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The question of aggregating pair-wise comparisons to obtain a global ranking over a collection of objects

has been of interest for a very long time: be it ranking of online gamers (e.g. MSR’s TrueSkill system) and

chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most

settings, in addition to obtaining a ranking, finding ‘scores’ for each object (e.g. player’s rating) is of interest

for understanding the intensity of the preferences.

In this paper, we propose Rank Centrality, an iterative rank aggregation algorithm† for discovering scores

for objects (or items) from pair-wise comparisons. The algorithm has a natural random walk interpretation

over the graph of objects with an edge present between a pair of objects if they are compared; the score,

which we call Rank Centrality, of an object turns out to be its stationary probability under this random

walk.

To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equiv-

alent to the Multinomial Logit (MNL) for pair-wise comparisons) in which each object has an associated

score which determines the probabilistic outcomes of pair-wise comparisons between objects. In terms of the

pair-wise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model

are identical. We bound the finite sample error rates between the scores assumed by the BTL model and

those estimated by our algorithm. In particular, the number of samples required to learn the score well with

high probability depends on the structure of the comparison graph. When the Laplacian of the comparison

graph has a strictly positive spectral gap, e.g. each item is compared to a subset of randomly chosen items,

this leads to dependence on the number of samples that is nearly order-optimal.

Experimental evaluations on synthetic datasets generated according to the BTL model show that our

algorithm performs as well as the Maximum Likelihood estimator for that model and outperforms other

popular ranking algorithms.
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1. Introduction

Rank aggregation is an important task in a wide range of learning and social contexts arising in

recommendation systems, information retrieval, and sports and competitions. Given n items, we

wish to infer relevancy scores or an ordering on the items based on partial orderings provided

through many (possibly contradictory) samples. Frequently, the available data that is presented to

us is in the form of a comparison: player A defeats player B; book A is purchased when books A

and B are displayed (a bigger collection of books implies multiple pair-wise comparisons); movie

A is liked more compared to movie B. From such partial preferences in the form of comparisons,

we frequently wish to deduce not only the order of the underlying objects, but also the scores

associated with the objects themselves so as to deduce the intensity of the resulting preference

order.

For example, the Microsoft TrueSkill engine assigns scores to online gamers based on the out-

comes of (pair-wise) games between players. Indeed, it assumes that each player has inherent “skill”

and the outcomes of the games are used to learn these skill parameters which in turn lead to scores

associated with each player. In most such settings, similar model-based approaches are employed.

In this paper, we have set out with the following goal: develop an algorithm for the above stated

problem which (a) is computationally simple, (b) works with available (comparison) data only, and

(c) when data is generated as per a reasonable model, then the algorithm should do as well as

the best model aware algorithm. The main result of this paper is an affirmative answer to these

questions.

Related work. Most rating based systems rely on users to provide explicit numeric scores for

their interests. While these assumptions have led to a flurry of theoretical research for item rec-

ommendations based on matrix completion (cf. Candès and Recht (2009), Keshavan et al. (2010),

Negahban and Wainwright (2012)), arguably numeric scores provided by individual users are gen-

erally inconsistent. Furthermore, in a number of learning contexts as illustrated above, explicit

scores are not available.

These observations have led to the need to develop methods that can aggregate such forms of

ordering information into relevance ratings. In general, however, designing consistent aggregation

methods can be challenging due in part to possible contradictions between individual preferences.

For example, if we consider items A, B, and C, one user might prefer A to B, while another prefers

B to C, and a third user prefers C to A. Such problems have been well studied starting with

∗ This work was supported in parts by MURI W911NF-11-1-0036 and NSF CMMI-1462158.

† Similar algorithms, based on the comparison data matrix have been proposed in the literature. As discussed in detail

in Section 3.3, they are all different from Rank Centrality.
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(and potentially even before) Condorcet (1785). In the celebrated work by Arrow (1963), existence

of a rank aggregation algorithm with reasonable sets of properties (or axioms) was shown to be

impossible.

In this paper, we are interested in a more restrictive setting: we have outcomes of pair-wise

comparisons between pairs of items, rather than a complete ordering as considered in (Arrow 1963).

Based on those pair-wise comparisons, we want to obtain a ranking of items along with a score

for each item indicating the intensity of the preference. One reasonable way to think about our

setting is to imagine that there is a distribution over orderings or rankings or permutations of

items (also known as the discrete choice model in the literature on Social Choice) and every time a

pair of items is compared, the outcome is generated as per this underlying distribution. Examples

of popular distributions over permutations include the Plackett-Luce model (Luce 1959, Plackett

1975) and the Mallows model (Mallows 1957). With this, our question becomes even harder than

the setting considered by Arrow (1963) as, in that work, effectively the entire distribution over

permutations was already known!

Indeed, such hurdles have not stopped the scientific community as well as practical designers

from designing such systems. Chess rating systems and the more recent MSR TrueSkill Ranking

system are prime examples. Our work falls precisely into this realm: design algorithms that work

well in practice, makes sense in general, and perhaps more importantly, have attractive theoretical

properties under common comparative judgment models.

An important and landmark model in this class is called the Plackett-Luce model, which is also

known as the Multinomial Logit (MNL) model (cf. McFadden (1973)) in the operations research and

social science literature. A special case of the Plackett-Luce model applied to pair-wise comparisons

is known as the Bradley-Terry-Luce (BTL) model (Bradley and Terry 1955, Luce 1959). It has

been the backbone of many practical system designs including pricing in the airline industry,

e.g. see Talluri and VanRyzin (2005). Adler et al. (1994) used such models to design adaptive

algorithms that select the winner from small number of rounds. Interestingly enough, the (near-

)optimal performance of their adaptive algorithm for winner selection is matched by our non-

adaptive algorithm for assigning scores to obtain global rankings of all players.

We propose a new rank aggregation algorithm, which we call Rank Centrality, that builds on

a long line of research in using eigenvectors of certain matrices to find global rankings of items,

which dates back to Seeley (1949). This line of research is referred to as spectral ranking and for

an extensive survey we refer to Vigna (2009). Given pair-wise comparisons of items from a single

individual on all possible choices of pairs, Wei (1952) introduced a ranking algorithm based on the

leading eigenvector of the matrix representing the comparisons outcome. A slight generalization

accounting for data from multiple decision makers was proposed by Kendall (1955). Keener (1993),
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and more recent work by Dwork et al. (2001a), proposed several variations of spectral algorithms

for ranking from pair-wise comparisons. We propose Rank Centrality for ranking from pair-wise

comparisons by using the leading eigenvector of a particular matrix formed by constructing a

Markov chain corresponding to a random walk on a graph. Although it appears to be similar to

the existing spectral ranking approaches, the precise form of the algorithm proposed is distinct

and this precise form does matter: the empirical results using synthetic data presented in Section

3.3 make this clear. In summary, building on the classical field of spectral ranking, we propose a

novel spectral ranking algorithm and provide a firm theoretical grounding by showing that it is a

provably near-optimal estimator for a popular discrete choice model, i.e. the BTL model formally

defined in Section 2.1.

Numerous spectral ranking algorithms have been proposed in the past, one of the most popular

example being PageRank (Brin and Page 1998). However, almost invariably, the question of when

one should choose to use a particular spectral ranking algorithm is left open. One notable exception

is the work of Altman and Tennenholtz (2005), which provides a set of axioms satisfied by PageRank

algorithm and prove that PageRank is the only rank aggregation algorithm that satisfies those

particular axioms. Hence, it provides a guideline for deciding when PageRank should be used, i.e.

in applications where the specific set of axioms make sense. In a similar spirit, Rank Centrality is

a spectral ranking algorithm with a theoretical justification suggesting that it should be used in

applications where the BTL or MNL model makes sense (in the remainder of this manuscript, we

shall use BTL model as representative for BTL and MNL model).

There has been significant work on rankings from pair-wise comparison in the last several years.

A popular model is a distribution over permutations known as the Mallows model, which assigns

probability to observed rankings according to the Kendall-τ distance to a true ranking. Since

the maximum likelihood estimation is provably difficult, Dwork et al. (2001b) studied this prob-

lem (also known as the Kemeny optimization) when full rankings are observed and provided a

2-approximation algorithm. This was later improved by Ailon et al. (2008) and also generalized

to partial rankings (Ailon 2010). Recently, Lu and Boutilier (2011) proposed an expectation-

maximization approach with novel sampling schemes to learn the Mallows model from pair-wise

comparisons. These distance-based approaches aim to provide good approximation algorithms for

the provably difficult problem of minimizing the Kendall-τ distance and some variations of it (e.g.

Farnoud et al. (2012)).

Learning to rank from pair-wise comparisons has also been studied in applications where one

might observe more than just the ordinal outcome of pair-wise comparisons. Additional data on

cardinal preferences such as the margin of victory (the difference between the winning team’s score

and the losing team’s score) in a football match has led to score-based methods for ranking, where



Author: Rank Centrality: Ranking from Pair-wise Comparisons
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

the goal is to find scores for each team such that the difference of the scores is consistent with

the observed margins of victory (Hochbaum 2006, Gleich and Lim 2011, Jiang et al. 2011). More

recently, Volkovs and Zemel (2012) proposed a unified model that generalizes both the BTL model

and the cardinal preferences. These approaches add to the traditional approaches based on some

notion of distance, such as the Kendall-τ distance, and probabilistic models, such as the BTL

model.

Another probabilistic model directly parameterizes the distribution of pair-wise comparisons for

all the pairs and asks the question of whether existing pair-wise ranking algorithms are consistent

or not (Duchi et al. 2010, Rajkumar and Agarwal 2014). It is shown that many existing algorithms

do not meet the proposed ‘consistency’ criteria and new regret/optimization based algorithms are

presented.

The algorithm proposed by Ammar and Shah (2011) can be viewed as natural adaption of Borda

count based on pair-wise comparison data. They establish it to be equivalent to Borda count based

on entire distribution when perfect pair-wise marginals are available, i.e. large sample limit. In

Braverman and Mossel (2008), the authors present an algorithm that produces an ordering based

on O(n logn) pair-wise comparisons on adaptively selected pairs. They assume that there is an

underlying true ranking and one observes noisy comparison results. Each time a pair is queried,

we are given the true ordering of the pair with probability 1/2 + γ for some γ > 0 which does not

depend on the items being compared.

Our contributions. In this paper, we introduce Rank Centrality, an iterative algorithm that takes

the noisy comparison answers between a subset of all possible pairs of items as input and produces

scores for each item as the output. The proposed algorithm has a nice intuitive explanation. Con-

sider a graph with nodes/vertices corresponding to the items of interest (e.g. players). Construct

a random walk on this graph where at each time, the random walk is likely to go from vertex i to

vertex j if items i and j were ever compared; and if so, the likelihood of going from i to j depends

on how often i lost to j. That is, the random walk is more likely to move to a neighbor who has

more “wins”. How frequently this walk visits a particular node in the long run, or equivalently

the stationary distribution, is the score of the corresponding item. Thus, effectively this algorithm

captures preference of the given item versus all of the others, not just immediate neighbors: the

global effect induced by transitivity of comparisons is captured through the stationary distribution.

Such an interpretation of the stationary distribution of a Markov chain or a random walk has been

an effective measure of relative importance of a node in wide class of graph problems, popularly

known as the Network Centrality cf. (Newman 2010). Notable examples of such network centralities

include the random surfer model on the web graph for the version of the PageRank (Brin and Page
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1998) which computes the relative importance of a web page, a model of a random crawler in a

peer-to-peer file-sharing network to assign trust value to each peer in EigenTrust (Kamvar et al.

2003) and a random walk interpretation of Rumor Centrality that assigns likelihood to each node

for being source of information (or rumor) spread in a network graph based on the foot-print of

infection under the Susceptible-Infected model Shah and Zaman (2011, 2015).

The computation of the stationary distribution of the Markov chain boils down to ‘power itera-

tion’ using transition matrix lending to a nice iterative algorithm. To establish rigorous properties

of the algorithm, we analyze its performance under the BTL model described in Section 2.1.

Formally, we establish the following result: given n items, when comparisons between randomly

chosen ω(n logn) pairs of items are produced as per an (unknown) underlying BTL model, Rank

Centrality learns the true score up to an arbitrary accuracy with high probability as n→∞. It

should be noted that Ω(n logn) is a necessary number of (random) comparisons for any algorithm

to even produce a consistent ranking with high probability since with fewer edges (comparisons)

the resulting random graph will be disconnected with positive probability. In that sense, Rank

Centrality is nearly order-optimal.

