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We consider the problem of finding an optimal history-dependent routing strategy on a directed graph
weighted by stochastic arc costs when the objective is to minimize the risk of spending more than a prescribed
budget. To help mitigate the impact of the lack of information on the arc cost probability distributions,
we introduce a robust counterpart where the distributions are only known through confidence intervals on
some statistics such as the mean, the mean absolute deviation, and any quantile. Leveraging recent results
in distributionally robust optimization, we develop a general-purpose algorithm to compute an approximate
optimal strategy. To illustrate the benefits of the robust approach, we run numerical experiments with field
data from the Singapore road network.
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1. Introduction

1.1. Motivation

Stochastic Shortest Path (SSP) problems have emerged as natural extensions to the classical shortest
path problem when arc costs are uncertain and modeled as outcomes of random variables. In particu-
lar, we consider in this paper the class of adaptive SSPs, which can be formulated as Markov Decision
Processes (MDPs), where we optimize over all history-dependent strategies. As standard with MDPs,
optimal policies are characterized by dynamic programming equations involving expected values (e.g.
Bertsekas and Tsitsiklis (1991)). Yet, computing the expected value of a function of a random vari-
able generally requires a full description of its probability distribution, and this can be hard to obtain
accurately due to errors and sparsity of measurements. In practice, only finite samples are available
and an optimal strategy based on approximated arc cost probability distributions may be suboptimal
with respect to the real arc cost probability distributions.

One of the most common applications of SSPs deals with the problem of routing vehicles in trans-
portation networks. Providing driving itineraries is a challenging task as suppliers have to cope
simultaneously with limited knowledge about random fluctuations in traffic congestion (e.g. caused
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by traffic incidents, variability of travel demand) and users’ desire to arrive on time. These consid-

erations have led to the definition of the Stochastic On-Time Arrival (SOTA) problem, an adaptive

SSP problem with the objective of maximizing the probability of on-time arrival, and formulated

using dynamic programming in Nie and Fan (2006). The algorithm proposed in Samaranayake et al.

(2012b) to solve this problem assumes the knowledge of the complete arc travel-time distributions.

Yet, in practice, such distributions tend to be estimated from samples which are sparse and error-

prone.

In recent years, Distributionally Robust Optimization (DRO) has emerged as a new framework

for decision-making under uncertainty when the underlying distributions are only known through

some statistics or from collections of samples. DRO was put forth in an effort to capture both risk

(uncertainty on the outcomes) and ambiguity (uncertainty on the probabilities of the outcomes)

when optimizing over a set of alternatives, thus lying at the crossroad between stochastic and ro-

bust optimization. The computational complexity of this approach can vary greatly, depending on

the nature of the ambiguity sets and on the structure of the optimization problem, see Wiesemann

et al. (2014) and Delage and Ye (2010) for convex problems, and Calafiore and Ghaoui (2006) for

chance-constraint problems. Even in the absence of decision variables, the theory proves useful in

order to derive either numerical or closed form bounds on expected values using tools drawn from

linear programming, e.g. tailored dual simplex algorithm in Prékopa (1990), and from semidefinite

programming as in Bertsimas and Popescu (2005) and Vandenberghe et al. (2007).

In the case of limited knowledge of the arc cost probability distributions, we propose to bring DRO

to bear on adaptive SSP problems to help mitigate the impact of the lack of information and in-

troduce Distributionally Robust Adaptive Stochastic Shortest Path problems. Our work fits into the

literature on distributionally robust MDPs where the transition probabilities are only known to lie in

prescribed ambiguity sets (e.g. Nilim and Ghaoui (2005), Iyengar (2005), Xu and Mannor (2010), and

Wiesemann et al. (2013)). While some of the methods developed in the aforementioned literature can

be shown to carry over, adaptive SSPs exhibit a particular structure that allows for a large variety

of ambiguity sets and enables the development of faster solution procedures. Specifically, optimal

strategies for finite-horizon distributionally robust MDPs are characterized by a Bellman recursion

on the worst-case expected reward-to-go. While standard approaches focus on computing this last

quantity for each state independently from one another, closely related problems (e.g. estimating an

expected value E[f(t−X)] where the random variable X is fixed but t varies depending on the state)

carry across states for adaptive SSPs, and, as a result, making the most of previous computations

becomes crucial to achieve computational tractability.
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1.2. Related Work

Extending the shortest path problem by assigning random, as opposed to deterministic, costs to
arcs requires some additional modeling assumptions. Over the years, many formulations have been
proposed which differ along three main features:
• The specific objective function to optimize: in the presence of uncertainty, the most natural

approach is to minimize the total expected costs, see Bertsekas and Tsitsiklis (1991), and Miller-
Hooks and Mahmassani (2000) for time-dependent random costs. However, this approach is oblivious
to risk. In an attempt to take that factor into account, Loui (1983) proposed earlier to rely on
utility functions of moments (e.g. mean costs and variances) involving an inherent trade-off, and
considered multi-objective criteria. However, Bellman’s principle of optimality no longer holds for
arcs weighted by multidimensional costs, giving rise to computational hardness. A different approach
consists of introducing a budget, set by the user, corresponding to the maximum total cost he
is willing to pay to reach his terminal node. Such approaches have been considered along several
different directions. Research efforts have considered either minimizing the probability of budget
overrun (see Frank (1969), Nikolova et al. (2006b), and also Xu and Mannor (2011) for probabilistic
goal MDPs), minimizing more general functions of the budget overrun as in Nikolova et al. (2006a),
minimizing refined satisficing measures in order to guarantee good performances with respect to
several other objectives as in Jaillet et al. (2015), and constraining the probability of over-spending
while optimizing the expected costs as in Xu et al. (2012).
• The admissible set of strategies over which we are free to optimize: incorporating uncertainty

may cause history-dependent strategies to significantly outperform a priori paths depending on the
chosen performance index. This is the case for the SOTA problem where two types of formulations
have been considered: (i) an a-priori formulation which consists in finding a path before taking any
actions, see Nikolova et al. (2006b) and Nie and Wu (2009); and (ii) an adaptive formulation which
allows to update the path to go based on the remaining budget, see Nie and Fan (2006), Samaranayake
et al. (2012b), and Parmentier and Meunier (2014).
• The knowledge on the random arc costs taken as an input: it can range from the full knowledge

of the probability distributions to having access to only a few samples drawn from them. In practical
settings, the problem of estimating accurately some statistics (e.g. mean cost and variance) seems
more reasonable than retrieving the full probability distribution. For instance, Jaillet et al. (2015)
consider lower-order statistics (minimum, average and maximum costs) and make use of closed form
bounds derived in the DRO theory. These considerations were extensively investigated in the context
of distributionally robust MDPs. From a theoretical standpoint, Wiesemann et al. (2013) show that
a property coined as rectangularity has to be satisfied by the ambiguity sets for computational
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tractability, while Iyengar (2005) characterizes the optimal policies with a dynamic programming
equation for general rectangular ambiguity sets. The ambiguity sets are parametric in Wiesemann
et al. (2013), where the parameter lies in the intersection of finitely many ellipsoids, are based on
likelihood measures in Nilim and Ghaoui (2005), and are defined by linear inequalities in White III
and Eldeib (1994).
We give an overview of prior formulations in Table 1.

Table 1 Literature review.

Author(s) Objective function Strategy Uncertainty description Approach

Loui (1983) utility function a priori moments
dominated

paths

Nikolova et al. (2006b)
probability of

budget overrun
a priori normal distributions

convex
optimization

Nie and Fan (2006)
Samaranayake et al. (2012b)

probability of
budget overrun

adaptive distributions
dynamic

programming

Nilim and Ghaoui (2005) expected cost adaptive
maximum-likelihood

ambiguity sets
dynamic

programming
Jaillet et al. (2015)

Adulyasak and Jaillet (2014)
requirements

violation
a priori

distributions or
moments

iterative
procedure

Gabrel et al. (2013) worst-case cost a priori
intervals or

discrete scenarios
integer

programming

Parmentier and Meunier (2014)
monotone

risk measure
a priori distributions

labeling
algorithm

Our work
risk function
of the budget

overrun
adaptive

distributions or
confidence intervals

on statistics

dynamic
programming

1.3. Contributions

The main contributions of this paper can be summarized as follows:
1. We extend the class of adaptive SSP problems, first introduced in Fan et al. (2005) when the

objective is to minimize the probability of budget overrun, to general risk functions of the budget
overrun. We characterize optimal strategies and identify conditions on the risk function under
which infinite cycling is provably suboptimal. For any risk function satisfying these conditions,
we provide an efficient solution procedure to compute an ε-approximate optimal strategy for
any ε > 0.

2. We introduce the distributionally robust version of this general problem, under rectangular
ambiguity sets. We characterize optimal robust strategies and extend the conditions ruling out
infinite cycling. For any risk function satisfying these conditions, we provide efficient solution
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procedures to compute an ε-approximate optimal strategy when the arc cost distributions are
only known through confidence intervals on piecewise affine statistics (e.g. the mean, the mean
absolute deviation, any quantile...) for any ε > 0.

