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Bilevel optimization problems are very challenging optimization models arising in many important prac-

tical contexts, including pricing mechanisms in the energy sector, airline and telecommunication industry,

transportation networks, critical infrastructure defense, and machine learning. In this paper, we consider

bilevel programs with continuous and discrete variables at both levels, with linear objectives and constraints

(continuous upper level variables, if any, must not appear in the lower level problem). We propose a gen-

eral purpose branch-and-cut exact solution method based on several new classes of valid inequalities, which

also exploits a very effective bilevel-specific preprocessing procedure. An extensive computational study is

presented to evaluate the performance of various solution methods on a common testbed of more than 800

instances from the literature and 60 randomly generated instances. Our new algorithm consistently outper-

forms (often by a large margin) alternative state-of-the-art methods from the literature, including methods

exploiting problem-specific information for special instance classes. In particular, it solves to optimality more

than 300 previously unsolved instances from the literature. To foster research on this challenging topic, our

solver is made publicly available online.

Key words : bilevel optimization, mixed-integer programming, cutting planes, intersection cuts,

branch-and-cut, computational analysis
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1. Introduction

In many real-world applications, a serious limitation of the standard optimization models is due to

the assumption that decisions are made by a single decision maker. A large variety of applications

involves multiple decision makers that act in a competitive environment, with different and quite

often conflicting objectives. Hierarchical optimization allows to model optimization problems with

multiple decision makers, whose decisions are made in a sequential (hierarchical) fashion: each

decision at a certain level in this hierarchy affects the decisions made at the lower levels, but also

the pay-offs for the decisions made at the higher levels.

In this article, we deal with bilevel optimization problems with two decision makers, commonly

denoted as the leader and the follower : in these problems, first the leader makes a decision, and

then the follower optimizes its objective, affected by the decisions of the leader. It is assumed that

the leader can anticipate the decisions of the follower, hence the leader optimization task is a nested

optimization problem that takes into consideration the follower’s response. Bilevel optimization

problems, together with their generalization to multilevel optimization, play a fundamental role in

many real-life applications, when competitive agents operate in a hierarchical way with conflicting

objectives. As such, they can be interpreted as static Stackelberg games, and find applications in

many economic models. For example, it is well known that bilevel optimization is an inevitable tool

for modeling pricing mechanisms in the energy sector (Zugno et al. 2013), airline and telecommu-

nication industry (Brotcorne et al. 2008), or in transportation networks (Gilbert et al. 2015, Labbé

et al. 1998). Similarly, bilevel optimization is the model of choice for capacity planning decisions

made in a competitive environment; see, e.g., Garcia-Herreros et al. (2016) for an optimal expan-

sion of gas networks. Infrastructure planning that takes into consideration deliberate disruptions

(due to sabotage or terrorist attacks) is another important example of bilevel optimization (Brown

et al. 2006, Scaparra and Church 2008, Wood 2010). Recently, bilevel optimization has been used

even in machine learning applications, see Kunisch and Pock (2013).

Despite this increasing interest for bilevel optimization and the fact that the seminal formulation

of bilevel programs dates back to the 70’s (Bracken and McGill 1973), implementation of generic

bilevel optimization solvers has only started in recent years. This can be explained by the inherent

complexity of the bilevel optimization, which is known to be NP-hard even when both leader and

follower problems are linear programs (Jeroslow 1985). In the present article we propose a novel

generic solver that covers a large family of bilevel optimization problems in which decisions of both,

the leader and the follower, are modeled as mixed-integer linear programs. In the computational

evaluation of our method, we consider various classes of instances both from literature and randomly

generated ones. These instances reach from bilevel variants of classical optimization problems such
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as the knapsack problem, the clique problem or the assignment problem, to a problem dealing with

defending a network against malicious virus attacks.

More precisely, in this paper we address a generic Mixed-Integer Bilevel Linear Program

(MIBLP), i.e., a bilevel optimization problem where all objective functions and constraints are

linear, and some/all variables are required to take integer values. Note that MIBLPs are Σ2-hard

(DeNegre 2011, Jeroslow 1985). A MIBLP is defined as follows:

min
x,y

cTxx+ cTy y (1)

Gxx+Gyy≤ q (2)

xj integer, ∀j ∈ Jx (3)

y ∈ arg min
y′∈Rn2

{dTy′ :Ax+By′ ≤ b, l≤ y′ ≤ u, y′j integer ∀j ∈ Jy} (4)

where x∈Rn1 , y ∈Rn2 , while cx, cy, Gx, Gy, q, d, A, B, b, l and u are given rational matrices/vectors

of appropriate size. Sets

Jx ⊆Nx := {1, · · · , n1} and Jy ⊆Ny := {1, · · · , n2}

identify the (possibly empty) indices of the integer-constrained variables in x and y, respectively.

We will refer to (1) and (2)–(3) as the leader objective function and constraints, respectively, and

to (4) as the follower subproblem. In case the follower subproblem has multiple optimal solutions,

we assume that one with minimum leader cost among those satisfying the leader constraints is

chosen—i.e., we consider the optimistic (or weak) version of bilevel optimization; see, e.g., Loridan

and Morgan (1996).

For the leader, we assume that explicit lower/upper bounds (if any) on the variables x and y are

included in constraints (2). Whenever needed, however, we will refer to this subset of constraints

using notation

x− ≤ x≤ x+ (5)

y− ≤ y≤ y+ (6)

where, as customary, some entries in x+, x−, y−, y− are allowed to be ±∞. As to the follower

subproblem, we assume that the explicit bounds on the y′ variables are given, though some entries

of (l, u) are allowed to be ±∞.

It is well known (Outrata 1990) that MIBLP can conveniently be restated in its value function

formulation as:
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min
x,y

cTxx+ cTy y (7)

Gxx+Gyy≤ q (8)

Ax+By≤ b (9)

l≤ y≤ u (10)

xj integer, ∀j ∈ Jx (11)

yj integer, ∀j ∈ Jy (12)

dTy≤Φ(x) (13)

where the follower value function for a given x∗ ∈Rn1 is computed by solving the following follower

Mixed-Integer Linear Program (MILP)

Φ(x∗) := min
y∈Rn2

{dTy : By≤ b−Ax∗, l≤ y≤ u, yj integer ∀j ∈ Jy}. (14)

Dropping condition (13) from model (7)-(13) leads to the so-called High Point Relaxation (HPR).

The latter one is a Mixed-Integer Linear Program (MILP), whose Linear Programming (LP) relax-

ation will be denoted by HPR.

An HPR solution (x, y) will be called bilevel infeasible if it violates (13). A point (x, y) ∈ Rn,

where n= n1 +n2, will be called bilevel feasible if it satisfies all constraints (8)–(13).

Let Aj be the j-th column of matrix A, and Aij its generic entry. In what follows we will use

notation

JF := {j ∈Nx :Aj 6= 0} (15)

to denote the index set of the leader variables xj (not necessarily integer-constrained) appearing

in the follower problem.

Fischetti et al. (2016b) recently proposed an exact MIBLP solver which is in fact a Branch-and-

Bound (B&B) MILP approach with non-invasive supplements needed to correctly handle bilevel

optimization. An important feature of that work is that the MIBLP solver was built on top of

a stable and powerful MILP solver taking care of all non-bilevel specific issues—including cuts,

heuristics, propagations, numerical stability, effective LP parametrization, multi-threading support,

etc.

In the present work, we considerably extend the results in (Fischetti et al. 2016b) and develop a

more versatile and effective solver for MIBLPs (under proper assumptions on the role of continuous

variables, as reported at the end of the present section). The main novel contributions of the present

paper can be stated as follows.
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• A new family of cuts based on formulation (7)-(13) is introduced.

• A new bilevel-specific preprocessing procedure is proposed, and its very significant impact on

the performance of the MIBLP solver is demonstrated.

• New families of Intersection Cuts (ICs) for bilevel programs are presented. ICs were originally

proposed by Balas (1971) for integer programs, and were exploited in the context of bilevel

optimization in (Fischetti et al. 2016b) for the first time. However, in the latter approach,

their application was limited to the cases where Ax+By− b is integer for all HPR solutions

(x, y). Inspired by the recent work of Xu (2012), in the present article we present an additional

class of inequalities that are valid under the assumption above. In addition, we introduce a

new family of “hypercube” ICs that can be applied even when the above assumption does not

hold. For all cuts, sound separation procedures are described.

• A detailed description on how the ICs can be implemented in a numerically stable way is

given.

• A very extensive computational study is reported—different classes of test problems from the

literature are considered, including those proposed by DeNegre and Ralphs (2009), Xu and

Wang (2014b), Tang et al. (2016c) and Fischetti et al. (2016b). Our analysis shows that the

new approach outperforms by a large margin alternative state-of-the-art methods from the

literature—including the most recent ones, namely those proposed in (Xu and Wang 2014b,

Tang et al. 2016c) and Fischetti et al. (2016b).

• The optimal solution values for hundreds of open instances from the recent literature are

provided; see the on-line Appendix (Fischetti et al. 2016a) for details.

• To foster further research on this challenging topic, our solver (along with the benchmark

instances and the accompanying optimal solutions) is made publicly available (Fischetti et al.

2017).

The paper is organized as follows. In Section 2 we review the most relevant approaches to MIBLP

from the literature. Section 3 introduces a family of cutting planes called follower upper bound

cuts along with a new bilevel-specific preprocessing. In Section 4 we derive two new families of

MIBLP intersection cuts. In Section 5 we introduce separation algorithms and their numerically

safe implementation within a Branch-and-Cut (B&C) solver. Section 6 gives some details about

the implementation of our B&C algorithm. The performance of our solver is evaluated in Section

7 by means of computational experiments on a very large set of instances both from the literature

and randomly generated ones, while Section 8 draws some conclusions. Finally, in the Appendix

we sketch the B&B scheme for MIBLPs of Fischetti et al. (2016b).
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Assumptions It is known that allowing continuous variables in the leader and integer variables

in the follower may lead to bilevel problems whose optimal solutions are unattainable; see, e.g.,

(Moore and Bard 1990, Köppe et al. 2010). As a result, proper assumptions on the role of the

continuous leader variables need to be made to guarantee finite convergence of any solution scheme

when the follower is a MILP (as in our case).

The results given in the present paper are intended to be used within the enumerative scheme

overviewed in the Appendix, whose finite convergence relies on the following

Assumption 1. The continuous leader variables xj (if any) do not appear in the follower problem,

i.e., JF ⊆ Jx.

The above assumption means the continuous leader variables xj’s are in principle allowed, pro-

vided that they are immaterial for the computation of the value function Φ(x). However, as we are

not aware of instances from the literature with continuous xj’s that satisfy Assumption 1, in our

computational experiments we only considered instances where all leader variables are required to

be integer.

Although not strictly required, to simplify our presentation we also require

Assumption 2.

(i) The HPR feasible set is a bounded polyhedron;

(ii) MIBLP has a finite optimal solution;

(iii) the follower MILP (14) has a finite optimal solution for every feasible HPR solution (x∗, ·).

The reader is referred to (Fischetti et al. 2016b, Sect. 3.1) for a treatment of the general case

in which Assumption 2 is not needed, and to Section 3.4 therein for a discussion of alternative

assumptions from the literature.

Finally, the validity of some of our ICs (to be introduced in the forthcoming Subsections 4.1 and

4.2) will require the following:

Assumption 3. Ax+By− b is integer for all HPR solutions (x, y).

Note however that this last assumption is not mandatory, and in fact we present computa-

tional results on instances where Assumption 3 does not hold—namely, those in the XUWANG and

XUWANG-LARGE classes addressed in Subsection 7.1.

