1 E[βt,r · ur], E{βt,w · Dw · E[βw+1,r · ur]}, E[βt,T−L · UT−L+1], and E{β · Dw ·
E[βw+1,T−L · UT−L+1]} are finite for all zt and all 1 ≤ t ≤ w + 1, 1 ≤ w ≤ r ≤ T − L.
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Assumption 2 There exists a policy ω with a finite expected cost. Define fω
t and V ω

t to be func-

tions analogous to ft and Vt in (3) and (4), under policy yωt . (To be specific, we assume that fω
t

and V ω
t satisfy (4), and satisfy (3) when we replace the minimum over yt with the value of yωt

under policy ω.) Then fω
t (xt, zt) and V ω

t (yωt , zt) are finite for all finite values xt and yωt , for all zt.

Note that Assumption 2 follows necessarily from Assumption 1 only when the discount factors

never exceed 1; i.e., only when βw ≤ 1 for all w ≥ t and for all (t, zt). These finiteness assumptions

are needed to establish the finiteness and Lipschitz continuity of the cost functions in Lemma 1.

Note that we consider a function to be also Lipschitz-continuous if it is equal to −∞ everywhere.

Lemma 1 For every time period t and every information set zt the following properties hold.

• The function EDt:t+L,Zt+1:t+L+2
[βt,t+LĜt(yt, zt,Zt+1:t+L+2,Dt:t+L)] is a well-defined Lipschitz

continuous function of yt. It is finite if yt is finite.

• ft(xt, zt) is a Lipschitz continuous function in xt. If xt is finite, then ft is either finite or

equal to −∞; i.e., ft ∈ � ∪ {−∞}.

• Vt(yt, zt) is a Lipschitz continuous function in yt. If yt is finite, then Vt ∈ � ∪ {−∞}.

• If the minimum of Vw(yw, zw) is attained at a finite yw for all w ≥ t and all zw, then Vt and

ft are finite when xt, yt are finite.

3.1.2 Asymptotic Properties of Functions with Linear Growth Rates

As one will see, the functions we will deal with are all asymptotically linear. Thus, we define some

basic properties of such functions.

Definition 1 We say that

1. f(x) is [a, ·]-divergent if lim
x→−∞[f(x)− ax] = ∞;

2. f(x) is [·, b]-divergent if lim
x→∞[f(x)− bx] = ∞; and

3. f(x) is [a, b]-divergent if it is both [a, ·]-divergent and [·, b]-divergent.

Definition 2 We say that

1. f(x) is [a, ·]-asymptotic if for all ε > 0, f(x) is [a + ε, ·]-divergent and −f(x) is [−a + ε, ·]-
divergent;
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2. f(x) is [·, b]-asymptotic if for all ε > 0, f(x) is [·, b − ε]-divergent and −f(x) is [·,−b − ε]-

divergent;

3. f(x) is [a, b]-asymptotic if it is [a, ·]-asymptotic and [·, b]-asymptotic.

The definitions of [a, b]-divergent and [a, b]-asymptotic will be used in the proofs of Lemmas 3

and 4. The concept of [a, b]-asymptoticness describes how close a function is to a linear function and

provides an easy way to identify whether a function is [0,0]-divergent. For example, if a function

is [a, ·]-asymptotic and a < 0, then, by Definition 2(1), we know that it must be [0, ·]-divergent.
Lemma 3 will show that [0,0]-divregence of the cost function is essential for guaranteeing a finite

reorder point s and a finite order-up-to point S. For example, if a cost function f(x) is [0, ·]-
divergent, then the value of the function will go to infinity when x goes to −∞, which guarantees

a finite s. Below we provide some properties of [a, b]-divergent and [a, b]-asymptotic functions.

Property 1 1. If fi(x) is [ai, bi]-divergent and ci ≥ 0, then
∑
i
cifi(x) is

[∑
i
ciai,

∑
i
cibi

]
-

divergent.

2. If fi(x) is [ai, bi]-asymptotic, then
∑
i
cifi(x) is

[∑
i
ciai,

∑
i
cibi

]
-asymptotic.

Lemma 2 Let f(x) be [a, b]-asymptotic, and let W and D be correlated random variables with

E(|W |) > 0 and either W ≥ 0 or W ≤ 0. Suppose that E(W ), E(WD), and E[Wf(x−D)] exist.

Then, E[Wf(x −D)] is [E(W )a,E(W )b]-asymptotic if E[WD] and E[Wf(x −D)] are finite for

all finite x.

Both Property 1 and Lemma 2 will be used later to prove the asymptoticness of the cost

functions. For example, one consequence of Lemma 2 is that EDt:t+L,Zt+1:t+L+2
[βt,t+LĜt(yt, zt,

Zt+1:t+L+2,Dt:t+L)] is [EZt+1:t+L+2
(−π̂t+L), EZt+1:t+L+1

(ht+L)]-asymptotic.

3.2 Sufficient Properties for the Optimality of (s, S) Policies

Let

St(zt) = argmin{Vt(yt, zt)}, (6)

st(zt) = inf{yt : Kt(zt) + Vt(St(zt), zt) ≥ Vt(yt, zt)}. (7)

Since St(zt) satisfies the inequality in (7), st(zt) is well-defined and St(zt) ≥ st(zt). Also note that

under case LS, st(zt) ≥ 0 . Although the domain of Vt(·, zt) is limited to real numbers, we relax this

restriction to allow both St(zt) and st(zt) to be infinite. In the event that st(zt) = −∞, no order

9
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is ever placed in period t (which may indeed happen in practice), and which we do not consider to

be pathological. On the other hand, if St(zt) = ∞, then all orders placed are for infinite amounts

of inventory and an infinite profit may be possible; we consider such problems to be poorly-posed.

In this paper, the phrase an (s, S) policy is optimal implies that St(zt) < ∞ in (6). To simplify

the presentation, we will often make the time index and the dependence on the state of the world

implicit; that is, we will often write (s, S) instead of (st(zt), St(zt)).