In general, the comparisons may not be available between randomly chosen pairs. Let G= ([n],E)

denote the graph of comparisons between these n objects with an edge (i, j)∈E if and only if objects

i and j are compared. In this setting, we establish that with O(ξ−2 npoly(logn)) comparisons,

Rank Centrality learns the true score of the underlying BTL model up to an arbitrarily small error

with high probability. Here, ξ is the spectral gap for the Laplacian of G and this is how the graph

structure of comparisons plays a role. Indeed, as a special case when comparisons are chosen at

random, the induced graph is Erdös-Rényi for which ξ is strictly positive, independent of n, with

high probability, leading to the (order) optimal performance of the algorithm as stated earlier.

To understand the performance of Rank Centrality compared to the other options, we perform

an experimental study. It shows that the performance of Rank Centrality is identical to the ML

estimation of the BTL model. Furthermore, it outperforms other popular choices. In summary,

Rank Centrality (a) is computationally simple, (b) always produces a solution using available data,

and (c) has near optimal performance with respect to a reasonable generative model.

Some remarks about our analytic technique. Our analysis boils down to studying the induced

stationary distribution of the random walk or Markov chain corresponding to the algorithm. Like

most such scenarios, the only hope to obtain meaningful results for such ‘random noisy’ Markov

chain is to relate it to stationary distribution of a known Markov chain. Through recent concen-

tration of measure results for random matrices and comparison technique using Dirichlet forms for

characterizing the spectrum of reversible/self-adjoint operators, along with the known expansion

property of the random graph, we obtain the eventual result. Indeed, it is the consequence of such
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existing powerful results that lead to near-optimal analytic results for random comparison model

and characterization of the algorithm’s performance for general setting.

As an important comparison, we provide analysis of sample complexity required by the maximum

likelihood estimator (MLE) using the state-of-art analytic techniques, cf. Negahban and Wainwright

(2012). Subsequent to our work, Hajek et al. (2014) extended our analysis of MLE and established

that MLE also achieves near-optimal performance guarantees (up to a logarithmic factor) as well.

Our numerical experiments suggests something even stronger, the resulting error is effectively

identical for both MLE and Rank Centrality.

Organization. The remainder of the paper is organized as follows. In Section 2, we describe the

model, problem statement and the rank Centrality algorithm. Section 3 describes the main results

– the key theoretical properties of rank Centrality as well as it’s empirical performance in the

context of two real datasets from NASCAR and One Day International (ODI) cricket. We provide

comparison of the Rank Centrality with the maximum likelihood estimator using the existing

analytic techniques in the same section. We derive the Cramer-Rao lower bound on the square

error for estimating parameters by any algorithm - across range of parameters, the performance of

Rank Centrality and MLE matches the lower bound implied by Cramer-Rao bound as explained in

Section 3 as well. Finally, Section 4 details proofs of all results. We discuss and conclude in Section

5.

Notation. In the remainder of this paper, we use C, C ′, etc. to denote absolute constants, and their

value might change from line to line. We use AT to denote the transpose of a matrix. The Euclidean

norm of a vector is denoted by ‖x‖=
√∑

i x
2
i , and the operator norm of a linear operator is denoted

by ‖A‖2 = maxx x
TAx/xTx. When we say with high probability, we mean that the probability of a

sequence of events {An}∞n=1 goes to one as n grows: limn→∞ P(An) = 1. Also define [n] = {1,2, . . . , n}

to be the set of all integers from 1 to n.

2. Model, Problem Statement and Algorithm

2.1. Model

In this section, we discuss a model of comparisons between various items. This model will be used

to analyze the Rank Centrality algorithm.

Bradley-Terry-Luce model for comparative judgment. When comparing pairs of items from

n items of interest, represented as [n] = {1, . . . , n}, the Bradley-Terry-Luce model assumes that

there is a weight or score wi ∈R+ ≡ {x∈R : x> 0} associated with each item i∈ [n]. The outcome

of a comparison for pair of items i and j is determined only by the corresponding weights wi and
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wj. Let Y l
ij denote the outcome of the l-th comparison of the pair i and j, such that Y l

ij = 1 if j is

preferred over i and 0 otherwise. Then, according to the BTL model,

Y l
ij =

{
1 with probability

wj

wi+wj
,

0 otherwise .

Furthermore, conditioned on the score vector w = (w1, . . . ,wn)T , it is assumed that the random

variables Y l
ij’s are independent of one another for all i, j, and l.

Since the BTL model is invariant under the scaling of the scores, an n-dimensional representation

of the scores is not unique. Indeed, under the BTL model, a score vector w ∈Rn+ is the equivalence

class [w] = {w′ ∈Rn+|w′ = aw, for some a> 0}. The outcome of a comparison only depends on the

equivalence class of the score vector.

To get a unique representation, we represent each equivalence class by its projection onto the

standard orthogonal simplex such that
∑

iwi = 1. This representation naturally defines a distance

between two equivalent classes as the Euclidean distance between two projections:

d(w,w′) ≡
∥∥∥ 1

〈w,1〉
w− 1

〈w′,1〉
w′
∥∥∥ .

Our main result provides an upper bound on the (normalized) distance between the estimated

score vector and the true underlying score vector.

Bradley-Terry-Luce is equal to pair-wise marginals of Multinomial Logit (MNL)/Plackett-Luce.

We take a brief detour to remind the reader that the BTL model is identical to the MNL model

in the sense that the pair-wise distributions between objects induced under BTL are identical to

that under MNL. Consider an equivalent way to describe an MNL model. Each object i has an

associated score wi > 0. A random ordering over all n objects is drawn as follows: iteratively fill the

ordered positions 1, . . . , n by choosing object i(k) for position k, amongst the remaining objects

(not chosen in the first 1, . . . , k− 1 positions) with probability proportional to it’s weight wi(k). It

can be easily verified that in the random ordering of n objects generated as per this process, i is

ranked higher than j with probability wi/(wi +wj).

Sampling model. We also assume that we perform a fixed k number of comparisons for all pairs i

and j that are considered (e.g. a best of k series). This assumption is mainly to simplify notations,

and the analysis as well as the algorithm easily generalizes to the case when we might have a

different number of comparisons for different pairs. Given observations of pair-wise comparisons

among n items according to this sampling model, we define a comparisons graph G= ([n],E,A) as

a graph of n items where two items are connected if we have comparisons data on that pair and A

denotes the weights on each of the edges in E.
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2.2. Rank Centrality

In our setting, we will assume that aij represents the fraction of times object j has been preferred to

object i, for example the fraction of times chess player j has defeated player i. Given the notation

above, we have that aij = (1/k)
∑k

l=1 Y
l
ij. Consider a random walk on a weighted directed graph

G= ([n],E,A), where a pair (i, j)∈E if and only if the pair has been compared. The weight edges

are defined based on the outcome of the comparisons: Aij = aij/(aij +aji) and Aji = aji/(aij +aji)

(note that aij + aji = 1 in our setting). We let Aij = 0 if the pair has not been compared. Note

that by the Strong Law of Large Numbers, as the number k→∞ the quantity Aij converges to

wj/(wi +wj) almost surely.

A random walk can be represented by a time-independent transition matrix P , where Pij =

P(Xt+1 = j|Xt = i). By definition, the entries of a transition matrix are non-negative and satisfy∑
j Pij = 1. One way to define a valid transition matrix of a random walk on G is to scale all the

edge weights by 1/dmax, where we define dmax as the maximum out-degree of a node. This rescaling

ensures that each row-sum is at most one. Finally, to ensure that each row-sum is exactly one, we

add a self-loop to each node. Concretely,

Pij =

{
1

dmax
Aij if i 6= j ,

1− 1
dmax

∑
k 6=iAik if i= j .

(1)

The choice to construct our random walk as above is not arbitrary. In an ideal setting with infinite

samples (k→∞) per comparison the transition matrix P would define a reversible Markov chain

under the BTL model. Recall that a Markov chain is reversible if it satisfies the detailed balance

equation: there exists v ∈ Rn+ such that viPij = vjPji for all i, j; and in that case, π ∈ Rn+ defined

as πi = vi/(
∑

j vj) is its unique stationary distribution. In the ideal setting (say k→∞), we will

have Pij = P̃ij ≡ (1/dmax)wj/(wi +wj). That is, the random walk will move from state i to state j

with probability proportional to the chance that item j is preferred to item i. In such a setting, it

is clear that v =w satisfies the reversibility conditions. Therefore, under these ideal conditions it

immediately follows that the vector w/
∑

iwi acts as a valid stationary distribution for the Markov

chain defined by P̃ , the ideal matrix. Hence, as long as the graph G is connected and at least one

node has a self loop then we are guaranteed that our graph has a unique stationary distribution

proportional to w. If the Markov chain is reversible then we may apply the spectral analysis of

self-adjoint operators, which is crucial in the analysis of the behavior of the method.

In our setting, the matrix P is a noisy version (due to finite sample error) of the ideal matrix

P̃ discussed above. Therefore, it naturally suggests the following algorithm as a surrogate. We

estimate the probability distribution obtained by applying matrix P repeated starting from any
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initial condition. Precisely, let pt(i) = P(Xt = i) denote the distribution of the random walk at time

t with p0 = (p0(i))∈Rn+ be an arbitrary starting distribution on [n]. Then,

pTt+1 = pTt P . (2)

When the transition matrix has a unique left largest eigenvector, then starting from any initial

distribution p0, the limiting distribution π is unique. This stationary distribution π is the top left

eigenvector of P , which makes computing π a simple eigenvector computation. Formally, we state

the algorithm, which assigns numerical scores to each node, which we shall call Rank Centrality:

Rank Centrality

Input: G= ([n],E,A)
Output: rank {π(i)}i∈[n]
1: Compute the transition matrix P according to (1);
2: Compute the stationary distribution π (as the limit of (2)).

The stationary distribution of the random walk is a fixed point of the following equation:

π(i) =
∑
j

π(j)
Aji∑
`Ai`

.

This suggests an alternative intuitive justification: an object receives a high rank if it has been

preferred to other high ranking objects or if it has been preferred to many objects.

One key question remains: does P have a well defined unique stationary distribution? Since the

Markov chain has a finite state space, there is always a stationary distribution or solution of the

above stated fixed-point equations. However, it may not be unique if the Markov chain P is not

irreducible. The irreducibility follows easily when the graph is connected and for all edges (i, j)∈E,

aij > 0, aji > 0. Interestingly enough, we show that the iterative algorithm produces a meaningful

solution with near optimal sample complexity as stated in Theorem 2 when the pairs of objects

that are compared are chosen at random.

3. Main Results

The main result of this paper derives sufficient conditions under which the proposed iterative

algorithm finds a solution that is close to the true solution (under the BTL model) for general

model with arbitrary connected comparison graph G. This result is stated as Theorem 1 below. In

words, the result implies that to learn the true score correctly as per our algorithm, it is sufficient

to have number of comparisons scaling as O(ξ−2 npoly(logn)) where ξ is the spectral gap of the

Laplacian of the graph G. This result explicitly identifies the role played by the graph structure in

the ability of the algorithm to learn the true scores.

In the special case, when the pairs of objects to be compared are chosen at random, that is

the induced G is an Erdös-Rényi random graph, the spectral gap ξ can be lower-bounded by a
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constant with high probability and hence the resulting number of comparisons required scales as

O(npoly(logn)). This is effectively the optimal sample complexity.

The bounds are presented as the rescaled Euclidean norm between our estimate π and the

underlying stationary distribution of P̃ . This error metric provides us with a means to quantify

the relative certainty in guessing if one item is preferred over another.

After presenting our main theoretical result, we describe illustrative simulation results. We also

present application of the algorithm in the context of two real data-sets: results of NASCAR race

for ranking drivers, and results of One Day International (ODI) Cricket for ranking teams. We shall

discuss relation between Rank Centrality, the maximum likelihood estimator and the information

theoretic lower bound to conclude that both MLE and Rank Centrality are near-optimal when the

pairs are chosen according to the Erdös-Renyi random graph.

3.1. Rank Centrality: Error bound for general graphs

Recall that in the general setting, each pair of objects or items are chosen for comparisons as per

the comparisons graph G([n],E). For each such pair, we have k comparisons available. The result

below characterizes the performance of Rank Centrality for such a general setting.

