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Sudden cardiac arrest is a significant public health concern. Successful treatment of cardiac arrest is extremely

time sensitive, and use of an automated external defibrillator (AED) where possible significantly increases the

probability of survival. Placement of AEDs in public locations can improve survival by enabling bystanders

to treat victims of cardiac arrest prior to the arrival of emergency medical responders, thus shortening the

time between collapse and treatment. However, since the exact locations of future cardiac arrests cannot be

known a priori, AEDs must be placed strategically in public locations to ensure their accessibility in the event

of an out-of-hospital cardiac arrest emergency. In this paper, we propose a data-driven optimization model

for deploying AEDs in public spaces while accounting for uncertainty in future cardiac arrest locations. Our

approach involves discretizing a continuous service area into a large set of scenarios, where the probability

of cardiac arrest at each location is itself uncertain. We model uncertainty in the spatial risk of cardiac

arrest using a polyhedral uncertainty set that we calibrate using historical cardiac arrest data. We propose

a solution technique based on row-and-column generation that exploits the structure of the uncertainty set,

allowing the algorithm to scale gracefully with the total number of scenarios. Using real cardiac arrest data

from the City of Toronto, we conduct an extensive numerical study on AED deployment public locations. We

find that hedging against cardiac arrest location uncertainty can produce AED deployments that outperform

a intuitive sample average approximation by 9 to 15%, and cuts the performance gap with respect to an

ex-post model by half. Our findings suggest that accounting for cardiac arrest location uncertainty can lead

to improved accessibility of AEDs during cardiac arrest emergencies and the potential for improved survival

outcomes.

Key words : robust optimization; row-and-column generation; healthcare operations; facility location.

1. Introduction

Sudden cardiac arrest is a leading cause of death in North America, and is responsible for over

400,000 deaths each year (Heart and Stroke Foundation 2013, Mozaffarian et al. 2016). Chances
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of survival have been estimated to decrease by as much as 10 percent with each minute of delay

in treatment (Larsen et al. 1993), making treatment of cardiac arrest extremely time sensitive.

Currently, the probability of survival from an out-of-hospital cardiac arrest is low, with only 5-10%

of out-of-hospital cardiac arrest victims surviving to hospital discharge (Weisfeldt et al. 2010).

Treatment of cardiac arrest involves cardiopulmonary resuscitation (CPR) and electrical shocks

– known as defibrillation – from an automated external defibrillator (AED). AEDs are portable

devices that can automatically assess heart rhythms and perform defibrillation if necessary, making

their use by non-professionals (lay responders) in a cardiac arrest emergency viable (Gundry et al.

1999). Treatment with a defibrillator following cardiac arrest is vital: the probability of survival

from cardiac arrest has been estimated to be as high as 40-70% if defibrillation is administered

within three minutes of the victim’s collapse (Valenzuela et al. 2000, Page et al. 2000, Caffrey et al.

2002). As a consequence, there is growing interest in the development of public access defibrillation

(PAD) programs, which are organized efforts to place defibrillators in public areas, such as malls,

coffee shops, restaurants, and subway stations, with the hopes of improving easy access to defib-

rillators in the event of a cardiac arrest emergency. With appropriate positioning, public AEDs

can enable lay responders to treat cardiac arrest victims while awaiting the arrival of professional

emergency medical responders. Indeed, PAD programs have been shown to decrease the time to

treatment and improve survival outcomes (PAD Trial Investigators 2004), and it is estimated that

their widespread implementation may save between 2,000 and 4,000 lives annually in the United

States (Hazinski et al. 2005). Thus, the strategic positioning of public AEDs has a crucial role to

play in strengthening the overall response to cardiac arrest.

Despite evidence that supports improved chances of survival with PAD programs, AEDs are used

infrequently. For example, only 8% of public location cardiac arrests in Toronto, Canada involve

the use of an AED by a bystander (Sun et al. 2016). Although the reasons for this low usage rate

are multi-faceted, it is clear that AEDs that are poorly positioned may be located too far from

the locations of cardiac arrest emergencies for them to be accessed and used by lay responders.

Recently, several mobile phone applications have been developed that aim to improve AED usage

during public location cardiac arrests. These applications notify volunteer lay responders of the

location of nearby AEDs so that they can be retrieved and used quickly (e.g. PulsePoint (2015)).

In order to be effective, these emerging technologies – and public access defibrillation in general

– rely critically on AEDs being placed strategically in public locations. The question of where to

place public access AEDs remains relatively open in the medical literature (Portner et al. 2004,

Folke et al. 2009).

In this paper, we present a data-driven optimization model for deploying AEDs in public loca-

tions. We consider a setting where cardiac arrests occur continuously over a bounded service area.
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Our model addresses a key challenge in the AED deployment problem, which is the uncertainty in

the locations of future cardiac arrests during the deployment of AEDs. Since the chances of sur-

vival from cardiac arrest diminish rapidly with each passing minute, it is critical that witnesses of

cardiac arrest are able to quickly retrieve and use nearby AEDs when needed. Due to this extreme

time sensitivity, protecting against cardiac arrest location uncertainty can help improve survival

outcomes by shortening the distance (and thus the response time) to the nearest AED during a

cardiac arrest emergency.

Although cardiac arrests are not uncommon within the general population, they are extremely

rare events for any particular building or geographic location. Thus, any estimate of the risk of

cardiac arrest at a specific location is likely to be subject to considerable uncertainty. To account for

this uncertainty while still leveraging historical data, we take a distributionally robust optimization

approach in which service is optimized for the worst-case spatial distribution of cardiac arrests.

Our approach involves discretizing the continuous service area into a large set of scenarios, where

the probability vector that describes the probability of the next cardiac arrest arriving at each

scenario is only known to reside within a polyhedral uncertainty set. We construct the uncertainty

set by representing the service area as the union of a set of uncertainty regions, where only the

aggregate probability of the next cardiac arrest arriving in each uncertainty region (i.e., group of

scenarios) is known. An important consequence of modeling uncertainty in this manner is that it

induces sparsity in the worst-case distribution (with respect to the number of scenarios), which we

show can be exploited through an efficient row-and-column algorithm to obtain optimal solutions

to the robust problem.

For a given AED deployment and a set of cardiac arrest locations, one can construct a distance

distribution which describes the histogram of distances between the cardiac arrests and the nearest

AED in the given deployment. Inspired by the use of quantile-based targets in emergency medical

services (Pell et al. 2001, Pons and Markovchick 2002), we use a conditional value-at-risk (CVaR)

objective function to directly optimize the tail of the worst-case distance distribution, which allows

us to mitigate the risk of unacceptably long distances between cardiac arrest locations and their

nearest AEDs. An additional benefit of a CVaR-based objective function is that it permits more

flexibility with respect to selecting a performance metric to optimize, e.g., we can minimize the

mean or tail of the worst-case distribution by using an appropriate parameterization of the model.

We summarize our contributions as follows.

1. We present a robust optimization model for AED deployment that accounts for uncertainty

in the spatial distribution of cardiac arrests. Our model permits cardiac arrests to arrive

anywhere within a continuous service area, which we approximate through a fine discretization.

We use historical cardiac arrest data to construct a distributional uncertainty set that consists
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of a set of generally-shaped uncertainty regions, where only the probability of the next cardiac

arrest event occurring within each uncertainty region is known. We also present an auxilliary

result that shows that our choice of uncertainty set and parameters unifies the canonical

p-median and p-center problems, as well as their robust analogues.

2. We present a bound on the approximation error induced by the discretization of the service

area, which depends on the granularity of the discretization and the configuration of the

uncertainty regions. The bound can be used to quantify the suboptimality of the solutions

produced by our discretized model with respect to the underlying continuous problem.

3. We propose a row-and-column generation algorithm for solving the robust AED deployment

problem. Our proposed algorithm operates by exploiting the structure of the uncertainty set,

which allows it to substantially outperform a standard Benders-based algorithm and a single-

stage MIP reformulation. Notably, our algorithm decouples the size of the master problem

from the number of scenarios used to discretize the service area, which allows us to efficiently

solve problems where the discretization is extremely fine. Combined with the bounds on the

discretization error, the row-and-column generation algorithm allows us to efficiently obtain

provably near-optimal solutions to the underlying continuous problem.

4. We present results from an extensive numerical study on the placement of public AEDs using

real cardiac arrest data from Toronto, Canada. Our results demonstrate that accounting for

uncertainty in cardiac arrest locations can decrease the distance between cardiac arrest vic-

tims and the nearest AED by 9-15%, under both typical and worst-case realizations of the

uncertainty.

2. Related Literature

Our paper primarily contributes to the medical literature on cardiac arrest and public access

defibrillation, and the operations research literature on facility location under uncertainty. We also

briefly review the connection between our model and the general literature on optimization under

uncertainty.

Public access defibrillation. Most of the literature in the medical community on AED location

has focused on identifying building types that have a high incidence of cardiac arrest, such as

shopping malls (Becker et al. 1998, Engdahl and Herlitz 2005, Brooks et al. 2013). However, relying

on building type alone to guide AED locations has several drawbacks. First, it does not account

for cardiac arrests that occur outdoors, since these events cannot be assigned to a building type.

Second, a high risk building type in one city may not be high risk in another. Lastly, identifying

high risk buildings does not address the question of how to optimally deploy a limited number of
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defibrillators. By contrast, our proposed approach is guided by historical cardiac arrest data and

is agnostic to building type, which makes it generalizable to any city.

There is a recent but limited body of work on optimization-based approaches to placing AEDs

in public locations (Siddiq et al. 2013, Chan et al. 2013, 2015, Sun et al. 2016). Our paper differs

from and extends this literature in a few substantive ways. First, previous approaches have solely

optimized over exact historical cardiac arrest locations. While these approaches serve as a good first

step toward improving public access defibrillation, they do not explicitly account for uncertainty

in future cardiac arrest locations. Our paper is the first to explicitly incorporate the uncertainty

in cardiac arrest locations into the optimization model. We find that accounting for cardiac arrest

location uncertainty leads to improved outcomes based on several performance metrics, compared

to a baseline method of optimizing over historical locations only. Second, existing AED models

focus on maximizing cardiac arrest coverage, which is the number of cardiac arrests that are within

some fixed distance (e.g., 100m) of an AED. While this approach can be effective for the median

cardiac arrest patient, it can have the adverse effect of neglecting cardiac arrest victims at the tail

of the distance distribution. By contrast, our modeling approach involves a risk-based objective

function (inspired by ambulance response time guidelines), which allows us to mitigate the risk of

unacceptably large distances between cardiac arrest victims and the nearest AED. Lastly, existing

work on AED location has focused on identifying general hotspots for cardiac arrest within a large

service area (e.g., Chan et al. (2015) identify historical clusters of cardiac arrests within a city).

We complement this work by taking a more tactical approach to the AED deployment problem,

by focusing on the precise placement of AEDs within a small service area consisting of several city

blocks.

Facility location under uncertainty. Facility location problems under uncertainty have

received considerable attention, particularly with respect to uncertainty in demand node weights

and edge lengths (Owen and Daskin 1998, Snyder 2006, Baron et al. 2011), and more recently in

the risk of service disruptions at the facilities (Lim et al. 2010, Cui et al. 2010, Shen et al. 2011).

Our model differs from the existing literature in that we consider the arrival of demand points

over a continuous, planar service area, rather than being restricted to a small set of locations. As

a result, we do not aggregate demand into a small set of known locations, which is a common

approach in facility location models related to emergency response (Cho et al. 2014, Erkut et al.

2008, Brotcorne et al. 2003) and in general (Francis et al. 2000). Previous work on demand location

uncertainty in facility location problems is limited and has generally focused on the placement

of a single facility (Cooper 1978, Drezner 1989, Averbakh and Bereg 2005). To the best of our

knowledge, this paper is the first to extend the literature on demand location uncertainty to the
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general case of siting multiple facilities, which we show can be done in a computationally tractable

manner.

Our paper is most closely related to work by Baron et al. (2011), who also present a robust

optimization model for facility location. In their paper, demand is again restricted to a set of

known locations, but the vector of demands over all locations is only known to live within a given

uncertainty set. In contrast, we model total demand as being known (i.e., normalized to 1), and

consider uncertainty in how this demand is distributed in space.

Our work is also related to facility interdiction problems, which focus on protecting against

potential disruptions at facilities. Facility interdiction models, which, like ours, take the form of

min-max optimization problems, were first considered by Church and Scaparra (2007) and later

by Scaparra and Church (2008), Liberatore et al. (2011) and Losada et al. (2012). With respect

to CVaR, the only other work to use it in a facility location context is the mean-excess model

presented in Chen et al. (2006), which focuses on demand level uncertainty.