The following lemma provides the sufficient conditions for the optimality of an (s, S) policy.

Lemma 3 Suppose that Vt(·, zt) is Kt-convex and [·, 0]-divergent. Then in period t with informa-

tion set zt, an (s, S) policy will be optimal. In cases PTD and PTO, if in addition Vt(·, zt) is

[0, ·]-divergent, then s > −∞ under the optimal policy.

While Kt-convexity of the cost function guarantees the optimality of an (s, S) policy, [0, ·]-
divergence ([·, 0]-divergence) determines whether s (S) is finite. In traditional inventory models

with constant cost parameters and discount factors, [0, 0]-divergence of cost functions holds nat-

urally. In our generalization, it is possible that [0, 0]-divergence is violated, which could lead to

infinite policy values.

The optimality of an (s, S) policy is thus reduced to the Kt-convexity and [a, b]-divergence of

the functions Vt(·, zt). We consider these two properties in turn, starting with [a, b]-divergence.

3.2.1 [a, b]-Divergence of the Function Vt(·, zt)

Let

At = At(zt) =

{
ct + EZt+1:t+L+2

[−βt,t+L · π̂t+L + βt(−ct+1 +A+
t+1(Zt+1))], if backorder,

ct − EZt+1:t+L+2
[βt,t+L · π̂t+L], if lost sales,

(8)

Bt = Bt(zt) = ct + EZt+1:T+1

⎡⎣ T∑
j=t+L

βt,j · hj − βt,T · v
⎤⎦ , (9)

for 1 ≤ t ≤ T − L, with AT−L+1 = 0. In the backorder cases (PTD and PTO), At is the expected

cost differential, as of the beginning of period t, between the options of (a) ordering one unit in

period t at ct, and (b) carrying one unit of backorder in period t + L at the modified backorder

cost π̂t+L and then ordering the unit in period t+1 at ct+1 (or even later if that would be cheaper

still; i.e., if At+1 > 0). Thus we expect At < 0. In case LS, At, for t < T , is irrelevant because

the domain of Vt(·, zt) is �+. Intuitively, Bt is the expected cost of ordering one unit in period

t, carrying it from period t + L to the end of the horizon, and salvaging it. If Bt < 0 for some t
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and zt, then an infinite amount of inventory should be ordered, resulting in an expected cost of

−∞. To preclude such ill-posed problems, we require that Bt > 0 for all realizations zt of Zt, for

1 ≤ t ≤ T − L.

Lemma 4 Vt(·, zt) is [At,Bt]-asymptotic in cases PTD and PTO, and [·,Bt]-asymptotic in case

LS.

The asymptoticness of the cost functions is directly related to the finiteness of s and S. By

Definitions 1 and 2, Vt(·, zt) is [0, ·]-divergent and a finite reorder point is guaranteed if At < 0.

On the other hand, if Bt > 0, then Vt(·, zt) is [·, 0]-divergent and S is finite.

3.2.2 The Kt-Convexity of Vt(·, zt)

We now consider the property required for the functions Vt(·, zt) to be Kt-convex.

Lemma 5 Vt(yt, zt) is Kt-convex if the following conditions hold. For all possible zT−L, BT−L −
AT−L ≥ 0. In addition, for all zj and all j = t, · · · , T − L− 1,

1. hj+L + π̂j+L ≥ 0 with backorders and hj + π̂j − cj+1 ≥ 0 with lost sales, and

2. Kj(zj) ≥ EZj+1 [βj(zj ,Zj+1)Kj+1(Zj+1)].

We will discuss the implications of the conditions in Lemma 5 shortly after we introduce The-

orem 1 in the following section.

3.3 Sufficient Conditions for the Optimality of (s, S) Policies

Combining Lemmas 3, 4 and 5, we summarize the conditions under which (s, S) policies are optimal

in the following theorem.

Theorem 1 An (s, S) policy is optimal in period t, if

1. Bj > 0 for all realizations zj and all j = t, · · · , T − L,

2. BT−L −AT−L ≥ 0 for all possible realizations zT−L, and

3. for all realizations zj and all j = t, · · · , T − L− 1,

(a) hj+L + π̂j+L ≥ 0 under backlogging and hj + π̂j − cj+1 ≥ 0 under lost sales; and

(b) Kj(zj) ≥ EZj+1 [βj(zj ,Zj+1) ·Kj+1(Zj+1)].

If in addition At < 0, then s > −∞.
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With the exception of condition (3b), the conditions in Theorem 1 are all related to the effects

of uncertainties on the holding and backorder costs. While Conditions 1 and 2 can hold with

appropriately chosen salvage values, the rest of them can fail in practice. The unlabeled condition

At < 0 is not required for the optimality of an (s, S) policy but ensures that a positive amount

of inventory will be ordered if the inventory level is low enough. We turn now to discuss the

implications of each condition in the Theorem in further detail.

Condition 1, Bt > 0: This condition will generally hold for reasonable end-of-horizon salvage

values. If Bt ≤ 0, it would be optimal to order an infinite amount of inventory in period t, hold it,

and salvage it at the end of the horizon; in that case, the problem is ill-posed, probably because

the salvage value v was overestimated.

To the extent that the salvage value is chosen to approximate the value of inventory beyond

the given finite horizon, we suggest that an appropriate stochastic value for v that minimizes the

end-of-horizon effect should satisfy

v(z1:T+1) < min

⎧⎨⎩ 1

βt,T (zt:T+1)

⎡⎣ct(zt) + T∑
j=t+L

βt,j(zt:j+1)hj(zj:j+1)

⎤⎦ : 1 ≤ t ≤ T − L

⎫⎬⎭ (10)

for all z1:T+1, when viewed from the beginning of period T + 1. (10) ensures that Bt > 0. Note

that v may well depend on the entire historical state of the world (z1, z2, ..., zT+1) instead of just

zT+1 as we have formally assumed. However, we can assume without loss of generality that zT+1

contains all of the information (z1, z2, ..., zT+1), so all of our results continue to hold.