2. Literature Overview

Even though there exists a large body of literature devoted to bilevel optimization, there are

relatively few generic bilevel approaches that allow for integer decision variables both in the leader

and in the follower. The first generic branch-and-bound approach to MIBLP was given by Moore
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and Bard (1990). Their algorithm was shown to converge in two cases: either when all leader

variables are integer, or when the follower subproblem is an LP. About 20 years later, building upon

the ideas from Moore and Bard (1990), a MILP-based branch-and-cut algorithm was introduced

by DeNegre and Ralphs (2009), DeNegre (2011). The latter approach, publicly available as MibS

solver (Ralphs 2015), requires that both the leader and the follower are purely integer problems,

as it exploits integer slacks to cut off bilevel-infeasible solutions.

Only very recently, one could observe a growing number of attempts to develop generic bilevel

solvers, but also specialized algorithms that address particular bilevel problem variants. In the fol-

lowing, we summarize these approaches. An iterative MILP approach based on multi-way branching

on the slack variables on the follower constraints has been given by Xu and Wang (2014b), and

another multi-level branching idea has been exploited in the scheme called “the watermelon algo-

rithm” (Xu 2012). Both approaches require the leader variables to be integer, the main difference

being that the former allows the follower to be a MILP, whereas in the latter the follower contains

integer variables only. Another branch-and-cut method that works for integer leader and follower

variables only has been recently proposed by Caramia and Mari (2015).

Solution approaches based on parametric integer programming (PIP) have also been investigated

in the literature, where the follower problem (14) is viewed as a PIP parametrized by x∗. Köppe

et al. (2010) introduced a MIBLP algorithm that, using PIP and binary search, runs in polynomial

time, for fixed dimension of the follower problem. Fáısca et al. (2007) proposed an alternative

approach that operates in two steps. First, all follower solutions are enumerated using PIP. Then,

each solution is plugged into the leader, yielding a single-level problem that can easily be solved.

For the special family of zero-sum bilevel problems, i.e., when the leader and the follower share

the same objective but with the opposite signs, three generic solution algorithms have recently been

proposed by Tang et al. (2016c). Their algorithms require leader variables to be binary, whereas

the follower can be a general MILP. Interdiction problems are a special family of zero-sum bilevel

problems in which the leader is given a limited budget to “interdict” the action of the follower. For

interdiction problems, specialized schemes have been developed, see for example, a cutting plane

approach by Wood (2010), and a more recent list of references in (Tang et al. 2016c).

It is also worth mentioning that, to the best of our knowledge, very few solution schemes

(and almost no extensive computational studies) for more general bilevel mixed-integer nonlinear

programs have been proposed so far—see, e.g., the approaches by Gümüs and Floudas (2005),

Tsoukalas et al. (2009), Mitsos (2010), Kleniati and Adjiman (2015) and the references therein.

In (Fischetti et al. 2016b), the first branch-and-cut approach for MIBLP that uses intersection

cuts as driving force has been given. Computational results reported in (Fischetti et al. 2016b)

demonstrated that this generic solver significantly outperforms the methods by DeNegre and Ralphs
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(2009), DeNegre (2011) and Caramia and Mari (2015). It will be therefore considered in the remain-

der of this article as the state-of-the-art approach and an important reference for comparing the

new features of the exact MIBLP solver presented herein.

Finally, disjunctive cuts in connection to bilevel linear programming have been investigated in

Audet et al. (2007). However, there is no similarity between our intersection-cut based approach and

the disjunctive cuts given in Audet et al. (2007), where the cuts are used to enforce complementary

slackness conditions of the continuous follower subproblem, which is reformulated using KKT

conditions.

3. An Improved Branch-and-Cut Approach

It is well known that the HPR relaxation may provide arbitrarily weak lower bounds. Hence,

for enumerative methods relying on this relaxation, it is crucial to consider deep cuts that cut

off infeasible solutions early in the B&B tree, so as to improve the tightness of its lower and

upper bounds. This is in the spirit of other MIBLP approaches based on cutting planes, including

(DeNegre and Ralphs 2009, DeNegre 2011, Fischetti et al. 2016b).

Building on the approach proposed in (Fischetti et al. 2016b), we next introduce two new features

that have a significant impact on the solver performance: in Section 3.1 we describe locally valid

cuts, denoted as Follower Upper-Bound (FUB) cuts, that are based on an estimation of an upper

bound on the optimal solution value of the follower subproblem. In Section 3.2 we describe a new

preprocessing rule that allows fixing of some y values in HPR using information from the follower

MILP.

3.1. Follower Upper-Bound (FUB) Cuts

It is known that valid lower bounds for a bilevel problem in its value-function formulation (7)-(13),

can be obtained by restricting the follower subproblem and, consequently, overestimating the value

of Φ(x) for an arbitrary leader solution x; see, e.g., (Bhattacharjee et al. 2005a,b, Floudas and

Stein 2007, Mitsos et al. 2008, Kleniati and Adjiman 2015). In the following, we exploit this fact

inside of a B&C procedure, to derive valid cuts for the HPR relaxation.

Indeed, the value function reformulation (7)-(13) introduced in Section 1 is nonconvex due to the

presence of constraint (13). A valid lower bound on the optimal solution value at each B&B node can

be obtained by relaxing this constraint, and replacing Φ(x) with some constant overestimator for

the current node. This operation is just trivial for the B&B nodes where all the integer x variables

appearing in the follower MILP have been already fixed by branching. However, for the remaining

B&B nodes, one can exploit the local bounds on the x variables (x−, x+) at the current node, to

strengthen the HPR relaxation. We consider the following restriction of the follower subproblem:
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in each follower constraint, x variables are replaced by the worst possible outcome for the follower,

thus resulting in an MILP on y variables only. The optimal solution of the latter MILP gives a

valid overestimation of Φ(x). We have the following result.

Theorem 1. Let (x−, x+) denote the bounds for the x variables at the current B&B node. Then

the following Follower Upper Bound (FUB) cut is locally valid for the current node:

dTy≤ FUB(x−, x+) (16)

where FUB(x−, x+) is the optimal solution value of the following restricted follower MILP

FUB(x−, x+) := min
y

dTy (17)∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }+

∑
j∈Ny

Bijyj ≤ bi, i= 1, . . . ,m (18)

l≤ y≤ u (19)

yj integer, ∀j ∈ Jy, (20)

and m denotes the number of rows of matrices A and B, and FUB(x−, x+) = +∞ in case the

problem is infeasible.

Proof It is enough to observe that, by construction, the above MILP is a restriction of the

follower MILP for any x with x− ≤ x≤ x+, which implies Φ(x)≤ FUB(x−, x+) for any such x. The

claim then follows as the FUB cut is just a relaxation of the value-function constraint (13) at the

current node. �

3.2. Follower Preprocessing

Preprocessing is a very important tool in modern MILP solvers, and for many problems has a

considerable impact on computing time. By design, our approach automatically exploits standard

MILP-based preprocessing whenever the follower MILPs are solved. There is however a bilevel-

specific preprocessing operation that is potentially very useful, in that it conveys relevant informa-

tion from the follower to the HPR. In particular, any y variables that can be fixed (for whatever

reason) in the follower MILP independently of x, can be fixed at the HPR level as well, thus poten-

tially improving the quality of the associated lower bound. We have the following result (recall

that the explicit constraints in the follower MILP (14) are in ≤ form, namely, Ax+By≤ b):

Theorem 2. For every follower variable yj (j ∈Ny), the following fixing is correct:

(a) if dj > 0 and Bj ≥ 0, fix yj to its lower bound lj by setting y+
j := y−j := uj := lj;

(b) if dj < 0 and Bj ≤ 0, fix yj to its upper bound uj by setting y+
j := y−j := lj := uj;
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Proof Given an x∗ ∈ Rn1 and a follower solution y that is feasible for (14), a follower feasible

solution of better cost can possibly be obtained by decreasing each variable yj with positive cost

and non-negative coefficients in all constraints, and/or by increasing each variable yj with dj < 0

and non-positive coefficients. Thus, any bilevel feasible solution will have yj = lj and yj = uj for

each variable j in cases (a) and (b), respectively. �

Note that in optimistic bilevel setting, the leader is free to choose among equivalent follower

solutions the one it prefers. Thus, we require the statement of Theorem 2 to be valid for any

optimal solution of the follower, yielding strict inequalities in cases (a) and (b). In case dj = 0 we

must preserve all equivalent optimal solutions, hence variable yj cannot be fixed.

As shown in the computational Section 7, the simple fixing of Theorem 2 can lead to a very

significant speedup when solving certain classes of instances.

4. New Families of Intersection Cuts

Intersection cuts were introduced by Balas (1971, 1972) and are widely used in the context of

MILPs; see (Andersen et al. 2005, 2007, Basu et al. 2011a,b, Conforti et al. 2010, Dey et al.

2014) among others. The reader is referred to Ch. 6 “Intersection Cuts and Corner Polyhedra”

in (Conforti et al. 2014) for a recent in-depth treatment of the subject. As customary in a B&C

context, given a bilevel-infeasible (possibly fractional) HPR point (x∗, y∗), one aims at deriving a

cutting plane that will cut off this point, while keeping the bilevel-feasible points intact. For an IC

to serve this purpose, one requires the definition of two sets:

(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and

(2) a convex set S that contains (x∗, y∗) but no bilevel feasible solutions in its interior.

Typically, for a vertex (x∗, y∗) of HPR, a suitable cone is the corner polyhedron associated with

the corresponding optimal basis; see (Conforti et al. 2014) for details. In that case, the strength

of the derived IC only depends on the choice of the underlying convex set S, which is indeed the

topic of the present section.

Fischetti et al. (2016b) considered the bilevel-free set

S(ŷ) = {(x, y)∈Rn : dTy > dT ŷ, Ax+Bŷ≤ b} (21)

defined for an arbitrary point ŷ ∈ Rn2 that satisfies (10) and (12). The fact that S(ŷ) does not

contain bilevel-feasible solutions (x, y) derives easily from the observation that every such solution

has to satisfy the logical implications

Ax+Bŷ≤ b ⇒ Φ(x)≤ dT ŷ ⇒ dTy≤ dT ŷ.



M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: A new algorithm for MIBLPs
Article submitted to Operations Research; manuscript no. OPRE-2016-07-379.R3 11

Implications of this type are typically translated into multi-term disjunctions of the form(
(Ax+Bŷ)1 > b1

) ∨
. . .
∨ (

(Ax+Bŷ)m > bm

) ∨ (
dTy≤ dT ŷ

)
,

(where m denotes the number of rows of matrices A and B) and used for branching within an

enumerative solution scheme; see, e.g., Xu and Wang (2014b). Alternatively, by exploiting the IC

theory they can also be used to derive valid inequalities to cut a given vertex (x∗, y∗) of HPR,

provided that (x∗, y∗) belongs to the interior of S(ŷ)—a property that unfortunately cannot be

guaranteed in all cases as (x∗, y∗) may belong to its frontier. Under Assumption 3, however, set

S(ŷ) can be extended by “moving apart” its facets by a non-negligible amount, resulting in the

following extended polyhedron

S+(ŷ) = {(x, y)∈Rn : dTy≥ dT ŷ, Ax+Bŷ≤ b+ 1}, (22)

(where 1 = (1, · · · ,1) denotes a vector of all ones) that can conveniently be used to derive violated

ICs; see (Fischetti et al. 2016b, Sect. 4.2) for details.

We next propose new ICs derived from alternative bilevel-free polyhedra. The ICs discussed in

Sections 4.1 and 4.2 require Assumption 3, while those in Section 4.3 do not need that assumption.