Optimization under uncertainty. Our main formulation takes the form of a robust optimiza-

tion problem in which a large set of scenario probabilities are uncertain and only known to reside

within a given polyhedron. In the special case where there is no uncertainty (i.e. the uncertainty set

is a singleton representing the true distribution), our formulation simplifies to an extensive form

stochastic program with a large set of scenarios (Birge and Louveaux 2011). Other papers which

model uncertainty in probabilities using polyhedral uncertainty sets include Chan and Mǐsić (2013),

who consider radiation therapy with uncertainty in patient breathing patterns, and Farias et al.

(2013), who consider uncertainty in consumer choice probabilities. Ben-Tal et al. (2013) present a

general framework which uses φ-divergences to model distributional uncertainty sets, and obtain

polyhedral sets as a special case. For a review of the broader robust optimization literature, we

refer the reader to Ben-Tal et al. (2009) and Bertsimas et al. (2011).

Since the source of uncertainty in our model stems from an unknown discrete probability distri-

bution, our model can also be interpreted as an instance of distributionally robust optimization,

which refers to optimization problems in which only a partial description of a probability distri-

bution is available (Scarf et al. 1958, Dupačová 1980, Birge and Wets 1987, Shapiro and Kleywegt

2002, Delage and Ye 2010, Goh and Sim 2010, Xu et al. 2012). Recently, Wiesemann et al. (2014)

proposed a canonical framework for distributionally robust convex optimization, and show that it

subsumes well-known robust optimization models. A common approach to modeling distributional

uncertainty sets is to impose constraints on the moments of the distribution (e.g., Ghaoui et al.

(2003), Delage and Ye (2010)). Since we instead model distributional uncertainty using polyhedral

sets, from a technical perspective our model is more aligned with the literature on robust linear

optimization (e.g., Bertsimas and Sim (2004)).
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Due to our use of a CVaR objective function, our main formulation takes the form of a two-

stage (min-max-min) robust optimization model, where the inner minimization problem is used to

compute CVaR. Gabrel et al. (2014) and Zeng and Zhao (2013) also present two-stage models for

facility location problems, where the focus is on uncertainty in demand level rather than location.

Other settings in which two-stage robust optimization models have been considered include network

flows (Atamturk and Zhang 2007, Ordonez and Zhao 2007), power systems (Bertsimas et al. 2013,

Zhao and Zeng 2012), and military applications, including the defense of critical infrastructure

(Brown et al. 2006, Alderson et al. 2011) and network interdiction (Brown et al. 2009).

Lastly, our paper has some similarities with work by Carlsson and Delage (2013), in that they also

consider a distributionally robust optimization problem in a spatial setting where demand points

arrive in a continuous service area. Assuming the mean and covariance of the demand distribution

is known, they focus on a vehicle routing problem where the goal is to partition the service area into

a set of subregions such that the worst-case load for any vehicle across all subregions is minimized.

By comparison, we assume that a fixed set of subregions is given, and the only distributional

information available is the probability of an arrival in each subregion.

3. Model

Let A ⊂ R2 represent the continuous service area over which cardiac arrests arrive. Let I be an

index set for m candidate sites, and let y ∈ {0,1}m be a binary vector, where yi = 1 indicates the

presence of an AED in the ith candidate site. Let the function d :A×A→R+ measure the distance

between two locations in A. With a slight abuse of notation, let y(a) ∈ A represent the nearest

facility to a point a ∈ A, so that d(a,y(a)) is the distance between a point a ∈ A and its nearest

facility.

Let ξ be a random vector representing the location of the next cardiac arrest event within A,

with distribution µ. The distribution µ can be interpretted as describing the risk of a cardiac arrest

event occurring over A. Without loss of generality, we assume Pµ(ξ ∈ A) = 1. For a set of AED

locations y, d(ξ,y(ξ)) represents the distance between the next demand arrival and its nearest

facility. Since d(ξ,y(ξ)) is itself random due to ξ, we shall refer to the distribution of d(ξ,y(ξ))

as the distance distribution induced by y. We can think of the distribution of d(ξ,y(ξ)) as fully

describing the performance of the AED deployment.

As discussed in Section 1, we wish to place AEDs in a manner that mitigates the risk of large

distances between cardiac arrest victims and the nearest AED. Restated, our goal is to identify an

AED deployment y that controls the right-tail of the distance distribution, d(ξ,y(ξ). Since placing

an AED in every possible candidate site is prohibitively expensive, we assume throughout that
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up to P AEDs are available for deployment. If the distribution µ is known, then the problem of

minimizing the CVaR of the distance distribution is given by

minimize
y∈Y

CVaRµ[d(ξ,y(ξ))] (1)

where

Y =

{
y ∈ {0,1}m

∣∣∣∣∑
i∈I

yi = P

}
.

CVaR is closely related to the value-at-risk (VaR) measure, both of which have origins in the

finance literature (see Rockafellar and Uryasev (2000, 2002)). For a given loss distribution, β-VaR

represents the smallest value α such that the loss does not exceed α with probability 1− β. By

contrast, β-CVaR represents the expected loss conditional on the loss exceeding β-VaR.

In practice, the distribution of cardiac arrest locations is unlikely to be known precisely. Since –

for a given location – cardiac arrests are low probability events, optimizing AED locations solely

with respect to limited historical data (effectively a sample average approximation) may result in

a poor deployment of AEDs. Moreover, any estimate of µ from historical data is also likely to be

subject to uncertainty, especially if a limited amount of data is available.

To account for this uncertainty, we instead assume that the distribution µ is only known to

belong to an uncertainty set, U . A key question at this juncture is how to structure the set U . To

obtain a formulation that is both tractable and effective at capturing uncertainty in µ, we take

the following approach. Suppose the service area A can be divided into (possibly overlapping)

uncertainty regions A1,A2, . . . ,A|J |, where A = A1 ∪A2 ∪ . . . ∪A|J |. Suppose now that the only

available information about the distribution µ is the probability of the next cardiac arrest occuring

in each of the regions A1, . . . ,A|J |, which we denote by λ1, . . . , λ|J |. The worst-case CVaR can now

be minimized by solving the problem

min
y∈Y

max
µ∈U

CVaRµ[d(ξ,y(ξ))], (2)

where

U = {µ | Pµ(ξ ∈A1) = λ1, . . . ,Pµ(ξ ∈A|J |) = λ|J |},

is the distributional uncertainty set. Note that since the uncertainty regions are permitted to

overlap, the probabilities λ1, . . . , λ|J | may sum to a value greater than 1. We assume throughout

that the uncertainty regions are given. In practice, the design of the uncertainty regions Aj should

be guided by several considerations such as tractability, availability of historical data, and model

interpretability (we discuss these considerations in greater detail in Section 5).

There are several reasons behind our choice of the uncertainty set U . First, we posit that obtaining

estimates of the cardiac arrest risk at an aggregate (i.e., uncertainty region) level is less onerous
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than estimating the distribution µ directly, especially if data on historical cardiac arrest locations

is limited. Estimating the parameters λ1, . . . , λ|J | in lieu of µ itself allows us to partially capture

the underlying distribution while accounting for uncertainty. This approach is well-aligned with

the notion that aggregate forecasts tend to be more reliable than point forecasts when dealing

with uncertainty (Simchi-Levi et al. 2004, Sheffi 2005, Bertsimas and Thiele 2006, Nahmias and

Cheng 2009). In addition, our choice for the structure of U lends itself to a tractable mathematical

programming formulation of (2). The key to this tractability is the observation that for any y,

the worst-case distribution in U is supported on a relatively small number of locations in A. This

sparsity can in turn be exploited through a decomposition algorithm, which allows us to solve the

robust optimization problem efficiently (see Section 4). Our choice of U also provides a natural

generalization of classical facility location models, which have a rich and extensive history. In

particular, classical models typically assume demand is concentrated at n weighted demand points

(e.g., a weight of λj for demand point j = 1, . . . , n), which is recovered from our model by simply

shrinking each Aj to a singleton. Thus, a natural interpretation of our distributionally robust model

is as an extension of classical models where each demand point lives in a region Aj, wherein the true

demand location will be realized after facility siting. We discuss the connection between our model

and the classical location literature in more detail in Section EC.2 of the electronic companion. In

particular, we show that our model unifies the classical p-median and p-center problems, as well

as their robust analogues.

We note here that our choice of uncertainty set bears similarities to the uncertainty set dis-

cussed in the paper by Wiesemann et al. (2014), who present a canonical modeling approach for

distributionally robust optimization problems. The authors formulate the uncertainty set using

constraints on the probability that a random vector is realized within various convex sets. They

show that within their framework, simply checking the whether the distributional uncertainty set

is empty can be a strongly NP-hard problem, unless the constituent convex sets satisfy a particular

nesting condition. This hardness follows from the generality of the uncertainty set, which can be

shown to subsume integer programming, in the absence of the nesting condition. Our setting is

considerably more structured. By discretizing the service area into a large number of scenarios, we

obtain a representation of U that is polyhedral. As a consequence, the worst-case distribution can

be identified by solving a linear program.

In the remainder of this section, we show how our discretization approach allows us to formulate

the optimization problems (1) and (2) as tractable mathematical programs. We then propose a

bound on the error introduced by the discretization.
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3.1. Known cardiac arrest distribution

For ease of exposition, we first consider the case where µ is known. A standard approach for

formulating stochastic programs is to discretize the outcome space into a finite set of scenarios

and to assign a probability to each scenario. Since in our setting, ξ is the random location of the

next cardiac arrest event, each scenario (i.e., realization of ξ) has a one-to-one correspondence with

a particular geographic location in A. Accordingly, let Ξ ⊂ A be a discrete set of locations that

approximate the continuous service area A, so that Ξ is a discrete approximation of the outcome

space of ξ, and each element of Ξ corresponds to a distinct location in A. Letting K be an index

set for the scenarios in Ξ, we can write Ξ =
{
ξ1, ξ2, . . . , ξ|K|

}
to represent the set of all possible

realizations of ξ. Let uk be the probability that the next cardiac arrest will occur at location ξk.

Since in this discrete setting the possible cardiac arrest locations are restricted to Ξ, we have∑
k∈K uk = 1.

Let the parameter dik represent the distance between candidate site i and scenario ξk based on

the distance function d(·, ·). Let zik be an assignment variable that is equal to 1 if a cardiac arrest

realized at location ξk is assigned to an AED at location i. The feasible set of assignments is given

by

Z(y) =

{
zik ≥ 0, i∈ I, k ∈K

∣∣∣∣∑
i∈I

zik = 1, k ∈K; zik ≤ yi, i∈ I, k ∈K

}
.

Note that based on the discretization, we have d(ξk,y(ξk)) = minz∈Z(y)

∑
i∈I dikzik. Hence, for fixed

y, CVaRµ[d(ξ,y(ξ))] can be expressed as (Rockafellar and Uryasev 2000, 2002):

CVaRµ[d(ξ,y(ξ))]≈minimize
z,α

α+
1

(1−β)

∑
k∈K

uk max

{∑
i∈I

dikzik−α,0

}
. (3)

Strictly speaking, the quantity in (3) is known as β-CVaR−, which is an approximation of β-CVaR.

This is a commonly used approximation for the case of discrete distributions – see Rockafellar and

Uryasev (2000) for further details. The nominal optimization problem (1) for a known distribution

can now be written as

minimize
y,z,α

α+
1

(1−β)

∑
k∈K

uk max

{∑
i∈I

dikzik−α,0

}
(N-AED)

subject to z∈Z(y), y ∈Y,

α≥ 0,

which is a mixed-integer linear program after linearizing the maximization term in the objective.
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3.2. Distributionally robust model for unknown cardiac arrest distribution

We now extend formulation N-AED to accomodate uncertainty in the distribution µ. Given the

uncertainty regions A1, . . . ,A|J |, we construct scenario sets Ξ1,Ξ2, . . . ,Ξ|J |, where

Ξj = {ξk, k ∈K | ξk ∈Aj}

and
⋃n

j=1 Ξj = Ξ. Let Kj index the scenarios in Ξj, and let J index the set of uncertainty regions.

Since in the discretized setting we assume a cardiac arrest arriving in Aj can only be realized at

one of the locations in Ξj, we have Pµ(ξ ∈ Ξj) = Pµ(ξ ∈ Aj) = λj. The worst-case CVaR of the

distance distribution given a feasible y,z is then given by optimal value of the following max-min

problem:

max
u

min
α

α+
1

(1−β)

∑
k∈K

uk max

{∑
i∈I

dikzik−α,0

}
subject to

∑
k∈K

uk = 1, (4)∑
k∈Kj

uk = λj, j ∈J ,

uk ≥ 0, k ∈K,

α≥ 0.