Condition 2, BT−L−AT−L ≥ 0: This condition guarantees the Kt-convexity of the cost function

in the last period of the horizon and so the optimality of an (s, S) policy. Although this condition

generally holds, it can fail for inappropriate end-of-horizon parameters are. In that case, the

modeler should restrict the applicability of our model to appropriate end-of-horizon parameters

that ensure this condition to hold. More specifically, since L = 0 in the lost sales case, AT =

cT − EZT+1
[βT (pT + πT )] ≤ 0 if it is cheaper to purchase a unit in period T and deliver it to a

client than it is to lose the sale. If pT and πT are observed at the beginning of period T , then AT

is naturally negative and we have BT −AT ≥ 0. However, in the real world, pT and πT represent

cash flows that are realized at various times within period T . Consequently, pT and πT may be

dependent on ZT+1 as well as zT , in which case AT > 0 can conceivably occur. In that case,

BT −AT ≥ 0 if it is appropriate to specify the salvage value of v such that

v(zT :T+1) ≤ hT (zT :T+1) + π̂T (zT :T+1)

12
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and (10) holds as well.

Under backlogging, AT−L = cT−L − EZT−L+1:T+1
[βT−L,T · (cT−L+1 + π̂T )] ≤ 0 is equivalent to

specifying that it is cheaper to purchase a unit in period T − L and deliver it to a client in period

T than it is to buy and deliver the unit at the end of period T at cost of cT−L+1 + πT . (Recall

that cT−L+1 is the unit cost of a unique, zero-lead-time purchase opportunity that is available

only at the end of period T .) Only certain values of cT−L+1 will ensure E(βT−L,T · cT−L+1) ≥
cT−L − E(βT−L,T · π̂T ), so as to reduce the end-of-horizon effect. We recommend defining cT−L+1

so that

cT−L+1(zT−L:T+1) ≥ cT−L(zT−L)/βT−L+1,T (zT−L:T+1)− π̂T (zT , zT+1).

This potentially makes cT−L+1 a function of zT−L:T+1 rather than a function of zT+1 as we originally

assumed, but as we mentioned before, we can assume without loss of generality that the information

in zT−L:T+1 is included in zT+1.

Condition (3a) , ht+π̂t ≥ 0 (backlogging) and ht+π̂t−ct+1 ≥ 0 (lost sales): This condition

guarantees the convexity of the (transformed if LS) single-period inventory related cost function,

ht(yt −Dt)
+ + π̂t(yt −Dt)

− under backlogging and (ht − ct+1)(yt −Dt)
+ + π̂t(yt −Dt)

− under lost

sales, which is critical for the Kt-convexity of the cost functions. This condition corresponds to the

situation in which we have a unit of demand in period t, and the inventory to meet that demand.

However, under backlogging, we may sometimes deliberately choose to carry the inventory into

period t+1 and deliver it to the client then. In the lost sales case, we may choose to lose customer

demand and use the unit of inventory to displace a unit that we would otherwise have purchased in

period t+1. This condition states that such decisions are not preferable. The condition always holds

for PTO systems (π̂t = πt), and is a very sensible assumption in most circumstances. However,

this condition can fail, especially for PTD systems.

Condition (3b) , Kt(zt) ≥ EZt+1 [βt(zt,Zt+1) ·Kt+1(Zt+1)]: This condition clearly holds in the

absence of fixed costs; i.e., when Kt = 0 for all t. When fixed costs are present, uncertainties can

cause it to fail, in which case (s, S) policies may not be optimal.

Condition At < 0: While this condition is not needed for an (s, S) policy to be optimal, it

guarantees that s > −∞; i.e., that in period t there exists an inventory level below which an

order would be placed. Under lost sales, the comments in the first paragraph of our discussion of

Condition 2 regarding AT < 0 apply. The condition generally holds, although (depending on the

specific model assumptions), uncertanties might cause it to fail.
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Under backlogging, this condition states that uncertainties are not high enough to motivate

delaying ordering and order fulfillment. If At ≥ 0, then for some time period w ≥ t, Aw+1 < 0 <

Aw. This implies that cw − E[βw,w+L · πw+L + βw · cw+1] ≥ 0. In other words, the expected cost

of delaying a purchase to period w + 1 and delivering it to the client one period late (in period

w + L + 1) is lower than the expected cost of making the purchase in period w and delivering it

to the client on time in period w + L. Although At < 0 for all t is a sensible and very common

assumption, uncertainties may on occasion cause it to fail.

We have been consistent in asserting that a condition holds only if it holds for all realizations of

the state of the world. Thus, a firm will include various uncertainties in costs even when the state

of the world is stationary, although doing so is more important under non-stationary environment.

The impact of the failure of the sufficient conditions is two-fold. First, an (s, S) policy may no

longer be optimal, in which case non trivial optimal policies can only be obtained by solving a

dynamic programming problem in each period. Second, even when an (s, S) or order-up-to policy

remains optimal, the optimal order-up-to levels can be sharply different from those under stable

environment. For example, if Condition At < 0 fails, it may be optimal to never order.

4 What Happens When Sufficient Conditions Fail

In this section we first provide analytical examples, in Sections 4.1 and 4.2, of non-(s, S) policies

that are optimal when the sufficient conditions in Section 3.3 fail to hold. We then demonstrate

in Section 4.3 that (s, S) policies can fail to be optimal in randomly-generated problems when the

sufficient conditions in Section 3.3 are violated. Since conditions 1 and 2 of Theorem 1 can be made

to hold by choosing appropriate end-of-horizon parameters, and violation of condition At < 0 alone

generates trivial policies in which orders are never placed, we focus on conditions (3a) and (3b).

4.1 Analytical Examples of Non-Convexity When Condition (3a) Fails

Throughout this subsection we assume that the fixed cost Kt is zero. When Condition (3a) fails,

the cost function may not be convex, in which case an order-up-to policy may no longer be optimal.

