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Abstract

We study a model of collective real-time decision-making (or learning) in a social network oper-
ating in an uncertain environment, for which no a priori probabilistic model is available. Instead,
the environment’s impact on the agents in the network is seen through a sequence of cost functions,
revealed to the agents in a causal manner only after all the relevant actions are taken. There are two
kinds of costs: individual costs incurred by each agent and local-interaction costs incurred by each
agent and its neighbors in the social network. Moreover, agents have inertia: each agent has a default
mixed strategy that stays fixed regardless of the state of the environment, and must expend effort to
deviate from this strategy in order to respond to cost signals coming from the environment. We con-
struct a decentralized strategy, wherein each agent selects its action based only on the costs directly
affecting it and on the decisions made by its neighbors in the network. In this setting, we quan-
tify social learning in terms of regret, which is given by the difference between the realized network
performance over a given time horizon and the best performance that could have been achieved in
hindsight by a fictitious centralized entity with full knowledge of the environment’s evolution. We
show that our strategy achieves the regret that scales polylogarithmically with the time horizon and
polynomially with the number of agents and the maximum number of neighbors of any agent in the
social network.

1 Introduction

1.1 Risk vs. uncertainty in social learning and optimization

Decision-making and optimization based on information dispersed among a large number of agents
are topics of significant current interest, from both theoretical and practical points of view. Existing lit-
erature, which is vast, covers a wide variety of models with different assumptions on the information
structure, i.e., who is allowed to observe what, and on the agents’ capabilities, i.e., what they are allowed
to or able to do with their observations. For example, canonical models of Bayesian learning [1] as-
sume complete and truthful sharing of all relevant information among all agents, who are also endowed
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with essentially unlimited computational power. There are also generalizations to noisy signals, but it is
typically assumed that the source of noise is nonadversarial. A related framework of Bayesian dynamic
games [2, 3] considers sequential decisions by a large collection of agents, where each agent has per-
fect recall of all decisions made in the past (but not necessarily of all information used to arrive at those
decisions).

Recently, however, emphasis has shifted towards decision-making in social networks, where infor-
mation sharing is limited to small groups of agents — e.g., when an individual is deciding whether to
buy a particular product, she can directly observe similar decisions made by her friends, neighbors or
coworkers. Thus, a social network can be modeled as a graph, where each vertex corresponds to an
agent while edges correspond to pairwise interactions between agents [4]. Most theoretical studies of
social decision-making rest on the following basic framework [1, 4]: (i) there is some unknown parame-
ter associated with the environment in which the network is situated; (ii) each agent receives a private
signal stochastically related to this parameter; and (iii) agents select actions by aggregating their private
signals with any information they receive from their neighbors in the social network. The main question
is whether the agents can learn enough about this parameter of interest under the given information
structure and the constraints on their information-processing capabilities. For instance, Acemoglu et
al. [5] consider Bayesian learning in dynamic social networks with randomly evolving neighborhoods,
while Jadbabaie et al. [6] examine a non-Bayesian model of learning in a fixed network, where agents
form their beliefs about the underlying parameter by mixing Bayesian updates computed on the basis of
their private information with the beliefs of their neighbors.

There are several key modeling assumptions underlying these and similar works:

(S1) The environment is static, meaning that the underlying parameter is drawn from a fixed probabil-
ity distribution once and for all, and does not change throughout the learning process.

(S2) Each agent has a coherent probabilistic model of the environment in the form of a joint probability
measure on the Cartesian product of the parameter space and the agent’s private signal space.

(S3) The agents have no intrinsic goals or default strategies unrelated to the state of the environment.

In this paper, we introduce a model of discrete-time decision-making in social networks that departs
from all three of these assumptions. In particular, on the descriptive level, our setting has the following
features:

(D1) The environment is dynamic, and no agent has a model of its evolution.

(D2) In view of the item above, the environment does not admit a probabilistic representation. Instead,
at each time step, each agent receives a signal that quantifies the costs of all possible actions that
could be taken by this agent and its neighbors in the social network in the current state of the
environment.

(D3) No agent is compelled to take only those actions that would entail lower costs. Instead, each agent
has a default mixed strategy that stays fixed regardless of the state of the environment, and must
expend effort in order to deviate from this strategy.

The distinction between the probabilistic (or Bayesian) view of the environment stipulated in S1–S2 and
the nonprobabilistic view laid out in D1–D2 is along the same lines as the distinction between risk and
uncertainty made in 1921 by Frank Knight [7]. According to Knight, risk describes situations with out-
comes modeled by random variables with known probability distributions, while uncertainty pertains to
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situations in which no such probabilistic description is available or even possible. For instance, uncer-
tainty may arise due to the presence of boundedly rational agents with different sets of values, norms,
and abilities. Despite the clear conceptual and practical significance of this distinction, there has been
little effort in economics to formalize it mathematically. One of the few exceptions is the work of Be-
wley [8, 9], who studies the behavior of a decision-making agent interacting in real time with an envi-
ronment in a state of punctuated equilibrium — i.e., intervals of (relative) stability are interrupted by
“shocks,” corresponding to sharp and unpredictable changes. The Knightian aspect is embodied in the
premise that the agent is unable to anticipate the frequency and the nature of these shocks in advance,
and so may be caught by surprise. An ideal Bayesian risk-minimizing agent, on the other hand, is not
really surprised by anything, since by definition it has already assigned subjective beliefs and utilities to
all possible contingencies. Moreover, a Knightian agent may exhibit inertia, i.e., a tendency to stick to
some default strategy unless there is a sufficiently strong signal from the environment compelling the
agent to deviate from the status quo.

Thus, we are interested in the collective decision-making (or learning) capabilities of social networks
in the presence of Knightian uncertainty, as captured by the assumptions D1–D3. We quantify learning
in terms of regret, i.e., the difference between the realized performance of the network over a given time
horizon and the best performance that could have been achieved in hindsight by a fictitious centralized
entity with full knowledge of the environment’s evolution. The performance criterion is induced by a
time-varying sequence of composite objective functions that incorporate the total cost of actions taken
by all the agents and the total effort expended by the agents in deviating from their individual default
strategies.

1.2 A sketch of the model and a summary of results

Let us give a more formal description. We start by considering a single agent who must choose an action
from a finite set of alternatives, while attempting to balance the instantaneous cost of that action against
a desire to minimize effort by sticking to some default (or status quo) behavior. Mathematically, we
may model such an agent as follows. Let X denote the set of all possible actions, and let µ0 be a fixed
probability distribution on X, where for each x ∈ X we interpret µ0(x) as the default probability that the
agent will choose action x. (For instance, we may imagine a large population of similar agents and take
µ0(x) as the fraction of agents that tend to choose action x by default.) Without loss of generality, we
may suppose that µ0(x) > 0 for all x ∈X. Now let f : X→ R be a function that prescribes the cost of each
action. If we allow the agent to randomize, then a reasonable strategy for the agent would be to choose a
random action according to

π= argmin
ν∈P (X)

{

β〈ν, f 〉+D(ν‖µ0)
}

,

where P (X) is the space of all probability distributions on X,

〈ν, f 〉,
∑

x∈X

ν(x) f (x)

is the expected cost of a random action sampled from the set X according to ν ∈P (X),

D(ν‖µ0),
∑

x∈X

ν(x) ln
ν(x)

µ0(x)
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is the relative entropy (or Kullback–Leibler divergence1) between ν and µ0 [10], and β> 0 is a parameter
that controls the trade-off between loss aversion (i.e., the desire to minimize expected cost) and inertia
(i.e., the desire to stick to default behavior) of a Knightian decision-maker [8]. Thus, the addition of
the relative-entropy term is an analytically tractable means of penalizing excessive deviations from the
default strategy. A simple argument based on the method of Lagrange multipliers gives an explicit form
of the solution π:

π(x) =
µ0(x)exp

(

−β f (x)
)

Z (β)
, (1)

where Z (β) =
〈

µ0,exp(−β f )
〉

is a normalization factor. This strategy is well-known in econometrics un-
der the name of multinomial logit choice model [11], and it also plays a prominent role in the context
of distributionally robust optimization [12]. Probability distributions of this form are also well-known in
statistical physics under the name of Gibbs measures (see Section 1.4 for more details), where f plays the
role of an energy function and β is the inverse temperature. Note, in particular, the two extreme regimes:
when β = 0 (infinite temperature), the cost f has no influence on the agent, and we have π= µ0; on the
other hand, as β→∞ (zero temperature), the agent has no inertia, and π will converge to the uniform
distribution supported on the set of minimizers of f .

In the above formulation, the agent knows the cost function f and thus has no uncertainty about
the consequences of various actions; we have only captured the agent’s inertia by means of the relative-
entropy term. Now, let us bring in an element of time and consider a boundedly rational agent operating
in a dynamic environment. Bounded rationality comes from the fact that the agent is unable (or un-
willing) to construct an intelligible model of its environment, in the spirit of Knightian uncertainty. The
agent must take a sequence of random actions X1, . . . , XT ∈ X at discrete time steps t = 1,2, . . . ,T . We
suppose also that, at each time t , the costs of each action change unpredictably, and the agent only finds
out the current cost function ft : X→R after having taken the action Xt . However, the agent keeps track
of all past cost functions f1, . . . , ft−1, and may use this information when choosing Xt . We assume that
the environment is nonreactive, i.e., the sequence f1, . . . , fT of instantaneous cost functions is fixed in
advance. Finally, we assume that the default distribution µ0 over the action set X does not change.