For conciseness, define

U =

u∈R|K|+

∣∣∣∣ ∑
k∈K

uk = 1,
∑
k∈Kj

uk = λj, j ∈J

 .

Note that the set U may be empty if the parameters λ1, . . . , λ|J | are selected arbitrarily (e.g.,

consider two regions A1, A2 where A1∩A2 = ∅ but λ1 = λ2 = 1). However, if λ is estimated appro-

priately from historical cardiac arrest data, then nonemptiness of U is guaranteed (see Proposition

2). We discuss the design of uncertainty regions and the estimation of λ further in Section 5.2.

Note also that our discretization scheme allows us to model generally shaped uncertainty regions.

This flexibility allows physical obstacles to be incorporated into the uncertainty regions, such as

certain private buildings where public cardiac arrests cannot occur.

Minimizing the worst-case CVaR over y,z, we now arrive at the following two-stage robust

optimization problem:

min
y,z

max
u

min
α

α+
1

(1−β)

∑
k∈K

uk max

{∑
i∈I

dikzik−α,0

}
subject to u∈U,z∈Z(y),y ∈Y, (R-AED)

α≥ 0.
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With respect to the size of R-AED, in practice we expect K to be large (on the order of 103 or

larger), so that our discretization procedure reasonably approximates the underlying continuous

problem. For example, in our case study (Sections 5 and 6), we take |K| = 2,600. Similarly, the

number of candidate sites |I| in our case study is 120, and the number of uncertainty regions |J |

is 15.

It is worth discussing how formulation R-AED compares to other robust location models with

demand uncertainty. The model closest to ours is the one proposed by Baron et al. (2011), who

consider demand-level uncertainty at each of a fixed set of demand locations. Our model can also

be viewed as modeling demand-level uncertainty, although there are some key differences with

Baron et al. (2011). In formulation R-AED, the discrete uncertainty set U forces the aggregate

demand from the locations Kj to be λj, and normalizes the total demand over all locations in K

to be 1. This is in contrast to the approach of Baron et al. (2011), who model the uncertainty by

allowing the vector of demands over all locations to reside within a box or ellipsoidal uncertainty

set. This difference in how demand uncertainty is modeled turns out to be consequential. Based on

our choice of the (polyhedral) uncertainty set, the worst-case distribution in U will generally be

supported on a relatively small number of locations, compared to the total number of scenarios.

This means that, in the worst-case distribution, the demand uk in the vast majority of locations

in K will be 0. Moreover, increasing the size of the scenario K has no effect on the number of

locations that support the worst-case distribution in U. This sparsity and independence from the

total number of scenarios in K is exploited by our row-and-column generation algorithm to obtain

solutions to R-AED (Section 4). By contrast, in Baron et al. (2011), the uncertain demand at each

location typically has a non-zero lower bound, which leads to all locations having non-zero demand,

and thus precludes the application of our decomposition technique.

In the most general case, formulation R-AED can be interpreted as a facility location model

with a single demand point (i.e., the location of the “next” cardiac arrest) and stochastic edge

lengths, where dik gives the length of the edge between the demand point and candidate site i

under scenario k. Under this interpretation, λj represents the probability that one of the scenarios

in the set Kj occurs. Our model differs from the existing literature on stochastic edge lengths since

we assume that the vector of probabilities u is itself uncertain, and only known to reside within a

polyhedral uncertainty set.

Formulation R-AED can also be shown to unify the well known p-median and p-center location

problems, as well as their robust analogues under demand location uncertainty. We formalize this

connection in Section EC.2 of the electronic companion.
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(a) Assumption 2 satisfied. (b) Assumption 2 violated.

Figure 1 Examples for Assumption 2.

3.3. Discretization error bounds

The model R-AED is an approximation in the sense that it restricts the continuous demand distri-

bution to be supported on a discrete set. As a result, the “true” worst-case CVaR in the continuous

setting may be underestimated by the optimal value of formulation R-AED. In this section, we

present bounds on this underestimation, which we refer to as the discretization error. The dis-

cretization error can be interpreted as the optimality gap associated with an optimal solution of

formulation R-AED with respect to the underlying continuous problem (2).

To define and prove the discretization error bounds, we first construct a partition of the service

area A. The partitioning is required for technical purposes only, and can be applied to any general

setting with overlapping uncertainty regions. Note that any configuration of the uncertainty regions

Aj implies a partitioning of the full service area A into potentially more than n “subregions”. For

example, suppose A=A1∪A2, where A1∩A2 6= ∅. Then we consider three disjoint subregions: A′1 =

A1 \A2, A′2 =A2 \A1, and A′3 =A1 ∩A2. In general, let A′1, . . . ,A′|R| represent these subregions,

and let Ξ′1, . . . ,Ξ
′
|R| be the discrete counterparts to the A′r. Let R be the index set for the subregions

and let Kr index the scenarios in subregion r. Since by definition the A′r form a partition of A, it

follows that Ξ′r ∩Ξ′r′ = ∅ for all r 6= r′. Note that in the most general case, we may have |R|= 2|J |,

if every uncertainty region partially overlaps with every other uncertainty region. However, this

extreme case is unlikely to arise naturally in the context of AED deployment and other facility

location problems. Note also that if there is no overlap among the Aj, then |R|= |J |. To construct

the bound, we first require the following assumptions.

Assumption 1. Ξ′r = A′r ∩ L for all r ∈ R, where L is a square lattice in the plane with a grid

spacing of length σ.

Assumption 2. The shape of the subregion A′r is such that for any point a∈A′r \Ξ′r, at least one

of the four points in L that define the smallest square containing a is inside A′r.
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Assumption 1 states that the uncertainty regions are discretized using a square lattice, which

simplifies the analysis considerably without loss of generality. Assumption 2 is meant to exclude

pathologically shaped uncertainty regions relative to the size of the discretization (see Figure 1),

and can be satisfied with a sufficiently granular discretization of the uncertainty region. We now

define a parameter `(σ) with the following property:

`(σ)≥max
a∈A′r

min
ξ∈Ξ′r

d(a, ξ), for all r ∈R. (5)

Here, `(σ) is an upper bound on the maximum distance between any point in A′r and its closest

scenario location in Ξ′r. To make the expression in (5) concrete, we provide some examples of the

parameter `(σ) in Remark 1, depending on the choice of the distance metric.

Remark 1. Let Assumptions 1 and 2 hold. Let ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ be the Euclidean, rectilinear

and maximum metric on R2.

1. If d(a, b) = ‖a− b‖1, then `(σ) = 2σ.

2. If d(a, b) = ‖a− b‖2, then `(σ) =
√

2σ.

3. If d(a, b) = ‖a− b‖∞, then `(σ) = σ.

Note that setting `(σ) = 2σ is also valid for any distance function based on a p-norm with p≥ 1,

since ‖ · ‖p is non-increasing in p. Let ZD be the optimal value of formulation R-AED, ZC be the

optimal value of the associated continuous problem (2), and

∆ :=
ZC −ZD
ZC

be the discretization error. We now present the main bound.

Theorem 1. For any ε > 0, if `(σ)≤ ε(1−β)ZD, then ∆≤ ε.

Theorem 1 characterizes how finely the uncertainty regions must be discretized to achieve a certain

discretization error. Since `(σ) vanishes with σ, the discretization error can be made arbitrarily

small by selecting an appropriate value for σ. Thus, we can obtain near-optimal solutions to

the underlying continuous uncertainty problem by solving formulation R-AED with a sufficiently

fine discretization (and thus a sufficiently large number of scenarios). We can also re-arrange the

expression in Theorem 1 to calculate an upper bound on ZC as a function of σ and ZD. The upper

bound Z̄C is constructed as follows:

ZC ≤ Z̄C =ZD(1 + ε), where ε=
`(σ)

ZD(1−β)
. (6)

In the next section, we outline a decomposition technique which enables us to compute a tight

bound Z̄C by solving instances of R-AED with an extremely large number of scenarios.
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4. Row-and-column generation algorithm

It is well known that two-stage robust optimization problems with the structure of (8) can be solved

using Benders-based decomposition algorithms (see, for example, Brown et al. (2006) Brown et al.

(2009) Alderson et al. (2011)). These approaches decompose the formulation into a master problem,

which is a relaxation of the original problem, and a subproblem, which generates constraints to be

added to the master problem. The master and subproblems are solved iteratively until convergence

to a provably optimal solution. However, when applied to (8), the number of constraints and

decision variables of the (integer) master problem using these approaches depends on the number

of scenarios |K|. As a consequence, these decomposition approaches can fail to be tractable if |K|

is even moderately sized. We overcome this issue by proposing an algorithm that decouples the

size of the master problem from the number of scenarios. A key consequence of this decoupling

is that the tractability of the resulting formulation no longer depends on the granularity of the

discretization, which, when combined with the bounds in Section 3.3, allows us to approximate

the continuous problem using an extremely large number of scenarios. A similar row-and-column

generation algorithm for solving min-max optimization problems was independently proposed by

Zeng and Zhao (2013). A key difference is that unlike the model in Zeng and Zhao (2013), which

has an integer subproblem, our subproblem is a linear program.

We compare our proposed method with two other solution approaches that are natural candidates

for solving formulation R-AED – a Benders-based row generation algorithm and a mixed integer

programming (MIP) reformulation of R-AED.

4.1. Algorithm overview

We now provide an overview of the row-and-column generation algorithm. First, observe that the

inner minimization problem of (4) is a linear program. Letting p denote the dual vector for this

linear program, the dual polyhedron – which depends on the distribution u – can be written as

P(u) =

{
pk ≥ 0, k ∈K

∣∣∣∣∣ ∑
k∈K

pk ≤ 1, pk ≤ uk/(1−β), k ∈K

}
. (7)

The optimization problem (4) can now be reformulated as

min
y,z

max
u,p

∑
i∈I

∑
k∈K

dikzikpk

subject to p∈P(u),u∈U, (8)

z∈Z(y),y ∈Y.
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By introducing the auxilliary variable t, we obtain the following epigraph representation of (8):

minimize
y,z,t

t (9a)

subject to t≥
∑
i∈I

∑
k∈K

dikzikpk, p∈P(u),u∈U, (9b)

z∈Z(y),y ∈Y. (9c)

Note that formulation (9) is a semi-infinite optimization problem, since the constraint (9b) is

enforced over all possible p. To obtain a feasible solution to (9), we may instead solve a relax-

ation where the constraint (9b) is enforced over a finite subset of P. Let this subset be P|S| =

{p1, . . . ,p|S|}, and let S be an index set for the vectors in P|S|. To obtain a relaxation of (9b) with

a finite number of constraints, we replace the constraint set represented by (9b) with the following

set of |S| constraints:

t≥
∑
i∈I

∑
k∈K

dikzikp
s
k, s∈ S. (10)

Although replacing the constraint (9b) with (10) in formulation (9) produces a mixed-integer linear

program, the resulting formulation may still be intractably large, due to the dependence of the

number of constraints and variables on the size of the scenario set, K. Consider now the set

K+ =

{
k ∈K

∣∣∣∣∣ ∑
s∈S

psk > 0

}
, (11)

and note that constraint (10) can be written as

t≥
∑
i∈I

∑
k∈K+

dikzikp
s
k +
∑
i∈I

∑
k∈K\K+

dikzikp
s
k, s∈ S. (12)

Since by definition we have
∑

k∈K\K+
psk = 0 for all s∈ S, we may drop the second term on the right

hand side of (10), which further simplifies the constraint to

t≥
∑
i∈I

∑
k∈K+

dikzikp
s
k, s∈ S. (13)

Observe that if k /∈K+, then the value of the corresponding assignment variable zik has no impact

on the objective function, since its coefficient is 0 for all s ∈ S. We can therefore remove all zik

variables and the constraints zik ≤ yi and zik ≥ 0, for k ∈ K \ K+. This leads to the following

relaxation of (9):

minimize
y,z,t

t

subject to t≥
∑
i∈I

∑
k∈K+

dikzikp
s
k, s∈ S,
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i∈I

yi = P,∑
i∈I

zik = 1, k ∈K+, (R-AED-MP)

zik ≤ yi, i∈ I, k ∈K+,

zik ≥ 0, i∈ I, k ∈K+,

yi ∈ {0,1}, i∈ I.