Special cases where the objective is to minimize the probability of budget overrun and the arc costs
are independent and take on values that are multiple of a unit cost can serve as a basis for comparison
with prior work on distributionally robust MDPs. For this subclass of problems, our formulation can
be interpreted as a distributionally robust MDP with finite horizon N , finitely many states n (resp.
actions m), and a rectangular ambiguity set. Using the solution methodology developed in this paper,
we can compute an ε-optimal strategy with complexity O(m ·n · log(N

ε
) · log(n)).

The remainder of the paper is organized as follows. In Section 2, we introduce the adaptive SSP
problem and its distributionally robust counterpart. Section 3 (resp. Section 4) is devoted to the the-
oretical and computational analysis of the nominal (resp. robust) problem. In Section 5, we consider
a vehicle routing application and present results of numerical experiments run with field data from
the Singapore road network. In Section 6, we relax some of the assumptions made in Section 2 and
extend the results presented in Sections 3 and 4.

Notations For a function g(·) and a random variable X distributed according to p, we denote by
EX∼p[g(X)] the expected value of g(X). For a set S ⊂ Rn, S̄ is the closure of S in the standard
topology of Rn, conv(S) denotes the convex hull generated by S and |S| denotes the cardinality of
S. For a set S ⊂ R2, Ŝ denotes the upper convex hull of S, i.e. Ŝ = {(x, y) ∈ R2 : ∃(a, b) ∈ conv(S)
such that x= a and y≥ b}.

2. Problem Formulation
In this section, we formulate the adaptive SSP problem for any risk function of the budget over-
run. Then, we introduce the distributionally robust approach based on ambiguity sets to tackle the
situation of limited knowledge of the arc cost probability distributions.

2.1. Nominal problem

Let G = (V ,A) be a finite directed graph where each arc (i, j) ∈ A is assigned a collection of non-
negative random costs (cτij)τ≥0. We consider a user traveling through G leaving from s and wishing to
reach d within a total prescribed budget T . Having already spent a total cost τ and being at node i,
choosing to cross arc (i, j) would incur an additional cost cτij , whose value becomes known after the
arc is crossed. In vehicle routing applications, cτij typically models the travel time along arc (i, j) at
time τ and T is the deadline imposed at the destination. The objective is to find a strategy to reach d
maximizing a risk function of the budget overrun, denoted by f(·). Mathematically, this corresponds
to solving:

sup
π∈Π

E[f(T −Xπ)], (1)
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where Π is the set of all history-dependent randomized strategies, i.e. mappings from the past re-
alizations of the costs and the previously visited nodes to probability distributions over the set of
neighboring nodes, and Xπ is the random cost associated with strategy π when leaving from node s
with budget T . We denote by H the set of all possible histories of the previously experienced costs
and previously visited nodes. Examples of natural risk functions include f(t) = t · 1t≤0, f(t) = 1t≥0,
and f(t) = −|t| which translate into, respectively, minimizing the expected budget overrun, maxi-
mizing the probability of completion within budget, and penalizing the expected deviation from the
target budget. When f(t) = 1t≥0, we recover the adaptive SOTA problem introduced in Fan et al.
(2005). We will restrict our attention to risk functions satisfying natural properties meant to prevent
infinite cycling in Theorem 1 of Section 3.1, e.g. maximizing the expected budget overrun is not
allowed. Without any additional assumption on the random costs, (1) is computationally intractable
and characterizing an optimal solution is theoretically hard. To simplify the problem, a common
approach in the literature is to assume independence of the arc costs, see for example Fan et al.
(2005) and Jaillet et al. (2015).

Assumption 1. (cτij)(i,j)∈A,τ≥0 are independent random variables.

In practice, the costs of neighboring arcs can be highly correlated for some applications and Assump-
tion 1 may then appear unreasonable. It turns out that most of the results derived in this paper can
be extended to the case where the dependence can be modeled by Markov chains of finite order, i.e.,
where the cost of an arc depends on the past m∈N experienced costs. This is of course at the price
of more technicalities and an increased complexity both in terms of modeling and of computational
requirements. To simplify the presentation, Assumption 1 is used throughout most of the paper and
the extension to Markov chains is discussed in Section 6.1. For the same reason, we further assume
that the random costs are identically distributed across τ .

Assumption 2. For each arc (i, j)∈A, the distribution of cτij does not depend on τ .

The extension to τ -dependent arc cost distributions is detailed in Section 6.2. For clarity of the
exposition, we omit the superscript τ in the notations when it is unnecessary and simply denote the
costs by (cij)(i,j)∈A, even though the cost of an arc corresponds to an independent realization of its
corresponding random variable each time it is crossed. We denote the probability distribution of cij by
pij . Throughout the paper, we also assume that the arc cost distributions have compact supports. This
is a perfectly reasonable assumption in many practical settings, such as in transportation networks.

Assumption 3. ∀(i, j)∈A, pij has compact support included in [δinf
ij , δ

sup
ij ] with δinf

ij > 0 and δsup
ij <∞.

Thus δinf = min
(i,j)∈A

δinf
ij > 0 and δsup = max

(i,j)∈A
δsup
ij <∞.

Assumption 3 is motivated by computational considerations, see Section 3.2.2, but is also substantially
needed when proving theoretical properties satisfied by optimal solutions to (1), and when analyzing
the complexity of the proposed algorithms.
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2.2. Distributionally robust problem

One of the major limitations of the approach described in Section 2.1 is that it requires a full
description of the uncertainty. Under Assumptions 1 and 2, this is equivalent to having access to the
exact arc cost probability distributions. Yet, in practice, we often only have access to a limited number
of realizations of the random variables cij . In these circumstances, it is tempting to estimate empirical
arc cost distributions and to take them as input to problem (1). However, estimating accurately a
distribution with samples drawn from realizations usually requires a very large sample size, and our
experimental evidence suggests that, as a result, the corresponding solutions may perform poorly
when only few samples are available, as we will see in Section 5. To mitigate the impact of the lack
of information on the arc cost distributions, we adopt a distributionally robust point of view where,
for each arc (i, j)∈A, we assume that pij is only known to lie in an ambiguity set Pij . We make the
following assumption on these ambiguity sets throughout the paper.

Assumption 4. ∀(i, j) ∈ A, Pij is not empty, closed for the weak topology, and a subset of
P([δinf

ij , δ
sup
ij ]), the set of probability measures on [δinf

ij , δ
sup
ij ].

The last part of Assumption 4 is a natural extension of Assumption 3, and is essential for computa-
tional tractability, see Section 4. The robust counterpart of (1) for an ambiguity-averse user is then
given by:

sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)], (2)

where the notation p refers to the fact that the costs (cij)(i,j)∈A are independent and distributed
according to (pij)(i,j)∈A.

As a byproduct of the results obtained for the nominal problem in Section 3.1, (2) can be equiv-
alently viewed as a distributionally robust MDP in the extended space state (i, τ) ∈ V ×R+ where
i is the current location and τ is the total cost spent so far and where the transition probabilities
from any state (i, τ) to any state (j, τ ′), for j ∈ V(i) and τ ′ ≥ τ , are only known to jointly lie in
a global ambiguity set. As shown in Wiesemann et al. (2013), the tractability of a distributionally
robust MDP hinges on the decomposability of the global ambiguity set as a Cartesian product over
the space state of individual ambiguity sets, a property coined as rectangularity. While the global
ambiguity set of (2) is rectangular with respect to our original state space V , it is not with respect to
the extended space space V ×R+. Thus, we are led to enlarge our ambiguity set to make it rectan-
gular and consider a robust relaxation of (2). This boils down to allowing the arc cost distributions
to vary in their respective ambiguity sets as a function of the total cost spent so far. This approach
leads to the following choice for our robust formulation associated with an ambiguity-averse user:

sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)], (3)
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where the notation pτ refers to the fact that, for any arc (i, j)∈A, the costs (cτij)τ≥0 are independent
and distributed according to (pτij)τ≥0. Note that when Assumption 2 is relaxed, we have a different
ambiguity set for each pair ((i, j), τ) ∈ A × R+, which is denoted in this case by Pτij , and (3) is
precisely the robust counterpart of (1) as opposed to a robust relaxation, see Section 6.2. Also observe
that (3) reduces to (1) when the ambiguity sets are singleton, i.e. Pij = {pij}. In the sequel, we focus
on (3) and refer to this optimization problem as the robust problem. But we will also investigate the
performance of an optimal solution to (3) with respect to the optimization problem (2), both from a
theoretical standpoint in Section 4.3.2, and from a practical standpoint in Section 5. Finally note that
we consider general ambiguity sets satisfying Assumption 4 when we study the theoretical properties
of (3). However, for tractability purposes, the solution procedure that we develop in Section 4.3.3
only applies to ambiguity sets defined by confidence intervals on piecewise affine statistics, such as
the mean, the absolute mean deviation, or any quantile. We refer to Section 4.3.2 for a discussion on
the modeling power of these ambiguity sets and on how to build them with samples. Similarly as for
the nominal problem, we will also restrict our attention to risk functions satisfying natural properties
meant to prevent infinite cycling in Theorem 2 of Section 4.1.

3. Theoretical and computational analysis of the nominal problem

3.1. Characterization of optimal policies

Perhaps the most important property of (1) is that Bellman’s Principle of Optimality can be shown
to hold. Specifically, for any history of the process h∈H, an optimal strategy to (1) must also be an
optimal strategy to the subproblem of minimizing the risk function given this history. Otherwise, we
could modify this strategy for this particular history and take it to be an optimal strategy for this
subproblem. This operation could only increase the objective function of the optimization problem
(1), which would contradict the optimality of the strategy.

