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In this paper, we develop a distributionally robust portfolio optimization model where the robustness is across
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overlapping marginals, we show that the distributionally robust portfolio optimization problem is efficiently
solvable with linear programming. To guarantee the existence of a joint multivariate distribution consistent
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1. Introduction

Optimization under uncertainty is an active research area with several interesting applications in
the area of risk management. An example of a risk management problem is to choose a portfolio
of assets with random returns such that the joint portfolio risk is minimized while a fixed level of
expected return is guaranteed. Markowitz (1952) was the first to model this problem using variance
as the risk measure. Several alternative risk measures have been proposed since for this problem.
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two such popular risk measures
(see, for example, Jorion (2001) and Rockafellar and Uryasev (2000)). However even assuming that
the joint distribution of the random returns is known, the calculation of VaR and CVaR for a
given portfolio involves multidimensional integrals, which can be computationally challenging. For
discrete distributions, the computation of these risk measures requires the consideration of all the
support points of the joint distribution. The number of support points of the joint distribution
can however be exponentially large in comparison to the number of support points of the marginal
distributions. For example, the problem of computing the probability that a sum of independent
but not necessarily identically distributed integer random variables is less than a given number is
known to be #P-hard (see Kleinberg et al. (2000)). Furthermore, if the assumed joint distribution
does not match the actual distribution, the optimal portfolio allocation might perform poorly in
out of sample realizations.

One popular approach to address this issue is that instead of assuming a complete joint distri-
bution for the random returns of the risky assets, only reliable partial distributional information
is used. Given limited distributional information, it is then natural to calculate the worst case
bounds for the VaR and CVaR measures and optimize the worst case bounds. Several models
have been proposed to capture the uncertainty (or ambiguity) in distributions. This includes the
class of distributions with information on the first and second moments (see El Ghaoui et al.
(2003), Delage and Ye (2010), Natarajan et al. (2009a), Zymler et al. (2013)), the Fréchet class of

distributions with information on the univariate marginal distributions (see Meilijson and Nadas
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(1979), Denuit et al. (1999)) and the Fréchet class of distributions with information on the mul-
tivariate marginals of non-overlapping subsets of asset returns (see Doan and Natarajan (2012),
Garlappi et al. (2007), Riischendorf (1991)). In this paper, we adopt a more general representation

of distributional uncertainty where the multivariate marginals possibly overlap with each other.

1.1. Problem Setup

Throughout this paper, we use standard letters such as x to denote scalars, bold letters such as x
to denote vectors, tilde notation such as ¢ to denote random variables and the calligraphic notation
such as C to denote sets with C' = size(C).

Let é be a N-dimensional random vector where A= {1,..., N} is the set of indices of the random

vector. Consider a convex piecewise linear function of the random vector defined as:

o@) £ max (a4, 1)

where the maximum is over the set of affine functions of the random vector indexed by M =
{1,...,M} with a; € R, b; € R and &' a; =, &aj,. Let 6 denote the N-dimensional joint

distribution of €. Associated with (1), is the evaluation of its expected value:

E, [%zﬁc <5Taj + bj>] : (2)

and a stochastic optimization problem of the form:

min Ey [max (éTaj(m)+bj(a;))] : (3)

TEX JEM
where a;(x) and b;(x) are assumed to be affine functions of the decision vector @ that is chosen
from a feasible region X'. Portfolio optimization with the CVaR measure lies within the scope of
the stochastic optimization problem (3). To see this, let ¢; denote the random loss of the ith asset.
The total portfolio loss is then & @ where x; is the allocation in the ith asset. The CVaR of the
portfolio for a given risk level o € (0,1) is defined as (see Rockafellar and Uryasev (2000, 2002)):

)

1
11—«

0 (AT N & .
CVaR,, (¢ =) £ min (54— Ey
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where y* = max{0,y}. The problem of finding the portfolio € X that minimizes the CVaR is

(#=-)1)

Portfolio optimization with the VaR measure is however not an instance of problem (3) due to the

then formulated as:

reX,BeER

1
min <5+E9
11—«

inherent non-convexity of VaR. It is possible though to develop convex approximations to the VaR
measure using the CVaR measure (see Nemirovski and Shapiro (2006)).

In the distributionally robust optimization setting, 6 is not known exactly except that it lies in
a set of distributions denoted by ©. Then, it is natural to calculate upper and lower bounds on
the expected value Eq4 [¢(€)]. In this paper, we restrict our attention to finding the tightest upper

bound on the expected value of the piecewise linear convex function in (2):

sup Eq [mz}&( <5Taj +bj>] . (4)

6co Jje

The corresponding distributionally robust counterpart of (3) is:

min sup Ey [max <5Taj(:c)+bj(a:)>] : (5)

TreXx ) JEM

where the optimal decision @ € X is identified for the worst-case distribution in the set ©.

1.2. Fréchet Class of Distributions

One of the early results in multivariate bounds is the work of Fréchet (1940), Fréchet (1951)
who evaluated bounds on the cumulative distribution function of a random vector given only the
marginal distributions of the random variables. The class of joint distributions with fixed marginal
distributions is referred to as the Fréchet class of distributions and the bounds are referred to as
Fréchet bounds. In this paper, we develop a new class of Fréchet bounds and apply it to to solve
distributionally robust optimization problems.

Given a set N, let € ={J,...,Tr} C 2~ be a cover of the set N, ie., U, Jr =N, where
R ={1,...,R}. Assume that there is no inclusion among the subsets, i.e., 7, € J, for any r # s.

Typical examples of a cover include the partition, the star cover, and the series cover:
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e Partition: £ is a partition or a non-overlapping cover if for any r # s, J,N 7, = (). The cover:

5:{{1}7{2}33{]\]}}’

is called the simple partition and forms the basic Fréchet class of distributions. When some of the
subsets consist of more than one random variable, the partition is referred to as a non-overlapping

multivariate marginal cover. An example of such a partition is:

£={{1,2},{3,4,...,.N}}.

e Star cover: Let {Zy,Z,,...,Zp} be a partition of N. Then & is a star cover if 7, =7, UZ, for

all r € R. The star cover:
E={{1,2},{1,3},....{1,N}},

is called the simple star cover.
e Series cover: Let {Z,,Z,,...,Zg} be a partition of N'. Then & is a series cover if J, =Z,_; UZ,

for all »r € R. The series cover:

£=1{{1,2},{2,3},....IN—1,N}},

is called the simple series cover.
Given a joint distribution 6 of the random vector ¢, let proj ; (¢) denote the marginal distribution
of the sub-vector ¢, formed from the components in the subset J,. This brings us to a general

definition of the Fréchet class of distributions (see Riischendorf (1991)).

DEFINITION 1. The Fréchet class of distributions O¢ for a cover € ={J1,...,Jr} is defined as the
set of all possible joint distributions of the random vector ¢ with the given multivariate marginal

distributions {6, },cr of the sub-vectors {¢,},cr as projections:

O £ {0 | proj, (0) =0,, Vr e R}.
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Throughout the paper, we use the index r and the set 7, interchangeably. Given a real-valued
function ¢(+), and the Fréchet class of distributions O for a given cover &, the upper bound is

computed as:

Me(p) = sup By [p(€)]. (6)

0cO¢
Several previous studies have focused on finding the Fréchet lower bound on the cumulative
probability that the sum of random variables is strictly smaller than a given number z:
0i§n@fg Pg (;/ él < Z) .
Note that these bounds directly translate to upper bounds on the tail probability:
sup Py Z G >z .
0€0¢ iEN
The earliest known bounds for this problem were developed by Makarov (1982) and Riischendorf

(1982) for a simple partition with N = 2. This bound is given as:

inf Py (¢ + ¢ < z) =max sup [Ff(d1)+Fg(d2)] —-1,0;, (7)
0€0{1}.42}} d:dy+do=z

where F;(d;) =P (¢; < d;) and F; (d;) =P (¢; < d;). For N > 3, Kreinovich and Ferson (2006) showed
that computing the tightest bound when £ is a simple partition, is already NP-hard. Several weaker
bounds have been proposed, among which is the standard bound of Embrechts et al. (2003) and
Riischendorf (2005):

inf Py Zéi<z > max sup
9€9(1},... 1N}y o d:Y e n di=z

N

Ff(dl)"'ZFi(di)

1=2

—(N—l),O}. (8)

While the standard bound is tight for N =2, it is not tight for N > 3. For N > 3, Wang and Wang
(2011) and Pucetti and Riischendorf (2013) have developed tight bounds in special instances such
as homogeneous univariate marginals with monotone densities and concave densities respectively.
Embrechts and Puccetti (2006) have derived alternate dual bounds using results from mass trans-

portation theory (see Rachev and Riischendorf (1989)). For non-overlapping multivariate marginal
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covers, Puccetti and Riischendorf (2012) showed that the Fréchet bound on the cumulative distri-
bution function of a sum of random variables can be reduced to that of a simple partition. For the
simple star cover, Riischendorf (1991) introduced a conditioning method to derive Fréchet bounds
using the bound for the simple partition. For the simple series cover, Embrechts and Puccetti
(2010) proposed a variable splitting method to estimate Fréchet bounds. Puccetti and Riischendorf
(2012) have generalized this method to general overlapping covers. In general, given the hardness of
computing the tightest lower bound on the cumulative distribution function of the sum of random
variables, these methods generate tight bounds only in special instances.

