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We study a firm’s optimal strategy to adjust its capacity using demand information. The capacity adjust-

ment is costly and often subject to managerial hurdles which sometimes make it difficult to adjust capacity

multiple times. In order to clearly analyze the impact of demand learning on the firm’s decision, we study

two scenarios. In the first scenario, the firm’s capacity adjustment cost increases significantly with respect

to the number of adjustments because of significant managerial hurdles, and resultantly the firm has a single

opportunity to adjust capacity (single adjustment scenario). In the second scenario, the capacity adjustment

costs do not change with respect to the number of adjustments because of little managerial hurdles, and

therefore the firm has multiple opportunities to adjust capacity (multiple adjustment scenario). For both

scenarios, we first formulate the problem as a stochastic dynamic program, and then characterize the firm’s

optimal policy: when to adjust and by how much. We show that the optimal decision on when and by how

much to change the capacity is not monotone in the likelihood of high demand in the single adjustment sce-

nario, while the optimal decision is monotone under mild conditions and the optimal policy is a control band

policy in the multiple adjustment scenario. The sharp contrast reflects the impact of demand learning on

the firm’s optimal capacity decision. Since computing and implementing the optimal policy is not tractable

for general problems, we develop a data-driven heuristic for each scenario. In the single adjustment scenario,

we show that a two-step heuristic which explores demand for an appropriately chosen length of time and

adjusts the capacity based on the observed demand is asymptotically optimal, and prove the convergence

rate. In the multiple adjustment scenario, we also show that a multi-step heuristic under which the firm

adjusts its capacity at a predetermined set of periods with exponentially increasing gap between two con-

secutive decisions is asymptotically optimal and show its convergence rate. We finally apply our heuristics

to a numerical study and demonstrate the performance and robustness of the heuristics.

Subject classifications : capacity investment; demand learning; exploration-exploitation; Bayesian updating;

data-driven.

Area of review : Operations and Supply Chains

1. Introduction

In most cases capacity investment requires significant time and resource commitment. Because of

this, many capacity decisions are made when there exist significant demand uncertainties. While

early capacity installation enables a firm to seize a time-to-market opportunity, installing capacity
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with little market information may result in a significant mismatch when the realized demand is

seriously different from the capacity level. As choosing a “perfect” initial capacity level well before

the planning horizon is often impossible, many firms adjust their capacity levels after observing

some demand information during the planning horizon. For this strategy to be successful, the firm

should be able to evaluate the benefit and cost between two options – waiting it out (gathering

more information) and committing to an action (adjusting the capacity level) – a classic trade-off

between exploration and exploitation.

However, changing capacity later on is often difficult. Changing capacity often requires a consid-

erable amount of time. It may take several weeks or months to get new machines or workers ready

for production, layoff current labor, or disinvest installed equipment. Increasing capacity by adding

new machines and/or hiring new workers is expensive and often irrevocable. Downsizing the capac-

ity level, which typically requires layoffs and equipment disinvestment, can also be costly. Moreover,

the de facto capacity adjustment cost may increase in the number of capacity adjustments that the

firm has committed to. For example, when Genentech, a biopharmaceutical company, evaluated

the option to build the third cell culture production plant (CCP3) in Vacaville, CA, it was noted

that the effective cost to build this plant would be higher compared to CCP2 which was being built

for the managerial hurdles associated with managing this additional construction project as well

as lower effective operating efficiencies caused by the diseconomy (Snow et al. 2006). As another

example, in a major cosmetic company that the authors have intimate knowledge about, a product

manager needs to get approval from senior executives to change capacity. As frequent requests to

change capacity may be perceived as a sign of incompetence, this managerial hurdle makes it dif-

ficult to change capacity often. We model the fact that it becomes increasingly difficult to change

capacity as the capacity adjustment cost increases in the number of adjustments made.

Naturally, if the capacity adjustment features a long leadtime and high capacity adjustment

costs, or the capacity adjustment increases significantly with respect to the number of adjustments,

less frequent capacity adjustments are observed such as the case in the biopharmaceutical industry

(Kaminsky and Yuen 2014) and the major cosmetic company above. On the other hand, if the

capacity adjustment features a short leadtime and low capacity adjustment costs, and the capacity

adjustment does not vary significantly with respect to the number of adjustments, more frequent

capacity adjustments are observed such as the case in the IT-based company, where the capacity

adjustment for a data center features significantly low adjustment cost, extremely short leadtime,

and no managerial hurdles. Therefore, the capacity adjustment cost is independent of the number

of adjustments and a dynamic capacity adjustment strategy in real time is feasible to manage the

data center capacity (Power Assure 2009).
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Motivated by these observations, we examine a make-to-order firm’s capacity decision using

demand observation: when, and by how much, should a firm adjust its capacity? To investigate

this question, we consider a firm selling a single product for a finite planning horizon when the firm

has only partial information about random demand. In each period, the firm observes the realized

demand and collects more information. Based on the information, the firm actively updates its

knowledge about demand, and uses this updated knowledge in the capacity adjustment decision.

Because of managerial hurdles in capacity adjustment, we consider the scenario where the capacity

adjustment cost may increase with the number of capacity adjustments.

We first build a general model where the capacity adjustment costs increase in the number of

capacity adjustment that the firm has committed to. We show that the decision problem can be

equivalently characterized as one featuring a state-dependent fixed cost. This problem is in general

intractable and we show that even in the special case where the fixed cost is not state-dependent,

the optimal policy can be rather complicated, which clouds the impact of demand learning.

In order to clearly analyze the impact of demand learning on the firm’s capacity adjustment

decision, we consider two special settings of the general model, which differ in how fast the capacity

adjustment cost increases with respect to the number of capacity adjustments. In the first setting,

the capacity adjustment cost increases significantly with respect to the number of capacity adjust-

ments, and resultantly the firm has only a single chance to adjust capacity (a single-adjustment

scenario). This case, in a stylistic way, represents a business environment where it is difficult

to change capacity because of managerial hurdles, as illustrated in the earlier examples in bio-

pharmaceutical and cosmetics industries. In the second setting, the capacity adjustment cost does

not vary with respect to the number of capacity adjustments, and therefore the firm has multi-

ple opportunities to change its capacity (a multiple-adjustment scenario) as long as such change

results in net benefit. We specifically choose these settings while acknowledging the fact that most

decisions in practice fall between these two extremes. We will show that the resultant number of

opportunities that the firm has to adjust its capacity critically affects the structure of the optimal

policy and asymptotically optimal heuristics.

In both single-adjustment and multiple-adjustment scenarios, we first articulate the stochastic

dynamic program formulation of the problem as a special case of the general model and characterize

the structure of the optimal policy. Our technical results show that, while optimal polices and

derivations are methodologically interesting, they are difficult to implement in practice. For this,

we develop data-driven heuristics that are not only implementable but also asymptotically optimal

with guaranteed convergence rates.

In the single adjustment scenario, we show whether to adjust capacity or not in a given period is

not monotone in the firm’s posterior belief about demand. In fact, it can be optimal for a firm to
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increase the capacity level when the likelihood of high demand is moderate, but to stay put (and

collect more demand observations) when the likelihood of high demand becomes even higher. Thus,

the firm’s belief about a demand type does not monotonically affect the decision to adjust capacity

or not, while the amount of capacity to adjust is monotone in the firm’s belief conditioning on that

the firm decides to adjust capacity. In addition, the dynamic program has a very large state space

as a state has to include the firm’s belief about demand type represented as an information vec-

tor. Consequently, solving and implementing the optimal policy quickly becomes computationally

intractable even when there are only a few possible demand types. To overcome this, we propose a

two-step data-driven heuristic, which only depends on the firm’s observed demand data. We prove

that this heuristic is asymptotically optimal in the case where the true demand follows a stochastic

process with stationary and independent increment in time. Specifically, we characterize the rate at

which the regret (the percentage profit loss relative to an upper bound when the firm has complete

demand information) converges to 0 as the problem scale increases.

We then consider the multiple-adjustment scenario and show that the optimal policy is a control

band policy (characterized in Eberly and Van Mieghem 1997), where in each period for a given

information vector, the firm will adjust the capacity up to a threshold if the capacity level is

significantly low relative to the inferred demand, adjust the capacity down to another threshold

if the capacity level is significantly high, and stay put in between. We then further show how the

optimal policy changes with respect to the information vector and provide a condition in which

the optimal policy changes monotonically. Our results illustrate that computing and implementing

the optimal policy are extremely difficult. In place of this, we propose a data-driven heuristic in

which the firm adjusts capacity in exponentially increasing intervals and prove that this policy is

indeed asymptotically optimal with a provable convergence rate.

The impact of limited capacity adjustment opportunities is highlighted when we compare the

optimal policies under the single and multiple adjustment cases. In the single adjustment case,

we show that the optimal policy (and the resultant capacity level) is not monotone in the firm’s

belief about demand being high while in the multiple adjustment case the optimal policy is indeed

monotone in the firm’s belief about demand being high. In the single adjustment, the firm needs

to decide two things: when to adjust and how much. The non-monotonicity is caused by the option

value of adjustment opportunity (if we change the capacity in this period, we cannot change the

capacity again). In the multiple adjustment case, however, the firm does not need to worry about

exhausting the opportunities (although whether to change or not, and to what level are still driven

by capacity cost and leadtime). Although there is a stay-put interval, this is purely driven by cost.

Finally, we illustrate the performance of our heuristics using a numerical study where some of

the key parameters and data are derived from actual production and sales data of an automobile
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instead of using a randomized test bed in order to highlight the fact that our heuristic can be

implemented with demand data and a few parameters that can be either inferred or collected by the

firm. The numerical study demonstrates the value of using demand learning in capacity decision,

and show that our heuristics are very robust with respect to problem parameters and assumptions.

The rest of the paper is organized as follows. The related literature is reviewed in Section 2. The

optimal policy of the stochastic dynamic program for the single-adjustment scenario is presented

and discussed in Section 4. In Section 4.2, we propose a two-step heuristic and prove its asymptotic

optimality. In Section 5 we consider the multiple-adjustment scenario. Similarly to the single-

adjustment scenario, we first characterize the optimal policy of a corresponding stochastic dynamic

program. We then propose a data-drive heuristic policy under which the firm adjusts its capacity in

exponentially increasing intervals and show that this policy is asymptotically optimal. We present

the set-up and results of our numerical study in Section 6 and conclude the paper in Section 7.

2. Literature Review

There is an extensive body of literature in the general area of capacity management. Manne (1967),

Freidenfelds (1981) and Luss (1982) provide surveys on the earlier literature. In the early work, the

main focus is to expand capacity to meet growing demand with no uncertainties. Therefore, the firm

is able to make optimal capacity expansion plans to balance economy-of-scale savings and the cost

associated with a mismatch between demand and supply. For problems with uncertain demand,

Davis et al. (1987) use the piecewise-deterministic Markov process to model an optimal capacity

expansion problem with leadtime. Dixit and Pindyck (1994) provide a survey about the real options

approach to analyze investment without detailed operational implications. Van Mieghem (2003)

provides a comprehensive review about recent developments.

In their seminal paper, Eberly and Van Mieghem (1997) consider a capacity investment prob-

lem and present the optimal capacity policy as a control band policy with respect to initial

capacity, labeled as the ISD (invest—stay put—divest) policy, when the dynamic capacity adjust-

ment is costly and partially irreversible. The major difference between our work and Eberly and

Van Mieghem (1997) is that we explicitly model partially observable states on demand types (which

we call information vector) and learning. In particular, we present a concrete scenario on how the

evolution of information vector (the probability space) occurs through demand learning and infor-

mation updating, and study how the information vector affects the optimal policy. For instance, in

the multiple adjustment setting, we show that the thresholds defining the ISD policy are monotone

in the information vector when the information vector is updated according to Bayes’ rule. We

show that, as the firm’s belief of demand being high increases, the firm’s decision to adjust capacity

changes monotonically with respect to the information vector. We also show, through our analysis
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with the single adjustment case, that this intuitive result does not hold when the firm has very

limited opportunities to adjust capacity. Methodologically, we also extend the result in Eberly and

Van Mieghem (1997) to the case where the capacity level is discrete using the L\-concave function

and its Lovász extension, and establish the optimal policy of the ISD type. We also derive the opti-

mal policy when fixed costs are incurred to adjust capacity. Finally, we propose simple data-driven

heuristics with provable analytical bounds.

Among more recent literature on capacity management, a number of papers assume the firm

has complete information about the parameterized demand distribution. Among them, Chao et al.

(2009) characterize a firm’s optimal capacity policy when the existing capacity is subject to dete-

rioration and random supply constraints. Besanko et al. (2010) study an oligopoly in which firms

make lumpy capacity investment and disinvestment, and show that while firms build excess capac-

ity for a preemption race in the short run, capacity coordination can be achieved in the long run.

Wang et al. (2013) show the optimal capacity policy for two competing technologies is a control

band policy. In contrast to these works, our work emphasizes the firm’s active role of learning

about demand and using it for capacity decisions.

A number of papers consider demand learning in operations contexts. Boyacı and Özer (2010)

consider a firm acquiring information via pricing and advance selling, and characterize the firm’s

optimal policy to stop collecting information and building capacity as a control band policy. Kwon

and Lippman (2011) analyze a firm’s optimal strategy to invest in project-specific assets with

a real option approach, where the firm’s profit follows a Brownian motion, and characterize the

optimal policy as a control band policy. Kaminsky and Yuen (2014) show a pharmaceutical firm’s

investment strategy to acquire clinical trial information and build capacity as a threshold policy.

In our paper, we characterize the firm’s optimal policy to adjust capacity (increasing or decreas-

ing) in two separate settings – single and multiple adjustment cases. We show that, limiting adjust-

ment opportunities can significantly change the optimal policy and methodology that enables us to

characterize the optimal policy. As computing and implementing the optimal solution is extremely

difficult when the firm has uncertainties about underlying demand process, we propose a simple and

implementable heuristic that is asymptotically optimal with a provable convergence rate. These

heuristics overcome challenges posed by incomplete information (Lovejoy 1993).

Our analysis of the optimal policy is closely related to literature on partially observed Markov

decision processes (POMDPs), with a particular emphasis on demand learning with Bayesian

updating. That is, decision makers know the family of distributions, and update their knowledge

about key parameters characterizing the distribution with new observations. Monahan (1982) and

Lovejoy (1991) provide surveys about early works in POMDP. Demand learning in a Bayesian

fashion has been applied in inventory management (e.g., Scarf 1959, Azoury 1985, Eppen and Iyer
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1997, Lariviere and Porteus 1999, Burnetas and Gilbert 2001, Chen and Plambeck 2008). Recently,

Aviv and Pazgal (2005) analyze a firm’s pricing decision using the POMDP framework. In our

paper, we analyze a different operational decision, capacity. Compared to these papers, there are

similarities and differences between capacity and inventory decisions. Both capacity and inventory

are similar as they are used to satisfy demand, and once acquired, they are costly to maintain

(capacity overhead cost and inventory holding cost). Thus, capacity and inventory problems often

use the same machinery to derive analytic results. For instance, convexity (concavity) and its

preservation over the dynamic program is behind the optimality of the base-stock inventory pol-

icy and the optimality of the ISD capacity policy. However, there are several differences between

capacity and inventory literatures. First, capacity is a resource used to produce the inventory to

satisfy demand. Thus, unless adjustment is made, the capacity level stays the same (regardless of

the demand) for each period. On the other hand, inventory is being consumed to meet demand.

Thus, the state and its transition in the corresponding dynamic programming formulation are dif-

ferent. In addition, increasing and decreasing capacity are being considered in capacity literature

while much of inventory literature (although there are exceptions) does not consider disposal as an

active decision. Finally, compared to inventory, capacity adjustment often incurs more significant

costs and are subject to managerial hurdles (e.g., the biopharmaceutical plant and the cosmetics

company). Therefore, compared to inventory decisions where the firm can reorder every period,

the firm may have fewer opportunities to adjust its capacity.

In our work, we explicitly consider the different characteristics of capacity above, formulate the

demand learning process of the firm, and analyze both the optimal policy and simple data-driven

heuristics. Due to these characteristics of capacity, in our multiple adjustment case, the decision to

adjust capacity can be triggered by two or more thresholds with respect to initial capacity while a

typical inventory reordering decision is triggered by a single threshold with respect to initial inven-

tory (such as in the base-stock policy or (s, S) policy). In addition, we show through our analysis

for the single adjustment case that the limited opportunities to adjust capacity significantly change

the firm’s optimal policy: although the firm’s optimal capacity adjustment decision is monotone

with respect to the information vector in the multiple adjustment case, when the opportunities to

adjust capacity are very limited, this intuitive result does not hold.

Methodologically, our heuristics are closely related with the recent research on data-driven opti-

mization. Most papers have focused on inventory (Huh et al. 2011, Besbes and Muharremoglu

2013) and pricing (Burnetas and Smith 2000). Some papers also use regret to quantify the heuris-

tics such as Huh and Rusmevichientong (2009) and Besbes and Zeevi (2009). To the best of our

knowledge, we are one of the first to apply data-driven optimization in the capacity management

setting. In contrast with inventory and pricing decisions, a firm usually has limited opportunities
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to adjust its capacity, and the adjustment process is often costly and lengthy, which makes the

problem somewhat challenging.

3. General Model

In each period, the firm decides whether to change its capacity with existing information and then

observe the demand. The firm serves a single product for a finite horizon of J periods, with period

1 and J as the starting and ending periods respectively. The firm operates in a competitive market

and is a price-taker so that it cannot adjust price instead of capacity. We assume that each period

is of length τ units of time, which will be useful to derive the heuristic in Section 4.2.

We assume that the firm has incomplete information about the demand: while the firm knows the

demand pattern or distribution family about the demand, some key parameters characterizing the

demand (which we call demand type) are unknown. Specifically, there are I ∈N potential demand

types: θi for i∈ {1,2, ..., I} and θi1 < θi2 if i1 < i2. The parameter, θi, determines the parameter(s)

of the underlying demand distribution. Thus, for given demand type i, the demand in period j,

Dj, is represented by a random variable Dj|θi = λj(θi) + ξj|θi where λj(θi) is the mean demand

of Dj|θi, and ξj|θi is a random term with mean 0. We assume the random term ξj is independent

across periods. A number of demand processes can be expressed in this way and our results on the

optimal policy apply to a large class of random variables and demand processes (see remark on

demand process in Section EC.2.1.2).

We assume that demand in each period is stochastically ordered in the demand type parameter:

Dj|θi1 �stDj|θi2 for i1 ≤ i2. Thus, demand stochastically increases in the demand type index, i. We

use Fj(·|θi) and fj(·|θi) to denote the cumulative distribution and the density function (probability

mass function in the case of discrete demand) of Dj|θi. Finally, for ease of exposition, we write

λj(θi) as λj,i, and assume λj,I <∞ for all j for analytical tractability.

The firm observes demand and uses the observations to update its belief about the true demand

type. The firm’s information about the demand evolves as follows. Let the vector π1 be the firm’s

prior distribution of the demand type at the beginning of period 1: π1 = (π1,1, . . . , π1,I) where π1,i =

Pr(Θ = θi). At the beginning of period j (j > 1), the firm’s information about the demand type

is represented by an information vector πj , (πj,1, πj,2, ..., πj,I). The πj,i is defined as the posterior

distribution of the demand being type i given the past demand history, i.e., πj,i ,Pr(Θ = θi|dj−1)

where dj−1 , (d1, d2, ..., dj−1) is a demand history up to period j − 1. After the firm observes dj,

demand at the end of period j, the information vector is updated following Bayes’ rule:

πj+1,i =
πj,ifj(dj|θi)∑I

k=1 [πj,kfj(dj|θk)]
. (1)
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Before the realization of Dj, the information vector is a vector of random variables (denoted

by Πj+1). The following lemma, adapted from page 96 of Williams (1991), proves that given the

current distribution about the demand types, the conditional posterior distributions in the future

periods are the same as the current one in expectation. Thus, the posterior distribution has the

martingale property.