4.1. Alternative Bilevel-Free Polyhedra

As indicated above, by varying the definition of the bilevel-free convex set, different families of

valid ICs can be derived. Given the weak bounds of the HPR relaxation, the broader the family of

ICs the better the performance of the underlying B&C solver. This was the main motivation for

us to focus in this work on alternative ways for deriving and extending bilevel-free polyhedra. We

also show possible ways of enlarging these convex sets that may result in much stronger ICs.

With a little abuse of notation, in what follows we will call “facet” an inequality appearing in the

outer description of a polyhedron. The bilevel-free polyhedron in Theorem 3 below was introduced

by Xu (2012), where it has been used to determine branching rules in a B&B setting—while we

use it to derive hopefully deep ICs. As our theorem is stated in a slightly modified form, and for

the sake of completeness, we also provide a short proof.

Theorem 3. (Xu 2012) For any ∆ŷ ∈Rn2 such that dT∆ŷ < 0 and ∆ŷj integer for all j ∈ Jy, the

following polyhedron

X(∆ŷ) = {(x, y)∈Rn :Ax+By+B∆ŷ≤ b, l≤ y+ ∆ŷ≤ u} (23)

does not contain any bilevel feasible point (not even on its frontier).
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Proof Let ∆ŷ ∈ Rn2 be such that dT∆ŷ < 0 and ∆ŷj integer for all j ∈ Jy, and consider any

(x, y) ∈X(∆ŷ). If (x, y) is infeasible for the follower problem, then (x, y) is bilevel infeasible. If

(x, y) is feasible for the follower problem, then so is (x, y+ ∆ŷ). Since dT (y+ ∆ŷ)< dTy, y is not

an optimal solution of the follower problem for x, hence (x, y) is again not bilevel feasible.

�

Note that, contrarily to what happens with set S(ŷ) defined in (21), some facets of X(∆ŷ)

correspond to bound constraints on the y variables.

Also in case of this polyhedron, it may happen that a bilevel-infeasible HPR solution (x∗, y∗) to

be cut off does not belong to its interior. Therefore, we need to extend this set as follows:

Theorem 4. Under Assumption 3, for any ∆ŷ ∈Rn2 such that dT∆ŷ < 0 and ∆ŷj integer for all

j ∈ Jy, the following polyhedron does not contain any bilevel feasible point in its interior.

X+(∆ŷ) = {(x, y)∈Rn : Ax+By+B∆ŷ≤ b+ 1, l−1≤ y+ ∆ŷ≤ u+ 1} (24)

Proof To be in the interior of X+(∆ŷ), a bilevel feasible (x, y) should satisfy Ax+By+B∆ŷ <

b+1 and l−1< y+ ∆ŷ < u+1. Because of Assumption 3, the latter condition can be replaced by

Ax+By+B∆ŷ≤ b and l≤ y+ ∆ŷ≤ u, hence the claim follows from Theorem 3. �

Observe that the extended bilevel-free polyhedra X+(∆ŷ) and S+(ŷ) are not directly comparable,

i.e., typically it is not possible to find a ŷ and a corresponding ∆ŷ such that one of the two

polyhedra is a proper subset of the other—meaning that they are both of interest in our context;

see Figure 1 for an illustration. Indeed, the facets of X+(∆ŷ) span the whole (x, y) space, while

those of S+(ŷ) only span the y space (dTy ≥ dT ŷ) or the x space (Ax+Bŷ ≤ b+ 1). In addition,

S+(ŷ) contains the facet dTy ≥ dT ŷ that directly involves the follower objective function, while

the role of the latter function in X+(∆ŷ) is just implicit. As a matter of fact, the computational

experience reported in Section 7 shows that there is no dominance between the two polyhedra in

terms of IC quality.

4.2. Enlarged Bilevel-Free Polyhedra

The choice of the bilevel-free polyhedron is crucial for the computational effectiveness of the derived

IC: the larger the polyhedron the better. The following arguments can be applied to any bilevel-free

polyhedron to remove as many facets as possible from it, thus enlarging it and producing deeper

cuts.

Theorem 5. (Fischetti et al. 2016b) Let S = {(x, y) ∈ Rn : αT
i x+ βT

i y ≤ γi, i = 1, . . . , k} be any

polyhedron not containing bilevel-feasible points in its interior. Then one can remove from S all

its facets i∈ {1, . . . , k} such that the half-space {(x, y)∈Rn : αT
i x+βT

i y≥ γi} does not contain any

bilevel-feasible solution.
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Figure 1 Intersection cuts for a notorious example from Moore and Bard (1990): the LP vertex A is cut by an

IC (in red) obtained from the bilevel-free polyhedron S+(ŷ) (left) or X+(∆ŷ) (right), drawn in shaded

line. No dominance exists between the two cuts.
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Concerning the set S+(ŷ) defined by (22), the above property can possibly be used to remove

the facet dTy≥ dT ŷ if a valid lower bound of the follower problem, say FLB, is known. Indeed, if

condition dT ŷ < FLB holds, then the facet dTy≥ dT ŷ can be removed from S+(ŷ). This property is

particularly important and efficient for “zero-sum” bilevel instances where the leader and follower

objective functions satisfy cx = 0 and cy =−d in (1). In that case, at every B&B node, the incumbent

value z∗ (say) is an upper bound for the leader objective function, hence FLB =−z∗ is a lower

bound for the follower one.

Theorem 5 implies the following result:

Corollary 1. (Fischetti et al. 2016b) Let S = {(x, y) ∈Rn : αT
i x+ βT

i y ≤ γi, i= 1, . . . , k} be any

polyhedron not containing bilevel-feasible points in its interior. Then one can remove from S all its

facets i∈ {1, . . . , k} such that

n1∑
j=1

max{αijx
+
j , αijx

−
j }+

n2∑
j=1

max{βijy
+
j , βijy

−
j }<γi. (25)

The above condition is exploited in Section 5.1 to derive large bilevel-free sets by solving an

auxiliary MILP that maximizes the number of facets satisfying it.

Concerning the extended bilevel-free polyhedron X+(∆ŷ), Theorem 5 implies that, for a given

∆ŷ, detection of redundant facets is immediate:

Corollary 2. Let X+(∆ŷ) be the bilevel-free polyhedron of Theorem 4. Then, under Assump-

tion 3, one can remove from its definition all the facets (Ax + By + B∆ŷ)i ≤ bi + 1 such that

(B∆ŷ)i ≤ 0, along with all its facets (y + ∆ŷ)i ≤ ui + 1 with ∆ŷi ≤ 0, and all its facets li − 1 ≤
(y+ ∆ŷ)i with ∆ŷi ≥ 0.

We observe that the above condition was also exploited in (Xu 2012) to reduce the number of

children of each B&B node.
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4.3. Hypercube Intersection Cuts

We finally present a very simple polyhedron (actually, a hypercube) that can be used to generate

ICs even when Assumption 3 does not hold.

Theorem 6. Assume JF ⊆ Jx. For any given HPR solution (x∗, y∗), let (x̂, ŷ) be a min-cost bilevel-

feasible solution among those satisfying x̂j = x∗j for all j ∈ JF , computed as follows:

1. solve the follower MILP (14) for x= x∗ to compute Φ(x∗);

2. build a restricted HPR by adding the following constraints to HPR: xj = x∗j for all j ∈ JF , and

dTy≤Φ(x∗);

3. solve the restricted HPR, and let (x̂, ŷ) be the optimal solution found (if any).

Then the following hypercube does not contain any bilevel-feasible solution strictly better than (x̂, ŷ)

in its interior.

HC+(x∗) = {(x, y)∈Rn : x∗j − 1≤ xj ≤ x∗j + 1, ∀j ∈ JF} (26)

Proof Observe that the interior of HC+(x∗) only contains bilevel-feasible solutions (x, y) with

xj = x∗j = x̂j for all j ∈ JF . By construction, among these solutions, (x̂, ŷ) is a best bilevel-feasible

one, hence the claim. �

Compared to the other two bilevel-free polyhedra, namely S+(ŷ) and X+(∆ŷ), this set spans

only the x space. Hypercube ICs play an important role for two classes of MIBLPs for which S+(ŷ)

and X+(∆ŷ) are not valid:

• if the follower subproblem is purely continuous (namely, for Jy = ∅), or

• if Assumption 3 does not hold.

In both cases, valid hypercube intersection cuts can still be derived from the polyhedron defined

by (26).

5. Separation Algorithms

We now address the question of how to cut a given (integer or fractional) vertex (x∗, y∗) of HPR

by using an IC. Given for granted that we use the cone associated with the current LP basis, as

explained in Section 4, what remains is the choice of the bilevel-free set to be used.

Note that our IC separation can fail in case (x∗, y∗) is not a feasible HPR solution, i.e., when

(x∗, y∗) does not satisfy the integrality requirements (11)–(12). This however does not affect the

correctness of our solution method, which is able to exclude fractional solutions by using standard

MILP cutting planes or branching—ICs being useful but not mandatory in this case.
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5.1. Separation of Intersection Cuts

For hypercube ICs, the choice of the bilevel-free set is uniquely defined by the coordinates of the

point (x∗, y∗). However, this is not the case for the sets S(ŷ), S+(ŷ), X(∆ŷ), and X+(∆ŷ) defined

above. Given that for deriving a violated IC the point (x∗, y∗) has to belong to the interior of the

bilevel-free set, we focus on the creation of the extended polyhedra S+(ŷ) and X+(∆ŷ). Recall that

these extended polyhedra are well-defined only under Assumption 3. Without loss of generality,

we also assume that (possibly after scaling) d is an integer vector so that the bilevel-infeasibility

conditions of the type dTy < dTy∗ can be replaced by dTy≤ dTy∗− 1.

Bilevel-Free Polyhedron S+(ŷ). Given x∗, two options to define S+(ŷ) have been proposed in

(Fischetti et al. 2016b), along with the MILP models for their detection. For the sake of complete-

ness, we briefly recall here the basic ideas behind these bilevel-free sets.

• SEP1: For the given HPR vertex (x∗, y∗), one solves the follower MILP to obtain its optimal

solution ŷ, which eventually determines the set S+(ŷ) according to (22). This approach aims

at maximizing the distance of (x∗, y∗) from the facet dTy≥ dT ŷ of S(ŷ). By construction, the

point (x∗, y∗) belongs to S(ŷ), and hence to the interior of S+(ŷ).

• SEP2: This is an alternative procedure that constructs ŷ so as to have a large number of

“removable facets” according to Corollary 1, i.e., facets of the type (Ax+Bŷ)i ≤ bi + 1 with∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }+ (Bŷ)i ≤ bi. (27)

It consists of solving the following separation MILP:

ŷ ∈ arg min
m∑
i=1

wi (28)

dTy≤ dTy∗− 1 (29)

By+ s= b (30)

si + (Lmax
i −L∗i )wi ≥Lmax

i , ∀i= 1, . . . ,m (31)

l≤ y≤ u (32)

yj integer, ∀j ∈ Jy (33)

s free (34)

w ∈ {0,1}m (35)

where, for each i= 1, . . . ,m,

L∗i :=
∑
j∈Nx

Aijx
∗
j ≤ Lmax

i :=
∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }.
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In the model, the binary variable wi attains value 0 iff the facet (Ax + Bŷ)i ≤ bi + 1 can

be removed according to (27), hence the objective function (28) minimizes the number of

non-removable facets. Equations (30) define the slack variables si = (b−By)i, hence condition

s≥L∗ implied by (31) actually forces Ax∗+Bŷ≤ b. Together with (29), this guarantees that

(x∗, y∗) belongs to the interior of S+(ŷ). Note that, in case wi = 0, constraint (31) becomes

si ≥Lmax
i (i.e.,

∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }+ (By)i ≤ bi), meaning the corresponding facet can

be removed according (27), as required.