Before we state the result, we present a few necessary notations. Let di denote the degree of

node i in G; let the max-degree be denoted by dmax ≡ maxi di and min-degree be denoted by

dmin ≡mini di; let κ≡ dmax/dmin. The random walk normalized Laplacian matrix of the graph G is

defined as L=D−1B where D is the diagonal matrix with Dii = di and B is the adjacency matrix

with Bij =Bji = 1 if (i, j) ∈ E and 0 otherwise. This normalized Laplacian, defined thus, can be

thought of as a transition matrix of a reversible random walk on graph G: from each node i, jump

to one of its neighbors j with equal probability. Given this, it is well known that the random walk

normalized Laplacian of the graph has real eigenvalues denoted as

−1 ≤ λn(L) ≤ . . . ≤ λ1(L) = 1. (3)

We shall denote the spectral gap of the Laplacian as

ξ ≡ 1−λmax(L) ,

where

λmax(L) ≡ max{λ2(L),−λn(L)} . (4)

There is one-to-one correspondence between the eigenvalues of the random walk normalized Lapla-

cian L and the standard (symmetric) normalized Laplacian I−D−1/2BD−1/2. Now we state the

result establishing the performance of Rank Centrality.
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Theorem 1. Given n objects and a connected comparison graph G= ([n],E), let each pair (i, j)∈

E be compared for k times with outcomes produced as per a BTL model with parameters w1, . . . ,wn.

Then, for some positive constant C ≥ 8 and when k ≥ 4C2(b5κ2/dmaxξ
2) logn, the following bound

on the normalized error holds with probability at least 1− 4n−C/8:∥∥π− π̃∥∥
‖π̃‖

≤ Cb5/2κ

ξ

√
logn

k dmax

,

where π̃(i) =wi/
∑

`w`, b≡maxi,j wi/wj, and κ≡ dmax/dmin.

3.2. Rank Centrality: Error bound for random graphs

Now we consider the special case when the comparison graph G is an Erdös-Rényi random graph

with pair (i, j) being compared with probability d/n. When d is poly-logarithmic in n, we pro-

vide a strong performance guarantee. Specifically, the result stated below suggests that with

O(npoly(logn)) comparisons, Rank Centrality manages to learn the true scores with high proba-

bility.

Theorem 2. Given n objects, let the comparison graph G= ([n],E) be generated by selecting each

pair (i, j) to be in E with probability d/n independently of everything else. Each such chosen pair

of objects is compared k times with the outcomes of comparisons produced as per a BTL model with

parameters w1, . . . ,wn. Then, if d≥ 10C2 logn and k d≥ 128C2b5 logn, the following bound on the

error rate holds with probability at least 1− 10n−C/8:∥∥π− π̃∥∥
‖π̃‖

≤ 8Cb5/2
√

logn

k d
,

where π̃(i) =wi/
∑

`w` and b≡maxi,j wi/wj.

Remarks. Some remarks are in order. First, Theorem 2 immediately implies that as long as kd

grows super-linear in logn, then the error goes to 0. Furthermore, in the context that the number

of items n goes to ∞ as long as we choose d= Ω(logn) and kd= ω(logn), the relative error goes

to 0 as n→∞ with high probability. That is, with ω(n logn) total samples, the relative error goes

to 0 with high probability. It is well-known that for Erdös-Renyi graphs, the induced graph G is

connected with high probability only when d= Ω(logn), i.e. when total number of pairs sampled

scales as Ω(n logn). Thus, Rank Centrality is nearly order-optimal in this setting.

Second, the b parameter should be treated as constant. It is the dynamic range in which we are

trying to resolve the uncertainty between scores. We are considering a regime that there exists

some uncertainty in the samples. Otherwise, if the weight of a single item where an order n greater

than the weights of other items, then it would effectively be preferred with certainty. Hence, we

would remove it from the items under consideration.
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Third, for a general graph, Theorem 1 implies that by choice of kdmax = O(κ2ξ−2 logn), Rank

Centrality learns a score vector close to the true scores with high probability. That is, effectively the

Rank Centrality algorithm requires O(nκ2ξ−2poly(logn)) comparisons to learn scores well. Ignoring

κ, the graph structure plays a role through ξ−2, the squared inverse of the spectral gap of Laplacian

of G, in dictating the performance of Rank Centrality. A reversible natural random walk on G,

whose transition matrix is the Laplacian, has its mixing time scaling as ξ−2 (precisely, relaxation

time). In that sense, the mixing time of natural random walk on G ends up playing an important

role in the ability of Rank Centrality to learn the true scores. Hence, if one has the option to

choose which pairs to compare, our analysis in Theorem 1 suggests that one should choose pairs

such that the resulting graph has large spectral gap. Spectral gap of the comparisons graph also

plays an important role in Osting et al. (2013), where the goal is to choose pairs to compare under

a different model where cardinal preferences (as opposed to ordinal preferences) are observed.

Finally, if we wish to obtain a relative accuracy of ε with probability at least 1 −

δ for a fixed number of items n, then our results also show that we require k d ≥

512 b5/ε2 max(log2(10/δ)/ logn, logn).

3.3. Experimental Results

Under the BTL model, define an error metric of an estimated ordering σ as the weighted sum of

pairs (i, j) whose ordering is incorrect:

Dw(σ) =
{ 1

2n‖w‖2
∑
i<j

(wi−wj)2 I
(
(wi−wj)(σi−σj)> 0

)}1/2

,

where I(·) is an indicator function. This is a more natural error metric compared to the Kemeny

distance, which is an unweighted version of the above sum, since Dw(·) is less sensitive to errors

between pairs with similar weights. Further, assuming without loss of generality that w is normal-

ized such that
∑

iwi = 1, the next lemma connects the error in Dw(·) to the bound provided in

Theorem 2. Hence, the same upper bound holds for Dw error. A proof of this lemma is provided

in the Appendix.

Lemma 1. Let σ be an ordering of n items induced by a scoring π. Then,

Dw(σ) ≤ ‖w−π‖
‖w‖

.

Synthetic data. To begin with, we generate data synthetically as per a BTL model for a specific

choices of scores. For a given n and b, the scores are chosen such that the ratio between two

consecutive scores are fixed to be b1/n, i.e. w1 = b(1−n)/2n, w2 = b(3−n)/2n, w3 = b(5−n)/2n etc. A
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representative result is depicted in Figure. 1: for fixed n = 400 and a fixed b = 10, it shows how

the error scales when varying two key parameters – varying the number of comparisons per pair

with fixed d= 10 logn (on left), and varying the sampling probability with fixed k= 32 (on right).

This figure compares performance of Rank Centrality with variety of other algorithms. Next, we

provide a brief description of various algorithms that we shall compare with.

Regularized Rank Centrality. When there are items that have been compared only a few times, the

scores to those items might be sensitive to the randomness in the outcome of the comparisons, or

even worse the resulting comparisons graph might not be connected. To make the random walk

irreducible and get a ranking that is more robust against comparisons noise in those edges with

only a few comparisons, one can add regularization to Rank Centrality. A reasonable way to add

regularization is to consider the transition probability Pij as the prediction of the event that j

beats i, given data (aij, aji). The Rank Centrality, in non regularized setting, uses the Haldane

prior of Beta(0,0), which gives Pij ∝ aij/(aij + aji). To add regularization, one can use different

priors, for example Beta(ε, ε), which gives

Pij =
1

dmax

aij + ε

aij + aji + 2ε
. (5)

When the prior is unknown, a reasonable choice in practice is ε= 1.

Maximum Likelihood Estimator (MLE). The ML estimator directly maximizes the likelihood

assuming the BTL model (L. R. Ford 1957). If we reparameterize the problem so that θi = log(wi)

then we obtain our estimates θ̂ by solving the convex program

θ̂ ∈ arg min
θ

∑
(i,j)∈E

k∑
l=1

log(1 + exp(θj − θi))−Y l
ij(θj − θi), (6)

which is pair-wise logistic regression. The MLE is known to be consistent (L. R. Ford 1957). The

finite sample analysis of MLE is provided in Section 3.5.

For comparison with Regularized Rank Centrality, we provide regularized MLE or regularized

Logistic Regression:

arg min
θ

∑
(i,j)∈E

∑
l

{
log(1 + exp(θj − θi))−Y l

ij(θj − θi)
}

+
1

2
λ‖θ‖2 (7)

Borda Count. The (generalized) Borda Count method, analyzed recently by Ammar and Shah

(2011), scores an item by counting the number of wins divided by the total number of comparisons:

s(i) =
# of times item i has won

# of times item i has been compared
.



Author: Rank Centrality: Ranking from Pair-wise Comparisons
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 15

This can be thought of as an extension of the standard Borda Count for aggregating full rankings (de

Borda 1781), which is widely used in psychology (David 1963, Kendall and Smith 1940, Mosteller

1951). If we break the full rankings into pair-wise comparisons and apply the pair-wise version of

the Borda Count from (Ammar and Shah 2011), then it produces the same ranking as the standard

Borda Count applied to the original full rankings. This is different from how HodgeRank from

Jiang et al. (2011) generalizes Borda count, which does not normalize the scores by the number of

comparisons.

Spectral Ranking Algorithms. Rank Centrality can be classified as part of the spectral ranking

algorithms, which assign scores to the items according to the leading eigenvector of a matrix that

represents the data. Different choices of the matrix based on data can lead to different algorithms.

Few prominent examples are Ratio matrix in (Saaty 2003) and those in Dwork et al. (2001a). In

Ratio matrix algorithm, a matrix M ∈Rn×n with Mij = aij/aji is constructed (and Mii = 1), and

the scores for the times are assigned as per the top eigenvector of this ratio matrix. Dwork et al.

(2001a) introduced four spectral ranking algorithms called MC1, MC2, MC3 and MC4. They are

all based on a random walk very similar (but distinct) to that of Rank Centrality. These algorithms

use the stationary distributions of the following Markov chains respectively, translated to account

for the pair-wise comparisons data: P
(MC1)
ij = 1/|{` : ai` > 0}|, P (MC2)

ij = aij/
∑

` 6=i ai`,

P
(MC3)
ij =

{
aij/deg(i) if i 6= j .

1−
∑

` 6=i ai`/deg(i) if i= j .
, P

(MC4)
ij =

 1/n if aij ≥ aji ,
0 if aij <aji ,

1−
∑
6̀=i |{` : ai` ≥ a`i}|/n if i= j ,

where deg(i) is the number of items that item i has been compared to.
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Figure 1 Average error Dw(σ) of various rank aggregation algorithms averaged over 20 instances. In the

figure on the left, d and n are fixed while k is increased. The figure on the right, keeps k = 32

fixed, and lets d increase.
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We make note of the following observations from Figure 1. First, the error achieved by our Rank

Centrality is comparable to that of ML estimator, and vanishes at the rate of 1/
√
k as predicted

by our main result. Moreover, as predicted by our bounds, the error scales as 1/
√
d. Second, for

fixed d, both the Borda Count and Ratio Matrix algorithms have strictly positive error even if we

take k→∞. This exhibits that these are inherently inefficient algorithms. Third, despite strong

similarity between Rank Centrality and the Markov chain based algorithms of Dwork et al. (2001a),

the careful choice of the transition matrix of Rank Centrality makes a noticeable difference as

shown in the figure - like Borda count and Ratio matrix, for fixed d,n, despite k increasing the

error remains finite (and at times gets worse!).

Real data-sets. Next we show that Rank Centrality is more robust to randomly missing data

compared to existing spectral ranking approaches on real datasets, which are not necessarily derived

from the BTL model.

Dataset 1: Washington Post. This is the public dataset collected from an online polling on Washing-

ton Post1 from December 2010 to January 2011. Using allourideas2 platform developed by Salganik

and Levy (2012), they asked who had the worst year in Washington, where each user was asked

to compare a series of randomly selected pairs of political entities. There are 67 political entities

in the dataset, and the resulting graph is a complete graph on these 67 nodes. We used Rank

Centrality and other algorithms to aggregate this data. We use this data-set primarily to check

the ’robustness’ of algorithms rather than understanding their ability to identify ground truth as

by design it is not available.

Now each algorithm gives different ground truth rankings given the full set of data. This ground

truth is compared to a ranking we get from only a subset of the data, which is generated by

sampling each edge with a given sampling rate and revealing only the data on those sampled edges.

We want to measure how much each algorithm is affected by eliminating edges from the complete

graph. Let σGT be the ranking we get by applying our choice of rank aggregation algorithm to

the complete dataset, and σSample be the ranking we get from sampled dataset. To measure the

resulting error in the ranking, we use the following metric:

DL1
(σGT, σSample) =

1

n

∑
i

|σGT(i)−σSample(i)| .

Figure 2 illustrates that Rank Centrality, ML estimator and MC2 are less sensitive to sampling

the dataset, compared to Borda Count, MC1, MC3, and MC4. Hence they are more robust when

available comparisons data is limited.

1 http://www.washingtonpost.com/wp-srv/interactivity/worst-year-voting.html

2 http://www.allourideas.org

http://www.washingtonpost.com/wp-srv/interactivity/worst-year-voting.html
http://www.allourideas.org
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Figure 2 Experimental results on a real dataset shows that Rank Centrality, ML estimator and MC2 are

less sensitive to having limited data.