In this paper, we compute a new Fréchet upper bound for the convex piecewise linear function of
a random vector and solve the associated distributionally robust optimization problem. In Section
2, we review a graph theoretic condition on the structure of a cover referred to as the running inter-
section property. This property guarantees the Fréchet class of distributions is nonempty. Using the
running intersection property, we show that the tightest upper bound for discrete distributions is
efficiently computable with linear programming. Our proof is constructive and provides an explicit
characterization of the distribution in the Fréchet class that attains the bound. The distribution
is an alternative to the maximal entropy distribution which corresponds to a conditionally inde-
pendent distribution in this setting. In Section 3, we compute new bounds on the worst-case VaR
and CVaR measures. Simple examples are provided in this section to illustrate the quality of the
bounds. In Section 4, we apply a data-driven approach with financial returns to identify the Fréchet
class of distributions with the running intersection property and then optimize the portfolio over
this class of distributions. We show that by combining simple heuristic algorithms to identify the
cover with linear optimization to identify the optimal portfolio, superior out of sample performance

is attainable. We finally conclude in Section 5.

2. Fréchet Bound for a Regular Cover

For a non-overlapping cover, the Fréchet class of distributions ©¢ is nonempty if and only if each

0, for r € R is a valid distribution. Feasibility is ensured in this case by simply using a product
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measure on the marginal distributions. However for an arbitrary cover with overlap, the feasibility
problem is itself known to be non-trivial. Honeyman et al. (1980) showed that for a general cover
the problem of determining if there exists a multivariate joint distribution with the given marginals
as projections is NP-complete. For an overlapping cover, the existence of a joint distribution clearly

implies the pairwise consistency of the multivariate marginals:

prOjJTmJS (97’) = prOjJijS (98)7 Vr 7& S.

The reverse however need not be true, namely consistency does not imply the existence of joint
distribution. Vorob’ev (1962) provided a simple counterexample to show this for the cover £ =

{{1,2},{2,3},{1,3}} (see Table 1). In this example, there is no possible joint distribution for

Table 1 Example where consistency of the bivariate marginals does not imply feasibility of a trivariate

distribution.

€1 Co Probability ¢y C3 Probability ¢3 ¢, Probability

0 0 0.5 0 0 0.5 0 1 0.5

1 1 0.5 1 1 0.5 1 0 0.5

(€1,€2,¢3) even though the two-dimensional distributions of (¢;,¢é;), (¢2,¢3) and (é3,¢;) are con-
sistent on the overlapping elements. This brings us to the following definition of a regqular or a

decomposable cover (see Vorob’ev (1962), Kellerer (1964)).

DEFINITION 2. A cover structure for which the consistency of the multivariate marginals is suffi-
cient to ensure that O is nonempty is referred to as a regular cover (or decomposable cover). A

cover that is not regular is referred to as an irregular cover.

While in general, there is no simple sufficient condition to test if ©¢ is nonempty (see Kellerer
(1991)), for regular covers the necessary and sufficient condition is to test the pairwise consistency

of all the multivariate marginals.
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2.1.

Regular Cover

A regular cover is characterizable by several equivalent graph theoretic properties. We review some

of the key properties using terminology from graphs and hypergraphs (see Berge (1976)) next.

Associated with a cover is a hypergraph H (N, £) with a set of vertices N and a set of hyperedges £

that form the set of nonempty subsets of A. The graph G(H) associated with the hypergraph H is

a graph with the same set of vertices as ‘H and an edge between every vertex pair that lies in some

hyperedge. Then the following four properties: (a), (b), (¢) and (d) have shown to be equivalent to

each other (see Beeri et al. (1983) and Lauritzen et al. (1984)).

(a)

The cover € on the set N is reqular:
For a regular cover, every pairwise consistent set of multivariate marginals is also globally
consistent, namely there exists a joint distribution with the given multivariate marginals as

projections.

The hypergraph H(N,E) is acyclic:
A hypergraph H is acyclic if all the vertices of H can be deleted by repeatedly applying the
following two operations: (1) Delete a vertex that occurs in only one hyperedge, (2) Delete

an hyperedge that is contained in another hyperedge.

The hypergraph H(N,E) is conformal and chordal:

A clique of a graph G is a set of pairwise adjacent vertices. A hypergraph H is conformal if
every clique in G(H) is contained in an hyperedge of H. A graph G is chordal if every cycle
of four or more vertices has at least a chord (an edge connecting two non-adjacent vertices in

the cycle). A hypergraph H is chordal if its graph G(#) is chordal.

The cover £ on the set N satisfies the running intersection property (RIP):

A cover € satisfies the RIP, if the elements of £ can be ordered such that:

VreR\{1l}, 3o, €R: 1<0,.<r and j,mCQj%)gJor. (9)
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Associated with the RIP in (9), define the parameters:

Oy

min{’iGR ’ J-N <Tol‘7t) Q«Z’},VTER\{l},
t=1 (10)

(1>

K2 7.0 (tL__Jijt) vreR\{1}.

A feasible joint distribution can be constructed in this case using conditional independence

as follows (see Kellerer (1964) and Jirousek (1991)):

Any one of the four properties: (a), (b), (c) or (d) is verifiable efficiently and in particular linear
time algorithms have been developed to test for these properties (see Rose et al. (2004) and Tarjan

and Yannakakis (1984)). Examples of irregular and regular covers are provided in Figure 1. Covers

(a) (c) (b)

Figure 1 Examples of three different covers with their hypergraph and graph representations. (a) & =
{{1,2,3},{2,3,4},{3,4,5},{4,5,1}} is an irregular cover. (b) £ ={{1,2,3},{1,2,4},{1,2,5}} is a regu-
lar cover. (c) € ={{1,2,3},{2,3,4},{3,4,5}} is a regular cover. In (a), H is not acyclic. Though G(#) is
chordal, # is not conformal since the clique {1,2,4} is not contained in £. In (b) and (c¢), H is acyclic,
‘H is conformal and chordal and the RIP is satisfied. In (b), o2 =1, o5 =1, K2 ={1,2}, K3 ={1,2}. In

(C), g2 = 1, g3 22, K:z 2{2,3}, IC3 = {374}.
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(b) and (c) in Figure 1 correspond to star and series covers, both of which are regular covers. A

joint distribution for the star cover in Figure 1(b) is constructed as follows:

9{1,2,4}(61,02704) 9{1,2,5}(61,02705)
9{1,2}(01702) 9{1,2}(01702)

0(c) =0(1,2,31(c1,0,5) X Ve, (12)

or equivalently:

0(c) = 9{1,2}(01702) X 9{3|1,2}(C3‘01702) X 9{4\1,2}(C4|C17C2) X 9{5\1,2}(C5|01702)7 Ve, (13)
where 0,121 (c,|c1,¢2) is the conditional distribution of ¢, given ¢; and c,. Similarly a joint distri-
bution for the series cover in Figure 1(c) is constructed as follows:

‘9{2,3,4}(02703,04) ‘9{3,4,5}(03704,05)

‘9{2,3}(02, Cg) ‘9{3,4} (03, 04)

0(c) = 011,23 (c1, ¢, ¢3) X , Ve, (14)

or equivalently:

0(c) =011y (c1) X Oga 31y (25 c3ler) X Opapp 3y (calea, e3) X 013,43 (cs|es ca), Ve (15)

Properties of regular covers have been previously exploited in developing efficient database rep-
resentation schemes (see Beeri et al. (1983)), in approximating high-dimensional probability dis-
tributions (see Chow and Liu (1968)), in developing tractable semidefinite relaxations in sparse
polynomial optimization problems (see Lasserre (2006)) and in developing efficient inference algo-
rithms in probabilistic graphical models (see Wainwright and Jordan (2008)). In this paper, we use
the structure of regular covers in distributionally robust optimization problems. From this point

onwards, we assume that the following condition is satisfied.