Another, less obvious, interesting feature of (1) is that, even for perfectly natural risk functions
f(·), making decisions according to an optimal strategy may lead to cycle back to a previously
visited location. This may happen, for instance, when the objective is to maximize the probability of
completion within budget, see Samaranayake et al. (2012b), and their example can be adapted when
the objective is to minimize the expected budget overrun, see Figure 1. While counter-intuitive at
first, the existence of loops is a direct consequence of the stochasticity of the costs when the decision
maker is concerned about the risk of going over budget, as illustrated in Figure 1. On the other hand,
the existence of infinitely many loops is particularly troublesome from a modeling perspective as it
would imply that a user traveling through V following the optimal strategy may get at a location
i 6= d having already spent an arbitrarily large budget with positive probability. Furthermore, infinite
cycling is also problematic from a computational standpoint because describing an optimal strategy
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s

d

a

Figure 1 Existence of loops. If the initial budget is T = 8 and the risk function is f(t) = t · 1t≤0, the optimal
strategy to travel from s to d is to go to a first. This is because going to d directly incurs an expected
delay of 0.1, while going to a first and then planning to go to d incurs an expected delay of 0.01. If we
end up getting a cost csa = 5 on the way to a, then, performing a similar analysis, the optimal strategy
is to go back to s.

would require unlimited storage capacity. We argue that infinite cycling arises only when the risk
function is poorly chosen. This is obvious when f(t) = −t · 1t≤0, which corresponds to maximizing
the expected budget overrun, but we stress that it is not merely a matter of monotonicity. Infinite
cycling may occur even if f(·) is increasing as we highlight in Example 1.

Example 1. Consider the simple directed graph of Figure 2a and the risk function f(·) illustrated
in Figure 2b. f(·) is defined piecewise, alternating between concavity and convexity on intervals of
size T ∗ and the same pattern is repeated every 2T ∗. This means that, for this particular objective,
the attitude towards risk keeps fluctuating as the budget decreases, from being risk-averse when f(·)
is locally concave to being risk-seeking when f(·) is locally convex. Now take δinf << 1, ε << 1 and
T ∗ > 3 and consider finding a strategy to get to d starting from s with initial budget T which we
choose to take at a point where f(·) switches from being concave to being convex, see Figure 2b.
Going straight to d incurs an expected objective value of f(T − 2)< 1

2f(T − 1) + 1
2f(T − 3) and we

can make this gap arbitrarily large by properly defining f(·). Therefore, by taking ε and δinf small
enough, going to a first is optimal. With probability ε > 0, we arrive at a with a remaining budget
of T − T ∗. Afterwards, the situation is reversed as we are willing to take as little risk as possible
and the corresponding optimal solution is to go back to s. With probability ε, we arrive at s with a
budget of T − 2T ∗ and we are back in the initial situation, showing the existence of infinite cycling.

In light of Example 1, we identify a set of sufficient asymptotic conditions on f(·) ruling out the
possibility of infinite cycling.

Theorem 1. Case 1: If there exists T1 such that either:
(a) f(·) is increasing, concave, and C2 on (−∞, T1) and such that f ′′

f ′ →−∞ 0,



Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty
10

s

d

a

(a) Graph, s and d are respectively the
source and the destination.

(b) risk function. T is the initial budget,
2T ∗ is the period of f ′(·).

Figure 2 Existence of infinite cycling from Example 1.

(b) f(·) is C1 on (−∞, T1) and lim−∞ f ′ exists, is positive, and is finite,
then there exists Tf such that, for any T ≥ 0 and as soon as the total cost spent so far is larger than
T − Tf , any optimal policy to (1) follows the shortest-path tree rooted at d with respect to the mean
arc costs, which we denote by T .
Case 2: If there exists Tf such that the support of f(·) is included in [Tf ,∞), then following T is
optimal as soon as the total cost spent so far is larger than T −Tf .

For a node i, T (i) refers to the set of immediate successors of i in T . The proof is deferred to the
online supplement, Section B.1.

Observe that, in addition to not being concave, the choice of f(·) in Example 1 does not satisfy
property (b) as f ′(·) is 2T ∗-periodic. An immediate consequence of Theorem 1 is that an optimal
strategy to (1) does not include any loop as soon as the total cost spent so far is larger than T −Tf .
Since each arc has a positive minimum cost, this rules out infinite cycling. The parameter Tf can be
computed through direct reasoning on the risk function f(·) or by inspecting the proof of Theorem
1. Remark that any polynomial of even degree with a negative leading coefficient satisfies condition
(a) of Theorem 1. Examples of valid objectives include maximization of the probability of completion
within budget f(t) = 1t≥0 with Tf = 0, minimization of the budget overrun f(t) = t ·1t≤0 with Tf = 0,
and minimization of the squared budget overrun f(t) =−t2 · 1t≤0 with

Tf =−
|V| · δsup ·max

i∈V
Mi

2 ·min
i6=d

min
j∈V(i),j /∈T (i)

{E[cij ] +Mj −Mi}
,

where Mi is the minimum expected cost to go from i to d and with the convention that the mini-
mum of an empty set is equal to ∞. When f(·) is increasing but does not satisfy condition (a) or
(b), the optimal strategy may follow a different shortest-path tree. For instance, if f(t) =− exp(−t),
the optimal policy is to follow the shortest path to d with respect to (log(E[exp(cij)]))(i,j)∈A. Con-
versely, if f(t) = exp(t), the optimal policy is to follow the shortest path to d with respect to
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(− log(E[exp(−cij)]))(i,j)∈A. For these reasons, proving that an optimal strategy to (1) does not
include infinitely many loops when f(·) does not satisfy the assumptions of Theorem 1 requires
objective-specific (and possibly graph-specific) arguments. To illustrate this last point, observe that
the conclusion of Theorem 1 always holds for a graph consisted of a single simple path regardless
of the definition of f(·), even if this function is decreasing. Hence, the assumptions of Theorem 1
are not necessary in general to prevent infinite cycling but restricting our attention to this class of
risk functions enables us to study the problem in a generic fashion and to develop a general-purpose
algorithm in Section 3.2.

Another remarkable property of (1) is that it can be equivalently formulated as a MDP in the
extended space state (i, t) ∈ V × (−∞, T ] where i is the current location and t is the remaining
budget. As a result, standard techniques for MDPs can be applied to show that there exists an op-
timal Markov policy π∗f which is a mapping from the current location and the remaining budget to
the next node to visit. Furthermore, the optimal Markov policies are characterized by the dynamic
programming equation:

ud(t) = f(t) t≤ T

ui(t) = max
j∈V(i)

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T

π∗f (i, t)∈ arg max
j∈V(i)

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T,

(4)

where V(i) = {j ∈ V | (i, j) ∈ A} refers to the set of immediate successors of i in G and ui(t) is the
expected objective-to-go when leaving i ∈ V with remaining budget t. The interpretation of (4) is
simple. At each node i ∈ V , and for each potential remaining budget t, the decision maker should
pick the outgoing edge (i, j) that yields the maximum expected objective-to-go if acting optimally
thereafter.

Proposition 1. Under the same assumptions as in Theorem 1, any Markov policy solution to (4)
is an optimal strategy for (1).

The proof is deferred to the online supplement, Section B.2.

3.2. Solution methodology

In order to solve (1), we use Proposition 1 and compute a Markov policy solution to the dynamic
program (4). We face two main challenges when we carry out this task. First, (4) is a continuous
dynamic program. To solve this program numerically, we approximate the functions (ui(·))i∈V by
piecewise constant functions, as detailed in Section 3.2.1. Second, as illustrated in Figure 1 of Section
3.1, an optimal Markov strategy solution to (4) may contain loops. Hence, in the presence of a cycle
in G, say i→ j→ i, observe that computing ui(t) requires to know the value of uj(t) which in turns
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depends on ui(t). As a result, it is a-priori unclear how to solve (4) without resorting to value or policy
iteration. We explain how to sidestep this difficulty and construct efficient label-setting algorithms
in Section 3.2.2. In particular, using these algorithms, we can compute:
• an optimal solution to (1) in O(|A| · T−Tf∆t · log2( δsup

∆t ) + |V|2 · δsup

∆t · log(|V| · δsup

∆t )) computation
time when the arc costs only take on values that are multiple of ∆t > 0 and for any risk function f(·)
satisfying Theorem 1. This simplifies to O(|A| · T∆t · log2( δsup

∆t )) when the objective is to maximize the
probability of completion within budget,
• an ε-approximate solution to (1) in

O(
(|V|+ T−Tf

δinf )2

ε
· [ |A| · (T −Tf ) · log2(

(|V|+ T−Tf
δinf ) · δsup

ε
) + |V|2 · δsup · log(

(|V|+ T−Tf
δinf ) · |V| · δsup

ε
) ])

computation time when the risk function is Lipschitz on compact sets.

