
ar
X

iv
:1

40
2.

63
61

v1
 [

m
at

h.
O

C
]

 2
5

Fe
b

20
14

Oracle-Based Robust Optimization via Online Learning

Aharon Ben-Tal
Technion

abental@ie.technion.ac.il

Elad Hazan
Technion

ehazan@ie.technion.ac.il

Tomer Koren
Technion

tomerk@technion.ac.il

Shie Mannor
Technion

shie@ee.technion.ac.il

February 27, 2014

Abstract

Robust optimization is a common framework in optimization under uncertainty
when the problem parameters are not known, but it is rather known that the pa-
rameters belong to some given uncertainty set. In the robust optimization framework
the problem solved is a min-max problem where a solution is judged according to its
performance on the worst possible realization of the parameters. In many cases, a
straightforward solution of the robust optimization problem of a certain type requires
solving an optimization problem of a more complicated type, and in some cases even
NP-hard. For example, solving a robust conic quadratic program, such as those aris-
ing in robust SVM, ellipsoidal uncertainty leads in general to a semidefinite program.
In this paper we develop a method for approximately solving a robust optimization
problem using tools from online convex optimization, where in every stage a standard
(non-robust) optimization program is solved. Our algorithms find an approximate ro-
bust solution using a number of calls to an oracle that solves the original (non-robust)
problem that is inversely proportional to the square of the target accuracy.

1 Introduction

The Robust Optimization (RO; see Ben-Tal and Nemirovski (2002); Ben-Tal et al. (2009);
Bertsimas et al. (2011)) framework addresses a fundamental problem of many convex op-
timization problems: slight inaccuracies in data give rise to significant fluctuations in the
solution. While there are different approaches to handle uncertainty in the parameters of
an optimization problem, the RO approach choose a solution that performs best against the
worst possible parameter. When the objective function is convex in the parameters, and
concave in the uncertainty, and when the uncertainty set is convex the overall optimization
problem is convex.

1

http://arxiv.org/abs/1402.6361v1

Despite its theoretical and empirical success, a significant hinderance of adopting RO
to large scale problems is the increased computational complexity. In particular, robust
counterpart of an optimization problem is often more difficult, albeit usually convex, mathe-
matical problems. For example, the robust counterpart of conic quadratic programming with
ellipsoidal uncertainty constraints becomes a semi-definite program, for which we currently
have significantly slower solvers.

RO has recently gained traction as a tool for analyzing machine learning algorithms and
for devising new ones. In a sequence of papers, Xu, Caramanis and Mannor show that
several standard machine learning algorithms such as Lasso and norm regularized support
vector machines have a RO interpretation (Xu et al., 2009, 2010). Beyond these works,
robustness is a desired property for many learning algorithms. Indeed, making standard
algorithms robust to outliers or to perturbation in the data has been proposed in several
works; see Lanckriet et al. (2003); Bhattacharyya et al. (2004a,b); Shivaswamy et al. (2006);
Trafalis and Gilbert (2007). However in these cases, the problem eventually solved is more
complicated than the original problem. For example, in Trafalis and Gilbert (2007) the
original problem is a standard support vector machine, but when robustifying it to input
uncertainty, one has to solve a second-order conic program (in the non-separable case). An-
other example is Shivaswamy et al. (2006) where the uncertainty is a probability distribution
over inputs. In that case, the original SVM becomes a second-order conic program as well.

The following question arrises: can we (approximately) solve a robust counter-
part of a given optimization problem using only an algorithm for the original
optimization formulation? In this paper we answer this question on the affirmative: we
give two meta-algorithms that receive as input an oracle to the original mathematical prob-
lem and approximates the robust counterpart by invoking the oracle a polynomial number
of times. In both approaches, the number of iterations to obtain an approximate robust
solution is a function of the approximation guarantee and the complexity of the uncertainty
set, and does not directly depend on the dimension of the problem. Our methods differ on
the assumptions regarding the uncertainty set and the dependence of the constraints on the
uncertainty. The first method allows any concave function of the noise terms but is limited
to convex uncertainty sets. The second method allows arbitrary uncertainty sets as long
as a “pessimization oracle” (as termed by Mutapcic and Boyd 2009) exists— an oracle that
finds the worst case-noise for a given feasible solution. Our methods are formally described
as template, or meta-algorithms, and are general enough to be applied even if the robust
counterpart is NP-hard1.

Our approach for achieving efficient oracle-based RO is to reduce the robust formula-
tion to a zero-sum game, which we solve by a primal-dual technique based on tools from
online learning. Such primal-dual methods originated from the study of approximation al-
gorithms for linear programs (Plotkin et al., 1995) and were recently proved invaluable in
understanding Lagrangian relaxation methods (see e.g. Arora et al. 2012) and in sublinear-
time optimization techniques (Clarkson et al., 2012; Hazan et al., 2011; Garber and Hazan,

1Recall that we are only providing an approximate solution, and thus our algorithms formally constitute
a “polynomial time approximation scheme” (PTAS).

2

2011). We show how to apply this methodology to oracle-based RO. Along the way, we con-
tribute some extensions to the existing online learning literature itself, notably giving a new
Follow-the-Perturbed-Leader algorithm for regret minimization that works with (additive)
approximate linear oracles.

Finally, we demonstrate examples and applications of our methods to various RO formu-
lation including linear, semidefinite and quadratic programs. The latter application builds on
recently developed efficient linear-time algorithms for the trust region problem (Hazan and Koren,
2014).

Related work. Robust optimization is by now a field of study by itself, and the reader
is referred to Ben-Tal et al. (2009); Bertsimas et al. (2011) for further information and ref-
erences. The computational bottleneck associated with robust optimization was addressed
in several papers. Calafiore and Campi (2004) propose to sample constraints from the un-
certainty set, and obtain an “almost-robust” solution with high probability with enough
samples. The main problem with their approach is that the number of samples can become
large for a high-dimensional problem.

For certain types of discrete robust optimization problems, Bertsimas and Sim (2003)
propose solving the robust version of the problem via n (the dimension) solutions of the
original problem. Mutapcic and Boyd (2009) give an iterative cutting plane procedure for
attaining essentially the same goal as us, and demonstrate impressive practical performance.
However, the overall running time for their method can be exponential in the dimension.