In the dynamic programming recursion (3) – (4), there are only two ways a non-convexity can be

introduced. Either Ĝt(y) can fail to be convex in (4), or the nonlinearity of γ(y−Dt) can introduce

a non-convexity in the Lost Sales case. For the PTO case, γ(y −Dt) = y −Dt so the γ function

cannot cause a non-convexity. For Ĝt(y) = ht(y −D)+ + πt(Dt − y)+ to fail to be convex, either

ht < 0 or πt < 0 would have to occur with positive probability, which is unlikely. As such, we will
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only consider two cases – Lost Sales and PTD. In both cases, in our examples Condition (3a) holds

in expectation, but not with probability 1 as is required. As a result, an order-up-to policy may

not be optimal in some periods.

Under Lost Sales

Consider a two period problem in which all parameters are deterministic except for c1 and p1.

Define v = 0, L = 0, D1 = 2, D2 = 1, c2 = 4, p2 = 5, and βt = 1, πt = 0 and ht = 1 for

t ∈ {1, 2}. We assume that c1 and p1 are random and governed by an underlying variable Z where

P (Z = 0) = 2/3 and P (Z = 1) = 1/3. Z is observed at the beginning of period 1. When Z = 0

then (c1, p1) = (4, 5), while when Z = 1 then (c1, p1) = (2, 1). Note that π̂t = pt.

We can see that condition (3a) fails in period 1 when Z = 1, since h1+ π̂1− c2 = 1+1− 4 < 0.

However, it holds in expectation because E[h1 + π̂1 − c2] = 1 + (23 × 5 + 1
3 × 1)− 4 > 0. It can be

shown that when Z = 1,

V1(y1) =

⎧⎪⎨⎪⎩
y1 − 1, if y1 ≤ 2,
−y1 + 3, if 2 < y1 ≤ 3,
4y1 − 12, if y1 > 3,

and so the optimal ordering strategy in period 1 is

y∗1(x1) =
{

x1, if x1 ≤ 1 or x1 ≥ 3,
3, if 1 < x1 < 3,

which is not an order-up-to policy. If Z = 0, the optimal policy in period 1 is order-up-to.

Under PTD

Again, consider a two period problem in which all parameters are deterministic except for

(c1, p1). We have v = 0, L = 0, Dt = βt = ht = πt = 1, and for t ∈ {2, 3} we have pt = 6 and

ct = 3. As before, c1 and p1 are governed by an underlying variable Z where P (Z = 0) = 2/3,

P (Z = 1) = 1/3, and Z is observed at the start of period 1. When Z = 0 then (c1, p1) = (3, 6),

and when Z = 1 then (c1, p1) = (1, 2).

When t = 1, Condition (3a) becomes 0 ≤ h1 + π̂1 = h1 + π1 + p1 − p2 = p1 − 4. If Z = 0 this

condition holds as p1 − 4 = 2, and an order-up-to policy is optimal. When Z = 1 this condition

fails as p1 − 4 = −2 < 0. In expectation it holds, as E[p1 − 4] = (23 × 6 + 1
3 × 2)− 4 > 0. We can

show that when Z = 1,

V1(y1) =

⎧⎪⎨⎪⎩
y1 − 5, if y1 ≤ 1,
−y1 − 3, if 1 < y1 ≤ 2,
3y1 − 11, if y1 > 2,
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and the optimal ordering strategy in period 1 is

y∗1(x1) =
{

x1, if x1 ≤ 0 or x1 ≥ 2,
2, if 0 < x1 < 2,

which is not an order-up-to policy.

In both examples, the cost function V1(y1) displays an up− down− up pattern and the order-

up-to policy is optimal only if the inventory level is above a threshold. For the PTD example, if

the inventory level is below the threshold there are either existing backorders carried over from

before period 1 or potential new backorders in the current period. The optimal policy is to not

order, and to meet those backorders in the next period at a higher selling price.

4.2 Analytical Examples of Non-Kt-Convexity When Condition (3b) Fails

When Kt > 0 and Condition (3b) fails, the cost function may not be Kt-convex and an (s, S)

policy may or may not be optimal. Under all three stockout scenarios (PTO, PTD, and LS), we

consider the following two period problem where all parameters are deterministic except K2. We

set v = 0, L = 0, K1 = 1, ct = 0, ht = 1, π̂t = 2, Dt = 4, and βt = 1. We note that for each of

the scenarios PTO, PTD, and LS, it is easy to come up with reasonable values of pt, πt that are

compatible with π̂t = 2. For the sole purpose of simplicity3 we define pt = 0 and πt = 2. K2 is

random and governed by an underlying variable Z with P (Z = 0) = 20/21 and P (Z = 1) = 1/21.

We observe Z at the start of period 1. If Z = 0 then K2 = 0.8, and K2 = 4 if Z = 1.

We note tha Condition (3b) holds in expectation, as E(K2) = 4 × 1
21 + 0.8 × 20

21 = 20
21 < K1.

But it fails when Z = 1, in which case

V1(y1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2y1 + 12, if y1 ≤ 4,
y1, if 4 < y1 ≤ 6,
−y1 + 12, if 6 < y1 ≤ 8,
2y1 − 12, if y1 > 8.

The optimal ordering strategy in period 1 is

y∗1(x1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 or 8, if x1 ≤ 31

2 ,
x1, if 31

2 < x1 ≤ 5,
8, if 5 < x1 ≤ 7,
x1, if x1 > 7.

That is, V1(y1) is not K1-convex, and the optimal ordering strategy is not an (s, S) policy. If Z = 0

the optimal policy is (s, S).

3Otherwise we would have to describe V1(y1) for each of the three stockout scenarios separately.
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4.3 Numerical Study

The two-period examples in the previous subsection demonstrate that the introduction of some

uncertainties into the first period of a stationary deterministic problem can cause the sufficient

conditions to fail, so that the optimal policy can become a non-standard one. In this section we

consider a more comprehensive example under the PTD protocol with seven periods where some

periods are more uncertain than others. This example shows that there can be stochastic settings

for which the sufficient conditions can routinely fail, so that (s, S) policies are suboptimal.

4.3.1 Example Description

To provide some context for this example, we consider a Mexican exporter who sells in the U.S.