3.2.1. Discretization scheme For each node i ∈ V , we approximate ui(·) by a piecewise con-
stant function u∆t

i (·) of uniform stepsize ∆t. Under the conditions of Theorem 1, we only need to
approximate ui(·) for a remaining budget larger than kmin

i ·∆t, for kmin
i =

⌊
Tf−(|V|−level(i,T )+1)·δsup

∆t

⌋
,

where level(i,T ) is defined as the level of node i in the rooted tree T , i.e. the number of parent nodes
of i in T plus one. This is because, following the shortest path tree T once the remaining budget
drops below Tf , we can never get to state i with remaining budget less than kmin

i ·∆t. We use the
approximation:

u∆t
i (t) = u∆t

i (
⌊
t

∆t

⌋
·∆t) i∈ V , t∈ [kmin

i ·∆t, T ]

π∆t(i, t) = π∆t(i,
⌊
t

∆t

⌋
·∆t) i 6= d, t∈ [kmin

i ·∆t, T ],
(5)

and the values at the mesh points are determined by the set of equalities:

u∆t
d (k ·∆t) = f(k ·∆t) k = kmin

d , · · · ,
⌊
T

∆t

⌋
u∆t
i (k ·∆t) = max

j∈V(i)

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k =

⌊
Tf
∆t

⌋
, · · · ,

⌊
T

∆t

⌋
π∆t(i, k ·∆t)∈ arg max

j∈V(i)

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k =

⌊
Tf
∆t

⌋
, · · · ,

⌊
T

∆t

⌋
u∆t
i (k ·∆t) = max

j∈T (i)

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k = kmin

i , · · · ,
⌊
Tf
∆t

⌋
− 1

π∆t(i, k ·∆t)∈ arg max
j∈T (i)

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k = kmin

i , · · · ,
⌊
Tf
∆t

⌋
− 1.

(6)

Notice that for t≤ Tf , we rely on Theorem 1 and only consider, for each node i 6= d, the immediate
neighbors of i in T . This is of critical importance to be able to solve (6) with a label-setting algorithm,
see Section 3.2.2. The next result provides insight into the quality of the policy π∆t as an approximate
solution to (1).
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Proposition 2. Consider a solution to the global discretization scheme (5) and (6),
(π∆t, (u∆t

i (·))i∈V). We have:
1. If f(·) is non-decreasing, the functions (u∆t

i (·))i∈V converge pointwise almost everywhere to
(ui(·))i∈V as ∆t→ 0,

2. If f(·) is continuous, the functions (u∆t
i (·))i∈V converge uniformly to (ui(·))i∈V and π∆t is a

o(1)-approximate optimal solution to (1) as ∆t→ 0,
3. If f(·) is Lipschitz on compact sets (e.g. if f(·) is C1), the functions (u∆t

i (·))i∈V converge uni-
formly to (ui(·))i∈V at speed ∆t and π∆t is a O(∆t)-approximate optimal solution to (1) as
∆t→ 0,

4. If f(t) = 1t≥0 and the distributions (pij)(i,j)∈A are continuous, the functions (u∆t
i (·))i∈V converge

uniformly to (ui(·))i∈V and π∆t is a o(1)-approximate optimal solution to (1) as ∆t→ 0.

The proof is deferred to the online supplement, Section B.3.
If the distributions (pij)(i,j)∈A are discrete and f(·) is piecewise constant, an exact optimal solution

to (1) can be computed by appropriately choosing a different discretization length for each node. In
this paper, we focus on discretization schemes with a uniform stepsize ∆t for mathematical conve-
nience. We stress that choosing adaptively the discretization length can improve the quality of the
approximation for the same number of computations, see Hoy and Nikolova (2015).

3.2.2. Solution procedures The key observation enabling the development of label-setting
algorithms to solve (4) is made by Samaranayake et al. (2012b). They note that, when the risk
function is the probability of completion within budget, ui(t) can be computed for i ∈ V and t ≤

T as soon as the values taken by uj(·) on (−∞, t − δinf ] are available for all neighboring nodes
j ∈ V(i) since pij(ω) = 0 for ω ≤ δinf under Assumption 3. They propose a label-setting algorithm
which consists in computing the functions (ui(·))i∈V block by block, by interval increments of size
δinf . After the following straightforward initialization step: ui(t) = 0 for t ≤ 0 and i ∈ V , they first
compute (ui(·)[0,δinf ])i∈V , then (ui(·)[0,2·δinf ])i∈V and so on to eventually derive (ui(·)[0,T ])i∈V . While
this incremental procedure can still be applied for general risk functions, the initialization step gets
tricky if f(·) does not have a one-sided compact support of the type [a,∞). Theorem 1 is crucial in this
respect because the shortest-path tree T induces an ordering of the nodes to initialize the collection
of functions (ui(·))i∈V for remaining budgets smaller than Tf . The functions can subsequently be
computed for larger budgets using the incremental procedure outlined above. To be specific, we solve
(6) in three steps. First, we compute Tf (defined in Theorem 1). Inspecting the proof of Theorem
1, observe that Tf only depends on few parameters, namely the risk function f(·), the expected arc
costs, and the maximum arc costs. Next, we compute the values u∆t

i (k ·∆t) for k ∈ {kmin
i , · · · ,

⌊
Tf
∆t

⌋
−

1} starting at node i = d and traversing the tree T in a breadth-first fashion using fast Fourier
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transforms with complexity O(|V|2 · δsup

∆t · log(|V| · δsup

∆t )). Note that this step can be made to run
significantly faster for specific risk functions, e.g. for the probability of completion within budget
where u∆t

i (k ·∆t) = 0 for k <
⌊
Tf
∆t

⌋
and any i ∈ V . Finally, we compute the values u∆t

i (k ·∆t) for
k ∈ {

⌊
Tf
∆t

⌋
+m ·

⌊
δinf

∆t

⌋
, · · · ,

⌊
Tf
∆t

⌋
+ (m+ 1) ·

⌊
δinf

∆t

⌋
} for all nodes i∈ V by induction on m.

Complexity analysis. The description of the last step of the label-setting approach leaves out one
detail that has a dramatic impact on the runtime complexity. We need to specify how to compute
the convolution products arising in (6) for k ≥

⌊
Tf
∆t

⌋
, keeping in mind that, for any node i ∈ V , the

values u∆t
i (k ·∆t) for k ∈ {

⌊
Tf
∆t

⌋
, · · · ,

⌊
T
∆t

⌋
} become available online by chunks of length

⌊
δinf

∆t

⌋
as

the label-setting algorithm progresses. A naive implementation consisting in applying the pointwise
definition of convolution products has a runtime complexity O(|A| · (T−Tf )·(δsup−δinf)

(∆t)2 ). Using fast
Fourier transforms for each chunk brings down the complexity to O(|A| · (T−Tf )

∆t · δsup

δinf · log( δsup

∆t )).
Applying another online scheme developed in Dean (2010) and Samaranayake et al. (2012a), based
on the idea of zero-delay convolution, leads to a worst-case complexity O(|A| · (T−Tf )

∆t · log2( δsup

∆t )).
Numerical evidence suggest that this last implementation significantly speeds up the computations,
see Samaranayake et al. (2012a).

4. Theoretical and computational analysis of the robust problem

4.1. Characterization of optimal policies

The properties satisfied by optimal solutions to the nominal problem naturally extend to their robust
counterparts, which we recall are defined as optimal solutions to (3). In fact, all the results derived
in this section are strict generalizations of those obtained in Section 3.1 for singleton ambiguity sets.
We point out that the rectangularity of the global ambiguity set is essential for the results to carry
over to the robust setting as it guarantees that Bellman’s Principle of Optimality continue to hold,
which is an absolute prerequisite for computational tractability.

Similarly as what we have seen for the nominal problem, infinite cycling might occur in the robust
setting, depending on the risk function at hand. This difficulty can be shown not to arise under the
same conditions on f(·) as for the nominal problem.

Theorem 2. Case 1: If there exists T1 such that either:
(a) f(·) is increasing, concave, and C2 on (−∞, T1) and such that f ′′

f ′ →−∞ 0,
(b) f(·) is C1 on (−∞, T1) and lim−∞ f ′ exists, is positive, and is finite,
then there exists T rf such that, for any T ≥ 0 and as soon as the total cost spent so far is larger than
T − T rf , any optimal policy solution to (3) follows the shortest-path tree rooted at d with respect to
the worst-case mean arc costs, i.e. (maxpij∈Pij EX∼pij [X])(i,j)∈A, which we denote by T r.
Case 2: If there exists Tf such that the support of f(·) is included in [Tf ,∞), then following T r is
optimal as soon as the total cost spent so far is larger than T −T rf .
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For a node i, T r(i) refers to the set of immediate successors of node i in T r. The proof is deferred

to the online supplement, Section B.4.

Interestingly, T rf is determined by the exact same procedure as Tf provided the expected arc costs

are substituted with the worst-case expected costs. For instance, when f(t) =−t2 ·1t≤0, we may take:

T rf =−
|V| · δsup ·max

i∈V
Mi

2 ·min
i6=d

min
j∈V(i),j /∈T r(i)

{maxpij∈Pij EX∼pij [X] +Mj −Mi}
,

where Mi is the worst-case minimum expected cost to go from i to d.