Oraganization. The rest of the paper is organized as follows. In Section 2 we present the
model and set the notations for the rest of the paper. In Section 3.1 we describe the simpler
of our two meta-algorithms: a meta algorithm for approximately solving RO problems that
employs dual subgradient steps, under the assumption that the robust problem is convex
with respect to the noise variables. In Section 3.2 we remove the latter convexity assumption
and only assume that the problem of finding the worst-case noise assignment can be solved
by invoking a “pessimization oracle”. This approach is more general than the subgradient-
based method and we exhibit perhaps our strongest example of solving robust quadratic
programs using this technique in Section 4. Section 4 also contains examples of application
of our technique for robust linear and semi-definite programming. We conclude in Section 5.

2 Preliminaries

We start this section with the standard formulation of RO. We then recall some basic results
from online learning.

3

2.1 Robust Optimization

Consider a convex mathematical program in the following general formulation:

minimize f0(x)
subject to fi(x, ui) ≤ 0, i = 1, . . . , m ,

x ∈ D .
(1)

Here f0, f1, . . . , fm are convex functions, D ⊆ R
n is a convex set in Euclidean space, and

u = (u1, . . . , um) is a fixed parameter vector. The robust counterpart of this formulation is
given by

minimize f0(x)
subject to fi(x, ui) ≤ 0, ∀ ui ∈ U , i = 1, . . . , m ,

x ∈ D ,
(2)

where the parameter vector u is constrained to be in a set U = U × · · ·×U = Um called the
uncertainty set. It is without loss of generality to assume that the uncertainty set has this
specific form of a cartesian product, see e.g. Ben-Tal and Nemirovski (2002). Here we also
assume that the uncertainty set is symmetric (that is, its projection onto each dimension is
the same set). This assumption is only made for simplifying notations and can be relaxed
easily.

The following observation is standard: we can reduce the above formulation to a feasibility
problem via a binary search over the optimal value of (1), replacing the objective with the
constraint f0(x) − t ≤ 0 with t being our current guess of the optimal value (of course,
assuming the range of feasible values is known a-priory). For ease of notation, we rename
f0 by shifting it by α, and can write the first constraint as simply f0(x, u) ≤ 0. With these
observations, we can reduce the robust counterpart to the feasibility problem

∃? x ∈ D : fi(x, ui) ≤ 0 , ∀ ui ∈ U , i = 1, . . . , m . (3)

We say that x ∈ D is an ǫ-approximate solution to this problem if x meets each constraint
up to ǫ, that is, if it satisfies fi(x, ui) ≤ ǫ for all ui ∈ U (i = 1, . . . , m).

2.2 Online Convex Optimization and Regret minimization

Our derivations below use tools from online learning, namely algorithms for minimizing regret
in the general prediction framework of Online Convex Optimization (OCO). In OCO2, the
online predictor iteratively produces a decision xt ∈ K from a convex decision set K ⊆ R

n.
After a decision is generated, a concave reward function ft is revealed, and the decision
maker suffers a loss of ft(xt) ∈ R. The standard performance metric in online learning is
called regret, given by

RT = max
x∗∈K

T
∑

t=1

ft(x
∗) −

T
∑

t=1

ft(xt) .

2Here we present OCO as the problem of online maximization of concave reward functions rather than
online minimization of convex cost functions. While the latter is more common, both formulations are
equivalent.

4

The reward function is not known to the decision maker before selecting xt and it is, in
principal, arbitrary and even possibly chosen by an adversary. We henceforth make crucial
use of this robustness against adversarial choice of reward functions: the reward functions
we shall use will be chosen by a dual optimization problem, thereby directing the entire
algorithm towards a correct solution. We refer the reader to (Cesa-Bianchi and Lugosi,
2006; Hazan, 2011; Shalev-Shwartz, 2012) for more details on online learning and online
convex optimization.

Two regret-minimization algorithms that we shall use henceforth (at least in spirit) are
Online Gradient Descent (Zinkevich, 2003) and Follow the Perturbed Leader (Kalai and Vempala,
2005).

Online Gradient Descent (OGD). In OGD, the decision maker predicts according to
the rule

xt+1 ← ΠK

[

xt + η∇ft(xt)
]

, (4)

where ΠK(x) = miny∈K ‖x− y‖ is the Euclidean projection operator onto the set K. Hence,
the OGD algorithm takes a projected step in the direction of the gradient of the current
reward function. Even thought the next reward function can be arbitrary, it can be shown
that this algorithm achieves a sublinear regret.

Lemma 1 (Zinkevich 2003). For any sequence of reward functions, let {xt} be the sequence
generated by (4). Then, setting η = D/G

√
T we obtain

max
x∗∈K

∑

t

ft(x
∗) −

T
∑

t=1

ft(xt) ≤ GD
√
T ,

where G ≥ maxt∈[T] ‖ft(xt)‖ is an upper bound on the ℓ2 norm of the gradients of the reward
functions, and D ≥ maxx,y∈K ‖x− y‖ is an upper bound on the ℓ2 diameter of K.

Follow the Perturbed Leader (FPL). The FPL algorithm works in a similar setting as
OGD, but with two crucial differences:

1. The set K does not need to be convex. This is a significant advantage of the FPL
approach, which we make use of in our application to robust quadratic programming
(see Section 4.2).

2. FPL assumes that the reward functions f1, . . . , fT are linear, i.e. ft(x) = ft · x with
ft ∈ R

n.

Kalai and Vempala (2005) suggest the following method for online decision making that relies
on a linear optimization procedure M over the set K that computes M(f) = argmaxx∈K f ·x
for all f ∈ R

n. FPL chooses xt by first drawing a perturbation pt ∈ [0, 1
η
]n uniformly at

random, and computing:

xt+1 = M
(

∑t

τ=1
fτ + pt

)

. (5)

The regret of this algorithm is bounded as follows.

5

Lemma 2 (Kalai and Vempala 2005). For any sequence of reward vectors f1, . . . , fT , let
x1, . . . , xT be the sequence of decisions generated by (5) with parameter η =

√

D/RAT .
Then

max
x∗∈K

T
∑

t=1

ft · x∗ − E

[

T
∑

t=1

ft · xt

]

≤ 2
√
DRAT ,

where R ≥ maxt,x |ft ·x| is an upper bound on the magnitude of the rewards, A ≥ maxt ‖ft‖1
is an upper bound on the ℓ1 norm of the reward vectors, and D ≥ maxx,y∈K ‖x − y‖1 is an
upper bound on the ℓ1 diameter of K.