The financial state vector Zt is two dimensional and {Z1t, Z2t} ={exchange rate (pesos per dollar),
discount factor}. Z1t and Z2t are Markov chains and, for the sole purpose of simplicity, we assume

they have the same probability transition matrix. The state spaces and transition probabilities in

periods 3 to 6 (turbulent periods) and periods 1, 2, and 7 (tranquil periods) are given in Table 1,

where e = 10.3 is the base exchange rate. Note that the discount factors are smaller in turbulent

periods as a higher risk premium is typically required for discounting more risky future cash flows.

We allow the exchange rates in the turbulent periods to be up to twice as high as those in tranquil

periods. For example, during the Mexican presidential election in the 1990’s, the Mexican peso

was devalued more than 50%.

Periods 1, 2, 7 3 - 6

Exchange Rates (0.9e, 1.0e, 1.1e) (1.6e, 1.9e, 2.2e)

Discount Factors (0.85, 0.9, 0.95) (0.7, 0.75, 0.8)

Transition
Probabilities

⎛⎝ 0.7 0.2 0.1
0.2 0.7 0.1
0.1 0.2 0.7

⎞⎠ ⎛⎝ 0.4 0.4 0.2
0.3 0.4 0.3
0.2 0.4 0.4

⎞⎠

Table 1: State Spaces and Probability Transition Matrices for Exchange Rates and Discount Factors

The fixed cost and unit purchasing cost are incurred in Mexico (and denominated in pesos)

at the beginning of each period. The holding cost, stockout cost, and revenue are all incurred in

the U.S. at the end of the period; they are denominated in dollars but are converted into pesos

immediately. Hence, the peso value of the dollar-denominated costs and revenues is proportional
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to the exchange rate Z1, as is shown in Table 2.

t Kt ct ht πt pt
1, 2, 7 1 1 0.01Z1,t+1 0.04Z1,t+1 0.3Z1,t+1

3-6 2 1.4 0.01Z1,t+1 0.04Z1,t+1 0.3Z1,t+1

Table 2: Cost Parameters

The salvage values v(Z8) and cT−L+1(Z8) at the end of period 7 are specified as in Section

3.3. Demand in each period is assumed to be independent of Zt and uniformly distributed over

{0,1,2,3,4,5}.

4.3.2 How Often the Conditions Fail and (s, S) Policies Fail to be Optimal

We investigate two cases, one with fixed ordering costs and one without. In the latter case, the

(s, S) policy reduces to an order-up-to policy, and only condition (3a) is relevant. We find that

conditions (3a) and (3b) fail only in period 2. However, they fail for all nine realizations of (Z1, Z2).

The first row of Table 3 reports the number of realizations in which conditions (3a) and (3b) fail,

and the number of realizations where order-up-to/(s, S) policies fail to be optimal in period 2, for

the above example .

Exchange Rates
Counts of the number of realizations (out of 9 possible) when

Condition (3a) Condition (3b) Kt = 0 and order-up-to Kt > 0 and (s,S)
fails fails policy is not optimal policy is not optimal

(1.6e, 1.9e, 2.2e) 9 9 9 9
(1.3e, 1.6e,1.9e) 9 9 2 0
(1.0e, 1.3e,1.6e) 9 9 0 0

Table 3: The Number of Realizations where Conditions (3a) and (3b) Fail and the Number of
Realizations where order-up-to/(s, S) Policies are not Optimal

As we can see, in all nine realizations of (Z1, Z2) order-up-to policies fail to be optimal in the

absence of the fixed costs, and (s, S) policies fail to be optimal in their presence. We find that

without the fixed costs, the cost functions exhibit an up-down-up pattern in all the cases, and the

optimal policy is similar to those in Section 4.1. With fixed costs the optimal policy is characterized

by two thresholds on the initial inventory (q1, q2), and a single order-up-to level Q. If the initial

inventory level is below q1 or above q2, then no order should be placed. Otherwise order up to Q.

This ordering policy is similar to, but simpler than, the optimal policy in Section 4.2.
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4.3.3 Sensitivity Analysis

In this section we first test two new combinations of the exchange rates {(1.3e, 1.6e, 1.9e), (1.0e, 1.3e,
1.6e)} for the turbulent periods. The results are shown in lines 2 and 3 of Table 3. We can see that

as the exchange rate decreases from (1.6e, 1.9e, 2.2e) to (1.3e, 1.6e, 1.9e), although conditions (3a)

and (3b) still fail 100% of the time, order-up-to/(s, S) policies are much more likely to be optimal.

This suggests that the degree of the non-stationarity has a large impact on the necessity of the

sufficient conditions in guaranteeing the optimality of order-up-to/(s, S) policies, which agrees with

our intuition.

We then test different probability transition matrices as given in Table 4, which represent

different levels of correlation between Zt and Zt+1 for the turbulent periods. In the original

example, the correlation between Zt and Zt+1 is 0.2. We find that the results change little from

the original example except when the correlation coefficient is equal to 0.8 or 1 and there are no

fixed costs. At these two correlation levels, only eight of the nine realizations of (Z1, Z2) exhibit an

up-down-up cost function when condition (3a) fails in period 2. In the ninth realization, the cost

function is increasing so that the optimal policy is to never order. This seems to suggest that the

correlation between Zt and Zt+1 has little impact on the sufficiency/necessity of the conditions.