Dataset 2: NASCAR 2002. Table 1 shows ranking of drivers from NASCAR 2002 season racing

results. Hunter (2004) used this dataset for studying rank-aggregation algorithms, and we use the

dataset, publicly available at (Guiver and Snelson 2009):

http://sites.stat.psu.edu/∼dhunter/code/btmatlab/.

The dataset has 87 different drivers who competed in total 36 races in which 43 drivers were racing

at each race. Some of the drivers raced in all 36 races, whereas some drivers only participated in

one. To break the racing results into parities comparisons and to be able to run the comparison

based algorithm, like Hunter (2004), Guiver and Snelson (2009), we eliminated four drivers who

finished last in every race they participated. Therefore, the dataset we used, there are total 83

drivers.

Table 1 shows top ten and bottom ten drivers according to their average place, and their ranking

from Rank Centrality and ML estimator. The unregularized Rank Centrality can over fit the data

by placing P. J. Jones and Scott Pruett in the first and second places. They have high average

place, but they only participated in one race. In contrast, the regularized version places them lower

and gives the top ranking to those players with more races. Similarly, Morgan Shepherd is placed

last in the regularized version, because he had consistently low performance in 5 races. Similarly,

the ML estimator with regularization gives the top (and bottom) rankings to those players with

more races.
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Driver Races Av. place
Rank Centrality ML estimator

ε= 0 ε= 3 λ= 0.01

π rank π rank eθ rank

P. J. Jones 1 4.00 0.1837 1 0.0181 11 0.0124 23
Scott Pruett 1 4.00 0.0877 2 0.0176 12 0.0124 24
Mark Martin 36 12.17 0.0302 5 0.0220 2 0.0203 1
Tony Stewart 36 12.61 0.0485 3 0.0219 1 0.0199 2
Rusty Wallace 36 13.17 0.0271 6 0.0209 3 0.0193 3

Jimmie Johnson 36 13.50 0.0211 12 0.0199 5 0.0189 4
Sterling Marlin 29 13.86 0.0187 14 0.0189 10 0.0177 8

Mike Bliss 1 14.00 0.0225 10 0.0148 18 0.0121 27
Jeff Gordon 36 14.06 0.0196 13 0.0193 8 0.0184 5
Kurt Busch 36 14.06 0.0253 7 0.0200 4 0.0184 6

...
Carl Long 2 40.50 0.0004 77 0.0087 68 0.0106 59

Christian Fittipaldi 1 41.00 0.0001 83 0.0105 49 0.0111 40
Hideo Fukuyama 2 41.00 0.0004 76 0.0088 67 0.0106 60

Jason Small 1 41.00 0.0002 80 0.0105 48 0.0111 41
Morgan Shepherd 5 41.20 0.0002 78 0.0059 83 0.0092 75
Kirk Shelmerdine 2 41.50 0.0002 81 0.0084 70 0.0105 61
Austin Cameron 1 42.00 0.0005 75 0.0107 44 0.0111 43

Dave Marcis 1 42.00 0.0012 71 0.0105 47 0.0111 44
Dick Trickle 3 42.00 0.0001 82 0.0071 77 0.0100 65
Joe Varde 1 42.00 0.0002 79 0.0110 43 0.0111 42

Table 1 ε-regularized Rank Centrality for top ten and bottom ten 2002 NASCAR drivers, as ranked by average

place.

Dataset 3: ODI Cricket. Table 2 shows ranking of international cricket teams from the 2012 season

of the One Day International (ODI) cricket match, where 16 teams played total of 362 games.

Like NASCAR dataset, in Table 2, teams with smaller number of matches, such as Scotland and

Ireland, are moved towards the middle with regularization, and New Zealand is moved towards

the end. Notice that regularized or not, the ranking from Rank Centrality is different from the

simple ranking from average place or winning ratio, because we give more score for winning

against stronger opponents. The regularized ML estimator produces similar ranking as the regu-

larized Rank Centrality. This data on ODI cricket match is publicly available, for example from

http://www.cricmetric.com/blog/.

3.4. Information-theoretic lower bound

In previous sections, we presented the achievable error rate based on a particular low-complexity

algorithm. In this section, we ask how this bound compares to the fundamental limit under BTL

model.

Our result in Theorem 2 provides an upper bound on the achievable error rate between estimated

scores and the true underlying scores. We provide a constructive argument to lower bound the

minimax error rate over a class of BTL models. Concretely, we consider the scores coming from a

simplex with bounded dynamic range defined as

Sb ≡
{
π̃ ∈Rn

∣∣∣ ∑
i∈[n]

π̃i = 1 , max
i,j

π̃i
π̃j
≤ b
}
.
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Team matches Win ratio deg
Rank Centrality ML estimator

ε= 0 ε= 1 λ= 0.01

π rank π rank eθ rank

South Africa 43 0.6744 11 0.1794 2 0.0943 2 0.0924 2
India 76 0.6382 11 0.1317 4 0.0911 3 0.0923 3

Australia 72 0.6319 13 0.1798 1 0.0900 4 0.0881 4
England 60 0.6000 10 0.1526 3 0.0957 1 0.0927 1
Scotland 15 0.6000 7 0.0029 12 0.0620 7 0.0627 7
Sri Lanka 78 0.5577 12 0.1243 5 0.0801 5 0.0768 5
Parkistan 65 0.5385 13 0.0762 6 0.0715 6 0.0755 6
Ireland 32 0.5316 13 0.0124 11 0.0561 8 0.0539 9

Afghanistan 20 0.5000 7 0.0005 15 0.0435 13 0.0472 12
West Indies 55 0.4091 12 0.0396 7 0.0546 9 0.0592 8

New Zealand 50 0.3800 10 0.0354 8 0.0466 12 0.0514 10
Bangladesh 51 0.3333 11 0.0320 9 0.0500 10 0.0492 11
Netherlands 24 0.3333 10 0.0017 13 0.0432 14 0.0427 14
Zimbabwe 40 0.3250 11 0.0307 10 0.0481 11 0.0439 13
Canada 22 0.2273 11 0.0003 16 0.0365 16 0.0364 15
Kenya 21 0.1905 10 0.0007 14 0.0367 15 0.0356 16

Table 2 Applying ε-regularized Rank Centrality to One Day International (ODI) cricket match results from

2012. The degree of a team in the comparisons graph is the number of teams it has played against.

We constrain the scores to be on the simplex, because we represent the scores by its projection onto

the standard simplex as explained in Section 2.1. Then, we can prove the following lower bound

on the minimax error rate.

Theorem 3. Consider a minimax scenario where we first choose an algorithm A that estimates

the BTL weights, say πA, from given observations and for this particular algorithm A, nature

chooses the worst-case true BTL weights π̃. Let Sb denote the space of all BTL score vectors π̃ with

dynamic range at most b as defined above. Then

inf
A

sup
π̃∈Sb

E
[
‖πA− π̃‖

]
‖π̃‖

≥ b− 1

240
√

10(b+ 1)

1√
kd

, (8)

where the infimum ranges over all estimation algorithms A that are measurable functions over the

observations. Here a pair of items is chosen to be compared with probability d/n, and for thus

chosen pair k comparison observations are generated as per the underlying BTL model.

By definition the dynamic range is always at least one. When b= 1, we can trivially achieve a

minimax rate of zero. Since the infimum ranges over all measurable functions, it includes a trivial

estimator which always outputs (1/n)1 regardless of the observations, and this estimator achieves

zero error when b = 1. In the regime where the dynamic range b is bounded away from one and

bounded above by a constant, Theorem 3 establishes that the upper bound obtained in Theorem 2

is minimax-optimal up to factors logarithmic in the number of items n.

3.5. MLE: Error bounds using state-of-art method

It is well known that the maximum-likelihood estimate of a set of parameters is asymptotically

normal with mean 0 and covariance equal to the inverse Fisher information of the set of parameters.
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In this section we wish to show the behavior of the estimates obtained through the logistic regression

based approach for estimating the parameters θ∗i = logwi in a finite sample setting.

Model. Recall that the logistic regression based method reparameterizes the model so that given

items i and j the probability that i defeats j is

P (i defeats j) =
exp(θ∗i − θ∗j )

1 + exp(θ∗i − θ∗j )
.

In order to ensure identifiability we also assume that
∑

i θ
∗
i = 0, so that we also enforce the con-

straint
∑
θ̂i = 0. We also recall that we let b = wmax/wmin. Similarly, we let b̃ := θ∗max − θ∗min and

enforce the constraint that θ̂max− θ̂min ≤ b̃
′

where b̃≤ b̃′ . For simplicity we assume that b̃
′
= b̃.

Finally, recall that we are given m i.i.d. observations. We take l ∈ {1,2, . . . , n} and let vl to be the

outcome of the lth comparison. Furthermore, if during the lth competition item i competed against

item j we take xl = ei−ej where ei is the standard basis vector with entries that are all zero except

for the ith entry, which equals one. Note that in this context the ordering of the competition does

matter. Finally, we define the inner-product between two vectors x, y ∈Rn to be 〈x, y〉=
∑n

i=1 xiyi.

Therefore, under the BTL model with parameters θ∗ we have that

vl =

{
1 with probability exp 〈xl, θ∗〉/(1 + exp 〈xl, θ∗〉)
0 otherwise.

Now the estimation procedure is of the form

θ̂= arg min
θ

Lm(θ, v,x)

where

Lm(θ, v,x) =
1

m

n∑
l=1

log(1 + exp 〈xl, θ〉)− vl〈xl, θ〉 (9)

Results. Before proceeding we recall that ‖θ∗‖2 ≤ b̃
√
n. With that in mind we have the following

theorem.

Theorem 4. Suppose that we have m > 12n logn observations of the form (i, j, y) where i and

j are drawn uniformly at random from [n] and y is Bernoulli with parameter exp(θ∗i − θ∗j )/(1 +

exp(θ∗i − θ∗j )). Then, we have with probability at least 1− 2/n

‖θ̂− θ∗‖ ≤ 6
(1 + b)2

b

√
n2 logn

m
.

With the assumption that ‖θ∗‖∞ ≤ b̃, we have ‖θ∗‖ ≤ b̃
√
n.
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3.6. Cramér-Rao lower bound

The Fisher information matrix (FIM) encodes the amount of information that the observed mea-

surements carry about the parameter of interest. The Cramér-Rao bounds we derive in this section

provides a lower bound on the expected squared Euclidean norm E[‖π̃ − π‖2] of any unbiased

estimator and is directly related to the (inverse of) Fisher information matrix.

Denote the log-likelihood function as

`(π̃|a) =
∑

(i,j)∈E

log f(aij, aji|π̃) , where

f(aij, aji|π̃) =
( π̃j
π̃i + π̃j

)kijaij( π̃i
π̃i + π̃j

)kijaji
,

and kij is the number of times the pair (i, j) was compared. The Fisher information matrix with

the BTL weights π̃ is defined as F (π̃)∈Rn×n with

F (π̃)ij = Ea
[
− ∂

2`(π̃|a)

∂π̃i∂π̃j

]
=


∑

i′∈∂i
kii′

(π̃i+π̃i′ )
2

π̃i′
π̃i

if i= j ,

− kij
(π̃i+π̃j)

2 if (i, j)∈E ,

0 otherwise .

This follows from the fact that

∂`(π̃|a)

∂π̃i
=
∑
i′∈∂i

−kii′(aii′ + ai′i)

π̃i + π̃i′
+
kii′ai′i
π̃i

, and

∂2`(π̃|a)

∂π̃i∂π̃j
=


∑

i′∈∂i kii′
(

1
(π̃i+π̃i′ )

2 −
ai′i
(π̃i)

2

)
if i= j ,

kij
(π̃i+π̃j)

2 if (i, j)∈E ,

0 otherwise .

Let π denote our estimate of the weights. Applying the Cramér-Rao bound (Rao 1945), we get the

following lower bound for all unbiased estimators π:

E[‖π− π̃‖2] ≥ Trace(F (π̃)−1)

This bound depends on π̃ and the graph structure. Although a closed form expression is difficult

to get and Rank Centrality as well as the ML estimate is biased, we compare our numerical

experiments with a numerically computed Cramér-Rao bound on the same graph and the same

weights π̃.

3.6.1. Numerical comparisons In Figure 3, the average normalized root mean squared error

(RMSE) is shown as a function of various model parameters. We fixed the control parameters as

k= 32, n= 400, d= 60 and b= 10 with pairs assigned according to Erdös-Renyi graph G(n,d/n).
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Figure 3 Comparisons of Rank Centrality, the ML estimator, and the Cramér-Rao bound. All three lines are

almost indistinguishable for all ranges of model parameters.