ASSUMPTION 1. The cover & is reqular with the elements satisfying the RIP property in (9) and

the multivariate marginal distributions {0, },.er are consistent.

In Section 4, we describe a data-driven approach that uses historical return data to generate regular
covers with consistent marginal distributions. The following lemma provides a simpler condition

to test the consistency of multivariate marginal distributions for regular covers.
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LEMMA 1. Given a reqular cover &, the following condition is necessary and sufficient to ensure

consistency among the marginal distributions:

proj,cr (0,) = pl"Oj,Cr (05,), VP € R\{1}: K, # 0.
Proof. Using the RIP condition in (9), we have for all r € R\ {1},

7N (tt_lijt) C Jp = T, (gﬁ) C T NI

— J5NTC T, 0T, Vi=1,...,r—1.

This indicates that all the pairwise intersections for a regular cover are included in a set of R —
1 intersections. Thus verifying consistency can be restricted to these pairs. Since, J,,. N J, =
<:911‘7t> NJ, =K,, the result is proved. O

Lemma 1 implies that for regular covers, the feasibility of the Fréchet class of distributions
can be ensured with O(R) consistency requirements as opposed to O(R?) pairwise consistency

requirements.

2.2. A New Fréchet Upper Bound

In this section, we compute the upper bound Mg (p) for ¢(€) = max;en (€' a; +b;) for regular
covers with consistent multivariate marginals. Our main theorem provides a linear optimization
formulation to compute the Fréchet upper bound for discrete distributions. Towards this, we define
a N-dimensional vector 1 that allows us to express a linear function in € as separable functions

with respect to the cover £. Define the ith component of 1 as follows:

. 1
S Hieg)

reR

where [{i€ 7.} =1 if i € J, and 0 otherwise. For example, in the simple star cover, this reduces

T
1
= —1,...,1
n <N_17a a>a

to:
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and in the simple series cover, this reduces to:

Then, &' a = Y orer ¢! (n, oa,) where 1, and a, are sub-vectors formed by the elements of  and
a in J, and o is the Hadamard (entry-wise) product operator. Finally, let C, denote the finite set

of support values of the sub-vector ¢, and C,. = size(C,).

THEOREM 1. Given a reqular cover £ and a consistent set {0, },.er of discrete marginal distribu-

tions with finite support, let ME (p) be the optimal value to the primal linear program:

Juax > >0 Y el(moas) dilen) + Y b
gyr)s

7 jeMreR ereCy jEM
s.t. (Nonnegativity of measure):
¥;(c.) >0, Ve, €C,VreR,VjeM,

(Multivariate marginal requirement):

Zﬁjﬂ“(cr)zer(cr)a Ve, €C,.,VreR,

JEM

(Probability of jth term attaining mazimum):

> Wiale) =N, VreR,VjEM,

creCr

(Consistency requirement):

> Vjr(hr) = > Vjo. (ho,), Vex, €Ck,

h,€Criproji,. (hr)=ck,. hg,. €Bo, proji,. (hay )=cx,.

VreR\{1}:K, £0,YjeM,
(16)

where the decision variables are the nonnegative measures 9, ,.(c.) and \; for ¢, €C.,r € R,j € M.

Then the Fréchet bound Mg (p) = maxgeco, Eq [maxjeM(éTaj +b;)] is equal to ME(p).
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Proof. We first show that M{ (p) is a valid upper bound of Mg(p). For any joint distribution

0 € ©¢, the expected value in (2) can be expressed as follows:

Eo [p(€)] = Eq [%?}\} (ZC n,0a;)+b; )

reR

Z Ey Z ¢, (n,0a; )+0b; ’ the jth term is max] Py (the jth term is max)

JEM reER

Z Z Z ,oa; ) -Py(E =c,, the jth term is max)+

JEMTER creCr

Z b;Py (the jth term is max)

jEM
=333 meoay) vu(e) + Y b,
JEMrER creCr jeM

where the decision variables are the measures 9, ,(c,) and A; defined as follows:

Y. (c.) = Py (€. = c,, the jth term is max),
A; = Py (the jth term is max).
Thus 9;,(¢c,) > 0 which corresponds to the nonnegativity of measure requirement. Note that if
the function value () has multiple terms attaining the maximum for some value of ¢, one can
arbitrarily choose any one of them without changing the expected value, for example, the term

with the minimum index. Hence, for all ¢, €C, and r € R,

Y Uin(e) =Py (& =c)

JjeEM

which corresponds to the given multivariate marginal requirement. In addition, for all » € R and

JeM,

Z Y;.(c.) = Py (the jth term is max)
creCr

=

g

which corresponds to the probability of the jth term attaining the maximum. From Lemma 1,
consistency of the measures ¥;,(.) for a given term j is guaranteed by equality of the projections
of the measures:

projic, (9;,) = proj, (V0. )-
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In terms of the decision variables, this corresponds to the last set of constraints in (16). Thus, for
any distribution 6 € O, all the constraints in (16) are satisfied, which implies M (¢) is an upper

bound:

Mg () = Me(p) = maxEy [o(€)].

0cO¢

We next prove that the bound is tight. Observe that the linear program (16) is bounded and
feasible implying that the optimal objective value is attained. Consider an optimal solution of
problem (16) denoted by ¥, (c,) and ;. We have:

D=2 U(e)

JEM jEM erely

= Z er(cr)

creCr

= 1.

In addition, A7 >0 for all j € M. Thus A" is a probability vector. We now construct a joint
distribution 0* for € based on ¥}, (c,) and A; as follows:

(a) Choose term j € M with probability Aj.

(b) For each r € R, assign a measure 0} (c,) for ¢, €C, where 05 (c,) =95 .(c,.)/)\;. Note that
if A7 =0, we simply drop that index.

(c) Choose a feasible joint distribution in the Fréchet class of distributions 05 € ©¢(0; ,,...,05 )
and generate ¢ with distribution 6.
It is clear that ¢, is a valid and consistent probability measure for ¢,, r € R, since (V] ,.(c,), \})
is a feasible solution to problem (16). Hence, ©¢ (0} ,...,0; z) # () since the cover is regular, which
implies the existence of a joint distribution 67 for all j € M. For all r € R, the probability of ¢,
taking the value ¢, is:

Z)\*- jird = 9,(c

JEM JEM

=0,(c,).
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Thus, we have 6* € ©¢. Hence the following inequality holds:

Eg;_ iré%[( (Zc , 0 Qp, —i—bk) >IE9* Zc n,.0a;)+b;
reR reR
= Ep [ (n,0a;)+b,]
reR

_Z P ) 9;,.(er) +bj,

r€R J cr€Cr
where the first inequality is obtained by simply choosing the jth term in the function for 7. Then

we have a lower bound since:

0%

max <Zc 0 A, +bk>

reR

Z )\* -E@; [gg}\i{ (Z Eg(nr ocak,)+ bk)

JEM reR

S [z S Tln,0a,)- 0, (e) +b

reR j cr€Cr

=> >3 cl(m0a;) 95, (c,) + b\

JEMTreR ereCyr

= M. ().
Hence
= T&4+ b, )| >Ege Te+b; || > ME(p).
Me(p) = poax Eq [1;22}3{( <a] c+bj>:| > Ky [I]%%f <ajc+bj)] > M ()
Together, we have M¢(p) = ME (). O

Several remarks about the theorem and its proof are in order:

(a) The proof of Theorem 1 is inspired from the proofs in Bertsimas et al. (2006) and Natara-
jan et al. (2009b) for univariate marginals and Doan and Natarajan (2012) for non-
overlapping multivariate marginals. Theorem 1 extends these results to overlapping multivari-
ate marginals. The main generalization is that we incorporate a new set of linear constraints
that guarantee the consistency of the distributions and thereby the existence of a joint dis-

tribution that attains the bound for overlapping regular covers.

(b) The conditionally independent distribution in (11) is a feasible distribution in the set Og. This

distribution maximizes the Shannon entropy among all the measures 6 € ©¢ (see Jirousek
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(1991)). Theorem 1 provides an alternate distribution in the set ©¢ that maximizes the

expected value of a piecewise linear convex function of the random vector.