Bilevel-Free Polyhedron X+(∆ŷ). We now address the bilevel-free polyhedron X+(∆ŷ) defined

in Theorem 4. Following the recipe of Xu (2012), for the given (x∗, y∗), ∆ŷ is defined by solving

an additional MILP intended to produce a large number of removable facets in accordance with

Corollary 2. To simplify notation, let the system

Ãx+ B̃y≤ b̃

contain all the follower constraints (including the bounds on the y variables) except integrality,

and let m̃ denote the number of rows of Ã. The separation MILP then reads:

∆ŷ ∈ arg min
∆y,t

m̃∑
i=1

ti (36)

dT∆y≤−1 (37)

B̃∆y≤ b̃− Ãx∗− B̃y∗ (38)

∆yj integer, ∀j ∈ Jy (39)

B̃∆y≤ t and t≥ 0. (40)

In the model above, each continuous variable ti has value 0 in case (B̃∆y)i ≤ 0, meaning that

(Ãx∗ + B̃y∗ + B̃∆ŷ)i ≤ b̃i + 1 is a removable facet according to Corollary 2. On the contrary, if

(B̃∆y)i > 0, variable ti measures the slack of solution (x∗, y∗) with respect to constraint i. So, the

objective function in (36) goes into the direction of maximizing the size of the bilevel-feasible set

associated with ∆ŷ; see Xu (2012) for more details. Note that one is not allowed to increase by

1 the right-hand side of (38) as this would allow the point (x∗, y∗) to be on the frontier of the

extended polyhedron X+(∆ŷ).

5.2. Numerically Safe Intersection Cuts

In this section we describe how ICs can be derived from the optimal LP basis in a numerically

reliable way. We follow the “disjunctive interpretation” of ICs (Glover 1974, Glover and Klingman
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1976), which also reflects our actual implementation. This is a slightly more general—and numeri-

cally more stable—variant compared to those typically considered in the literature (Conforti et al.

2014).

To ease exposition, in the remaining part of this subsection we will denote by ξ = (x, y)∈Rn the

whole variable vector, while the HPR at the given B&B node will be formulated in its standard

form as

min{ĉT ξ : Âξ = b̂, ξ ≥ 0}.

Now let ξ∗ be an optimal vertex of the above LP, associated with a certain basis B̂ (say) of Â, and

let the bilevel-free polyhedron S of interest be defined as

S = {ξ : gTi ξ ≤ g0i, i= 1, . . . , k}.

Our order of business is to derive a valid inequality, violated by ξ∗, from the feasibility condition

“ξ cannot belong to the interior of S”. To this end, we observe that the latter condition can be

restated as the following k-term disjunction:

k∨
i=1

(gTi ξ ≥ gi0) (41)

where we write ≥ instead of >, as a feasible ξ can in fact belong to the frontier of S.

Algorithm 1: Intersection cut separation

Input : An LP vertex ξ∗ along with its associated LP basis B̂;

the feasible-free polyhedron S = {ξ : gTi ξ ≤ g0i, i= 1, . . . , k} and the associated

valid disjunction
∨k

i=1(gTi ξ ≥ gi0) whose members are violated by ξ∗;

Output: A valid intersection cut violated by ξ∗;

1 for i := 1 to k do

2 (gTi , gi0) := (gTi , gi0)−uT
i (Â, b̂), where uT

i = (gi)
T
B̂
B̂−1

3 end

4 for j := 1 to n do γj := max{gij/gi0 : i∈ {1, . . . , k}} ;

5 if γ ≥ 0 then
6 for j := 1 to n do
7 if ξj is integer constrained then γj := min{γj,1} ;

8 end
9 end

10 return the violated cut γT ξ ≥ 1
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ICs are then obtained as in Algorithm 1. At Lines 1-3 each violated inequality gTi ξ ≥ gi0 is

restated in its equivalent reduced form gTi ξ ≥ gi0 where all basic variables ξj’s are projected away—

this is the standard operation that is applied to the objective function when computing LP reduced

costs. Observe that gi0 > 0 as the inequality is violated by ξ∗ whereas, by construction, gTi ξ
∗ = 0.

Therefore, one can normalize it to 1
gi0
gTi ξ ≥ 1 to get a same right-hand side of 1 for all inequalities.

At Line 4, each inequality is relaxed so as to get a same left-hand-side coefficient for each variable

in all inequalities (through the max operation), meaning that the resulting relaxed cut γT ξ ≥ 1 is

valid for each term of the disjunction and hence for the overall problem. As the max operation does

not change the coefficient of each basic variable ξj (which is zero in all reduced-form inequalities),

the resulting cut is still violated (by 1) by ξ∗.

Finally, at Lines 5-9 a simple “coefficient clipping” operation is applied in case γ ≥ 0, that

consists of replacing γj by min{γj,1} whenever ξj is an integer-constrained variable. Validity of

the resulting inequality follows from the fact that either ξj = 0 (in which case its coefficient γj is

immaterial) or ξj ≥ 1 (hence validity follows from assumptions γ ≥ 0 and ξ ≥ 0).

It is important to observe that the validity of the final IC does not require the vectors uT
i =

(gi)
T
B̂
B̂−1 used at Line 2 to be computed with a very high numerical precision, as the cut coef-

ficients are computed by using the original data (Â, b̂) and not the (possibly inaccurate) tableau

information. This property is very important for the correctness of the method—numerical issues

in computing uT
i can reduce the cut violation as some basic variables can have a small nonzero

coefficient, but they do not have an impact on validity.

6. Implementation

In this section we describe some implementation details that play an important role in the design

of an effective code. Indeed, we strongly believe that these details are worth addressing for the sake

of result reproducibility. Our description is based on the actual MILP solver we used (IBM ILOG

Cplex 12.6.3), but it extends easily to other solvers.

The basic MILP model on which B&C is applied is HPR. Cplex’s preprocessing is disabled on this

model, as we need to retrieve LP bases at the various nodes (to derive ICs) and preprocessing would

change the variable space by aggregating/changing variables and constraints, requiring cumbersome

(if not impossible) bookkeeping mechanisms. Instead, we do apply our bilevel-specific preprocessing

variable fixing described in Theorem 2.

Internal numerical-precision thresholds for integrality/cut validity tests are set to a very small

value (10−9) so as to guarantee a very precise overall computation.

Multi-threading opportunistic parallel mode is selected when solving HPR, so as to fully exploit

the architecture in use. For thread safety, each thread works on its own copy of the follower MILP

(needed to check bilevel feasibility at B&B nodes).
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Internal Cplex’s cuts are active in their default setting (level 0), as our approach does not require

to deactivate them—contrarily to, e.g., DeNegre (2011). Similarly, our approach could correctly

handle the solutions produced by Cplex’s internal heuristics (as shown below). Note however that

each solution found by internal Cplex’s heuristics requires a significant extra computation effort to

determine its bilevel feasibility. Thus, in our experiments, we deactivated all Cplex’s heuristics.

We implemented a bilevel-oriented branching strategy by using Cplex’s branching priorities.

To be specific, priority for integer-constrained variables is set to 2 (maximum) for all xj’s with

j ∈ Jx ∩ JF (i.e., appearing in the follower MILP), to 1 for xj’s with j ∈ Jx \ JF , and to 0 for all

other variables (i.e., for all yj’s with j ∈ Jy). Within the same priority level, Cplex is left free to

choose the branching variable according to its internal “strong branching” criterion.

Each time a new integer solution (x∗, y∗) is found and is going to update the incumbent, a specific

“lazyconstraint callback” function is automatically invoked by Cplex to let the user possibly discard

this solution for whatever reason, and possibly add a cut that makes this solution infeasible. In

this callback function, we first determine whether the solution is in fact bilevel-feasible by solving

the MILP follower for x = x∗, thus obtaining an alternative point (x∗, ŷ) with dT ŷ = Φ(x∗). If

dTy∗ >Φ(x∗), the solution (x∗, y∗) is not bilevel feasible and we cut it using a suitable IC. In case

heuristics were enabled and produced an infeasible candidate solution without an associated LP

basis, we could just discard it. In any case, point (x∗, ŷ) is passed to an hoc-hoc feasibility-check

procedure that quickly verifies its HPR feasibility (with respect to (2)) and cost, and possibly

updates the incumbent. This approach is very useful as it typically produces very good heuristic

solutions at the very beginning of the computation.

Immediately before branching, at each node Cplex automatically invokes a “usercut callback”

function where the user can generate problem-specific (in our case, locally valid) cuts for fractional

HPR solutions. Within this function, we implemented separation procedures for both FUB cuts

and ICs, as described in Sections 3.1 and 5.1, respectively. Separation of FUB cuts is invoked

only at the first callback call at a given node, as it does not depend on (x∗, y∗) but only on the

variable bounds at the current node. Separation of ICs is instead active at each callback call,

with a maximum number (say, max node cuts) of consecutive calls at the same B&B node. This

limit was introduced for two reasons: first, separation procedures can be time-consuming, as they

require the solution of an auxiliary MILP; second, a known issue of ICs is that their effectiveness

quickly deteriorate when applied iteratively to the same LP. In any case, in our implementation, for

fractional HPR solutions we discard ICs with a too large dynamic (ratio between the largest and

smallest nonzero coefficient, both in absolute value, greater than 106) as they are not considered

numerically reliable. A cut is also discarded when its relative violation is very small, i.e., in case

its violation is smaller than 10−6 · (|cut rhs|+ 1).
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7. Computational Results

To evaluate the performance of our improved B&C solution method, we implemented it (in C

language) and run it on a large set of instances both from the literature and randomly generated

ones. All computational experiments are conducted on an cluster consisting of Intel Xeon E5-2670v2

with 2.5GHz and 12GB of RAM. Computing times reported in what follows are in wall-clock

seconds and refer to 4-thread runs. The time limit for each run was set to 3 600 wall-clock seconds.

For research purposes, our solver is publicly available online at (Fischetti et al. 2017).

7.1. Testbed

Table 1 summarizes details about the data sets that have been considered in our computational

study. The considered instance sets can be divided into two groups: general bilevel, and interdiction.

While the former includes problems with no special structure, interdiction problems represent a

relevant case of bilevel programs where the follower typically is a clean combinatorial optimization

problem (e.g., a knapsack or an assignment problem). The leader can “interdict” a subset of

elements of the follower problem (e.g., knapsack items, or edges in the assignment problem), subject

to a given budget constraint. The objective of the leader is the opposite of that of the follower,

which results into min-max or max-min problems. Note that, by exploiting their special structure,

one can design sound methods for general interdiction problems (DeNegre 2011, Tang et al. 2016c).

In our computational study, instead, we treat interdiction problems as standard bilevel problems,

without taking advantage of their structure.

The total number of general bilevel instances considered is 307, and the total number of inter-

diction instances is 567. Thus, with experiments conducted on more than 850 instances of various

types and from different sources, our computational study is by far the most extensive ever reported

in the MIBLP literature. We note that, to the best of our knowledge, there are no instances in

literature considering continuous upper level variables and fulfilling Assumption 1. For this reason,

our testbed does not include instances with continuous variables in the leader.