Lemma 1 (Martingale property of the posterior distribution, Williams 1991).

E [Πj2 |Πj1 ] = Πj1, for j1 ≤ j2. (2)

In each period, the firm observes the realized demand, dj, and fulfills the demand using the firm’s

existing capacity in that period. For each unit it satisfies with existing capacity, the firm accrues a

profit of p, which represents the revenue minus the variable production cost (excluding any capacity

cost). If demand exceeds the firm’s capacity, we assume that it is satisfied by an outside option

such as overtime production, emergency fulfillment, or using other production facilities. Let c1 be

the per-unit outside option cost (we call this outside option or outsourcing cost). Note that c1

represents the cost premium of producing one unit using the firm’s outside option. In addition to

production costs, the firm also incurs an overhead cost to maintain the existing capacity, denoted

by c0 per unit capacity and unit time. As this cost represents the firm’s cost to own and maintain

the capacity, it is incurred whether the capacity is used or not in that period. To avoid trivial cases,

we assume p≥ c1 > c0, i.e., the unit profit is higher than the unit cost associated with the outside

option, otherwise the firm will not outsource any demand; the unit outsourcing cost is higher than

the cost to maintain one unit of the firm’s own capacity for one period, otherwise the firm will not

have incentive to build any capacity. A similar cost structure was used in Chao et al. (2009).

When the firm’s capacity level is µ and the firm’s belief about the demand type is πj , the firm’s

expected operating profit hj(πj , µ) in period j (note that each period is τ units of time) is as

follows, where x+ ,max{x,0}

hj(πj , µ),EΘ

{
EDj |Θ

[
pDj − c1 (Dj −µτ)

+− c0µτ |Θ
]∣∣∣πj

}
=

I∑
k=1

πj,kE
[
pDj − c1 (Dj −µτ)

+− c0µτ |Θ = θk

]
. (3)

We note that our base model has a number of assumptions such as (i) demand is not censored,

(ii) leadtimes are symmetric (leadtime for building capacity is the same as leadtime for dispos-

ing capacity), and (iii) only variable capacity costs are assumed. We show that relaxing these

assumptions does not change our results and analysis: see the remarks in Section EC.2.1.2.

We next describe the firm’s capacity decision. At the beginning of the planning horizon, the firm

has initial capacity, µ0. This is for generality. The firm may start with no existing capacity: µ0 = 0,



10

or the firm may use the prior distribution to choose a capacity level or use the existing (legacy)

capacity: µ0 > 0. In each period, the firm decides whether it should adjust its capacity. As changing

capacity often requires considerable amount of time, we assume there is a leadtime of l periods.

To be more specific, suppose that the firm has a capacity level of µ in period j.1 If the firm

decides to change the capacity level from µ to µ′ in period j, the firm’s existing capacity will be

changed to µ′ after l periods (in period j+ l). We assume that both increasing and decreasing the

capacity level are costly to the firm. As we noted earlier, the capacity adjustment cost may depend

on the number of adjustment the firm has made. Let η denote the number of capacity adjustments

that firm has already made, and ca,η be the cost of adding one unit of capacity and γa,η be the

cost of decreasing one unit of capacity. Thus, the cost associated with changing the capacity level

from µ to µ′, denoted by Ĉ(µ,µ′;η), is

Ĉ(µ,µ′;η), ca,η(µ
′−µ)+ + γa,η(µ−µ′)+, where ca,η = ca + Λη and γa,η = γa + Λη. (4)

Notice that if the firm does not change the capacity, Ĉ(µ,µ;η) = 0. We assume ca,η ≥ 0 and

ca,η+γa,η ≥ 0, indicating that it is costly to reverse the installed capacity. Following our discussions

earlier, we assume that ca,η and γa,η weakly increase in η, i.e., Λ≥ 0, which means that the more

capacity adjustment the firm commits to, the more expensive it becomes to adjust capacity. The

parameter Λ measures the degree of managerial hurdles in capacity adjustment. The greater the

hurdle is, the larger the Λ is. For example, Λ is larger in the case of the cosmetics production

manager than the case of the data center. Note that γa,η < 0 implies that the firm may salvage

a portion of its capacity cost, and γa,η ≥ 0 implies that downsizing the capacity is costly to the

firm (e.g., cost of layoff). To avoid trivial cases, we also assume c1(J − l)τ ≥ ca,0 + c0(J − l)τ and

c0(J− l)τ ≥ γa,0. The first assumption implies that it is less costly to increase a unit of capacity for

the first time and maintain it than outsourcing this unit to the more expensive outside option for

the whole time after the adjustment. The second assumption implies that it is cheaper to dispose

unnecessary capacity for the first time than holding it for the whole time after the adjustment.

To simplify notations, we define µ̂j as the capacity position in period j. In general, if the capacity

position is µ̂j in period j, the actual capacity level in period j + l is µj+l = µ̂j. In the example

above, if the firm decides to adjust capacity from µ to µ′ in period j, the capacity position µ̂j is

changed to µ′ immediately while the actual capacity level will be updated to µ′ after l periods.

We allow the set of capacity levels (denoted by K) to be discrete or continuous. When capacity

level is primarily determined by the number of key machines or production lines, it may be appro-

priate that the capacity level must be chosen from a discrete set, i.e., K= {kδ : k ∈Z+}, where Z+

stands for the set of nonnegative integers. Otherwise, capacity levels can be continuous (e.g., the
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capacity is measured by the available labor hours), i.e., K = R+, where R+ stands for the set of

nonnegative real numbers.

Given state (πj , µ̂j−1, ηj), we next derive Vj(πj , µ̂j−1, ηj), the firm’s value-to-go function starting

at period j. We first define Hj (πj , µ̂j−1, µ̂j, ηj) to be the expected operating profit in period j+ l

(that is, when the capacity is in effect) minus the capacity adjustment cost that the firm incurs,

provided that the firm has adjusted the capacity ηj times.

Hj (πj , µ̂j−1, µ̂j, ηj),E
[
hj+l (Πj+l, µ̂j)− Ĉ (µ̂j−1, µ̂j;ηj) |πj

]
= hj+l (πj , µ̂j)− Ĉ (µ̂j−1, µ̂j;ηj) (5)

The equality follows Lemma 1 and the fact that hj+l (Πj+l, µ̂j) is linear in Πj+l. We also define

a policy g as {µ̂j(πj , µ̂j−1, ηj), j = 1,2, ..., J − l} and Gm as the set of all the admissible policies.

Then, the firm’s problem is to determine a policy g∗ ∈ Gm to maximize the total expected profit,

max
g∈Gm

l∑
j=1

E [hj(Πj , µ0)|π1] +
J−l∑
j=1

Eg [Hj(Πj, µ̂j−1, µ̂j, ηj)|π1] (6)

where the expectation is taken over Dj for all j at time zero. As the profit from the first l periods is

not affected by the firm’s capacity decision, the decision problem is to find a policy that maximizes

the following function:

V1(π1, µ̂0,0) = max
g∈Gm

J−l∑
j=1

Eg [Hj(Πj, µ̂j−1, µ̂j, ηj)|π1] (7)

We define an indicator 1C : 1C = 1 if condition C is met and 0 otherwise. Then the optimal value-

to-go function is recursively defined as follows: for all j ∈ {1,2, ..., J − l},

Vj(πj , µ̂j−1, ηj) = max
µ̂∈K

E
[
Hj(πj , µ̂j−1, µ̂, ηj) +Vj+1(Πj+1, µ̂, ηj)1{µ̂=µ̂j−1}

+Vj+1(Πj+1, µ̂, ηj + 1)1{µ̂6=µ̂j−1}|πj

]
Vj(πj , µ̂j−1, ηj) = 0 for j > J − l. (8)

Equivalently, by defining a state-dependent fixed cost K(πj , µ̂j−1, ηj) , E[Vj+1(Πj+1, µ̂j−1, ηj)−

Vj+1(Πj+1, µ̂j−1, ηj + 1)|πj ], we have equations (8) reformulated as follows:

Vj(πj , µ̂j−1, ηj) = max
µ̂∈K

{
hj+l (πj , µ̂)− Ĉ (µ̂j−1, µ̂;ηj)−K(πj , µ̂j−1, ηj)1{µ̂6=µ̂j−1}

+E [Vj+1(Πj+1, µ̂, ηj + 1)|πj ]
}

+K(πj , µ̂j−1, ηj);

Vj(πj , µ̂j−1, ηj) = 0 for j > J − l. (9)

Therefore, the decision problem is equivalent to one featuring both demand learning as reflected

by the state πj and a state-dependent capacity adjustment fixed cost K(πj , µ̂j−1, ηj). The state-

dependent fixed cost makes the problem generally intractable. In fact, we show that even for a
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capacity investment problem with demand learning and a stationary fixed cost, the optimal policy

can be rather complicated in Section EC.2.2.2.

In order to clearly understand the impact of demand learning on the capacity investment decision,

we consider two special cases in the following sections. Recall that ca,η = ca+Λη and γa,η = γa+Λη

where Λ measures the degree of managerial hurdles. We first consider the case where the capacity

adjustment cost increases significantly with the number of adjustments, i.e., Λ = M where M is

a very large number, reflecting the scenario with significant managerial hurdles such as the case

for the cosmetic production manager. As a result, the firm has only one opportunity to adjust its

capacity over the decision horizon. We analyze this case in Section 4. We also consider the case

where the capacity adjustment cost does not change with respect to the number of adjustments, i.e.,

Λ = 0, reflecting the scenario of little managerial hurdles in capacity adjustment. In this scenario,

the firm has multiple opportunities to adjust its capacity. We analyze this case in Section 5.

4. Capacity Investment with a Single Adjustment Opportunity

We first study the case where the firm’s capacity adjustment cost increases significantly in the

number of adjustments, i.e., the managerial hurdle parameter Λ = M where M is a very large

number. In this case, it follows that the firm has a single opportunity to adjust capacity during

a planning horizon. The state of initial capacity µ0 is suppressed for simplicity and the number

of capacity adjustment is embedded in the new formulation. Therefore, we only need to show the

state of the firm’s information on the demand type as the state.

We derive Vj(πj), the firm’s value-to-go function starting at period j, as follows. If the firm has

not adjusted the capacity before, then the firm can choose either to adjust capacity, whose value

corresponds to Laj (πj), or to stay put in period j, whose value corresponds to Lsj(πj). Formally,

the value-to-go function Vj(πj) is defined as follows2:

Vj(πj) = max
{
Laj (πj),L

s
j(πj)

}
(10)

If the firm chooses to adjust capacity in the period, then the firm chooses the capacity that

maximizes the expected total profit. Thus, Laj (πj), where the superscript a is for “adjustment”, is:

Laj (πj),max
µ∈K

E

[
J∑

k=j+l

hk(Πk, µ)− Ĉ(µ0, µ)

∣∣∣∣∣πj

]
= max

µ∈K

{
J∑

k=j+l

hk(πj , µ)− Ĉ(µ0, µ)

}

=
J∑

k=j+l

hk
(
πj , µ̂

a
j (πj)

)
− Ĉ

(
µ0, µ̂

a
j (πj)

)
(11)

The first equality follows Lemma 1 and the fact that hk(Πk, µ) is linear in Πk. We also define the

induced target capacity position µ̂aj (πj) = arg maxµ∈K

{∑J

k=j+l hk(πj , µ)− Ĉ(µ0, µ)
}

, the optimal



13

capacity position to adjust in period j for given information vector πj if the firm decides to adjust

capacity. Later in the paper, for simplicity, we write it as µ̂aj when there is no confusion. In case

there are multiple maximizers, we break the tie by choosing the smallest capacity position.

If the firm stays put in period j, the value-to-go function Lsj(πj), where we use the superscript

s for “stay put”, is defined as

Lsj(πj), hj+l(πj , µ0) +E [Vj+1(Πj+1)|πj ] (12)

which is the sum of the two terms: the expected one period profit when capacity is µ and the

expected future profit (from period j+1). Note that, if the firm stays put in period j, it maintains

the option to change the capacity in the future.

Therefore, to characterize the firm’s optimal policy, we only need to compare Laj (πj) and Lsj(πj):

the choice between making an adjustment in period j or delaying the decision. Note that, in the

single adjustment case, the problem of choosing “when to adjust” and “by how much” is recast as

an optimal stopping time problem.

4.1. Optimal Policy in the single adjustment case

We now characterize the firm’s optimal capacity policy, starting with the case when capacity levels

form a discrete set (K= {kδ : k ∈Z+}). To this end, we first define a convex partition of the set that

contains feasible information vectors πj : Pj = {πj = (πj,1, πj,2, . . . , πj,I) :
∑I

i=1 πj,i = 1, πj,i ≥ 0}.

Definition 1. Pj = {Pj,k :Pj,k ⊂Pj} is a convex partition of Pj, if the following conditions are

satisfied:

(i) ∅ /∈ Pj;

(ii)
⋃
kPj,k =Pj;

(iii) if k 6= r, then Pj,k
⋂
Pj,r = ∅;

(iv) for any α∈ (0,1), if πj ∈Pj,k and π̂j ∈Pj,k, then απj + (1−α)π̂j ∈Pj,k.

In other words, Pj is a collection of subsets of information vectors where each subset is non-empty

and convex, and the union of these subsets is Pj.

We next characterize the firm’s optimal policy to adjust the capacity. We use πj � π′j to

denote that the posterior distribution πj is smaller than π′j in the first order stochastic sense, i.e.,∑i

k=1 πj,k ≥
∑i

k=1 π
′
j,k for all i = 1,2, ..., I. Let µ̂∗j (πj) be the optimal capacity position in period

j given information vector πj , Sj,k be a sequence of convex sets, and Sj =
⋃
k Sj,k. The following

proposition characterizes the optimal policy.

Proposition 1 (Optimal capacity policy: Discrete capacity case). For j = 1,2, ..., J− l:

(i) Laj (πj) and Lsj(πj) are convex in πj. Therefore, Vj(πj) is convex in πj.

(ii) Let Pj,k =
{
πj : µ̂aj (πj) = kδ

}
. Then, Pj = {Pj,k :Pj,k 6= ∅, k ∈Z+} is a convex partition of Pj.
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(iii) In each Pj,k ∈ Pj, there exists at most one convex set Sj,k ⊆ Pj,k such that if πj ∈ Sj,k, it is

optimal to adjust the capacity position to kδ: µ̂∗j (πj) = µ̂aj (πj) = kδ. If πj /∈ Sj, then it is optimal

to wait: µ̂∗j (πj) = µ0.

(iv) If πj ,π
′
j ∈ Sj and πj �π′j, then µ̂∗j (πj)≤ µ̂∗j (π′j).

Part (iii) of Proposition 1 implies that the firm’s decision to adjust capacity level in the current

period is not monotone in its belief about the demand type, πj . That is, it is possible that the

firm may increase the capacity when the likelihood of high demand is low, but wait to observe

more demand when the likelihood of high demand becomes even higher, i.e., µ̂∗j (πj)> µ̂∗j (π
′
j) for

πj ≺π′j . Thus, as πj stochastically increases, the optimal policy can switch multiple times between

waiting and adjusting. Within each Pj,k ∈ Pj, it is optimal to adjust capacity only when πj falls

in a convex subset Sj,k. If πj ∈Pj,k\Sj,k, it is optimal to wait. Recall that the problem defined in

equation (10) is indeed an optimal stopping problem. Thus, one would expect that the optimal

policy would be characterized by a monotone threshold (switching curve) in information vector

as πj stochastically increases. Proposition 1 shows that it is not the case. Although this seems

surprising at first, this phenomenon indeed reflects the primary trade-off that the firm juggles—

exploration versus exploitation. On one hand, the firm would like to exploit benefits from the

current information by adjusting the capacity now. On the other hand, if a few more observations

of the demand (and, resultantly, updated belief) may shift the firm’s target capacity position

considerably, it might be beneficial to wait. Part (iv) shows that in regions where it is optimal to

change the capacity position, the target capacity position increases in the information vector, πj .

In other words, given that the firm changes the capacity in the same period, the optimal capacity

position is monotonically increasing in the information vector.

Figure 1 illustrates how the optimal policy changes in πj in a two-demand-type case. We note

that as there are only two demand types, the information vector is πj = (πj,1, πj,2) and πj,1 +πj,2 = 1,

so it is sufficient to show how the optimal policy changes with respect to πj,2, the probability of

demand being type high. In this case, the space of feasible information vectors Pj is partitioned

into 5 convex subsets (Pj,ki), and each subset corresponds to a different level of µ̂aj (πj) (i.e., the

induced target capacity position given the firm decides to adjust capacity in that period shown by

the dashed lines in Figure 1(B)). The white regions correspond to the regions in which it is optimal

to adjust the capacity (Sj,k) while the grey regions correspond to the stay-put region. Notice that

the firm may choose to adjust capacity for the whole region (Sj,k1 = Pj,k1), or choose to wait for

the whole region (Sj,k4 = ∅).

In Figure 1(B), we observe that µ̂a (indicated by dashed lines) increases in the information

vector, i.e., µ̂j
a(πj) ≤ µ̂a(π′j) when πj � π′j . However, the decision to adjust the capacity is not



15

Figure 1 A numerical example of the optimal policy with two demand types and discrete capacity levels.

Note. Parameters: price p= 7, capacity outsourcing cost c1 = 7, capacity overhead cost c0 = 1, capacity upgrading

cost ca = 0, capacity downgrading cost γa = 0; high demand type follows a Poisson distribution with mean of 124;

low demand type follows a Poisson distribution with mean of 120. Initial capacity µ0 = 135. Base capacity unit δ= 1.

Leadtime l= 0. There are 20 periods in total and the example illustrates the policy in period 12. The white regions

correspond to the adjustment regions while the grey regions correspond to the stay-put region. When the optimal

decision is to stay put, the optimal capacity corresponds to the initial capacity, as defined in Proposition 1.

monotone in πj as shown in Figure 1(A). In this case, given that the initial capacity corresponds

to the optimal target position in region 4, as the information vector increases, the optimal decision

on when to change the capacity is not monotone. The firm first chooses to adjust down (regions

Pj,k1 to Pj,k2), then stay put (regions Pj,k2 to Pj,k3), then adjust down again (region Pj,k3), then

stay put again (regions Pj,k3 to Pj,k5), and finally adjust up (region Pj,k5).

While one may think that this discontinuity is driven by the fact that the feasible capacity level

must be chosen from a discrete set, we show that the same result holds even when the capacity

level is a continuous variable, as shown in the next proposition. We define µ̂∗j (πj) as the optimal

capacity position in period j given information vector πj and let Sj = {πj :Laj (πj)>L
s
j(πj)}.

Proposition 2 (Optimal capacity policy: Continuous capacity case). For j = 1, ..., J −

l,

(i) Laj (πj) and Lsj(πj) are convex in πj. Therefore, Vj(πj) is convex in πj.

(ii) For πj and π′j ∈ Sj, if πj �π′j, then µ̂∗j (πj)≤ µ̂∗j (π′j).

Part (ii) above implies that as in the discrete type case if the firm decides to adjust the capacity,

then the target capacity position increases in the information vector. However, it is important to

notice that the optimal capacity position under the optimal policy is still non-monotone in the

information vector. This is because the firm’s decision about whether to adjust the capacity in

this period does not change monotonically with respect to the increased likelihood. To see why,
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Figure 2 An example of non-monotone optimal adjustment region across periods.
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Note. Parameters: price p= 60, capacity outsourcing cost c1 = 60, capacity overhead cost c0 = 30, capacity upgrading

cost ca = 100, capacity downgrading cost γa = 50; high demand type follows a Gamma distribution with mean of

20 and variance of 30; low demand type follows a Gamma distribution with mean of 10 and variance of 15. Initial

capacity µ0 = 25. Leadtime l= 0. There are 20 periods in total. πj is the posterior probability of demand being type

high in period j.

note that when-to-stop decision is determined by comparing two functions that are convex in πj ,

Laj (πj) and Lsj(πj), in the optimal stopping problem. Thus, Sj is not necessarily a connected set.