The representation of the split vector i is not unique. In particular, we can define values
ny >0, such that > _.n/ =1 and nf =0 if i € J, for all r € R and i € N. For example,
instead of splitting variables equally among all the relevant subsets, we can set 7; =1 for

all i € N, where r(i) = min{r : 7 € 7,.}. This does not affect the result of Theorem 1.

A total of ) _, C, probabilities are specified as an input to the linear optimization problem
where C,. is the support of each sub-vector ¢,. The total number of decision variables in the
primal linear program in Theorem 1is M ) _. C, 4 M, and the total number of constraints
is MY, crCr+ RM + 37 Cro+ M3 r 11y Ck,- Hence the size of the linear program is
polynomially bounded in the parameters NV, M, R and the maximum support size max,.cr C,..
If the marginals are constructed from historical data, as in the numerical experiments in
Section 4, the maximum support size is bounded by the number of data samples. With the
number of data samples in the order of hundred, we will demonstrate in the numerical section

that the linear program (16) can be solved efficiently.

It is possible for the maximum support size max,cr C, to be exponential in the number of
random variables N. For example, if the entire joint distribution is given, up to KV probabili-
ties might need to be specified where K is the maximum number of values that any individual
random variable takes. In this case, if the size of the subsets are restricted to be O(log(N)),
then max,cr C, < K°0°s() and is polynomially bounded in N. The size of the linear pro-
gram is then polynomially bounded in the parameters N, M, R and K (the maximum number
of support points of any univariate marginal). In general, if the size of the subsets is small
enough as compared to N, solving the linear program (16) to compute Fréchet bounds would
be more efficient than computing the expected value (2) given the complete joint distribution

of up to K~ probabilities.

We conclude this section by showing that the result in Doan and Natarajan (2012) for general

partitions can be derived from the result of Theorem 1 for general covers. By assigning dual
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variables f,(c,), d;, and g, (ck, ) to the equalities in formulation (16), the dual linear program is

formulated as follows:

MP = min +(c.)0
5(90) IO Z Z I (

reR creCr

st frle) > el (m0a;,) —din =g (k) + D giulex,), Ve €C,

t>rior=r
VreR,VjeEM,
> dj.+b;=0, VieM,
reER
(17)
where we define K, =0, and for r € R, if K, =0, we define &, =0, and g;,. (0) =0, for all j € M.

Formulation (17) can be concisely rewritten as:

MP(¢)= min ZE@T

d;
gj’l‘() ]’I‘T

t>rior=r

max (c (n,.oa;,)—d;,—g;r(Ck,)+ Z 9it (E}Ct)>]
(18)

S.t. Zdj,T+bj :O, \V/]EM,

reER

Linear programming duality implies that Mg (¢) = MP(¢). For a general partition, the dual vari-
ables g;, (ck,) correspond to the marginal consistency constraints in the primal problem (16).
When £ is a partition, the marginal consistency constraints are not present and hence the corre-
sponding dual variables are deleted. Thus formulation (17) for the partition case reduces to:
an ZE@ [m%{ (c a;, djm)
reR (19)
St Zd%r—i—by:o, \VIJGM,

reR
which is equivalent to the non-overlapping marginal formulation in Doan and Natarajan (2012).
2.3. Connected Regular Covers: Star and Series Case

In this section, we simplify the Fréchet bound for a class of covers with a special structure that we

term as connected regular covers.

DEFINITION 3. A cover £ is said to be connected if for any s,t € R, s #t, there exists a sequence

r1,T2,...,Tm € R with r, = s and r,,, =t such that Jrjﬂjrjﬂ #( forall j=1,...,m—1.
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It is clear that partitions are not connected covers. The simple star and series covers are examples

of connected covers. The next lemma characterizes the connectedness of regular covers.
LEMMA 2. A reqular cover & is connected if and only if IC, # 0 for all r € R\ {1}.

The proof of the Lemma is provided in the Appendix. This characterization of connected regular

covers allows us to slightly simplify the formulation to compute Mg ().

PROPOSITION 1. Given a connected regular cover £ and a consistent set {0,},er of discrete
marginal distributions with finite support, let MEC(p) be the optimal value to the primal linear

program:

max Y Y > (cf(n,0a;)+pb;) 0;.(c,)

I (.
i) JEMreR creCr

s.t. (Nonnegativity of measure):
Jjr(e) >0, Ve, €C VreR,VjeM,
(Multivariate marginal requirement):

Z Y. (e.) =0,(c,), Ve, €C,VreR,

JEM

(Consistency requirement):

Z ﬂjyr(hr) = Z ﬂj,dr (hdr)7 VC’C’I‘ € CKM

hreCr: Proji,. (hT):CICT hs,.€Cop: projic,. (hgr):C’CT

VreR\{1},¥jeM,
(20)

where p, are arbitrary constants that satisfy Y .o pr = 1 and the decision wvariables
are the measures V;,.(c.) for ¢, € C.,r € R,j € M. Then the Fréchet bound Mgs(p) =

maxgeo, Bo [max;em (¢"a; +b;)] is equal to MEC(p).
Proof. We claim that the constraints:

Y Wiale) =X, VreRVjeM,

creCr

in (16) are redundant if the regular cover £ is connected. From Lemma 2, I, # 0 for all r € R.

Using the last set of constraints in (16) (or (20)), we obtain the following equalities:

Z ﬁj,r(cr) = Z ﬂj,s(cs)v \V/T,S EIR,,T#S, V] eM.

creCr cs€Cs
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Thus, we can drop the decision variables A;, by replacing Zj embir; by
D iem 2areRr 2oerce, Prbj¥ir(€r) in the objective given that > . p. = 1. Thus for connected
regular covers, (20) is equivalent to (16) and it implies that in this case, Mg(p) = MEC (). O

The problem (20) has fewer variables and lesser constraints as compared to (16), which also
allows us to simplify its dual formulation by remove the corresponding set of dual variables. The

dual formulation is written as follows:

MP(p) = min > Ey, |max ( & (n,0a;,)— g (Ec,)+ Y i (@x,)+pb; || (21)
gj’r(.) reR jeM t>rior=r

To illustrate this formulation, we consider two simple examples of the Fréchet bound for star and

series covers.

Series cover: For the simple series cover, we have R=N —1and g, =r—1forallr=2,.... N —1.

Letting p, =1/(IN —1) for all » € R, we can reformulate (21) as:

‘ _ Cotl; _ b;
min EQ{LQ} [%%{ <Claj1+232+gj,2 (G2) + J >} +

gj,r(') 2 N -1
N-2 ot Cr410; 11 b.
Z EG{T,TJrl} |:‘I]Ié%{ ( 2j7 + 2 - - gjﬂ” (é"") + gj1r+1 (ET+1) + Ni 1):| + (22)
r=2
~ éNfla’ijl ~ b
Eoin_1n LE% (CNajN + 5 9iNa (En-1)+ N i 1)] .
Star cover: For the simple star cover, we have R=N —1and o,=1forall r=2,...,N — 1. The
dual Fréchet bound for the star cover is reformulated from (21) as follows:
N-1 N-1
91;13?) IE9{1,2} [Ifé% (62%2 + 61aj1 + 22 G (61) + bj) + ZQ E0{1,7'+1} [%%{ (ET+1aJ'r+1 — Gjr (51))

We define a new set of decision variables as follows:
N—1
gj,l (Cl):_zgj,'r‘ (cl)—clajl—bj, V01 GCl,\V’]EM
r=2

The formulation then reduces to:
N—1

min ZIE(; max (C,41a; — g, (¢
gj,'r(-) — {1,741} |:]€M ( T+ Jr+1 ]7T( ))

N-1
s.t. Zgj’T (cl):—clajl—bj, Vcl ECl,VJEM
r=1
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Conditioning with respect to the marginal distribution of ¢, as in Puccetti and Riischendorf (2012)

and using the dual representation for the partition case in (19), we obtain an equivalent formulation:

)

For a fixed ¢; = ¢;, the inner problem is the Fréchet bound where 6 belongs to the Fréchet class

Eo,,, sup Ey {max (ETaj +b;)
€0 oy, (nj1yy  LIEM

defined by the conditional marginal distributions. Thus, the Fréchet bound for the star cover is

equivalent to:

S .|
0€O f2(1},... {N|1}}

which indicates that it is reduces to the computation of Fréchet bounds with a simple partition. A
similar observation has been made by Puccetti and Riischendorf (2012) for more general objective

functions.

3. Bounds for CVaR and VaR

In this section, we evaluate new Fréchet bounds for the CVaR and VaR measures.