General Bilevel Instances

• Instances of class DENEGRE have been proposed in DeNegre (2011). They involve n1 ∈ {5,10,15}

integer leader variables, while the number of integer follower variables n2 is such that n1 +n2 =

15 or 20. There are m = 20 follower constraints and no constraints at the leader level. All

coefficients are integers in the range [−50,50]. These instances, as well as all other instances

from (DeNegre 2011), namely INTER-KP, INTER-ASSIG, and INTER-RANDOM, are available at

(Ralphs and Adams 2016). Note that similar instances are also available in the open-source

repository (Ralphs 2015); according to the maintainer of the repository, however, some of them
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have wrong coefficients that violate some assumptions required by DeNegre (2011), hence the

link (Ralphs and Adams 2016) should be used instead.

• Class MIPLIB has been introduced in Fischetti et al. (2016b). They are based on instances

of MILPLIB 3.0 (Bixby et al. 1998) containing only binary variables. These instances have

been transformed into bilevel problems by considering the first Y% (rounded up) variables

as follower variables, with Y ∈ {10,50,90} and the remaining ones as leader variables. The

objective function is used as the leader objective cTxx+ cTy y and the follower objective is set to

dTy =−cTy y. All constraints in the instances are defined to be follower constraints. The class

contains 57 instances with up to about 80 000 HPR variables and 5 000 follower constraints,

making them much larger (and often also much more difficult) than instances of the other

classes. These instances are available at (Fischetti et al. 2017).

• Class XUWANG has been proposed by Xu and Wang (2014b). In these instances, we have n1 =

n2 ∈ {10,60,110, . . . ,460}. The leader variables are constrained to be integer, while some of

the follower variables are continuous. The number of leader constraints, as well as follower

constraints, is 0.4n1. All input values are integers uniformly distributed from given ranges:

Gx,Gy,A,B are in [0,10], cx, cy, d are in [−50,50], q is in [30,130], and b is in [10,110]. The

leader variables have lower bound 0 and upper bound 10, while follower variables have lower

bound 0 and no upper bound; the latter ones are continuous with a probability of 50%. There

are ten instances for every value of n1. For n1 ∈ {110,160}, four additional sets of instances

were created: q is increased by 10 in the first two sets, while b in increased by 10 in the last two

sets. These instances are available at (Xu and Wang 2014a). Note that all these instances have

some continuous follower variables, hence Assumption 3 does not hold and only the hypercube

ICs of Section 4.3 can be used by our B&C solver.

• To better analyze the cases where Assumption 3 does not hold (and thus only hypercube

ICs can be used), we created a new class XUWANG-LARGE of larger random instances by fol-

lowing the same procedure used for class XUWANG. For this new class we have n1 = n2 ∈

{500,600, . . . ,1000}, and we generated 10 instances for each value of n1. All instances are

available at (Fischetti et al. 2017).

Interdiction Instances

• Class INTER-KP has been introduced in DeNegre (2011). The follower problem is a knapsack

problem. The instances are based on bicriteria knapsack instances from the multiple criteria

decision making library : the first objective of the bicriteria problem is used to the define

the follower objective function, while the second objective defines the interdiction budget

constraint of the leader. The instances have n1 = n2 ∈ {10,20, . . .50}, with two additional sets
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with 11 and 12 items. The interdiction budget of an instance is d
∑n1

i=1 ai/2e, where ai is the

cost of interdicting item i. For every number of items there are 20 instances, except for 10

items where there are 40 instances.

• Class INTER-KP2 has been proposed by Tang et al. (2016c) and also consists of knapsack

interdiction instances. Instances with number of items n1 = n2 ∈ {20,22,25,28,30} have been

constructed and the interdiction budget is a cardinality constraint allowing k (say) items to

be interdicted. For each value of n1, three different values of k have been considered and,

for each (n1, k) pair, ten instances have been defined generating item weights and profits as

random integers in [1,100]. These instances are available at (Tang et al. 2016b).

• Instances of class INTER-ASSIG have also been introduced in DeNegre (2011). The follower

problem is an assignment problem. The instances are derived from bicriteria assignment

instances from the multiple criteria decision making library in a similar way as in class

INTER-KP. Each instance has 25 edges (i.e., n1 = n2 = 25) and 20 follower constraints—plus

the interdiction constraints stipulating that interdicted edges cannot be used by the follower.

The interdiction budget was chosen as a percentage of the sum of interdiction costs.

• Class INTER-RANDOM are random interdiction problems proposed by DeNegre (2011). They

are based on random ILPs with integer coefficients in [−50,50] of size (rows × columns)

10× 10, 15× 10, 20× 20, and 25× 20. These ILPs are transformed to interdiction instances

by introducing interdiction costs for each variable. Two strategies are considered: in the first

strategy, a unit cost is given, together with an interdiction budget of 3. In the second one,

interdiction costs and budget are taken randomly. Instances obtained by applying the first and

second strategy are denoted as symmetric and asymmetric, respectively. For each strategy, 10

instances are generated for each size.

• Class INTER-CLIQUE are clique interdiction problems introduced in Tang et al. (2016c). The

follower problem is a maximum cardinality clique problem, and the leader can interdict edges.

Graphs with ν = {8,10,12,15} nodes and edge densities d∈ {0.7,0.9} have been used to define

the instances. The interdiction budget is a cardinality constraint, and the leader can interdict

at most dm/4e edges, where m is the number of edges in the graph. For each combination of

ν and d, ten instances have been constructed, resulting in 80 instances of this class. These

instances are available at (Tang et al. 2016a).

• Instances of class INTER-FIRE have been recently introduced in Baggio et al. (2016). These

are randomly generated problems arising from a trilevel context in which one has to defend

a given network against possible cascade failures or malicious viral attacks. This benchmark

includes instances in which the network is a tree or a general graph. In both cases, the number

of nodes is in {25, 50, 80}. These instances were available from the authors of (Baggio et al.

2016), and can also be downloaded from (Fischetti et al. 2017).
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Table 1 Our testbed. The first four classes are of general bilevel type, and the latter six of interdiction type.

Column Type indicates whether the instances are binary (B), integer (I) or continuous (C), column #Inst reports

the total number of instances in each class, column #OptB gives the number of instances solved to optimality by

previous approaches from literature, and #Opt gives the number of instances solved to optimality by the solver

presented in this paper. The symbols in the column #OptB give the source of the previous best approach: † is

(Fischetti et al. 2016b); + is (Xu and Wang 2014b); ∗ is (Tang et al. 2016c). Note that classes XUWANG-LARGE and

INTER-FIRE have not been tested computationally before. For class INTER-RANDOM some results are reported in

(DeNegre 2011), but for different instances.

Class Source Type #Inst #OptB #Opt

DENEGRE (DeNegre 2011),(Ralphs and Adams 2016) I 50 45† 50
MIPLIB (Fischetti et al. 2016b) B 57 20† 27
XUWANG (Xu and Wang 2014b) I,C 140 140+ 140
XUWANG-LARGE this paper I,C 60 - 60

INTER-KP (DeNegre 2011),(Ralphs and Adams 2016) B 160 79† 138
INTER-KP2 (Tang et al. 2016c) B 150 53? 150
INTER-ASSIG (DeNegre 2011),(Ralphs and Adams 2016) B 25 25† 25
INTER-RANDOM (DeNegre 2011),(Ralphs and Adams 2016) B 80 - 80
INTER-CLIQUE (Tang et al. 2016c) B 80 10? 80
INTER-FIRE (Baggio et al. 2016) B 72 - 72

total 874 372 822

7.2. Computational Analysis of the Proposed Improvements

In this subsection we computationally analyze the effect of the newly presented ingredients on

the performance of our bilevel B&C solver. We first consider FUB cuts, as described in Section

3.1, and then follower preprocessing (cf. Section 3.2). Afterwards, we investigate the influence of

new bilevel-free sets introduced in Section 4. In this experiment, the following solver settings are

considered:

– SEP1: our B&C solver using SEP1 formulation for separating ICs (see Section 5.1);

– SEP2: our B&C solver using SEP2 formulation for separating ICs (see Section 5.1);

– XU: our B&C solver with the extended bilevel-free set of Xu (2012) as described in Section

4.1;

– MIX: combination of settings SEP2 and XU (both ICs being separated at each separation call).

Observe that settings SEP1 and SEP2 have been proposed and analyzed by Fischetti et al. (2016b),

where it has been shown that SEP2 outperforms previous MIBLP approaches from the literature

by a large margin. In the present article, these two settings serve therefore as reference points for

measuring the efficacy of the newly proposed features (notably: FUB cuts, preprocessing, and new

ICs) exploited in our new proposals XU and MIX. For all settings, at most max node cuts=20 ICs

are separated at each B&B node (including root). When one of the four settings is enhanced by
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FUB cuts or by preprocessing, this is denoted by a “+F” or by “+P” next to its name, respectively.

If both FUB cuts and preprocessing are active, this is denoted by “++”.

In the following, we first analyze the effects of FUB cuts and the preprocessing, before turning

these two features on for the remainder of the study.

Effect of FUB Cuts. We illustrate the importance of the FUB cuts introduced in Section 3.1

through the cumulative speed-up chart of Figure 2a, addressing the 50 instances of set DENEGRE.

The chart shows the speed-up values for the two state-of-the-art approaches from Fischetti et al.

(2016b), namely, settings SEP1 and SEP2. To see the effect of FUB cuts, the follower preprocessing is

turned off. The reported speed-up ratio is calculated as t(SEPx)+ts
t(SEPx+F)+ts

, where t(SEPx+ F) and t(SEPx)

denote the computing time (in seconds) of a setting SEPx with and without FUB cuts, respectively.

The time shift ts is set to 1 second to reduce the importance of instances that are too easy in the

comparison. For a given setting, each point (x, y) in this chart indicates that y% of all instances

have a speed-up ratio of at least x. Notice that the values on x axis are given in log-scale. We

observe that for both SEP1 and SEP2 a significant speed-up is achieved in the considered dataset. In

some cases, a speed-up of 2-3 orders of magnitude could be reported, thanks to the usage of FUB

cuts. In very few cases, a small slow-down is observed—this usually happens for instances that

could be solved within a few seconds, in which case turning FUB cuts on causes an unnecessary

overhead.

Effect of Follower Preprocessing. We now demonstrate the effect of follower preprocessing

using the same set of DENEGRE instances. The speed-up ratio is now calculated as t(SEPx)+ts
t(SEPx+P)+ts

, where

t(SEPx+ P) and t(SEPx) denote the computing time (in seconds) of a setting SEPx with and without

the follower preprocessing, respectively.

The cumulative chart reporting this speed-up ratio is given in Figure 2b. For about 40% (SEP1+P),

resp., almost 50% (SEP2+P) of the instances, a speed-up of at least one order of magnitude is

achieved—for about 25% of the instances, the actual speed-up is of two orders of magnitude or

even higher.

Effect of Using Both FUB Cuts and Follower Preprocessing. Figure 2c shows the effect

of turning on both FUB cuts and follower preprocessing, for the set of DENEGRE instances. The

speed-up ratio is calculated as t(SEPx)+ts
t(SEPx++)+ts

, where t(SEPx+ +) and t(SEPx) denote the computing

time (in seconds) of a setting SEPx with and without both FUB cuts and the follower preprocessing,

respectively. The results are very similar to those in Figure 2b, which suggests that, for this instance

class, the improved performance of both SEP1 and SEP2 is mainly due to follower preprocessing.

However, for more difficult instances the use of FUB cuts together with preprocessing does yield

an additional performance improvement, as shown in the MIPLIB tests reported below.
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Figure 2 Speed-ups achieved by FUB cuts and follower preprocessing for the instance set DENEGRE.
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(a) Using FUB cuts.
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(b) Using follower preprocessing.
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(c) Using both follower preprocessing and FUB cuts.