More formally, let πt ∈P (X) denote the distribution of Xt chosen by the agent based on all available
information at time t . Then, the instantaneous loss incurred by the agent at time t is given by

ℓt (πt ),β〈πt , ft 〉+D(πt‖µ0). (2)

Due to the agent’s limited forecasting ability, we adopt a backward-looking optimality criterion based
on worst-case regret: If the cost functions ft are chosen from some fixed class F known to the agent,
the agent should choose a strategy (i.e., a rule for mapping all available information at each time t to a
probability distribution πt of Xt ) so as to minimize the worst-case regret

RT (F ), sup
f1,..., fT ∈F

RT ( f T ), (3)

where

RT ( f T ),
T
∑

t=1
ℓt (πt )− inf

ν∈P (X)

T
∑

t=1
ℓt (ν) (4)

1The Kullback–Leibler divergence is a commonly used measure of (dis)similarity between probability distributions; we dis-
cuss some of its salient properties in Section 1.4.
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is the regret with respect to a fixed sequence f T = ( f1, . . . , fT ) of instantaneous costs. The regret quantifies
the worst-case gap between the cumulative loss after T time steps and the smallest cumulative loss that
could have been achieved in hindsight had the agent been aware of the entire sequence f T = ( f1, . . . , fT )
of instantaneous costs ahead of time. Indeed, if we normalize both sides of (4) by βT , then the minimum
of the per-round regret

R̄β,T (F ) = sup
f1,..., fT ∈F

{

1

T

[

T
∑

t=1
〈πt , ft 〉+

1

β
D(πt‖µ0)

]

− inf
ν∈P (X)

[〈

ν,
1

T

T
∑

t=1
ft

〉

+
1

β
D(ν‖µ0)

]}

. (5)

over all strategies for the agent quantifies the smallest gap the agent can secure in the worst case between
(a) the average of the expected losses at each round without any knowledge of what will happen in future
rounds and (b) the minimum expected loss the agent could attain in a single round against the empir-

ical average (1/T )
∑T

t=1 ft of the instantaneous costs. Since the agent does not make any probabilistic
assumptions about the evolution of the cost sequence f1, . . . , fT , the empirical average of this sequence
is a reasonable proxy for the “typical” behavior of the environment. Moreover, from the results of Aber-
nethy et al. [13] it follows that, under certain mild conditions allowing the use of the minimax theorem,
the per-round minimax regret admits the following equivalent characterization:

R̄∗
β,T (F ) = inf

strategies
R̄β,T (F )

=
1

T
sup

µ̃∈P (FT )
E f T ∼µ̃

{

T
∑

t=1
inf

ν∈P (X)
E

[

〈ν, ft 〉+
1

β
D(ν‖µ0)

∣

∣

∣

∣

f t−1
]

− inf
ν∈P (X)

T
∑

t=1

[

〈ν, ft 〉+
1

β
D(ν‖µ0)

]

}

,

(6)

where P (F T ) is the space of all probability measures on T -tuples over F (with respect to a suitable σ-
algebra). This characterization shows that regret minimization is a sequential (or dynamic) generaliza-
tion of robust Bayesian optimization [12] that takes into account the fact that the agent does accumulate
some information about the environment and may use it to some extent to compensate for future un-
certainty about the instantaneous cost functions. Indeed, for a fixed µ̃ ∈P (F T ), the term corresponding
to time t in the first summation in (6) corresponds to the selection of the best strategy πt when the next
instantaneous cost ft would be drawn from the posterior distribution µ̃(·| f t−1).

Online decision or prediction problems of this sort have received a great deal of attention in such
fields as machine learning, operations research, and finance [14–17]. Their origins date back to a sem-
inal paper of Hannan [18], who has shown that an agent making repeated decisions in a dynamic and
uncertain environment will eventually “learn” to act almost as well as if it were aware of the sequence of
environment states before beginning to act. To fix ideas, us give an illustrative example in the context of
discrete optimization: the online shortest path problem [19,20]. Let G = (V ,E ) be a directed acyclic graph
with two distinguished vertices a and b. Let the action space X be the set of all (directed) paths from a

to b; it can be identified with a subset of {0,1}E , each of whose elements is a tuple x = (xe )e∈E , such that
xe = 0 or 1 depending on whether the edge e is included in the path. The amount of traffic on each edge
e ∈ E varies with time arbitrarily. If we denote the traffic on edge e at time t by dt ,e , then the total traffic
along a given path x ∈X is given by

ft (x) =
∑

e∈E

dt ,e xe . (7)

At each time t , the agent picks a probability distribution πt over paths from a to b, takes a random path

5



Xt ∼πt , and experiences the average traffic of

〈πt , ft 〉 =
∑

x∈X

πt (x)
∑

e∈E

dt ,e xe .

Let F be the class of all functions of the form (7). Let us first consider the case of no inertia (β →∞).
Then it can be shown (see, e.g., [19] or [15, Sec. 5.4]) that the optimal strategy at time t is given by

πt (x) ∝ exp

(

−η
t−1
∑

s=1

∑

e∈E

ds,e xe

)

,

where the parameter η is given by const ·
√

ln |X|

T
, resulting in O

(

√

T ln |X|

)

total regret or O
(

√

ln |X|/T
)

per-round regret. Note the intuitive structure of this strategy: it favors (i.e., assigns higher probabilities
to) the paths consisting of edges that have experienced the smallest total traffic before time t . Moreover,
because of the additive structure of the costs in (7), the per-round computational cost of implementing
such a strategy is O(|E |) [19]. The per-round regret has an appealing interpretation as the difference be-
tween the total per-round traffic experienced by the agent over T rounds and the average traffic along
the best single path the agent could have chosen in hindsight knowing the average amount of traffic
(1/T )

∑T
t=1 dt ,e on each edge e ∈ E . If the agent has a finite inertia parameter β> 0 and a default distribu-

tion µ0 over paths from a to b, then the optimal strategy at time t would take the form

πt (x) ∝µ0(x)exp

(

−
β

t

t−1
∑

s=1

∑

e∈E

ds,e xe

)

(cf. Eq. (1) and Section 3), reflecting the tension between the desire to stick to µ0 and the effort needed
to deviate from it in order to experience less traffic.

Our main interest in this work is in the setting of online decision-making by a social network consist-
ing of n agents. This setting has the following salient characteristics:

(i) Each agent takes actions in a finite base action space {1, . . . , q}, so the action space X of the entire
network is a Cartesian product {1, . . . , q}n . Both the number of alternatives q and the number of
agents n are potentially very large.

(ii) The cost functions ft ∈ F decompose into sums of one- and two-variable “local" terms, where
each q-ary variable is associated with a separate agent. Thus, when each agent chooses an action,
this action affects not only this agent, but also its neighbors in the social network.

(iii) Each of the n agents receives only local information both from other agents and from the environ-
ment.

In a large network with local communication, there are two sources of uncertainty for each agent at each
time t : uncertainty about the future costs, as well as uncertainty about the actions of all agents outside
of that agent’s neighborhood in the social network.

Our main contribution is a construction of a decentralized strategy that takes into account these
features and whose regret is sublinear in the time horizon T and polylogarithmic in the network pa-
rameters (the number of agents and the maximum neighborhood size). We first present a centralized

strategy and analyze its regret (3) with respect to a class F of cost functions that decompose into in-
dividual (per-agent) and pairwise costs, where the latter affect only those agents that are neighbors in
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the social network. We then develop an approximate decentralized implementation of this centralized
strategy using ideas from statistical physics (specifically, the well-known Glauber dynamics or the Gibbs

sampler [21–23]). It should be pointed out that decentralized strategies based on the Glauber dynam-
ics have been studied in the literature on economics [24–26] and on evolutionary dynamics [27] in the
context of convergence to equilibrium in large systems consisting of interconnected agents with local
interactions. Our main result (Theorem 1) states that, under a certain regularity condition involving the
inverse temperature (or inertia) parameter β and the maximum degree of the social network, the regret
of the decentralized strategy based on the Glauber dynamics also exhibits favorable scaling as a function
of T and network parameters. The proof of Theorem 1 relies on the aforementioned ideas from statis-
tical physics, as well as on some recent developments in the theory of Markov chains — specifically, on
Ollivier’s notion of a positive Ricci curvature of a Markov chain on a complete separable metric space [28].

1.3 Related literature

The most closely related work to ours is a recent paper by Gamarnik et al. [29], which studies decentral-
ized combinatorial optimization of a random locally decomposable objective function and shows that,
under a certain correlation decay condition similar to Dobrushin’s uniqueness condition from statistical
physics (see, e.g., [30, Section V.1]), it is possible to construct polynomial-time approximation schemes
relying only on local information. However, that work is concerned exclusively with static (or offline)
optimization problems, in which the objective function is fixed. On the other hand, just as in [29], we
assume that the instantaneous network costs f1, . . . , fT decompose into a sum of individual and pairwise
interaction terms, and at each time step each agent is informed only about its own cost and the pairwise
costs in its immediate neighborhood. Another difference with [29] is that they allow communication
not only between any pair of immediate neighbors in the graph, but also between agents connected by
paths of a given length r ≥ 1. By contrast, we follow the rest of the social network literature and allow
direct communication only between neighbors; however, there are also indirect information paths that
affect the scaling of the regret. Finally, the connection between the correlation decay conditions in [29]
and statistical physics is primarily qualitative, whereas our regularity condition stated in Theorem 1, as
well as the technique used in the proof of the theorem, are more directly related to ideas from statistical
physics.

There is also extensive literature on regret minimization in multiagent games, e.g., [31–34], and in
particular in graphical games [35] (a class of games, in which the payoff structure is aligned with the
social network governing the agents’ interactions). However, in this line of work, regret minimization is a
goal of each individual agent, who views the rest of the network as a potential opponent. A typical result is
that, provided each agent follows a suitable regret-minimizing strategy, the empirical distribution of the
actions converges to some equilibrium (e.g., Nash or correlated equilibrium) of the game. By contrast,
we view the social network as a team that has a common opponent, the environment. Thus, our work
can be viewed as an extension of the classical Bayesian economic theory of teams [36,37] to the realm of
online decision-making in the presence of Knightian uncertainty.