Last but not least, problem (3) can be formulated as a distributionally robust MDP in the extended

space state (i, t)∈ V× (−∞, T ]. As a result, one can show that there exists an optimal Markov policy

π∗f,P characterized by the dynamic programming equation:

ud(t) = f(t) t≤ T

ui(t) = max
j∈V(i)

inf
pij∈Pij

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T

π∗f,P(i, t)∈ arg max
j∈V(i)

inf
pij∈Pij

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T,

(7)

where ui(t) is the worst-case expected objective-to-go when leaving i ∈ V with remaining budget t.

Observe that (7) only differs from (4) through the presence of the infimum over Pij .

Proposition 3. Any Markov policy solution to (7) is an optimal strategy for (3).

The proof is deferred to the online supplement, Section B.5.

4.2. Tightness of the robust problem

The optimization problem (3) is a robust relaxation of (2) in the sense that, for any strategy π ∈Π,

we have:

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)]≥ inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)].

We say that (2) and (3) are equivalent if they share the same optimal value and if there exists a

common optimal strategy. For general risk functions, ambiguity sets, and graphs, (2) and (3) are not

equivalent. In this section, we highlight several situations of interest for which (2) and (3) happen

to be equivalent and we bound the gap between the optimal values of (2) and (3) for a subclass of

risk functions. In this paper, we solve (3) instead of (2) for computational tractability, irrespective

of whether or not (2) and (3) are equivalent. Hence, the results presented in this section are included

mainly for illustrative purposes, i.e. we do not impose further restrictions on the risk function or the

ambiguity sets here.
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Equivalence of (2) and (3). As a simple first example, observe that when f(·) is non-decreasing
and Pij =P([δinf

ij , δ
sup
ij ]), both (2) and (3) reduce to a standard robust approach where the goal is to

find a path minimizing the sum of the worst-case arc costs. The following result identifies conditions
of broader applicability when the decision maker is risk-seeking.

Lemma 1. Suppose that f(·) is convex and satisfies property (b) in Case 1 of Theorem 2 and that,
for any arc (i, j)∈ V, the Dirac distribution supported at maxpij∈Pij EX∼pij [X] belongs to Pij. Then,
(2) and (3) are equivalent.

The proof is deferred to the online supplement, Section B.7.
To illustrate Lemma 1, observe that the assumptions are satisfied for f(t) = exp(a · t) + b · t, with a

and b taken as positive values, and when the ambiguity sets are defined through confidence intervals
on the expected costs, i.e. for any arc (i, j)∈A:

Pij = {p∈P([δinf
ij , δ

sup
ij ]) : EX∼p[X]∈ [αij , βij ]},

with αij ≤ βij . Further note that adding upper bounds on the mean deviation or on higher order
moments in the definition of the ambiguity sets does not alter the conclusion of Lemma 1. We move
on to another situation of interest where (2) and (3) can be shown to be equivalent.

Lemma 2. Take K ∈N. Suppose that:
• G is a single-path graph,
• f(·) is CK+1 and f (K+1)(t)> 0 ∀t or f (K+1)(t)< 0 ∀t,
• For any arc (i, j)∈A:

Pij = {p∈P([δinf
ij , δ

sup
ij ]) : EX∼p(X) =m1

ij, · · · ,EX∼p(XK) =mK
ij },

where m1
ij, · · · ,mK

ij are non-negative.
Then (2) and (3) are equivalent.

The proof is deferred to the online supplement, Section B.8.
When G is a single-path graph, the optimal value of (2) corresponds to the worst-case risk function

when following this path, given that the arc cost distributions are only known to lie in the ambi-
guity sets. While it is a priori unclear how to compute this quantity, Proposition 4 of Section 4.3.1
establishes that the optimal value of (3) can be determined with arbitrary precision provided the
inner optimization problems appearing in the discretization scheme of Section 4.3.1 can be computed
numerically. Hence, even in this seemingly simplistic situation, the equivalence between (2) and (3)
is an important fact to know as it has significant computational implications. Lemma 2 shows that,
when the risk function is (K + 1)th order convex or concave and when the arc cost distributions are
only known through the first K-order moments, (2) and (3) are in fact equivalent. For this particular
class of ambiguity sets, the inner optimization problems of the discretization scheme of Section 4.3.1
can be solved using semidefinite programming, see Bertsimas and Popescu (2005).
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Bounding the gap between the optimal values of (2) and (3). It turns out that, for a particular
subclass of risk functions, we can bound the gap between the optimal values of (2) and (3) uniformly
over all graphs and ambiguity sets.

Lemma 3. Denote the optimal value of (2) (resp. (3)) by v∗ (resp. v).
If there exists γ, a > 0 and β, b such that one of the following conditions holds:
• γ · t+ β ≥ f(t)≥ a · t+ b ∀t≤ T ,
• γ · exp(t) + β ≥ f(t)≥ a · exp(t) + b ∀t≤ T ,
• −γ · exp(−t) + β ≥ f(t)≥−a · exp(−t) + b ∀t≤ T ,

then v∗ ≥ v≥ a
γ
· (v∗− β) + b.

The proof is deferred to the online supplement, Section B.9.

4.3. Solution methodology

We proceed as in Section 3.2 and compute an approximate Markov policy solution to (7). The com-
putational challenges faced when solving the nominal problem carry over to the robust counterpart,
but with additional difficulties to overcome. Specifically, the continuity of the problem leads us to
build a discrete approximation in Section 4.3.1 similar to the one developed for the nominal ap-
proach. We also extend the label-setting algorithm of Section 3.2.2 to tackle the potential existence
of cycles at the beginning of Section 4.3.3. However, the presence of an inner optimization problem
in (7) is a distinctive feature of the robust problem which poses a new computational challenge. As a
result, and in contrast with the situation for the nominal problem where this optimization problem
reduces to a convolution product, it is not a priori obvious how to solve the discretization scheme
numerically, let alone efficiently. As can be expected, the exact form taken by the ambiguity sets
has a major impact on the computational complexity of the inner optimization problem. In an effort
to mitigate the computational burden, we restrict our attention to a subclass of ambiguity sets de-
fined by confidence intervals on piecewise affine statistics in Section 4.3.2. While this simplification
might seem restrictive, we show that this subclass displays significant modeling power. Finally, we
develop two general-purpose algorithms in Section 4.3.3 for this particular subclass of ambiguity sets.
The computational attractiveness of these approaches hinges on the existence of a data structure,
presented in Section 4.3.4, maintaining the convex hull of a dynamic set of points efficiently. The
mechanism behind this data structure can be regarded as the counterpart of the online fast Fourier
scheme for the nominal approach. In particular, using the algorithms developed in this section, we
can compute:
• an ε-approximate solution to (3) in

O(
|A| · (T −T rf ) + |V|2 · δsup

∆t · log(δ
sup− δinf

∆t ) · log(
|V|+ T−T rf

δinf

ε
))
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computation time when the arc costs only take on values that are multiple of ∆t > 0 and for any
continuous risk function f(·) satisfying Theorem 2. This also applies when the objective is to maximize
the probability of completion within budget and even simplifies to O(|A|· T∆t · log( δsup−δinf

∆t ) · log( T
ε·δinf )),

• an ε-approximate solution to (3) in

O(
(|V|+ T−T rf

δinf )2 · (|A| · (T −T rf ) + |V|2 · δsup)
ε

· log(
(|V|+ T−T rf

δinf ) · (δsup− δinf)
ε

) · log(
|V|+ T−T rf

δinf

ε
))

computation time when the risk function is Lipschitz on compact sets.

4.3.1. Discretization scheme For each node i∈ V , we approximate ui(·) by a piecewise affine
continuous function u∆t

i (·) of uniform stepsize ∆t. This is in contrast with Section 3.2.1 where we
use a piecewise constant approximation. This change is motivated by computational considerations.
Essentially, the continuity of u∆t

i (·) guarantees strong duality for the inner optimization problem
appearing in (7). Similarly as for the nominal problem, we only need to approximate ui(·) for a
remaining budget larger than kr,min

i ·∆t, for kr,min
i =

⌊
T rf−(|V|−level(i,T r)+1)·δsup

∆t

⌋
, where level(i,T r) is

the level of node i in T r. Specifically, we use the approximation:

u∆t
i (t) = (1− t

∆t +
⌊
t

∆t

⌋
) ·u∆t

i (
⌊
t

∆t

⌋
·∆t) + ( t

∆t −
⌊
t

∆t

⌋
) ·u∆t

i (
⌈
t

∆t

⌉
·∆t) i∈ V , t∈ [kr,min

i ·∆t, T ]

π∆t(i, t) = π∆t(i,
⌊
t

∆t

⌋
·∆t) i 6= d, t∈ [kr,min

i ·∆t, T ],
(8)

and the values at the mesh points are determined by the set of equalities:

u∆t
d (k ·∆t) = f(k ·∆t) k = kr,min

d , · · · ,
⌊
T

∆t

⌋
u∆t
i (k ·∆t) = max

j∈V(i)
inf

pij∈Pij

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k =

⌊
T rf
∆t

⌋
, · · · ,

⌊
T

∆t

⌋
π∆t(i, k ·∆t)∈ arg max

j∈V(i)
inf

pij∈Pij

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k =

⌊
T rf
∆t

⌋
, · · · ,

⌊
T

∆t

⌋
u∆t
i (k ·∆t) = max

j∈T r(i)
inf

pij∈Pij

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k = kr,min

i , · · · ,
⌊
T rf
∆t

⌋
− 1

π∆t(i, k ·∆t)∈ arg max
j∈T r(i)

inf
pij∈Pij

∫ ∞
0

pij(ω) ·u∆t
j (k ·∆t−ω)dω i 6= d, k = kr,min

i , · · · ,
⌊
T rf
∆t

⌋
− 1.