For our purposes, and in order to be able to work with an approximate optimization oracle
to the original mathematical program, we need to adapt the original FPL algorithm to work
with noisy oracles. This adaptation is made precise in Section 3.2.

3 Oracle-Based Robust Optimization

In this section we formally state and prove our first (and simpler) result: an oracle-based
approximate robust optimization algorithm that is based on subgradient descent.

Throughout the section we assume the availability of an optimization oracle for the
original optimization problem of the form given in Figure 1, which we denote by Oǫ. Such
an optimization oracle approximately solves formulation (3) for any fixed noise u ∈ U , in
the sense that it either returns an ǫ-feasible solution x (that meets each constraint up to ǫ)
or correctly declares that the problem is infeasible.

Input: noise vector u = (u1, . . . , um) ∈ U

Output: vector x ∈ D that satisfies

fi(x, ui) ≤ ǫ , i = 1, . . . , m

or “infeasible” if there does not exist a vector x ∈ D for which

fi(x, ui) ≤ 0 , i = 1, . . . , m

Figure 1: An ǫ-approximate optimization oracle for the original optimization problem.

3.1 Dual-Subgradient Meta-Algorithm

In this section we assume that for all i = 1, . . . , m:

1. For all x ∈ D, the function fi(x, u) is concave in u;

2. The set U is convex.

6

Under these assumptions, the robust formulation is in fact a convex-concave saddle-point
problem that can be solved in polynomial time using interior-point methods. However, recall
that our goal is to solve the robust problem by invoking a solver of the original (non-robust)
optimization problem.

In the setting of this section, we shall make use of the following definitions. Let D be an
upper bound over the ℓ2 diameter of U , that is D ≥ maxu,v∈U ‖u− v‖2. Let G be a constant
such that ‖∇ufi(x, u)‖2 ≤ G for all x ∈ D and u ∈ U .

Algorithm 1 Dual-Subgradient Robust Optimization

input: target accuracy ǫ > 0, parameters D,G
output: 2ǫ-approximate solution to (3), or “infeasible”

set T = ⌈G2D2/ǫ2⌉ and η = D/G
√
T

initialize (u0
1, . . . , u

0
m) ∈ U arbitrarily

for t = 1 to T do
for i = 1 to m do
update ut

i ← ΠU

[

ut−1
i + η∇ufi(x

t−1, ut−1
i)

]

end for
set xt ← Oǫ(u

t
1, . . . , u

t
m)

if oracle declared infeasibility then return “infeasible”
end for
return x̄ = 1

T

∑T
t=1 x

t

With the above assumptions and definitions, we can now present an oracle-based robust
optimization algorithm, given in Algorithm 1. The algorithm is comprised of primal-dual
iterations, where the dual part of the algorithm updates the noise terms according to the
current primal solution, via a low-regret update. For this algorithm, we prove:

Theorem 3. Algorithm 1 either returns an 2ǫ-approximate solution to the robust program
(3) or correctly concludes that it is infeasible. The algorithm terminates after at most
O(G2D2/ǫ2) calls to the oracle Oǫ.

Proof. First, suppose that the algorithm returns “infeasible”. By the definition of the
oracle Oǫ, this happens if for some t ∈ [T], there does not exists x ∈ R

n such that

fi(x, u
t
i) ≤ 0 , i = 1, . . . , m .

This implies that the robust counterpart (3) cannot be feasible, as there exists an admissible
perturbation that makes the original problem infeasible.

Next, suppose that a solution x̄ is returned. The premise of the oracle implies that
fi(x

t, ut
i) ≤ ǫ for all t ∈ [T] and i ∈ [m] (otherwise, the algorithm would have returned

“infeasible”), whence

∀ i ∈ [m] ,
1

T

T
∑

t=1

fi(x
t, ut

i) ≤ ǫ . (6)

7

On the other hand, from the regret guarantee of the Online Gradient Descent algorithm we
have

∀ i ∈ [m] , max
ui∈U

1

T

T
∑

t=1

fi(x
t, ui) −

1

T

T
∑

t=1

fi(x
t, ut

i) ≤
GD√
T
≤ ǫ . (7)

Combining (10) and (12), we conclude that for all i ∈ [m],

ǫ ≥ 1

T

T
∑

t=1

fi(x
t, ut

i) ≥ max
ui∈U

1

T

T
∑

t=1

fi(x
t, ui)− ǫ ≥ max

ui∈U
fi(x̄, ui)− ǫ ,

where the final inequality follows from the convexity of the functions fi with respect to x.
Hence, for every i ∈ [m] we have

fi(x̄, ui) ≤ 2ǫ, ∀ ui ∈ U ,

implying that x̄ is an 2ǫ-approximate robust solution.

3.2 Dual-Perturbation Meta-Algorithm

We now give our more general and intricate oracle-based approximation algorithm for RO.
In contrast to the previous simple subgradient-based method, in this section we do not need
the uncertainty structure to be convex. Instead, in addition to an oracle to solve the original
mathematical program, we also assume the existence of an efficient “pessimization oracle”
(as termed by Mutapcic and Boyd 2009), namely an oracle that approximates the worst-
case noise for any given feasible solution x. Formally, assume that for all i = 1, 2, . . . , m the
following hold:

1. For all x ∈ D, the function fi(x, u) is linear in u, i.e. can be written as fi(x, u) =
gi(x) · u+ hi(x) for some functions gi : R

n 7→ R
d and hi : R

n 7→ R;

2. There exists a linear optimization procedure Mǫ that given a vector g ∈ R
d, computes

a vector Mǫ(g) ∈ R
d such that g ·Mǫ(g) ≥ argmaxu∈U g · u− ǫ .

On the surface, the linearity assumption seems very strong. However, note that we do not
assume the convexity of the set U . This means that the dual subproblem (that amounts to
finding the worst-case noise for a given x) is not necessarily a convex program. Nevertheless,
our approach can still approximate the robust formulation as long as a procedure Mǫ is
available.

In the rest of the section we use the following notations. Let D be an upper bound over
the ℓ1 diameter of U , that is D ≥ maxu,v∈U ‖u− v‖1. Let F and G be constants such that
|fi(x, u)| ≤ F and ‖gi(x)‖1 ≤ G for all x ∈ D and u ∈ U .