1.4 Some notation and preliminaries

Here, we provide some basic concepts and results that will be used later in the development. The total

variation distance between any two distributions µ,ν ∈P (X) is given by

‖µ−ν‖TV ,
1

2

∑

x∈X

|µ(x)−ν(x)|.
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The Kullback–Leibler divergence (or relative entropy) between µ and ν is

D(µ‖ν) =







〈

µ, ln
µ

ν

〉

if supp(µ) ⊆ supp(ν),

+∞ otherwise,

where supp(·) denotes the support of a probability distribution. The Kullback–Leibler divergence is
nonnegative, i.e., D(µ‖ν) ≥ 0 for all µ,ν ∈ P (X), and positive definite, i.e., D(µ‖ν) = 0 if and only if
µ = ν. (There are other properties, such as convexity, which we do not use in this paper. The reader
is invited to consult any text on information theory, such as Cover and Thomas [10], for more details.)
These two quantities are related via the Csiszár–Kemperman–Kullback–Pinsker (CKKP) inequality [10,
Lemma 17.3.2]2

‖µ−ν‖TV ≤

√

1

2
D(µ‖ν). (8)

We will also need some concepts from statistical physics (see, e.g., [30]). Any probability distribution
µ ∈P (X) defines a family of Gibbs distributions indexed by functions g :X→R:

µg (x),
µ(x)exp

(

g (x)
)

〈µ,exp(g )〉
, ∀x ∈X. (9)

In statistical physics, each x ∈ X is associated with a possible configuration of a physical system, and
g : X → R is the negative energy function. In that context, Eq. (9) describes the probabilities of differ-
ent configurations when the system with energy function g is in a state of equilibrium with a thermal
environment at unit absolute temperature [30]. The following lemma (see, e.g., [30, Lemma V.1.4] for a
slightly looser bound) provides some properties of Gibbs distributions that will be useful later on in the
development of our main results:

Lemma 1. Let g ,h be any two real-valued functions on X. Then we have

D(µg ‖µh) ≤
‖g −h‖2

s

8
, (10)

and

‖µg −µh‖TV ≤
‖g −h‖s

4
, (11)

where ‖ f ‖s is the span seminorm (or oscillation) of a function f :X→R given by

‖ f ‖s , max
x∈X

f (x)−min
x∈X

f (x).

The proof is elementary, so we give it in Appendix A for completeness.

2The inequality (8) is often referred to as simply Pinsker’s inequality with reference to the book [38], which was a translation
of the original Russian text from 1960. However, in [38] Pinsker established a different bound that can be used to deduce (8),
but with a much larger constant in front of the relative entropy on the right-hand side. The tight bound (8) was obtained
contemporaneously by Csiszár [39], Kemperman [40], and Kullback [41, 42]. The authors would like to thank Prof. Sergio Verdú
for pointing out the correct attribution.
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2 The model and problem formulation

We model the social network by a simple undirected graph G = (V ,E ), where each vertex v ∈ V is as-
sociated with an agent, and the edges {u, v} ∈ E indicate symmetric pairwise interactions (in particular,
information exchange) among agents. For each v , we denote by ∂v ,

{

u ∈ V : {u, v} ∈ E
}

the set of
neighbors of v , and let ∂+v , {v}∪∂v denote the set consisting of agent v and all of its neighbors. The
maximum degree of G is

∆,max
v∈V

|∂v |.

Each agent takes actions in the base action set {1, . . . , q}. The elements of the set

X,
{

x = (xv )v∈V : xv ∈ {1, . . . , q}
}

will be referred to as network action profiles. For each v ∈V , we fix a probability measureµv,0 on {1, . . . , q},
and let µ0 ∈P (X) denote the product measure

µ0(x),
∏

v∈V

µv,0(xv ), for all x ∈X. (12)

We assume that each µv,0 charges every action a ∈ {1, . . . , q}, i.e., µv,0(a) > 0 for all a. The probability
measure µv,0 describes the default individual behavior of agent v . Finally, we are given two classes of
local cost functions: the class Φ of one-variable (vertex) costs φ : {1, . . . , q} → R and the class Ψ of two-
variable (edge) costs ψ : {1, . . . , q}× {1, . . . , q} → R. With this, we denote by F = FΦ,Ψ the space of all
functions f : X→R of the form

f (x) =
∑

v∈V

φv (xv )+
∑

{u,v}∈E

ψu,v (xu , xv ), (13)

where φv ∈Φ and ψu,v ∈Ψ for all v ∈V and all {u, v}∈ E .
The interaction among the agents and the environment takes place according to the following pro-

tocol: Initially, each agent v ∈ V starts out with an empty information set Iv,0 =∅ and draws an action
Xv,0 ∈ {1, . . . , q} at random according to µv,0, independently of all other agents. At each discrete time step
t ∈ {1, . . . ,T }, a single agent Ut ∈V is activated uniformly at random independently of all other past data.
This agent takes a random action XUt ,t on the basis of all information currently available to it, while all
other agents v ∈ V \{Ut } replay their actions from the previous time step t −1. Once the network action
profile Xt = (Xv,t : v ∈ V ) for time t is generated, each agent v observes its instantaneous cost function
φv,t , its instantaneous local-interaction cost functions ψu,v,t for u ∈ ∂v , and the decisions of all its neigh-
bors (of course, the agent knows its own decision Xv,t ). Formally, each agent v ∈V at time t observes ιv,t ,
where

ιv,t =

(

φv,t ;
(

ψu,v,t : u ∈ ∂v
)

;
(

Xu,t : u ∈ ∂+v
)

)

, (14)

and updates its information to Iv,t = (Iv,t−1, ιv,t ). Here, (φv,t )v∈V and (ψu,v,t ){u,v}∈E are the local costs for
each agent and for each pair of interacting agents that the environment has generated for time t . As we
mentioned earlier, we assume that the environment is nonreactive, i.e., all the cost functions are fixed in
advance but revealed to the agents sequentially. Figure 1 gives a summary of this process.
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Parameters: base action set {1, . . . , q}; network graph G = (V ,E ); default probability measures µv,0 for all v ∈V ;
local function classes Φ,Ψ; number of rounds T ∈N.

Initialization of information sets: for each v ∈V , let Iv,0 =∅.

Initialization of actions: for each v ∈V , draw Xv,0 at random according to µv,0, independently of all other v ’s.

For each round t = 1,2, . . . ,T :

(1) An agent Ut ∈V is chosen uniformly at random.

(2) Agent Ut draws a random action XUt ,t on the basis of its current information IUt ,t−1; all other agents
v ∈V \{Ut } replay their most recent action: Xv,t = Xv,t−1.

(3) Each agent v ∈V observes

– the current cost functions φv,t ∈Φ and ψu,v,t ∈Ψ for all u ∈ ∂v

– the actions Xu,t for all v ∈ ∂+v ,

and updates its information set to Iv,t = (Iv,t−1, ιv,t ), where ιv,t is the new information available to agent
at time t (cf. Eq. (14)).

Figure 1: Online discrete optimization in a network of agents with local interactions.

For each t = 1, . . . ,T , let µt denote the probability distribution of the network action profile Xt .3 For
a fixed sequence of cost functions selected by the environment, the probability measures µ1, . . . ,µT are
fully specified given the initial condition µ0 in (12) and the sequence of conditional probability distribu-
tions

Pt+1(xt+1|It ) =
1

|V |

∑

v∈V

Pv,t+1(xv,t+1|Iv,t )1{x−v,t+1=x−v,t }, t = 0,1, . . . ,T −1 (15)

where 1{·} is an indicator function that takes value 1 when the logical predicate {·} is true and is 0 other-
wise, It = (Iv,t : v ∈ V ) is all the information available immediately after time t , Pv,t+1(·|Iv,t ) is the con-
ditional distribution (or local stochastic update rule) according to which agent v draws its action xv,t+1,
while x−v,t is the (|V | −1)-tuple obtained from xt by deleting the coordinate corresponding to agent v ,
i.e., x−v,t ,

(

xu,t : u ∈V \{v}
)

. The instantaneous loss incurred by the network at time t is given by

ℓt (µt ) =β〈µt , ft 〉+D(µt‖µ0),

where

ft (x) =
∑

v∈V

φv,t (xv )+
∑

{u,v}∈E

ψu,v,t (xu , xv )

is the instantaneous cost function for the entire network at time t . After T rounds, the regret of the
network with respect to the sequence f1, . . . , fT is

RLI
T ( f T ),

T
∑

t=1
ℓt (µt )− inf

ν∈P (X)

T
∑

t=1
ℓt (ν)

3We will adhere to the following convention: we will use µt (respectively, πt ) to denote the distribution of the action profile
Xt in the decentralized (respectively, centralized) scenario.
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where the superscript LI stands for “local interaction.” The corresponding worst-case regret is

RLI
T (F ), sup

f1,..., fT ∈F

RLI
T ( f T ). (16)

Our objective is to design the local stochastic update rules Pv,t (·|Iv,t ) for all v ∈ V and all t ∈ {1, . . . ,T } to
guarantee that the regret (16) is sublinear in T and polynomial in the inverse temperature parameter β,
the number of basic actions q , the size |V | of the network, and the maximum number ∆ of each agent’s
neighbors in the social graph.

3 The main results

To motivate our design of a decentralized strategy, we start by developing a particular centralized scheme
that, as we shall see, can be well-approximated with a natural distributed implementation. Consider a
fixed but arbitrary sequence of instantaneous cost functions f1, . . . , fT ∈ F chosen by the environment.
Our centralized strategy is obtained by the following recursive construction. Suppose that the distribu-
tions π1, . . . ,πt of the action profiles X1, . . . , Xt have already been chosen. We choose the next πt+1 to
balance the greedy tendency to minimize the most recent instantaneous loss ℓt (·) = β〈·, ft 〉 +D(·‖µ0)
against the cautious tendency to stay close to what worked well in the past, i.e., πt . Hence, a good candi-
date for πt+1 is

πt+1 = argmin
π∈P (X)

{

γt

[

β〈π, ft 〉+D(π‖µ0)
]

+D(π‖πt )

}

, (17)

where the weight γt > 0 controls the trade-off between the greedy and the cautious behavior. This con-
struction is reminiscent of the so-called mirror descent algorithms for online convex optimization [15,
Chapter 11], with γt viewed as a step size at time t . In contrast to the mirror descent algorithms, here
the optimization is performed in the space of probability measures and there is no linearization of the
objective function. An application of the method of Lagrange multipliers leads to the following solution:

π1 =µ0 and πt+1(x) =

(

µ
γt

0 (x)πt (x)exp
(

−γtβ ft (x)
))

1
1+γt

Zt+1
, t = 1,2, . . . (18)

where Zt+1 is the normalization constant ensuring that πt+1 is a bona fide probability distribution. We
will work with γt =

1
t

. We now summarize the key properties of this strategy.