So far, we have discussed the firm’s optimal policy in any given period. Next, we discuss how the

optimal policy changes across periods. We find that, with capacity cost (even when only the variable

cost is incurred), the optimal policy is non-monotone in time. To see this, we have first considered

the case where it is costless to adjust capacity. In this case, we show that the regions in which the

firm changes capacity (either increasing or decreasing) expands in time. This makes sense, as time

moves towards the end of the horizon, the value of staying-put (and observing demand) decreases

because the time left to utilize the explored knowledge to maximize profit becomes shorter.

As illustrated in Figure 2, this is no longer true if changing capacity is costly, i.e., ca > 0 and

γa > 0. In the figure, the adjustment region first expands, and then shrinks in time. As the firm

gets enough information, the value of staying-put (and observing demand) decreases because the

time left to maximize profit also decreases, which explains the expansion region. As the period

approaches the end of the horizon, the return from the adjusted capacity may not justify the cost

to adjust it. In this case, the information becomes of almost no value as there is not enough time

to recoup investment. Thus, as seen in the figure, the adjustment region shrinks as time moves

towards the end of the horizon even when there is no capacity leadtime.

We briefly discuss modeling features and assumptions on demand process, fixed cost and lead-

time, the rationale behind them, and the consequences of removing or relaxing them in Appendix
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EC.2.1.2. In Section 5, we will consider the multiple adjustment case and highlight the difference.

The subsection following the remarks will derive a heuristic policy and analyze its performance.

4.2. Near-Optimal Heuristic and Performance Evaluation

As Section 4.1 shows, the optimal policy is complicated and difficult to implement even for small

problems with finite demand types and capacity levels. One of the reasons is that the state space—

which includes the information vector πj—is uncountably infinite, and therefore computing the

exact optimal policy is computationally intractable for large problems. For smaller problems, a fine

mesh approximation with linear interpolation can approximate the value-to-go function and hence

the optimal policy (as we do for one part of our validation case study in Section 6), but in general,

the curse of dimensionality makes it impossible to find the optimal policy.

Therefore, we propose a simple two-step heuristic and prove its performance. The firm observes

demand for a specific amount of time (τn units of time whose value depends on the problem size)

and then adjusts the capacity based on the observed demand. We then show that, in an asymptotic

regime, this heuristic is near-optimal when the underlying demand process is a stationary process

with unknown mean under the regret criterion, which quantifies the gap between an upper-bound

(based on information relaxation and deterministic approximation) and the value-to-go function

derived from the two-step heuristic.

We scale up both demand and capacity by a coefficient n to define the asymptotic regime. For

this, consider the firm’s problem with a planning horizon [0, T ] within which the firm reviews its

decision periodically. Let τn be the time between two consecutive decision opportunities so that

the corresponding decision problem is a discrete-time dynamic program with Jn = T/τn periods.

Likewise, let ln be the capacity lead time (described in the number of periods): ln = lt/τn where

lt ∈ [0, T ]. Without loss of generality, we assume Jn = T/τn and ln = lt/τn are integers. Note that

the choice of τn affects the performance of a heuristic. In our heuristic, we construct a sequence of

τn to achieve the asymptotic optimality with a provable convergence rate. We note that continuous

monitoring of the demand process may not be feasible, for example, when the demand information

needs to be aggregated from retailers at various locations. In these cases, firms often use a periodic

reporting rule so that the realized demand can be collected and reported in a periodic fashion.

We assume that the firm’s demand follows a stationary random process with an unknown average

demand rate. Let {N(t), t≥ 0} denote a standard random process with stationary and independent

increment, which satisfies N(0) = 0, has mean E[N(t)] = t, and variance V ar[N(t)] = σ2t for t≥ 0.

For example, when σ= 1, the process {N(t), t≥ 0}may represent a unit-rate Poisson process, as the

one considered in Besbes and Zeevi (2009); when σ 6= 1, {N(t), t≥ 0} may represent a compound

Poisson process. When the demand type is i, we define {N(nλit), t ≥ 0}, i ∈ {1,2, ..., I} as the
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Table 1 The two-step heuristic

Given the period length of τn,

1. The firm serves the demand in period 1 with initial capacity nµ0. Let nλ̂τn be the observed demand
rate in period 1.

2. The firm adjusts its capacity position to nλ̂τn .
3. The firm serves demand from period 2 to ln + 1 with the initial capacity nµ0, and from ln + 2 to Jn

with capacity nλ̂τn .

corresponding demand process with demand type parameter θi,n = nλi. That is, given demand type

i, the firm’s demand in period j is Dj|θi,n =N(nλijτn)−N(nλi(j−1)τn), and therefore the demand

in each period is a sequence of i.i.d. random variables with mean nλiτn and variance σ2nλiτn.3

We assume that the firm’s initial capacity is scaled up as nµ0. All other aspects of the model

(e.g., costs, revenue, etc.) are the same as the original model considered in Section 4. To show

the asymptotic optimality, we impose the following assumptions on λi such that λi ∈ [0, M ]. The

assumption stipulates that, the demand rate for any type i is bounded from above. With this

set-up, we now introduce and analyze the two-step heuristic, denoted by (ts).

The two-step heuristic. The firm observes demand for one period comprising τn units of time,

and then uses the observed demand rate to adjust the capacity for the rest of the time horizon,

as specified in Table 1. We will show that this simple policy is asymptotically optimal with an

appropriately chosen τn (which is a function of the scale parameter n).

Under the two-step heuristic, the firm always adjusts the capacity to the observed demand rate

in the first period. Therefore, we define

λ̂i,τn ,
N(nλiτn)

nτn
, (13)

Then the firm’s expected value-to-go function under the heuristic is as follows.

V ts
0,n(π1) =

I∑
i=1

π1,iE

 pDln+1− c1 (Dln+1−nµ0τn)
+− c0nµ0τn− Ĉ(nµ0, nλ̂i,τn)

+
∑Jn

j=ln+2

[
pDj − c1

(
Dj −nλ̂i,τnτn

)+

− c0nλ̂i,τnτn

] ∣∣∣∣∣∣θi,n
 (14)

For ease of exposition, we suppress the dependency of V ts
0,n(π1) on π1 when there is no confusion.

As the two-step heuristic is a feasible policy for the corresponding optimal stopping problem,

it follows that the value-to-go function under the two-step heuristic, V ts
0,n, is a lower bound of the

value-to-go function under the optimal policy, denoted by V ∗0,n. However, because of the complexity

of the optimal policy and the curse of dimensionality, the exact value function under the optimal

policy, denoted by V ∗0,n is difficult to compute. Hence, we will introduce an upper-bound of V ∗0,n to

evaluate the performance of the heuristic.

Upper bound. We derive an upper bound of V ∗0,n based on information structure relaxation.

Consider a hypothetical model, where the information of demand type is revealed to the firm in
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the first period. In this case, the firm has full information (fi) about the demand type, and is able

to decide the optimal capacity position contingent upon the demand type. Consequently, we obtain

the firm’s value-to-go function as follows:

V fi
0,n(π1) = max

µ1,...,µI

I∑
i=1

π1,iE

{
Jn∑

j=ln+1

[
pDj − c1 (Dj −nµiτn)

+− c0nµiτn

]
− Ĉ(nµ0, nµi)

∣∣∣θi,n} (15)

We observe that the value-to-go function above is concave in the demand. Therefore, by Jensen’s

inequality, we have an upper bound of V fi
0,n from a deterministic (d) problem as follows:

V d
0,n(π1) = max

µ1,...,µI

I∑
i=1

π1,i

{[
pnλi− c1n(λi−µi)+− c0nµi

]
(Jn− ln)τn− Ĉ(nµ0, nµi)

}
=

I∑
i=1

π1,i

{
(p− c0)nλi(Jn− ln)τn− Ĉ(nµ0, nλi)

}
(16)

In the deterministic problem described in equation (16), the optimal target capacity for demand

type i is µ∗i = λi. It is not a surprise that the firm’s optimal action is to adjust the capacity to

the mean instead of a newsvendor type fractile, because the decision problem is deterministic, and

there is no uncertainty in the demand. Finally, it follows that V ∗0,n ≤ V
fi

0,n ≤ V d
0,n.

Performance evaluation. To evaluate the performance of the policy in the asymptotic regime,

we analyze the metric of regret, which measures the gap between the value-to-go function under

the heuristic and the deterministic upper bound. Formally, the regret of the two-step heuristic is

defined as Rts
n = 1−V ts

0,n/V
d

0,n. In the following, we say a heuristic is asymptotically optimal if the

regret converges to 0 as the scale factor n increases to infinity. For two sequences {an} and {bn}, we

write an � bn if an =O(bn) and bn =O(an). Then we characterize the asymptotic regret as follows.

Proposition 3 (Asymptotic regret: Two-step heuristic).

If τn � n−
1
3 for all n, the two-step heuristic is asymptotically optimal and Rts

n =O
(
n−

1
3

)
.

We first observe that the firm sets τn � n−
1
3 corresponding to a problem scale of n. This reflects

the exploration-exploitation tradeoff the firm faces. For a given problem scale n, the firm has

incentive to set a long observation period to explore the demand so that it can obtain more demand

information. However, the longer the observation period is, the less time is left for the firm to

exploit the benefit of its knowledge about demand by adjusting the capacity. Therefore, the firm

has to choose an appropriate period length to balance this tradeoff. As the problem scale increases,

more demand information is available within a unit of time. Therefore, the firm is able to reduce

the observation period and starts to exploit its knowledge earlier. The result in Proposition 3

directly extends to the case where the variance does not depend on λi. We also extend the result

to accommodate the case where the variance may increase in a different rate with respect to the

problem scale n in Appendix EC.2.1.2.
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5. Capacity Investment with Multiple Adjustment Opportunities

We now move on to the other case where the capacity adjustment cost does not depend on the

number of adjustments the firm has committed to, i.e., the managerial hurdle parameter Λ = 0,

and therefore the capacity adjustment cost Ĉ(µ,µ′) , ca(µ′ − µ)+ + γa(µ− µ′)+. In this case, it

follows that the firm has multiple opportunities to adjust capacity during a planning horizon. As

described in Section 3, at the beginning of each period, the firm first decides whether it will adjust

its capacity or not, and if so, by how much. Then the demand is realized and satisfied using the

firm’s capacity and (if short) an outside option. At the end of the period, the firm updates the

posterior distribution of demand types. We first present the case where the capacity level set is

discrete, i.e., K= {kδ : k ∈Z+}, where Z+ stands for the set of nonnegative integers, and there are

still I demand types. Then we also characterize a similar optimal policy for the continuous capacity

level. We consider the case that the capacity adjustment decision is made based on the capacity

position. We also discuss the case where capacity reduction cannot exceed the current installed

capacity level in Section EC.2.3. We use a superscript m to indicate the multiple adjustment model.

Following equation (9), the optimal value-to-go function is recursively defined as follows: recall

that K= {kδ : k ∈Z+}, for all j ∈ {1,2, ..., J − l},

V m
j (πj , µ̂j−1) = max

µ̂∈K

{
hj+l (πj , µ̂)− Ĉ (µ̂j−1, µ̂) +E

[
V m
j+1(Πj+1, µ̂)|πj

]}
;

V m
j (πj , µ̂j−1) = 0 for j > J − l. (17)

Let πj be the information vector and µ̂j−1 be capacity position at the beginning of period j.

The next result shows that, for a given πj , the optimal policy is of a control band type.

Proposition 4 (Optimal policy for multiple adjustment opportunities). The optimal

capacity position, µ̂∗(πj), is characterized by two thresholds µ
j
(πj) and µ̄j(πj), such that:

(i) If µ̂j−1 <µj(πj), it is optimal to adjust the capacity position up to µ̂∗(πj) = µ
j
(πj).

(ii) If µ
j
(πj)≤ µ̂j−1 ≤ µ̄j(πj), it is optimal to stay put, i.e., µ̂∗(πj) = µ̂j−1.

(iii) If µ̂j−1 > µ̄j(πj), it is optimal to adjust the capacity position down to µ̂∗(πj) = µ̄j(πj).

When proving the result for discrete capacity levels, the usual argument based on concavity does

not work as the concavity requires the continuity. Instead, we use L\-concavity (Murota 2003) and

its Lovász extension, both of which have been used in inventory literature: see Zipkin (2008), Huh

and Janakiraman (2010), Gong and Chao (2013) and Chen et al. (2014). To define L\-concavity, let

e, (1, ...,1) be an n-dimensional vector of 1’s and S ⊂Zn+ be a lattice. A function f : S→R is L\-

concave if the function ψ(v, ξ) = f(v− ξe), a scalar ξ ≥ 0, is supermodular on {(v, ξ)|v− ξe∈ S}.

In order to prove the result, we show that L\-concavity is preserved in the dynamic program and

its Lovász extension is a concave function. The proof is in Appendix EC.2.2.1.
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This result expands the result of Eberly and Van Mieghem (1997) who show that the optimal

policy is of a control band type for a given information vector to the discrete capacity case. Intu-

itively, as it is costly to adjust capacity, the firm will adjust the capacity only if the current capacity

position is significantly lower or higher than the expected level. In contrast to the single adjustment

case, where the value-to-go function is not necessarily concave in the initial capacity, we show that

the value-to-go function is L\-concave in the starting capacity for the multiple adjustment case.

The L\-concave value-to-go function and its Lovász extension enables a simple characterization of

the optimal policy by two state-dependent capacity adjustment thresholds. Note that, however, the

result only holds for a given information vector. Thus, in order to fully characterize the optimal

policy, we also need to know how the optimal policy changes with respect to the information vector.

Also, note that, in spite of the fact that the structure can be readily described, the optimal policy

is still computationally complex because the information vector πj is uncountable.

When the capacity type is continuous, i.e., K=R+, the optimal value-to-go function is modified

accordingly. The control band policy similar to Proposition 4 holds for the continuous capacity

case. The details are relegated to the Appendix EC.2.2.1.

We next show how the two thresholds µ
j
(πj) and µ̄j(πj) change in the information vector πj .

For this, we introduce the likelihood ratio order: for information vector πj = (πj,1, ..., πj,I) and

π′j = (π′j,1, ..., π
′
j,I), we have πj is smaller than π′j in the likelihood ratio order sense, i.e., πj �lr π′j ,

if π′j,i/πj,i ≤ π′j,̂i/πj,̂i for any i < î.

Proposition 5 (Monotonicity of switching curves). Both µ
j
(πj) and µ̄j(πj) increase as

the information vector, πj, increases in the likelihood ratio order sense.

Proposition 5 implies that as the underlying demand type becomes more likely to be high, both

invest-up-to and divest-down-to thresholds increase. In other words, the switching curves and the

resultant capacity levels that the firm sets under the optimal policy are both monotone in πj .

This is a sharp contrast to the result of the single adjustment case, in which the optimal policy

(and the resultant capacity level) is not monotone in the information vector. This highlights how

optimal policy changes when the firm has very limited opportunities to change the capacity. In the

single adjustment case, the firm needs to decide two things: when to adjust and by how much. As

a result, the firm may decide to wait even in the state when πj is high while it increases capacity

when πj is lower. In the multiple adjustment case, however, the firm does not need to worry about

exhausting the opportunities (of course, whether to change or not, and to what level are still driven

by capacity cost and leadtime). Although there is a stay-put interval, this is purely driven by cost.

In the single adjustment case, however, the non-monotonicity is caused by the option value of

adjustment opportunity (if we change capacity in this period, we cannot change it again).
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Table 2 The multi-step heuristic

Given the period length τn and the number of adjustment opportunities Kn,
1. The firm serves the demand in period 1 with the initial capacity nµ0.
2. For κ= 1 :Kn

a. The firm adjusts the capacity position at the start of period 2κ to the observed average
demand during the first 2κ− 1 periods denoted by nλ̄κ. The capacity level will be updated
accordingly ln periods later.

b. The firm serves the demand from period 2κ to 2κ+1− 1 using the (updated) capacity.
End

3. The firm serves the demand in the remaining periods using the updated capacity.

Our results can be generalized to the case with fixed capacity cost, the capacity reduction is

limited by the current available capacity, and different leadtimes to increase and decreases capacity.

The details are provided in EC.2.2.2 and EC.2.3.

5.1. Near-Optimal Heuristic and Performance Evaluation

We next derive a simple near-optimal heuristic similar to the one in Section 4.2. The setting is

entirely identical other than the fact that the firm is able to adjust its capacity multiple times

during the decision horizon [0, T ] (equivalently period 1 to Jn in discrete time). We also show that

in an asymptotic regime (same as the one defined in Section 4.2), this multi-step heuristic (ms) is

asymptotically optimal, and provide a performance upper bound for the heuristic under the regret

criterion. To show the asymptotic optimality, we also impose Assumption ?? on λi. Note that the

choice of τn affects the performance of a heuristic. In our heuristic, we construct a sequence of τn

to achieve the asymptotic optimality with a provable convergence rate. The result also holds for a

demand process where the variance does not depend on λi.

The multi-step heuristic. In this heuristic, the firm adjusts its capacity only in a subset

of the Jn periods, instead of doing it in every period. Specifically, the κth adjustment of the

capacity position occurs at the beginning of period 2κ, and the actual change of capacity levels

occurs at the start of period 2κ + ln, for κ= 1,2, ...,Kn, where Kn is the largest integer such that

ln +
∑Kn+1

κ=1 2κ−1 ≤ Jn, i.e., Kn , blog2(Jn− ln + 1)c− 1. That is, the time between the κ− 1th and

κth adjustments is 2κ−1τn (2κ−1 periods). The intuition for choosing the exponentially increasing

periods between two consecutive adjustment decisions is that as more demand information is

collected, adding new observations is less likely to change the information vector in a significant

way. The details of the heuristic are illustrated in Table 2.

In this heuristic, the firm always adjusts the capacity position to the observed demand rate.

To evaluate the value-to-go function under this heuristic, we denote the observed demand rate

contingent upon the demand type i by nλ̄i,κ for κ≥ 1. Then, we first define λ̄i,κ recursively below.

λ̄i,1 ,
D1|θi,n
nτn
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λ̄i,κ ,
λ̄i,κ−1n(2κ−1− 1)τn +

∑2κ−1

j=2κ−1Dj|θi,n
n(2κ− 1)τn

, κ= 2,3, ...,Kn (18)

For notational simplicity, we also define λ̄i,0 , µ0. Then we have the firm’s expected value-to-go

function under this heuristic as follows.

V ms
0,n (π1) =

I∑
i=1

π1,iE


∑Kn−1

κ=0

∑ln+2κ+1−1

j=ln+2κ

[
pDj − c1

(
Dj −nλ̄i,κτn

)+− c0nλ̄i,κτn

]
+
∑Jn

j=ln+2Kn

[
pDj − c1

(
Dj −nλ̄i,Knτn

)+− c0nλ̄i,Knτn

]
−
∑Kn

κ=1 Ĉ
(
nλ̄i,κ−1, nλ̄i,κ

)
∣∣∣∣∣∣∣∣θi,n

 (19)

As this heuristic is a feasible policy for the corresponding optimal capacity adjustment problem,

we have that V ms
0,n ≤ V m∗

0,n , where V m∗
0,n denotes the value-to-go function under the optimal policy.

As the optimal policy is not computationally tractable, we need to derive an upper bound of the

value-to-go function under the optimal policy in order to evaluate the performance of the heuristic.

Upper bound. We first observe that the V d
0,n (see equation (16) in Section 4.2) is still an upper

bound of V m∗
0,n . This is because in the deterministic stationary demand setting, once the firm obtains

full information about the demand type, even if the firm is able to adjust capacity any time, it is

still optimal to adjust it only once at the beginning of the time horizon as the adjustment is costly.

That is, we still have the optimal target capacity µ∗i = λi, and V d
0,n as follows.

V d
0,n =

I∑
i=1

π1,i

{
(p− c0)nλi(Jn− ln)τn− can(λi−µ0)+− γan(µ0−λi)+

}
(20)

Performance evaluation. To analyze the performance of the heuristic, we evaluate the asymp-

totic behavior of the regret of the multi-step heuristic, defined as Rms
n = 1− V ms

0,n /V
d

0,n. We derive

the following characterization of the asymptotic regret.