(9)

As we did for the nominal problem, we can quantify the quality of π∆t as an approximate solution
to (3) as a function of the regularity of the risk function.

Proposition 4. Consider a solution to the global discretization scheme (8) and (9),
(π∆t, (u∆t

i (·))i∈V). We have:
1. If f(·) is non-decreasing, the functions (u∆t

i (·))i∈V converge pointwise almost everywhere to
(ui(·))i∈V as ∆t→ 0.
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2. If f(·) is continuous, the functions (u∆t
i (·))i∈V converge uniformly to (ui(·))i∈V and π∆t is a

o(1)-approximate optimal solution to (3) as ∆t→ 0.
3. If f(·) is Lipschitz on compact sets (e.g. if f(·) is C1), the functions (u∆t

i (·))i∈V converge uni-
formly to (ui(·))i∈V at speed ∆t and π∆t is a O(∆t)-approximate optimal solution to (3) as
∆t→ 0.

The proof is deferred to the online supplement, Section B.6.

4.3.2. Ambiguity sets For computational tractability, we restrict our attention to the following
subclass of ambiguity sets.

Definition 1. For any arc (i, j)∈A:

Pij = {p∈P([δinf
ij , δ

sup
ij ]) : EX∼p[gijq (X)]∈ [αijq , βijq ], q = 1, · · · ,Qij},

where:
• the functions (gijq (·))q=1,··· ,Qij are piecewise affine with a finite number of pieces on [δinf

ij , δ
sup
ij ]

and such that Pij is closed for the weak topology,
• −∞≤ αijq ≤ βijq ≤∞ for q = 1, · · · ,Qij .

Note that Definition 1 allows to model one-sided constraints by either taking αijq =−∞ or βijq =∞.
Moreover, we point out that the functions (gijq (·))q=1,··· ,Qij need not be continuous to guarantee
closeness of Pij . For instance, the constraints EX∼p[1X∈S]≤ β and EX∼p[1X∈S′ ]≥ β, for S (resp. S′)
an open (resp. a closed) set, are perfectly valid. In terms of modeling power, Definition 1 allows to
have constraints on standard statistics, such as the mean value, the mean absolute deviation, and
the median, but also to capture distributional asymmetry, through constraints on any quantile or
of the type EX∼p[X · 1X>θ] ≤ β, and to incorporate higher-order information, e.g. the variance or
the skewness, since continuous functions can be approximated arbitrarily well by piecewise affine
functions on a compact set. Finally, observe that Definition 1 also allows to model the situation
where cij only takes values in a prescribed finite set S through the constraint EX∼p[1X∈S]≥ 1.

Data-driven ambiguity sets. Ambiguity sets of the form introduced in Definition 1 can be built
using a combination of prior knowledge and historical data. To illustrate, suppose that, for any arc
(i, j)∈A, we have observed nij samples drawn from the corresponding arc cost distribution. Setting
aside computational aspects, there is an inherent trade-off at play when designing ambiguity sets
with this empirical data: using more statistics and/or narrowing the confidence intervals will improve
the quality of the guarantee on the risk function provided by the robust approach, but will, on the
other hand, deteriorate the probability that this guarantee holds. Assuming we are set on which
statistics to use, the trade-off is simple to resolve as far as confidence intervals are concerned. Using
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Hoeffding’s and Boole’s inequalities, the confidence interval for statistics q of arc (i, j) should be
centered at the empirical average and have width εijq determined by:

εijq

max
[δinf
ij
,δ

sup
ij

]
gijq − min

[δinf
ij
,δ

sup
ij

]
gijq

=

√√√√√ log( 2
ε
·
∑

(i,j)∈A
Qij)

2nij

in order to achieve a probability 1− ε that the guarantee holds. Choosing which statistics to use is
a more complex endeavor. It is not even clear whether using more statistics is beneficial since the
confidence intervals jointly expand with

∑
(i,j)∈A

Qij . Numerical evidence presented in Section 5 suggests

that low-order statistics, such as the mean, tend to be more informative when only few samples are
available. Conversely, as sample sizes get very large, incorporating higher-order information seem to
improve the quality of the strategy derived. In the limit where the statistics can be computed exactly,
we should use as many statistics as possible. This observation is supported by the following lemma.

Lemma 4. For any arc (i, j) ∈A, consider (Pkij)k∈N, a sequence of nested ambiguity sets satisfying
Assumption 4. If f(·) is continuous, then the optimal value of the robust problem (3) when the
uncertainty sets are taken as (Pkij)(i,j)∈A monotonically converges to the optimal value of (3) when
the uncertainty sets are taken as (∩k∈NPkij)(i,j)∈A as k→∞.
In particular, if ∩k∈NPkij is a singleton for all arcs (i, j) ∈ A, then the optimal value of the robust
problem converges to the value of the nominal problem (1).

The proof is deferred to the online supplement, Section B.10.
Using the Weierstrass approximation theorem, observe that the second part of Lemma 4 applies

in particular when the ambiguity sets Pkij are defined by the first k-order moments.

4.3.3. Solution procedures We develop two general-purpose methods to compute a solution
to the discretization scheme (9) for the class of ambiguity sets identified in Section 4.3.2. The first
method, based on the ellipsoid algorithm, computes an ε−approximate solution to (9) with worst-case
complexity:

O(
|A| · (T −T rf ) + |V|2 · δsup

∆t · log(δ
sup− δinf

∆t ) · log(
|V|+ T−T rf

δinf

ε
)),

provided f(·) is continuous and where the hidden factors are linear in the number of pieces of each
statistic and polynomial in the number of statistics. We remind the reader that the complexity of
solving the discretization scheme (6) for the nominal problem is O(|A| · T−Tf∆t · log2( δsup

∆t ) + |V|2 · δsup

∆t ·

log(|V| · δsup

∆t )) when using zero-delay convolution. While these bounds are not directly comparable
because some of the parameters required to specify a robust instance are not relevant for a nominal
instance and vice versa, we point out that they share many similarities, including the almost linear
dependence on 1

∆t . The second method, based on delayed column generation and warm starting
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techniques, is more practical but has worst-case complexity exponential in 1
∆t . We stress that none

of these approaches can be used to solve the nominal problem as the latter is not a particular case
of the robust problem for the restricted class of ambiguity sets defined in Section 4.3.2. Indeed,
characterizing a single distribution generally requires infinitely many moment constraints.

Label-setting approach. To cope with the potential existence of cycles, we remark that the label-
setting approach developed for the nominal approach trivially extends to the robust setting. Similarly
as for the nominal problem, we proceed in three steps to solve (9). First, we compute T rf . Next, we
compute the values u∆t

i (k ·∆t) for k ∈ {kr,min
i , · · · ,

⌊
T rf
∆t

⌋
− 1} starting at node i = d and traversing

the tree T r in a breadth-first fashion. Finally, we compute the values u∆t
i (k ·∆t) for k ∈ {

⌊
T rf
∆t

⌋
+

m ·
⌊
δinf

∆t

⌋
, · · · ,

⌊
T rf
∆t

⌋
+ (m+ 1) ·

⌊
δinf

∆t

⌋
} for all nodes i ∈ V by induction on m. Of course, an efficient

procedure solving the inner optimization problem of (9) is a prerequisite for carrying out the last
two steps. This will be our focus in the remainder of this section.

Solving the Inner Optimization Problem. Consider any arc (i, j) ∈ A. We need to solve, at each
step k ∈ {kr,min

i , · · · ,
⌊
T
∆t

⌋
}, the optimization problem:

inf
p∈P([δinf

ij
,δ

sup
ij

])
EX∼p[u∆t

j (k ·∆t−X)]

subject to EX∼p[gijq (X)]∈ [αijq , βijq ] q = 1, · · · ,Qij .
(10)

Since the set of non-negative measures on [δinf
ij , δ

sup
ij ] is a cone, (10) can be cast as a conic linear

problem. As a result, standard conic duality theory applies and the optimal value of (10) can be
equivalently computed by solving a dual optimization problem which turns out to be easier to study.
For a thorough exposition of the duality theory of general conic linear problems, the reader is referred
to Shapiro (2001). To simplify the presentation, we assume that (αijq )q=1,··· ,Qij and (βijq )q=1,··· ,Qij are
all finite quantities but this is by no means a limitation of our approach.

Lemma 5. The optimization problem (10) has the same optimal value as the semi-infinite linear
program:

sup
z∈R

y1,··· ,yQij∈R
x1,··· ,xQij∈R

z+
Qij∑
q=1

(αijq ·xq − βijq · yq)

subject to z+
Qij∑
q=1

(xq − yq) · gijq (ω)≤ u∆t
j (k ·∆t−ω) ∀ω ∈ [δinf

ij , δ
sup
ij ]

yq, xq ≥ 0 q = 1, · · · ,Qij .