Each point in the figure is averaged over 20 random instances S. Let π̃(i) be the resulting estimate

at i-th experiment, then

RMSE =
1

|S|
∑
i∈S

‖π(i)− π̃‖
‖π̃‖

(10)

For all ranges of model parameters k, d, and b, RMSE achieved using Rank Centrality is almost

indistinguishable from that of the ML estimate and also the Cramér-Rao bound (CRB).

CRB provides a lower bound on the expected mean squared error for unbiased estimators.

Although we are plotting average root mean squared error, as opposed to average mean squared

error, we do not expect any estimator to achieve RMSE better than the CRB as long as there is a

concentration.

The ML estimator in (7) with λ= 0 finds an estimate π= eθ̂ that maximizes the log-likelihood,

and in general ML estimate does not coincide with the minimum mean squared error estimator.

From the figure we see that it intact achieves the minimum mean squared error and matches the

CRB.

What is perhaps surprising is that for all the parameters that we experimented with, the RMSE

achieved by Rank Centrality is almost indistinguishable with that of ML estimate and the CRB.

Thus, coupled with the minimax lower-bounds, one cannot do better than Rank Centrality under

the BTL model.

3.7. Discussion of Results

In this section we review the results that we have established above. In Theorem 1 we establish

upper bounds on the error when samples are drawn from an arbitrary graph and when each edge is

compared k times. This bound depends on the spectral gap of the underlying graph, which shows

that graphs with a larger spectral gap achieve smaller estimation error. For the case of Erdös-Renyi

graphs, Theorem 2 provides an upper bound on the error achieved by Rank Centrality. In Theorem 3

we prove that the bound is near-optimal, up to logarithmic factors, in an information theoretic
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sense. That is, no method, regardless of computational power can achieve better performance on

the same statistical model. For a tighter analysis of the optimality of Rank Centrality, we provide

numerical experiments under the BTL model and compare it to the Cramer Rao lower-bound

established in Section 3.6. Comparisons with the Cramer-Rao bound in Figure 3 suggests that the

error achieved by Rank Centrality is indistinguishable from the fundamental Cramer-Rao lower

bound, and hence exactly optimal for a certain class of estimators.

For completeness, we further provide an analysis of the error achieved by the MLE in Theorem 4.

Building upon our analysis, Hajek et al. (2014) shows that MLE is near order-optimal, just like

Rank Centrality.

Finally, we compare the computational cost of Rank Centrality versus the MLE. While it is dif-

ficult to make an exact, theoretical, comparison, we nevertheless compare their computational cost

by means of popular implementations on a common computation platform. For Rank Centrality,

the implementation is based on using eigs function MATLAB. For MLE, the implementation is

based on the basic first-order method. In a collection of experiments (with varying problem param-

eters), Rank Centrality converges an order of magnitude faster than the MLE. It should be noted

that the first-order method has tunable step-size and our implementation did not attempt to opti-

mize this selection when varying problem parameters. Finally, MLE can be viewed as a standard

logistic regression. Therefore, the lm function of R-package can be used to solve for MLE. Again,

in the same computation environment, the resulting MLE is order of magnitude slower compared

to the MATLAB implementation of Rank Centrality, but faster than the first-order method.

4. Proofs

We may now present proofs of Theorems 1 and 2. We first present a proof of convergence for general

graphs in Theorem 1. This result follows from Lemma 2 that we state below, which shows that our

algorithm enjoys convergence properties that result in useful upper bounds. The lemma is made

general and uses standard techniques of spectral theory. The main difficulty arises in establishing

that the Markov chain P satisfies certain properties that we will discuss subsequently. Given the

proof for the general graph, Theorem 2 follows by showing that in the case of Erdös-Renyi graphs,

certain spectral properties are satisfied with high probability.

The next set of proofs involve the information-theoretic lower bound stated in Theorem 3 and

the proof of Theorem 4 establishing the finite sample error analysis of MLE.
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4.1. Proof of Theorem 1: General graph

In this section, we characterize the error rate achieved by our ranking algorithm. Given the random

Markov chain P , where the randomness comes from the outcome of the comparisons, we will show

that it does not deviate too much from its expectation P̃ , where we recall that P̃ is defined as

P̃ij =

{
1

dmax

wj

wi+wj
if i 6= j ,

1− 1
dmax

∑
` 6=i

w`
wi+w`

if i= j

for all (i, j)∈E and P̃ij = 0 otherwise.

Recall from the discussion following equation (1) that the transition matrix P used in our ranking

algorithm has been carefully chosen such that the corresponding expected transition matrix P̃

has two important properties. First, the stationary distribution of P̃ , which we denote with π̃ is

proportional to the weight vectors w. Furthermore, when the graph is connected and has self loops

(which at least one exists), this Markov chain is irreducible and aperiodic so that the stationary

distribution is unique. The next important property of P̃ is that it is reversible–π̃(i)P̃ij = π̃(j)P̃ji.

This observation implies that the operator P̃ is symmetric in an appropriately defined inner product

space. The symmetry of the operator P̃ will be crucial in applying ideas from spectral analysis to

prove our main results.

Let ∆ denote the fluctuation of the transition matrix around its mean, such that ∆≡ P − P̃ . The

following lemma bounds the deviation of the Markov chain after t steps in terms of two important

quantities: the spectral radius of the fluctuation ‖∆‖2 and the spectral gap 1−λmax(P̃ ), where

λmax(P̃ ) ≡ max{λ2(P̃ ),−λn(P̃ )} .

Since λ(P̃ )’s are sorted, λmax(P̃ ) is the second largest eigenvalue in absolute value.

Lemma 2. For any Markov chain P = P̃ + ∆ with a reversible Markov chain P̃ , let pt be the

distribution of the Markov chain P when started with initial distribution p0. Then,∥∥pt− π̃∥∥
‖π̃‖

≤ ρt
‖p0− π̃‖
‖π̃‖

√
π̃max

π̃min

+
1

1− ρ
‖∆‖2

√
π̃max

π̃min

. (11)

where π̃ is the stationary distribution of P̃ , π̃min = mini π̃(i), π̃max = maxi π̃(i), and ρ= λmax(P̃ ) +

‖∆‖2
√
π̃max/π̃min.

The above result provides a general mechanism for establishing error bounds between an estimated

stationary distribution π and the desired stationary distribution π̃. It is worth noting that the

result only requires control on the quantities ‖∆‖2 and 1− ρ. We may now state two technical

lemmas that provide control on the quantities ‖∆‖2 and 1− ρ, respectively.
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Lemma 3. For some constant C ≥ 8, the error matrix ∆ = P − P̃ satisfies

‖∆‖2 ≤ C

√
logn

k dmax

with probability at least 1− 4n−C/8.

The next lemma provides our desired bound on 1− ρ.

Lemma 4. If ‖∆‖2 ≤C
√

logn/(kdmax) and k≥ 4C2b5dmax logn(1/dminξ)
2, then

1− ρ ≥ ξdmin

b2dmax

.

Proof of Theorem 1. With the above stated Lemmas, we shall proceed with the proof of Theorem 1.

When there is a positive spectral gap such that ρ < 1, the first term in (11) vanishes as t grows.

The rest of the first term is bounded and independent of t. Formally, we have

π̃max/π̃min ≤ b , ‖π̃‖ ≥ 1/
√
n , and ‖p0− π̃‖ ≤ 2 ,

by the assumption that maxi,j wi/wj ≤ b and the fact that π̃(i) = wi/(
∑

j wj). Hence, the error

between the distribution at the tth iteration pt and the true stationary distribution π̃ is dominated

by the second term in equation (11). Substituting the bounds in Lemma 3 and Lemma 4, the

dominant second term in equation (11) is bounded by

lim
t→∞

∥∥pt− π̃∥∥
‖π̃‖

≤ C b5/2

ξdmin

√
dmax logn

k

with probability at least 1 − 4n−C/8. In fact, we only need t = Ω(logn + log b +

log(dmax logn/(d2minkξ
2))) to ensure that the above bound holds up to a constant factor. This

finishes the proof of Theorem 1. Notice that in order for this result to hold, we need k ≥

4C2b5dmax logn(1/dminξ)
2 for Lemma 4.

4.1.1. Proof of Lemma 2. Due to the reversibility of P̃ , we can view it as a self-adjoint

operator on an appropriately defined inner product space. This observation allows us to apply the

well-understood spectral analysis of self-adjoint operators. To that end, define an inner product

space L2(π̃) as a space of n-dimensional vectors, Rn, endowed with

〈a, b〉π̃ =
n∑
i=1

aiπ̃ibi .

Similarly, we define ‖a‖π̃ =
√
〈a,a〉

π̃
as the 2-norm in L2(π̃). An operator (matrix) A is self-adjoint

with respect to L2(π) if 〈u,Av〉π̃ = 〈Au,v〉π̃ for all u, v ∈ Rn. For a self-adjoint operator A in
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L2(π̃), we define ‖A‖π̃,2 = maxa ‖Aa‖π̃/‖a‖π̃ as the operator norm. These norms are related to the

corresponding norms in the Euclidean space through the following inequalities.

√
π̃min ‖a‖ ≤ ‖a‖π̃ ≤

√
π̃max ‖a‖ , (12)√

π̃min

π̃max

‖A‖2 ≤ ‖A‖π̃,2 ≤
√
π̃max

π̃min

‖A‖2 . (13)

It is easy to check that, a reversible Markov chain P̃ is self-adjoint in L2(π̃) due to the detailed-

balanced condition, where π̃ is the unique stationary distribution of P̃ .

Consider symmetrized version of P̃ , defined as S = Π̃1/2P̃ Π̃−1/2, where Π̃ is a diagonal matrix

with Π̃ii = π̃(i). Again, reversibility of P̃ makes S symmetric. It can be verified that P̃ and S have

the same set of eigenvalues. By Perron-Frobenius theorem, the eigenvalues are in [−1,1] with largest

being equal to 1. Let they be denoted as 1 = λ1 ≥ λ2 ≥ . . .≥ λn ≥−1, and let λmax = max{|λn|, λ2}.

Let ui be the left eigenvector of S corresponding to λi for 1≤ i≤ n. Then the ith left eigenvector

of P̃ is given by vi = Π̃1/2ui. Since the first left eigenvector of P̃ is the stationary distribution,

i.e. v1 = π̃, we have that u1(i) = π̃(i)1/2 or Π̃−1/2u1 = 1. Finally, define rank-1 projection of S as

S1 = λ1u1u
T
1 = u1u

T
1 and let P̃1 = Π̃−1/2S1Π̃

1/2.

Our interest is in Markov chain P = P̃ + ∆ and iterates obtained from it pTt = pTt−1P . Then,

pTt − π̃T = (pt−1− π̃)T (P̃ + ∆) + π̃T∆ . (14)

Using the fact that (p` − π̃)T Π̃−1/2u1 = (p` − π̃)T1 = 0 for any probability distribution p`, we get

(p`− π̃)T P̃1 = (p`− π̃)T Π̃−1/2u1λ1u
T
1 Π̃1/2 = 0. Then, from (14) we get

pTt − π̃T = (pt−1− π̃)T (P̃ − P̃1 + ∆) + π̃T∆ .

By definition of P̃1, it follows that ‖P̃ − P̃1‖π̃,2 = ‖S−S1‖2 = λmax. Let ρ= λmax + ‖∆‖π̃,2, then

‖pt− π̃‖π̃ ≤ ‖pt−1− π̃‖π̃(‖P̃ − P̃1‖π̃,2 + ‖∆‖π̃,2) + ‖π̃T∆‖π̃

≤ ρt‖p0− π̃‖π̃ +
t−1∑
`=0

ρt−1−`‖π̃T∆‖π̃ .

Dividing each side by ‖π̃‖ and applying the bounds in (12) and (13), we get

‖pt− π̃‖
‖π̃‖

≤ ρt
√
π̃max

π̃min

‖p0− π̃‖
‖π̃‖

+
t−1∑
`=0

ρt−1−`
√
π̃max

π̃min

‖π̃T∆‖
‖π̃‖

.

This finishes the proof of the desired claim.
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4.1.2. Proof of Lemma 3. Our interest is in bounding ‖∆‖2. Now ∆ = P − P̃ so that for

1≤ i, j ≤ n,

∆ij =
1

kdmax

Cij, (15)

where Cij is distributed as per B(k, pij)−kpij if (i, j)∈E and Cij = 0 otherwise. Here B(k, pij) is a

Binomial random variable with parameter k and pij ≡
wj

wi+wj
. It should be noted that Cij +Cji = 0

and Cij are independent across all the pairs with i < j. For 1≤ i≤ n

∆ii = Pii− P̃ii =
(
1−

∑
j 6=i

Pij
)
−
(
1−

∑
j 6=i

P̃ij
)

=
∑
j 6=i

P̃ij −Pij =−
∑
j 6=i

∆ij. (16)

Given the above dependence between diagonal and off-diagonal entries, we shall bound ‖∆‖2 as

follows: let D be the diagonal matrix with Dii = ∆ii for 1≤ i≤ n and ∆̄ = ∆−D. Then,

‖∆‖2 = ‖D+ ∆̄‖2 ≤ ‖D‖2 + ‖∆̄‖2. (17)

We shall establish the bound of O
(√

logn
kdmax

)
for both ‖D‖2 and ‖∆̄‖2 to establish the Lemma 3.