The relaxed problem R-AED-MP yields a lower bound on the optimal value of the original problem

(8). To tighten the relaxation, we can add a new vector p to P|S| and re-solve R-AED-MP, with

the aim of obtaining an improved lower bound. Let ȳ be a deployment obtained at a solution

of R-AED-MP. We then construct a feasible assignment vector z̄ that assigns each scenario to its

nearest AED as follows. Let i∗(k) = arg min{i∈I|ȳi=1}{dik}, which represents the closest AED to

location k, given the deployment ȳ. Then for each k ∈K, set

z̄i∗(k),k = 1 and z̄ik = 0 for all i 6= i∗(k). (14)

It is straightforward to show that the z̄ given by (14) is also optimal for R-AED-MP. To identify a

new p, we then solve the following subproblem, where ȳ, t̄ is obtained as the incumbent solution

to R-AED-MP and z̄ is given by (14):

maximize
u,p

∑
i∈I

∑
k∈K

dikz̄ikpk (R-AED-SP)

subject to p∈P(u),u∈U.

To understand why the construction of z̄ using (14) is necessary, note that since R-AED-MP min-

imizes CVaR, the optimal assignment variables z obtained at a solution to R-AED-MP may not

assign every location k to its nearest AED, since only the locations in the tail of the distance distri-

bution affect the optimal objective function value. As a consequence, solving R-AED-SP using the z̄

obtained directly from R-AED-MP may produce a solution to R-AED-SP that does not correspond

to a worst-case distribution (with respect to the incumbent deployment y). While in theory, the

algorithm converges in finite time without reconstructing z̄ according to (14), in practice we found

that including this additional assignment step results in fewer iterations and a significant speed

improvement.

Observe that formulation R-AED-SP is a linear program. Now let u∗,p∗ be an optimal solution to

R-AED-SP, and let ZSP be the optimal value. If t̄≥ZSP, then it follows that t̄≥
∑

i∈I
∑

k∈K dikz̄ikpk

for all p∈P(u),u∈U, and thus the incumbent solution is certifiably optimal to the original prob-

lem. If t̄ < ZSP, then we introduce the variables zik, k ∈K∗ to the master problem, as well as the
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constraints zik ≥ 0, zik ≤ yi, k ∈K∗ and t≥
∑

i∈I
∑

k∈K dikz̄ikp
∗
k, where K∗ = {k ∈K | p∗k > 0}. We

then solve R-AED-MP again to obtain a new solution ȳ, z̄, t, which begins a new iteration of the

algorithm. Since there are a finite (but possibly large) number of rows and columns that can be

generated, convergence after a finite number of iterations is guaranteed. The algorithm is summa-

rized in Algorithm 1. The intuition behind the algorithm is as follows. At a given iteration, the

Algorithm 1 Row-and-column generation

Initialize Set S = {0}, s= 1, and ε > 0. Let K+ = ∅.

1. Solve R-AED-MP to obtain solution (ȳ, t̄) and objective value ZMP.

2. Construct z̄ according to (14).

2. Solve R-AED-SP with fixed z̄ to obtain p̄s and objective value ZSP.

3. If ZSP−ZMP
ZSP

≤ ε, terminate and return optimal deployment ȳ and worst-case CVaR t̄.

else

i) Construct index set

K∗ = {k ∈K\K+ | p̄sk > 0}

and set K+←K+ ∪K∗.

ii) Add variables zik, i∈ I, k ∈K∗ to master problem R-AED-MP.

iii) Add constraints

t≥
∑
i∈I

∑
k∈K+

dikzikp̄
s
k,

zkij ≤ yi, i∈ I, k ∈K∗,∑
i∈I

zkij = 1, k ∈K∗,

to master problem R-AED-MP.

iv) Set S ←S ∪{s}. Increment s and return to step 1.

master problem only includes the subset of scenarios that are assigned a non-zero probability mass

in the worst case distribution for at least one of the previous iterations. Based on the incumbent

solution, the subproblem then identifies the worst-case distribution using the entire scenario set.

The scenarios which support the worst-case distribution (obtained by solving the subproblem)

are then added to the master problem on an as needed basis, along with the relevant assignment

variables and related constraints. Due to this decomposition, at any iteration of the algorithm the

size of the master problem R-AED-MP depends only on the number of candidate sites, |I|, and

the size of the restricted scenario set, K+, which may be substantially smaller than K. In fact,
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due to the structure of the uncertainty set U, the size of the restricted scenario set K+ can be

shown to depend only on the configuration of the uncertainty regions and the number of iterations

completed by the algorithm, and is otherwise independent of the total number of scenarios in K.

This result is formalized in the following proposition.

Proposition 1. Assume that for any k and k′ such that k 6= k′, we have dik 6= dik′ for all i ∈ I.

Then the number of constraints and variables in the master problem R-AED-MP in the sth iteration

of Algorithm 1 is O(|I|(|J |+ 1)s).

The assumption that k 6= k′ implies dik 6= dik′ for all i∈ I is mild, and ensures that for any candidate

site i, there are no exact ties for the closest location in K (indeed, this assumption can be relaxed

if we instead assume that the solution to R-AED-SP is always a basic feasible solution, which is the

case if the simplex method is used to solve R-AED-SP). It is worth noting that the size of the master

problem R-AED-MP may still depend indirectly on K if the total number of scenarios is small (i.e.,

if |R|s > |K|). Additionally, Proposition 1 only guarantees that the size of the master problem in

any given iteration is independent of K, but does not guarantee that the total number of iterations

required will be independent of K. However, our numerical results indicate that increasing the

number of scenarios generally has a minimal impact on the performance of the row-and-column

generation algorithm, because the worst-case distribution is generally sparse with respect to K.

Note that unlike the master problem, the subproblem R-AED-SP still depends on the size of K.

However, the subproblem is a linear program with |K| decision variables, and we found that it can

be solved efficiently for practically sized problems, even if the set K is quite large.

For illustrative purposes, in Section EC.4 of the electronic companion we present a plot which

depicts the total number of scenarios and the associated optimality gap for an example instance

of the row-and-column generation algorithm.

4.2. Benchmark solution approaches

We compare the performance of the row-and-column generation algorithm to two benchmark

approaches: a mixed-integer linear programming reformulation of (2) and a standard row genera-

tion algorithm for min-max problems.

4.2.1. Mixed-integer linear programming reformulation By formulating the dual prob-

lem of the inner maximization problem in (8), we obtain the following mixed-integer linear program:

minimize
y,z,w,η,α,γ

η+α+
∑
j∈J

λjwj

subject to α+ γk ≥
∑
i∈I

∑
k∈K

dikzik, k ∈K,
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η− γk
1−β

+
∑

{j|k∈Kj}

wj ≥ 0, k ∈K, (15)

z∈Z(y), y ∈Y,

γk ≥ 0, k ∈K,

α≥ 0.

If K is relatively small, then the MIP formulation (15) can be solved using standard integer pro-

gramming solvers. However, this formulation can become computationally intractable if a large

number of scenarios are used to discretize the uncertainty regions.

4.2.2. Row generation A well known approach to solving min-max problems like (2) is to

use a Benders-based row generation algorithm (Brown et al. 2006, 2009, Alderson et al. 2011).

The row generation algorithm is conceptually similar to our row-and-column generation method

outlined in Section 4.1, in that it also decomposes the problem into a master and subproblem which

provide lower and upper bounds, respectively. However, a key difference with our approach is that

the row generation algorithm carries the full set of columns (i.e., all scenarios in K) in the master

problem in each iteration. The number of variables and constraints in the master problem of the

row generation algorithm in the sth iteration is thus O(|I||K|) instead of O(|I||R|s). As a result,

the row generation algorithm may have poor performance if |K| is large.

4.3. Comparison of solution approaches

To demonstrate the performance of the row-and-column generation algorithm, we generated and

solved several random problem instances using rectangular uncertainty regions and a square lat-

tice for the discretization. We use Euclidean distances for all parameters. We solve each of these

instances using the three solution methods discussed above, and focus on the impact that the

number of scenarios has on the total solution time. All problems were implemented in MATLAB

R2011a using YALMIP as the modeling language and CPLEX 12.1 with default parameter settings

as the solver, on a 2.4 GHz quad-core CPU.

In Table 1, we report numerical results on how the solution times of the MIP formulation (MIP),

row generation algorithm (Row) and row-and-column generation algorithm (R+C) are impacted

by the number of scenarios. We report results only for the cases where β = 0 and β = 0.9, and note

that similar trends were observed for other values of β. We also compute the error bound ε and the

associated upper bound on the continuous problem, Z̄C , using (6). Note that the error bounds for

the β = 0.9 cases are larger than the β = 0 case, which is expected based on the bound expression

given in (6).
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Unlike the MIP and row generation algorithm, the performance of the row-and-column generation

algorithm scales extremely well with the number of scenarios, and in many cases outperforms the

benchmark approaches by one to two orders of magnitude with respect to the solution time. Note

that the performance improvement is most pronounced at larger values of |K|, due to the poor

scalability of the MIP and row generation approaches. These results suggest that, when using

the row-and-column generation algorithm, if a problem can be solved to optimality using a small

number of scenarios, then the problem tends to remain tractable when using a fine discretization

and an extremely large number of scenarios (e.g., just under 100,000 scenarios are used in the final

row of Table 1).
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Table 1 Computational results showing effect of number of scenarios (|K|) on error bound and solution times (in CPU seconds) of MIP,

row generation and row-and-column generation algorithm. Asterisk (*) indicates instance did not solve in 10,000 CPU seconds.

β = 0 β = 0.9

|I| |J | P |K| σ ZD ε Z̄C MIP Row R+C ZD ε Z̄C MIP Row R+C

25 5 2 456 5.0 124.6 5.7% 131.7 1 2 2 180.0 39.3% 250.7 12 35 44
25 5 2 1,864 2.5 126.0 2.8% 129.5 2 3 2 182.4 19.4% 217.8 56 45 42
25 5 2 7,446 1.3 126.4 1.4% 128.2 9 9 3 182.8 9.7% 200.4 107 135 49
25 5 2 29,621 0.6 126.9 0.7% 127.8 93 311 8 183.4 4.8% 192.2 *10,000 5,359 64

50 10 5 886 5.0 105.2 6.7% 112.3 6 12 4 178.0 39.7% 248.7 37 342 230
50 10 5 3,563 2.5 107.4 3.3% 110.9 94 104 13 181.8 19.4% 217.2 390 1,257 290
50 10 5 14,242 1.3 108.3 1.6% 110.0 *10,000 *10,000 33 183.1 9.7% 200.8 *10,000 *10,000 414
50 10 5 57,016 0.6 108.5 0.8% 109.4 *10,000 *10,000 49 181.3 4.9% 190.2 *10,000 *10,000 603

75 15 10 1,263 5.0 83.6 8.5% 90.7 23 1,875 174 139.3 50.8% 210.0 142 293 340
75 15 10 5,112 2.5 85.1 4.2% 88.6 2,415 *10,000 523 138.9 25.5% 174.2 2,088 9,799 614
75 15 10 20,470 1.3 85.4 2.1% 87.1 *10,000 *10,000 614 139.1 12.7% 156.8 *10,000 *10,000 1,534
75 15 10 81,940 0.6 85.8 1.0% 86.7 *10,000 *10,000 778 140.2 6.3% 149.0 *10,000 *10,000 1,610

100 20 20 1,511 5.0 60.0 11.8% 67.0 30 228 53 84.6 83.6% 155.3 9 174 87
100 20 20 6,158 2.5 61.4 5.8% 64.9 2,617 2,579 485 84.7 41.7% 120.1 129 454 172
100 20 20 24,743 1.3 62.1 2.8% 63.9 *10,000 *10,000 585 85.7 20.6% 103.4 *10,000 4,255 2,175
100 20 20 99,032 0.6 62.7 1.4% 63.5 *10,000 *10,000 1,739 73.0 12.1% 81.8 *10,000 *10,000 3,252
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5. AED Deployment Study: Setup

In this section, we discuss the setup of our numerical study on the placement of AEDs in public

locations, including an overview of the data used, calibration of the uncertainty set, benchmark

models, and a simulation-based validation method to evaluate the performance of the AED deploy-

ments produced by each model.

5.1. Data

Historical cardiac arrests. We consider the AED location problem in a densely populated region

in the downtown core of Toronto, Canada, which roughly corresponds to the city’s financial district.

We obtained a cardiac arrest dataset through the Resuscitation Outcomes Consortium (ROC),

which is a collaborative network of research institutions across the United States and Canada that

collects cardiac arrest data for the purpose of improving clinical practice (Morrison et al. 2008).

The ROC dataset contains the geographic coordinates of all cardiac arrests in the City of Toronto

from January 2006 to April 2013. During this period, a total of 43 cardiac arrests occurred in

public locations within the study region. These cardiac arrest locations are used to estimate the

λj parameters in formulation R-AED.