3.1. CVaR Bound

The worst case CVaR with respect to the Fréchet class of distributions for a € (0,1) is defined as

(see Natarajan et al. (2009a) and Zhu and Fukushima (2009)):

WCVaR$? (é'x) £ sup CVaR), (¢ z)

0€B¢

= sup min <B—|— 1iaIE0 [(ETm—ﬁ)T) .

pcog BER

(24)

Since the multivariate marginal distributions {6, },cr are assumed to be discrete with finite support,
the expected value is finite and the supremum is attained by a joint distribution. Interchanging
the minimum and maximum in the worst-case CVaR formulation and from the convexity of the

objective function with respect to 8 and linearity with respect to the measure 8, we get:

1 +
Oc (T — i &l — 25
WCVaR,, (c :13) %16181‘} <ﬁ+ 1_@&13};1!39 [(c T ﬁ) }) . (25)
Thus, in order to compute the upper bound on the CVaR, we need to compute an upper bound on
the expected value Eq4 |:(ET£C — B)T. We provide a simple example to illustrate the computation

of the expected value next.
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3.1.1. Example Consider a sum of N random variables. We compute the Fréchet upper

bound:

.
max Eq (Z i — ﬁ) (26)

iEN

and compare it with expected value under the maximum entropy (ME) distribution in (11):

(=)

iEN

Consider the bivariate uniform discrete distributions provided in Table 2 for a simple series cover
with IV = 4. The maximum-entropy distribution in this case is the independent uniform distribution

with Pyg(c) =1/16 for all c € {0,1}*.

Table 2  Consistent bivariate marginals for simple series cover with & = {{1,2},{2,3},{3,4}}.

¢1 Co Probability ¢y C3 Probability ¢3 ¢4 Probability

0 0 0.25 0 0 0.25 0 0 0.25
0 1 0.25 0 1 0.25 0 1 0.25
1 0 0.25 1 0 0.25 10 0.25

11 0.25 1 1 0.25 1 1 0.25
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In order to compute the upper bound, we apply Proposition 1 with M =2, a; =e, by = -0,

ay; =0 and by, =0. The primal linear program for (26) is formulated as follows:

max Z <<v + % - §> 01,23 (v, w) + (; + % - §> -ﬁ{g,g}(v,w)> +

(v,w)€{0,1}2

3 <;) fw— g) 3,410, w)

(v,w)€{0,1}2

s.t. (Nonnegativity of measure):
2y (v,w), Iz (v,w), Viza3(v,w) 20, Y (v,w) € {0,1}2,

(Multivariate marginal requirement):

V11,2y (v, w) <0.25, V (v,w) € {0,1}?,
19{2,3} (an) < 0257 V(’U,U)) S {0, 1}2,
19{3,4} ('U,w) < 0257 V(v,w) S {0, 1}2,

(Consistency requirement):

012,3)(0,0) + 012,33 (0,1) = 01,2 (0,0) + 11,23 (1,0),
012, (1,0) + 02,8y (1,1) = 011,2) (0, 1) +0 11,23 (1, 1),
013,4)(0,0) + 03,4y (0,1) = 12,3 (0,0) + 2,3y (1, 0),

V3,4y(1,0) + 9343 (1,1) = V2,3, (0,1) + I 2,8 (1, 1),
(27)

Since the support of ). . ¢ is restricted in {0,1,2,3,4}, we vary § in [0,4]. Figure 2 provides
a comparison of the bounds. The Fréchet bound provides an upper bound on the expected value
with respect to the maximum-entropy distribution.

We next incorporate the bound to provide an explicit formulation for the Fréchet bound of

CVaR. Applying the dual formulation, the worst-case CVaR bound is computed as follows:

+
S . : 1 ~ ~ < B
WCVaRg® (Z Ci) = gfnf(l_l){lﬁ B+ 1-a Z Ep, <Cran —9r (€x,) + Z gt (€x,) — R)

iEN reR t>riop=r



Doan, Li, and Natarajan: Owverlapping Dependency in Portfolio Optimization

24 Article submitted to Operations Research; manuscript no. OPRE-2013-05-231
2
\ . Max-entropy
1.8 \. —~ — ~ Robust
\
L N\ i
1.6 N
\
14} \ -
\
\
c 1.2} \ R
§e] \
- \
[8] B \ n
2 .
\
w o8t N i
\
L N\ i
0.6 N
0.4 T~ -
0.2} Tl .
O | | | | | | | = = =
0 0.5 1 15 2 25 3 35 4
Beta:
Figure 2 Comparison between the Fréchet bound and the maximum entropy distribution
For the distributional information in Table 2, we can reformulate (28) with additional decision

variables as a linear program:

. 1
min B+ -—-— Z (21,2} (0, W) + 22,3 (V, W) + 2(3,4 (v, W))

9r():B,2r () 41—«

3.2. Va

(v,w)€{0,1}2

s.t. 21,2y (v, W) — gz 3y (w) > v+ % - g, V (v,w) € {0,1}?,
(2,33 (v, w) + 92,31 (v) — gzay (w) = % - % - g vV (v,w) € {0,1}2, (29)
23,43 (0, W) + ggz,43(v) > g +w— g, V (v,w) € {0,1}?,
212y (U, W), 228y (0, W), 23,0y (v, W) 20, Y (v,w) € {0,1}2.

R Bound

The VaR for a portfolio for a € (0,1) is defined as:

VaRi (ETa:) £ inf {z eR: Py (6T:c < z) > a} .

Hence, we have the following equivalence:

VaRZ (6Tm) <z & Py (éTa: < z) >,
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which implies that z is an upper bound of VaRi (ETw), if and only if « is a lower bound of the
cumulative distribution function Py (ETa: < z) Since CVaR dominates VaR (see Rockafellar and
Uryasev (2002)), we can use CVaR to derive lower bounds of the cumulative distribution function

value. Given a Fréchet class ©¢ of distributions, the worst-case VaR is defined as follows:

WVaRe (¢ ) £ inf {z €R: inf Py (e"z<z)> a} : (30)

€O¢

Since WVaR_¢ (" x) = sup VaR’ (), this implies WVaR# (¢" ) < WCVaR ¢ (¢" x).

0cO¢

3.2.1. Example In the following example, we provide a lower bound on the cumulative dis-
tribution function of the sum of random variables Py (Zle NG < z) using CVaR approximations.

Observe that,

Oc G | < i & <z|>
WVaR, (ch> <z & ele%fg Py (ch _z) > a,

iEN iEN

The Fréchet bounds are related as follows:
G]ér]éfg Py (Z c; < z> < Glergg Py (Z ¢ < z) < ele%fg Py (Z ¢ <z+ e) for all € > 0.
ieN ieN ieN
Since WCVaR is an upper bound on WVaR, we first compute the WCVaR bound and then use
numerical inversion to find a lower bound on the cumulative distribution function. For the series

cover, we compute the worst-case CVaR as follows:
1
o ~ . .
WCVaR ¢ ( E ci) —grir(1~1)r’1ﬂ 8+ 1o (Eg{m}

ieN
_2 ~ _ +
c; + Cit1 - B 6
Z Eotiiin <2 — 9 (€i) + git1 (Cigr) — N—l)

i—2
~ +
En_1 . _ B

EG{N%,N} [( N2 - +én —gn-1(En-1) — N—l) ]) .

For the numerical experiment, we construct bivariate marginal distributions for the simple series

& B\
<51+2+92(52)—N_1) +

+  (31)

cover by using the independent copula and identical uniform univariate marginals in [0, 1]. Then
F;(¢;) = ¢, for all ¢; € [0,1] and the joint distribution for two random variables is is F ;1 1(c;, ¢ip1) =
ciciy1 for all (¢, ciqq1) €0,1]% with ¢ =1,..., N — 1. Clearly the set of these bivariate marginals is

consistent. Given these continuous marginals, the problem in (31) is an infinite-dimensional linear
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optimization problem. To compute WCVaR, we use a discretization of the distribution function
to compute upper and lower bounds. Consider a discrete distribution F, approximation of F' with
M-points as in Embrechts and Puccetti (2010):
F,2 % Z {z>w,;},
jEM

where w = {wy,...,wp} is the set of M jump points. Let ¢; = ﬁ for j=0,...,M and define two
sets of jump points @ ={qi,...,qu} and w ={qo,...,qn_1}. Clearly, Fg and FQ provide lower and
upper bounds for F'. The discretized bivariate marginal distributions are constructed from the cor-
responding discretized univariate marginals using the independent copula. Let mf‘f (D ien i)
and WCVaR$? (3", &) denote the worst case CVaR bounds with respect to the discretized
marginals respectively. Then, WCVaR$? (3, &) < WCVaRYe (3,0 &) < WSE (D ien Gi)-
The upper and lower bounds are computed from the linear optimization problem in (31).