Bounding ‖D‖2. Since D is a diagonal matrix, ‖D‖2 = maxi |Dii| = maxi |∆ii|. For a given fixed

i, as per (15)-(16), kdmax∆ii can be expressed as summation of at most kdmax independent, zero-

mean random variables taking values in the range of at most 1. Therefore, by an application of

Azuma-Hoeffding’s inequality, it follows that

P
(
kdmax|∆ii|> t

)
≤ 2exp

(
− t2

2kdmax

)
. (18)

By selection of t = C
√
kdmax logn for appropriately large constant, it follows from above display

that

P

(
‖D‖2 ≥C

√
logn

kdmax

)
≤

n∑
i=1

P
(
|∆ii|>C

√
logn

kdmax

)
(19)

≤ 2n−C
2/2+1 (20)

Bounding ‖∆̄‖2 when dmax ≤ logn. Towards this goal, we shall make use of the following standard

inequality: for any square matrix M ,

‖M‖2 ≤
√
‖M‖1‖M‖∞, (21)

where ‖M‖1 = maxi
∑

j |Mij| and ‖M‖∞ = ‖MT‖1. In words, ‖M‖22 is bounded above by product

of the maximal row-sum and column-sum of absolute values of M . Since ∆ij and ∆ji are identically

distributed and entries along each row (and hence each column) are independent, it is sufficient
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to obtain a high probability bound (≥ 1− 1/poly(n)) for maximal row-sum of absolute values of

∆̄; exactly the same bound will apply for column-sum using; and using union bound the desired

result will follow.

To that end, consider the sum of the absolute values of the ith row-sum of ∆̄ and for simplicity

let us denote it by Ri. Then,

Ri =
1

kdmax

∑
j 6=i

|Cij|, (22)

where recall that Cij =Xij−kpij with Xij an independent Binomial random variable with param-

eters k, pij. Therefore, for any s > 0,

P
(
Ri > s

)
= P
(∑
j∈∂i

|Cij|>kdmaxs
)

≤
∑
j∈∂i

∑
ξj∈{−1,+1}

P
(∑

j

ξjCi,j >kdmaxs
)

by the union bound

≤
∑
j∈∂i

∑
ξj∈{−1,+1}

exp

(
−2k2d2maxs

2

dik

)

where the last inequality follows from Hoeffding’s bound and the fact that Xij =
∑k

j=1(yij − pij)
where yij are Bernoulli random variables with mean pij. Now, the number of terms in the sum is

2di , the summand is constant, and di ≤ dmax. Thus, the last inequality is upper-bounded by∑
j∈∂i

∑
ξj∈{−1,+1}

exp

(
−2k2d2maxs

2

dik2

)
≤ exp

(
−2kdmaxs

2 + di ln 2
)

By an application of the union bound

P
(
‖∆̄‖2 ≥ s

)
≤ 2nP (Ri ≥ s)

≤ 2n exp
(
−2kdmaxs

2 + dmax ln 2
)
.

Now, if we set s= C
2

√
logn+dmax ln 2

kdmax
we have that

P

(
‖∆̄‖2 ≥C/2

√
logn+ dmax ln 2

kdmax

)
≤ 2n−(C

2/2−1)

Finally, using the assumption that dmax ≤ logn yields

‖∆̄‖2 ≤C
√

logn

kdmax

with probability at least 1− 2n−C
2/2+1.

Bounding ‖∆̄‖2 when dmax ≥ logn. Towards this goal, we shall make use of the recent results on

the concentration of the sum of independent random matrices. For completeness, we recall the

following result (Tropp 2011).
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Lemma 5 (Theorem 6.2 (Tropp 2011)). Consider a finite sequence {Z̃ij}i<j of independent

random self-adjoint matrices with dimensions n×n. Assume that

E[Z̃ij] = 0 and E(Z̃ij)p � p!

2
Rp−2(Ãij)2 , for p= 2,3,4, . . .

Define σ̃2 ≡ ‖
∑

i>j(Ã
ij)2‖2. Then, for all t≥ 0,

P
(∥∥∥∑

i<j

Z̃ij
∥∥∥
2
≥ t
)
≤ 2n exp

{ −t2/2
σ̃2 +Rt

}
.

We wish to prove concentration results on ∆̄ = ∆−D=
∑

i<j Z
ij where

Zij = (eie
T
j − ejeTi )(Pij − P̃ij) for (i, j)∈E ,

and Zij = 0 if i and j are not connected. The Zij’s as defined are zero-mean and independent,

however, they are not self-adjoint. Nevertheless, we can symmetrize it by applying the dilation

ideas presented in the paper (Tropp 2011):

Z̃ij ≡
(

0 Zij

(Zij)T 0

)
.

Now we can apply the above lemma to these self-adjoint, independent and zero-mean random

matrices.

To find R and Ãij’s that satisfy the conditions of the lemma, first consider a set of matrices

{Aij}i<j such that Z̃ij = ∆ijA
ij and

Aij =

(
0 eie

T
j − ejeTi

eje
T
i − eieTj 0

)
,

if (i, j) ∈ E and zero otherwise. In the following, we show that the condition on p-th moment is

satisfied with R= 1/
√
kd2max and (Ãij)2 = (1/(kd2max))(Aij)2 such that

E
[
(Z̃ij)p

]
� p!

2

( 1√
kd2max

)p−2 1

kd2max

(Aij)2 . (23)

We can also show that σ̃2 ≡ ‖
∑

i<j(Ã
ij)2‖2 = 1/(kdmax), since

∑
i<j

(Ãij)2 =
∑
i<j

1

kd2max

I((i,j)∈E)

(
eie

T
i + eje

T
j 0

0 eie
T
i + eje

T
j

)
=

1

kd2max

n∑
i=1

di

(
eie

T
i 0

0 eie
T
i

)
,

where I(·) is the indicator function. Using di ≤ dmax and structure of matrices in the summation in

the last term, it can be easily verified that the ‖·‖2 norm of the resulting matrix is at most 1/kdmax.

Now we can apply the results of Lemma 5 to obtain a bound on
∥∥∑

i<j Z
ij
∥∥
2

=
∥∥∑

i<j Z̃
ij
∥∥
2
:

P

(∥∥∥∥∥∑
i<j

Zij

∥∥∥∥∥≥ t
)
≤ 2n exp

(
−t2/2

(1/kdmax) + (t/
√
kd2max)

)
.
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Under our assumption that dmax ≥ logn and choosing t=C
√

logn/(kdmax), the tail probability is

bounded by 2n exp{−(C2 logn/2)(1/(1 +C))}. Hence, we get the desired bound that ‖∆−D‖2 ≤

C
√

logn/(kdmax) with probability at least 1− 2n−C/4+1, where we have used the fact that C ≥ 8.

Now we are left to prove that the condition (23) holds. A quick calculation shows that

(Aij)p =

{
(Aij)2 for p even ,

Aij for p odd .
(24)

Furthermore, we can verify that the eigenvalues of Aij are either 1 or −1. Hence, (Aij)p � (Aij)2

for all p ≥ 1. Thus, given the fact that Z̃ij = ∆ijA
ij we have that E[(Z̃ij)p] = E[∆p

ij(A
ij)p] �

|E[∆p
ij]|(Aij)2 for all p. This fact follows since for any constant c∈R, cAij � |c|(Aij)2 and c(Aij)2 �

|c|(Aij)2. Hence, coupling these observation with the identities presented in equation (24) we have

E
[
(Z̃ij)p

]
� E

[
|∆ij|p

]
(Aij)2 ,

where we used Jensen’s inequality for |E[∆p
ij]| ≤E[|∆ij|p].

Next, it remains to construct a bound on E|∆p
ij|:

E
[
|∆ij|p

]
≤ p!

2

( 1√
kd2max

)p
. (25)

From (15), we have ∆ij = Pij − P̃ij = 1
kdmax

Cij. Therefore,

E
[
|∆ij|p

]
= (1/kdmax)pE

[
|Cij|p

]
.

Applying Azuma-Hoeffding’s inequality to Cij, we have that

P
(

1

kdmax

|Cij| ≥ t
)
≤ 2exp(−2t2d2maxk) .

That is, 1
kdmax

Cij is a sub-Gaussian random variable. And therefore, it follows that for p≥ 2,

E
[∣∣ 1

kdmax

Cij
∣∣p] ≤ p!

2

( 1√
kd2max

)p
.

This proves the desired bound in (25).

4.1.3. Proof of Lemma 4 By Lemma 3, we have for some C ≥ 8 that

1− ρ = 1−λmax(P̃ )−‖∆‖2
√
b

≥ 1−λmax(P̃ )−C
√
b logn/(kdmax)

with probability at least 1 − 4n−C/8. In this section we prove that there is a positive gap:

(dmin/2 b
2 dmax) ξ. We will first prove that

1−λmax(P̃ ) ≥ ξ dmin

b2 dmax

. (26)
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This implies that we have the desired eigengap for k ≥ 4C2b5dmax logn (1/dminξ)
2 such that

C
√
b logn/(kdmax)≤ (dmin/2 b

2 dmax) ξ.

To prove (26), we use comparison theorems (Diaconis and Saloff-Coste 1993), which bound the

spectral gap of the Markov chain P̃ of interest using a few comparison inequalities related to a more

tractable Markov chain, which is the simple random walk on the graph. We define the transition

matrix of the simple random walk on the graph G as

Qij =
1

di
for (i, j)∈E ,

and the stationary distribution of this Markov chain is µ(i) = di/
∑

j dj. Further, since the detailed

balance equation is satisfied, Q is a reversible Markov chain. Formally, µ(i)Qij = 1/
∑

` d` = µ(j)Qji

for all (i, j)∈E.

The following key lemma is a special case of a more general result (Diaconis and Saloff-Coste

1993) proved for two arbitrary reversible Markov chains, which are not necessarily defined on the

same graph. For completeness, we provide a proof of this lemma later in this section, following a

technique similar to the one in (Boyd et al. 2005) used to prove a similar result for a special case

when the stationary distribution is uniform.

Lemma 6. Let Q,µ and P̃ , π̃ be reversible Markov chains on a finite set [n] representing ran-

dom walks on a graph G = ([n],E), i.e. P̃ (i, j) = 0 and Q(i, j) = 0 if (i, j) /∈ E. For α ≡

min(i,j)∈E{π̃(i)P̃ij/µ(i)Qij} and β ≡maxi{π̃(i)/µ(i)},

1−λmax(P̃ )

1−λmax(Q)
≥ α

β
. (27)

By assumption, we have ξ ≡ 1−λmax(Q). To prove that there is a positive spectral gap for the ran-

dom walk of interest as in (26), we are left to bound α and β. We have µ(i)Qij = 1/
∑

` d` ≤ 1/|E|

and µ(i)≥ (di/|E|). Also, by assumption that maxi,j wi/wj ≤ b, we have π̃(i)P̃ij =wiwj/(dmax(wi+

wj)
∑

`w`) ≥ 1/(bndmax) and π̃(i) = wi/
∑

`w` ≤ b/n. Then, α = min(i,j)∈E{π̃(i)P̃ij/µ(i)Qij} ≥

|E|/(nbdmax) and β = maxi{π̃(i)/µ(i)} ≤ b|E|/ndmin. Hence, α/β ≥ dmin/(dmaxb
2) and this finishes

the proof of the bound in (26).

4.1.4. Proof of Lemma 6 Since 1 − λmax = min{1 − λ2,1 + λn}, we will first show that

1−λ2(Q)≤ (β/α)(1−λ2(P̃ )) and 1 +λn(Q)≤ (β/α)(1 +λn(P̃ )). The desired bound in (27) imme-

diately follows from the fact that min{a, b} ≤min{a′, b′} if a≤ b and a′ ≤ b′.

A reversible Markov chain Q is self-adjoint in L2(µ). Then, the second largest eigenvalue λ2(Q)

can be represented by the Dirichlet form E defined as

EQ(φ,φ) ≡
〈
(I −Q)φ,φ

〉
µ

=
1

2

∑
i,j

(φ(i)−φ(j))2µ(i)Q(i, j) .
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For λn(Q), we use

FQ(φ,φ) ≡
〈
(I +Q)φ,φ

〉
µ

=
1

2

∑
i,j

(φ(i) +φ(j))2µ(i)Q(i, j) .