Candidate sites. We constructed a set of candidate sites for AED placement by randomly

selecting 120 public spaces (restaurants, cafes, shops, etc.) within the downtown region we consider.

The addresses of these public spaces were obtained through the City of Toronto Employment

Survey (City of Toronto 2010), which collects data on all Toronto businesses on an annual basis.

We use publicly accessible buildings such as restaurants and cafes since they represent the type

of location where one might reasonably expect an AED to be accessible to the public through a

public access defibrillation program. Figure 2 provides a visualization of the study region, historical

cardiac arrests and the candidate sites for AED placement.

Distance parameters. To calculate the distance parameters, we converted the addresses of the

candidate sites into Universal Transverse Mercator (UTM) coordinates. Coordinates in the UTM

system are given in units of meters (unlike latitude and longitude coordinates), which allows for

straightforward calculation of distances within the study region. We constructed the scenario set

K by intersecting the study region with a square grid with a spacing of 20 meters, which resulted

in approximately 2,600 scenarios. We generated the dik parameters by calculating the Euclidean

distance between each candidate site and scenario pair. Although the Euclidean distance is only an

approximation of the one-way distance a lay responder would have to travel to retrieve an AED,

previous studies have shown Euclidean distance to be highly correlated with actual road distance,

especially in urban areas where the road network is relatively dense (Bach 1981, Jones et al. 2010,
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Boscoe et al. 2012). Moreover, the use of Euclidean distances is particularly justified in the context

of AED placement, since the typical distance between a cardiac arrest and the nearest AED is low

enough that lay responders can often take shortcuts that do not necessarily appear on the road

network (e.g., through buildings, unmarked pedestrian paths, or parking lots).

As a robustness check, we repeat a subset of experiments using rectilinear distances and actual

walking distances. The walking distances are obtained using the Google Maps Distance Matrix

Application Programming Interface (API), implemented in Python. The Distance Matrix API is

a query tool that accepts pairs of locations as input (as latitude-longitude coordinates or street

addresses) and returns the distance between the two locations for a given mode of transportation

(e.g., walking or driving) (Google 2016).

Figure 2 Locations of historical cardiac arrests and candidate sites for AED placement.

5.2. Uncertainty regions and estimation of λj

One of the key modeling decisions in our approach is to construct a set of uncertainty regions from

the full service area. One simple approach is to partition the service area into a set of identically

shaped cells and allow each cell to represent an uncertainty region. We propose that in the context

of public access defibrillation, it may be most intuitive from a policy making perspective to use pre-

existing geographic divisions within the city, such as city blocks, postal/zip codes, or census tracts.

Further, in settings where historical cardiac arrest data is unavailable, one may have to rely on

alternate demographic information that are only recorded in aggregate as a proxy for cardiac arrest
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incidence. For example, the City of Toronto collects socio-economic data at the neighbourhood

level for planning purposes (City of Toronto 2016), which naturally implies a set of uncertainty

regions.

Once a set of uncertainty regions is selected, the corresponding probabilities λ1, . . . , λ|J | must be

estimated from historical cardiac arrest data. We propose the following approach, which produces

consistent (i.e., asymptotically optimal) estimates of the uncertainty region probabilities.

Proposition 2. Let a1, . . . , an ∈ A be the locations of n cardiac arrest events, and assume that

a1, . . . , an are drawn i.i.d. from the distribution µ. For each j ∈J , let

λ̂nj =
1

n

n∑
c=1

1{ac ∈Aj}. (16)

Then |λ̂nj −λj| −→ 0 as n−→∞ almost surely. Further, if the sets Ξ′1, . . . ,Ξ
′
|R| are all non-empty,

then the uncertainty set U constructed from λ̂nj , j ∈J is guaranteed to be non-empty.

The estimator in Proposition 2 is simply the fraction of cardiac arrest events that have occurred in

each uncertainty region. Since the uncertainty regions are fixed, the convergence result in Propo-

sition 2 follows directly from the strong law of large numbers (to be precise, note that the arrival

of cardiac arrests in each region can, with some modification, be modeled as a multinomial trials

process, which has a well-known maximum likelihood estimator (Bickel and Doksum 2015)). The

assumption that the cardiac arrest locations are drawn i.i.d. from a common distribution is a stan-

dard statistical assumption, and can be interpreted as requiring the probability of a cardiac arrest

event in different parts of the city to be stable over time. Fortunately, cardiac arrests in Toronto

have been observed to exhibit this temporal stability (Chan et al. 2015).

Note also that these properties hold for any chosen configuration of the uncertainty regions. In

other words, once the uncertainty regions are selected, the estimate λ̂n is guaranteed to converge to

the true arrival probabilities. This convergence is generally known as statistical consistency, which

is considered a fundamental requirement for an estimator (Bickel and Doksum 2015).

In addition to estimating the arrival probabilities, we can also use the Wilson score method as

a heuristic to estimate an associated 95% confidence interval for each arrival probability (Wilson

1927). These confidence intervals can also be used to guide the design of the uncertainty regions.

For example, we might require that the uncertainty regions be selected such that estimation error

of each of the arrival probabilities λ1, . . . , λ|J | is no greater than some threshold δ with 95% confi-

dence. We emphasize, however, that the Wilson score method is only a heuristic for estimating the

confidence intervals, meaning the estimation error is not always guaranteed to be less than δ with

95% confidence. As an alternative, we also note that the problem of designing uncertainty regions

based on data is closely related to the well-studied problem in statistics of optimally selecting
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histogram bin widths (e.g., Wand (1997)), although we do not formally explore that connection in

this paper.

The service area in our numerical study spans only two census tracts and three postal codes

zones. Since using too few uncertainty regions may fail to capture important aspects of the cardiac

arrest distribution, we instead identified uncertainty regions by using the road network to divide

the study area into 15 approximately equal-area uncertainty regions. The estimates of the arrival

probabilities for the 15 uncertainty regions obtained using this approach are reported in Section

EC.5 of the electronic companion, along with their approximate 95% confidence intervals, calculated

using the Wilson score method (Wilson 1927).

5.3. Benchmarks: Sample average approximation and ex-post models

We compare the performance of the AED deployment produced by the robust formulation R-AED

with two benchmark models. The first benchmark is a nominal model, which optimizes only over

historical cardiac arrest locations without taking uncertainty into account. The nominal model

represents the the sample average approximation approach to the AED problem, since it optimizes

directly with respect to a historical sample. The nominal model is given by formulation N-AED,

where the scenarios {ξ1, . . . , ξ|K|} are given by the historical cardiac arrest locations, and uk = 1/|K|

for all k ∈ K. The second benchmark is an ex-post model, which optimizes directly over a set

of simulated cardiac arrests, and thus has perfect foresight. The ex-post model is also given by

formulation N-AED, except instead of optimizing over historical cardiac arrest locations, the ex-post

model optimizes the AED deployment with respect to a simulated set of cardiac arrest locations,

which we also evaluate the performace of the nominal and robust models against. The ex-post

model can be thus interpreted as the “best possible” model we could solve if the locations of all

future cardiac arrests were known a priori. In all instances, we set β = 0.9 and the number of AEDs

(P ) to 30. All instances for all models were implemented using MATLAB R2011a via YALMIP,

and solved using CPLEX 12.1 with default parameter settings on a single node of a computing

cluster with a 2.9 GHz quad-core CPU.

5.4. Model validation

To assess the performance of the AED deployments produced by R-AED and N-AED, we used

simulation to generate hypothetical cardiac arrest events, and computed various performance met-

rics associated with the distance distribution induced by each AED deployment and the set of

simulated cardiac arrests. We then solve the ex-post model based on the simulated cardiac arrest

locations, to gain insight into the best-possible deployment, for the given model parameterization

and objective function.
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To construct the validation sets, we first used kernel density estimation to estimate the underlying

demand density, which is a well known semi-parametric technique for estimating a probability

density function from a finite sample (Sheather and Jones 1991, Terrell and Scott 1992). Intuitively,

kernel density involves centering a continuous density function (the kernel) at each data point,

and then aggregating and normalizing all kernel functions to obtain a single probability density

function. Kernel density estimation requires the specification of a kernel function as well as a

parameter h, known as the bandwidth, which is typically proportional to the standard deviation

of the kernel distribution. In short, the bandwidth represents the degree to which the data set is

smoothed to obtain the estimated density, with a higher bandwidth resulting in more aggressive

smoothing. We note that using kernel density estimation to estimate the distribution of future

cardiac arrests is supported by the fact that cardiac arrest locations in Toronto have been shown

to exhibit temporal stability (Chan et al. 2015).

To assess model performance under different values of the bandwidth parameter h, we con-

structed four different validation sets. Specifically, we used Gaussian kernels with h= 10, 50, 100

and 150 meters to estimate four demand densities, each of which is used to simulate a separate

validation set. The case where h = 10 can be interpretted as a “low uncertainty” environment,

since the low bandwidth causes a majority of simulated events to fall near a historical cardiac

arrest location. Conversely, the case where h = 150 can be interpretted as a “high uncertainty”

environment, since the larger bandwidth leads to some cardiac arrests being simulated far from any

historical location. By varying the bandwidth parameter from 10 to 150, we are able to evaluate

the performance of the AED deployment under a variety of possible demand distributions. For each

of the four estimated densities, we simulated a total of 50 validation sets containing 100 cardiac

arrests each. We do not impose any constraints on where cardiac arrests may be simulated (i.e., a

small fraction may occur beyond the service area). Figure 3 illustrates the effect of the bandwidth

on the estimated demand density. Note that the distribution of the simulated cardiac arrests is

notably more uniform for a bandwidth of 100 meters compared to the distribution for a bandwidth

of 50 meters, due to increased smoothing.
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(a) h = 50m. (b) h = 100m.

Figure 3 Locations of 1,000 simulated cardiac arrests based on kernel density estimation using bandwidths of

50m and 100m.

6. AED Deployment Study: Results

The numerical results are organized as follows. In Section 6.1, we compute the average value

(over 50 validation sets) of four performance metrics: the mean, VaR, CVaR and maximum of the

distance distribution induced by each AED deployment. We also report worst-case performance

of each deployment, which is given by the maximum value of each performance metric over 50

validation sets. In Section 6.2, we evaluate the models using a different but related measure of

AED deployment performance, known as cardiac arrest coverage. Lastly, in Section 6.3 we do a

robustness check by presenting results under alternate distance measures, namely, actual walking

distances obtained via Google Maps and the rectilinear distance metric.

6.1. Performance metrics

Figure 4 shows the mean, VaR, CVaR and maximum value of the distance distribution for the

nominal, robust and ex-post models (note that the y-axis differs between the plots). The per-

formance metrics are computed for each of the four demand distributions (i.e., four bandwidth

parameters), and are averaged over 50 validation sets. Since Figure 4 shows the average value of

each performance metric, we can interpret it as depicting the performance of each model under

“typical” cardiac arrest locations.

In the cases where h= 10, the AED deployments produced by all three models perform similarly.

This is not a surprising observation, since in the h= 10 case, which represents a low uncertainty

environment, the vast majority of simulated cardiac arrests occur within the vicinity of one of the

43 historical cardiac arrest locations. However, it is worth noting that the robust solution performs

at least as well as the nominal solution in the h= 10 case. In other words, the performance of the

robust model does not appear to suffer when the level of uncertainty is low, despite optimizing AED
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Figure 4 Average performance over 50 validation sets of nominal, robust and ex-post solutions under increasing

kernel bandwidth (β = 0.9).

locations to protect against uncertainty. Moreover, in the cases where h≥ 50, the robust solution

substantially outperforms the nominal solution on all four performance metrics. For example, in

the case where h= 100, the robust solution outperforms the nominal solution on the mean distance

metric by 9% (86m vs 95m) and on the CVaR metric by 15% (223m vs 189m). The performance

difference between the robust and nominal models was found to be statistically significant (p < 0.05)

in all comparisons where h≥ 50. Examples of AED deployments under each model for β = 0 and

β = 0.9 are given in Section EC.3 of the electronic companion.

Note that the ex-post model achieves the best performance in all instances, which is expected

since it optimizes the AED deployment directly over the simulated cardiac arrest locations (note

that the ex-post model is solved independently for each of the 50 trials, since it takes the simulated

cardiac arrest locations as input). The gap in performance between the nominal and ex-post models
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Table 2 Average performance gap of nominal and robust solutions with respect to ex-post solution.