Correlation
Coefficient 0.4 0.6 0.8 1

Transition
Probabilities

⎛⎝ 0.55 0.3 0.15
0.225 0.55 0.225
0.15 0.3 0.55

⎞⎠ ⎛⎝ 0.7 0.2 0.1
0.15 0.7 0.15
0.1 0.2 0.7

⎞⎠ ⎛⎝ 0.85 0.1 0.05
0.075 0.85 0.075
0.05 0.1 0.85

⎞⎠ ⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠

Table 4: Probability Transition Matrices in Turbulent Periods with Different Correlation Levels

5 Conclusion

In this paper we generalize the traditional inventory models to allow the discount factors, opera-

tional costs, and demand to be stochastic and evolve according to the state of the world. We prove

that for all three stockout protocols (PTO, PTO, and LS), a state-dependent (s, S) ordering policy

will be optimal under certain circumstances. In stochastic business environment, when an (s, S)

policy is optimal, neither s nor S is necessarily finite. We also provide the conditions under which

both s and S will be finite. The conditions that guarantee the optimality and the finiteness of
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the (s, S) policy are then discussed to help managers understand the underlying trade-off for their

inventory decision making. Furthermore, we provide both analytical and numerical examples of

non-trivial policies when the sufficient conditions fail to hold. Our numerical study suggests that

if the system’s degree of non-stationarity is high, then the sufficient conditions are also necessary

to guarantee the optimality of the (s, S) policies. Otherwise, even if the sufficient conditions fail,

the (s, S) policies can still be optimal. Furthermore, the correlation in the financial state over time

does not seem to affect the sufficiency and necessity of the conditions.

References

[1] Cheng, F. and S. P. Sethi. 1999. Optimality of State-Dependent (s, S) Policies in Inventory

Models with Markov-Modulated Demand and Lost Sales. Production and Operations Manage-

ment, 8(2),183-192.

[2] Fabian, T., J. L. Fisher, M. W. Sasieni, and A. Yardeni. 1959. Purchasing Raw Material on a

Fluctuating Market. Operations Research, 7(1),107-122.

[3] Gaur, V., and S. Seshadri. 2005. Hedging Inventory Risk through Market Instruments. Man-

ufacturing & Service Operations Management, 7(2), 103-120.

[4] Graves, S. 1999. A Single-Item Inventory Model for a Nonstationary Demand Process. Man-

ufacturing and Service Operations Management. 1(1), 50-61.

[5] Iglehart, D., and S. Karlin. 1962. Optimal Policy for Dynamic Inventory Process with Nonsta-

tionary Stochastic Demands. Studies in Applied Probability and Management Science. Edited

by K. Arrow, S. Karlin, and H. Scarf. Stanford University Press, Stanford, California.

[6] Johnson G. D., and H. E. Thompson. 1975. Optimality of Myopic Inventory Policies for Certain

Dependent Demand Processes. Management Science, 21(11), 1303-1307.

[7] Kalynon, B. A. 1971. Stochastic Prices in a Single-Item Inventory Purchasing Model. Opera-

tions Research, 19(6), 1434-1458.

[8] Karlin, S. and A. Febens. 1959. The (s,S) Inventory Model under Markovian Demand Process.

Mathematical Methods in the Social Sciences. Edited by J. Arrow, S. Karlin, and P.Suppes,

Stanford University Press, Stanford, CA.

[9] Scarf, H. E. 1959. The Optimality of (S,s) Policies in the Dynamic Inventory Problem. Chapter

13, inMathematical Methods in the Social Sciences, ed. by K.J. Arrow, S. Karlin and P. Suppes.

Stanford University Press.

20

This is the Pre-Published Version 



[10] Sethi S. P. and F. Cheng. 1997. Optimality of (s, S) Policies in Inventory Models with Marko-

vian Demand. Operations Research, 45(6), 931-939.

[11] Song, J., and P. Zipkin. 1993. Inventory Control in a Fluctuating Demand Environment.

Operations Research, 41(2), 351-370.

[12] Veinott, A., Jr. 1966. On the Optimality of (s, S) Inventory Policies: New Conditions and a

New Proof. SIAM Journal on Applied Mathematics, 14(5), 1067-1083.

21

This is the Pre-Published Version 



Appendix to “New Sufficient Conditions for (s, S) Policies to be
Optimal in Systems with Multiple Uncertainties”

Proof of Lemma 1: We prove a series of claims, the first of which has to do with the quarter-

t cost function Ĝt. Let 1 ≤ τ ≤ t. The Finiteness Assumption implies that for every zτ ,

EDt:t+L,Zτ+1:t+L+2
[βτ,t+LĜt(yt, zt,Zt+1:t+L+2,Dt:t+L)] exists and is finite when yt = 0. Equations

(1) and (2) imply that the derivative of Ĝt, before taking any expectations, is between −(πt+pt) and

ht∨βt+1 pt+1. By the Finiteness Assumption, if either τ = t and yt is finite, or if yt = (x1−D1,t−1)
+,

then EDt:t+L,Zτ+1:t+L+2
[βτ,t+LĜt(yt, zt,Zt+1:t+L+2,Dt:t+L)] is (EZτ+1:t [βτ,t ut])-Lipschitz continuous

for every zτ , and the first assertion of the Lemma holds.

Our second claim has to do with the end-of-horizon cost function fT−L+1. Let 1 ≤ τ ≤ T−L+1.

The Finiteness Assumption implies that EZτ+1:T−L+1
[βτ,T−L fT−L+1] is finite when xT−L+1 = 0.

It is easily verified that the quantity in brackets in (5) has a derivative whose absolute value is

at most |v|+ cT−L+1. Consequently, by the Finiteness Assumption, EZτ+1:T−L+1
[βτ,T−L fT−L+1] is

(EZτ+1:T−L+1
[βτ,T−L UT−L+1])-Lipschitz-continuous in xT−L+1, and hence EZτ+1:T−L+1

[βτ,T−L fT−L+1]

is finite if xT−L+1 is finite. Setting τ = T − L+ 1 we see that the second and fourth assertions of

the Lemma hold for fT−L+1. Also note that fT−L+1 is policy-independent.

Our third claim is that the order-up-to-zero policy, which we will call ζ, has finite expected cost.