Proposition 6 (Asymptotic regret: Multi-step heuristic).

If τn � n−
1
3 for all n, the multi-step heuristic is asymptotically optimal and Rms

n =O
(
n−

1
3

)
.

The intuition of the proof is that as the firm observes more demand information and adjusts

capacity to match the observed average demand rate, we are able to bound outsourcing costs and

capacity adjustment costs by the bound shown in Proposition 1 in Gallego (1992), which derived

a one-sided deviation bound for the class of distributions with finite mean and variance. As noted

above, we choose the exponentially increasing time between two consecutive decisions because the

adjustment is costly, and with more information learned, it is less necessary for the firm to learn

about demand frequently. Finally, the time interval τn is set to minimize the derived upper bound.

Recall that when the firm has only one chance to adjust its capacity, the upper bound of the

regret is also O
(
n−1/3

)
(see Proposition 3). Here, although the upper bound of the regret is still
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of the same order, the capacity adjustment cost makes a difference. With multiple adjustment

opportunities, the firm is able to correct errors that it might have made in a one shot decision,

and therefore, the regret should be smaller. However, when capacity adjustment is very costly,

with multiple capacity adjustments specified in the heuristic, the firm needs to pay a higher total

capacity adjustment cost as it chases the mean demand. Therefore, the benefit from the learning-

while-doing may be diluted. In Section 6.2, we compare the two heuristics numerically.

6. Numerical Study

In order to demonstrate that our method can be implemented with actual demand data and a

few parameters related to costs, we develop a numerical study where the model premises (such as

demand pattern, problem scale, cost, and profit) are motivated from actual application. Although

we need to make some simplifying assumptions because we estimated parameters from aggregate

financial and accounting data, we show that the results and conclusions are quite robust to model

parameters and our assumptions.

In what follows, we first illustrate the information we extracted from the production and financial

data such as the demand pattern, and then explain the context and assumptions of our numerical

study in section 6.1. In section 6.2, we use numerically examine the impact of the market size

and leadtime to adjust capacity on the performance of our proposed heuristic. In addition, we

compare the performance of the two-step heuristic versus the multi-step heuristic, and illustrate the

performance of the heuristic relative to the optimal policy. We relegate the impact of misspecified

demand and cost parameters to Appendix EC.3.

6.1. Data and Parameters

Our example utilizes production and financial data related to the Ford Focus and tries to solve

the following problem. Using the data from the first two generations of the Focus in the North

American market, the numerical study illustrates how one could use our heuristics in deciding how

to adjust capacity for the third generation. In this section, we briefly describe how we collect data

and estimate the demand and cost parameters, with details deferred to the appendix.

Demand. Our focus is on how the assembly factory should adjust its capacity based on orders

received from the dealership. Therefore, the demand is closely related to the number of Ford

Focus sedans produced at the assembly factory. While customers buy cars from dealers who hold

inventory, the plant operation is close to a make-to-order environment as Ford produces cars based

on dealer orders and its production plan.

To analyze the demand pattern, we first collect monthly production data of Ford Focus in

North America from January 2005 to December 2010 from the database of Automotive News Data

Center4. There are two (redesigned) generations of Focus during this period: the first from January
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Figure 3 Monthly production of Ford Focus in North America market (a), and the empirical cdf and gamma

distribution with sample mean and variance (b), from January 2005 to December 2010
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2005 to September 2007, and the second from October 2007 to December 2010. Although there

is seasonality within each year affected by factors such as mid-year discount when manufacturers

switch production to the next year model and end-of-year sales to boost sales figure, we observe

the demand pattern is plausibly stationary within each generation: see Figure 3(a). As the demand

pattern of the first two generations is similar, we group the production data from January 2005 to

December 2010 and observe that the monthly demand approximately follows a gamma distribution

with a mean of 17.21 thousand units per month and a standard deviation of 5.04; see Figure 3(b).5

When we construct the empirical cumulative distribution function, we excluded the data point in

July or August to account for the regular summer shutdown. We also excluded the data when

there was a model transition in that month. We denote the two key parameters of the gamma

distribution by a and b, i.e., the probability density function is characterized as

f(x|a, b) =
1

Γ(a)ba
xa−1e−

x
b

where Γ(·) represents the gamma function.

In fact, we test the cleaned production data from January 2005 to December 2010 with a

gamma distribution where the estimated parameters are a= 11.67 and b= 1.47 using a one-sample

Kolmogorov-Smirnov test, which yields a p-value of 0.74, supporting our choice for the demand

distribution. Therefore, we model the monthly demand (with the unit of a thousand cars) for Focus

using a stationary gamma distribution.

Based on the demand pattern extracted from the production data, we next construct the context

for the numerical study. We would like to note that our heuristic, which is data driven, does not

rely on knowledge about the prior distribution or the exact demand distribution for each type.
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The specific context of our numerical study is necessary only to evaluate the performance of the

heuristic, i.e., computing the regret. Also, it should be noted that our heuristic applies to more

general settings, e.g., when there are more than three market scenarios, or the unknowns are a

vector of parameters rather than a single parameter.

To evaluate the performance of our heuristic, we postulate the following scenario. The decision

maker has three possible scenarios (demand types) for the third generation of the product, low,

medium and high. In the medium scenario, the demand will remain at the same level as the first

two generations: monthly demand will follow the same distribution. In the other two scenarios, the

demand for the third generation (released in May 2011) is either lower or higher than the first two

generations depending on the popularity of the third generation and economic environment.

In the low and high scenarios, we assume the average monthly demand is either dropped by or

raised by 5 thousand units (which is about one standard deviation). That is, the two key parameters

are a= 8.28 and b= 1.47 for the low demand case, and a= 15.06 and b= 1.47 for the high demand

case. We assume that the parameter b, which stands for the ratio between variance and mean, stays

stationary, i.e., a higher demand is associated with a higher variance. We will later show that our

result is quite robust with respect to the misspecification of the average demand parameters.

Finally, as the second generation Focus was on sale for three years, we assume the decision horizon

T for the third generation is also 3 years, starting from January 2011. Following the convention

of the asymptotic analysis, we also assume when n= 1, the average medium type demand in the

three year horizon is 1 unit and τ1 = 36 months. Therefore, the problem scale in the base case

is n1 = 17.21× 103 × 36 = 619,610, and we assume the firm reviews demand and makes capacity

adjustment decisions in a monthly scale at the current demand level, i.e., τn1 = 1 (recall that

τn1 � n
−1/3
1 and the practical limitation that the data used to construct the numerical study were

collected on a monthly scale.) We will illustrate the impact of market size on the performance of

the heuristic in the numerical study. We also assume there is no leadtime, i.e., l = 0, and we will

study the impact of leadtime later.

Initial capacity. Our target is to analyze Ford’s capacity adjustment decision for the third

generation. Therefore, besides demand information, we also need capacity information. Since Ford

does not publish their exact maximum capacity, we use the maximum production quantity from

January 2010 to December 2010 as the starting capacity, i.e., 22.97 thousand cars per month.6

Cost/profit parameters. We use aggregated cost parameters at the firm level to approximate

the ones at the product level. Specifically, we recover the gross capacity of Ford using its public

financial reports and data, and then identify the unit profit and capacity related costs at the firm

level. Although these are rough estimates, the performance of our heuristic is quite robust to the

cost parameters. Note that the cost parameters would be significantly more accurate if one could
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Table 3 Production and capacity related profit/cost parameters

Estimated cost parameters for Focus Value

Capacity adjustment (upgrading) cost ca $4,487 month/unit
Capacity adjustment (downgrading) cost γa $448.7 month/unit
Capacity overhead cost c0 $181.1 per unit
Capacity outsourcing cost c1 $362.2 per unit
Unit profit p (excluding capacity related cost) $1,270 per unit
Average retail price $22,154 per unit

extract the cost information from an ERP or internal accounting system. We summarize the cost

parameters derived from Ford’s Annual Report in 2012 (Ford Motor Company 2012) in Table 3,

and relegate the details of estimations to Appendix EC.3.

6.2. Numerical Analysis

In the numerical study, we evaluate the performance of our heuristics using the regret with respect

to its deterministic upper bound. Specifically, for given scale parameter n, define Rts
n = 1−V ts

0,n/V
d

0,n

and Rms
n = 1−V ms

0,n /V
d

0,n to be regrets associated with the two-step heuristic and multi-step heuris-

tic, respectively. The decision horizon, demand distributions, initial capacity, and profit and cost

parameters are the ones specified in Section 6.1. In what follows, we first present the impact of

various parameters and demand assumptions (market size and leadtime) on the performance of our

two-step heuristic. We then compare the performance of the two-step heuristic with the multi-step

heuristic. Finally, we show the performance of the two-step heuristic with respect to the optimal

policy. We relegate the impact of misspecified demand, cost and profit parameters to Appendix

EC.3 for the interest of space.

To evaluate the value-to-go function under the two-step heuristic, V ts
0,n, for a given prior vector

π1, we apply a simulation approach with 106 experiments. In each round, a demand distribution (a

demand type) is first generated according to the prior, then a sample path of demand in each period

is generated according to the distribution. For each sample path generated, the firm follows the

two-step heuristic, and the resultant profit is calculated. We use the average of the 106 observations

to approximate V ts
0,n. The deterministic upper bound, V d

0,n, is computed following equation (16).

Market size. We first analyze the impact of market size, which is determined by the scale

factor n. From Proposition 3, when the scale factor of the decision problem is n, setting the

length of the learning period as τn � n−1/3 results in asymptotic convergence at most on the order

of n−1/3. In Figure 4, we show that as log(n) increases linearly, the log of the regret decreases

linearly. In the base case (n1 = 619,610), we assume the firm reviews the demand information

monthly, and adjusts capacity based on the observation in the first month, i.e., τn1 = 1 month,

following earlier discussions in Section 6.1. To analyze the impact of the market size, we let n be
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Figure 4 Regret with respect to market size when the prior π1 = (0.2,0.4,0.4)
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Figure 5 Regret and value-to-go function with respect to leadtime when the prior π1 = (0.2,0.4,0.4)
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8kn1, k =−2,−1, ...,2, corresponding to a τn of 2−k, k =−2,−1, ...,2 month respectively. That is,

as the magnitude of demand increases, the firm can adjust capacity within a smaller window of

demand data. For instance, when k=−2, τn is 4 months, and when k= 2, τn is 1/4 months (about 1

week). In Figure 4, we observe that the log of regret decreases at the slope of −0.33, corresponding

to the n−1/3 convergence rate. This implies that the absolute difference between the upper bound

and the heuristic is sub-linear in n. The cases are similar when the priors are different, so for the

interest of space the details are not shown here.

Leadtime. In the base case, we normalize the leadtime as 0. One may think that this might

favor the two-step heuristic, but the result is the opposite. The performance of the two-step heuris-

tic improves as the leadtime becomes longer. To show this, we change the leadtime l from 0 to

12 months when the review period τn1 is 1 month and compute the total revenue of the planning
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Figure 6 Two-step heuristic vs. multi-step heuristic when the prior π1 = (0.2,0.4,0.4)
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horizon (i.e., the value function plus the revenue of the first l periods (before any adjustment is

made). In Figure 5(a), we observe that the regret decreases as the leadtime increases: the relative

profit loss due to the lack of information decreases in leadtime. Although this is counter-intuitive

at first glance, we observe from Figure 5(b) that, with a longer leadtime, the benefit of full informa-

tion decreases, thus the performance of the deterministic upper bound deteriorates substantially,

resulting in the decrease in the regret.

Single vs. multiple adjustments. We now compare the two-step heuristic with the multi-step

heuristic. The capacity adjustment cost is specified in Section 6.1. In Figure 6, we observe that as

the market size increases, the regrets of both policies decrease. In this case, as the firm needs to pay

a much higher adjustment cost under the multi-step heuristic, which dominates the benefit from

extra opportunities to adjust capacity, we observe that the regret under the multi-step heuristic

is higher than the one under the two-step heuristic. However, when the capacity adjustment cost

is small, as one may expect, the regret under the multi-step heuristic is lower than the one under

the two-step heuristic, which reflects the benefit of learning-while-doing.

Heuristic vs. optimal policy. To simplify the computation for the optimal policy, we consider

only two demand types in this part: medium and high. As there are only two demand types, we

use πj, the posterior distribution of high demand, to denote the information vector. Figure 7 shows

the regret of the two-step heuristic. Compared to the deterministic upper-bound (which assumes

the knowledge of full information and no randomness), the regret of our data-driven heuristic is

no more than 6.03%. We use the deterministic upper bound to define the regret, because a large

state-space makes it intractable to compute the optimal policy and resultant value function. In the

two demand-type case, however, we can numerically approximate the value function of the optimal

policy, V ∗0,n, with linear interpolation (i.e., evaluating the value at a set of fine fixed grid points
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Figure 7 Regret of the two-step heuristic with respect to upper bound and optimal policy
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Figure 8 Firm’s capacity decision under the two-step heuristic and optimal policy
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and then approximating values for the rest of the states using linear interpolation). As Figure 7

shows, the regret (compared to the optimal policy) is less than 2.24%.

From the timing perspective (Figure 8(a)), the firm always adjusts its capacity in the second

month under the two-step heuristic. On the other hand, under the optimal policy the firm adjusts

capacity early (in the first period) when the prior is close to the extremes (π1 close to 0 or 1), and

delays the decision when there is no dominant demand type in the prior. In addition, Figure 8(b)

shows that, on average, the capacity levels under the optimal policy and the two-step heuristic are

fairly close when the firm adjusts the capacity at the beginning of the decision period, because the

optimal capacity level in this case is close to the average demand. When the firm is less certain

about the demand type and prefers to delay the capacity adjustment to the future, consistent with



31

the conventional wisdom, the firm invests more in capacity compared to the average capacity level

built under the two-step heuristic.

7. Conclusions

We analyze a firm’s capacity investment decision for a product with a finite planning horizon, and

investigate when , and by how much , the firm should adjust its capacity. When the capacity

adjustment costs increase significantly with respect to the number of adjustments and therefore

the firm can adjust the capacity once in a planning horizon, we show that the firm may alternate

its decision to pull the trigger (adjust capacity) or delay the adjustment multiple times as the

likelihood of demand type changes. Although the optimal policy in general is non-monotone in

the likelihood, we characterize the underlying structure of optimal policy. We show that if the

firm decides to adjust the capacity, the target capacity position increases in the likelihood. We

demonstrate that, even after knowing the structure of optimal policy, computing and implementing

the policy can be very difficult. Instead, we present a very simple but provably well-performing

data-driven heuristic when demand follows a stochastic process with stationary and independent

increment. In this heuristic, the firm observes demand during an exploration period, and then

adjusts capacity to match the observed demand rate. By carefully choosing the length of exploration

period, the firm is able to balance the exploration and exploitation tradeoff, and the regret of the

heuristic asymptotically converges to 0.

When the capacity adjustment costs remain stationary with respect to the number of adjustments

and therefore the firm has multiple opportunities to adjust capacity, we show the firm’s optimal

policy is a control band policy, characterized by thresholds. Under this policy, in each period,

the firm stays put to observe the demand when the capacity is between the two thresholds, and

adjusts its capacity to the lower threshold only when the capacity is below it, and vice versa.

We also develop a simple but asymptotically optimal heuristic, in which the firm predetermines a

set of time points at which the firm will adjust its capacity to match the observed demand rate.

The time between two consecutive decisions increases exponentially, reflecting the fact that the

adjustment is costly, and it is less necessary for the firm to adjust capacity frequently with more

demand information collected. The multiple adjustments enable the firm to correct errors in early

decisions. However, when the capacity adjustment cost is high, the multiple adjustments also yield

a higher adjustment cost, which dilutes the benefit of the learning-while-doing. The optimal policy

and heuristics are illustrated using a numerical study.

To the best of our knowledge, this is one of the first papers analyzing the capacity adjust-

ment with demand learning by characterizing the optimal policy as well as deriving near-optimal

heuristics. We believe there are more opportunities in the area combing learning and capacity man-

agement. For example, how does the firm’s learning opportunity affect the joint decision of capacity
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and inventory? How should the firm compute its capacity management strategy efficiently when

the product life cycle is not stationary? We leave these questions for future research opportunities.

Endnotes

1. Since each period is τ units of time, the maximum demand the firm can satisfy with its own

capacity in this case is µτ .

2. The detailed derivation of the value-to-go functions is provided in Section EC.1.

3. We note that our results do not require {N(t), t≥ 0} to be weakly increasing. In particular,

when {N(t), t≥ 0} represents a Brownian motion with positive drift, it implies that the demand

in each period forms a sequence of i.i.d. normal random variables. Although this implies that the

realized demand may be negative, assumptions of demands following normal distribution have been

used for its analytical tractability, c.f., Eppen (1979) and Dong and Rudi (2004), particularly when

the standard deviation is small relative to the mean.

4. Automotive News Data Center: http://www.autonews.com/section/datacenter.

5. We observe that during the automotive industry crisis (2008-2010), the demand pattern of

Focus did not change. This may be because the Focus is a fuel-efficient model, and therefore the

substantial increase in the prices of automotive fuels did not cause a significant drop in sales, unlike

the sport utility vehicles and pickup trucks, whose demands declined in the same period.

6. According to Ford Motor Company (2012), the vehicle assembly capacity is categorized as

installed capacity and manned capacity. Installed capacity refers to “the physical capability of a

plant and equipment to assemble vehicles if fully manned”. Manned capacity refers to “the degree

to which the installed capacity has been staffed”. In this numerical example, we use capacity to

refer to the installed capacity that is specific to Ford Focus.
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EC.1. Derivation of the value-to-go functions in the single adjustment
case

In this section, we provide an alternative detailed derivation of the firm’s value-to-go function

in Section 4. To model the firm’s capacity decision, we first introduce the state vector ωj =

(πj , µ̂j−1, vj−1). Here, πj is the firm’s belief about demand type given the demands up to period

j − 1, and µ̂j−1 is defined as the capacity position in period j − 1 (the capacity position µ̂j−1

represents the capacity level in period j+ l− 1 since the capacity leadtime is l periods. In general,

for period k, we have µ̂k = µk+l and µk = µ̂k−l). Lastly, vj−1 is defined as an indicator to denote

whether capacity has been changed on or prior to period j− 1. Formally, if capacity adjustment is

made in period j, we define

vk =

{
0 if k < j
1 if k≥ j (EC.1)

We next describe the transition of the state vector. We first observe that the transition of πj

is specified in equation (1) and πj satisfies the property in Lemma 1. To describe how capacity

position changes, we first introduce uj to represent the firm’s decision to adjust capacity in period

j:

uj =

{
0 if the firm decides to stay put and continue to observe the demand
1 if the firm decides to adjust capacity in period j

(EC.2)

As the firm has only a single opportunity to adjust the capacity, the feasible action space to adjust

capacity in period j for given vj−1, A(vj−1), is contingent upon whether the firm has adjusted the

capacity or not, i.e.,

A(vj−1) =

{
{0,1} if vj−1 = 0;
{0} if vj−1 = 1.

(EC.3)

If uj = 1, the firm adjusts the capacity level from the initial level µ0 to maximize the expected

profit from period j + l till the end of the planning horizon based on the information vector πj .

The induced target capacity position µ̂aj (πj), i.e., the capacity level that maximizes the remaining

profit from period j+ l till the end is specified as follows.

µ̂aj (πj), arg max
µ∈K

E

[
J∑

k=j+l

hk(Πk, µ)− Ĉ(µ0, µ)

∣∣∣∣∣πj

]
= arg max

µ∈K

{
J∑

k=j+l

hk(πj , µ)− Ĉ(µ0, µ)

}
.

(EC.4)

The equality follows Lemma 1 and the fact that hk(Πk, µ) is linear in Πk. When the maximizer

is not unique, as a tie-breaking rule, the firm chooses the smallest capacity level. Then, the firm’s

(induced) capacity position transits as follows.