Mean VaR CVaR Max

h Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

10 12% 7% 8% 5% 3% 3% 1% 1%
50 18% 11% 21% 13% 20% 8% 18% 2%

100 15% 6% 23% 9% 20% 5% 17% 3%
150 12% 1% 19% 4% 16% 4% 12% 3%

may therefore be interpreted as the degradation in performance due to the uncertainty in cardiac

arrest locations. Figure 4 shows that the robust deployment substantially closes this performance

gap in many cases. For example, for the CVaR metric with h= 100, using the robust deployment

decreases the performance gap with the ex-post model from 44 meters (223m vs 179m) down to

10 meters (189m vs 179m), representing a gap improvement of 77%. In this setting, it may be

convenient to think of the performance gap as being analogous to the usual notion of optimality

gap. However, we emphasize that the ex-post solution represents a theoretical lower bound on

performance only for the CVaR metric, since all models optimize for CVaR only. For the remaining

three performance metrics, it is possible for the nominal or robust model to outperform the ex-post

model by chance.

Table 2 shows the performance gap achieved by the nominal and robust deployment with respect

to the ex-post deployment. For example, the first row and column of Table 2 indicates that the

performance of the nominal solution on the mean distance metric in the h= 10 case is within 12%

of the performance achieved by the ex-post solution, whereas the gap from the robust solution is

within 7% (averaged over 50 trials). The difference in performance between the nominal and robust

solutions is most pronounced at the tail of the distribution, which is unsurprising since the models

optimize for CVaR. Note that for the CVaR and maximum distance metrics, the performance gap

of the robust solutions is at most 8%, whereas the gap of the nominal solution can be as high as

20%.

We also consider the worst-case performance of each model by computing the maximum value

of each performance metric over the 50 trials. As shown in Figure 5, the robust model generally

outperforms the nominal model in the majority of high uncertainty instances (h≥ 50), and performs

no worse than the nominal model in the low uncertainty instances (h = 10). Table 3 presents

the worst-case performance gaps, which are obtained by computing the maximum relative gap in

performance over 50 trials. As in Table 2, the robust solution substantially closes the worst-case

performance gap in the vast majority of instances. For example, on the CVaR metric with h= 100,

the worst-case performance gap is improved by 41% (27% down to 16%).
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(c) CVaR.
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Figure 5 Worst-case performance of nominal, robust and ex-post solutions on four distance metrics under increas-

ing kernel bandwidth.

Table 3 Worst case performance gap of nominal and robust solutions with respect to ex-post solution.

Mean VaR CVaR Max

h Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

10 30% 24% 28% 19% 10% 7% 6% 6%
50 29% 20% 34% 29% 31% 19% 41% 20%

100 29% 17% 40% 26% 27% 16% 31% 24%
150 20% 10% 31% 20% 24% 12% 26% 26%

6.2. Cardiac arrest coverage

An alternate but related measure of performance in public access defibrillation is cardiac arrest

coverage, which is the fraction of cardiac arrests that occur within a given distance of at least one

AED (Chan et al. 2013). Figure 6 shows the cardiac arrest coverage under the nominal, robust
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(b) h= 50.
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(c) h= 100.
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(d) h= 150.

Figure 6 Cardiac arrest coverage for nominal, robust and ex-post solutions under four kernel bandwidths.

and ex-post solutions at all distances between 0 and 250 meters, for each of the four bandwidths.

The curves shown in Figure 6 are obtained by computing the average coverage at each distance

over all 50 trials. Note that in the case where h= 10, all three models attain similar coverage at

all distances, which is consistent with the results shown in Figure 4. Note that the robust solution

dominates the nominal solution at all bandwidths, in the sense that it achieves a higher coverage

level at all distances. Moreover, the coverage of the robust model is very close to the coverage

obtained by the ex-post model, especially for high bandwidths. The improvement of the robust

deployment over the nominal deployment appears most pronounced at higher distances (≥ 100m),

which is expected behavior since the AED locations are optimized for the tail of the distance

distribution.
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Table 4 Average and worst-case performance of nominal, robust and ex-post solutions over 50 simulated

validation sets using different distance measures (β = 0.9, h= 100).

Mean VaR CVaR Max

Nom. Rob. Ex. Nom. Rob. Ex. Nom. Rob. Ex. Nom. Rob. Ex.

Euclidean 95 86 81 173 147 133 223 189 179 303 260 252
Average Rectilinear 121 107 101 216 190 164 280 248 223 386 342 316

Walking 134 133 119 233 221 202 281 269 256 367 365 355

Euclidean 109 96 95 202 181 181 260 222 215 408 375 375
Worst-case Rectilinear 136 120 119 263 241 215 345 311 283 553 553 498

Walking 150 148 137 256 243 236 326 315 307 558 558 572

6.3. Alternate distance measures

We repeated a set of experiments using two alternate distance measures: the rectilinear distance,

and actual walking distances based on city roads and walking paths. Table 4 shows the performance

of each model when Euclidean, rectilinear and walking distances are used to compute the distances

(for both the dik parameters and the performance metrics). When measured using actual walking

distances, the robust and nominal deployments perform similarly on the mean distance metric.

However, the robust model attains a lower VaR and CVaR, indicating improved performance by

the robust deployment at the tail of the distance distribution. Table 5 provides the accompanying

average and worst-case performance gaps of the nominal and robust solutions with respect to

the ex-post solution. We found the results to be consistent with our main finding in Section 6.1:

the AED deployments produced by the robust model outperform the nominal model on all four

performance metrics, both on average and in the worst-case realization of cardiac arrest locations.

On the CVaR performance metric (which we emphasize is the most relevant point of comparison

since all three models optimize for CVaR), the robust model cuts the performance gap in half,

compared to the nominal model. It should be noted that the walking distances from the Google

Maps API are likely conservative estimates of the actual distance a lay responder would have to

travel, since it constrains the lay responder to walk on recognized pedestrian paths. In practice,

a lay responder may be able to take shortcuts that are unmarked in Google Maps (e.g., parking

lots, buildings, unmarked crosswalks). We therefore expect the actual lay responder distance to be

somewhere between the Euclidean and Google Maps distances.

As an additional check to compare Euclidean and actual walking distances, we performed the

following experiment. We randomly generated 1,000 pairs of locations within the downtown region

of the City of Toronto, which includes the service area in our study. For each pair of locations,

we computed the Euclidean distance (based on the UTM coordinates of the locations) and the
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Table 5 Average and worst-case performance gap of nominal and robust solutions with respect to ex-post

solution under alternate distance measures.

Mean VaR CVaR Max

Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

Euclidean 15% 6% 23% 9% 20% 5% 17% 3%
Average Rectilinear 17% 6% 24% 13% 21% 10% 18% 8%

Walking 12% 11% 13% 8% 9% 5% 7% 3%

Euclidean 29% 17% 40% 26% 27% 16% 31% 24%
Worst-case Rectilinear 28% 18% 41% 27% 32% 20% 41% 23%

Walking 21% 20% 31% 24% 20% 12% 24% 22%

walking distance (via the Google Maps Distance Matrix API). We then performed an ordinary

least squares regression on the distance data, which yielded the following model:

DistWalk = 1.341×DistEuclid + 21.1.

TheR2 coefficient of this model was 0.904, suggesting a strong linear relationship between Euclidean

and actual walking distances. Both coefficients were statistically significant (p < 0.05). This finding

is consistent with previous studies that have also found very high correlation between Euclidean

and road network distances (Bach 1981, Jones et al. 2010, Boscoe et al. 2012). These results suggest

that Euclidean distances serve as a reasonable (constant factor) approximation for actual walking

distances.

7. Discussion & Policy Implications

Interestingly, our results indicate that the robust deployment performed better than the nominal

deployment under typical demand realizations (Figure 4), in addition to the worst-case realizations

(Figure 5). This might seem like a counterintuitive result, given that robust optimization models

can perform poorly in typical realizations of the uncertainty due to their emphasis on optimizing

a worst-case objective function. However, in the context of AED deployment (and facility location

more generally), the observed performance gap between the robust and nominal models can likely

be attributed to the nominal model overfitting to the set of historical cardiac arrest locations. In

other words, the nominal model represents a naive sample average approximation in which AED

placement is optimized only with respect to a small set of historical cardiac arrest locations. Our

results suggest that if there is a nontrivial amount of uncertainty in the locations of future cardiac

arrest, a sample average approximation based on limited historical data can lead to AED deploy-

ments that perform poorly when measured against out-of-sample cardiac arrests. On the other

hand, our robust formulation produces an improved deployment by accounting for the possibility

of cardiac arrests occuring in new locations not reflected in the historical data.



Chan, Shen and Siddiq: Robust Defibrillator Deployment
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 35

Survival outcomes. Our results suggest that a robust approach to AED deployment can

improve cardiac arrest response by improving bystander accessibility to AEDs, especially for those

patients who collapse far away from the nearest defibrillator. While a rigorous analysis of survival

outcomes is beyond the scope of this paper, the time sensitive nature of cardiac arrest treatment

suggests that even modest improvements in AED accessibility (through shorter distances) can have

a significant impact on survival outcomes. We also emphasize that all numerical results presented

in Section 6 are with respect to the one-way distance to the nearest AED. However, since retrieval

of an AED by a lay responder likely requires a round-trip, decreasing the distance between the

cardiac arrest victim and the nearest AED by 30 meters implies that the trip made by the lay

responder is shortened by 60 meters, which can have a material impact on the total time between

collapse and treatment.

Comparison to best practices. Historically, best practices for AED deployment (e.g, as pre-

scribed by the American Heart Association) have been purely retrospective, and do not account

for the uncertainty in future cardiac arrest locations, which our results suggest can help improve

the accessibility of AEDs. Existing guidelines also emphasize the importance of identifying build-

ing types that are at risk of cardiac arrest, and placing AEDs in those locations. Our proposed

approach is markedly different from the current AHA recommendations. We instead focus on char-

acterizing the distributional uncertainty in cardiac arrest locations, and optimally deploying AEDs

in a manner that does not depend on building type, as long as the AED can be accessed by a

lay responder. We also note that placing AEDs in a small set of high risk buildings ignores the

shape of the distance distribution, and may lead to AED deployments where a large number of

cardiac arrests occur far away from any AED. In contrast, our approach considers the entirety of

the (worst-case) distance distribution, and allows the modeler to directly optimize various aspects

of the distribution via the CVaR objective function.

Crowdsourcing lay responders. The existing focus on identifying high-risk buildings for AED

placement is partially due to the current low rate of bystander intervention during cardiac arrests,

and a prevailing belief that an AED must be located at the precise location of a cardiac arrest in

order to be used. However, recent advances in mobile phone applications show promise in recruiting

lay responders (who may be up to 500m away) to perform CPR on victims of cardiac arrest (Ringh

et al. 2015, Brooks et al. 2016, 2014). This “crowdsourcing” approach to cardiac arrest interventions

can be extended to incorporate AEDs as well, by notifying lay responders of the locations of both

the cardiac arrest victim and a nearby AED. We posit that in a setting where lay responders are

recruited to intervene during a cardiac arrest, it is even more critical that AEDs are tactically

located throughout an urban area, so that they can be quickly located and transported to a victim

of cardiac arrest by a lay responder. Thus, our approach to strategically deploying AEDs can work
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synergistically with other innovations in the chain of survival to improve the overall response to

cardiac arrest.

Risk measures in public access defibrillation. Our model also highlights the potential role

that risk measures like CVaR can play in public access defibrillation. While VaR-based response

time targets are common in ambulance dispatching (Pons and Markovchick 2002), no similar guide-

lines exist in public access defibrillation. Given the potential impact on survival of protecting

against large distances between cardiac arrest victims and nearby AEDs, it may be worthwhile to

explicitly incorporate risk-based targets in the decision making process when determining AED

locations. This paper formally introduces the notion of risk to the AED deployment problem, by

allowing decision makers to emphasize the tail of the distance (or response time) distribution when

planning AED locations.

8. Conclusion

We develop a data-driven optimization approach for deploying AEDs in public spaces while account-

ing for uncertainty in the locations of future cardiac arrests. Our approach involves constructing

a distributional uncertainty set that consists of several uncertainty regions, where the parameters

of the uncertainty set are calibrated based on historical cardiac arrest data. To approximate the

arrival of cardiac arrests in continuous space, we discretize the service area into an extremely large

set of scenarios, and develop a row-and-column generation algorithm that exploits the structure

of the uncertainty set and scales gracefully in the number of scenarios. As an auxilliary result,

we show that our formulation subsumes a large class of facility location problems, and unifies the

classical p-median and p-center problems, as well as their robust analogues.

Our numerical results suggest that hedging against cardiac arrest location uncertainty can lead

to improved AED accessibility under both typical and worst-case realizations of the uncertainty.