We can now present our second oracle-based meta-algorithm, described in Algorithm 2.
Similarly to our dual-subgradient method, the algorithm is based on primal-dual iterations.
However, in the dual part we now rely on the approximate pessimization oracle for updating
the noise terms. This algorithm provides the following convergence guarantee.

8

Algorithm 2 Dual-Perturbation Robust Optimization

input: target accuracy and confidence ǫ, δ > 0, parameters D,F,G
output: 4ǫ-approximate solution to (3), or “infeasible”

set T = ⌈max {DG,F} · 16F
ǫ2

log m
δ
⌉ and η =

√

D/FGT
for t = 1 to T do
for i = 1 to m do
choose pt ∈ [0, 1

η
]n uniformly at random

compute ut
i ←Mǫ

(
∑t

τ=1 gi(x
τ) + pt

)

end for
set xt ← Oǫ(u

t
1, . . . , u

t
m)

if oracle declared infeasibility then return “infeasible”
end for
return x̄ = 1

T

∑T
t=1 x

t

Theorem 4. With probability at least 1 − δ, Algorithm 2 either returns an 4ǫ-approximate
solution to the robust program (3) or correctly concludes that it is infeasible. The algorithm
terminates after at most T = Õ((DG+ F) · F/ǫ2) calls to the oracle Oǫ.

We begin by analyzing the dual part of the algorithm, namely, the rule by which the
variables ut

i are updated. While this rule is essentially an FPL-like update, we cannot apply
Lemma 2 directly for two crucial reasons. First, the update uses an approximate linear
optimization procedure instead of an exact one as required by FPL. Second, the reward
vectors gi(x

1), . . . , gi(x
T) being observed by the dual algorithm are random variables that

depend on its internal randomization (i.e., on the random variables p1, . . . , pT). Nevertheless,
by analyzing a noisy version of the FPL algorithm (in Section 3.3 below) we can prove the
following bound.

Lemma 5. For each i = 1, . . . , m, with probability at least 1− δ we have that

max
ui∈U

T
∑

t=1

gi(x
t) · ui −

T
∑

t=1

gi(x
t) · ut

i ≤ 2
√
DFGT + 2F

√

T log 1
δ
+ 2ǫT .

Proof. Fix some i ∈ [m]. Note that the distribution from which the dual algorithm draws
ut
i is a deterministic function of the primal variables x1, . . . , xt−1. Hence, we can apply

Lemma 4.1 of Cesa-Bianchi and Lugosi (2006), together with the regret bound of Theorem 6
(see Section 3.3 below), and obtain that

max
ui∈U

T
∑

t=1

gi(x
t) · ui −

T
∑

t=1

Et[gi(x
t) · ut

i] ≤ 2
√
DFGT + 2ǫT , (8)

where Et[·] denotes the expectation conditioned on p1, . . . , pt−1. Next, note that the random
variables Zt = gi(x

t) · ut
i − Et[gi(x

t) · ut
i] for t = 1, . . . , T form a martingale differences

9

sequence with respect to p1, . . . , pT , and

|Zt| ≤
∣

∣gi(x
t) · ut

i

∣

∣+ Et[
∣

∣gi(x
t) · ut

i

∣

∣] ≤ 2F .

Hence, by Azuma’s inequality (see e.g., Lemma A.7 in Cesa-Bianchi and Lugosi 2006), with
probability at least 1− δ,

T
∑

t=1

Et[gi(x
t) · ut

i] −
T
∑

t=1

gi(x
t) · ut

i ≤ 2F
√

T log 1
δ
. (9)

Summing inequalities (8) and (9), we obtain the lemma.

Equipped with the above lemma, we can now prove Theorem 4.

Proof of Theorem 4. First, suppose that the algorithm returns “infeasible”. By the defi-
nition of the oracle Oǫ, this happens if for some t ∈ [T], there does not exists x ∈ R

n such
that

fi(x, u
t
i) ≤ 0 , i = 1, . . . , m .

This implies that the robust counterpart (3) cannot be feasible.
Next, suppose that a solution x̄ is returned (note that x̄must lie in the set D as we assume

that D is convex). This ensures that fi(x
t, ut

i) ≤ ǫ for all t ∈ [T] and i ∈ [m] (otherwise, the
algorithm would have returned “infeasible”), whence

∀ i ∈ [m] ,
1

T

T
∑

t=1

fi(x
t, ut

i) ≤ ǫ . (10)

On the other hand, Lemma 5 implies that for each i ∈ [m] we have

max
ui∈U

1

T

T
∑

t=1

gi(x
t) · ui −

1

T

T
∑

t=1

gi(x
t) · ut

i ≤ 2

√

DFG

T
+ 2F

√

log m
δ

T
+ 2ǫ

with probability at least 1 − δ/m. Recalling that fi(x
t, u) = gi(x

t) · u for all u ∈ U and
applying a union bound, we obtain that with probability at least 1− δ,

∀ i ∈ [m], max
ui∈U

1

T

T
∑

t=1

fi(x
t, ui) −

1

T

T
∑

t=1

fi(x
t, ut

i) ≤ 2

√

DFG

T
+ 2F

√

log m
δ

T
+ 2ǫ .

(11)

Using our choice of T now gives that with probability at least 1− δ,

∀ i ∈ [m], max
ui∈U

1

T

T
∑

t=1

fi(x
t, ui) −

1

T

T
∑

t=1

fi(x
t, ut

i) ≤ 3ǫ . (12)

10

Combining (10) and (12), we conclude that with probability at least 1− δ, for all i ∈ [m],

ǫ ≥ 1

T

T
∑

t=1

fi(x
t, ut

i) ≥ max
ui∈U

1

T

T
∑

t=1

fi(x
t, ui)− 3ǫ ≥ max

ui∈U
fi(x̄, ui)− 3ǫ ,

where the final inequality follows from the convexity of the functions fi with respect to x.
Hence, with probability at least 1− δ, for every i ∈ [m] we have

fi(x̄, ui) ≤ 4ǫ, ∀ ui ∈ U ,

implying that x̄ is an 4ǫ-approximate robust solution.

3.3 Follow the Approximate Perturbed Leader

As mentioned above, in our analysis we require a noisy version of the FPL algorithm, namely
a variant capable of using an approximate linear optimization procedure over the decision
domain rather than an exact one. Here we analyze such a variant and prove Theorem 6
being used in the proof of Lemma 5 above.