µ̂j(ωj , uj) =

{
µ̂aj (πj) if uj = 1;
µ̂j−1 if uj = 0.

(EC.5)
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We observe that using µ̂aj (πj) defined in equation (EC.4) in the dynamic program turns the firm’s

decision problem into an optimal stopping problem, i.e., when to pull the trigger and adjust the

capacity to the level specified by µ̂aj (πj). For ease of exposition, we suppress the dependence of

µ̂aj (πj) on πj when there is no confusion.

Having characterized the state transition, we next define the objective function. Given the indi-

cator vj−1, and the starting capacity position µ̂j−1, if the firm adjusts its capacity position to µ̂aj

in period j (i.e., uj = 1), with a capacity leadtime of l periods, it accrues profit in period j+ l with

capacity µj+l = µ̂aj , but pays a capacity adjustment cost in period j. Otherwise the firm’s capacity

level in period j + l will be µ̂j−1. Formally, we have the expected operating profit in period j + l

minus any capacity cost that the firm incurred, Hj(πj , µ̂j−1, vj−1, uj), as

Hj(πj , µ̂j−1, vj−1, uj),E[hj+l(Πj+l, µ̂j(ωj , uj))− Ĉ (µ̂j−1, µ̂j(ωj , uj)) |πj ]

= hj+l(πj+l, µ̂j(ωj , uj))− Ĉ (µ̂j−1, µ̂j(ωj , uj))

=

{
hj+l(πj , µ̂

a
j )− Ĉ

(
µ0, µ̂

a
j

)
if uj = 1

hj+l(πj , µ̂j−1) if uj = 0
(EC.6)

The first equality follows Lemma 1 and the fact that hj+l(Πj+l, µ̂j) is linear in Πj+l. For ease of

exposition, we suppress the dependency of µ̂j(ωj , uj) on ωj and uj when there is no confusion.

To represent the firm’s capacity decision as a dynamic program, we define a policy as a sequence

of functions mapping the state vector to the action space A(vj−1) for all j ≤ J− l, i.e., {uj(ωj), j =

1,2, ..., J − l}. We notice that with a leadtime of l, the firm should not adjust its capacity after

period J − l. Let G denote the set of all the admissible policies, and the firm’s objective is to find

a policy g∗ ∈ G to maximize the expected total profit,

max
g∈G

l∑
k=1

E [hk(Πk, µ0)|π1] +
J−l∑
k=1

Eg [Hk(Πk, µ̂k−1, vk−1, uk)|π1] (EC.7)

where the expectation is taken over Dj for all j at time zero. Due to the l-period leadtime, the

expected profit of the first l periods,
∑l

k=1E [hk(Πk, µ0)|π1], is independent of the firm’s capacity

adjustment policy. Therefore, it is sufficient to maximize

max
g∈G

J−l∑
k=1

Eg [Hk(Πk, µ̂k−1, vk−1, uk)|π1] (EC.8)

Define a partial policy gj , {uk(πk, µ̂k−1, vk−1), k = j, ..., J − l} and the set of all the admissible

partial policies by Gj. Then at the beginning of period j, given the initial states πj , µ̂j−1 and vj−1,

the firm’s optimal value-to-go function is

Vj(πj , µ̂j−1, vj−1) = max
gj∈Gj

J−l∑
k=j

Egj [Hk(Πk, µ̂k−1, vk−1, uk)|πj ] (EC.9)
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Then, the optimal value-to-go functions satisfy the following recursive optimality equations for all

j ∈ {1,2, ..., J − l}.

Vj(πj , µ̂j−1, vj−1) = max
uj∈A(vj−1)

{Hj(πj , µ̂j−1, vj−1, uj) +E [Vj+1(Πj+1, µ̂j, vj)|πj ]}

Vk(πk, µ̂k, vk) = 0, for k > J − l (EC.10)

To simplify the optimality equations above, we observe the following: for j = 1,2, ..., J − l, if the

firm has not adjusted the capacity before period j, i.e., vj−1 = 0, we have µ̂j−1 = µ0. In this case, if

the firm decides to adjust its capacity in period j, i.e., uj = 1, then for k= j+ 1, ..., J − l, we have

A(vk−1) = {0} and uk = 0, and therefore the firm’s value-to-go function is as follows:

Laj (πj , µ̂j−1, vj−1) =Laj (πj , µ0,0), hj+l
(
πj , µ̂

a
j

)
− Ĉ

(
µ0, µ̂

a
j

)
+E

[
Vj+1

(
Πj+1, µ̂

a
j ,1
)∣∣πj

]
= hj+l

(
πj , µ̂

a
j

)
− Ĉ

(
µ0, µ̂

a
j

)
+

J−l∑
k=j+1

Hk

(
πj, µ̂

a
j ,1,0

)
=

J∑
k=j+l

hk
(
πj , µ̂

a
j

)
− Ĉ

(
µ0, µ̂

a
j

)
(EC.11)

We note that the firm’s induced target capacity position µ̂aj maximizes the value-to-go function (see

equation (EC.4)), and the firm needs to pay a one-time capacity adjustment cost of Ĉ
(
µ0, µ̂

a
j

)
. After

the adjustment, the firm does not have another opportunity to change the capacity (recall that

A(1) = {0}). Therefore, the firm’s expected operating profit in period k is simply Hk(πj, µ̂
a
j ,1,0),

which in turn equals hk(πj, µ̂
a
j ) from equation (EC.6).

If the firm has not adjusted the capacity (vj−1 = 0), and decides to delay decision one more

period (uj = 0), then we use the superscript s for “stay put”, and have the value-to-go function as

Lsj(πj , µ̂j−1, vj−1) =Lsj(πj , µ0,0), hj+l(πj , µ0) +E [Vj+1(Πj+1, µ0,0)|πj ] (EC.12)

By delaying the adjustment, the firm earns a profit based on the starting capacity level in this

period. However, it maintains the option to change the capacity in the future, as reflected by the

term E [Vj+1(Πj+1, µ0,0)|πj ].

On the other hand, if the firm already adjusted the capacity before, i.e., vj−1 = 1, then for

k= j, ..., J − l, we have A(vk−1) = {0} and uk = 0, and we have

Lsj(πj , µ̂j−1, vj−1) =Lsj(πj , µ0,1),
J−l∑
k=j

Hk(πj, µ̂j−1,1,0) =
J∑

k=j+l

hk(πj , µ̂j−1) (EC.13)

To sum up, we have the following value-to-go functions contingent upon whether the capacity

has been adjusted or not.

Vj(πj , µ̂j−1,0) = Vj(πj , µ0,0) = max
{
Laj (πj , µ0,0),Lsj(πj , µ0,0)

}
(EC.14)

Vj(πj , µ̂j−1,1) =Lsj(πj , µ0,1) (EC.15)
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When the maximum in equation (EC.14) is attained by Laj (πj , µ0,0), it is optimal to adjust the

capacity. Otherwise, the firm should delay the adjustment and continue to observe the demand. For

ease of exposition, we suppress the dependence on µ0 and vj−1, and write Vj(πj , µ0,0), Laj (πj , µ0,0)

and Lsj(πj , µ0,0) as Vj(πj), L
a
j (πj) and Lsj(πj) respectively. Therefore, to characterize the firm’s

optimal policy to stop observing the demand and adjust the capacity, we only need to compare

Laj (πj) and Lsj(πj). Note that, in the single adjustment case, the problem of choosing “when to

adjust” and “by how much” is recast as an optimal stopping time problem.

EC.2. Proofs and additional technical details.
EC.2.1. Capacity investment with a single adjustment opportunity

EC.2.1.1. Proofs

In the proofs we focus on the case where the demand distribution is discrete. When the demand

distribution is continuous, similar proofs hold.

Proof of Lemma 1. We first show that for any j, we have E[Πj+1|Πj ] = Πj . From equation

(1), we have

E[Πj+1,i|Πj ] =
∞∑
dj=0

Πj,ifj(dj|θi)∑I

k=1 [Πj,kfj(dj|θk)]
Pr(Dj = dj|Πj)

=
∞∑
dj=0

Πj,ifj(dj|θi)∑I

k=1 [Πj,kfj(dj|θk)]

I∑
k=1

[Πj,kfj(dj|θk)]

= Πj,i

∞∑
dj=0

fj(dj|θi) = Πj,i (EC.16)

That is, E[Πj+1|Πj ] = Πj . Then for any j1 < j2, we have

E[Πj2 |Πj1 ] =E[E[Πj2 |Πj2−1,Πj1 ]|Πj1 ] =E[E[Πj2 |Πj2−1]|Πj1 ]

=E[Πj2−1|Πj1 ] (EC.17)

Applying the above equations iteratively, we have E[Πj2 |Πj1 ] = Πj1 . �

Proof of Proposition 1. For ease of exposition we define the expected operating profit from

period j+ l till the end of horizon minus any capacity cost when the firm adjusts capacity from µ0

to µ in period j, given the information vector of πj as follows.

Gj(πj , µ),
J∑

k=j+l

hk(πj , µ)− Ĉ(µ0, µ) (EC.18)

It is observed that for given µ, we have Gj(πj , µ) is linear in πj . For given πj , if K=R+ and µ∈K,

we have Gj(πj , µ) is concave in µ; if K= {kδ : k ∈Z+}, we define ∆Gj,k(πj) as follows:

∆Gj,k(πj),
Gj(πj , (k+ 1)δ)−Gj(πj , kδ)

δ
for k ∈Z+. (EC.19)
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For given j and πj , we have ∆Gj,k(πj) is a decreasing sequence in k. In addition, we have

Gj(πj ,0)<∞ and limµ→∞Gj(πj , µ) =−∞. In the following, we use xT to denote the transpose

of x.

(i). We prove the convexity by induction. By equation (EC.11) and (EC.12), we have

LaJ−l+1(πJ−l+1) and LsJ−l+1(πJ−l+1) are linear and therefore convex in πJ−l+1. As the maximum

of convex functions is convex, we have VJ−l+1(πJ−l+1) is convex.

For j < J − l, assume Laj+1(πj+1), Lsj+1(πj+1) and Vj+1(πj+1) are convex. By equation (EC.4)

and (EC.11), we have

Laj (πj) = sup
k

{Gj(πj , kδ)} (EC.20)

For each k, we have Gj(πj , kδ) is linear in πj . As the supremum of convex functions is convex

and a positive linear combination of convex functions is convex, we have Laj (πj) is convex in πj .

From the induction hypothesis, we have Vj+1(πj+1) is convex, then we can write Vj+1(πj+1) =

supk∈Kj+1
{akπTj+1 + bk}, where Kj+1 represents an index set, ak is a constant vector of dimensions

1× I, πTj+1 stands for the transpose of πj+1, and bk is a constant. Then define a 1× I vector e,

(1, ...,1) and a I × I diagonal matrix Pj(dj), diag(fj(dj|θ1), ..., fj(dj|θI)), and following equation

(EC.12), we have

Lsj(πj) = hj+l(πj, µ0) +E [Vj+1(Πj+1)|πj ] = hj+l(πj, µ0) +E

[
sup

k∈Kj+1

{
akΠ

T
j+1 + bk

}∣∣∣∣∣πj

]

= hj+l(πj, µ0) +
∞∑
dj=0

[
sup

k∈Kj+1

{
ak

Pj(dj)π
T
j

ePj(dj)πTj
+ bk

}]
ePj(dj)π

T
j

= hj+l(πj, µ0) +
∞∑
dj=0

[
sup

k∈Kj+1

{
ãk(dj)π

T
j

}]
(EC.21)

where ãk(dj), akPj(dj) + bkePj(dj).

Once again, as the supremum of convex functions is convex and a positive linear combination of

convex functions is convex, we have Lsj(πj) is convex in πj . It follows that Vj(πj) is convex in πj .

(ii). We show that Pj is a convex partition of Pj by verifying the four conditions in Definition 1.

• Condition (i): By the construction of Pj, we have ∅ /∈ Pj.

• Condition (ii): Let
⋃
kPj,k denote the union of all sets in Pj. For any πj ∈

⋃
kPj,k, it is trivial

that πj ∈ Pj. Therefore, we have
⋃
kPj,k ⊆ Pj. For any πj ∈ Pj, we have ∆Gj,k(πj) decreases

in k. As we have |Gj(πj ,0)| <∞ and limµ→∞Gj(πj , µ) = −∞, there exists a k such that kδ =

arg maxµ∈KGj(πj , µ). Therefore, we have πj ∈
⋃
kPj,k. It follows that Pj ⊆

⋃
kPj,k. Then we have

proved that
⋃
kPj,k =Pj.
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• Condition (iii): Assume there exist k1 <k2 such that Pj,k1 ∈ Pj, Pj,k2 ∈ Pj, and Pj,k1
⋂
Pj,k2 6= ∅.

Then for πj ∈Pj,k1
⋂
Pj,k2 , we have µ̂aj (πj) = k1δ and µ̂aj (πj) = k2δ. However, this contradicts the

fact that µ̂aj (πj) is uniquely-defined.

• Condition (iv): Let πj ∈Pj,k̂ and π̂j ∈Pj,k̂. We have µ̂aj (πj) = k̂δ and µ̂aj (π̂j) = k̂δ, and

Laj (πj) =Gj(πj , k̂δ), and Laj (π̂j) =Gj(π̂j , k̂δ) (EC.22)

We observe that Gj(πj , k̂δ) is linear in πj . From part (i) we have Laj (πj) is convex in πj . Therefore,

for any α∈ (0,1), we have

Laj (απj + (1−α)π̂j)≤ αLaj (πj) + (1−α)Laj (π̂j) =Gj(απj + (1−α)π̂j , k̂δ) (EC.23)

By the definition of Laj (απj + (1−α)π̂j), we have

Laj (απj + (1−α)π̂j) = sup
k

{Gj(απj + (1−α)π̂j , kδ)} ≥Gj(απj + (1−α)π̂j , k̂δ) (EC.24)

By equation (EC.23) and (EC.24), we have

Laj (απj + (1−α)π̂j) =Gj(απj + (1−α)π̂j , k̂δ) (EC.25)

which implies that µ̂aj (απj + (1−α)π̂j) = k̂δ.

(iii). Consider Pj,k ∈ Pj. For πj ∈Pj,k, we have Laj (πj) is linear in πj , and Lsj(πj) is convex in πj .

Therefore, the difference ∆Lj(πj), Laj (πj)−Lsj(πj) is concave in πj . Therefore, if ∆Lj(πj)≤ 0

for all πj ∈Pj,k, we have Sj,k = ∅. Otherwise, define Sj,k , {πj :πj ∈Pj,k,∆Lj(πj)> 0}. It follows

that Sj,k is a convex set and for all πj ∈ Sj,k, it is optimal for the firm to stop observing the demand

and adjust the capacity.

(iv). By equation (EC.20), we have Laj (πj) = supk {Gj(πj , kδ)}. As ∆Gj,k(πj) (defined in equa-

tion (EC.19)) is a decreasing sequence in k for given πj and j, to prove the result, it is sufficient

to show that for given k, if πj � π′j , then ∆Gj,k(πj) ≤∆Gj,k(π
′
j). We first prove the result for

the case where for i1 < i2 and ε > 0, we have π′j,i1 = πj,i1 − ε, π′j,i2 = πj,i2 + ε, and π′
j,̂i

= πj,̂i for all

î 6= i1, i2.

First, by equation (EC.18) and (3), we have

∆Gj,k(π
′
j)−∆Gj,k(πj) =

∑J

i=j+l

[
hi(π

′
j , (k+ 1)δ)−hi(π′j , kδ)

]
δ

−
∑J

i=j+l [hi(πj , (k+ 1)δ)−hi(πj , kδ)]

δ

=
ε

δ

J∑
i=j+l

{
E [g(Di)|θi2 ]−E [g(Di)|θi1 ]

}
(EC.26)

where

g(Di),−c1[Di− (k+ 1)δτ ]+ + c1(Di− kδτ)+− c0δτ.
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Because Di|θi1 �stDi|θi2 , and g(Di) increases in Di, we have

∆Gj,k(π
′
j)−∆Gj,k(πj)≥ 0. (EC.27)

For an arbitrary pair of πj and π′j such that πj � π′j , we observe that π′j can be obtained from

πj within finite steps using the operations above (subtract εj,i from an element with a lower index

and add εj,i to an element with a higher index). �

Proof of Proposition 2. The proof of part (i) is similar to the proof for Proposition 1(i). We

only prove part (ii) here.

When the feasible set for the capacity adjustment is continuous, we have

Laj (πj) = max
µ∈R+

{Gj(πj , µ)} . (EC.28)

We first define

Ĝj(πj ,π
′
j , µ),Gj(π

′
j , µ)−Gj(πj , µ). (EC.29)

Then to prove the result, it is sufficient to show that for given µ, if πj �π′j , we have
∂Ĝj
∂µ

(πj ,π
′
j , µ)≥

0. Following a similar step as in the proof of Proposition 1(iv), it is sufficient to prove for the

following case: for i1 < i2 and ε > 0, we have πj′,i1 = πj,i1 − ε, πj′,i2 = πj,i2 + ε, and πj′ ,̂i = πj,̂i for all

î 6= i1, i2.

Following equation (EC.18) and (3), we have

∂Ĝj

∂µ
(πj ,π

′
j , µ) =

J∑
i=j+l

[
∂hi
∂µ

(π′j , µ)− ∂hi
∂µ

(πj , µ)

]

= εc1τ
J∑

i=j+l

[Fi(µτ |θi1)−Fi(µτ |θi2)]≥ 0 (EC.30)

It follows that µ̂aj (πj)≤ µ̂aj (π′j), which completes the proof. �

We state the following proposition from Gallego (1992) before proving Proposition 3.

Proposition EC.1 (Proposition 1 in Gallego (1992)). Let F denote the class of cumula-

tive distributions with finite mean µ and variance σ2, and R be a finite constant.

max
F∈F

∫
(x−R)+dF (x) =

1

2
(
√

∆2 +σ2−∆) (EC.31)

where ∆ =R−µ.

Essentially, this is a one-sided deviation bound. Following a similar proof, we have

max
F∈F

∫
(R−x)+dF (x) =

1

2
(
√

∆2 +σ2−∆) (EC.32)

where ∆ = µ−R.
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Proof of Proposition 3. We derive an upper bound of the regret as follows. We first observe

that for any x, y, and z, we have

(x− y)+ ≤ (x− z)+ + (z− y)+. (EC.33)

We have λ̂i,τn = N(nλiτn)

nτn
from equation (13). To simplify the notations, we similarly define

λ̂i,jτn ,
Dj|θi,n
nτn

=
N(nλijτn)−N(nλi(j− 1)τn)

nτn
for j = 2,3, ..., Jn (EC.34)

We observe that λ̂i,jτn for j = 1,2, ..., Jn is a sequence of i.i.d. random variables with E
(
λ̂i,jτn

)
= λi

and Var
(
λ̂i,jτn

)
= σ2λi

nτn
. From equation (14), we have

V ts
0,n(π1) =

I∑
i=1

π1,iE


pnλ̂i,(ln+1)τnτn− c1n

(
λ̂i,(ln+1)τn −µ0

)+

τn− c0nµ0τn− Ĉ(nµ0, nλ̂i,τn)

+
∑Jn

j=ln+2

[
pnλ̂i,jτnτn− c1n

(
λ̂i,jτn − λ̂i,τn

)+

τn− c0nλ̂i,τnτn

]
∣∣∣∣∣∣∣θi,n


(EC.35)

We show analysis for the case where λi ≥ µ0 for all i, as the analysis for the other case is similar.

The expected operating profit from the period ln+1, pnλiτn−c1nE
(
λ̂i,(ln+1)τn −µ0

)+

τn−c0nµ0τn,

is positive, as p ≥ c1 > c0. We also note that the lead-time in the unit of time lt satisfies that

lt = lnτn.Therefore, we have

RHS of (EC.35)≥
I∑
i=1

π1,i

 (p− c0)nλi(T − τn− lt)−E
[
Ĉ(nµ0, nλ̂i,τn)

]
−c1nτn

∑Jn
j=ln+2E

(
λ̂i,jτn − λ̂i,τn

)+

 (EC.36)

By equation (16), we have the deterministic upper bound

V d
0,n =

I∑
i=1

π1,i

{
(p− c0)nλi(T − lt)− Ĉ(nµ0, nλi)

}
.