Proposition 1. The strategy (18), with γt =
1
t , has the following properties:

1. For any t = 0,1,2, . . ., the distribution πt+1 can be expressed as

πt+1(x) =
µ0(x)exp

(

−βFt (x)
)

Z̃t+1
, (19)

where Z̃t+1 is a normalization constant, and the functions Ft are given by

Ft (x) =

{

0, t = 0,
1

t+1

∑t
s=1 fs (x), t ≥ 1.

(20)
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2. Suppose that the functions φ ∈Φ and ψ ∈Ψ take values in the interval [−1,1]. Then, for all t ≥ 1,

D(πt‖πt+1) ≤ 2

(

β|V |(∆+1)

t +1

)2

. (21)

3. It achieves the following bound on the worst-case regret: for all T ≥ 1,

RT (F ) ≤ 2
(

β|V |(∆+1)
)2 ln(T +1)+ ln

1

θ
, (22)

where F =FΦ,Ψ and

θ, min
a∈{1,...,q}

µ0(a).

Several observations and remarks are in order:

1. The O(lnT ) scaling of the regret is a consequence of the general fact that, due to the presence of the
relative entropy term, the loss functions ℓt are strongly convex with respect to the total variation
norm (see, e.g., [43]). In fact, there are matching lower bounds [44] that show that this scaling of
the regret is optimal for strongly convex losses. However, our analysis of the centralized strategy
in (18) is self-contained, and the three parts of Proposition 1 reflect the logical structure of the
proof: first, we show that the strategy at time t + 1 is given by a Gibbs measure determined by
the empirical average of the instantaneous costs revealed up to time t ; then we show that the
difference between the strategies at successive times t and t+1, as measured by the relative entropy
D(πt‖πt+1), decays rapidly with t ; and finally we use these intermediate results to derive a bound
on the overall regret. Thus, even though the result in Proposition 1 is not new, it differs from the
rest of the literature by its emphasis on the dynamical properties of the strategy in (18), which we
will exploit in the proof of our main result.

2. Implementation of the above centralized strategy does not require advance knowledge of the time
horizon T .

3. Inspection of the non-recursive form (19) of πt+1 sheds light on the role of the decaying factor 1/t

in (17): it is used to dampen the influence of past instantaneous costs f1, . . . , ft . In particular, at
time t , each cost function enters into the strategy πt with the same weight 1/(t + 1). As we will
see later, this averaging is crucial in ensuring that we can approximate each global randomized
strategy πt using purely local update rules.

4. From the standpoint of the influence of the initial distributions µv,0, the regret bound in (22) is
minimized when µv,0 is the uniform distribution for all v ∈V , resulting in

RT (F ) ≤ 2
(

β|V |(∆+1)
)2 ln(T +1)+|V | ln q.

5. The fact that the regret is proportional to (|V |(∆+1))2 is not surprising in light of the fact that each
cost function ft is a sum of |V |(∆+1) terms, each of which is bounded by 1. Thus, ‖ ft‖s =O

(

|V |(∆+

1)
)

. Since the regret is governed by the relative-entropy drift terms D(πt‖πt+1), by Lemma 1 we
expect it to scale with maxt ‖ ft‖s =O

(

(|V |(∆+1)2
)

.
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We now use this centralized scheme to construct appropriate local update rules Pv,t+1(·|Iv,t ) for all v ∈V

and t ∈ {1, . . . ,T −1}. For any cost function f of the form (13), any v ∈ V , and any boundary condition

x∂v ∈ {1, . . . , q}|∂v |, we define the local cost at v by

fv (a, x∂v ),φv (a)+
∑

u∈∂v

ψu,v (xu , a), ∀a ∈ {1, . . . , q}.

Similar notation will be used for time-indexed instantaneous and discounted cumulative costs, i.e., fv,t

based on ft , and Fv,t based on Ft . For each v ∈V and each t , let

Pv,t+1(xv,t+1|Iv,t ),
µv,0(xv,t+1)exp

(

−βFv,t (xv,t+1, x∂v,t )
)

Zt+1(x∂v,t )
, (23)

where

Fv,t =
1

t +1

t
∑

s=1
fv,s ; (24)

The normalization constant Zt+1(x∂v,t ) in (23) now depends on the action profile x∂v,t of the neighbor-
hood of agent v after time t :

Zt+1(x∂v,t ) =
∑

a∈{1,...,q}
µv,0(a)exp

(

−βFv,t (a, x∂v,t )
)

.

Note that the history of previous local action profiles x∂v,1, . . . , x∂v,t enters into the conditional probabil-
ities (23) only through the most recent action profile x∂v,t . Moreover, if we consider a fixed but arbitrary
sequence of network costs f1, . . . , fT , then we may simplify our notation by suppressing the dependence
of the transition probabilities Pv,t+1(·|Iv,t ) and Pt+1(·|It ) on the costs f1, . . . , ft and past action profiles
x1, . . . , xt−1. Thus, instead of Pv,t+1(xt+1|Iv,t ), we will write

Pt+1(xt+1|xt ) =
1

|V |

∑

v∈V

Pv,t+1(xv,t+1|x∂v,t )1{x−v,t+1=x−v,t }, (25)

where we have also used the same convention for the local update rules Pv,t+1(·|Iv,t ). So, when the in-
stantaneous costs f1, . . . , fT are fixed, the network action profiles X0, X1, . . . , XT form a Markov chain with
initial distribution µ0 and time-inhomogeneous transition probabilities

Pr(Xt+1 = y |Xt = x)=Pt+1(y |x).

One can recognize the Markov transition kernel Pt+1(xt+1|xt ) constructed from (23) according to (15) as
one step of the Glauber dynamics (or the Gibbs sampler) [21–23] induced by the Gibbs distribution πt+1

in (19). Consequently, for each t we have the detailed balance (or time-reversibility) property

πt (x)Pt (y |x) =πt (y)Pt (x|y), ∀x, y ∈X (26)

which implies that πt is an invariant distribution of Pt (we give a self-contained proof of this fact in
Appendix B). In mathematical economics and game theory, the Glauber dynamics was used by Blume
[24] (under the name “log-linear learning") and by Young [25] (under the name “spatial adaptive play") to
model the emergence of optimal global behavior in networks of agents with local interactions; see also
a recent paper by Alós-Ferrer and Netzer [26] for a discussion of a more general class of logit-response

dynamics that includes the Glauber dynamics as a special case.
We now state our main result: a bound on the regret of the decentralized strategy based on the

Glauber dynamics.
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Theorem 1. Suppose that all functions in Φ and Ψ take values in [−1,1]. Also, suppose that the parameter

β> 0 and satisfies the following condition:

∆β< 1. (27)

Then the strategy (23)–(25) based on the Glauber dynamics attains the following worst-case regret:

RLI
T (F ) ≤ RLI

T ( f T ) ≤
|V |

1−∆β

(

2β2
|V |

3(∆+1)2
+K

(

|V | ln
q2

θd
+ lnT

))

ln(T +1)

+2
(

β|V |(∆+1)
)2 ln(T +1)+T1|V | ln

q2

θd
+

2β|V |3(∆+1)

1−∆β
+ ln

1

θ
, (28)

where K ,max
{

|V |,β|V |2(∆+1)
}

,

θd ,min
v∈V

min
a∈{1,...,q}

µv,0(a),

and T1 ≡ T1(β,∆, |V |) is a positive constant independent of T .

A few comments on the interpretation of the above result:

1. The regularity condition in (27) is needed to ensure that the sequence of action profile distribu-
tions µ1, . . . ,µT induced by the Glauber dynamics (23)–(25) closely tracks its centralized counter-
part π1, . . . ,πT from Proposition 1. It is, essentially, a Dobrushin uniqueness condition from sta-
tistical physics (see, e.g., [30, Section V.1]), which is typically used to establish rapid mixing (i.e.,
convergence to the invariant distribution) of the Glauber dynamics [45, 46]. The correlation decay
conditions driving the results of Gamarnik et al. [29] are similar in spirit.

2. We note that β is a fixed exogenous parameter that quantifies the responsiveness of agents to
changes in their environment (as reflected through the time-varying instantaneous costs). The
regularity condition in (27) therefore involves only the intrinsic parameters of the network and
says that the Glauber dynamics (23)–(25) is mixing whenever the temperature parameter 1/β is
larger than the maximum number of neighbors of any agent.

3. Ignoring terms of order lower than lnT , we can express the regret bound more succinctly as

RLI
T (F ) =O

(

|V |4(∆β)2

1−∆β

(

ln
q

θd

)

(lnT )2
)

. (29)

Compared to the regret bound (22) in the centralized case, the local-information regret (29) has
a worse (but still polynomial) dependence on the network parameters. We also observe that the
regret now scales as (lnT )2, as opposed to the optimal centralized scaling of lnT .