(11)

Proof We take the Lagrangian dual of (10). Since u∆t
j (·) is continuous by construction and Pij is

not empty and compact by assumption, Proposition 3.1 in Shapiro (2001) shows that strong duality
holds. �
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Because the functions (gijq (·))q=1,··· ,Qij are all piecewise affine, we can partition [δinf
ij , δ

sup
ij ] into Rij

non-overlapping intervals (Ir)r=1,··· ,Rij such that the functions (gijq (·))q=1,··· ,Qij are all affine on Ir for

any r ∈ {1, · · · ,Rij}, i.e.:

gijq (ω) = aijq,r ·ω+ bijq,r if ω ∈ Ir

for any q ∈ {1, · · · ,Qij} and ω ∈ [δinf
ij , δ

sup
ij ]. This decomposition enables us to show that the feasible

region of (11) can be described with finitely many inequalities.

Lemma 6. The semi-infinite linear program (11) can be reformulated as the following finite linear

program:

sup
z∈R

y1,··· ,yQij∈R
x1,··· ,xQij∈R

z+
Qij∑
q=1

(αijq ·xq − βijq · yq)

subject to z+
Qij∑
q=1

(xq − yq) · (aijq,r · l ·∆t+ bijq,r)≤ u∆t
j ((k− l) ·∆t) l=

⌈ inf(Ir)
∆t

⌉
, · · · ,

⌊sup(Ir)
∆t

⌋
r= 1, · · · ,Rij

z+
Qij∑
q=1

(xq − yq) · (aijq,r · sup(Ir) + bijq,r)≤ u∆t
j (k ·∆t− sup(Ir)) r= 1, · · · ,Rij

z+
Qij∑
q=1

(xq − yq) · (aijq,r · inf(Ir) + bijq,r)≤ u∆t
j (k ·∆t− inf(Ir)) r= 1, · · · ,Rij

yq, xq ≥ 0 q = 1, · · · ,Qij .
(12)

Proof Take z, y1, · · · , yQij , x1, · · · , xQij ∈ R and r ∈ {1, · · · ,Rij}. Since the function ω → z +∑Qij
q=1(xq−yq) · gijq (ω) is affine on Ir, this function lies below the continuous piecewise affine function

u∆t
j (k ·∆t−·) on Ir if and only if it lies below u∆t

j (k ·∆t−·) at every breakpoint of u∆t
j (k ·∆t−·) on

Īr and at the boundary points of Īr. Since the collection of intervals (Ir)r=1,··· ,Rij forms a partition

of [δinf
ij , δ

sup
ij ], this establishes the claim. �

While (12) is a finite linear program and can thus be solved with an interior point algorithm, the large

number of constraints calls for an efficient separation oracle, which we develop next, and the use of

the ellipsoid algorithm. The key is to refine the idea of Lemma 6. Specifically, for any r ∈ {1, · · · ,Rij}

and l ∈ {
⌈

inf(Ir)
∆t

⌉
, · · · ,

⌊
sup(Ir)

∆t

⌋
}, the constraint

z+
Qij∑
q=1

(xq − yq) · (aijq,r · l ·∆t+ bijq,r)≤ u∆t
j ((k− l) ·∆t)



Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty
23

does not limit the feasible region if (l ·∆t, u∆t
j ((k − l) ·∆t)) is not an extreme point of the upper

convex hull of {(m ·∆t, u∆t
j ((k−m) ·∆t)), m=

⌊
inf(Ir)

∆t

⌋
, · · · ,

⌈
sup(Ir)

∆t

⌉
}. Denote by Lk,rij the subset of

integers l such that (l ·∆t, u∆t
j ((k− l) ·∆t)) is such an extreme point. Observe that the function

l→ u∆t
j ((k− l) ·∆t)− [z+

Qij∑
q=1

(xq − yq) · (aijq,r · l ·∆t+ bijq,r)]

is convex on Lk,rij , therefore a minimizer of this function can be found by binary search. As a result,
all we need to be able to separate efficiently for the subset of constraints:

z+
Qij∑
q=1

(xq − yq) · (aijq,r · l ·∆t+ bijq,r)≤ u∆t
j ((k− l) ·∆t) l=

⌈ inf(Ir)
∆t

⌉
, · · · ,

⌊sup(Ir)
∆t

⌋

is a means to perform binary search on Lk,rij efficiently. We defer the presentation of a data struc-
ture designed for this purpose to Section 4.3.4 and make the following assumption to conclude the
computational study.

Assumption 5. For any two integers L,L′ such that
⌈
δinf
ij

∆t

⌉
≤ L < L′ ≤

⌊
δ
sup
ij

∆t

⌋
, there exists a data

structure that can maintain, dynamically as k increases from k = kr,min
i to k =

⌊
T
∆t

⌋
, a description of

the upper convex hull of {(l ·∆t, u∆t
j ((k− l) ·∆t)), l = L, · · · ,L′} allowing to perform binary search

on the first coordinate of the extreme points with a global complexity O(( T∆t − k
r,min
i ) · log( δsup−δinf

∆t )).

Equipped with a data structure satisfying Assumption 5, the separation oracle has runtime complexity
O(log( δsup−δinf

∆t )) given that there are at most
⌊
δ
sup
ij

∆t

⌋
−
⌈
δinf
ij

∆t

⌉
extreme points at any step k. Using the

ellipsoid algorithm, we can compute the optimal value of (10) with precision ε in O(log( δsup−δinf

∆t ) ·
log( 1

ε
)) running time, where the hidden factors are polynomial in Qij and linear in Rij . We point

out that relying on a data structure satisfying Assumption 5 is critical to achieve this complexity:
recomputing the upper convex hull from scratch at every time step k would increase the complexity to
O( δsup−δinf

∆t · log( 1
ε
)) (achieved using, for instance, Andrew’s monotone chain convex hull algorithm).

Practical general purpose method. Due to the limited practicability of the ellipsoid algorithm, we
have developed another method based on delayed column generation to solve the inner optimization
problem. To simplify the presentation, we assume that (inf(Ir))r=1,··· ,Rij and (sup(Ir))r=1,··· ,Rij are
all multiples of ∆t. Since (12) is a linear program with a non-empty feasible set, we can equivalently
compute its value by solving the dual optimization problem given by:

inf
p0,··· ,pL∈R

∑
l=0,··· ,L

pl ·u∆t
j ((k− l) ·∆t− δinf

ij )

subject to
∑

l=0,··· ,L
pl · gijq (l ·∆t+ δinf

ij )∈ [αijq , βijq ] q = 1, · · · ,Qij∑
l=0,··· ,L

pl = 1

pl ≥ 0 l= 0, · · · ,L,

(13)
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where L= δ
sup
ij
−δinf

ij

∆t . Observe that the feasible set of the linear program (13) does not change across
steps k = kr,min

i , · · · ,
⌊
T
∆t

⌋
. Hence, we can warm start the primal simplex algorithm with the opti-

mal solution found at the previous step. Furthermore, the separation oracle developed for the dual
optimization problem can also be used as a subroutine for delayed column generation.

Faster procedure when the mean is the only statistics. If the ambiguity sets are only defined
through a confidence interval on the mean value, i.e.:

Pij = {p∈P([δinf
ij , δ

sup
ij ]) : EX∼p[X]∈ [αij , βij ]},

then (12) can be solved to optimality in O(log( δ
sup
ij
−δinf

ij

∆t )) computation time without resorting to the
ellipsoid algorithm. First observe that (12) simplifies to:

sup
z,y,x∈R

z+αij ·x− βij · y

subject to z+ (x− y) · l ·∆t≤ u∆t
j ((k− l) ·∆t), l=

⌈
δinf
ij

∆t

⌉
, · · · ,

⌊
δsup
ij

∆t

⌋
z+ (x− y) · δsup

ij ≤ u∆t
j (k ·∆t− δsup

ij )

z+ (x− y) · δinf
ij ≤ u∆t

j (k ·∆t− δinf
ij )

y,x≥ 0.

(14)

As it turns out, we can identify an optimal feasible basis to (14) by direct reasoning.

Lemma 7. An optimal solution to (14) can be found by performing three binary searches on the first
coordinate of the extreme points of the upper convex hull of

{(l ·∆t, u∆t
j ((k− l) ·∆t)), l=

⌊
δinf
ij

∆t

⌋
, · · · ,

⌈
δsup
ij

∆t

⌉
}∪{(δsup

ij , u∆t
j (k ·∆t−δsup

ij )), (δinf
ij , u

∆t
j (k ·∆t−δinf

ij ))}.

The proof is deferred to the online supplement, Section B.11.
Hence, (14) can be solved to optimality in O(log( δ

sup
ij
−δinf

ij

∆t )) running time provided that the extreme
points are stored in a data structure satisfying Assumption 5.

Faster procedure when the statistics are piecewise constant. When the statistics are piecewise
constant, we have:

aijq,r = 0 q = 1, · · · ,Qij , r= 1, · · · ,Rij .