To further analyze the effects of FUB cuts and follower preprocessing, we next illustrate the

improvement in performance of setting SEP2 when combined with FUB cuts and follower pre-

processing (and both) on the most challenging set of benchmark instances in our study, namely

MIPLIB. Figure 3 shows the cumulative chart for final gaps obtained after the time limit of one

hour for SEP2, SEP2+F, SEP2+P, and SEP2++. Percentage gaps are calculated as 100·(BestSol −

LB)/(|BestSol|+ 10−10), where BestSol and LB are the best upper and lower bounds found by a

given setting, respectively. For visualization, gaps larger than 100% are set to 100%; similarly, if a

setting did not find a feasible solution within the time limit, we also set the gap to 100%.

For each setting, each point (x, y) in this chart indicates that y% of all instances have a resid-

ual percentage gap not larger than x. In particular, the left-most point indicates the percentage

of instances solved to optimality for each of the settings. These results show that a significant

performance improvement can be achieved: SEP2 manages to solve about 34% of the instances to
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Figure 3 Final gaps for settings SEP2, SEP2+F, SEP2+P, and SEP2++ for instance set MIPLIB, obtained when the

time limit of one hour is reached.
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optimality, and this figure increases to 39% for SEP2+F and to 42% for SEP2+P and SEP2++. As

to the residual gaps for the unsolved instances, we observe that both SEP2+F and SEP2+P clearly

improve on SEP2, with SEP2+P having a larger effect. Combining both (code SEP2++) improves the

performance even further. For example, the final gap is at most 50% for about 74% of instances

if SEP2 is used, while this latter figure grows to about 77% when using SEP2+F, to slightly above

80% when using SEP2+P, and to about 83% when using SEP2++.

Effect of Different Intersection Cuts. We next compare our new approach for separating

ICs based on the definition of the bilevel-free set given in (24) (the resulting code being denoted by

XU) against the recently-proposed ICs based on bilevel-free sets defined by (22) (denoted by SEP2).

In addition, we consider a mixed strategy (denoted by MIX), in which both ICs are generated for

each separation call. To also analyze the effect of FUB cuts and preprocessing in combination with

these different approaches for generating intersection cuts, we also consider settings where these

two features are both turned on—this is indicated with ++ beside the setting names (i.e., setting

XU++, SEP2++, MIX++).

Computational performance is compared using performance profiles (PPs), which are constructed

following the procedure of Dolan and Moré (2002). For each setting s ∈ S and instance p ∈ P , a

performance ratio rp,s =
tp,s

mins′∈S{tp,s′}
is calculated, where tp,s is the time setting s needs to solve

instance p. In the profiles, the cumulative distribution function of the performance ratio ρs(τ) =

100
|P |

∣∣{p ∈ P : rps ≤ τ}
∣∣ is displayed for each setting s ∈ S. The leftmost point of the graph for a

setting s shows the percentage of instances for which s is the fastest setting.
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In both Figures 4 and 5 we report two PPs: one for the class of general bilevel instances (Figures

4a and 5a), and one for the class of interdiction instances (Figures 4b and Figures 5b). In Figure

4, we only consider settings without FUB cuts and preprocessing, while in Figure 5 all settings

are considered. All PPs refer to the subsets of instances that could be solved to optimality by all

three (respectively, six) settings within the given time limit of one hour. These are 55 out of the

107 general bilevel instances of classes DENEGRE and MIPLIB, and 353 out of the 567 interdiction

instances; most of these instances are solved to optimality within a few seconds by every setting.

Recall that, for sets XUWANG and XUWANG-LARGE, none of the six settings is applicable as only

hypercube ICs can be used.

Figure 4a shows that, for general bilevel instances, both XU and MIX perform very similarly,

and they considerably outperform SEP2. For interdiction instances (Figure 4b) the situation is

different, as MIX and SEP2 perform similarly (with SEP2 performing slightly better) and both

settings considerably outperform XU. Thus we conclude that setting MIX, which combines both

types of intersection cuts, qualifies as a robust choice for all considered sets of instances. Of course,

this choice implies a small overhead in runtime caused by the separation and use, at each iteration,

of two ICs instead of one.

Next, we turn our attention to the effect of adding FUB cuts and preprocessing to the intersection

cuts. For general bilevel instances, we see in Figure 5a that for SEP2, a drastic improvement is

achieved by adding FUB and preprocessing; for XU and MIX, there is also an improvement, but it

is not that pronounced. All “++” settings give good performance for these instances.

For the interdiction instances, the results in Figure 5b show that both SEP2++ and MIX++ (and

the basic variants of these two settings) vastly outperform XU++, and that XU++ in turn outper-

forms XU by a large margin. We observe that, due to the definition of the considered interdiction

problems, the conditions of Theorem 2 are never fulfilled, thus the preprocessing has no effect on

these types of instances. The slight improvement of SEP2++ over MIX++ can again be attributed

to the overhead of separating and using two ICs instead of one.

Figures 6a and 6b report cumulative-gap charts (similar to those in Figure 3) for the complete

set of general bilevel and interdiction instances, respectively. Figure 6a shows that MIX++ manages

to solve most instances of general bilevel to optimality, namely about 73% The next best settings

are XU++ (solving about 70%) and SEP2++ (solving about 67%). For the general bilevel instances,

a clear performance improvement can be seen when using FUB cuts and preprocessing, the effect

being especially pronounced for code SEP2. Figure 6a shows that about 10% more instances could

be solved to optimality using SEP2++ compared to SEP2, while for XU++ (vs XU) and MIX++ (vs

MIX) this number is about 7%.
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Figure 4 Effect of different ICs without FUB cuts or preprocessing on the B&C performance. Performance profiles

contain instances that could be solved to optimality by all three settings.
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(a) Instances of type general bilevel.

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●●●
●●

0

25

50

75

100

1 5 10
No more than x times worse than best configuration

#
in

st
an

ce
s 

[%
]

Setting
● SEP2

XU
MIX

(b) Instances of type interdiction.

These results show that, for general bilevel instances, the presence of FUB cuts and preprocessing

provides a considerable speedup, thus confirming the outcomes of the experiments depicted in

Figure 2. On the contrary, results of Figure 6b on interdiction instances are mixed: on the one

hand there is no significant difference between SEP2++ and SEP2 (and also between MIX++ and
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Figure 5 Effect of different ICs on the B&C performance. Performance profiles contain instances that could be

solved to optimality by all six settings.
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(a) Instances of type general bilevel.
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(b) Instances of type interdiction.

MIX), with all of them solving about 95% of the instances to optimality; on the other hand, XU++

turns out to vastly outperform XU (solving about 83% vs solving about 63%).

Overall, these experiments show that MIX++, which combines SEP2++ and XU++, has some

unavoidable overhead but solves more instances to optimality—and produces smaller final gaps for
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many of the unsolved cases. Thus, we conclude that setting MIX++ qualifies as a robust configu-

ration for our B&C algorithm, to be used as default setting.

Figure 6 Cumulative chart for final gaps demonstrating the effect of different ICs on the B&C performance.
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(b) Instances of type interdiction.

Performance of Hypercube Intersection Cuts. In Table 2 we give results for set

XUWANG-LARGE where, similarly to the set XUWANG to be addressed in the next section, only the
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hypercube ICs can be applied. In this table, we compare the setting with FUB cuts and prepro-

cessing turned on (code HC++), against both turned off (code HC). It can be seen that, even for this

class of instances, our methods manage to solve all instances to optimality. Using FUB cuts and

preprocessing brings a speed-up of about 2-3 times.

Table 2 Results for instance set XUWANG-LARGE. Entries in the table give runtime to optimality, in seconds.

n1 setting i= 1 i= 2 i= 3 i= 4 i= 5 i= 6 i= 7 i= 8 i= 9 i= 10 avg

500 HC 763 1370 293 461 1161 203 1210 858 299 1302 792.1
500 HC++ 245 697 84 183 1076 174 737 352 237 287 407.3
600 HC 1082 1480 598 993 149 764 358 302 309 1409 744.6
600 HC++ 452 475 375 643 176 666 173 210 189 928 428.6
700 HC 2645 579 1885 1511 618 943 1514 1601 1080 486 1286.2
700 HC++ 622 311 1064 862 377 711 591 923 598 298 635.8
800 HC 2026 1589 1428 1616 1069 1537 849 1082 1295 1133 1362.4
800 HC++ 958 855 934 646 667 759 405 634 471 457 678.7
900 HC 2104 2314 1533 2397 1518 1951 2172 2263 1810 2217 2027.9
900 HC++ 816 750 592 739 679 580 770 409 460 631 642.6
1000 HC 1407 2679 2227 3069 3211 3306 2400 2334 2099 2498 2523.1
1000 HC++ 746 1442 941 1999 1994 2110 993 1507 787 903 1342.2

7.3. Comparison with Approaches from Literature

In this subsection we compare our default B&C code MIX++ with other approaches from the lit-

erature, using the same instance classes on which the latter have been originally tested. When

performing this experiment, we refrained from tuning our solver for the specific instance subclasses,

even though this could produce significantly better results in many cases.

Not all instances listed in Table 1 are considered in this subsection, namely, instances from

INTER-ASSIG, INTER-FIRE and INTER-RANDOM are left out. Instances of class INTER-ASSIG are

omitted for the sake of space, as they turn out to be very easy for both MIX++ and the state-of-the-art

solver for these problems—namely, SEP2 from (Fischetti et al. 2016b). As to INTER-FIRE problems,

no computational analysis has been carried out so far in the literature, while for INTER-RANDOM

the only available results are from (DeNegre 2011), but for different instances (see the discussion

in Section 7.1). In our computational analysis, we did not consider solution approaches that were

designed for bilevel mixed-integer nonlinear programs (see Section 2), as the comparison could be

biased in favour of our MIBLP-specific code—and also because no implementation of the nonlinear

approaches is publicly available online.

Instance Set DENEGRE. For this class of 50 general bilevel instances introduced by DeNegre

(2011), Table 3 compares the performance of two solvers: SEP1 (in a variant with max node cuts

= 0 that produces the best-known results for this class, as reported by Fischetti et al. (2016b))

and MIX++ (our default B&C solver). For the former we report, for each instance, the value of

the best lower and upper bounds (LB and BestSol, respectively), the associated percentage gap
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(%gap), the computing time (in seconds), as well as the total number of branch-and-bound nodes.

As MIX++ is able to solve to proven optimality all the instances, for this solver we only report the

required computing time and number of nodes. The optimal solution value of each instance is given

in column OPT . Prior to the present work, optimal solutions for five instances of this class were

unknown.

We point out that with our new B&C solver, optimal solutions for all the 50 instances of this

class are reported (five instances for the first time), and that the optimal solution for all but two

instances is obtained within only a few seconds of computing time. Moreover, MIX++ needs much

fewer branch-and-bound nodes than SEP1.

Instance Set XUWANG. In Xu and Wang (2014b), a generic solver for MIBLPs has been intro-

duced, along with a set of 140 instances, comprising integer leader variables, and continuous follower

variables. In the following, we perform a comparison of our B&C solver with the solver of Xu and

Wang (2014b). As Assumption (3) does not hold for the follower subproblem, our solver relies on

the separation of the hypercube ICs of Subsection 4.3 only. FUB cuts and preprocessing remain

valid in this case, and are turned on in our experiment.