Let f ζ
t and V ζ

t be analogous to ft and Vt in (3) and (4), corresponding to ζ. Specifically, f ζ
t and V ζ

t

satisfy (4), and they satisfy (3) if we replace the minimum over yt with x+t . We claim that f ζ
t (xt, zt)

and V ζ
t (yt, zt) are finite for all finite values xt and yt, for all zt. To prove the claim note that un-

der ζ, yt = (x1−D1,t−1)
+. Hence V ζ

τ (yτ , zτ ) = cτ yτ+
∑

t:τ≤t≤T−LEDτ :t+L,Zτ+1:t+L+2
[βτ,t+LĜt((x1−

D1,t−1)
+, zt,Zt+1:t+L+2,Dt:t+L)]+EDτ :T−L,Zτ+1:T−L+1

[βτ,T−LfT−L+1((x1−D1,T−L)
+,ZT−L+1)]. This

is finite by our first two claims. Substituting yt ← x+t in (3) we see that f ζ
t (xt, zt) is also finite for

finite yt.

We now prove the lemma by induction. For 1 ≤ t ≤ T we define Ut = 2 ct + ut + E[βt Ut+1].

The Finiteness Assumption implies that Ut is finite for all t. Our inductive hypothesis consists of

the following affirmations.

(a) Vt is (Ut− ct)-Lipschitz-continuous in yt, the second and fourth assertions of the Lemma hold

for Vt, and Vt ≤ V ζ
t , for 1 ≤ t ≤ T − L and all zt.

(b) ft is Ut-Lipschitz-continuous in xt, the third and fourth assertions of the Lemma hold for ft,

and ft ≤ f ζ
t , for 1 ≤ t ≤ T − L+1 and all zt.

1
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The second claim initializes the induction by establishing Affirmation 2 for t = T − L + 1.

Assume that we have proven Affirmation 2 for t+ 1. By (4), Vt ≤ V ζ
t , so Vt ∈ � ∪ {−∞} when yt

is finite. Because Ut = 2 ct + ut + E[βt Ut+1] is finite, Vt is (Ut − ct)-Lipscitz-continuous. We see

that Affirmation 1 holds for t.

We now assume that Affirmation 1 holds for t and prove Affirmation 2. By (3), ft ≤ f ζ
t , so

Vt ∈ �∪{−∞} when xt is finite. In (3), minyt>xt{Ktδ(yt−xt)+Vt(yt, zt)} = Kt+minyt>xt Vt(yt, zt)

and {Ktδ(0) + Vt(xt, zt)} = Vt(xt, zt) are both (Ut − ct)-Lipscitz-continuous in xt, by Affirmation

2. Therefore their minimum is (Ut− ct)-Lipscitz-continuous in xt, and ft is Ut-Lipscitz-continuous.

At this point Affirmation 2 follows readily. �

Proof of Lemma 2: Since −f(x) is [−a,−b]-asymptotic, we can change the signs of both W

and f without altering the claim. Therefore, we assume that W ≥ 0 and E(W ) > 0. Let

ζ ∈ {−1, 1} be a constant. For every ε > 0 and A ≥ 0, there is a v such that for all x, x ≥ v,

we have A + (b − ε)x ≤ f(x) ≤ −A + (b + ε)x. By case analysis (ζ = 1, −1), we see that

A ≤ ζ [f(x)− (b− ζ ε)x]. Then

E{W ζ [f(x−D)− (b− ζ ε)x]} − E{W ζ [f(x−D)− (b− ζ ε)x] 1(x−D ≤ v)}

= E{W ζ [f(x−D)− (b− ζ ε)x] 1(x−D > v)}

= E{W ζ [f(x−D)− (b− ζ ε)(x−D)] 1(x−D > v)} − E{W ζ D (b− ζ ε) 1(x−D > v)}

≥ E[WA 1(x−D > v)]− E[W |D| (|b|+ ε)]

≥ AE[W ]−AE[W 1(x−D ≤ v)]− (|b|+ ε)E[W |D|].

Since both W and W |D| have finite means, the third term is a finite constant and the second term

converges to 0 as x → ∞. Consider the left-hand side of the inequality. Since f(x) is linearly

bounded, there exist constants A′ and A′′ such that

E{|W ζ [f(x−D)− (b− ζ ε)x]| 1(x−D ≤ v)}

≤ E{W [(A′ +A′′|x−D|) + (|b|+ ε)x] 1(x−D ≤ v)}

≤ E{W [(A′ +A′′|D|) + (A′′ + |b|+ ε)x] 1(x−D ≤ v)}

≤ E{W [(A′ +A′′|D|) + (A′′ + |b|+ ε) (D + v)] 1(x−D ≤ v)}.

Because the expected values of W and W |D| are both finite, the dominated convergence theorem

applies, and this expression converges to 0 as x → ∞.

2
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We have proven that lim inf
x→∞ E{W ζ [f(x − D) − (b − ζ ε)x]} ≥ AE[W ] − (|b| + ε)E[W |D|].

Since E(W ) > 0 and this is true for all A ≥ 0, E[W ζ f(x − D)] − E[W ζ (b − ζ ε)x] diverges as

x → ∞. Similarly, E[W ζ f(x − D)] − E[W ζ (a − ζ ε)x] diverges as x → −∞. Considering the

cases ζ = 1 and ζ = −1, and recalling that this holds for all ε > 0, we see that E[W f(x −D)] is

[E(W )a, E(W )b]-asymptotic. �

Proof of Lemma 3: For a given information set zt, suppose that whenever x < y we have

Vt(x, zt) ≤ Vt(y, zt) + Kt. Then it is optimal to never order, and st(zt) = −∞, i.e., an (s, S) =

(−∞, St(zt)) policy is optimal. Furthermore, Vt(·, zt) is not [0, ·]-divergent.
On the other hand, if Vt(·, zt) is Kt-convex and [·, 0]-divergent, and if Vt(x, zt) > Vt(y, zt) +Kt

for some x < y, then St(zt) < ∞ and the proof becomes classical. There is no local maximum St

of Vt such that St < y and Vt(St, zt) > Vt(y, zt)+Kt, because the existence of St would violate the

Kt-convexity of Vt. Therefore {x : x < y and Vt(x, zt) > Vt(y, zt) +Kt} is a non-empty connected

set containing −∞, and Vt is non-increasing on this set. Consequently St(zt) and st(zt) exist,

st(zt) > −∞, and if the starting inventory level is less than St(zt), then the (st(zt), St(zt)) policy

is optimal. Also, we have proven that St(zt) > x whenever x < y and Vt(x, zt) > Vt(y, zt) + Kt.