Assume we have a procedure Mǫ for ǫ-approximating linear programs over a (not neces-
sarily convex) domain K, that is, for all f ∈ R

n the output of Mǫ(f) satisfies

f ·Mǫ(f) ≥ max
x∈K

f · x − ǫ

for some constant ǫ > 0. We analyze the following version of the FPL algorithm: at round t
choose xt by first choosing a perturbation pt ∈ [0, 1/η]n uniformly at random, and computing:

xt+1 = Mǫ

(

∑t

τ=1
ft + pt

)

. (13)

We show that the error introduced by the noisy optimization procedure Mǫ does not harm
the regret too much. Formally, we prove:

Theorem 6. For any sequence of reward vectors f1, . . . , fT , let x1, . . . , xT be the sequence
of decisions produced by (13) with parameter η =

√

D/RAT . Then

max
x∗∈K

T
∑

t=1

ft · x∗ − E

[

T
∑

t=1

ft · xt

]

≤ 2
√
DRAT + 2ǫT ,

where R ≥ maxt,x |ft ·x| is an upper bound on the magnitude of the rewards, A ≥ maxt ‖ft‖1
is an upper bound on the ℓ1 norm of the reward vectors, and D ≥ maxx,y∈K ‖x − y‖1 is an
upper bound on the ℓ1 diameter of K.

Throughout this section we use the notation f1:t as a shorthand for the sum
∑t

τ=1 fτ . Fol-
lowing the analysis of Kalai and Vempala (2005), we first prove that being the approximate
leader yields approximately zero regret.

11

Lemma 7. For any sequence of vectors f1, . . . , fT ,

T
∑

t=1

Mǫ(f1:t) · ft ≥ Mǫ(f1:T) · f1:T − ǫT .

Proof. The proof is by induction on T . For T = 1 the claim is trivial. Next, assuming
correctness for some value of T we have

∑T+1

t=1
Mǫ(f1:t) · ft ≥ Mǫ(f1:T) · f1:T +Mǫ(f1:T+1) · fT+1 − ǫT

≥ Mǫ(f1:T+1) · f1:T − ǫ+Mǫ(f1:T+1) · fT+1 − ǫT

= Mǫ(f1:T+1) · f1:T+1 − ǫ(T + 1) ,

which completes the proof.

Next, we bound the regret of a hypothetical algorithm that on round t uses the unobserved
function ft for predicting xt.

Lemma 8. For any vectors f1, . . . , fT (T ≥ 2) and p ∈ [0, 1/η]n it holds that

T
∑

t=1

Mǫ(f1:t + p) · ft ≥ max
x∈K

f1:t · x−
D

η
− 2ǫT ,

where D ≥ maxx,y∈K ‖x− y‖1 is an upper bound on the ℓ1 diameter of K.
Proof. Imagine a fictitious round t = 0 in which a reward vector f0 = p is observed. Then,
using Lemma 7 we can write

T
∑

t=1

Mǫ(f1:t + p) · ft =
T
∑

t=0

Mǫ(f0:t) · ft −Mǫ(f0) · f0

≥ Mǫ(f0:t) · f0:t −Mǫ(f0) · f0 − ǫT .

Using the guarantee of Mǫ, we can bound the first term on the right hand side as

Mǫ(f0:t) · f0:t ≥ Mǫ(f1:t) · f0:t − ǫ

= Mǫ(f1:t) · f1:t +Mǫ(f1:t) · f0 − ǫ

≥ max
x∈K

f1:t · x+Mǫ(f1:t) · f0 − 2ǫ .

Putting things together, for T ≥ 2 we have

T
∑

t=1

Mǫ(f1:t + p) · ft ≥ max
x∈K

f1:t · x+ (Mǫ(f1:t)−Mǫ(f0)) · f0 − (T + 2)ǫ

≥ max
x∈K

f1:t · x−
D

η
− 2ǫT ,

where the final inequality follows from Hölder’s inequality, since ‖Mǫ(f1:t)−Mǫ(f0)‖1 ≤ D
and ‖f0‖∞ = ‖p‖∞ ≤ 1/η.

12

Our final lemma bounds the expected difference in quality between the prediction made
by the hypothetical algorithm to the one made by the approximate FPL algorithm.

Lemma 9. For any sequence f1, . . . , ft of reward vectors and p distributed uniformly in the
cube [0, 1/η]n we have

E[Mǫ(f1:t−1 + p) · ft] − E[Mǫ(f1:t + p) · ft] ≥ − ηRA ,

where R ≥ maxt,x |ft · x| and A ≥ maxt ‖ft‖1.

Proof. Lemma 3.2 in Kalai and Vempala (2005) shows that the cubes f1:t−1 + p and f1:t + p
overlap in at least 1 − η|ft| ≥ 1 − ηA fraction. On this intersection, the random variables
Mǫ(f1:t−1 + p) · ft and Mǫ(f1:t + p) · ft are identical. Otherwise, they can differ by at most
R. This gives the claim.

We can now prove our regret bound.

Proof of Theorem 6. Since we are bounding the expected regret, we can simply assume that
p1 = . . . = pT = p with p uniformly distributed in the cube [0, 1/η]n. Combining the above
lemmas, we see that

E

[

T
∑

t=1

Mǫ(f1:t−1 + pt) · ft
]

= E

[

T
∑

t=1

Mǫ(f1:t−1 + p) · ft
]

≥ E

[

T
∑

t=1

Mǫ(f1:t + p) · ft
]

− ηRAT

≥ max
x∈K

f1:t · x−
D

η
− ηRAT − 2ǫT .

The claimed regret bound now follows from our choice of η =
√

D/RAT .

4 Examples and Applications

In this section we provide several examples for the applicability of our results. All the
problems we consider are stated as feasibility problems. For concreteness, we focus on
ellipsoidal uncertainty sets, being the most common model of data uncertainty.