4 Proofs

4.1 Proof of Proposition 1

Part 1. We analyze the strategy (18) with γt =
1
t for all t ≥ 1. The proof is by induction on t . The base

case is t = 1, for which, using (18) and the fact that γ1 = 1, we have for all x ∈X,

π2(x) =

(

µ0(x)π1(x)exp
(

−β f1(x)
)) 1

2

Z2
.
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Since π1 =µ0, it follows that

π2 =

µ0 exp
(

−
β
2 f1

)

Z̃2
,

thus showing that the expressions in (19) and (20) are valid for t = 1 with Z̃2 = Z2. Now, suppose that the
strategy πt+1 satisfies (19) and (20) for a given t +1. Then, according to the definition of πt+2 via (18), and
using the fact that γt+1 =

1
t+1 , we have

πt+2(x)=

(

µ
1

t+1
0 (x)πt+1(x)exp

(

−
β

t+1 ft+1(x)
)

) t+1
t+2

Zt+2

=

(

µ
1

t+1
0 (x)µ0(x)exp

(

−
β

t+1

∑t
s=1 fs (x)

)

exp
(

−
β

t+1 ft+1(x)
)

) t+1
t+2

Z̃
t+1
t+2

t+1Zt+2

,

where the last equality follows from the induction hypothesis. Hence, for all x ∈X, we have

πt+2(x) =
µ0(x)exp

(

−
β

t+2

∑t+1
s=1 fs (x)

)

Z̃
t+1
t+2

t+1Zt+2

. (30)

Eq. (30) shows that that (19) and (20) hold for t +2, with Z̃t+2 = Z̃
1

1+γt+1
t+1 Zt+2. Hence, (19) and (20) are valid

for all t ≥ 1.

Part 2. In order to bound the terms D(πt‖πt+1), it is convenient to use the form (19) of πt from Part 1,
which expresses πt as a Gibbs measure. Therefore, we can use Lemma 1 to get

D(πt‖πt+1) ≤
β2

∥

∥

∥Ft −Ft−1

∥

∥

∥

2

s

8
. (31)

Now we need to bound the span seminorm of Ft −Ft−1. From the definition of Ft in (20) and the rela-
tion (30), it can be seen that

F1(x) =
1

2
f1(x) and Ft (x) =

1

t +1
ft (x)+

t

t +1
Ft−1(x) for all t ≥ 2. (32)

Since F0 = 0, we can write

Ft (x)−Ft−1(x) =
1

t +1

[

ft (x)−Ft−1(x)
]

for all t ≥ 1.

Hence,
∥

∥

∥F1 −F0

∥

∥

∥

s
≤

1

2

∥

∥ f1
∥

∥

s and
∥

∥

∥Ft −Ft−1

∥

∥

∥

s
≤

1

t +1

(

∥

∥ ft

∥

∥

s +

∥

∥

∥Ft−1

∥

∥

∥

s

)

for all t ≥ 2. (33)

Now, using the definition of Ft−1 and the relation ‖ f ‖s ≤ 2‖ f ‖∞, valid for any function f on X, we have

∥

∥

∥Fℓ

∥

∥

∥

s
≤

1

ℓ+1

ℓ
∑

s=1
‖ fs‖s ≤

2

ℓ+1

ℓ
∑

s=1
‖ fs‖∞.
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By employing Lemma D.1, according to which ‖ fs‖∞ ≤ |V |(∆+1), we further obtain
∥

∥

∥Fℓ

∥

∥

∥

s
≤ 2|V |(∆+1) for all ℓ≥ 1. (34)

Using (34) in the expression (33), we get

∥

∥

∥Ft −Ft−1

∥

∥

∥

s
≤

4|V |(∆+1)

t +1
.

By substituting the preceding estimate into (31) we obtain, for all t ≥ 1,

D(πt‖πt+1) ≤
β2

8

(

4|V |(∆+1)

t +1

)2

= 2

(

β|V |(∆+1)

t +1

)2

,

which gives us (21).

Part 3. We show the bound for the regret RT ( f T ) by first writing down an exact expression for it and
then developing a suitable upper bound. For every t , we can use the definition (18) of πt+1 to write

β ft (x) = lnµ0(x)+ t lnπt (x)− (t +1) (ln Zt+1+ lnπt+1(x)) .

Therefore, for any ν ∈P (X),

ℓt (ν)=β〈ν, ft 〉+D(ν‖µ0)

=

〈

ν,β ft + ln
ν

µ0

〉

=

〈

ν, lnµ0 + t lnπt − (t +1) (ln Zt+1 + lnπt+1)+ ln
ν

µ0

〉

=

〈

ν, t ln
πt

πt+1
+ ln

ν

πt+1

〉

− (t +1) ln Zt+1

= t

〈

ν, ln
ν

πt+1
− ln

ν

πt

〉

+

〈

ν, ln
ν

πt+1

〉

− (t +1) ln Zt+1

= [(t +1) D(ν‖πt+1)− t D(ν‖πt )]− (t +1) ln Zt+1.

In particular, letting ν=πt and using the fact that D(ν‖ν) = 0 for all ν, we get

ℓt (πt )= (t +1) [D(πt‖πt+1)− ln Zt+1] .

Therefore, summing from t = 1 to t = T and telescoping, we obtain

T
∑

t=1
[ℓt (πt )−ℓt (ν)] =

T
∑

t=1
(t +1) D(πt‖πt+1)+

T
∑

t=1
[t D(ν‖πt )− (t +1) D(ν‖πt+1)]

=

T
∑

t=1
(t +1) D(πt‖πt+1)+D(ν‖π1)− (T +1)D(ν‖πT+1).

Using the fact that π1 =µ0 and D(ν‖πT+1) ≥ 0, we can further bound the regret as follows:

RT ( f T ) ≤
T
∑

t=1
(t +1) D(πt‖πt+1)+ ln

1

θ
, (35)
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where we have used the inequality

D(ν‖µ0) =

〈

ν, ln
ν

µ0

〉

≤ |V | ln
1

θ
for any ν ∈P (X),

which holds since µ0(x) > 0 for all x ∈ X. Upon substituting the bound for D(πt‖πt+1) from Part 2
into (35), we obtain

RT ( f T ) ≤
T
∑

t=1
2(t +1)

(

β|V |(∆+1)

t +1

)2

+ ln
1

θ

= 2
(

β|V |(∆+1)
)2

T
∑

t=1

1

t
+ ln

1

θ

≤ 2
(

β|V |(∆+1)
)2 ln(T +1)+ ln

1

θ
,

where the last inequality follows from

T
∑

t=1

1

t +1
≤

∫T+1

1

dt

t
= ln(T +1).

Since this bound holds uniformly in all f1, . . . , fT ∈F , we get (22).

4.2 Proof of Theorem 1

Before proceeding with the formal proof, let us briefly outline the intuition behind it. The underlying idea
is to express the regret RLI

T ( f T ) for the decentralized local-interaction strategy {µt }T
t=0 as the sum of the

regret RT ( f T ) for the centralized strategy {πt }T
t=0 and the extra cost due to decentralization. Theorem 1

provides a bound for RT ( f T ), and the main effort of the proof is in establishing a bound on the total
decentralization cost incurred over the time horizon T . In turn, this total decentralization cost depends
on the distances between the centralized action profile distribution πt and its centralized counterpartµt

for t = 1, . . . ,T . These distances turn out to be small due to the use of the Glauber dynamics.
More specifically, consider the centralized strategy {πt }T+1

t=0 given in (18). By construction of the lo-
cal update rules in (23), each “global” probability measure πt is invariant with respect to the Markov
transition kernel Pt given in (25). Moreover, as the relative entropy bound (21) shows, the probability
measures πt and πt+1 are close for every t . Finally, we will show that, under the condition ∆β < 1, the
conditional distributions Pt (·|x) and Pt (·|y) will be close whenever the action profiles x and y are close.
As we will demonstrate shortly, these three properties together ensure that, at each time step t , the de-
centralized action profile distribution µt = PtPt−1 . . .P1µ0 will be close to its centralized counterpart πt .
On a “big picture” level, this argument is similar in spirit to the one used by Narayanan and Rakhlin [47]
to construct and analyze efficient algorithms for centralized online minimization of a sequence of lin-
ear functions on a compact convex subset of a finite-dimensional Euclidean space. However, here we
are interested in decentralized algorithms for discrete optimization. Moreover, the overall proof in [47] is
rather technical, drawing on ideas from the Riemannian geometry of interior-point optimization algo-
rithms [48] and random walks on convex bodies [49]. By contrast, our proof is much simpler, and relies
on the notion of positive Ricci curvature of a Markov chain recently introduced by Ollivier [28] (the reader
is invited to consult a recent paper by Joulin and Ollivier [50] for examples of how Ricci curvature ideas
can be used to get sharp estimates of convergence rates of MCMC algorithms).
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To separate out the key ideas underlying our proof, we have split this section into three parts. The
first part (Section 4.2.1) uses the notion of Ricci curvature of Markov chains to obtain uniform error
bounds for sampling from a time-varying sequence of probability measures. Because the results of this
part may be of independent interest, we formulate them in a much more general setting of complete
separable metric spaces. The second part (Section 4.2.2) applies these results to the time-varying Glauber
dynamics (23)–(25). Once all the necessary ingredients are in place, we complete the proof of Theorem 1
in the last part (Section 4.2.3).

4.2.1 Positive Ricci curvature and sampling from a time-varying sequence of probability measures

Let (X,ρ) be a complete separable metric space (i.e., a Polish space) equipped with the σ-algebra B(X)
of its Borel subsets. A Markov transition kernel on X is a mapping P(·|·) : B(X)×X→ [0,1], such that (i)
P(·|x) is a probability measure on X for all x and (ii) the mapping x 7→ P(A|x) is measurable for every
A ∈B(X). We define the action of a Markov kernel P on a probability measure µ ∈P (X) as

Pµ(A),
∫

X

P(A|x)µ(dx),

and we say that µ is P-invariant if µ = Pµ. The L1 Wasserstein distance (or transportation distance) [51]
between probability measures µ,ν ∈P (X) is defined as

W1(µ,ν), inf
υ∈C (µ,ν)

∫

X×X

ρ(x, y)υ(dx,dy), (36)

where C (µ,ν) denotes the collection of all couplings of µ and ν, i.e., all probability measures υ on X×X

with marginals µ and ν. An important Kantorovich–Rubinstein theorem (see, e.g., [51, Theorem 1.14])
gives a variational representation of W1(µ,ν):

W1(µ,ν) = sup
f :‖ f ‖Lip≤1

∣

∣

∣

∣

∫

X

f dµ−

∫

X

f dν

∣

∣

∣

∣

, (37)

where the supremum is over all real-valued functions f on X with Lipschitz constant

‖ f ‖Lip , sup
x 6=y

| f (x)− f (y)|

ρ(x, y)
≤ 1.