Thus, if the starting inventory level is greater than St(zt), then it is optimal not to order; i.e., the

(st(zt), St(zt)) policy is optimal. �

Proof of Lemma 4: We prove the lemma by induction on t starting from period T −L. It is easy

to show that cT−L y is [cT−L, cT−L]-asymptotic and ĜT−L is [−π̂T , hT ]-asymptotic. By Lemma 2,

fT−L+1(xT−L+1, zT−L+1) is [EZT−L+2:T+1
(−βT−L+1,T cT−L+1), EZT−L+2:T+1

(−βT−L+1,T v)]-asymptotic

in the backorder cases, and [·, EZT−L+2:T+1
(−βT−L+1,T v)]-asymptotic in case LS. By (4), Property 1

and Lemma 2, VT−L is [AT−L,BT−L]-asymptotic ([·,BT−L]-asymptotic in case LS), and the lemma

holds for t = T − L.

Assume that the lemma holds for t + 1, and recall that Bt+1 > 0 by assumption. Clearly, the

minimum in (3) is [·, Bt+1]-asymptotic, and ft+1 is [·, Bt+1 − ct+1]-asymptotic. In the backorder

cases (PTD and PTO), if At+1 < 0 then there is a finite yt+1 that minimizes the term in braces in

(3). If At+1 ≥ 0, then there may not exist a finite minimizer yt+1. In either case the minimum in

(3) is [(At+1)
+, Bt+1]-asymptotic, and hence ft+1 is [(At+1)

+ − ct+1, Bt+1 − ct+1]-asymptotic.

By Property 1 and Lemma 2, and because ct yt is [ct, ct]-asymptotic and Ĝt is [−π̂t+L, ht+L]-

asymptotic, Vt is [At,Bt]-asymptotic ([·,Bt]-asymptotic in case LS), and the lemma holds for period

3
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t. �

Proof of Lemma 5: We first consider the backorder cases. In these cases, the condition BT−L −
AT−L ≥ 0 implies that EZT−L+1:T+1

[βT−L,T (hT + π̂T + cT−L+1 − v)] ≥ 0 and hence

VT−L(yT−L, zT−L)

= cT−LyT−L + EDT−L:T ,ZT−L+1:T+1
[βT−L,T ĜT−L(yT−L, zT−L,ZT−L+1:T+1,DT−L:T )

+βT−LfT−L+1(yT−L −DT−L,ZT−L+1)]

= cT−LyT−L + EZT−L+1:T+1
{EDT−L:T

[βT−L,T ĜT−L(yT−L, zT−L,ZT−L+1:T+1,DT−L:T )

+βT−LfT−L+1(yT−L −DT−L,ZT−L+1)|ZT−L+1:T+1]}

= cT−LyT−L + EZT−L+1:T+1
{βT−L,TEDT−L:T

[(hT − v)(yT−L −DT−L,T )
+

+(π̂T + cT−L+1)(yT−L −DT−L,T )
− − pTDT |ZT−L+1:T+1]},

which is convex. Furthermore, the condition ht+L + π̂t+L ≥ 0 affirms that Ĝt is convex. The

proof is completed by induction on t, in the classical manner, based on (3), (4), and the condition

Kt(zt) ≥ EZt+1 [βt(zt,Zt+1)Kt+1(Zt+1)].

Under lost sales, L = 0 and

VT (yT , zT ) = cT yT + EDT ,ZT+1
[βT ĜT (yT , zT ,ZT+1, DT ) + βT fT+1((yT −DT )

+,ZT+1)]

= cT yT + EZT+1
{βTEDT

[ĜT (yT , zT ,ZT+1, DT ) + fT+1((yT −DT )
+,ZT+1)]|ZT+1}

= cT yT + EZT+1
{βTEDT

[(hT − v)(yT −DT )
+ + π̂T (yT −DT )

− − pTDT ]|ZT+1}.

Because BT −AT = EZT+1
[βT (hT + π̂T − v)] ≥ 0, VT (·, zT ) is convex.

The inductive step of the proof for the lost sales case proceeds as follows. Assume that

Vt+1(yt+1, zt+1) is Kt+1-convex. In (3), the classical logic implies that

Ft+1(xt+1, zt+1) = ft+1(xt+1, zt+1) + ct+1xt+1 = min
yt+1≥xt+1

{Kt+1δ(yt+1 − xt+1) + Vt+1(yt+1, zt+1)}

is a Kt+1-convex function of xt+1. Using the properties of Vt+1(yt+1, zt+1) and Ft+1(xt+1, zt+1)

discussed in the second paragraph of the proof of Lemma 3, and considering the cases st+1 > 0,

st+1 = 0 < St+1 and St+1 = 0, we can show that Ft+1(x
+
t+1, zt+1) is a Kt+1-convex function of

xt+1, where xt+1 can be either positive or negative. In case LS, γ(xt+1) = (xt+1)
+, so we can write

ft+1(γ(xt+1), zt+1) = −ct+1x
+
t+1 + Ft+1(x

+
t+1, zt+1).

Now consider equation (4) for period t. The term in brackets is

βtĜt(yt, zt,Zt+1, Dt) + βtft+1((yt −Dt)
+,Zt+1)
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= βt[(ht − ct+1)(yt −Dt)
+ + π̂t(yt −Dt)

− + Ft+1((yt −Dt)
+,Zt+1)− ptDt].

The condition that ht+ π̂t−ct+1 ≥ 0 guarantees that (ht−ct+1)(yt−Dt)
++ π̂t(yt−Dt)

− is convex.

Consequently, the term in brackets isKt+1-convex. The conditionKt(zt) ≥ EZt+1 [βt(zt,Zt+1)Kt+1(Zt+1)]

implies that the expectation of this term over Zt+1, conditioned on zt, is Kt-convex and the in-

ductive step of the proof for the lost sales case is completed. �
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