4.1 Robust Linear Programming

A linear program (LP) in the standard form is given by

∃? x ∈ R
n

s.t. a⊤i x− bi ≤ 0 , i = 1, . . . , m ,

13

The robust counterpart of this optimization problem is a second-order conic program (SOCP)
that can be solved efficiently, see e.g. Ben-Tal et al. (2009); Bertsimas et al. (2011). In
many cases of interest there exist highly efficient solvers for the original LP problem, as
in the important case of network flow problems where the special combinatorial structure
allows for algorithms that are much more efficient than generic LP solvers. However, this
combinatorial structure is lost for its corresponding robust network flow problem. Hence,
solving the robust problem using an oracle-based approach might be favorable in these cases.
For the same reason, our technique is relevant even in the case of polyhedral uncertainty,
where the robust counterpart remains an LP but possibly without the special structure of
the original formulation.

In the discussion below, we assume that the feasible domain of the LP is inscribed in the
Euclidean unit ball (this can be ensured via standard scaling techniques). Notice this also
implies that the feasible domain of the corresponding robust formulation is inscribed in the
same ball.

A robust linear program with ellipsoidal noise is given by:

∃? x ∈ R
n

s.t. (ai + Pui)
⊤x− bi ≤ 0 , ∀ ui ∈ U , i = 1, . . . , m , (14)

where P ∈ R
n×K is a matrix controlling the shape of the ellipsoidal uncertainty, ai ∈ R

n

are the nominal parameter vectors, and U = {u ∈ R
K : ‖u‖2 ≤ 1} is the K-dimensional

Euclidean unit ball.

Dual-Subgradient Algorithm. The robust linear program (14) is amenable to our OGD-
based meta-algorithm (Algorithm 1), as the constraints are linear with respect to the noise
terms ui. In this case we have ∇ufi(x, u) = P⊤x, so that in each iteration of the algorithm,
the update of the variables ut

i takes the simple form

ut
i ←

ut−1
i + ηP⊤x

max
{

‖ut−1
i + ηP⊤x‖2, 1

} .

Specializing Theorem 3 to the case of robust LPs, we obtain the following.

Corollary 10. Algorithm 1 returns an ǫ-approximate robust solution to (14) after at most
T = O(σ2/ǫ2) calls to the LP oracle, where σ2 = ‖P‖2F is the maximal magnitude of the
noise.

Proof. Note that for all u ∈ U and ‖x‖2 ≤ 1,

‖∇ufi(x, u)‖22 = x⊤PP⊤x ≤ ‖P‖2F · ‖x‖22 ≤ σ2 .

Setting D = 2 and G = σ in Theorem 3, we obtain the statement.

14

Dual-Perturbation Algorithm. Since the constraints of the robust LP are linear in the
uncertainties ui, we can also apply our FPL-based meta-algorithm to the problem (14).
Using the notations of Section 3.2, we have gi(x) = P⊤x. Hence, the computation of the
noise variables ut

i can be done in closed-form, as follows:

ut
i ← max

‖u‖2≤1
u⊤

(

P⊤
∑t−1

τ=1
xτ + pt

)

=
P⊤

∑t−1
τ=1 x

τ + pt

‖P⊤
∑t−1

τ=1 x
τ + pt‖2

.

In this case, Theorem 4 implies:

Corollary 11. With high probability, Algorithm 2 returns an ǫ-approximate robust solution
to (14) after at most T = Õ(Kσ2/ǫ2) calls to the LP oracle, where σ2 = ‖P‖2F is the maximal
magnitude of the noise.

Proof. Using the notations of Section 3.2 with gi(x) = P⊤x, we have

D = max
u,v∈U

‖u− v‖1 ≤ 2
√
K ,

G = max
‖x‖2≤1

‖P⊤x‖1 ≤
√
K max

‖x‖2≤1
‖P⊤x‖2 ≤

√
K σ ,

F = max
‖x‖2,‖u‖2≤1

|x⊤Pu| ≤ ‖x‖2 · ‖P‖F · ‖u‖2 ≤ σ .

Making the substitutions into the guarantees in Theorem 4 completes the proof.

We see that the asymptotic performance of Algorithm 2 is factor-K worse than that of
Algorithm 1, in the case of robust LP problems.

4.2 Robust Quadratic Programming

A quadratically constrained quadratic program (QCQP) is given by

∃? x ∈ R
n

s.t. ‖Aix‖22 − b⊤i x− ci ≤ 0 , i = 1, . . . , m ,

with Ai ∈ R
n×n, bi ∈ R

n, ci ∈ R. As in the case of LPs, we assume that the feasible domain
of the above program is inscribed in the Euclidean unit ball. The robust counterpart of
this optimization problem is a semidefinite program (Ben-Tal et al., 2009; Bertsimas et al.,
2011). Current state-of-the-art QP solvers can handle two to three orders of magnitude
larger QPs than SDPs, motivating our results. Indeed, our approach avoids reducing the
robust program into an SDP and approximates it using a QP solver.

A robust QP with ellipsoidal uncertainties is given by3

∃? x ∈ R
n

s.t.
∥

∥

∥
(Ai +

∑K

k=1
ui,kPk)x

∥

∥

∥

2

2
− b⊤i x− ci ≤ 0 , ∀ ui ∈ U , i = 1, . . . , m , (15)

3For simplicity, the uncertainties we consider here are only in the matrices Ai (and not in the vectors
bi). In a similar, albeit more technical way we can also analyze our algorithm with general ellipsoidal
uncertainties.

15

where Pk ∈ R
n×n are fixed matrices and U = {u ∈ R

K : ‖u‖2 ≤ 1}. Here ui,k denotes the
k’th entry of the noise vector ui ∈ U .

Notice that Algorithm 1 does not apply to formulation (15), as the constraints are cer-
tainly not concave with respect to the noise terms ui (in fact, they are convex in ui, as we
show below). This motivates the need for our FPL-based meta-algorithm.

Dual-Perturbation Algorithm. We now show that the problem (15) falls in the scope
of Section 3.2, and the assumptions required there hold for this program. We let σ2 =
∑K

k=1 ‖Pk‖2F denote the total magnitude of the admissible noise, and assume that the Frobe-
nius norms of the nominal matrices A1, . . . , Am are upper bounded by ρ.

The following lemma shows that the i’th constraint is in fact a convex quadratic in ui.

Lemma 12. The i’th constraint in (15) can be written as

u⊤
i Qxui + 2r⊤x ui + sx ≤ 0 ,

where Qx ∈ R
K×K, rx ∈ R

K and sx ∈ R does not depend on ui. The matrix Qx is a positive
semidefinite with ‖Qx‖F ≤ σ2, and ‖rx‖2 ≤ σρ.