Following the usual variational characterization of the eigenvalues (see, for instance, (Horn and

Johnson 1985), p. 176) gives

1−λ2(Q) = min
φ⊥1

EQ(φ,φ)

〈φ,φ〉µ
, (28)

1 +λn(Q) = min
φ

FQ(φ,φ)

〈φ,φ〉µ
. (29)

By the definitions of α and β, we have π̃(i, )P̃ (i, j)≥ αµ(i)Q(i, j) and π̃(i)≤ βµ(i) for all i and

j, which implies

E P̃ (φ,φ) ≥ αEQ(φ,φ) ,

F P̃ (φ,φ) ≥ αFQ(φ,φ) ,

〈φ,φ〉π̃ ≤ β〈φ,φ〉µ .

Together with (28), this implies 1−λ2(Q)≤ (β/α)(1−λ2(P̃ )) and 1 +λn(Q)≤ (β/α)(1 +λn(P̃ )).

This finishes the proof of the desired bound.

4.2. Proof of Theorem 2: Random sampling

Given the proof of Theorem 1 in the previous section, we only need to prove that for an Erdös-Renyi

graph with average degree d≥C ′ logn the following are true:

(1/2)d ≤ di ≤ (3/2)d , (30)

1/2 ≤ ξ . (31)

Then, it follows that κ≤ 3 and (1/2)d≤ dmin ≤ dmax ≤ (3/2)d. By Theorem 1, it follows that

‖π− π̃‖
‖π̃‖

≤ 6Cb5/2
√

logn

k d
,

with probability at least 1− 4n−C/8 for some positive constant C ≥ 8 and for kd≥ 288C2b5 logn

We can apply standard concentration inequalities to establish equation (30). Apply Chernoff’s

inequality, we get P
(
|di−d|> (1/2)d

)
≤ 2e−d/16. Hence, for d≥C ′ logn, equation (30) is true with

probability at least 1− 2n−C
′/16.

Finally, we finish the proof with a result on the lower bound of the spectral gap ξ = 1 −
λmax(D−1B).

Lemma 7. Consider a random graph G drawn from the Erd̈os-Renyi distribution G(n,d/n). Then

if d≥ 10C2 logn, we have ξ ≥ 1/2 with probability at least 1−n−Cn/(n−d)/8

The proof of this result can be found in Appendix B.
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4.3. Proof of Theorem 3: Information-theoretic lower bound

In this section, we prove Theorem 3 using an information-theoretic method that allows us to reduce

the stochastic inference problem into a multi-way hypothesis testing problem.

This estimation problem can be reduced to the following hypothesis testing problem. Consider a

set {π̃(1), . . . , π̃(M(δ))} of M(δ) vectors on the standard orthogonal simplex which are separated by

δ, such that ‖π̃(`1)− π̃(`2)‖ ≥ δ for all `1 6= `2. To simplify the notations, we are going to use M as a

shorthand for M(δ). Suppose we choose an index L ∈ {1, . . . ,M} uniformly at random. Then, we

are given noisy outcomes of pair-wise comparisons with w= π̃(L) from the BTL model. We use X to

denote this set of observations. Let π be the estimation produced by an algorithm using the noisy

observations. Given this, the best estimation of the “index” is L̂, where L̂= arg min`∈[M ] ‖π− π̃(`)‖.
By construction of our packing set, when we make a mistake in the hypothesis testing, our

estimate is at least δ/2 away from the true weight π̃(L). Precisely, L̂ 6=L implies that ‖π− π̃(L)‖ ≥
δ/2. Then,

E
[
‖π− π̃(L)‖

]
≥ δ

2
P
(
L̂ 6=L

)
≥ δ

2

{
1− I(L̂;L) + log 2

logM

}
, (32)

where I(·; ·) denotes the mutual information between two random variables and the second inequal-

ity follows from Fano’s inequality.

These random vectors form a Markov chain L— π̃(L) —X—π— L̂ , where X—Y —Z indicates

that X and Z are conditionally independent given Y . Let PL,X(`, x) denote the joint probability

function, and PX|L(x|`), PL(`) and PX(x) denote the conditional and marginal probability functions.

Then, by data processing inequality for a Markov chain, we get

I(L; L̂) ≤ I(L;X)

= EL,X
[

log
( PL,X(L,X)

PL(L)PX(X)

)]
=

1

M

∑
`∈[M ]

EX
[

log
(PX|L(X|`)

PX(X)

)]
=

1

M

∑
`∈[M ]

EX
[

log
( PX|L(X|`)∑

`2∈[M ] PX|L(X|`2)P(`2)

)]
≤ 1

M

∑
`∈[M ]

∑
`2∈[M ]

P(`2)EX
[

log
( PX|L(X|`)
PX|L(X|`2)

)]
=

1

M 2

∑
`1,`2

DKL

(
PX|L(X|`1)

∥∥∥PX|L(X|`2)
)
, (33)

where DKL(·‖·) is the Kullback-Leibler (KL) divergence and the inequality follows from the con-

cavity of logarithm and Jensen’s inequality.
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The KL divergence between the observations coming from two different BTL models depend on

how we sample the comparisons. We are sampling each pair of items for comparison with probability

d/n, and we are comparing each of these sampled pairs k times. Let Xij denote the outcome of k

comparisons for a sampled pair of items (i, j). To simplify notations, we drop the subscript X|L
whenever it is clear from the context. Then,

DKL

(
P(X|`1)

∥∥P(X|`2)
)

=
d

n

∑
1≤i<j≤n

DKL

(
P(Xij|`1)

∥∥P(Xij|`2)
)

≤ 2n2 k d
∥∥(π̃(`1)− π̃(`2)

∥∥2 , (34)

where in the last inequality we used the fact that

DKL

(
P(Xij|`1)‖P(Xij|`2)

)
≤
k
(
π̃
(`2)
j (π̃

(`1)
i − π̃(`2)

i )2 + π̃
(`2)
i (π̃

(`1)
j − π̃(`2)

j )2
)

π̃
(`2)
i π̃

(`2)
j

(
π̃
(`1)
i + π̃

(`1)
j

)
≤ 2kn2

(
(π̃

(`1)
i − π̃(`2)

i )2 + (π̃
(`1)
j − π̃(`2)

j )2
)
,

for k independent trials of Bernoulli random variables, and π̃
(`)
i ≥ 1/(2n) for all i and ` which

follows from our construction of the packing set in Lemma 8 and our choice of δ.

The remainder of the proof relies on the following key technical lemma, on the construction of

a suitable packing set that has enough number of entries which are reasonably separated. This is

proved in Section 4.3.1.

Lemma 8. For n≥ 90 and for any positive δ≤ 1/2
√

10n, there exists a set of n-dimensional vectors

{π̃(1), . . . , π̃(M)} with cardinality M = en/128 such that
∑

i π̃
(`)
i = 1 and

1− 2δ
√

10n

n
≤ π̃

(`)
i ≤ 1 + 2δ

√
10n

n
,

for all i∈ [n] and `∈ [M ], and

δ ≤ ‖π̃(`1)− π̃(`2)‖ ≤
√

13δ ,

for all `1 6= `2.

Substituting this bound in Eqs. (34), (33), and (32), we get

max
`∈[M ]

E[‖π− π̃(`)‖ ] ≥ E[‖π− π̃(L)‖ ]

≥ δ

2

{
1− 3328n2kdδ2 + 128 log 2

n

}
.

Choosing δ = (b− 1)/(30
√

10(b+ 1)
√
kdn), we know that 3328n2kdδ2 + 128 log 2≤ (1/2)n for all b

and all n≥ 682. This implies that

max
`∈[M ]

E
[
‖π− π̃(`)‖

]
≥ (b− 1)

120(b+ 1)
√

10kdn
.
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From Lemma 8, it follows that ‖π̃(`)‖ ≤ 2/
√
n for all `. Then, scaling the bound by 1/‖π̃(`)‖, the

normalized minimax rate is lower bounded by (b− 1)/(240(b+ 1)
√

10kd). Also, for this choice of

δ, the dynamic range is at most b. From Lemma 8, the dynamic range is upper bounded by

max
`,i,j

π̃
(`)
i

π̃
(`)
j

≤ 1 + 2δ
√

10n

1− 2δ
√

10n
.

This is monotonically increasing in δ for δ < 1/(2
√

10n). Hence, for δ ≤ (b− 1)/((b+ 1)2
√

10n),

which is always true for our choice of δ, the dynamic range is upper bounded by b. This finishes

the proof of the desired bound on normalized minimax error rate for general b.

4.3.1. Proof of Lemma 8 We show that a random construction succeeds in generating a set

of M vectors on the standard orthogonal simplex satisfying the conditions with a strictly positive

probability. Let M = en/128 and for each ` ∈ [M ], we construct independent random vectors π̃(`)

according to the following procedure. For a positive α to be specified later, we first draw n random

variables uniformly from [(1 − αδ
√
n)/n, (1 + αδ

√
n))/n]. Let Y (`) = [Y

(`)
1 , . . . , Y (`)

n ] denote this

random vector in n dimensions. Then we project this onto the n-dimensional simplex by setting

π̃(`) = Y (`) + (1/n− Ȳ (`))1 ,

where Ȳ (`) = (1/n)
∑

i Y
(`)
i . By construction, the resulting vector is on the standard orthogonal

simplex:
∑

i π̃
(`)
i = 1. Also, applying Hoeffding’s inequality for Ȳ (`), we get that

P
(∣∣∣Ȳ (`)− 1

n

∣∣∣> αδ√
n

)
≤ 2e−n/2 .

By union bound, this holds uniformly for all ` with probability at least 1−2e−63n/128. In particular,

this implies that

1− 2αδ
√
n

n
≤ π̃

(`)
i ≤ 1 + 2αδ

√
n

n
, (35)

for all i∈ [n] and `∈ [M ].

Next, we use standard concentration results to bound the distance between two vectors:

∥∥π̃(`1)− π̃(`2)
∥∥2 =

∥∥Y (`1)−Y (`2)
∥∥2−n(Ȳ (`1)− Ȳ (`2))2

Applying Hoeffding’s inequality for the first term, we get P
(
|
∑

i(Y
(`1)
i − Y (`2)

i )2 − (2/3)α2δ2| ≥

(1/2)α2δ2
)
≤ 2e−n/32. Similarly for the second term, we can show that P

(
|
∑

i(Y
(`1)
i − Y (`2)

i )| ≥

(1/4)αδ
√
n
)
≤ 2e−n/32. Substituting these bounds, we get

1

10
α2δ2 ≤ ‖π̃(`1)− π̃(`2)‖2 ≤ 13

10
α2δ2 , (36)
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with probability at least 1− 4e−n/32. Applying union bound over
(
M
2

)
≤ en/64 pairs of vectors, we

get that the lower and upper bound holds for all pairs `1 6= `2 with probability at least 1−4e−n/64.

The probability that both conditions (35) and (36) are satisfied is at least 1−4e−n/64−2e−63n/128.

For n≥ 90, the probability of success is strictly positive. Hence, we know that there exists at least

one set of vectors that satisfy the conditions. Setting α =
√

10, we have constructed a set that

satisfy all the conditions.

4.4. Proof of Theorem 4: Finite sample analysis of MLE

The proof of this theorem will follow in two parts. First we will show that if the gradient of the

loss ∇Lm evaluated at θ∗ is small, then the error between θ∗ and θ̂ is also small. To that end we

begin with a simple inequality:

Lm(θ̂)≤Lm(θ∗).

Let ∆ = θ̂− θ∗. We can add and subtract 〈∇Lm(θ∗),∆〉 from the above equation to obtain

Lm(θ∗+ ∆)−Lm(θ∗)−〈∇Lm(θ∗),∆〉 ≤ 〈∇Lm(θ∗),∆〉.

Now assume ‖∇Lm(θ∗)‖2 ≤ c. By the Cauchy-Schwartz inequality we have that

Lm(θ∗+ ∆)−Lm(θ∗)−〈∇Lm(θ∗),∆〉 ≤ c‖∆‖2.

Therefore, we if we prove that

Lm(θ∗+ ∆)−Lm(θ∗)−〈∇Lm(θ∗),∆〉 ≥ µ

2
‖∆‖22, (37)

then we immediately have that ‖∆‖2 ≤ 2c/µ. We now proceed to establish the above inequality.