Embrechts and Puccetti (2010) proposed a lower bound of the cumulative distribution function
of the sum of random variables using the standard bound in (8) with variable splitting. In order
to compute this bound, one needs to calculate F,(d) =P (¢, + 2 <d) and F.(d) =P (£ + 2 <d).

In our example, this reduces to:

/

0, d <0, (
0, d<0,
a2, 0<d<1/2,
242, 0<d<1/2,
F,(d)=1 d—1/4, 1/2<d<1, and F.(d)=

—2d*>+4d—1,1/2<d< 1,
—d*+3d—-5/4,1<d<3/2,

1 d>1.

)

1, d>3/2,

Note that F, (d) = F,(d) and F, (d) = F.(d) given continuous distributions. The lower bound in
Embrechts and Puccetti (2010) (referred to as the reduced standard bound (RSB)) is computed as

follows:

RSB(z) =max< sup
deRlN—2

F,(dy)+F, <x— - di> + in(di)
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The objective function in the inner maximization problem in (32) is unfortunately not concave,
making it challenging to find optimal solutions for the optimization problem. To solve this problem,
we use a numerical procedure outlined in the Appendix. In our computations, we set M =50 and
compute the new series CVaR based bounds (SECB). The two bounds on the cumulative distribu-
tion function SECB™ (x) and SECB™ () are evaluated by taking the inverse of WS‘E (D ien i)
and WCVaRSg(ZieN ¢;), respectively. Figure 3 shows the three bounds, RSB(z), SECB™ (), and
SECB™ (z), for N =4 and N = 6. Observe that SECB™(x) and SECB™ (z) are fairly close to each
other. Since the actual CVaR bound lies the between the two curves, the discrete approximation
with M =50 for CVaR bounds is reasonably good in this example. It is also clear that our proposed

approximation significantly improves on the existing reduced standard bound.
4. Robust Portfolio Optimization

In this section, we implement the distributionally robust portfolio optimization approach in two
financial datasets and compare it with the sample based approach. Consider a portfolio of N
assets and let é be the random return vector of the assets. The random loss of ith asset is then
simply & = —&;. Given a feasible asset allocation @ € X, the computation of CVaR of the joint
portfolio requires the distribution of the random return vector €. Assume that we have access to
historical data of a finite set of samples from the financial market denoted by the set C. The sample
distribution € assigns a probability of 1/C to each sample vector in C. The optimal sample-based
allocation with the minimum CVaR is obtained by solving:
1

S (5 i wo 2 (CE /ﬂ) : (33)
which is representable as a linear program. However, the out of sample performance of such a
approach is not necessarily good due to the possibility that the out of sample distribution is different
from the in-sample distribution. Using simulated data, Lim et al. (2011) have shown that the CVaR
measure with sample-based optimization results in fragile portfolios that are often unreliable due

to estimation errors. The approach we adopt in this paper is to use historical data to extract the
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Figure 3 Different bounds of the cumulative distribution function of the sum of random variables with the simple

series cover

stable dependencies among the random losses and only incorporate this reliable information into

the optimization model. Given historical data, we construct a Fréchet class of distributions ©¢ and
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solve the following distributional robust optimization problem:

minmax CVaR? (" z). (34)

TEX 0cO¢

Using the dual representation in (28), the distributional robust portfolio optimization problem is

formulated as:

+
. 1 r _ 3 3
grr(%{g,w B+ 1-— az Bor (CT (o) =g (&) + Z gt (€x,) — R)

reR t>riop=r

(35)

st. xel.
If X is a polyhedron and the multivariate marginal support set of ¢, is C, with each sub-vector in

the set equally likely, problem (35) is solvable as a linear optimization problem:

1 z.(c;)
Bria X X ¢

reéR creCr

s.t. ZT(CT)+9T (c’Cr)_ Z gt (cKt)Zcf(nromr)_%, \V/CTECMVTERy ( )
— 36
t>riop=r

Zr(cr) 207 \V/CTGCT7VTER7

min
gr(.),B®,2r(.)

reX.
Next, we discuss a data-driven approach to construct the Fréchet class of distributions of asset

returns O¢.

4.1. Construction of Regular Covers

In the context of distributionally robust optimization, the dependency structure of the random
variables is often incorporated using moment information. Some of the common classes of dis-
tributions employed in the financial literature are distributions with first and second moment
information (see for example, El Ghaoui et al. (2003), Natarajan et al. (2009a), and Delage and Ye
(2010)) and multivariate normal distributions with parameter uncertainty in the mean and covari-
ance matrix (see Garlappi et al. (2007)). The resulting optimization formulations are tractable
conic programs. Our approach is to use a Fréchet class of distributions with possibly overlapping

marginals to capture information of dependencies among the random parameters. An important
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aspect of such an approach is to identify the cover structure £ to balance over-fitting the data and
getting overly conservative solutions due to lack of information. In order to construct the cover &,
we use time-dependent correlation information of the asset returns.

Our underlying assumption in identifying the cover is that we include pairs of assets in the same
subset if the changes in correlation between the two assets over time is minimal. We propose the
following two step data-driven approach to identify the regular cover:

Step 1: Split the historical data into two sets of equal size and construct the sampling dis-
tributions P; and Py for the asset returns from these two sets. For each pair of assets (i,7), we
compute Ap; ; =| pf} — p§§|, where p(gj is the correlation of the losses of two assets ¢ and j for the
distribution Q. The simplest choice of correlation is the common Pearson correlation coefficient
but other correlation measures could also be chosen. The objective is to identify the pairs (i, 7)
of assets with small values of Ap; ;. Under the assumption that the stable dependency structure
is captured by pairs with minimal change in correlation over time, these pairs of assets should be
included in the same subset. There are different ways to identify such pairs of assets. In this paper,
we implement two such approaches:

(a) Minimum spanning tree approach (MST): Use Ap;, ; as the weight for the edge (i, j)
in a complete graph of N vertices. Find the minimum spanning tree in this graph and keep all N —1
pairs of assets which define the tree. The choice of the minimum spanning tree implies that pairs
with small changes in correlation coefficients over time are likely to be selected. The MST approach
is inspired from the Chow-Liu method (Chow and Liu (1968)) which provides a second-order
product approximation of a joint probability distribution using the mutual information measure
and the spanning tree algorithm. We employ a similar method but use changes in the correlation
coefficients as the cost terms.
(b) Edge budgeting based approach (EB): Remove all the pairs except for a fraction
€ [0,1] of the total number of N(N — 1)/2 pairs with the smallest values of Ap; ;. Clearly, if
r, =0, no pair will be selected. On the other hand, if r, =1, we keep all the pairs. The parameter

r, allows us to control the number of pairs of assets to be selected.
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Step 2: Construct an undirected graph G where the set of nodes is the set of assets, and the set
of edges is the pairs of assets selected in Step 1. If the graph G is chordal then one can construct
a regular cover & efficiently. A linear time lexicographic breadth-first search (L-BFS) algorithm is
used to determine whether a graph is chordal and to construct the regular cover £ (see Rose et al.
(2004) and Tarjan and Yannakakis (1984)).

For MST approach, the graph is a tree and hence chordal. The resulting cover £ has N — 1
two-element subsets corresponding to individual selected pairs. The MST cover can be viewed as a
generalization of the simple star and simple series covers. In general, the resulting graph from EB
approach is not chordal. If the graph G is not chordal, one adds in a set of additional edges, which
are called fill-in edges, to make the graph chordal. Even though the problem of finding the fill-in
with the minimum number of edges is NP-complete (see Yannakakis (1981)), there are efficient
algorithms to find fill-ins with reasonably small number of edges (see for example, Huang and Dar-
wiche (1996) and Natanzon et al. (2000)). In our experiments, we use the MINWEIGHTELIMORDER
function in PMTK3, a Matlab toolkit for probabilistic modeling (see Dunham and Murphy (2012)),
which is based on a fill-in algorithm developed by Huang and Darwiche (1996). One can then
construct a regular cover £ from the modified chordal graph using the L-BFS algorithm. Note that
this data-driven approach of identifying regular covers is only heuristic. When we use fill-in edges,
there will pairs of assets with larger change in correlation over time included in the cover. We will
show in Section 4 some examples of how many fill-in edges are needed for the regular covers and
how changes in correlation over time of these additional pairs of assets are compared with those of
original ones.