Both approaches solve all 140 instances from this class to optimality. Table 4 reports the required

computing times. Each table row corresponds to a set of ten instances and computing times of

our solver are given per instance (for i= 1, . . . ,10) and on average (column avg). The rightmost

column (avg-XU ) gives instead the average computing time of the solver introduced in Xu and

Wang (2014b), and refers to a “desktop computer with 2.4 GHz”, which is therefore 2 to 5 time

slower than our hardware. The table shows that, after taking the hardware differences into account,

our approach remains orders of magnitude faster than the one presented in Xu and Wang (2014b),

in particular for the largest instances. Indeed, for the instances with n1 = 460 our solver has an

average computing time of 23.1 seconds, against 6 581.4 seconds reported in Xu and Wang (2014b).

Moreover, for instances of class B2-160, which seem the hardest in this testbed, the speed-up is

even more pronounced with average computing times of 37.4 versus 22 999.7 seconds.

Instance Sets INTER-KP2 and INTER-CLIQUE. Another generic solver for zero-sum MIBLPs

has been recently proposed in Tang et al. (2016c), along with two families of benchmark instances

of interdiction type on which the solver is tested: knapsack-interdiction and clique-interdiction,

denoted by INTER-KP2 and INTER-CLIQUE in the following. We compare our default setting for

the B&C solver, namely MIX++, with the best results reported in Tang et al. (2016c), which have

been obtained “on a PC with 3.30 GHz using CPLEX 12.5”. The results of this comparison are

summarized in Table 5. Each row reports average results over a subset of ten instances that share

the same (n1, k) pair (left part of the table, INTER-KP2 instances) or the same graph-parameters
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Table 3 Results for instance set DENEGRE.

SEP1 MIX++

instance OPT BestSol LB %gap time [s] nodes time [s] nodes

miblp-20-15-50-0110-10-10 -206 -206 -206.0 0.0 0 628 0 10
miblp-20-15-50-0110-10-1 -388 -388 -388.0 0.0 0 50 1 21
miblp-20-15-50-0110-10-2 -398 -398 -398.0 0.0 17 77323 8 279
miblp-20-15-50-0110-10-3 -42 -42 -42.0 0.0 0 2201 2 54
miblp-20-15-50-0110-10-4 -729 -729 -729.0 0.0 0 185 1 56
miblp-20-15-50-0110-10-5 -281 -281 -281.0 0.0 0 83 0 20
miblp-20-15-50-0110-10-6 -246 -246 -246.0 0.0 0 233 16 205
miblp-20-15-50-0110-10-7 -260 -260 -260.0 0.0 0 108 0 0
miblp-20-15-50-0110-10-8 -293 -293 -293.0 0.0 0 114 0 22
miblp-20-15-50-0110-10-9 -635 -635 -635.0 0.0 0 1061 1 16
miblp-20-20-50-0110-10-10 -441 -441 -441.0 0.0 73 256927 2927 8068
miblp-20-20-50-0110-10-1 -359 -359 -359.0 0.0 494 1805080 2 81
miblp-20-20-50-0110-10-2 -659 -659 -659.0 0.0 0 939 1 17
miblp-20-20-50-0110-10-3 -618 -618 -618.0 0.0 1 9456 0 52
miblp-20-20-50-0110-10-4 -604 -604 -695.0 15.1 3600 7479668 1 51
miblp-20-20-50-0110-10-5 -1003 -1003 -1003.0 0.0 0 20 0 13
miblp-20-20-50-0110-10-6 -731 -707 -858.4 21.4 3600 6244669 10 511
miblp-20-20-50-0110-10-7 -683 -683 -683.0 0.0 2788 7420465 0 54
miblp-20-20-50-0110-10-8 -667 -667 -667.0 0.0 3 8116 15 232
miblp-20-20-50-0110-10-9 -256 -256 -256.0 0.0 4 42945 0 71
miblp-20-20-50-0110-15-10 -251 -251 -251.0 0.0 0 400 0 14
miblp-20-20-50-0110-15-1 -450 -420 -511.7 21.8 3600 4313453 0 16
miblp-20-20-50-0110-15-2 -645 -645 -744.0 15.3 3600 14175981 0 6
miblp-20-20-50-0110-15-3 -593 -593 -593.0 0.0 838 1420792 3 43
miblp-20-20-50-0110-15-4 -441 -441 -487.7 10.6 3600 5448638 5 131
miblp-20-20-50-0110-15-5 -379 -334 -518.0 55.1 3600 6169959 1392 5466
miblp-20-20-50-0110-15-6 -596 -596 -596.0 0.0 3260 5955753 50 483
miblp-20-20-50-0110-15-7 -471 -471 -471.0 0.0 246 787848 0 23
miblp-20-20-50-0110-15-8 -370 -370 -838.4 126.6 3600 11797237 0 3
miblp-20-20-50-0110-15-9 -584 -584 -584.0 0.0 1 2027 0 8
miblp-20-20-50-0110-5-10 -340 -340 -340.0 0.0 0 45 0 38
miblp-20-20-50-0110-5-11 -426 -426 -426.0 0.0 0 9 0 11
miblp-20-20-50-0110-5-12 -854 -854 -854.0 0.0 0 43 0 21
miblp-20-20-50-0110-5-13 -519 -519 -519.0 0.0 116 947138 0 11
miblp-20-20-50-0110-5-14 -923 -923 -923.0 0.0 0 109 0 58
miblp-20-20-50-0110-5-15 -617 -617 -617.0 0.0 157 1031098 1 197
miblp-20-20-50-0110-5-16 -833 -833 -833.0 0.0 0 2535 0 44
miblp-20-20-50-0110-5-17 -944 -944 -944.0 0.0 0 3580 0 19
miblp-20-20-50-0110-5-18 -386 -386 -386.0 0.0 0 2 0 0
miblp-20-20-50-0110-5-19 -431 -431 -431.0 0.0 3 25762 0 95
miblp-20-20-50-0110-5-1 -548 -548 -548.0 0.0 1 6981 0 21
miblp-20-20-50-0110-5-20 -438 -438 -438.0 0.0 0 3918 0 32
miblp-20-20-50-0110-5-2 -591 -591 -591.0 0.0 1558 6053523 0 49
miblp-20-20-50-0110-5-3 -477 -477 -477.0 0.0 0 53 0 50
miblp-20-20-50-0110-5-4 -753 -753 -753.0 0.0 0 142 0 71
miblp-20-20-50-0110-5-5 -392 -392 -392.0 0.0 0 51 0 31
miblp-20-20-50-0110-5-6 -1061 -1061 -1061.0 0.0 5 79502 0 92
miblp-20-20-50-0110-5-7 -547 -547 -547.0 0.0 0 80 0 16
miblp-20-20-50-0110-5-8 -936 -936 -936.0 0.0 0 69 0 91
miblp-20-20-50-0110-5-9 -877 -877 -877.0 0.0 0 112 0 62

(right part, associated with INTER-CLIQUE instances). For the solver of Tang et al. (2016c), we

report the average computing time (in seconds), the average value of the best known upper bound

(BestSol), the average final lower bound (obtained after one hour of computing) and the total

number of unsolved instances out of ten (denoted by #unsol). For MIX++ we only report the average

computing time in seconds, as it turns out that our solver manages to solve all 150 + 80 instances

to optimality (compared to 53 + 10 for the best solver from Tang et al. (2016c)). For INTER-KP2
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Table 4 Results for the instance set XUWANG. Computing times (in seconds) given for ten instances (i = 1, . . . ,10)

for fixed n1. Column avg-XU gives the average computing times as reported in Xu and Wang (2014b).

n1 i= 1 i= 2 i= 3 i= 4 i= 5 i= 6 i= 7 i= 8 i= 9 i= 10 avg avg-XU

10 3 3 3 3 2 3 2 3 2 3 2.6 1.4
60 2 0 0 1 1 1 1 1 2 2 0.9 45.6
110 2 1 2 2 1 2 1 2 2 12 2.8 111.9
160 2 2 3 2 3 1 4 1 1 3 2.1 177.9
210 2 3 1 1 3 3 3 2 5 3 2.6 1224.5
260 3 4 3 6 3 5 6 2 7 11 5.0 1006.7
310 5 10 11 14 7 16 15 8 5 3 9.4 4379.3
360 17 28 11 13 11 15 7 19 9 14 14.4 2972.4
410 19 10 29 8 21 10 9 15 23 42 18.7 4314.2
460 22 10 22 35 21 21 32 22 23 23 23.1 6581.4
B1-110 0 0 0 0 0 1 0 1 0 9 1.3 132.3
B1-160 1 1 3 1 2 1 3 0 0 2 1.3 184.4
B2-110 16 2 2 8 1 25 15 5 1 122 19.7 4379.8
B2-160 8 38 21 91 34 4 40 3 12 123 37.4 22999.7

the average computing times of MIX++ vary between a fraction of a second to five minutes. The set

INTER-CLIQUE turns out to be much easier, as in most of the cases, optimal solutions are found

within a fraction of a second. Only for the largest instances with 15 nodes and graph density of 0.9,

our solver requires about 12 seconds on average. We finally point out that the solver of Tang et al.

(2016c) is specifically tailored for problems with binary leader variables and with the zero-sum

problem structure, whereas our solver handles these instances as general bilevel problems and does

not explicitly exploit these properties.

Table 5 Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right). Each row contains average

results for ten instances. All instances are solved to proven optimality by MIX++.

Tang et al. (2016c) MIX++

n1 k OPT t[s] BestSol LB #unsol t[s]

20 5 388.5 721.4 388.5 388.5 0 5.4
20 10 163.7 2992.6 159.9 104.2 3 1.7
20 15 31.4 129.5 31.4 31.4 0 0.2
22 6 382.7 1281.2 382.7 141.5 6 10.3
22 11 161.0 3601.8 162.4 0.0 10 2.3
22 17 29.2 248.2 29.2 29.2 0 0.2
25 7 436.2 3601.4 437.2 0.0 10 33.6
25 13 191.5 3602.3 195.6 0.0 10 8.0
25 19 41.8 1174.6 41.8 41.8 0 0.4
28 7 516.1 3601.0 516.5 0.0 10 97.9
28 14 223.4 3602.5 226.8 0.0 10 22.6
28 21 46.2 3496.9 46.4 7.0 8 0.5
30 8 536.3 3601.0 537.4 0.0 10 303.0
30 15 230.0 3602.3 230.8 0.0 10 31.8
30 23 47.5 3604.5 48.5 0.0 10 0.6

Tang et al. (2016c) MIX++

ν d OPT t[s] BestSol LB #unsol t[s]

8 0.7 2.2 373.0 2.2 2.2 0 0.1
8 0.9 3.0 3600.0 3.0 0.0 10 0.2

10 0.7 2.9 3600.1 3.0 0.0 10 0.3
10 0.9 3.0 3600.2 4.0 0.0 10 0.7
12 0.7 3.0 3600.3 3.6 0.0 10 0.8
12 0.9 3.0 3600.4 5.0 0.0 10 1.9
15 0.7 3.0 3600.3 4.6 0.0 10 2.2
15 0.9 3.0 3600.2 6.3 0.0 10 12.6

Instance Set MIPLIB. Table 6 compares MIX++ with the best benchmark from the literature,

namely SEP2 by Fischetti et al. (2016b), on the very hard MIPLIB class. Recall that this class con-

tains some instances with up to 80 000 HPR variables, hence in many cases the optimal solutions

are still unknown. For the two settings and for each instance, Table 6 reports the best obtained
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upper bound (BestSol), the best obtained lower bound (LB), the final percentage gap, the com-

puting time (in seconds), and the number of B&C nodes. Whereas SEP2 solves 20 instances of this

class to optimality, MIX++ manages to provide optimal solutions in 27 cases. Furthermore, for all

but three instances, the final lower bound is strictly (and, very often, significantly) better by using

our new MIX++ algorithm.