Proof. Define y0 = Aix and yk = Pkx for k = 1, . . . , K. We have

∥

∥

∥
(Ai +

∑K

k=1
ui,kPk)x

∥

∥

∥

2

2
= x⊤

(

A⊤
i Ai + 2

∑K

k=1
ui,kA

⊤
i Pk +

∑K

k,l=1
ui,kui,lP

⊤
k Pl

)

x

= y⊤0 y0 + 2
∑K

k=1
ui,k y

⊤
0 yk +

∑K

k,l=1
ui,kui,l y

⊤
k yl

= y⊤0 y0 + 2(Y ⊤y0)
⊤ui + u⊤

i Y
⊤Y ui ,

where Y ∈ R
K×K is a matrix whose columns are y1, . . . , yK . We see that the first claim holds

for Qx = Y ⊤Y , rx = Y ⊤y0 and sx = y⊤0 y0 − b⊤i x− ci, all of which are independent of ui.
It is left to bound the coefficients in the above quadratic form. Note that ‖yk‖2 ≤

‖Pk‖F · ‖x‖2 ≤ ‖Pk‖F for all x with ‖x‖2 ≤ 1, so that

‖Y ‖2F =

K
∑

k=1

‖yk‖22 ≤
K
∑

k=1

‖Pk‖2F = σ2 .

Hence,

‖Qx‖F = ‖Y ⊤Y ‖F ≤ ‖Y ‖2F ≤ σ2

and

‖rx‖2 = ‖Y ⊤y0‖2 ≤ ‖Y ‖F · ‖y0‖2 ≤ ‖Y ‖F · ‖Ai‖F ≤ σρ ,

which proves the second claim.

16

The above lemma demonstrates the well-known fact that the problem of finding the
worst-case noise in robust QP with ellipsoidal uncertainty is a maximization of a convex
quadratic over the unit ball (see Ben-Tal et al. 2009), a mathematical program known as
the trust region subproblem. For this well-studied problem, fast approximation algorithms
are available (Moré and Sorensen, 1983; Rendl and Wolkowicz, 1997) that are able to avoid
solving an SDP (see also the recent linear-time approximation algorithm of Hazan and Koren
2014).

Finally, we compute the number of iterations required for Algorithm 2 to converge.

Corollary 13. With high probability, Algorithm 2 returns an ǫ-approximate robust solution
to (15) after at most T = Õ(K2σ2ρ2/ǫ2) calls to the QP oracle, where σ2 =

∑K
k=1 ‖Pk‖2F is

the total magnitude of the noise and ρ ≥ maxi ‖Ai‖F is an upper bound over the norms of
the nominal matrices.

Proof. According to Lemma 12, the i’th constraint in (15) can be written in the linear form
gi(x) · u′

i + hi(x) by setting gi(x) = (Qx, 2rx) and hi(x) = sx and u′
i = (uiu

⊤
i , ui) ∈ R

K2+K ,
with Qx ∈ R

K×K , rx ∈ R
K , sx ∈ R and ‖Qx‖F ≤ σ2, and ‖rx‖2 ≤ σρ. That is, for the

analysis only, we imagine that we work over a transformed, non-convex uncertainty set,

U ′ =
{

(uu⊤, u) : u ∈ U
}

⊆ R
K2+K .

(Recall that the convergence properties of Algorithm 2 do not require the convexity of the
uncertainty set.) Notice that maximizing the linear function gi(x) ·u′

i with respect to u′
i ∈ U ′

is equivalent to maximizing the function fi(x, ui) over ui ∈ U , as established by the oracle
to the non-robust problem. With the above definitions and the notations of Section 3.2, we
have for all u′ ∈ U ′ that

‖u′‖2 ≤ ‖uu⊤‖F + ‖u‖2 ≤ ‖u‖22 + ‖u‖2 ≤ 2 ,

and for all x, ‖x‖2 ≤ 1 it holds that

‖gi(x)‖2 ≤ ‖Qx‖F + 2‖rx‖2 ≤ σ2 + 2σρ .

Hence, for all u′ and x,

‖u′‖1 ≤
√
K2 +K ‖u′‖2 ≤ 4K ,

‖gi(x)‖1 ≤ 2K ‖gi(x)‖2 ≤ 2K(σ2 + 2σρ) ,

|gi(x) · u′| ≤ ‖gi(x)‖2 · ‖u′‖2 ≤ 2σ2 + 4σρ .

Hence, we may set

D = 8K ,

G = 2K(σ2 + 2σρ) ,

F = 2σ2 + 4σρ .

Theorem 4 with the above quantities now implies that Algorithm 2 needs at most T =
Õ(K2σ2ρ2/ǫ2) iterations for ǫ-approximating the problem (15).

17

4.3 Robust Semidefinite Programming

A semidefinite program (SDP) is given by

∃? X ∈ Sn
+

s.t. Ai •X − bi ≤ 0 , i = 1, . . . , m ,

where Sn
+ = {X ∈ R

n×n : X � 0} is the cone of n× n positive semidefinite matrices, Ai ∈
R

n×n are nominal parameter matrices, and A • X = Tr(A⊤X) denotes the dot-product of
the matrices A and X . Again, we assume that the feasible domain of the SDP is inscribed
in the Euclidean unit ball (defined by the Frobenius matrix norm).

The robust counterpart of an SDP program is, in general, NP-hard even with simple
ellipsoidal uncertainties (Ben-Tal and Nemirovski, 2002; Ben-Tal et al., 2009). Nevertheless,
using our framework we are able to approximate robust SDP programs to within an arbitrary
precision, as we now describe.

A robust SDP program with ellipsoidal uncertainties takes the following form:

∃? X ∈ Sn
+

s.t.
(

Ai +
∑K

k=1
ui,kPk

)

•X − bi ≤ 0 , ∀ ui ∈ U , i = 1, . . . , m , (16)

where Pk ∈ R
n×n are fixed matrices and U = {u ∈ R

K : ‖u‖2 ≤ 1}.

Dual-Subgradient Algorithm. Similarly to robust LPs, our OGD-based meta-algorithm
can be applied to the robust SDP program (16) as the constraints are linear with respect to
the noise terms ui. In the present case we have ∇ufi(X, u) = (P1 •X, . . . , PK •X), so that
the update of the noise variables ut

i takes the simple form

∀ k = 1, . . . , K , vti,k ← ut−1
i,k + η(Pk •X) , ut

i,k ←
vti,k

max{‖vi‖2, 1}
.