Remark 1. When ρ is the trivial metric, i.e., ρ(x, y)= 1{x 6=y}, the Wasserstein distance is equal to the total
variation distance: for any µ,ν ∈P (X):

‖µ−ν‖TV = inf
υ∈C (µ,ν)

∫

X×X

1{x 6=y}υ(dx,dy) (38)

Moreover, for any two µ,ν ∈ P (X), we can construct the so-called optimal coupling υ⋆ ∈ C (µ,ν) that
achieves the infimum in (38) (see, e.g., [52, Section 4.2]).

Fix a Markov kernel P on X. Following Ollivier [28], we say that P has positive Ricci curvature if there
exists some κ ∈ (0,1], such that

W1
(

P(·|x),P(·|y)
)

≤ (1−κ)ρ(x, y), ∀x, y ∈X. (39)
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We will denote the supremum of all such κ by Ric(P) and call this number the Ricci curvature of P. The
following contraction inequality [28, Proposition 20] is key: (39) holds for P with some κ ∈ (0,1] if and
only if

W1(Pµ,Pν) ≤ (1−κ)W1(µ,ν), ∀µ,ν ∈P (X). (40)

We are now ready to develop our main technical tool:

Lemma 2. Let P1,P2, . . . be a sequence of Markov kernels on X with the following properties:

(i) Each Pt has a unique invariant distribution πt and there exists some δt ∈ [0,1), such that

W1(πt ,πt+1) ≤ δt , t = 1, . . . ,T. (41)

(ii) The Ricci curvatures of the Pt ’s are uniformly bounded from below by some κ⋆ ∈ (0,1):

Ric(Pt ) ≥κ⋆, t = 1,2, . . . .

Given a probability measure µ1 ∈ P (X), let {µt } be a sequence of probability measures defined recursively

via µt+1 =µtPt . Then, we have

W1(µt ,πt ) ≤ (1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sδs , t ≥ 1. (42)

Proof. By inspection we can see that relation (42) holds for t = 1. Next, note that for any t ≥ 0 we have

W1(µt+1,πt+1) ≤W1(µt+1,πt )+W1(πt ,πt+1) (43)

=W1(Ptµt ,Ptπt )+W1(πt ,πt+1) (44)

≤ (1−κ⋆)W1(µt ,πt )+δt , (45)

where (43) is by the triangle inequality, (44) uses the recursive definition of the µt ’s and the Pt -invariance
of πt , and (45) uses the contraction inequality (40) and the assumption (41). Thus, by induction on t , we
can find that for all t ≥ 1,

W1(µt+1,πt+1) ≤ (1−κ⋆)t W1(µ1,π1)+
t

∑

s=1
(1−κ⋆)t−sδs ,

which shows (42) for t ≥ 2.

Corollary 1. Under the assumptions of Lemma 2, for any Lipschitz function f :X→R we have

∣

∣

∣

∣

∫

X

f dµt −

∫

X

f dπt

∣

∣

∣

∣

≤ ‖ f ‖Lip

(

(1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sδs

)

, t = 1,2. . . .

Proof. Use (42) and the Kantorovich–Rubinstein formula (37).

Remark 2. In the special case when δt = δ for all t , the bounds of Lemma 2 and Corollary 1 become

W1(µt ,πt ) ≤
δ

1−κ⋆

and
∣

∣

∣

∣

∫

X

f dµt −

∫

X

f dπt

∣

∣

∣

∣

≤
‖ f ‖Lipδ

1−κ⋆

respectively.
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4.2.2 Positive Ricci curvature of the time-varying Glauber dynamics

We now particularize these results to our setting, whereX is the space of all tuples x = (xv : v ∈V ) equipped
with the Hamming distance

ρH(x, y),
∑

v∈V

1{xv 6=yv }.

In this case, the Ricci curvature bounds are equivalent to the so-called path coupling bounds of Bubley
and Dyer [53] (see also [52, Chapter 14] and [28, Example 17]). In particular, in order to obtain a lower
bound on the Ricci curvature of a given Markov kernel P, it suffices to consider only those x, y ∈ X with
ρH(x, y)= 1. Indeed, suppose that we can find some κ ∈ (0,1], such that

W1
(

P(·|x),P(·|y)
)

≤ 1−κ for all x, y with ρH(x, y)= 1. (46)

Then Ric(P) ≥ κ. To see this, consider any pair x, y ∈ X with ρH(x, y) = k . Then, there exists a sequence
x1, . . . , xk+1 ∈ X, such that x1 = x, xk+1 = y , and ρH(x j , x j+1) = 1 for all 1 ≤ j ≤ k . Using this fact, we can
write

W1
(

P(·|x),P(·|y)
)

=W1
(

P(·|x1),P(·|xk+1)
)

≤

k
∑

j=1
W1

(

P(·|x j ),P(·|x j+1)
)

≤ (1−κ)k

= (1−κ)ρH(x, y),

where the second step follows from the triangle inequality and the third step follows from (46). Using
this observation, we can prove the following:

Lemma 3. Let P1, . . . ,PT+1 be the Markov kernels on X given by (25), and let π1, . . . ,πT+1 ∈ P (X) be the

Gibbs measures defined in (19). Suppose that the parameter β> 0 satisfies β∆< 1. Then, the conditions of

Lemma 2 are satisfied with

δt =
β|V |2(∆+1)

t +1
(47)

and

κ⋆
=

1−∆β

|V |
. (48)

Proof. The fact that each πt is invariant with respect to Pt follows from the detailed balance property
(26). To keep the paper relatively self-contained, we give in Appendix B a short proof of (26) as a conse-
quence of a more general result on the Gibbs sampler.

To upper-bound the Wasserstein distance W1(πt ,πt+1), we write

W1(πt ,πt+1) = inf
υ∈C (πt ,πt+1)

∫

X×X

ρH(x, y)υ(dx,dy)

≤ |V |

∫

X×X

1{x 6=y}υ(dx,dy)

= |V | · ‖πt −πt+1‖TV, (49)
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where in the first line we have used the definition (36) of the Wasserstein distance, while the last step
follows from the coupling representation (38) of the total variation distance. Furthermore, using the
CKKP inequality (8) and the relative-entropy bound (21), we get

‖πt −πt+1‖TV ≤

√

1

2
D(πt‖πt+1) ≤

β|V |(∆+1)

t +1
for all t ≥ 1.

Using this bound in (49), we get (47).
Finally, we obtain a uniform lower bound on the Ricci curvature of the Pt ’s. Each Pt is of the form

Pt (y |x)=
1

|V |

∑

v∈V

Pv,t (yv |x∂v )1{y−v=x−v },

where

Pv,t (yv |x∂v ) =
µv,0(yv )exp

(

−βFv,t−1(yv , x∂v )
)

Zv,t (x∂v )
. (50)

Recalling the discussion preceding the statement of the lemma, we only need to consider pairs x, y with
ρH(x, y) = 1. Fix such a pair x, y , and let u ∈ V denote the single vertex at which they differ. We will
construct a suitable coupling of Pt (·|x) and Pt (·|y). We define a random couple (X̄ , Ȳ ) ∈X×X as follows.
Select a vertex v ∈V uniformly at random. There are three cases to consider:

• If v = u, then x−v = x−u = y−u = y−v and a fortiori

Pv,t (·|x∂v ) =Pv,t (·|y∂v ).

In this case, we draw a random sample A from Pu,t (·|x∂u) and let X̄u = Ȳu = A, X̄−u = x−u , Ȳ−u =

y−u . Then ρH(X̄ , Ȳ ) = 0.

• If v ∈ ∂u, then we sample (X̄v , Ȳv ) from the optimal coupling of Pv,t (·|x∂v ) and Pv,t (·|y∂v ) (cf. Re-
mark 1 in Section 4.2.1), and let X̄−v = x−v , Ȳ−v = y−v . Then, we have X̄v = Ȳv with probability
1−

∥

∥Pv,t (·|x∂v )−Pv,t (·|y∂v )
∥

∥

TV, in which case ρH(X̄ , Ȳ ) = ρH(x, y); on the complementary event
{X̄v 6= Ȳv }, the Hamming distance ρH(X̄ , Ȳ ) will increase to 2.

• If v 6∈ ∂+u, then x∂v = y∂v . We sample a random A from Pv,t (·|x∂v ) =Pv,t (·|y∂v ) and let X̄v = Ȳv = A,
X̄−v = x−v , and Ȳ−v = y−v . In this case, ρH(X̄ , Ȳ )= ρH(x, y)= 1.

Let ῡ denote the joint probability distribution of (X̄ , Ȳ ). It is easy to show that X̄ (respectively, Ȳ ) has
distribution Pt (·|x) (respectively, Pt (·|y)). Therefore, ῡ is an element of C

(

Pt (·|x),Pt (·|y)
)

. Moreover,
∫

X×X

ρHdῡ= 0 ·Pr(v = u)+1 ·Pr(v 6∈ ∂+u)+
∑

v ′∈∂u

(

1+
∥

∥Pv ′ ,t (·|x∂v ′ )−Pv ′ ,t (·|y∂v ′)
∥

∥

TV

)

Pr(v = v ′)

≤ 1−
∆+1

|V |
+
∆(1+η)

|V |

= 1−
1−∆η

|V |
,

where

η= max
v∈∂u

∥

∥Pv,t (·|x∂v )−Pv,t (·|y∂v )
∥

∥

TV .
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It remains to bound η from above. To that end, we note that, for each v ∈V , both Pv,t (·|x∂v ) andPv,t (·|y∂v )
are Gibbs measures, cf. (50). Therefore, using Lemma 1, we can write

∥

∥Pv,t (·|x∂v )−Pv,t (·|y∂v )
∥

∥

TV ≤
β

∥

∥Fv,t−1(·, x∂v )−Fv,t−1(·, y∂v )
∥

∥

s

4
. (51)

Using Lemma D.1 in Appendix D and an argument similar to the one used to derive (34), we get

∥

∥Fv,t−1(·, x∂v )−Fv,t−1(·, y∂v )
∥

∥

s ≤ 2
∥

∥Fv,t−1(·, x∂v )−Fv,t−1(·, y∂v )
∥

∥

∞

≤
2

t

t−1
∑

s=1
‖ fv,s (·, x∂v )− fv,s (·, y∂v )‖∞

≤ 4ρH(x∂v , y∂v ).