Therefore, combining equation (EC.36) and the expression above for V d
0,n, we have the regret

Rts
n = 1−V ts

0,n/V
d

0,n

≤ 1

V d
0,n

I∑
i=1

π1,i

{
(p− c0)nλiτn− Ĉ(nµ0, nλi) +E

[
Ĉ(nµ0, nλ̂i,τn)

]
+ c1nτn

Jn∑
j=ln+2

E
(
λ̂i,jτn − λ̂i,τn

)+
}
.

(EC.37)

Recall that for the initial capacity position µ and target capacity position µ′, we have Ĉ(µ,µ′) =

ca(µ
′−µ)+ +γa(µ−µ′)+. We notice when γa ≥ 0, we can directly apply (EC.33) and E[−γa(nµ0−

nλi)
+ + γa(nµ0 − nλ̂i,τn)+] ≤ E[γan(λi − λ̂i,τn)+]. When γa < 0, we have E[−γa(nµ0 − nλi)+ +

γa(nµ0 − nλ̂i,τn)+]≤ 0 by Jensen’s inequality. Following the discussions, we have established that
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−Ĉ(nµ0, nλi) + E
[
Ĉ(nµ0, nλ̂i,τn)

]
≤ canE(λ̂i,τn − λi)+ + γ+

a nE(λi − λ̂i,τn)+. Therefore, applying

(EC.33), we have

RHS of (EC.37)≤ 1

V d
0,n

I∑
i=1

π1,i

 (p− c0)nλiτn + canE(λ̂i,τn −λi)+ + γ+
a nE(λi− λ̂i,τn)+

+c1nτn
∑Jn

j=ln+2

[
E
(
λ̂i,jτn −λi

)+

+E
(
λi− λ̂i,τn

)+
] 

(EC.38)

From equation (EC.38), it is clear that to derive an upper bound of Rts
n , we need to find

upper bounds for E
(
λ̂i,jτn −λi

)+

and E
(
λi− λ̂i,τn

)+

respectively. Recall that E
(
λ̂i,jτn

)
= λi and

Var
(
λ̂i,jτn

)
= σ2λi

nτn
. In the following, we use Ci to represent a constant for all i, which is independent

of n and τn.

We first find an upper bound for E
(
λ̂i,jτn −λi

)+

. By equation (EC.31), we have

E
(
λ̂i,jτn −λi

)+

≤ σ
√
λi

2
√
nτn

for j = 1,2, ..., Jn. (EC.39)

For E
(
λi− λ̂i,τn

)+

, by equation (EC.32), we have the following

E
(
λi− λ̂i,τn

)+

≤ σ
√
λi

2
√
nτn

. (EC.40)

From equation (EC.39) and (EC.40), we have

RHS of (EC.38)≤C1τn +
C2√
nτn

(EC.41)

Then the result follows by setting that τn � n−
1
3 . �

EC.2.1.2. Remarks

In this section, we briefly discuss some of the modeling features and assumptions, the rationale

behind them, and the consequences of removing or relaxing them.

General demand process: The optimal policy characterized in Section 4.1 can be applied to

a large class of random variables and demand processes. In our base model, we have finite demand

types and each type is characterized by a demand type parameter. However, our model can be

extended to accommodate more general features. First, demand type i can be characterized by

a vector of parameters θi. We only require the demand stochastically increases in the demand

type index, i.e., Dj|θi1 �st Dj|θi2 for i1 ≤ i2. Thus as long as the demand type forms an ordered

set, our results apply. Second, if there are uncountably infinite demand types, i.e., the prior and

posterior distributions are characterized by a continuous distribution function, Proposition 1 and

2 still hold. That is, assuming the firm decides to adjust the capacity, the target capacity increases

as the likelihood of demand being high increases. As in the base model, the decision to adjust the
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capacity is not monotone in the likelihood. Finally, the optimal policy still holds when the demand

is non-stationary; for example, Dj|θi may represent a non-stationary Poisson process with the

mean demand λj(θi) following a Bass diffusion curve where the market size is θi and the coefficient

of innovation and coefficient of imitation are fixed across all the demand types. In this case, the

random term ξj|θi represents a “shifted Poisson” distribution, which has mean 0 and variance

λj(θi).

Censored demand: As the demand beyond capacity is satisfied by an outside option (e.g., out-

sourcing, overtime, or temporarily using the capacity designated for a different product), demand

is fully observed and not censored. However, our model can be extended to accommodate censored

demand. In the case of unobservable lost sales, the posterior distribution can be updated as follows:

πj+1,i =


πj,ifj(dj |θi)∑I

k=1[πj,kfj(dj |θk)]
if dj <µ

πj,iPr(Dj≥µ|Θ=θi)∑I
k=1[πj,kPr(Dj≥µ|Θ=θk)]

if dj ≥ µ
(EC.42)

Correspondingly, the firm’s expected profit in one period is changed as follows.

hcj(πj , µ) =
I∑
i=1

πj,iE [pmin{Dj, µτ}− c0µτ |Θ = θi] (EC.43)

Then, following a similar process of defining equation (EC.10), we can define the value-to-go func-

tion V c
j (πj , µ̂j−1, vj−1). Following a similar proof as that of Proposition 1, we can show that an

optimal policy with similar structure holds.

Fixed cost: If the adjustment decision is associated with a fixed cost, the cost associated with

changing the capacity level from µ to µ′, denoted by Č(µ,µ′), is

Č(µ,µ′), ca(µ
′−µ)+ +K1{µ′−µ>0}+ γa(µ−µ′)+ +K1{µ−µ′>0}, (EC.44)

where K is the fixed cost associated with capacity investment, and K is the fixed cost associated

with capacity disinvestment. In this case, the optimal policy remains the same. However, as it

becomes more costly to adjust capacity, the adjustment region shrinks when the fixed cost increases.

Leadtime: Our results can be generalized to the case where the leadtime to invest in capacity

(say, l) is different from the leadtime to disinvest, l. To see this, first consider the case where l > l.

In period j, if the firm decides to invest, the invested capacity will be available in period j + l.

Therefore, the target capacity position from equation (EC.4) should be modified as

µaj (πj) = arg max
µ∈K,µ≥µ0


J∑

k=j+l

hk(πj , µ)− caµ

 . (EC.45)
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Similarly, if the firm decides to disinvest, the target capacity position should be modified as

µa
j
(πj) = arg max

µ∈K,0≤µ≤µ0

{
J∑

k=j+l

hk(πj , µ) + γaµ

}
. (EC.46)

Then we define the firm’s value-to-go function L
a

j (πj) when the firm invests to µaj (πj) and the

value-to-go function Laj (πj) when the firm disinvests to µa
j
(πj) as follows.

L
a

j (πj) =

j+l−1∑
k=j+l

hk (πj , µ0) +
J∑

k=j+l

hk
(
πj , µ

a
j (πj)

)
− ca

(
µaj (πj)−µ0

)
Laj (πj) =

J∑
k=j+l

hk

(
πj , µ

a

j
(πj)

)
− γa

(
µ0−µaj (πj)

)
(EC.47)

Then, we define the value-to-go function when the firm adjusts capacity and the associated target

capacity position as

Laj (πj) = max{Laj (πj) ,L
a
j (πj)} and µ̂aj (πj) =

{
µaj (πj) if Laj (πj) =L

a

j (πj)
µa
j
(πj) otherwise

(EC.48)

When the firm chooses to stay put, the value-to-go function is as follows:

Lsj(πj) = hj+l(πj , µ0) +E [Vj+1(Πj+1)|πj ] (EC.49)

Then following similar proof of Proposition 1 and 2, the same structure of the optimal policy holds.

Alternative demand process in the two-step heuristic: Our results and analysis also hold

for a stationary demand process where the demand in each period, D̂j|θi,n, is a sequence of i.i.d.

random variables, whose mean is nλiτn and variance is nδ1σ2τn. The following corollary shows that

our heuristic is asymptotically optimal with a convergence rate that depends on the variance term,

assuming the variance does not increase too fast with respect to the problem size n, i.e., δ1 < 2.

Corollary EC.1. For a stationary demand sequence D̂j|θi,n whose mean

is nλiτn and variance is nδ1σ2τn, if δ1 < 2 and τn � n
δ1−2

3 for all n,

the two-step heuristic is asymptotically optimal and Rts
n =O

(
n
δ1−2

3

)
.

Intuitively, as the variance term increases with respect to the size of the problem, the firm is able

to extract less information per unit time. Therefore, it takes the firm more time to learn about

demand to justify a capacity adjustment.

Proof of Corollary EC.1 The proof is similar to the proof of Proposition 3. Therefore, we only

show the key steps. We derive an upper bound of the regret as follows. To simplify the notations,

we define

λ̌i,jτn ,
D̂j|θi,n
nτn

for j = 1,2, ..., Jn (EC.50)
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We observe that λ̌i,jτn for j = 1,2, ..., Jn is a sequence of i.i.d. random variables with E
(
λ̌i,jτn

)
= λi

and Var
(
λ̌i,jτn

)
= σ2

n2−δ1τn
. From equation (14), we have

V ts
0,n(π1) =

I∑
i=1

π1,iE

{
pnλ̌i,(ln+1)τnτn− c1n

(
λ̌i,(ln+1)τn −µ0

)+
τn− c0nµ0τn− Ĉ(nµ0, nλ̌i,τn)

+
∑Jn

j=ln+2

[
pnλ̌i,jτnτn− c1n

(
λ̌i,jτn − λ̌i,τn

)+
τn− c0nλ̌i,τnτn

] ∣∣∣∣∣θi,n
}

(EC.51)

We show analysis for the case where λi ≥ µ0 for all i, as the analysis for the other case is similar.

The expected operating profit from the period ln+1, pnλiτn−c1nE
(
λ̌i,(ln+1)τn −µ0

)+
τn−c0nµ0τn,

is positive, as p≥ c1 > c0. Therefore, we have

RHS of (EC.51)≥
I∑
i=1

π1,i

{
(p− c0)nλi(T − τn− lt)−E

[
Ĉ(nµ0, nλ̌i,τn)

]
−c1nτn

∑Jn
j=ln+2E

(
λ̌i,jτn − λ̌i,τn

)+

}
(EC.52)

By equation (16), we still have the deterministic upper bound

V d
0,n =

I∑
i=1

π1,i

{
(p− c0)nλi(T − lt)− Ĉ(nµ0, nλi)

}
.

Therefore, combining equation (EC.52) and the expression above for V d
0,n, we have the regret

Rts
n = 1−V ts

0,n/V
d

0,n

≤ 1

V d
0,n

I∑
i=1

π1,i

{
(p− c0)nλiτn− Ĉ(nµ0, nλi) +E

[
Ĉ(nµ0, nλ̂i,τn)

]
+ c1nτn

Jn∑
j=ln+2

E
(
λ̌i,jτn − λ̌i,τn

)+

}
.

(EC.53)

Recall that for the initial capacity position µ and target capacity position µ′, we have Ĉ(µ,µ′) =

ca(µ
′−µ)+ +γa(µ−µ′)+. We notice when γa ≥ 0, we can directly apply (EC.33) and E[−γa(nµ0−

nλi)
+ + γa(nµ0 − nλ̌i,τn)+] ≤ E[γan(λi − λ̌i,τn)+]. When γa < 0, we have E[−γa(nµ0 − nλi)+ +

γa(nµ0−nλ̌i,τn)+]≤ 0 by Jensen’s inequality. Therefore, applying (EC.33), we have

RHS of (EC.53)≤ 1

V d
0,n

I∑
i=1

π1,i

{
(p− c0)nλiτn + canE(λ̌i,τn −λi)+ + γ+

a nE(λi− λ̌i,τn)+

+c1nτn
∑Jn

j=ln+2

[
E
(
λ̌i,jτn −λi

)+
+E

(
λi− λ̌i,τn

)+
] }

(EC.54)

From equation (EC.54), it is clear that to derive an upper bound of Rts
n , we need to find

upper bounds for E
(
λ̌i,jτn −λi

)+
and E

(
λi− λ̌i,τn

)+
respectively. Recall that E

(
λ̌i,jτn

)
= λi and

Var
(
λ̌i,jτn

)
= σ2

n2−δ1τn
. In the following, we use Či to represent a constant for all i, which is inde-

pendent of n and τn.

We first find an upper bound for E
(
λ̌i,jτn −λi

)+
. By equation (EC.31), we have

E
(
λ̌i,jτn −λi

)+ ≤ σ

2n
√
τn

for j = 1,2, ..., Jn. (EC.55)
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For E
(
λi− λ̌i,τn

)+
, by equation (EC.32), we have the following

E
(
λi− λ̌i,τn

)+ ≤ σ

2
√
n2−δ1τn

. (EC.56)

From equation (EC.55) and (EC.56), we have

RHS of (EC.54)≤ Č1τn +
Č2√
n2−δ1τn

(EC.57)

Then the result follows by setting that τn � n
δ1−2

3 . �

EC.2.2. Capacity investment with multiple adjustment opportunities

EC.2.2.1. Proofs

Without loss of generality, we consider K = Z+ in the following proof. In the general case of

K= {kδ : k ∈ Z+}, the following proof holds by defining new decision and state variables µ̌, µ̂/δ

and µ̌j , µ̂j/δ.

Lemma EC.1 (L\-concavity preservation). Let S ⊂Z+ be a lattice.

(i) If f(v) and g(v) are L\-concave in v, then αf(v) +βg(v) where α,β ≥ 0 is also L\-concave.

(ii) If f(v, ξ) is L\-concave, then g(v) = maxξ∈S f(v, ξ) is also L\-concave.

Proof of Lemma EC.1 We note the part (i) is trivial. We prove part (ii) below following a

similar approach of Lemma 2 in Zipkin (2008).

If f(v, ξ) is L\-concave, then we have r(v, ξ, ζ) = f [(v, ξ)− ζ(e,1)] is supermodular. Therefore,

we have

ψ(v, ζ) = g(v− ζe) = max
ξ∈S

f(v− ζe, ξ) = max
ξ∈S

f [(v, ξ+ ζ)− ζ(e,1)] = max
ξ∈S

r(v, ξ+ ζ, ζ)

= max
ε≥ζ&ε−ζ∈S

r(v, ε, ζ)

Note the set {(ε, ζ) : ε≥ ζ, ε, ζ ∈ S} is a sublattice of Z2
+. Therefore, the maximum over ε is super-

modular following Theorem 2.7.6 in Topkis (1998). As a result, we have g(v) is L\-concave. �

To proceed, we use the following definition of Lovász extension on the hypercube {L,U}n (Lovász

1983, Chen et al. 2014) to obtain a continuous extension of an L\-concave function. Here, the

hypercube {L,U}n refers to the set {z ∈Zn+ : zj ∈ {L,U}, j = 1,2, ..., n}.

Definition EC.1 (Lovász extension). Given a discrete function f : {L,U}n → R, for any

given point x∈ [L,U ]n, let σ be the permutation of {1,2, ..., n} such that xσ(1) ≥ xσ(2) ≥ ...≥ xσ(n).

For 0≤ i≤ n, define y(i) ∈ {L,U}n such that yσ(1)(i) = yσ(2)(i) = ...= yσ(i)(i) = U and yσ(i+1)(i) =

yσ(i+2)(i) = ...= yσ(n)(i) =L. Let λi be the unique coefficient of y(i), i= 0,1, ..., n; i.e.,

x=
n∑
i=0

λiy(i) (EC.58)
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The Lovász extension fL : [L,U ]n→R of function f at point x is defined as follows:

fL(x) =
n∑
i=0

λif(y(i)). (EC.59)

The following results are due to Lovász (1983) and Murota (2003). We skip the proof of the

lemma and refer interested readers to Murota (2003) and Chen et al. (2014).

Lemma EC.2 (Concave extension of an L\-concave function).

(i) For a discrete function f defined on a hypercube {L,U}n, its concave envelope is identical to

its Lovász extension if and only if f is supermodular.

(ii) For a discrete L\-concave function f , its global extension can be obtained by first obtaining

its Lovász extension for every unit hypercube in its domain, and then paste all these extensions

together.

Lemma EC.3 (L\-concavity of value-to-go functions). For all j ∈ {1,2, ..., J − l+ 1},

(i) Hm
j (πj , µ̂j−1, µ̂) is L\-concave in (µ̂j−1, µ̂).

(ii) V m
j (πj , µ̂j−1) is L\-concave in µ̂j−1.

Proof of Lemma EC.3 We first prove part (i). By definition, in order to show Hm
j (πj , µ̂j−1, µ̂)

is L\-concave in (µ̂j−1, µ̂), we need to show that ψhj (πj , µ̂j−1, µ̂, ζ) =Hm
j [(πj , µ̂j−1, µ̂)− ζ(0,1,1)] =

Hm
j [(πj , µ̂j−1 − ζ, µ̂ − ζ) is supermodular in (µ̂j−1, µ̂, ζ). For j = J − l + 1, it is trivial as

Hm
J−l+1(πJ−l+1, µ̂J−l − ζ, µ̂− ζ) = 0. For any j = 1,2, ..., J − l, we have Hm

j (πj , µ̂j−1 − ζ, µ̂− ζ) =

hj+l (πj , µ̂− ζ)− Ĉ (µ̂j−1, µ̂). Note that hj+l (πj , µ̂− ζ) is supermodular in (µ̂, ζ) and −Ĉ (µ̂j−1, µ̂)

is supermodular in (µ̂, µ̂j−1), and we have Hm
j (πj , µ̂j−1− ζ, µ̂− ζ) is supermodular in (µ̂j−1, µ̂, ζ).

Therefore, we have proved that Hm
j (πj , µ̂j−1, µ̂) is L\-concave in (µ̂j−1, µ̂).

We next prove part (ii) of this lemma by induction. For period J − l + 1, we have

V m
J−l+1(πJ−l+1, µ̂J−l) = 0. Therefore, it is trivial that V m

J−l+1(πJ−l+1, µ̂J−l) is L\-concave in µ̂J−l.

Assume that for period j+ 1, we have that V m
j+1(πj+1, µ̂j) is L\-concave in µ̂j. For period j, we

have V m
j (πj , µ̂j−1) = maxµ̂∈K{Hm

j (πj , µ̂j−1, µ̂) +E
[
V m
j+1(Πj+1, µ̂)|πj

]
}. By the induction hypothe-

sis and Lemma EC.1 (i), we have E
[
V m
j+1(Πj+1, µ̂)|πj

]
is L\-concave in µ̂j and therefore it is also

L\-concave in (µ̂j−1, µ̂). Note that we have proved that Hm
j (πj , µ̂j−1, µ̂) is L\-concave in (µ̂j−1, µ̂).

Then by Lemma EC.1 (i) and (ii) and the fact that K is also a lattice, we have V m
j (πj , µ̂j−1) is

L\-concave in µ̂j−1. �

Proof of Proposition 4 For any j = 1,2, ..., J − l+ 1 and any µ̂∈K, we define

f(πj , µ̂j−1, µ̂),Hm
j (πj , µ̂j−1, µ̂) +E

[
V m
j+1(Πj+1, µ̂)|πj

]
(EC.60)
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Correspondingly, we denote the Lovász extension of f by fL. By Lemma EC.2 and the definition of

Lovász extension, we note that fL is a piecewise linear concave function and we have the following:

V m
j (πj , µ̂j−1) = max

µ̂∈K
f(πj , µ̂j−1, µ̂) = max

µ̂∈R+

fL(πj , µ̂j−1, µ̂) (EC.61)

We next show the optimal policy follows the control band structure. For µ̂j−1 = 0, we have

f(πj ,0, µ̂) = hj+l (πj , µ̂)− caµ̂+E
[
V m
j+1(Πj+1, µ̂)|πj

]
and the corresponding Lovász extension by

fL(πj ,0, µ̂). Then we define

µ
j
(πj) = arg max

µ̂∈R+

{
fL(πj ,0, µ̂)

}
(EC.62)

As fL is the piecewise linear concave envelope for f , we have µ
j
(πj) ∈K. For any µ̂j−1 < µ

j
(πj),

it is optimal to adjust the capacity up to the level µ
j
(πj).