In particular, we found that our robust AED deployment outperformed a nominal (sample average

approximation) deployment by between 9-20% with respect to AED retrieval distances, depending

on the performance metric and underlying demand distribution. Further, we found that in many

cases, the robust deployment performed nearly as well as an ex-post model with perfect foresight,

and in many instances improved the performance gap with respect to the ex-post model by 40-

70%. This finding suggests that our robust approach manages to avoid the performance loss due

to uncertainty that is suffered by the sample average approach.

We highlight a few potential directions for future work. First, we have assumed throughout this

paper that the set of uncertainty regions is given. It may be fruitful to investigate data-driven

approaches to identifying an effective configuration of the uncertainty regions. Similarly, we note

that the uncertainty set proposed in this paper can be generalized to permit the arrival probabilities
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to be uncertain as well. For example, we might allow each λj to reside within a 95% confidence

interval that is also estimated from the data, which would retain the polyhedral structure of the

uncertainty set. Our model can also be extended to incorporate additional considerations in public

access defibrillation, such as lay responder behavior. However, we expect that our main finding in

this paper – that accounting for cardiac arrest location uncertainty improves AED accessibility –

would persist under such modifications to the model. Lastly, the main features of our modeling

approach – a distributional uncertainty set that induces sparse worst-case distributions coupled

with an efficient row-and-column generation algorithm – may find relevance in other applications

with a similar problem structure as well.
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EC.1. Proofs.

We first present two lemmas that are helpful in the proof of Theorem 1.

Lemma EC.1. Let y be fixed. Define U∗ = argmax
µ∈U

CVaRµ[d(ξ,y(ξ))]. Then for any set of facility

locations y, there exists a worst-case distribution µ̃ ∈ U∗ supported on a1, . . . , a|R|, where ar =

argmax
a∈A′r

d(a,y(a)), for all r= 1, . . . , |R|.

Proof. For any Ā ⊂A, define

λ(µ, Ā) = Pµ(ξ ∈ Ā) =

∫
Ā
fµ(ξ)dξ, (EC.1)

where fµ is the density function associated with distribution µ. Pick a distribution µ∗ ∈ U∗. Now

construct µ̃ to be the distribution with mass λ(µ∗,A′1), . . . , λ(µ∗,A′|R|) placed at the locations

a1, . . . , a|R|. We now show that µ̃ is also in U∗. We do so by first showing that µ̃ is in U , and then

by showing that the CVaR of the distance distribution under the constructed µ̃ is at least as large

as the CVaR under µ∗. For the first step, let Rj index the subregions that comprise Aj. Now note

that for each j ∈J , we have

Pµ̃(ξ ∈Aj) =
∑
r∈Rj

Pµ̃(ξ ∈A′r) =
∑
r∈Rj

λ(µ̃,A′r) =
∑
r∈Rj

Pµ∗(ξ ∈A′r) = Pµ∗(ξ ∈Aj) = λj.

The first equality is due to the fact that
⋃
r∈Rj

A′r = Aj. The second equality follows from the

definition of λ(µ, Ā) in (EC.1). The third equality follows by the construction of µ̃. The fourth

equality is again due to
⋃
r∈Rj

A′r =Aj. The final equality holds since µ∗ ∈ U . Since from the above

equations, Pµ̃(ξ ∈ Aj) = λj, we have µ̃ ∈ U . It remains to show that CVaRµ∗ ≤ CVaRµ̃. Writing

CVaR explicitly, we have

CVaRµ∗ [d(ξ,y(ξ))] = min
α

α+
1

1−β

∫
A

[d(ξ,y(ξ))−α]+fµ∗(ξ)dξ

= min
α

α+
1

1−β
∑
r∈R

∫
A′r

[d(ξ,y(ξ))−α]+fµ∗(ξ)dξ

≤min
α

α+
1

1−β
∑
r∈R

∫
A′r

[d(ar,y(ar))−α]+fµ∗(ξ)dξ

= min
α

α+
1

1−β
∑
r∈R

[d(ar,y(ar))−α]+
∫
A′r

fµ∗(ξ)dξ

= min
α

α+
1

1−β
∑
r∈R

[d(ar,y(ar))−α]+λ(µ̃,A′r)

= CVaRµ̃[d(ξ,y(ξ))].
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The first line follows from the definition of CVaR. The second line is due to the fact that the

subregions A′r, r ∈R form a partition of A. The third line follows from the definition of ar as a point

in A′r that maximizes distance to the nearest AED. The fourth line follows since [d(ar,y(ar))−α]+

is constant with respect to the variable ξ. The fifth line follows from the definition of λ(µ̃,A′r) as

the total probability mass in A′r. The final line follows by construction of µ̃ and the definition of

CVaR. �

For the second lemma, define zC(y) = maxµ∈U CVaRµ[d(ξ,y(ξ))] to be the worst-case CVaR

under the solution y in the continuous case. Similarly, let zD(y) be the worst-case CVaR in the

discrete case (i.e., the optimal value of (4) given y). The next lemma bounds the difference between

the the worst-case continuous and discrete CVaR, for a given deployment y. Note that Lemma 1

is used in the proof.

Lemma EC.2. For any y, zC(y)− zD(y)≤ `(σ)/(1−β).

Proof. Let µ∗ be a worst-case continuous distribution with mass λ′1, . . . , λ
′
|R| on the locations

p1, . . . , p|R| (cf Lemma EC.1). Construct a discrete distribution by placing mass λ′1, . . . , λ
′
|R| on the

locations ξ1, . . . , ξ|R|, where ξr = argmin
ξ∈Ξ′r

d(ξ, pr) for all r. We can now write

zC(y)− zD(y) =

(
min
α

α+
1

1−β
∑
r∈R

λ′r[d(ar,y(ar))−α]+

)
− zD(y)

≤

(
min
α

α+
1

1−β
∑
r∈R

λ′r[d(ξr,y(ξr)) + `(σ)−α]+

)
− zD(y)

≤

(
min
α

α+
1

1−β
∑
r∈R

λ′r[d(ξr,y(ξr))−α]+

)
+

1

1−β
∑
r∈R

λ′r`(σ)− zD(y)

= zD(y) +
1

1−β
∑
r∈R

λ′r`(σ)− zD(y)

=
`(σ)

1−β

The first line follows from the definition of zC(y). The second line follows from the triangle

inequality and since d(ξr, ar)≤ `(σ) by definition of `(σ). The third line follows from pulling `(σ)

out of the CVaR expression. The fourth line follows by definition of zD(y). The fifth line follows

from cancelling out zD(y) terms and noting that
∑

r∈R λ
′
r = 1. �

Proof of Theorem 1.

Note that zD(y)≤ zC(y) for any y, since Ξ′r ⊂A′r for all r ∈R. Now define yC ∈ argmin
y

zC(y) and

yD ∈ argmin
y

zD(y). Using Lemma EC.2, we can now write

zD(yD)≤ zD(yC)≤ zC(yC) =ZC ≤ zC(yD)≤ zD(yD) + `(σ)/(1−β) =ZD + `(σ)/(1−β),
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which implies ZC −ZD ≤ `(σ)/(1−β). Since ZD ≤ZC , we have

∆ =
ZC −ZD
ZC

≤ ZC −ZD
ZD

≤ `(σ)

ZD(1−β)
.

It follows that if `(σ)≤ ε(1−β)ZD, then ∆≤ ε. �

Proof of Proposition 1.

Note that the number of variables in the master problem formulation R-AED-MP is |I|(|K+|+1)+1,

and the number of constraints is (2|I| + 1)|K+| + |I| + |S| + 2. Hence the number of variables

and constraints in iteration s is O(|I||K+|). It remains to show that |K+| ≤ (|J |+ 1)s in the sth

iteration of the row-and-column generation algorithm. Since the new variables and constraints that

are added to R-AED-MP in iteration s correspond directly to non-zero elements of the vector ps

obtained at a solution to R-AED-SP (cf Algorithm 1), it suffices to show that any p obtained at

a solution to R-AED-SP contains at most |J |+ 1 non-zero elements. We first prove that any u

obtained at an optimal solution to R-AED-SP is also an optimal solution to the following problem:

maximize
u

∑
k∈K

dikz̄ikuk

subject to
∑
k∈K

uk = 1, (EC.2)∑
k∈Kj

uk = λj, j ∈J ,

uk ≥ 0.

By way of contradiction, suppose a solution p,u is optimal to R-AED-SP but u is suboptimal

to (EC.2). Then there exists k1 and k2 such that
∑

i∈I dik2 z̄ik2 >
∑

i∈I dik1 z̄ik1 . Further, there

must exist ε > 0 and a vector ũ ∈ U such that ũk1 = uk1 − ε, ũk2 = uk2 + ε, and ũk = uk for all

k ∈ K \ {k1, k2}. Let p̃ be the solution obtained by solving R-AED-SP with ũ as a parameter.

Now note in R-AED-SP, since
∑

i∈I dik2 z̄ik2 >
∑

i∈I dik1 z̄ik1 , the constraints pk2 ≤ uk2/(1− β) and

p̃k2 ≤ ũk2/(1−β) must be binding (otherwise we could slightly increase pk2 while slightly decreasing

pk1 by the same amount to improve the objective function, with an identical argument applying to

p̃k2). Since pk2 = uk2/(1−β) and p̃k2 = ũk2/(1−β), by the construction of ũ it follows that p̃2−p2 ≥

ε/(1− β) and p1 − p̃1 ≤ ε/(1− β). Since
∑

i∈I dik2 z̄ik2 >
∑

i∈I dik1 z̄ik1 , the solution p̃, ũ improves

the objective by
(∑

i∈I dik2 z̄ik2 −
∑

i∈I dik1 z̄ik1
)

ε
1−β > 0 over the solution p,u, which contradicts

the optimality of p,u with respect to R-AED-SP. Hence u must be optimal to (EC.2) as well.

Since (EC.2) is a standard form linear program with |J | + 1 equality constraints and |K|

variables, at most |J |+1 elements of a basic feasible solution to (EC.2) can be non-zero (Bertsimas

and Tsitsiklis 1997). Further, since by assumption there are no ties in the dik parameters, every
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optimal solution to (EC.2) must be a basic feasible solution. It follows that every u obtained at

a solution of R-AED-SP has no more than |J |+ 1 non-zero elements. Since pk > 0 implies uk > 0

for any feasible p,u, it follows that any p obtained at a solution to R-AED-SP cannot have more

than |J |+ 1 non-zero elements. �

Proof of Proposition 2.

Let the subregions A′1, . . . ,A′|R| be the partitioning of A implied by the uncertainty regions

A1, . . . ,A|J |. Let λ′r = P (ξ ∈ A′r) for all r ∈ R under the true distribution. Since the subregions

are disjoint, the number of historical cardiac arrests that fall in each of the regions A′1, . . . ,A′|R|
is simply the outcome of n independent trials from a multinomial distribution with parameters

λ′1, . . . , λ
′
|R|. Now define

λ̂′r =
1

n

n∑
c=1

1{ac ∈A′r}, r ∈R,

is a maximum likelihood estimator of λ′1, . . . , λ
′
r, and that |λ̂′r − λ′r| −→ 0 with probability 1 as

n−→∞ (e.g., Example 1.6.7. in Bickel and Doksum (2015)). Now let Rj be the set of subregions

that comprise region Aj. We now have λ̂j =
∑

r∈Rj
λ̂′r, and thus |λ̂j − λj| = |

∑
r∈Rj

(λ̂′r − λ′r)| ≤∑
r∈Rj

|λ̂′r − λ′r| for each j ∈ J , which implies |λ̂j − λj| −→ 0 with probability 1 for each j ∈ J as

n −→∞. To see that λ̂ ensures that U is non-empty, construct a distribution u ∈U as follows.

First, assign each of the cardiac arrest locations a1, . . . , an to the nearest scenario location within

the same subregion. Then for each k ∈ K, set uk equal to the proportion of cardiac arrests that

are assigned to location k. Thus u is non-negative and
∑

k∈K uk = 1 by construction. Lastly, for

each r ∈R,
∑

k∈K′r
uk is equal to the proportion of cardiac arrests within subregion A′r, which is

also equal to λ̂′r by definition. Thus
∑

k∈Kj
uk =

∑
r∈Rj

∑
k∈K′r

uk =
∑

r∈Rj
λ̂′r = λ̂j. �

EC.2. Unifying the p-median and p-center problems

The p-median and p-center problems are two of the most well-studied location models, having

served as the foundation for a significant portion of the existing facility location literature (Owen

and Daskin 1998, Snyder 2006, Melo et al. 2009). In this section, we discuss how a non-stochastic

interpretation of R-AED specializes to robust variants of the p-median and p-center problems,

depending on how β is selected. A straightforward corollary of this result is that if the Aj are

all singletons, then formulation R-AED unifies the classical p-median and p-center problems (i.e.

without any uncertainty).