Since x and y differ only at a single vertex, we have that ρH(x∂v , y∂v ) ≤ 1. Therefore,

∥

∥Fv,t−1(·, x∂v )−Fv,t−1(·, y∂v )
∥

∥

s ≤ 4.

Note that this bound is independent of t ; this is a consequence of the 1
t+1 scaling in Eq. (20), which is in

turn a direct consequence of the relative-entropy term in the instantaneous losses. Substituting this into
(51), we get

∥

∥Pv,t (·|x∂v )−Pv,t (·|y∂v )
∥

∥

TV ≤β.

Therefore, by the definition of W1 it follows that

W1
(

Pt (·|x),Pt (·|y)
)

≤

∫

X×X

ρHdῡ≤ 1−
1−∆β

|V |
,

which in view of relation (46) yields (48).

4.2.3 Completing the proof

We decompose the regret RLI
T ( f T ) as follows:

RLI
T ( f T ) =

T
∑

t=1
ℓt (µt )− inf

ν∈P (X)

T
∑

t=1
ℓt (ν)

=

T
∑

t=1

(

ℓt (µt )−ℓt (πt )
)

+

T
∑

t=1
ℓt (πt )− inf

ν∈P (X)

T
∑

t=1
ℓt (ν)

≤

T
∑

t=1

(

ℓt (µt )−ℓt (πt )
)

+RT ( f T ). (52)

Next, we use the form of the instantaneous costs ℓt to expand the first summation on the right-hand side
of (52):

T
∑

t=1

(

ℓt (µt )−ℓt (πt )
)

=

T
∑

t=1
β

(

〈µt , ft 〉−〈πt , ft 〉
)

+

T
∑

t=1

(

D(µt‖µ0)−D(πt‖µ0)
)

. (53)
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By Lemma D.2, each ft is Lipschitz with respect to the Hamming metric with constant 2|V |(∆+1). There-
fore, using Corollary 1, we obtain

〈µt , ft 〉−〈πt , ft 〉 ≤ ‖ f ‖Lip

(

(1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sδs

)

≤ 2|V |(∆+1)

(

(1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sδs

)

.

Using the expression for δt given in Lemma 3, we further obtain

〈µt , ft 〉−〈πt , ft 〉 ≤ 2|V |(∆+1)

(

(1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sβ|V |

2(∆+1)γs+1

)

.

Therefore,

T
∑

t=1
β

(

〈µt , ft 〉−〈πt , ft 〉
)

≤ 2β|V |(∆+1)W1(µ1,π1)
T
∑

t=1
(1−κ⋆)t−1

+2β2
|V |

3(∆+1)2
T
∑

t=2

t−1
∑

s=1
(1−κ⋆)t−1−sγs+1

≤ 2β|V |(∆+1)W1(µ1,π1)
1

κ⋆
+2β2

|V |
3(∆+1)2

T−1
∑

τ=1

τ
∑

s=1
(1−κ⋆)τ−sγs+1,

(54)

where the last inequality is obtained by using

T
∑

t=1
(1−κ⋆)t−1

≤

∞
∑

t=1
(1−κ⋆)t−1

=
1

k⋆
, (55)

and by letting τ= t −1 in the second sum over t . By exchanging the order of summation in the last term
in (54) and using (55), we have

T−1
∑

τ=1

τ
∑

s=1
(1−κ⋆)τ−sγs+1 =

T
∑

t=2
γt

T−t
∑

τ=0
(1−κ⋆)τ ≤

1

κ⋆

T
∑

t=2
γt ,

implying that

T
∑

t=1
β

(

〈µt , ft 〉−〈πt , ft 〉
)

≤ 2β|V |(∆+1)W1(µ1,π1)
1

κ⋆
+2β2

|V |
3(∆+1)2 1

κ⋆

T
∑

t=2
γt .

Since γt =
1
t

for all t ≥ 1, it follows that

T
∑

t=1
β

(

〈µt , ft 〉−〈πt , ft 〉
)

≤ 2β|V |(∆+1)W1(µ1,π1)
1

κ⋆
+2β2

|V |
3(∆+1)2 1

κ⋆

T
∑

t=2

1

t

≤ 2β|V |(∆+1)W1(µ1,π1)
1

κ⋆
+2β2

|V |
3(∆+1)2 1

κ⋆
lnT, (56)

where the last inequality follows from

T
∑

t=2

1

t
≤

∫T

1

dt

t
= lnT.
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Next, we deal with the relative entropy difference term in (53). Given a probability distribution µ ∈

P (X), let H (µ)=−〈µ, lnµ〉 denote its Shannon entropy [10]. Then

D(µt‖µ0)−D(πt‖µ0) = H (πt )−H (µt )+

〈

µt , ln
1

µ0

〉

−

〈

πt , ln
1

µ0

〉

≤ |H (πt )−H (µt )|+‖πt −µt‖TV · |V | ln
1

θd
, (57)

where θd = minv∈V mina∈{1,...,q} µv,0(a). To upper-bound the first term in (57), we use the following con-
tinuity estimate for the Shannon entropy (see, e.g., [10, Theorem 17.3.3]): For any two µ,ν ∈ P (X) with
‖µ−ν‖TV ≤ 1/4,

|H (µ)−H (ν)| ≤ 2

(

‖µ−ν‖TV ln |X|+‖µ−ν‖TV ln
1

‖µ−ν‖TV

)

,

where |X| = q |V | is the cardinality of X. In order to use this estimate, we need an upper bound on ‖πt −

µt‖TV, which can be obtained as follows:

‖πt −µt‖TV = inf
υ∈C (πt ,µt )

∫

X×X

1{x 6=y}υ(dx,dy)

≤ inf
υ∈C (πt ,µt )

∫

X×X

ρH(x, y)υ(dx,dy)

=W1(πt ,µt )

≤ (1−κ⋆)t−1W1(µ1,π1)+1{t≥2}

t−1
∑

s=1
(1−κ⋆)t−1−sδs , (58)

where the last step follows from Lemma 2 (see (42)). We can upper-bound the Wasserstein distance
W1(µ1,π1) as follows:

W1(µ1,π1) = inf
υ∈C (µ1,π1)

∫

X

ρH(x, y)υ(dx,dy)

≤ |V | inf
υ∈C (µ1,π1)

∫

X

1{x 6=y}υ(dx,dy)

= |V |‖µ1 −π1‖TV

≤ |V |.

Using this and the fact that δs ≤
β|V |2(∆+1)

s+1 by Lemma 3 in (58), we can write

‖πt −µt‖TV ≤K
t

∑

s=1

(1−κ⋆)t−s

s

=K pt

(

1−κ⋆
)

, (59)

where K ≡ K (β, |V |,∆), max
{

|V |,β|V |2(∆+1)
}

, and pt (u),
∑t

s=1
ut−s

s . As a consequence of Lemma C.1
in Appendix C, there exists a finite T0 =T0(β, |V |,∆+1), such that the sequence

{

pt

(

1−κ⋆
)}∞

t=T0
is strictly

decreasing and convergent to zero. Therefore, there exists a finite T1 ≡ T1(β, |V |,∆), such that

‖πt −µt‖TV ≤K pt

(

1−κ⋆
)

≤
1

4
, t ≥ T1.
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Moreover, the function u 7→ −u lnu is increasing on the open interval (0,1/e), so for t ≥ T1 we have

‖πt −µt‖TV ln
1

‖µt −πt‖TV
≤ K pt

(

1−κ⋆
)

ln
1

K pt (1−κ⋆)

≤ K pt

(

1−κ⋆
)

ln t ,

where we have also used the fact that pt (u)≥ 1/t . Consequently,

D(µt‖π0)−D(πt‖π0) ≤







|V | ln q2

θd
, t < T1

K pt

(

1−κ⋆
)

(

|V | ln q2

θd
+ ln t

)

, t ≥ T1
. (60)

Summing from t = 1 to t = T , we get

T
∑

t=1

[

D(µt‖π0)−D(πt‖π0)
]

≤T1|V | ln
q2

θd
+K

(

|V | ln
q2

θd
+ lnT

) T
∑

t=1
pt

(

1−κ⋆
)

=T1|V | ln
q2

θd
+K

(

|V | ln
q2

θd
+ lnT

) T
∑

t=1

t
∑

s=1

(1−κ⋆)t−s

s

≤T1|V | ln
q2

θd
+K

(

|V | ln
q2

θd
+ lnT

)

1

κ⋆
ln(T +1). (61)

Combining (56) and (61), we get

T
∑

t=1

[

ℓt (µt )−ℓt (πt )
]

≤

T
∑

t=1

[

β
∣

∣〈µt , ft 〉−〈πt , ft 〉
∣

∣+
∣

∣D(µt‖µ0)−D(πt‖µ0)
∣

∣

]

≤
2β|V |2(∆+1)

κ⋆
+T1|V | ln

q2

θd
+

1

κ⋆

(

2β2
|V |

3(∆+1)2
+K

(

|V | ln
q2

θd
+ lnT

))

ln(T +1)

We can now obtain the bound on the overall regret, via (52):

RLI
T ( f T ) ≤

1

κ⋆

(

2β2
|V |

3(∆+1)2
+K

(

|V | ln
q2

θd
+ ln T

))

ln(T +1)

+2
(

β|V |(∆+1)
)2 ln(T +1)+T1|V | ln

q2

θd
+

2β|V |2(∆+1)

κ⋆
+ ln

1

θ
. (62)

Substituting the expression for κ⋆ from Lemma 3, we get (28), and the proof is complete.