Given a regular cover &, the marginals are constructed from historical data. Financial data is
however non-stationary. While one could use the original sampling marginals if sufficient stationary
historical data is available, in our experiments we found that it was difficult to get a nontrivial
Fréchet class of distribution with the data of a few hundred days. To tackle this issue, we round

the samples to ensure that the Fréchet class of distributions is non-trivial. The approach we adopt



Doan, Li, and Natarajan: Owverlapping Dependency in Portfolio Optimization
32 Article submitted to Operations Research; manuscript no. OPRE-2013-05-231

is to cluster the historical data of each asset return into several clusters and to replace the data
within each cluster by the respective cluster mean. The marginals with the rounded samples are
then used in the optimization approach. Under this construction, the mean of the rounded samples
remains the same as that of original ones. Another benefit is that the size of supports of marginal
distributions is reduced and this reduces the computational time to solve the problems. In the
next section, we investigate the effects of the rounding procedure as well as the effects of using

dependence structures in numerical experiments with real financial market data.

4.2, Dataset 1: Fama-French Portfolio

Given the volatility of financial markets, investors re-balance their portfolios periodically. We solve
the portfolio optimization problem in each period under the assumption that historical daily return
data of assets from the last two periods are available and are used to estimate distributions of daily
returns in the current period. We allow for short selling and consider the following set of allowable
allocations:

X:{CCE?R”ZGTIEZI,HT:BZ,U’t}a

where e is the vector of all ones, u; is the target return and p is the expected return vector of
all assets. Given the Fréchet class of distributions obtained either from the MST or EB approach,
we solve (36) to find the portfolio allocation in each period. In order to evaluate results obtained
from the distributionally robust optimization approach, we compare the results with two other
approaches:

1. Sample-based approach (SB): The original sample distribution is used and the allocation
is computed by solving the problem (33).

2. Rounded-sampled-based approach (RSB): The rounded sample distribution is used in
(33) instead of the original sample distribution. This strategy serves as a control to validate that
the effect of the rounding procedure is not drastic.

The first data set we analyze consists of historical daily returns of an industry portfolio obtained

from the Fama & French data library (French and Fama (2013)). The portfolio consists of NYSE,
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AMEX and NASDAQ stocks classified by industry. This include industries such as finance, health,
textiles, food and machinery. A total of 4400 observations of daily return data were available in
a period spanning approximately 15 years before the financial crisis, from August 18, 1989 to
February 1, 2007. Consider an investor who plans to invest in the portfolio with N = 49 risky
assets. He would like to minimize the risk of his investment, while guaranteeing a certain level of
average return by choosing an appropriate trading strategy. The investor re-balances his portfolio
every 200 days. We divide the 4400 samples into 22 periods, with each period consisting of 200
days. The investor starts his investment from the beginning of the third period. From then on, at
the beginning of each period, the investor uses the portfolio return data of the last two periods to
make the decision on the portfolio allocation for the current period.

In the experiments, we cluster the return data into 10 clusters. We use the R package
CKMEANS.1D.1P, which is based on a k-means clustering dynamic programming algorithm in one
dimension (see Wang and Song (2011)). The target return p, is varied between 0.04% and 0.08%.
For each target return, we apply the four trading strategies for 20 periods. We then compute the
aggregate out of sample mean and out of sample CVaR. The out of sample efficient frontier is
constructed by varying the target return. The numerical tests were conducted in 64-bit Matlab

2011a with the CVX solver (see CVX Research Inc. (2012)).
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Figure 4  Out-of-sample efficient frontiers of different strategies with v =0.95
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The graph on the left in Figure 4 shows the out of sample efficient frontiers of the EB trading
strategy for different values of the parameter r, when o= 0.95. If r, = 0, the EB strategy uses only
univariate marginals and in this example, its efficient frontier is worse than that of the EB strategy
for other small values of r,. This is to be expected since we use no dependency information from the
financial market in this case. As r, increases, the performance of the EB strategy improves, and the
best efficient frontier is achieved around r, = 0.15. The performance then gradually deteriorates as
r, continues to increase to 1. This result indicates that by using only partial dependency information
it is possible to enhance the performance of the trading strategy in the out of sample data. The
graph on the right in Figure 4 shows the efficient frontiers of the four different strategies. The
EB strategy is plotted for the optimum value r, = 0.15. We can see that optimal EB and MST
strategies are the better performing strategies in comparison to SB and RSB.

A well-known phenomenon in financial data is that the estimation of the out of sample mean is
inaccurate (see Merton (1980)). The out of sample means are between 0.03% and 0.055%, while
the target returns are between 0.04% and 0.08%. We conduct an experiment directly using the
out of sample mean data in the optimization formulation. While clearly impractical, this serves
to check the effect of the inaccuracies in the estimation of the mean return on the comparative
performance of the different strategies. Figure 5 shows that in this case the EB strategy is the best
performing strategy while the MST strategy does not perform as well. From these experiments, we
conclude that the optimal EB strategy achieves the best performance in this dataset. Note that our

approach is completely data-driven from identifying the cover to computing the optimal portfolio.

4.2.1. Robustness Tests In this section, we test the robustness of the results, by implement-
ing the distributional robust optimization model with a few modifications.

1. In the first test, we vary the CVaR parameter «. The results with o = 0.9 are displayed
in Figure 6. The best EB strategy is obtained around r, = 0.1. Similar to the results obtained
with o =0.95, the performance of EB and MST are better than sample-based approaches and the

efficient frontiers of SB and RSB are fairly close to each other.
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2. In the second test, we evaluate the effects of the rounding procedure by repeating the experi-
ment with 20 support points. The results are displayed in Figure 7. From the figure, it is clear that
one reaches a similar conclusion regarding the effectiveness of the optimal EB and MST approach
and the closeness between efficient frontiers of SB and RSB strategies.

We also ran the numerical experiments with 40 support points and average computational times
of all models are reported in Table 3. Given the fixed number of historical data (M = 400), com-
putational times of the sample-based approaches does not depend on the number K of support

points of (univariate) marginal distributions. The effect of K on computational time is prominent
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for the univariate marginal (EB with r, =0.00) and MST approach while it is much less for the
general EB approach.

3. In the third test, we verify the results by using a nonparametric correlation measure in
generating the cover. We make use of the Kendall tau rank correlation measure (see Kendall (1938)

and Embrechts et al. (2002)). Given a set of n observations

(7)17101)7 (U2,w2)7 cee (UT7wT)7

we call a pair (4,7) concordant if v; > v, w; > w; or v; <w;,w; < w;; otherwise, the pair is called

disconcordant. The Kendall tau is defined as:

= 2(Crcon - Tdis) 7

T(T-1)
where T, is the number of concordant pairs and Ty, is the number of disconcordant pairs.
Then —1 <7 <1 with 7 =1 if the agreement between the rankings is perfect and 7= —1 if the
disagreement between the two rankings is perfect. The results displayed in Figure 8 where coeff

corresponds to the Pearson correlation coefficient and tau corresponds to Kendall tau correlation.
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Computational time
Approach K | Variable number | Constraint number
(sec)

10 850 402 1.12
SB/RSB

20 - - -
(EB r, =1.00)

40 - - -

10 1078 492 1.32
Univariate marginal

20 2058 982 2.64
(EB r, =0.00)

40 4018 1962 5.20

10 31879 11302 82.84
EB r,=0.15 20 36535 12854 102.07

40 39215 13702 106.11

10 6373 2905 15.12
MST 20 17665 8316 49.00

40 32391 15209 98.95

Table 3 Computational times with different numbers of support points

We observe that the insights are similar as before, namely the optimal EB and MST strategies
cases outperform the SB and RSB approaches significantly.

4. In the final test, we ran the numerical experiments for two additional time intervals: the time
interval from August 21, 2006 to August 10,2010, which covers the recent financial crisis, and the
after-crisis time interval from October 23, 2009 to July 31, 2014. Note that the first two periods of
200 days each in these time intervals are only used as historical data while decisions are made from
the third period onwards. The efficient frontiers of the four different strategies, which include the
EB approach with the best value of the parameter r,, are plotted in Figure 9. The EB approach
again performs better than other approaches in both time interval, which is consistent with other
settings. The MST approach is very good in terms of out-of-sample return for the after-crisis time

interval but not for the crisis one. The best values of r, for the EB approach are 0.75 and 0.55 for
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the crisis and after-crisis periods, respectively. It seems more dependence information is needed in
these periods, especially the crisis periods.