We begin by defining robust variants of the p-median and p-center problems, and then prove an

equivalence between these problems and formulation R-AED. Let J index a finite and fixed set of
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demand points. In the classical p-median problem, one wishes to site P facilities so to minimize

the (weighted) total distance between all demand points and their nearest facilities. Suppose now

that the jth demand point is only known to reside within an uncertainty region Aj. We formulate

a generalization of the p-median problem that aims to minimize the worst-case total distance. Let

each uncertainty region be discretized into a set of locations Ξj ⊂Aj, so that the demand point j

is only known to be at one of the locations in Ξj. Let Kj index the locations in Ξj. Let Z(y) and Y

retain their definitions from Section 3. Let λj be the usual notion of “weight” placed on demand

point j. Now define X = X1× . . .×X|J |, where

Xj =

xjk ≥ 0, k ∈K

∣∣∣∣∣ ∑
k∈Kj

xjk = 1

 , j ∈J . (EC.3)

We can now write the robust p-median problem to minimize the worst-case total distance as

min
y,z

max
x

∑
i∈I

∑
k∈Kj

∑
j∈J

λjdikzikxjk (EC.4)

subject to x∈X, z∈Z(y), y ∈Y.

In formulation (EC.4), the set X can be interpreted as the decision space of an adversary which,

after observing the facility locations, realizes each demand point within its uncertainty region at a

location that maximizes the distance to the nearest facility. Using the same definitions as above,

we can also define the robust p-center problem, which minimizes the worst-case maximum distance

between a demand point and its nearest facility:

min
y,z

max
x

min
t

t

subject to t≥
∑
i∈I

∑
k∈Kj

dikzikxjk, j ∈J , (EC.5)

x∈X, z∈Z(y), y ∈Y.

We now show that the robust p-median and p-center problems are unified by formulation R-AED.

Proposition EC.1. Assume that each scenario k belongs to exactly one of the sets K1, . . . ,K|J |,

and λ1 = . . .= λ|J | = 1/n. If β = 0, then formulation R-AED is equivalent to the robust p-median

problem (EC.4) with equally weighted demand points. If β ≥ (n− 1)/n, then formulation R-AED is

equivalent to the non-weighted robust p-center problem (EC.5).

Proof of Proposition EC.1.

Since each scenario k belongs to exactly one set Kj, in the context of formulation R-AED this implies

that the uncertainty regions are disjoint. The set U is then separable in j, meaning the uncertainty



ec6 e-companion to Chan, Shen and Siddiq: Robust Defibrillator Deployment

in the discrete distribution u can be interpretted equivalently as uncertainty in |J | conditional

distributions of u – one for each uncertainty region. We may now interpret xkj as the unknown

probability that the next cardiac arrest arrives at location k, conditioned on the event {ξ ∈ Ξj}.

Note that due to our choice of the uncertainty set U , each vector xj is only known to reside in the

|Kj − 1|-dimensional probability simplex, which is given precisely by the sets X1, . . . ,X|J |. Also,

since each scenario k only belongs to one of the sets K1, . . . ,K|J |, it follows that uk =
∑

j∈J λjxjk,

for each k ∈ K. By substituting
∑

j∈J λjxjk for uk, we can write formulation R-AED equivalently

as

min
y,z

max
x

min
α

α+
1

(1−β)

∑
j∈J

∑
k∈Kj

λjxjk max

{∑
i∈I

dikzik−α,0

}
subject to x∈X,z∈Z(y),y ∈Y, (EC.6)

α≥ 0.

Due to the separability of the scenario sets in j, we may take the xjk terms inside the max operator

in the objective to obtain another reformulation of R-AED:

min
y,z

max
x

min
α

α+
1

(1−β)

∑
j∈J

λj max

∑
i∈I

∑
k∈Kj

dikzikxjk−α,0


subject to x∈X,z∈Z(y),y ∈Y, (EC.7)

α≥ 0.

We now show equivalence of (EC.7) and the robust p-median problem. Let (y∗,z∗,x∗) be an

optimal solution for formulation (EC.7). Let Z(α) be the objective value of (EC.7) for the solution

(y∗,z∗,x∗, α). Since the feasible sets of (EC.7) and (EC.4) are identical, all that remains is to show

that their optimal values are equal. For conciseness define g(xj,zj) :=
∑

i∈I
∑

k∈Kj
dikzikxjk. We

first observe that for β = 0 and any α≤min
j∈J

g(x∗j ,z
∗
j ), the objective value of (EC.7),

Z(α) = α+
∑
j∈J

λj
(
g(x∗j ,z

∗
j )−α

)
= α+

∑
j∈J

λjg(x∗j ,z
∗
j )−

1

n
(nα)

=
∑
j∈J

λjg(x∗j ,z
∗
j )

=
∑
i∈I

λj
∑
j∈J

∑
k∈Kj

z∗ikdikx
∗
jk,

is equivalent to the objective value of (EC.4). Note that in the second equality above we use the

fact that λj = 1/n for all j ∈ J . Thus to show equivalence in the optimal values of formulations
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R-AED and (EC.4) when β = 0, it suffices to show that an optimal α∗ satisfies α∗ ≤min
j∈J

g(x∗j ,z
∗
j ).

Suppose that α∗ >min
j∈J

g(x∗j ,z
∗
j ). Then,

Z(α∗) = α∗+
∑
j∈J

λj max
{
g(x∗j ,z

∗
j )−α∗,0

}
>α∗+

∑
j∈J

λj
(
g(x∗j ,z

∗
j )−α∗

)
=
∑
j∈J

λjg(x∗j ,z
∗
j )

=
∑
i∈I

∑
j∈J

∑
k∈Kj

λjz
∗
ikdikx

∗
jk,

which contradicts the optimality of α∗. For the robust p-center problem, let (y∗,z∗,x∗) again be an

optimal solution to formulation (EC.7). Let Z(α) be the objective value of (EC.7) for the solution

(y∗,z∗,x∗, α). If α= max
j∈J
{g(x∗j ,z

∗
j )}, then the objective of formulation (EC.7),

Z(α) = α+
1

(1−β)

∑
j∈J

λj max
{
g(x∗j ,z

∗
j )−α,0

}
= max

j∈J
{g(x∗j ,z

∗
j )}+

1

(1−β)

∑
j∈J

λj max

{
g(x∗j ,z

∗
j )−max

j∈J
{g(x∗j ,z

∗
j )},0

}
= max

j∈J
{g(x∗j ,z

∗
j )}

= max
j∈J

∑
i∈I

∑
k∈Kj

z∗ikdikx
∗
jk

 ,

is equivalent to the objective of (EC.5). We now wish to show that an optimal α∗ satisfies α∗ =

max
j∈J
{g(x∗j ,z

∗
j )} for β > (n − 1)/n. We do so by showing that neither α∗ > max

j∈J
{g(x∗j ,z

∗
j )} nor

α∗ <max
j∈J
{g(x∗j ,z

∗
j )} can hold. First, suppose α∗ >max

j∈J
{g(x∗j ,z

∗
j )}. Then,

Z(α∗) = α∗+
1

(1−β)

∑
j∈J

λj max
{
g(x∗j ,z

∗
j )−α∗,0

}
= α∗

>max
j∈J
{g(x∗j ,z

∗
j )},

which contradicts the optimality of α∗. Now suppose α∗ < max
j∈J

{g(x∗j ,z
∗
j )}, and let δ =

max
j∈J
{g(x∗j ,z

∗
j )}−α∗. It follows that

∑
j∈J max{g(x∗j ,z

∗
j )−α∗,0} ≥ δ. Since λj = 1/n for all j ∈J ,

we can write

Z(α∗) = α∗+
1

(1−β)n

∑
j∈J

max
{
g(x∗j ,z

∗
j )−α∗,0

}
≥ α∗+

1

(1−β)n
δ
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= α∗+ δ+
1

(1−β)n
δ− δ

= max
j∈J
{g(x∗j ,z

∗
j )}+

(
1

(1−β)n
− 1

)
δ

>max
j∈J
{g(x∗j ,z

∗
j )},

where the final strict inequality follows from β > (n− 1)/n. Again, this contradicts the optimality

of α∗. �

Based on Proposition EC.1, we can interpret formulation R-AED as subsuming a spectrum of

location models with the robust p-median problem at one end (β = 0) and the robust p-center

problem at the other (β close to 1). While the specialization of CVaR to the mean and maximum of

a general discrete distribution is well known, this explicit unification of the p-median and p-center

problems via a CVaR objective does not appear to have been discussed previously in the facility

location literature. We note also that the assumption in Proposition EC.1 that each k belong to

exactly one Kj is needed to ensure the equivalence between the main formulation R-AED and the

intermediate model (EC.6) used in the proof. If this assumption is relaxed, then formulation (EC.6)

still serves as a unifying model for the p-median and p-center problems, although the equivalence

with R-AED no longer holds. The ordered median problem (Kalcsics et al. 2002, Nickel and Puerto

1999) also unifies median and center problems, but requires an ordering of the demands according

to their distance to the sited facilities so that a set of appropriate parameters can be identified. By

contrast, our approach involves the adjustment of a single parameter and requires no such ordering.

To the best of our knowledge, (EC.4) and (EC.5) are the first robust formulations of the

general p-median and p-center problem with non-stochastic uncertainty in the demand location

(i.e., in the spirit of robust optimization rather than scenario-based stochastic optimization).

Previous work in robust facility location has considered only one facility (Averbakh and Berman

2000, Averbakh 2003) or uncertainty in demand level rather than location (Baron et al. 2011).

As discussed in Section 3.2, the formulation in (Baron et al. 2011) is well equipped to handle

uncertainty in the level of demand at each of a set of known demand points. The robust p-median

and p-center formulations presented above may be more appropriate in applications where there

is continuous uncertainty in future demand locations (e.g., emergency response or peer-to-peer

ridesharing applications).

EC.3. Visualization of AED deployments

Figure EC.1 depicts an instance of the AED deployments produced by the nominal (SAA), robust

and ex-post models, along with a set of simulated cardiac arrests (corresponding to the ex-post



e-companion to Chan, Shen and Siddiq: Robust Defibrillator Deployment ec9

deployment) and the 43 historical cardiac arrest locations. Note that in this instance, the nominal

model produces small “clusters” of AEDs, whereas the robust and ex-post models appear to position

AEDs more efficiently with respect to the simulated cardiac arrests. This behavior is expected,

since the nominal model only optimizes the tail of the empirical distance distribution, whereas the

robust model accounts for potential deviation of the simulated cardiac arrests from the historical

locations. Note also that the ex-post model achieves the most effective deployment of AEDs with

respect to the simulated cardiac arrests, since it optimizes directly with respect to the simulated

data.
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(a) Nominal.

(b) Robust.

(c) Ex-post.

Figure EC.1 Example of nominal, robust and ex-post AED deployments (P = 30, h= 100, β = 0.9).
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EC.4. Row-and-column generation example: Total scenarios and optimality gap

The plot below depicts an example of the total number of scenarios generated in the master problem

R-AED-MP and the associated optimality gap at each iteration of the row-and-column generation

algorithm. The plot corresponds to the instance given in the second-last row of Table 1 (I = 100,

J = 20, P = 20, K= 24,743).
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Figure EC.2 Example of total number of scenarios generated (blue squares) and optimality gap (green circles)

for each iteration of the row-and-column generation algorithm (|I| = 100, |J | = 20, P = 20, |K| =

24,743).
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EC.5. Estimates of uncertainty region arrival probabilities

Table EC.1 Estimates of probabilities λ1, . . . , λ|J | and approximate 95% confidence intervals for 15 uncertainty

regions.

j λ̂j 95% C.I.

1 0.12 (0.05, 0.24)
2 0.16 (0.07, 0.30)
3 0.09 (0.03, 0.22)
4 0.12 (0.04, 0.25)
5 0.07 (0.01, 0.19)
6 0.05 (0.01, 0.15)
7 0.05 (0.01, 0.15)
8 0.02 (0.00, 0.12)
9 0.02 (0.00, 0.12)
10 0.09 (0.03, 0.22)
11 0.02 (0.00, 0.12)
12 0.02 (0.00, 0.12)
13 0.07 (0.01, 0.18)
14 0.05 (0.01, 0.15)
15 0.05 (0.01, 0.15)
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