5 Conclusion

We have studied a model of online (i.e., real-time) discrete optimization by a social network consisting
of agents that must choose actions to balance their immediate time-varying costs against a tendency to
act according to some default myopic strategy. The costs are generated by a dynamic environment, and
the agents lack ability or incentive to construct an a priori model of the environment’s evolution. The
global cost of the network decomposes into a sum of individual and pairwise local-interaction terms
and, at each time step, every agent is informed only about its own cost and the pairwise costs in its
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immediate neighborhood. These assumptions on the network and on the environment capture the so-
called Knightian uncertainty [7–9]. The overall objective is to minimize the worst-case regret, i.e., the
difference between the cumulative real-time performance of the network and the best performance that
could have been achieved in hindsight with full centralized knowledge. We have constructed an explicit
strategy for the network based on the Glauber dynamics and showed that it achieves favorable scaling
of the regret in terms of problem parameters under a Dobrushin-type mixing condition. Our proof uses
ideas from statistical physics, as well as recent developments in the theory of Markov chains in metric
spaces, specifically Ollivier’s notion of positive Ricci curvature of a Markov operator [28].

Although the notion of regret is backward-looking, it is important conceptually since it quantifies the
agents’ ability to make forecasts even in the absence of a Bayesian model, and to improve their decisions
over time. From the point of view of economics, regret minimization is significant for two reasons. First,
from the positive (or descriptive) standpoint, it allows for boundedly rational agents. Second, it may be
used as a basis for what Selten [54] has called a practically normative theory of economic behavior, since
the goal of minimizing regret is synonymous with using past experience to improve one’s decisions in
the future, as opposed to following a strategy based on ideal rational expectations independent of the
environment. In addition, in the online learning framework, the model of the interaction between the
social network and the environment does not rely on probability judgments or assumptions about what

will happen. Rather, probability is used as a tool to help the agents decide what to do – how to allo-
cate priority to different actions? When to perform experimentation, and when to stick with a strategy
that had performed well in the past? Thus, probability is used as an objective evolutionary mechanism

for selecting an action [54, 55] or as a mechanism to keep track of past experience in a case-based de-
cision framework [56], rather than as a subjective belief about the environment. This viewpoint is, of
course, ideally suited for a Knightian theory of decision-making, and it meshes well with post-Keynesian
critiques of the use of probability to quantify uncertainty [57, 58].

A Proof of Lemma 1

All Gibbs measures µg induced by the same base measure µ have the same support as µ. Therefore, the
quantity D(µg ‖µh) is finite for all functions g and h on X, and

D(µg ‖µh) =

〈

µg , ln
µg

µh

〉

=
〈

µg , g −h
〉

+ ln
〈µ,exp(h)〉

〈µ,exp(g )〉

=
〈

µg , g −h
〉

+ ln
〈

µg ,exp(h − g )
〉

. (A.1)

We now use the well-known Hoeffding bound [59], which for our purposes can be stated as follows: for
any function F :X→R and any ν ∈P (X),

ln〈ν,exp(F )〉 ≤ 〈ν,F 〉+
‖F‖2

s

8
. (A.2)

Applying (A.2) to the second term in (A.1), we note that the terms involving the expectation of g −h with
respect to µg cancel, and we are left with (10). The bound (11) follows from (10) and the CKKP inequality
(8).
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B Gibbs sampler and detailed balance

In order to keep the paper self-contained, we give a brief proof of the detailed balance property of the
discrete-state Gibbs sampler [23]. Consider an arbitrary everywhere positive probability measure π ∈

P (X) and a random variable X = (Xv )v∈V with distribution π. For any v ∈V , the conditional probability
that Xv = xv given X−v = x−v is equal to

πv (xv |x−v ),
π(xv , x−v )

π−v (x−v )
,

where (a, x−v ) denotes the tuple y ∈X obtained from x by replacing xv with a, i.e., yv = a and y−v = x−v ,
and

π−v (x−v ) =
∑

a∈{1,...,q}
π(a, x−v ).

The Gibbs sampler is implemented as follows: starting from x ∈X, pick a vertex v ∈ V uniformly at ran-
dom, replace xv with a random sample Yv from πv (·|x−v ), and let Y−v = x−v . The overall stochastic
transformation x → Y is described by the Markov kernel

P(y |x) =
1

|V |

∑

v∈V

πv (yv |x−v )1{x−v=y−v }.

Then we claim that the pair (π,P) has the detailed balance property

π(x)P(y |x)=π(y)P(x|y), ∀x, y ∈X.

Indeed,

π(x)P(y |x)=
1

|V |

∑

v∈V

πv (yv |x−v )π(xv , y−v )1{x−v=y−v }

=
1

|V |

∑

v∈V

π(yv , x−v )

π−v (x−v )
π(xv , y−v )1{x−v=y−v }

=
1

|V |

∑

v∈V

π(yv , x−v )

π−v (y−v )
π(xv , y−v )1{x−v=y−v }

=
1

|V |

∑

v∈V

π(xv , y−v )

π−v (y−v )
π(yv , x−v )1{x−v=y−v }

=
1

|V |

∑

v∈V

π−v (xv |y−v )π(yv , x−v )1{x−v=y−v }

=π(y)P(x|y).

A simple calculation shows that when π=µ f for a Gibbs measure µ f induced by an everywhere positive
product measure µ ∈P (X) and any function f ∈F , the conditional measure πv (·|x−v ) for any v ∈V has
the form

π−v (·|x−v ) ∝µv (xv )exp
(

− fv (·, x∂v )
)

.

This, in turn, implies the detailed balance property (26).
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C A polynomial recurrence in the proof of Theorem 1

For each t = 1,2, . . ., consider the polynomial

pt (u)=
t

∑

s=1

ut−s

s
.

We are interested in its behavior on the interval [0,1].

Lemma C.1. For each u ∈ [0,1), the sequence {pt (u)}∞t=1 converges to zero. Moreover, there exists a finite

t0 = t0(u)∈N, such that pt+1(u)< pt (u) for all t ≥ t0.

Proof. We first observe the following recurrence relation: for any u ∈ [0,1],

pt+1(u)= upt (u)+
1

t +1
. (C.1)

From this, we see that limt→∞ pt (u)= 0 for any u ∈ [0,1). Let us fix some such u. Suppose that pt0+1(u) <
pt0 (u) for some t0. Then we claim that ps+1(u)< ps (u) for all s ≥ t0. Indeed, from (C.1),

pt0+2(u) = upt0+1(u)+
1

t0 +2

< upt0(u)+
1

t0 +2

< upt0(u)+
1

t0 +1

= pt0+1(u).

The general claim of strict monotonicity then follows by induction. It remains to prove that such a finite
t0 always exists. To that end, consider for arbitrary t the polynomial

qt (u), pt+1(u)−pt (u)= ut+1
−

t−1
∑

s=1

ut+1−s

s(s +1)
.

The leading coefficient of qt is positive while all other coefficients are negative, so, by Descartes’ rule of
signs, qt has exactly one positive real root. Let us denote this root by ut . We claim that ut ∈ (0,1]. Indeed,
ut must be positive, since qt (u) has a nonzero constant term. Moreover, qt (0) =− 1

t (t+1) and qt (1) = 1
t+1 ,

so qt changes sign in [0,1]. Thus, ut ∈ (0,1], and

pt+1(u)< pt (u), u < ut .

By virtue of this strict monotonicity property, the sequence {ut }∞t=1 is strictly increasing and bounded by
one. Now, for a given u simply take t0 to be the smallest element of the set {t ∈N : ut > u}.

D Miscellanea

Lemma D.1. Consider all functions f : X → R of the form (13), where all local terms φv and φu,v take

values in the interval [−1,1]. Then

‖ f ‖∞ ≤ |V |(∆+1), (D.1)
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where ‖ f ‖∞, maxx∈X | f (x)| is the sup norm of f . Moreover, for any x, y ∈X and any v ∈V ,

∥

∥ fv (·, x∂v )− fv (·, y∂v )
∥

∥

∞
≤ 2ρH(x∂v , y∂v ), (D.2)

where

ρH(x∂v , y∂v ) =
∑

u∈∂v

1{xu 6=yu }.

Proof. For any x ∈X, we have

| f (x)| ≤
∑

v∈V

∣

∣φv (xv )
∣

∣+
∑

{u,v}∈E

∣

∣ψu,v (xu , xv )
∣

∣

≤ |V |+ |E |.

Since the graph G = (V ,E ) is undirected and simple, an elementary counting argument shows that

|E | ≤ |V |∆/2.

Overbounding slightly, we get (D.1). Similarly, for any a ∈ {1, . . . , q},

∣

∣ fv (a, x∂v )− fv (a, y∂v )
∣

∣≤
∑

u∈∂v

∣

∣ψu,v (a, x∂v )−ψu,v (a, y∂v )
∣

∣

≤ 2
∑

u∈∂v

1{xu 6=yu}

= 2ρH(x∂v , y∂v ),

which gives us (D.2).

Lemma D.2. Under the same assumptions as in Lemma D.1, each cost function f of the form (13) is Lips-

chitz with respect to the Hamming distance ρH, with Lipschitz constant ‖ f ‖Lip ≤ 2|V |(∆+1).

Proof. For any two x, y ∈X, we have

∣

∣ f (x)− f (y)
∣

∣≤
∑

v∈V

∣

∣φv (xv )−φv (yv )
∣

∣+
∑

{u,v}∈E

∣

∣ψu,v (xu , xv )−ψu,v (yu , yv )
∣

∣

≤ 2

{

∑

v∈V

1{xv 6=yv } +
∑

{u,v}∈E

1{(xu ,xv )6=(yu ,yv )}

}

≤ 2

{

∑

v∈V

1{xv 6=yv } +
∑

{u,v}∈E

(

1{xu 6=yu } +1{xv 6=yv }
)

}

≤ 2(|V |+2|E |)
∑

v∈V

1{xv 6=yv }

= 2|V |(∆+1)ρH(x, y).
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