We conclude this section by showing an example of resulting cover from the EB strategy. In
this example, almost all of 48 two-element subsets of MST cover appears in the subsets of EB
cover. This implies that there is greater dependence information assumed in the EB approach in
comparison to the MST approach. The EB cover in this example has 37 subsets, with the largest
subsets consisting of 13 elements. The top diagram in Figure 10 shows the first four subsets of this
particular cover while the bottom diagram shows the fourth subset and five additional ones. Note
that the cover structure is already much more complicated than the tree structure of the MST
cover. In this example, there are original 176 edges obtained from Step 1 of the EB approach. Using
the fill-in algorithm developed by Huang and Darwiche (1996), we add 84 additional edges in Step
2 to generate a regular cover. The distribution of Ap; ; of all edges (4, 7) is shows in Figure 11 as
well that of additional edges. When we vary the value of r,, the number of additional edges needed
is also varied with respect to the number of original edges and the number of remaining edges.

Figure 12 shows the relationship between these numbers. With respect to the number of original
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edges, we need to add more edges when r, is small. Figure 13 shows the distributions of difference
of correlation when r, =0.15 for two cases with smallest and largest numbers of additional edges.
It demonstrates the fill-in heuristic is reasonable in several cases while there are still cases in which
we need to add a large number of additional edges with larger difference in correlation to make the

cover regular.

Histogram of absolute differences of correlation
38 T T T

0.15 03 0.45 05

0.2 0.25
Absolute difference of correlation

Figure 11 Distributions of difference in correlation

4.3. Dataset 2: Index Fund Portfolio

The second data set we analyze is from the OR-library (see Beasley (1990)). This data set was
originally used for index tracking with the S&P100 index and 98 stocks. A detailed description of
the data set can be found in Canakgoz and Beasley (2009). The data provides weekly stock prices,
together with the index price, from March 1992 to September 1997, collected from DATASTREAM.

where p; is the price on day i. Since

The price data is transformed into return data using 241-%

p.
the portfolio consists of an index and the individual stocks, in addition to the previous approaches

we make use of the simple star cover for comparison purposes where the index forms the common

star element. We group the 280 data points into 4 periods. The decision maker makes a decision
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Figure 12 Comparison between the number of additional edges with that of original edges and remaining edges

at each period based on last two periods.The results are displayed in Figure 14. From the results,
we find that the star cover (STAR) dominates the univariate marginal model, i.e., EB with r, =0,
as well as SB and RSB significantly. However the best EB strategy (with r, =0.02 in this case) is
even better than the STAR strategy. This suggests that the additional effort of finding a regular
cover is useful in obtaining better out of sample performance. Note that the value of r, is very

small for the best EB strategy in this case which implies a weak dependence structure is assumed.

5. Conclusion

In this paper, we make use of the graph theoretic - running intersection property to develop a
linear program to compute Fréchet bounds on random portfolio risks. The formulation is shown to
be efficiently solvable for the discrete distribution case. New robust bounds on CVaR and VaR of

the joint portfolio with overlapping multivariate marginal distribution information are provided.
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Based on the tight and efficiently solvable bounds, we propose a novel data-driven robust portfolio
optimization model. This model identifies the overlapping cover structure by computing the changes
in correlation over time. In conjunction with a linear optimization model, we show that the results
help improve on the performance of sample based approaches.

We mention a couple of areas of possible future research. Firstly, while we restrict our attention
to applications in robust portfolio optimization, the bounds proposed in this paper are much
more general. Studying the implication of these bounds in areas such as queueing and inventory
models is a natural extension. Secondly, we restrict our attention in this paper to regular covers
with consistent set of marginals. Finding bounds when the cover is irregular or the marginals are

inconsistent are open questions.

Appendix A: Proof of Lemma 2

=. Since the cover is connected, for all » € R\ {1}, there exists a sequence s; =r,8g,...,8, =r—1
that links r to » — 1. If s5 <7, we have: K, = 7, N (ZL;J;Z) DT, NJs, #0. If 55 >r, there exist
three consecutive indices in the sequence such that s;_; <s; and s; > ;1. We have: J,,_, NJ;, # 0
and Js,,, NJs; # (. Since & satisfies the RIP, we have Jgsj 27N jasj =K,, =T, N <5:'911$> 5
To; N (Ts,_,UTs,,,), thus:

jasj 2 \78]' mjsj',l
\70'5]. 2 \7Sj mj8j+1'

Taking the intersection of J;, , and J;,,, on both sides respectively, we have:

jo'sj NTsy1 2T, NTs;_, #0

Jgsj NTsjpr 2 Ts; N Ty 0.
Thus we can replace s; with o, in the sequence, with o,; <s;. Continuing on doing the process,
we can find a sequence with sy < 7.
<. We shall prove by induction on R. When R =2, if Ky = 7, N J, # (), the cover is obviously
connected. Suppose the statement is true for R =k, let us consider R =k + 1. Since K, # () for all
r=2,...,k, the subsets J1,...,J; are connected. Since Kp,1 # 0, Jpi1 N jc,kﬂ # (). Thus for all

r=2,...,k, there exists a sequence linking r with k41 via o;41.
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Appendix B: Algorithm for Numerical Example in Section 3.2.1
Note that if there exists i =1,..., N — 2 such that d; <0, the inequality H(d;x) <0 always holds

since F, and F, are cumulative distribution functions. Thus we can restrict the feasible region to

the positive orthant, d; > 0 for all ¢ =1,..., N — 2. Similarly, we only need to consider solutions
N-2

that satisfies dy_1 = x — Z d; > 0. Note that F}, and F, are both continuously differentiable in
i=1

(0,+00). Consider the first-order necessary optimality conditions, VH(d;z) =0:

N—-2
F/(d)=F, <x—Zdi> =F'(d;), i=2,...,N—2. (37)
1=1

In order to solve this system of equations, we need the derivative F, and F7:

?d’ ?/<2i<dl</§7 4d, 0<d<1/2,
F,(d)= C9d+3.1<d< 3/2. and F.(d)= a4d+4, (1i/>21§d< 1,
0, d>3/2, ’ =

We then need to consider (37) three distinct cases with F}(d,) =0, 0 < F};(dy) <1, and F,(d;) = 1.

1. F;(dy) = 0: Since d, >0, we have d, > 3/2. Similarly, we have d; > 1 for all i =2,...,N —2
N-2 N—-1
3

and finally, dy =z — Z d; > 3/2. This case happens only when x = Zdl >(N—-3)+2x 5= N,
=1 =1

which is the trivial case with RBS(z) =1 since Z ¢; < N almost surely.

ieN
2. 0< F(dy) < 1: Let z = F}(dy)/4, we have z € (0,1/4) and F}(2z) = F}(d;). Given the formula-
tion of F(d), we can easily show that d, € {2z,3/2 —2z}. Similarly, we have: dy_, € {22,3/2—2z}.
Now consider d;, i =2,...,N — 2, we have F/(z) = F/(1 — z) = F/(d;). Thus d; € {z,1 — z} for all
1=2,...,N —2. Let k be the number of decision variables among d;, i =2,..., N — 2 that take the

value of z. We have: k can take any value from 0 to N — 3. Similarly, let [ be the number of decision
N-1

variables among {d;,dy_1} that take the value of 2z, [ =0,1,2. Using the constraint Z d; =z,

=1
we obtain the following equation on z:

(N—k—-31/2)— (N+1-2k—4l)z==z.

If this equation results in a solution z € (0,1/4), we achieve a set of solutions d of the original
problem which satisfy the first-order optimality condition (37). It means we would need to consider
3(NN —2) possible value pairs of (k,[) and check the feasibility of z to find all potential candidates
of the optimal solution for this case.

3. F,(dy) =1: In this case, we have d, € [1/2,1] and so is dy_,. For i =2,..., N — 2, we have
d; € {1/4,3/4}. Similarly to the previous case, we let k& be the number of decision variables among

d;, i=2,...,N — 2 that take the value of 1/4, we then have:
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In addition, the objective value in this case can be computed as
H(d;z)=dy+dy_1—1/2+KkF,(1/4)+ (N —-3—Fk)F.(3/4) — (N —2).

Thus, we just need to check whether y =d; +dy_1 =x — (3N — 9 — 2k) /4 belong to the interval
[1,2]. We need to perform this feasibility check for N — 2 different values of k.
Following the analysis of these cases, we can find the optimal solution among all potential candi-

dates, which will help us compute the standard bound RSB(x).
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