4.4.1. Proof of Equation 37 By Taylor’s theorem and the definition of Lm from equation 9

for some v ∈ [0,1] we have

Lm(θ∗+ ∆)−Lm(θ∗)−〈∇Lm(θ∗),∆〉= 1

2m

m∑
l=1

exp(〈θ∗, xl〉+ v〈θ∗, xl〉)
(1 + exp(〈θ∗, xl〉+ v〈θ∗, xl〉))2

(〈∆, xl〉)2.

Now, by assumption
∑

i θ
∗
i =

∑
i θ̂i = 0; and θ∗max− θ∗min and θ̂max− θ̂min ≤ log(b) so that |〈θ∗, xl〉+

v〈θ∗, xl〉| ≤ log(b). Therefore,

Lm(θ∗+ ∆)−Lm(θ∗)−〈∇Lm(θ∗),∆〉 ≥ 1

2m

m∑
l=1

b

(1 + b)2
(〈∆, xl〉)2.

Thus, what remains is to establish a lower-bound on

1

m

m∑
l=1

(〈∆, xl〉)2.

We appeal to the following lemma for the lower-bound.
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Lemma 9. Given m> 12n logn i.i.d. samples yl, xl we have that

1

m

m∑
l=1

(〈∆, xl〉)2 ≥
1

3n
‖∆‖22

with probability at least 1− 1/n.

Finally, we present the following lemma that establishes an upper-bound on ‖∇Lm(θ∗)‖2.

Lemma 10. Given m observations (vl, xl) we have that

‖∇Lm(θ∗)‖2 ≤ 2

√
logn

m

with probability at least 1− 1/n.

Therefore, putting everything together we have that

‖∆‖2 ≤ 6(1 + b)2/b

√
n2 logn

m
,

which establishes the desired result.

4.4.2. Proof of Lemma 9 To prove this lemma we note that

1

m

m∑
l=1

(〈∆, xl〉)2 =
1

m

m∑
l=1

∆Txlx
T
l ∆.

Thus, it is sufficient to prove a lower-bound on λmin( 1
m

∑m

l=1 xlx
T
l ). In order to do so we may again

appeal to recent results on random matrix theory Tropp (2011).

Lemma 11 (Theorem 1.4 (Tropp 2011)). Consider a finite sequence {Xk} of independent,

random, self-adjoint matrices with dimensions d. Assume that each random matrix satisfies EXk =

0 and λmax(Xk)≤R almost surely. Then, for all t≥ 0,

P

{
λmax

(∑
k

Xk

)
≥ t

}
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
where σ2 := ‖

∑
k

E(X2
k)‖, (38)

and ‖X‖ for a matrix X represents the operator norm of X or its larges singular value.

In order to apply the above lemma we let Xl = xlx
T
l −2/n(I−11T/n). Therefore, the Xl are zero-

mean, i.i.d., and symmetric. Furthermore, ‖Xl‖ ≤ 2 and EX2
l = 4/n(I−11T/n)−4/n2(I−11T/n).

Therefore, applying the above lemma to both Xl and −Xl yields the inequality

P

{
‖
∑
l

Xl/m‖ ≥ t

}
≤ 2n exp

(
−t2/2

4
nm

+ 2t/(3m)

)
.

Thus, with probability at least 1− 1/n,

‖ 1

m

∑
l

Xl‖ ≤max(4

√
2 logn

nm
,8/3

logn

m
).
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Hence, as long as 12n logn<m, then

‖ 1

m

∑
l

Xl‖ ≤ 4

√
2 logn

nm
,

with probability at least 1− 1/n.

With the above result in hand we now have that

‖ 1

m

m∑
l=1

xlx
T
l −

2

n
(I −11T/n)‖ ≤ 4

√
2 logn

nm
.

Therefore,
1

m

m∑
l=1

∆Txlx
T
l ∆≥ 2

n
‖∆‖22(1− 2

√
2n logn

m
),

where we have used the fact that ∆ = θ̂− θ∗ and
∑

i θ̂i =
∑

i θ
∗
i = 0. Recalling that, m> 12n logn

the above inequality can be lower bounded by 1
3n
‖∆‖22, establishing the desired result.

4.4.3. Proof of Lemma 10 To establish this result we will proceed by showing each individ-

ual element of ∇Lm is upper bounded by 2
√

logn/(nm) with high probability. Recall that

∇Lm =
1

m

m∑
l=1

xl(E[Xl|xl]−Xl).

Consequently, focusing on a single component ∇Lmk we have that

∇Lmk =
1

m

m∑
l=1

(xl)k(E[Xl|xl]−Xl).

Thus, the kth component of ∇Lm is the average over m independent mean zero random variables

that are upper-bounded by 1 and that each have variance upper-bounded by 1/n. Therefore, an

application of Bernstein’s inequality yields

P(|∇Lmk| ≥ t)≤ 2exp

(
−t2

2
nm

+ 2t
3m

)
.

Therefore,

P(‖∇Lm‖∞ ≥ t)≤ nP(|∇Lmk| ≥ t)

≤ 2n exp

(
−t2

2
nm

+ 2t
3m

)
.

Using arguments similar to those to establish the results in Section 4.4.1 we have that with prob-

ability at least 1− 2/n

‖∇Lm‖∞ ≤ 2

√
logn

nm
,

as desired.
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5. Discussion

The main contribution of this paper is the design and analysis of Rank Centrality: an iterative

algorithm for rank aggregation using pair-wise comparisons. We established the efficacy of the

algorithm by analyzing its performance when data is generated as per the popular Bradley-Terry-

Luce (BTL) or Multinomial Logit (MNL) model. We have obtained an analytic bound on the finite

sample error rates between the scores assumed by the BTL model and those estimated by our

algorithm. As shown, these lead to near-optimal dependence on the number of samples required

to learn the scores well by our algorithm under random selection of pairs for comparison. More

generally, the comparison graph structure plays a crucial role in the performance of the algorithm.

For a tighter analysis of the optimality of Rank Centrality, we provide numerical experiments

under the BTL model and compare it to the Cramer Rao lower-bound. Comparisons with the

Cramer-Rao bound in Figure 3 suggests that the error achieved by Rank Centrality is indistinguish-

able from the fundamental Cramer-Rao lower bound, and thus suggesting it’s stronger optimality

properties compared to what we can establish.

For completeness, we further provided an analysis of the error achieved by the MLE. Build-

ing upon our analysis, Hajek et al. (2014) shows that MLE is near order-optimal, just like Rank

Centrality. It is worth noting, however, that empirically the computational cost of Rank Central-

ity seems much better than that of finding the MLE.
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Appendix. Proof of Lemma 1

A. Proof of Lemma 1

Without loss of generality, let us consider two items i and j such that wi >wj. When we estimate

a higher score for item j then we make a mistake in the ranking of these two items. When this

happens, such that πj − πi > 0, it naturally follows that wi −wj ≤ wi −wj + πj − πi ≤ |wi − πi|+

|πj − wj|. For a general pair i and j, we have (wi − wj)(σi − σj) > 0 implies that |wi − wj| ≤

|wi−πi|+ |wj−πj|. Substituting this into the definition of the weighted distance Dw(·), and using

the fact that (a+ b)2 ≤ 2a2 + 2b2, we get

Dw(σ) =
{ 1

2n‖w‖2
∑
i<j

(wi−wj)2 I
(
(wi−wj)(σi−σj)> 0

)}1/2

≤
{ 1

n‖w‖2
∑
i<j

{
(wi−πi)2 + (wj −πj)2

}}1/2

≤ 1

‖w‖

{
n∑
i=1

(wi−πi)2
}1/2

.

This proves that the distance Dw(σ) is upper bounded by the normalized Euclidean distance

‖w−π‖/‖w‖.

Lemma 12. For any 0≤ θ≤ ln 4/3,

E[exp(θ|Cij|)]≤ 2exp
(
2kpijθ

2/3
)
. (39)

Proof. Note that Cij is zero-mean shifted binomial random variable B(ki, pij). Therefore, by

Hoeffding’s bound and the fact that Cij is the sum of k terms where each term is upper-bounded

by max(pij,1− pij) and lower-bounded by min(pij,1− pij)

E[exp(θ|Cij|)] =E[exp(θCij)ICij ≥ 0] +E[exp(−θCij)ICij < 0]

≤E[exp(θCij)] +E[exp(−θCij)]

=E[exp(θCij)] +E[exp(−θCij)]

≤ 2exp(θ2k/8)

Observe that for any x∈R and θ > 0,

exp(θ|x|)≤ exp(θx) + exp(−θx).

From this, it follows that

E[exp(θ|Cij|)]≤E[exp(θCij)] +E[exp(−θCij)]. (40)
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Now for any θ ∈ R, using the fact that Xij is Binomial distribution and 1 + x ≤ exp(x) for any

x∈R, we have

E[exp(θCij)] = exp(−θkpij)
(
1 + pij(exp(θ)− 1)

)k
≤ exp(−θkpij) exp

(
kpij(exp(θ)− 1)

)
. (41)

Using second-order Taylor’s expansion, for any θ ∈ [− ln 4/3, ln 4/3], we obtain that

| exp(θ)− 1− θ| ≤ 2

3
θ2. (42)

Using above display in (41), we can obtain the claimed result.

B. Proof of Lemma 7

Since we are interested in the eigenvalues of L=D−1B, we define a more tractable matrix with the

same set of eigenvalues: L̃=D−1/2BD−1/2. Because L̃ is a symmetric matrix, the eigenvalues are

the same as the singular values up to a sign. Let σ1(L̃)≥ σ2(L̃)≥ . . . denote the ordered singular

values of L̃. Note that the matrix D−1/2BD−1/2 has largest singular value equal to 1. Therefore,

σ2(L̃) ≤ ‖D−1/2BD−1/2− 11T/n‖2

because the vector 1/
√
n has unit norm. Decomposing the above we have that

‖D−1/2BD−1/2− 11T/n‖2 ≤ ‖B/d− 11T/n‖2 + ‖B/d−D−1/2BD−1/2‖2

We now appeal to the following lemma:

Lemma 13. If the matrix B ∈ Rn×n is the adjacency matrix of a random Graph drawn from the

Erdös-Renyi ensemble G(n,d/n) with d≥C logn and D is the corresponding diagonal matrix whose

entry dii is equal to the degree of node i, then we have that

‖B/d− 11T/n‖2 ≤C
√

logn

d

and

‖B/d−D−1/2BD−1/2‖2 ≤C
√

logn

d

with probability at least 1− 2n−Cn/(n−d)/8.

At this point, applying the above bound yields the result. It remains to prove the above bound.
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B.1. Proof of Lemma 13

We prove the result in two parts. We first focus on establishing that

‖B/d− 11T/n‖2 ≤C
√

logn

d

with probability at least 1−n−Cn/(n−d)8. To prove this result, we appeal to the following

Lemma 14 (Theorem 1.4 (Tropp 2011)). Consider a finite sequence {Xk} of independent,

random, self-adjoint matrices with dimension d. Assume that each random matrix satisfies

EXk = 0 and λmax(Xk)≤R almost surely.

Then, for all t≥ 0,

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
where σ2 = ‖

∑
k

EX2
k‖2.

In our setting we are interested in the random matrix B where we can write B as

B− 11Td/n=
∑
i>j

(Aij − d/n)(eie
T
j + eje

T
i ) +

∑
i

(Aii− d/n)eie
T
i

where Aij is a Bernoulli random variable with parameter d/n. Therefore, in applying the above

Lemma we have that R= 1 almost surely and σ2 = d(1−d/n). Setting t=C
√
d logn we have that

‖B/d− 11T/n‖2 ≤C
√

logn

d

with probability at least 1−n−Cn/(n−d)/8.
Next we show that

‖B/d−D−1/2BD−1/2‖2 ≤C
√

logn

d

with the same probability as above. To prove this result we will let E =D1/2−d1/2I and first note

that

‖B/d−D−1/2BD−1/2‖2 ≤
1

d · dmin

‖D1/2BD1/2− dB‖2

because ‖D1/2‖2 = 1
dmin

. Some simple calculations show that

‖D1/2BD1/2− dB‖2 ≤ ‖B‖2 ·
[
‖E‖22 + 2d1/2‖E‖2

]
by above we know that ‖B‖2 ≤ 2d with high probability. Therefore,

‖B/d−D−1/2BD−1/2‖2 ≤
2

dmin

[
‖E‖22 + 2d1/2‖E‖2

]
An application of Bernstein’s inequality shows that with probability at least 1− 2n−Cn/(n−d)/8 we

have ‖E‖2 ≤ 10C
√

logn. Finally, using the fact that with high probability dmin ≥ 1
2
d

‖B/d−D−1/2BD−1/2‖2 ≤ 12C

√
logn

d

with probability at least 1− 2n−Cn/(n−d)/8.
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