For an arbitrary large µ̂j−1, we have f(πj , µ̂j−1, µ̂) = hj+l (πj , µ̂) + γaµ̂+E
[
V m
j+1(Πj+1, µ̂)|πj

]
and the corresponding Lovász extension by fL(πj , µ̂j−1, µ̂). Then we define µj(πj) such that

µj(πj) = arg max
µ̂∈R+

{
fL(πj , µ̂j−1, µ̂)

}
(EC.63)

As fL is the piecewise linear concave envelope for f , we have µj(πj)∈K. It is optimal for the firm

to disinvest its capacity to µj(πj) for all µ̂j−1 > µj(πj). As ca ≥ 0 and ca ≥ −γa, it follows that

µj(πj) ≥ µj(πj). Following the concavity of the Lovász extension of the value-to-go function, it

is optimal for the firm to stay put when µ
j
(πj) ≤ µ̂j−1 ≤ µj(πj). Therefore, we have proved the

optimal policy is a control band policy. �

When the capacity type is continuous, we have the value-to-go functions as follows. For all

j ∈ {1,2, ..., J − l},

V m
j (πj , µ̂j−1) = max

µ̂∈R+

E
[
Hm
j (πj , µ̂j−1, µ̂) +V m

j+1(Πj+1, µ̂)|πj

]
= max

µ̂∈R+

{
hj+l (πj , µ̂)− Ĉ (µ̂j−1, µ̂) +E

[
V m
j+1(Πj+1, µ̂)|πj

]}
;

V m
j (πj , µ̂j−1) = 0 for j > J − l. (EC.64)

The optimal policy for the continuous case extends the result in Proposition 4 and is shown as

follows.

Proposition EC.2 (Optimal policy for multiple adjustment with continuous capacity).

Suppose the firm has information vector πj and capacity position µ̂j−1 at the beginning of period j.

Then, the optimal capacity position, denoted by µ̂∗(πj), is characterized by two thresholds µ
j
(πj)

and µ̄j(πj), such that:

(i) If µ̂j−1 <µj(πj), it is optimal for the firm to adjust the capacity position up to µ̂∗(πj) = µ
j
(πj).

(ii) If µ
j
(πj)≤ µ̂j−1 ≤ µ̄j(πj), it is optimal for the firm to stay put, i.e., µ̂∗(πj) = µ̂j−1.

(iii) If µ̂j−1 > µ̄j(πj), it is optimal for the firm to adjust the capacity position down to

µ̂∗(πj) = µ̄j(πj).
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Proof of Proposition EC.2. The proof follows in two steps: (1) show V m
j (πj , µ̂j−1) is concave

in the capacity position µ̂j−1 for all j ≤ J − l+ 1; (2) show the optimal policy follows the control

band structure and find the lower and upper thresholds.

We first show the concavity by induction. For j = J − l+ 1, we have V m
J−l+1(πJ−l+1, µ̂J−l) = 0,

and therefore is concave in µ̂J−l. For j + 1, assume V m
j+1(πj+1, µ̂j) is concave in µ̂j. It follows

that E
[
V m
j+1(Πj+1, µ̂)|πj

]
is concave in µ̂ as the positive combination of concave functions is

concave. Therefore, we have hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)
+ − γa (µ̂j−1− µ̂)

+
+ E

[
V m
j+1(Πj+1, µ̂)|πj

]
is jointly concave in (µ, µ̂). For a jointly-concave function f(x, y) and a convex set Y, we have

g(x) = maxy∈Y f(x, y) is concave in x. Then it follows that

V m
j (πj , µ̂j−1) = max

µ̂∈R+

{
hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)

+− γa (µ̂j−1− µ̂)
+

+E
[
V m
j+1(Πj+1, µ̂)|πj

]}
is concave in µ̂j−1.

We next show the optimal policy follows the control band structure. For µ̂j−1 = 0, we define

µ
j
(πj), arg max

µ̂∈R+

{
hj+l (πj , µ̂)− caµ̂+E

[
V m
j+1(Πj+1, µ̂)|πj

]}
(EC.65)

For any µ̂j−1 that is sufficiently small, i.e., µ̂j−1 < µ
j
(πj), it is optimal to adjust the capacity up

to the level µ
j
(πj).

For an arbitrary large µ̂j−1, we define

µj(πj), arg max
µ̂∈R+

{
hj+l (πj , µ̂) + γaµ̂+E

[
V m
j+1(Πj+1, µ̂)|πj

]}
(EC.66)

It is optimal for the firm to disinvest its capacity to µj(πj) for all µ̂j−1 > µj(πj). As ca ≥ 0 and

ca ≥−γa, it follows that µj(πj)≥ µj(πj). Following the concavity of the value-to-go function, it is

optimal for the firm to stay put when µ
j
(πj)≤ µ≤ µj(πj). Therefore, we have proved the optimal

policy is a control band policy. �

Proof of Proposition 5. We first note that the likelihood ratio order implies first order stochastic

dominance. To simplify the notations, we define the two functions

Ga
j (πj , µ̂j−1, µ̂) = hj+l (πj , µ̂)− ca (µ̂− µ̂j−1)

+− γa (µ̂j−1− µ̂)
+

+E
[
V m
j+1(Πj+1, µ̂)|πj

]
Gs
j(πj , µ̂) = hj+l (πj , µ̂) +E

[
V m
j+1(Πj+1, µ̂)|πj

]
. (EC.67)

We observe that V m
j (πj , µ̂j−1) = maxµ̂G

a
j (πj , µ̂j−1, µ̂). We also have the fact that Ga

j (πj , µ̂j−1, µ̂)

is concave in µ̂ from Proposition EC.2. To show the two thresholds increase in the information

vector πj , it is sufficient to show that for j = 1, ..., J − l, ∂Gaj
∂µ̂

(πj , µ̂j−1, µ̂) increases in πj for any

µ̂ 6= µ̂j−1, and
∂Gsj
∂µ̂

(πj , µ̂), which is a special case when µ̂= µ̂j−1, increases in πj . We prove this by

induction. We present the result for Ga
j (·) as the proof for Gs

j(·) is identical.
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To establish induction basis, let j = J − l. If µ̂≤ µ̂J−l−1, we have

∂Ga
J−l

∂µ̂
(πJ−l, µ̂J−l−1, µ̂) =

I∑
i=1

πJ−l,i[c1τ(1−FJ(µ̂τ |θi))− c0τ ] + γa (EC.68)

Therefore, as Dj|θi �st Dj|θî for i ≤ î, we have
∂GaJ−l
∂µ̂

(πJ−l, µ̂J−l−1, µ̂) increases in πJ−l when

µ̂ < µ̂J−l−1. A similar argument establishes the result for the case µ̂ > µ̂J−l−1.

Suppose that the result hold for all t= j + 1, ..., J − l. Thus, at period j + 1,
∂Gaj+1

∂µ̂
(πj+1, µ̂j, µ̂)

increases in πj+1 for all µ̂ 6= µ̂j. From the induction hypothesis, the two switching curves µ
j+1

(πj+1)

and µ̄j+1(πj+1) increase in πj+1 as well. We now show that
∂Gaj
∂µ̂

(πj , µ̂j−1, µ̂) increases in πj for

µ̂ 6= µ̂j−1.

For any µ̂ < µ̂j−1, we have

∂Gaj
∂µ̂

(πj , µ̂j−1, µ̂) =
∑I

i=1 πj,i[c1τ(1−Fj+l(µ̂τ |θi))− c0τ ] + γa +E
[
∂Vmj+1

∂µ̂
(Πj+1, µ̂)

∣∣∣πj

]
(EC.69)

The expression for
∂Gaj
∂µ̂

(πj , µ̂j−1, µ̂) when µ̂ > µ̂j−1 is similar. In order to show equation (EC.69)

increases in πj , we need to show that E
[
∂Vmj+1

∂µ̂
(Πj+1, µ̂)

∣∣∣πj

]
increases in πj , which is shown in

two steps.

We first observe that

∂V m
j+1

∂µ̂j
(πj+1, µ̂j) =


ca if µ̂j <µj+1

(πj+1)
∂Gsj+1

∂µ̂
(πj+1, µ̂j) if µ

j+1
(πj+1)≤ µ̂j ≤ µ̄j+1(πj+1)

−γa if µ̂j > µ̄j+1(πj+1)

(EC.70)

Notice that
∂Vmj+1

∂µ̂j
(πj+1, µ̂j) is continuously decreasing in µ̂j, and µ

j+1
(πj+1) and µ̄j+1(πj+1)

increase in πj+1. From the induction hypothesis,
∂Vmj+1

∂µ̂j
(πj+1, µ̂j) increases in πj+1.

Next, we show that Πj+1|πj increases in πj in the first order stochastic dominance sense. Notice

that as πj increases in the likelihood ratio order, πj+1 increases in the likelihood ratio order,

which implies that πj+1 increases in the first order stochastic dominance. In addition, we have the

stochastic dominance relationship among the demand types, i.e., Dj|θi �stDj|θî for i≤ î. Therefore,

Πj+1|πj stochastically increases in πj . Thus, the fact that E
[
∂Vmj+1

∂µ̂
(Πj+1, µ̂)

∣∣∣πj

]
increases in πj

immediately follows. It then follows that
∂Gaj
∂µ̂

(πj , µ̂j−1, µ̂) increases in πj for µ̂ < µ̂j−1. A similar

argument proves the case for µ̂ > µ̂j−1. Therefore, the result holds for period j. �

Proof of Proposition 6. Similar to the proof of Proposition 3, we first find an upper bound of

the regret by finding a lower bound of V ms
0,n . To simplify the notations, we define the firm’s expected

profits under the multi-step heuristic (given the demand type λi) in different periods as follows.

We still use λ̂i,jτn to denote
Dj |θi,n
nτn

. First, in period ln + 1, the firm’s capacity is still the initial

capacity µ0, and we have

Ws,n(λi),E
{
pnλ̂i,(ln+1)τnτn− c1n

(
λ̂i,(ln+1)τn −µ0

)+

τn− c0nµ0τn

}
(EC.71)
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Second, during period ln + 2 and ln + 2Kn −1, the firm’s capacity level is updated according to the

heuristic. Observing that E[λ̄i,κ] = λi, we have the firm’s expected profits as

Wm,n(λi),E
Kn−1∑
κ=1


ln+2κ+1−1∑
j=ln+2κ

[
pnλ̂i,jτnτn− c1n

(
λ̂i,jτn − λ̄i,κ

)+

τn− c0nλ̄i,κτn

]
− Ĉ

(
nλ̄i,κ−1, nλ̄i,κ

)
=

Kn−1∑
κ=1

(p− c0)nλi2
κτn− c1nτn

ln+2κ+1−1∑
j=ln+2κ

E
(
λ̂i,jτn − λ̄i,κ

)+

−E
[
Ĉ
(
nλ̄i,κ−1, nλ̄i,κ

)]
(EC.72)

Finally, during period ln + 2Kn and Jn, the firm makes the last adjustment, and the capacity

maintains at this level for the rest of the time horizon. Then we have

Wl,n(λi),E


Jn∑

j=ln+2Kn

[
pnλ̂i,jτnτn− c1n

(
λ̂i,jτn − λ̄i,Kn

)+

τn− c0nλ̄i,Knτn

]
− Ĉ

(
nλ̄i,Kn−1, nλ̄i,Kn

)
=(p− c0)nλi

(
T − lt−

(
2Kn − 1

)
τn
)
− c1nτn

Jn∑
j=ln+2Kn

E
(
λ̂i,jτn − λ̄i,Kn

)+

−E
[
Ĉ
(
nλ̄i,Kn−1, nλ̄i,Kn

)]
(EC.73)

We show analysis for the case where λi ≥ µ0 for all i, as the analysis for the other case is similar.

Because Ws,n(λi)≥ 0 as p≥ c1 > c0, we have

V ms
0,n =

I∑
i=1

π1,i

{
Ws,n(λi) +Wm,n(λi) +Wl,n(λi)

}
≥

I∑
i=1

π1,i

{
Wm,n(λi) +Wl,n(λi)

}
(EC.74)

Therefore, by equation (20), we have an upper bound of the regret as follows

Rπn
n = 1−V ms

0,n /V
d

0,n

≤ 1

V d
0,n

I∑
i=1

π1,i

{
(p− c0)nλi(T − lt)− Ĉ(nµ0, nλi)−Wm,n(λi)−Wl,n(λi)

}

=
1

V d
0,n

I∑
i=1

π1,i


(p− c0)nλiτn− Ĉ(nµ0, nλi) +

∑Kn
κ=1E

[
Ĉ
(
nλ̄i,κ−1, nλ̄i,κ

)]
+c1nτn

[∑Kn−1

κ=1

∑ln+2κ+1−1

j=ln+2κ E
(
λ̂i,jτn − λ̄i,κ

)+

+
∑Jn

j=ln+2Kn E
(
λ̂i,jτn − λ̄i,Kn

)+
]

(EC.75)

To find an upper bound for the right hand side of equation (EC.75), we need to find an

upper bound for E
(
λ̂i,jτn − λ̄i,κ

)+

, E(λ̄i,κ− λ̄i,κ−1)+, and E(λ̄i,κ−1− λ̄i,κ)+ respectively. Note that

E[λ̄i,κ] = λi and V ar[λ̄i,κ] = σ2λi
n(2κ−1)τn

. We use Ci to represent a constant which is independent of

n and τn for all i. By Proposition EC.1 and the inequality of (EC.33), we have

E
(
λ̂i,jτn − λ̄i,κ

)+

≤E
(
λ̂i,jτn −λi

)+

+E
(
λi− λ̄i,κ

)+ ≤ σ
√
λi

2
√
nτn

+
σ
√
λi

2
√
n(2κ− 1)τn

≤ C3√
nτn
(EC.76)
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For κ= 1, we have

E
(
λ̄i,1− λ̄i,0

)+
=E

(
λ̄i,1−µ0

)+ ≤E
(
λ̄i,1−λi

)+
+ (λi−µ0)

+ ≤ σ
√
λi

2
√
nτn

+ (λi−µ0)
+

(EC.77)

E
(
λ̄i,0− λ̄i,1

)+
=E

(
µ0− λ̄i,1

)+ ≤ (µ0−λi)+
+E

(
λi− λ̄i,1

)+ ≤ (µ0−λi)+
+

σ
√
λi

2
√
nτn

(EC.78)

By equation (18), for κ≥ 2, we have

E
(
λ̄i,κ− λ̄i,κ−1

)+
=E

(
λ̄i,κ−1n(2κ−1− 1)τn +N(nλi(2

κ− 1)τn)−N(nλi(2
κ−1− 1)τn)

n(2κ− 1)τn
− λ̄i,κ−1

)+

=E

(
N(nλi(2

κ− 1)τn)−N(nλi(2
κ−1− 1)τn)− λ̄i,κ−1n2κ−1τn

n(2κ− 1)τn

)+

≤E
(
N(nλi(2

κ− 1)τn)−N(nλi(2
κ−1− 1)τn)

n2κ−1τn
−λi

)+

+E
(
λi− λ̄i,κ−1

)+

≤ σ
√
λi

2
√
n2κ−1τn

+
σ
√
λi

2
√
n(2κ−1− 1)τn

≤ C5√
n2κτn

(EC.79)

E
(
λ̄i,κ−1− λ̄i,κ

)+ ≤ C6√
n2κτn

(EC.80)

We next apply the inequality (EC.76) to (EC.80) to the right hand side of equation (EC.75),

and gather the items by the outsourcing costs and capacity adjustment costs respectively. Then

we obtain an upper bound of the regret as follows

RHS of (EC.75)≤C7τn +C8

c1√
nτn

+C9

Kn∑
κ=1

max(ca, γ
+
a )√

n2κτn

≤C7τn +
C10√
nτn

(EC.81)

The last inequality follows the fact that Kn satisfies that (2Kn+1− 1)τn ≤ T − lt.

By setting τn � n−
1
3 , we obtain an upper bound of the regret on the order of n−

1
3 . �

Remark: The exponentially increasing time between two consecutive adjustments is important

in establishing the upper bound in the order of n−1/3. To illustrate this, we alternatively consider

another heuristic, where the time between two consecutive adjustments is fixed as n̂τn, n̂∈N+. We

denote the regret under this heuristic as Rfa
n . Following the same logic as in the proof of Proposition

6, it can be obtained that the upper bound of the regret satisfies the following

Rfa
n ≤C7τn +C11

c1√
nτn

+C12

max(ca, γ
+
a )√

nn̂τn

T

n̂τn

≤C7τn +C13

1√
nτ 3

n

(EC.82)

In this case, the firm should set τn � n−1/5 and yield an upper bound in the order of n−1/5. It cannot

tighten the upper bound to the order of n−1/3, because the capacity adjustment is too frequent

and the adjustment cost is too high.
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EC.2.2.2. Remark

Our results can be generalized to the case with fixed capacity cost, the capacity reduction is

limited by the current available capacity, and different leadtimes to increase and decreases capacity

as follows.

Fixed cost. If there exist fixed costs with capacity change, we can show that the optimal

policy has state-dependent regions where the firm can alternate between increasing and staying

put (or between decreasing and staying put) multiple times as the initial capacity increases: e.g.,

ISDSD and ISISD. This shows that, with fixed costs, even the fundamental structure such as “the

optimal policy is of an ISD type” no longer holds. This is because concavity (its preservation

under maximum over a convex set), which is the original machinery of proving the optimality of

an ISD policy, no longer holds with fixed costs. To characterize the structure of the optimal policy,

we use weak (K1,K2)-concavity, developed in Semple (2007). For a given information vector, the

structure of the optimal policy is now characterized with several thresholds with respect to the

initial capacity. Specifically, as the initial capacity increases, the optimal policy may switch between

investing and staying put before disinvestment region starts. Likewise, the optimal policy may

alternate between staying put and disinvestment multiple times. We show that these thresholds

are dependent on the information vector, which represents the firm’s belief about demand types.

Thus, we generalize the result of Semple (2007) to the case with an unknown demand type.

The weak (K1,K2)-concavity developed in Semple (2007) is as follows, where K1 and K2 are

given nonnegative constants.

Definition EC.2 (Semple (2007): Weak (K1,K2)-concavity). A continuous function

f(x) is weakly (K1,K2)-concave on the interval [0,U ] if and only if for any two points x, y ∈ [0,U ]

with x< y and any λ∈ [0,1],

f((1−λ)x+λy)≥ (1−λ)(f(x)−K2) +λ(f(y)−K1) (EC.83)

The concept of weak (K1,K2)-concavity allows us to characterize the structure of optimal policy.

If the value-to-go function in one period satisfies the weak (K1,K2)-concavity, the structure of the

optimal policy can be shown as the one in Proposition EC.3 below. In addition, it can be shown

that the weak (K1,K2)-concavity preserves in the dynamic program, and therefore, we are able to

completely characterize the optimal policy with respect to initial capacity. Below we describe the

details of the optimal policy.

We first define the value-to-go function. We define the cost to adjust capacity from µ to µ′ with

fixed costs as Č(µ,µ′), ca(µ′−µ)+ +K1{µ′−µ>0}+ γa(µ−µ′)+ +K1{µ−µ′>0}. Let the superscript



ec22 e-companion to Author: Capacity Investment with Demand Learning

mf denote the case of multiple capacity adjustment with a fixed cost and U denote a large constant,

and we have

V mf
j (πj , µ̂j−1) = max

µ̂∈[0,U ]

{
hj+l (πj , µ̂)− Č (µ̂j−1, µ̂) +E

[
V mf
j+1(Πj+1, µ̂)|πj

]}
;

V mf
j (πj , µ̂j−1) = 0 for j > J − l. (EC.84)

To simplify notations, we define the value-to-go function assuming the firm can only increase

its capacity, V
mf

j (πj , µ̂j−1), and the value-to-go function assuming the firm can only decrease its

capacity, V mf
j (πj , µ̂j−1) in period j as follows.