8. Conclusions

Mixed-Integer Bilevel Linear Programs are very important and challenging optimization models

arising in many important practical contexts, including pricing mechanisms in the energy sec-

tor, airline and telecommunication industry, transportation networks, optimal expansion of gas

networks, critical infrastructure defense, and machine learning.

In the present paper we have presented a new branch-and-cut algorithm for the exact solution

of such problems. We have described an effective bilevel-specific preprocessing procedure. In addi-

tion, new classes of valid linear inequalities have been introduced, along with the corresponding

separation procedures.

The computational performance of our method has been evaluated on a very large set of test

problems from the literature and on randomly generated instances—with its 850+ instances of

various types, our computational study is by far the most extensive ever reported in the literature.

Computational results showed that our new algorithm consistently outperforms (often by a large

margin) all alternative state-of-the-art methods for MIBLPs from the literature that we are aware

of, including methods which exploit problem specific information for special instance classes. In

addition, the new algorithm was also able to provide the optimal solution for hundreds of open

instances from the recent literature.

Our solver has been made available online, for research purposes, at (Fischetti et al. 2017).

Future work should investigate how our approach can be specialized to better deal with bilevel

optimization problems with a specific structure—notably, interdiction-type problems. The exten-

sion of our solution scheme to more general (possibly nonlinear) settings is also an interesting topic

for future research.

Appendix A: Overall Branch-and-Bound Scheme

For the sake of self completeness, we next outline the B&B scheme for MIBLPs presented in

(Fischetti et al. 2016b), whose convergence requires Assumption 1. To simplify the presentation,

we also assume that Assumption 2 holds true, and refer the reader to (Fischetti et al. 2016b, Sect.

3.1) for a treatment of the general case.
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Table 6 Results for instance set MIPLIB. ∗Instances solved to proven optimality by MIX++ using a more

aggressive setting: air03-0.1 (optimal value 376936), p0201-0.1 (opt. 12225), and p0282-0.5 (opt. 272659).

SEP2 MIX++

instance BestSol LB %gap time [s] nodes BestSol LB %gap time [s] nodes

air03-0.1 ∗ 382822 343658.2857 10.23 3600 146125 379800 344940.6202 9.18 3600 92677
air03-0.5 505172 344292.2835 31.85 3600 85478 512698 360653.0000 29.66 3600 76005
air03-0.9 823130 344977.6032 58.09 3600 44697 770100 358130.7506 53.50 3600 42757
air04-0.1 56563 56150.9887 0.73 3600 55921 56399 56291.5472 0.19 3600 61419
air04-0.5 60131 56152.5000 6.62 3600 35826 60076 56224.6292 6.41 3600 33459
air04-0.9 84993 55961.5987 34.16 3600 3752 73759 56035.8472 24.03 3600 6658
air05-0.1 26801 26472.0000 1.23 3600 101047 26577 26577.0000 0.00 401 10168
air05-0.5 32497 26448.1580 18.61 3600 92234 31290 26469.7692 15.41 3600 75980
air05-0.9 44567 26358.2362 40.86 3600 82050 40558 26350.2340 35.03 3600 63300
cap6000-0.1 - -2451433.7522 - 3600 1980 -1967015 -1967015.0000 0.00 587 48281
cap6000-0.5 - -2451320.1481 - 3600 1481 - -2400881.8508 - 3600 1115
cap6000-0.9 -259599 -2449416.5638 843.54 3600 9709 - -2372513.7387 - 3600 328
enigma-0.1 0 0.0000 0.00 0 990 0 0.0000 0.00 0 739
enigma-0.5 0 0.0000 0.00 4 13842 0 0.0000 0.00 6 10531
enigma-0.9 0 0.0000 0.00 46 2670 0 0.0000 0.00 186 2966
fast0507-0.1 12562 172.3615 98.63 3600 604 12484 12484.0000 0.00 2 0
fast0507-0.5 61516 173.5238 99.72 3600 7767 61439 61439.0000 0.00 2 0
fast0507-0.9 109916 109916.0000 0.00 8 2 109916 109916.0000 0.00 1 0
l152lav-0.1 4722 4722.0000 0.00 2 367 4722 4722.0000 0.00 2 363
l152lav-0.5 4866 4760.4318 2.17 3600 311915 4868 4758.5000 2.25 3600 258223
l152lav-0.9 5090 4789.6571 5.90 3600 211309 5072 4785.3277 5.65 3600 171722
lseu-0.1 1120 1120.0000 0.00 0 15 1120 1120.0000 0.00 0 19
lseu-0.5 2525 1154.0895 54.29 3600 13333 2313 2036.3864 11.96 3600 12840
lseu-0.9 5838 5838.0000 0.00 24 299 5838 5838.0000 0.00 65 357
mitre-0.1 122310 115155.2394 5.85 3600 20791 122235 115310.6145 5.66 3600 41872
mitre-0.5 146730 115155.0000 21.52 3600 15611 - 115492.2852 - 3600 19004
mitre-0.9 168885 115155.9467 31.81 3600 13066 - 115493.3824 - 3600 10099
mod010-0.1 6554 6554.0000 0.00 8 739 6554 6554.0000 0.00 4 9
mod010-0.5 6692 6551.2005 2.10 3600 117241 6618 6573.4891 0.67 3600 164755
mod010-0.9 7448 6554.2000 12.00 3600 158667 7355 6565.6667 10.73 3600 111883
nw04-0.1 17066 17066.0000 0.00 820 2884 17066 17066.0000 0.00 1140 2842
nw04-0.5 23914 16985.0000 28.97 3600 18519 24100 16689.4706 30.75 3600 8472
nw04-0.9 43374 18271.4453 57.87 3600 12282 52290 18241.2202 65.12 3600 6631
p0033-0.1 3089 3089.0000 0.00 0 0 3089 3089.0000 0.00 0 0
p0033-0.5 3095 3095.0000 0.00 0 2 3095 3095.0000 0.00 0 0
p0033-0.9 4679 4679.0000 0.00 0 7 4679 4679.0000 0.00 0 6
p0201-0.1 ∗ 12465 7793.2074 37.48 3600 5092 12555 9724.8337 22.54 3600 5837
p0201-0.5 13650 11615.0000 14.91 3600 649100 13635 13635.0000 0.00 1113 71052
p0201-0.9 15025 15025.0000 0.00 1 150 15025 15025.0000 0.00 1 157
p0282-0.1 260785 258489.8687 0.88 3600 371989 260781 260781.0000 0.00 4 272
p0282-0.5 ∗ 273069 258437.0000 5.36 3600 998732 272659 267014.5318 2.07 3600 120899
p0282-0.9 627411 285137.0000 54.55 3600 2075980 616034 398553.0624 35.30 3600 175290
p0548-0.1 11301 8691.0000 23.10 3600 54071 11051 9115.1458 17.52 3600 102504
p0548-0.5 22197 8701.0000 60.80 3600 5121 - 11358.4606 - 3600 11943
p0548-0.9 49235 16109.8084 67.28 3600 293986 49509 19026.7330 61.57 3600 17003
p2756-0.1 14444 3124.0000 78.37 3600 36718 12862 3338.0000 74.05 3600 37599
p2756-0.5 23565 3124.0000 86.74 3600 58203 25384 4077.6628 83.94 3600 18777
p2756-0.9 35087 3124.0000 91.10 3600 13687 33623 4685.3819 86.06 3600 9263
seymour-0.1 486 413.8447 14.85 3600 231 476 469.9485 1.27 3600 48178
seymour-0.5 836 414.0236 50.48 3600 564 807 807.0000 0.00 2 18
seymour-0.9 1251 1251.0000 0.00 9 2 1251 1251.0000 0.00 1 0
stein27-0.1 18 18.0000 0.00 22 983 18 18.0000 0.00 0 528
stein27-0.5 19 19.0000 0.00 7 336 19 19.0000 0.00 0 5
stein27-0.9 24 24.0000 0.00 0 0 24 24.0000 0.00 0 0
stein45-0.1 30 30.0000 0.00 1899 12549 30 30.0000 0.00 3 2999
stein45-0.5 32 32.0000 0.00 658 18613 32 32.0000 0.00 0 14
stein45-0.9 40 40.0000 0.00 0 0 40 40.0000 0.00 0 0
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Algorithm 2: A basic branch-and-bound scheme for MIBLP

Input : A MIBLP instance satisfying Assumptions 1 and 2;

Output: An optimal MIBLP solution.

1 Apply a standard LP-based B&B to HPR, branching as customary on integer-constrained

variables xj and yj that are fractional at the optimal LP solution; incumbent update is

instead inhibited as it requires the bilevel-specific check described below;

2 for each unfathomed B&B node where standard branching cannot be performed do
3 Let (x∗, y∗) be the integer HPR solution at the current node;

4 Compute Φ(x∗) by solving the follower MILP for x= x∗;

5 if dTy∗ ≤Φ(x∗) then
6 The current solution (x∗, y∗) is bilevel feasible: update the incumbent and fathom

the current node
7 else
8 if not all variables xj with j ∈ JF are fixed by branching then
9 Branch on any xj (j ∈ JF ) not fixed by branching yet, even if x∗j is integer, so as

to reduce its domain in both child nodes
10 else
11 let (x̂, ŷ) be an optimal solution of the HPR at the current node amended by

the additional restriction dTy≤Φ(x∗);

12 Possibly update the incumbent with (x̂, ŷ), and fathom the current node
13 end
14 end
15 end

The overall B&B scheme is sketched in Algorithm 2, which is a simplified version of Algorithm 2

in (Fischetti et al. 2016b). The approach is an extension of the classical B&B approach for MILP,

so we only discuss its bilevel-specific steps here.

Although not strictly required, and contrarily to the B&B proposal of Moore and Bard (1990),

branching on y variables is not forbidden in our B&B scheme. Correctness of this branching scheme

derives from the fact that, though bounds on the y variables may be modified by branching, the

original ones are used in the follower problem to compute Φ(x∗) at the current node, i.e., the

function that computes Φ(·) is completely blind with respect to branching.

Lines 2-15 of Algorithm 2 handle the “problematic” B&B nodes for which standard branching

on a fractional variable is not possible. Because of the boundedness assumption, this may only

happen because integrality requirements are met by the LP solution (x∗, y∗) at the given node.

If this solution is bilevel feasible, we just update the incumbent and fathom the node (Line 6).

Otherwise, we try and branch on an integer variable xj with j ∈ JF (Line 8) with the aim of

reducing its feasibility domain. If this is not possible because all xj with j ∈ JF have been already
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fixed by branching, we know that Φ(x) = Φ(x∗) is a constant for all bilevel-feasible solutions of the

current node, so at Line 11 we can impose dTy≤Φ(x∗) and solve the resulting HPR by a black-box

MILP solver—alternatively, one could just add the locally-valid cut dTy ≤ Φ(x∗) to the current

HPR, reoptimize it, and continue.

Theorem 7. (Fischetti et al. (2016b)) If the HPR feasible set is bounded and JF ⊆ Jx, Algorithm 2

correctly solves MIBLP in a finite number of iterations.

Proof Finiteness follows immediately from the boundedness assumption, which implies that all

integer variables have finite bounds. As each branching operation strictly reduces the domain of

an integer-constrained variable, a finite number of B&B nodes will therefore be generated—each

node requiring a finite number of operations to be processed. Correctness follows from the fact

that, because of requirement JF ⊆ Jx, Line 11 actually computes the best bilevel-feasible solution

(x̂, ŷ) for the current node, so the node can be pruned after the incumbent update. �
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working paper, École Polytechnique de Montréal.
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