For the resulting algorithm, we have the following.

Corollary 14. Algorithm 1 terminates with an ǫ-approximate solution to (16) after no more
than T = O(σ2/ǫ2) calls to the SDP oracle, where σ2 =

∑K

k=1 ‖Pk‖2F is the total magnitude
of the allowed noise.

Proof. By Cauchy-Schwarz, for all u ∈ U and ‖x‖2 ≤ 1,

‖∇ufi(x, u)‖22 =

K
∑

k=1

|Pk •X|2 ≤
K
∑

k=1

‖Pk‖2F · ‖X‖2F ≤
K
∑

k=1

‖Pk‖2F = σ2 .

Therefore, we may take D = 2 and G = σ in the bound of Theorem 3, giving our claim.

Finally, we note that Algorithm 2 also applies to robust SDPs, but gives a guarantee
worse by a factor of K2.

18

5 Conclusion

In this paper we considered using online learning approaches for effectively solving robust
optimization problems without transforming the problem to a different, more complex, class
of problems. We showed that if the original problem is convex and comes equipped with
an oracle capable of approximating it, then we can solve the robust problem approximately
by employing an online learning approach that invokes the oracle a polynomial number of
times. Essentially, our approach is applicable to any robust optimization problem for which
we can efficiently approximate the worst-case noise for any given feasible solution, and is
particularly efficient when the latter task can be accomplished via subgradient methods.

Our approach opens up avenues for solving large-scale robust optimization problems that
are more common in data analysis and machine learning. The key observation is that the
number of iterations of the online learning algorithms is independent of the dimension of the
problem. This means that as long as the original problem is solvable efficiently (e.g., support
vector machines) the robust problem does not become much more difficult if the accuracy of
the solution can be compromised.

Our approach can be used to solve other RO problems of interest. For example, solving ro-
bust multi-stage decision problems such as Markov decision processes (Puterman, 1994) is of
interest; see Nilim and El Ghaoui (2005) for discussion of robust Markov decision processes.
Standard (non-robust) Markov decision processes are solvable using linear programming.
However, their robust counterpart is in general not amenable to linear programming and a
dynamic programming approach is needed to solve the stochastic game between the decision
maker and Nature. This approach does not seem to scale up to large problems where ap-
proximate dynamic programming is needed. Using an online approach as we suggested may
prove very useful since solving the original problem seems easy (solving a linear program)
and finding the worst-case noise is also not too difficult, depending on the noise model. We
leave the important case of multi-stage problems for future research.

Finally, it would be interesting to adapt our approach to robust combinatorial optimiza-
tion, where few disciplined robust optimization methods are available. While our methods
assume the original problem to be convex, our main interaction with the problem is through
a black-box oracle (that may be available for non-convex problems), so it seems that the
convexity requirement might be relaxed in certain cases of interest.

References

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications. Math.
Program., 92(3):453–480, 2002.

A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, October 2009.

19

D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math. Program.,
98(1-3):49–71, 2003.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimiza-
tion. SIAM Review, 53(3):464–501, 2011.

C. Bhattacharyya, L. R. Grate, M. I. Jordan, L. El Ghaoui, and I. S. Mian. Robust sparse
hyperplane classifiers: Application to uncertain molecular profiling data. Journal of Com-
putational Biology, 11(6):1073–1089, 2004a.

C. Bhattacharyya, K. S. Pannagadatta, and A. J. Smola. A second order cone programming
formulation for classifying missing data. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems (NIPS17), Cambridge, MA, 2004b.
MIT Press.

G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions and
confidence levels. Mathematical Programming, 102(1):25–46, 2004.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, New York, 2006.

K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning.
J. ACM, 59(5):23:1–23:49, 2012.

D. Garber and E. Hazan. Approximating semidefinite programs in sublinear time. In 25th
Annual Conference on Neural Information Processing Systems (NIPS), pages 1080–1088,
2011.

E. Hazan. The convex optimization approach to regret minimization. Optimization for
machine learning, 1, 2011.

E. Hazan and T. Koren. A linear-time algorithm for trust region problems. arXiv preprint
arXiv:1401.6757, 2014.

E. Hazan, T. Koren, and N. Srebro. Beating sgd: Learning svms in sublinear time. In
Advances in Neural Information Processing Systems, pages 1233–1241, 2011.

A. T. Kalai and S. Vempala. Efficient algorithms for online decision problems. J. Comput.
Syst. Sci., 71(3):291–307, 2005.

G. R. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax
approach to classification. Journal of Machine Learning Research, 3:555–582, 2003.

J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing, 4(3):553–572, 1983.

A. Mutapcic and S. P. Boyd. Cutting-set methods for robust convex optimization with
pessimizing oracles. Optimization Methods and Software, 24(3):381–406, 2009.

20

A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, September 2005.

S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 20(2):257–301, 1995.

M. L. Puterman. Markov Decision Processes. John Wiley & Sons, New York, 1994.

F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with
applications to large scale minimization. Mathematical Programming, 77(1):273–299, 1997.

S. Shalev-Shwartz. Online learning and online convex optimization. Found. Trends Mach.
Learn., 4(2):107–194, 2012.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone programming ap-
proaches for handling missing and uncertain data. Journal of Machine Learning Research,
7:1283–1314, July 2006.

T. Trafalis and R. Gilbert. Robust support vector machines for classification and computa-
tional issues. Optimization Methods and Software, 22(1):187–198, February 2007.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector
machines. Journal of Machine Learning Research, 10(Jul):1485–1510, 2009.

H. Xu, C. Caramanis, and S. Mannor. Robust regression and lasso. IEEE Transactions on
Information Theory, 56(7):3561 – 3574, 2010.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, pages 928–936, 2003.

21

	1 Introduction
	2 Preliminaries
	2.1 Robust Optimization
	2.2 Online Convex Optimization and Regret minimization

	3 Oracle-Based Robust Optimization
	3.1 Dual-Subgradient Meta-Algorithm
	3.2 Dual-Perturbation Meta-Algorithm
	3.3 Follow the Approximate Perturbed Leader

	4 Examples and Applications
	4.1 Robust Linear Programming
	4.2 Robust Quadratic Programming
	4.3 Robust Semidefinite Programming

	5 Conclusion