V
mf

j (πj , µ̂j−1) = max
µ̂∈[µ̂j−1,U ]

{
hj+l (πj , µ̂)− ca(µ̂− µ̂j−1)−K1{µ̂−µ̂j−1>0}+E

[
V mf
j+1(Πj+1, µ̂)|πj

]}
V mf
j (πj , µ̂j−1) = max

µ̂∈[0,µ̂j−1]

{
hj+l (πj , µ̂)− γa(µ̂j−1− µ̂)−K1{µ̂j−1−µ̂>0}+E

[
V mf
j+1(Πj+1, µ̂)|πj

]}
(EC.85)

It is immediate that V mf
j (πj , µ̂j−1) = max{V mf

j (πj , µ̂j−1), V mf
j (πj , µ̂j−1)}.

To simplify description of the optimal policy, we define the following critical values in period j.

Bj(πj), sup{µ̂∈ arg max
µ̂∈[0,U ]

[
hj+l (πj , µ̂)− caµ̂+E

[
V mf
j+1(Πj+1, µ̂)|πj

]]
},

Sj(πj), inf{µ̂∈ arg max
µ̂∈[0,U ]

[
hj+l (πj , µ̂) + γaµ̂+E

[
V mf
j+1(Πj+1, µ̂)|πj

]]
},

bj(πj), sup{µ : V
mf

j (πj , µ̂j−1)>V mf
j (πj , µ̂j−1),∀µ̂j−1 ∈ [0, µ)}, if {} empty, set bj(πj) = 0,

b∗j (πj), inf{µ : V
mf

j (πj , µ̂j−1)≤ V mf
j (πj , µ̂j−1),∀µ̂j−1 ∈ [µ,U ]},

s∗j (πj), sup{µ : V
mf

j (πj , µ̂j−1)≥ V mf
j (πj , µ̂j−1),∀µ̂j−1 ∈ [0, µ]},

sj(πj), inf{µ : V
mf

j (πj , µ̂j−1)<V mf
j (πj , µ̂j−1),∀µ̂j−1 ∈ (µ,U ]}, if {} empty, set sj(πj) =U .

(EC.86)

That is, given the information vector πj , Bj(πj) and Sj(πj) represent the largest global invest-

up-to capacity position and the smallest global disinvest-down-to capacity position respectively.

With respect to the optimal policy in period j, we have bj(πj) is the largest value below which the

firm always invests, b∗j (πj) is the smallest value above which the firm never invests, s∗j (πj) is the

largest value below which the firm never disinvests, and sj(πj) is the smallest value above which

the firm always disinvests. Following a similar proof of Theorem 2, 3, 4, and 5 in Semple (2007),

we establish the following structure of the optimal policy.

Proposition EC.3 (Optimal policy for multiple adjustment with fixed cost). In

period j, given information vector πj and capacity position µ̂j−1, there are two cases.

Case 1: K ≤K (disinvestment has a higher fixed cost.)

(i) µ̂j−1 ∈ [0, bj(πj)), the firm invests up to Bj(πj).
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(ii) µ̂j−1 ∈ [bj(πj), b
∗
j (πj)), the firm stays put if V

mf

j (πj , µ̂j−1) =

hj+l (πj , µ̂j−1) + E[V mf
j+1(Πj+1, µ̂j−1)|πj ]. Otherwise the firm invests up to B̃j(πj) ∈

arg maxµ̂∈[µ̂j−1,U ]

{
hj+l (πj , µ̂)− ca(µ̂− µ̂j−1)−K1{µ̂−µ̂j−1>0}+E

[
V mf
j+1(Πj+1, µ̂)|πj

]}
.

(iii) µ̂j−1 ∈ [b∗j (πj), s
∗
j (πj)], the firm stays put.

(iv) µ̂j−1 ∈ [s∗j (πj), sj(πj)], the firm stays put if V mf
j (πj , µ̂j−1) = hj+l (πj , µ̂j−1) +

E[V mf
j+1(Πj+1, µ̂j−1)|πj ]. Otherwise the firm disinvests down to Sj(πj).

(v) µ̂j−1 ∈ [sj(πj),U ], the firm should disinvests to Sj(πj).

Case 2: K >K (investment has a higher fixed cost.)

(i) µ̂j−1 ∈ [0, bj(πj)), the firm invests up to Bj(πj).

(ii) µ̂j−1 ∈ [bj(πj), b
∗
j (πj)), the firm stays put if V

mf

j (πj , µ̂j−1) = hj+l (πj , µ̂j−1) +

E[V mf
j+1(Πj+1, µ̂j−1)|πj ]. Otherwise the firm invests up to Bj(πj).

(iii) µ̂j−1 ∈ [b∗j (πj), s
∗
j (πj)], the firm stays put.

(iv) µ̂j−1 ∈ [s∗j (πj), sj(πj)], the firm stays put if V mf
j (πj , µ̂j−1) = hj+l (πj , µ̂j−1) +

E[V mf
j+1(Πj+1, µ̂j−1)|πj ]. Otherwise the firm disinvests down to S̃j(πj) ∈

arg maxµ̂∈[µ̂j−1,U ]

{
hj+l (πj , µ̂)− γa(µ̂j−1− µ̂)−K1{µ̂j−1−µ̂>0}+E

[
V mf
j+1(Πj+1, µ̂)|πj

]}
.

(v) µ̂j−1 ∈ [sj(πj),U ], the firm should disinvests to Sj(πj).

Note that we have established the optimal policy for the continuous capacity case. When the

capacity is discrete, it remains an open question about how to extend the weak (K1,K2)-concavity

to the discrete case and characterize the optimal policy.

Leadtime. When the capacity reduction is limited by the current available capacity, we show

that the optimal policy is still of the ISD type, where the thresholds will depend on the pipeline

capacity to be installed. The details are provided in Section EC.2.3.

In the baseline model, we assume the leadtime to adjust the capacity is l periods, which remains

the same for capacity investment and disinvestment. Similar to the discussion in Section EC.2.1.2,

one may expect that the leadtime to invest in capacity, l, might be different from the leadtime to

disinvest, l. In what follows, we establish that when the firm does not actively update its belief

about demand, i.e., the firm’s belief about demand types remains as π1, the decision problem with

different leadtimes can be recast as an equivalent one with the same leadtime following a similar

discussion in Ye and Duenyas (2007). We consider the case where l > l, and the analysis for the

other case is similar.

Let µj denote the capacity level in period j after the capacity invested in period j− l is installed

and the capacity disinvested in period j− l is salvaged. Also define cja be the cost to add a unit of

capacity in period j+ l and γja be the cost to disinvest one unit of capacity in period j+ l. Then the
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firm’s capacity adjustment decision problem is to find a sequence of (µ1, ..., µJ) which maximizes

the total profit over the horizon:

max
(µ1,...,µJ )

J∑
j=1

E
[
hj (π1, µj)− cj−la (µj −µj−1)

+− γj−la (µj−1−µj)+
]

(EC.87)

where we have cj−la =M for all j = 1,2, ..., l and cj−la = ca otherwise; γj−la =M for all j = 1,2, ..., l

and γj−la = γa otherwise. Here M stands for a very large number. It is immediate that µj = µ0 for

j = 1,2, ..., l, µj ≤ µj−1 for all j = l+ 1, ..., l, and µj ∈K for j = l+ 1, ..., J .

Then we define the equivalent optimal value-to-go function as follows: for all j = 1,2, ..., J ,

V m
j (π1, µ̌j−1) = max

µ̌∈K

{
hj (π1, µ̌)− cj−la (µ̌− µ̌j−1)

+− γj−la (µ̌j−1− µ̌)
+

+E
[
V m
j+1(π1, µ̌)

]}
;

V m
J+1(π1, µ̌J) = 0. (EC.88)

Note the dynamic program has a similar structure as the one in Section 5, we can obtain a similar

structure of the optimal policy following the analysis of Proposition 4 and EC.2. With the optimal

solution of (µ̌∗1, ..., µ̌
∗
J), the decision the firm should make in period j is as follows. For j = 1,2, ..., J−

l, invests (µ̌∗j − µ̌∗j−1)+; for j = 1,2, ..., J − l, disinvests (µ̂∗j−1− µ̂∗j )+.

When the firm actively updates its belief about demand, the capacity adjustment decision

depends on the firm’s information about demand which may be different for increasing and decreas-

ing the capacity for a period because these decisions are made at different times. By tracking a

state vector of the capacity waiting to be installed or disposed between the lead time l and l as

well as the belief about demand types, it is possible to show that the optimal capacity adjustment

decision still follows a state-dependent ISD policy in this case.

EC.2.3. Optimal policy when capacity reduction is limited by current capacity

In this section, we derive the firm’s optimal policy to adjust its capacity, when the current available

capacity is the maximum capacity available for making capacity reduction decisions. The model

setting is identical to the one in Section 5, except that the firm cannot reduce its capacity beyond

the current available capacity level.

As the firm can only reduce its capacity from its current available capacity level, the information

states regarding capacity include the current capacity level as well as those in the pipeline. We

denote the capacity vector in period j as µj = (µj,0, µj,1, ..., µj,l) where µj,0 is the current available

capacity and µj,k indicates the capacity increment to be installed or disposed in k periods. As there

is a leadtime of l periods in adjusting its capacity, the capacity adjustment decision (increasing or

decreasing capacity) will only affect the firm’s profit after the l periods of leadtime, and the firm

needs to decide the total available capacity after the leadtime, which is denoted by the capacity
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position, µ̂. For simplicity, we consider the case where the capacity is continuous. Therefore, we

formulate the firm’s optimal value-to-go function as follows: for all j ∈ {1,2, ..., J − l},

V m
j (πj ,µj−1) = max

µ̂≥
∑l
i=1 µj−1,k

{
hj+l (πj , µ̂)− Ĉ

(
l∑
i=0

µj−1,k, µ̂

)
+E

[
V m
j+1(Πj+1,µj)|πj

]}
;

V m
j (πj ,µj−1) = 0 for j > J − l. (EC.89)

The capacity states evolve as follows:

µj,0 = µj−1,0 +µj−1,1 for k= 1, ..., l− 1

µj,k = µj−1,k+1 for k= 1, ..., l− 1

µj,l = µ̂−
l∑
i=0

µj−1,k for k= l. (EC.90)

The constraint µ̂≥
∑l

i=1 µj−1,k specifies that the total available capacity l periods later should

be greater than all the capacity increment waiting to be installed or disposed, which means that if

the capacity is reduced in the current period, the maximum capacity reduction cannot exceed the

current available capacity.

With this additional constraint, we show in the next result that, for a given information vector,

the optimal policy is also of a control band type. This echoes the result in Section 5.

Proposition EC.4 (Optimal policy for limited capacity reduction). Let πj be the

information vector and µ̂j−1 ,
∑l

i=0 µj−1,k be capacity position at the beginning of period j.

Then, the optimal capacity position, denoted by µ̂∗(πj ,µj−1), is characterized by two thresholds

µ
j
(πj ,µj−1) and µ̄j(πj ,µj−1), such that:

(i) If µ̂j−1 < µ
j
(πj ,µj−1), it is optimal for the firm to adjust the capacity position up to

µ̂∗(πj ,µj−1) = µ
j
(πj ,µj−1).

(ii) If µ
j
(πj ,µj−1)≤ µ̂j−1 ≤ µ̄j(πj ,µj−1), it is optimal for the firm to stay put, i.e., µ̂∗(πj ,µj−1) =

µ̂j−1.

(iii) If µ̂j−1 > µ̄j(πj ,µj−1), it is optimal for the firm to adjust the capacity position down to

µ̂∗(πj ,µj−1) = µ̄j(πj ,µj−1).

Proof of Proposition EC.4. The proof is similar to the proof of EC.2 and follows in two steps:

(1) show V m
j (πj ,µj−1) is concave in the capacity vector µj−1 for all j ≤ J − l+ 1; (2) show the

optimal policy follows the control band structure and find the lower and upper thresholds.

We first show the concavity by induction. For j = J − l + 1, we have V m
J−l+1(πJ−l+1,µJ−l) =

0, and therefore is concave in µJ−l. For j + 1, assume V m
j+1(πj+1,µj) is concave in µj . It fol-

lows that E
[
V m
j+1(Πj+1,µj)|πj

]
is concave in µj as the positive combination of concave func-

tions is concave. Therefore, we have hj+l (πj , µ̂)− ca
(
µ̂−

∑l

i=0 µj−1,k

)+

−γa
(∑l

i=0 µj−1,k− µ̂
)+

+
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E
[
V m
j+1(Πj+1,µj)|πj

]
is jointly concave in (µj−1, µ̂). For a jointly-concave function f(x, y) and a

convex set Y, we have g(x) = maxy∈Y f(x, y) is concave in x. Then it follows that

V m
j (πj ,µj−1)

= max
µ̂≥

∑l
i=1 µj−1,k

hj+l (πj , µ̂)− ca

(
µ̂−

l∑
i=0

µj−1,k

)+

− γa

(
l∑
i=0

µj−1,k− µ̂

)+

+E
[
V m
j+1(Πj+1,µj)|πj

]
is concave in µj−1.

We next show the optimal policy follows the control band structure. For
∑l

i=1 µj−1,k = 0, we

define

µ
j
(πj ,µj−1), arg max

µ̂∈R+

{
hj+l (πj , µ̂)− caµ̂+E

[
V m
j+1(Πj+1,µj)|πj

]}
(EC.91)

For any µ̂j−1 that is sufficiently small, i.e., µ̂j−1 <µj(πj ,µj−1), it is optimal to adjust the capacity

up to the level µ
j
(πj ,µj−1).

For an arbitrary large µ̂j−1, we define

µj(πj ,µj−1), arg max
µ̂≥

∑l
i=1 µj−1,k

{
hj+l (πj , µ̂) + γaµ̂+E

[
V m
j+1(Πj+1,µj)|πj

]}
(EC.92)

It is optimal for the firm to disinvest its capacity to µj(πj ,µj−1) for all µ̂j−1 > µj(πj ,µj−1). As

ca ≥ 0 and ca ≥ −γa, it follows that µj(πj ,µj−1) ≥ µ
j
(πj ,µj−1). Following the concavity of the

value-to-go function, it is optimal for the firm to stay put when µ
j
(πj ,µj−1)≤ µ̂j−1 ≤ µj(πj ,µj−1).

Therefore, we have proved the optimal policy is a control band policy. �

EC.3. Profit and cost parameter estimations in numerical examples.

We use Production to indicate the total production volume of Ford in 2012, which is approximated

by the wholesale volume of 5,668 thousands units (operating highlights, Ford Motor Company

2012). As estimated by IHS Automotive (P.12, Ford Motor Company 2012), the global automotive

industry production capacity for light vehicles is about 108 million units, which exceeds the global

production by 26 million units. We therefore use the industry capacity utilization Utilization =

108−26
108

= 75.93% to estimated Ford’s total capacity (including all types of products) in 2012 as

Capacity=
Production

Utilization
=

5,668× 103

75.93%
= 7,465× 103units/year= 622.1× 103units/month

• Capacity adjustment cost ca and γa. The capacity adjustment cost ca is estimated from the

Amortization of special tools(AST) (P.102, Ford Motor Company 2012). As Ford generally amor-

tizes special tools over the expected life of a product program using a straightline method, we

calculate the expected cost to install one unit of capacity ca as

ca =
AST × T

2

Capacity
=

1,861× 106× 3
2

622.1× 103
= 4,487 dollars ·month/units.
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As the capacity adjustment is often irreversible, we use a coefficient γ to measure the irreversibility

and assume γa = γca. In the base analysis, we assume γ = 0.1, i.e., it is costly for the firm to

downsize its capacity.

• Capacity overhead cost c0. The overhead cost is estimated from Maintenance and rearrange-

ment expense (MR) (P.102, Ford Motor Company 2012). This cost reflects the firm’s expense to

conduct routine maintenance and repair to keep up its capacity level, and is incurred regardless of

the production location. Therefore, we calculate c0 as

c0 =
MR

Capacity
=

1,352× 106

7,465× 103
= 181.1 dollars/units.

• Capacity outsourcing cost c1. The outsourcing cost is incurred when the demand exceeds the

installed capacity and therefore has to be satisfied by another facility. Therefore, the capacity

outsourcing cost includes the cost to maintain the extra unit of outsourcing capacity and additional

machine setup and transportation costs, and we denote the cost c1 = (1 + β)c0 with β > 0. In the

base case, we assume β = 1.

• Unit profit p. The unit profit is the profit the firm earns from selling a car, excluding the

capacity related cost. We denote the gross revenue by Revenue and the total operating cost by

Cost. Then we estimate the unit profit as

p=
Revenue−Cost+MR+AST

Production
=

125,567− 121,584 + 1,352 + 1,861

5,668
× 103

= 1,270 dollars/units.

We observe that from Ford Focus’s official website7, a simple average of the starting manufac-

turer suggested retail price (MSRP) for the seven current focus models yields a value of (16,200 +

18,200 + 19,200 + 23,200 + 23,799 + 24,200 + 39,200)/7 = $23,414. We observe that this value

is close to the average retail price estimated from the financial data, Revenue/Production =

125,567/5,668× 103 = $22,154.

In the numerical analysis, we perform robustness checks with respect to these estimated param-

eters as follows.

Misspecified demand. The base case has assumed three demand types: low, medium and high.

In the low demand scenario, we assume the average demand decreases to 12.21 thousand units per

month. In the medium demand scenario, we assume that the demand remains at the same level

as the demand for the first and second generation. In the high demand scenario, we assume the

average demand has increased to 19.71 thousand units. However, these assumptions may not be

accurate. Therefore, we now analyze the case when the firm has incorrect information about the

demand type and resulting distribution. When calculating the deterministic upper bound, the firm

still has complete information about the demand.
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Table EC.1 Regret for the misspecified demand and cost parameters

Parameters
Regret

mean stdev min max
low demand mean θl 6.02% 0.31% 5.78% 7.71%
high demand mean θh 5.81% 0.51% 4.32% 6.77%
outsourcing and overhead cost β = (c1− c0)/c0 6.08% 0.60% 4.99% 7.71%
downsizing and expansion cost γ = γa/ca 6.01% 0.30% 5.45% 6.92%

Note: The number of observations for each case is 147.

Note that our two-step heuristic does not depend on the firm’s knowledge about the high or

low type demand: The demand information is needed for evaluation and comparison only. In the

analysis, we vary the average demand of low demand type from −20% to 40% in the increment

of 10%, and similar for the high demand type. For each set of demand parameters, we also vary

the prior as (0.2i,0.2j,1− 0.2i− 0.2j) where i= 0,1, ...,5 and j = 0,1, ...,5− i. We summarize the

test statistics in the first two rows of Table EC.1. We observe that the average regret with respect

to the relaxed upper bound is only about 6% with a range less than 2.45%, which indicates the

performance of the regret is quite robust with respect to the misspecified demand parameters.

Cost parameters. We also analyze the impact of the cost parameter changes on the two-step

heuristic. In particular, we examine this by varying the relative difference between the outsourcing

cost and capacity overhead cost: β = (c1− c0)/c0 fixing c0, and the ratio of the downsizing cost to

the expansion cost: γ = γa/ca fixing ca. In our base case, we have β = (362.2−181.1)/181.1 = 1 and

γ = 448.7/4,487 = 0.1 (see Table 3). Similarly to the misspecified demand scenario, we also vary

the prior as (0.2i,0.2j,1− 0.2i− 0.2j) where i = 0,1, ...,5 and j = 0,1, ...,5− i. In a quite broad

range of β (from 0.7 to 1.3) and γ (from -0.3 to 0.3), the regret does not change in any significant

manner (see the third and fourth row of Table EC.1). These results show that the heuristic is quite

robust with respect to the cost parameters, as the increase in the regret is smaller than 2.72%

when the cost parameters and the prior vary.
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