Hence, for any r ∈ {1, · · · ,Rij}, the set of constraints

z+
Qij∑
q=1

(xq − yq) · (aijq,r · l ·∆t+ bijq,r)≤ u∆t
j ((k− l) ·∆t) l=

⌈ inf(Ir)
∆t

⌉
, · · · ,

⌊sup(Ir)
∆t

⌋
is equivalent to the single constraint:

z+
Qij∑
q=1

(xq − yq) · bijq,r ≤ min
l=
⌈ inf(Ir)

∆t

⌉
,··· ,
⌊ sup(Ir)

∆t

⌋u∆t
j ((k− l) ·∆t),
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(a) Ĉk is the hatched area. (b) Ĉk+1 is the hatched area.
Figure 3 The graph of u∆t

j (·) is plotted in black. The dot points represent the breakpoints of u∆t
j (·).

whose right-hand side can be computed by binary search on Lk,rij . As a result, the linear program
(12) has 2 ·Qij + 1 variables and 2 ·Qij + 3 ·Rij constraints and can be solved to precision ε with an
interior-point algorithm in O(log( 1

ε
)) computation time. Typically, piecewise constant statistics can

be used to bound the probability that a given event occurs, see Section 4.3.2.

4.3.4. Dynamic convex hull algorithm Fix an arc (i, j) ∈ A and two integers L < L′ in
{
⌈
δinf
ij

∆t

⌉
, · · · ,

⌊
δ
sup
ij

∆t

⌋
}. We are interested in the extreme points of the upper convex hull of {(l ·

∆t, u∆t
j ((k− l) ·∆t)), l=L, · · · ,L′} for k ∈ {kr,min

i , · · · ,
⌊
T
∆t

⌋
}. To simplify the notations, it is conve-

nient to reverse the x-axis and shift the x-coordinate by k ·∆t which leads us to equivalently look at
the extreme points of the upper convex hull of:

Ck = {(l ·∆t, u∆t
j (l ·∆t)), l= k−L′, · · · , k−L},

for k ∈ {kr,min
i , · · · ,

⌊
T
∆t

⌋
}. There is a one-to-one mapping between the extreme points of these two sets

which consists in applying the reverse transformation. For any k, Ĉk denotes the upper convex hull of
Ck. Note that Ĉk is a convex set and has a finitely many extreme points, all of which are in Ck. Since
the values (u∆t

j (l ·∆t))
l=kr,min

j
,··· ,b T∆tc become sequentially available in ascending order of l by chunks

of size
⌊
δinf

∆t

⌋
as the label-setting algorithm progresses, a search for the extreme points of Ĉk+1 begins

upon identification of the extreme points of Ĉk. Observe that Ĉk updates to Ĉk+1 by removing the
leftmost point ((k−L′) ·∆t, u∆t

j ((k−L′) ·∆t)) and appending ((k+ 1−L) ·∆t, u∆t
j ((k+ 1−L) ·∆t))

to the right, see Figure 3 for an illustration. In this process, deleting a point is arguably the most
challenging operation because it might turn a formerly non-extreme point into one, see Figure 3b
where this happens to be the case for the third leftmost point. In contrast, inserting a new point can
only turn a formerly extreme point into a non-extreme one. Hence, deletions require us to do some
bookkeeping other than simply keeping track of the extreme points of Ĉk as k increases.

Maintaining the extreme points of a dynamically changing set is a well-studied class of problems
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Figure 4 Local map. s and d locate the departure and arrival nodes. Three paths are highlighted. The left one
(blue) is 5.3-km long and takes 9 minutes to travel. The middle one (red) is 6.4-km long and takes 8
minutes to travel. The rightmost one (green) is 6.1-km long and takes 10 minutes to travel.

in computational geometry known as Dynamic Convex Hull problems. Specific instances from this
class differ along the operations to be performed on the set (e.g. insertions, deletions), the queries
to be answered on the extreme points, and the dimensionality of the input data. Brodal and Jacob
(2002) design a data structure maintaining a description of the upper convex hull of a finite set of
N points in R2. This data structure satisfies Assumption 5 as it allows to insert points, to delete
points, and to perform binary search on the first coordinate of the extreme points, all in amortized
time O(log(N)) and with O(N) space usage. For the purpose of being self-contained, we design our
own data structure in the online supplement Section A to tackle the particular dynamic convex hull
problem at hand. Our approach is based on Andrew’s monotone chain convex hull algorithm, see
Andrew (1979), and only uses two arrays and a stack. The data structure developed in Brodal and
Jacob (2002) is more complex than ours but can handle arbitrary dynamic convex hull problems.

5. Numerical experiments

In this section, we compare, using a real-world application with field data from the Singapore road
network, the performance of the nominal and robust approaches to vehicle routing when traffic
measurements are scarce and uncertain. To benchmark the performance of the robust approach,
we propose a realistic framework where both the nominal and robust approaches can be efficiently
computed and for which it is up to the user to pick one.

5.1. Framework

We work on a network composed of the main roads of Singapore with 20,221 arcs and 11,018 nodes
for a total length of 1131 kilometers of roads. The data consists of a 15-day recording of GPS probe
vehicle speed samples coming from a combined fleet of over 15,000 taxis. Features of each recording
include current location, speed and status (free, waiting for a customer, occupied). We denote by s
and d the departure and arrival nodes. Because there is usually only one reasonable route to get from
s to d for most pairs (s, d) in our network, the benefits of using one vehicle routing approach over
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another would not be apparent if we were to pick (s, d) uniformly at random over V2. Instead, we
choose to hand-pick a pair (s, d) with at least two reasonable routes to get from s to d with similar
travel times so that the best driving itinerary depends on the actual traffic conditions. We choose
s= “Woodlands avenue 2” and d= “Mandai link”, see Figure 4, but the results would be similar for
other pairs satisfying this property.

Method of performance evaluation. Consider the following real-world situation. A user has to find
an itinerary to get from s to d within a given budget T (the deadline) and with an objective to
maximize the probability of on-time arrival, but when only a few vehicle speed samples are available
in order to assess arc travel time uncertainty.

To model this real-world situation, we assume that the full set of samples of vehicle speed mea-
surement available in our dataset in fact represents the real traffic conditions, characterized by the
corresponding travel-time distributions preal

ij ’s, which are obtained from the full set of samples. Mim-
icking the fact that the preal

ij ’s are actually not fully available, we then consider the case where only a
fraction of the full set of samples, say λ∈ [0,1], is available. Based on this limited data, the challenge
is to select an itinerary with a probability of on-time arrival with respect to the real traffic conditions
preal
ij ’s as high as possible. We propose to use the methods listed in Table 2 to choose such an itinerary.

For each of these methods, the process goes as follows:
1. Estimate the arc-based travel-time parameters required to run the method using the fraction of

data available.
2. Run the corresponding algorithm to find an itinerary, depending on the chosen method.
3. Compute the probability of on-time arrival of this itinerary for the real traffic conditions (λ= 1).
The result obtained depends on both λ and the available samples as there are many ways to pick a

fraction λ out of the entire dataset. Hence, for each λ in a set Λ, we randomly pick λ ·Nij samples for
each arc (i, j), where Nij is the number of samples collected in the entire dataset for that particular
arc. For each λ∈Λ, and for each method, we store the calculated probability of on-time arrival. We
repeat this procedure 100 times.

A few remarks are in order. We choose Λ = {0.001,0.002,0.005}, this corresponds to an average
number of samples per arc of [5.5,9.4,25.1] respectively (we take at least one sample per arc). The
average arc length is 163 meters, hence we set ∆t = 0.02 second to get a good accuracy. This pa-
rameter has a significant impact on the running time and it could also be optimized. We include the
LET method as it is a reasonably robust approach, although not tailored to the risk function con-
sidered, and because it is very fast to solve. The confidence intervals used by the robust approaches
are percentile bootstrap 95 % confidence intervals derived from resampling the available data with
replacement. When solving the discretization schemes (6) and (9), ties in the argument of the maxi-
mum are broken in favor of the (estimated) least expected travel time to the destination. To solve the
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Table 2 Methods considered. Im
ij and Imd

ij are confidence intervals.

Method Travel-time parameters to
estimate from samples

Approach

RobustM δinf
ij , δsup

ij , Im
ij

(3) with
Pij = {p∈P([δinf

ij , δ
sup
ij ]) : EX∼p[X]∈ Im

ij }

RobustMD
δinf
ij , δsup

ij , Im
ij , Imd

ij ,
mij = max(Im

ij )+min(Im
ij )

2

(3) with

Pij = {p∈P([δinf
ij , δ

sup
ij ]) : EX∼p[X]∈ Im

ij

EX∼p[|X −mij|]∈ Imd
ij

}

Empirical empirical distributions pij (1) with pij

LET empirical mean mij standard shortest path
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(a) Average probability of on-time arrival.
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(b) 5% worst-case probability of on-time arrival.
Figure 5 λ= 0.001, average number of samples per link: ∼ 5.5.

robust problems, we use the column generation scheme and the special-purpose procedure described
in Section 4.3.3 while we use the scheme based on fast Fourier transforms described in Section 3.2.2
for the nominal approach.

5.2. Results

The results are plotted in Figure 5, 6, and 7. Each of these figures corresponds to one of the fraction
λ∈Λ so as to see the impact of an increasing knowledge. The time budget is “normalized”: 0 (resp.
1) corresponds to the minimum (resp. maximum) amount of time it takes to reach d from s. For
each λ, for each method in Table 2, for each time budget T , and for each of the 100 simulations, we
compute the actual probability of on-time arrival of the corresponding strategy. The average (resp. 5
% worst-case) probability of on-time arrival over the simulations is plotted on the figures labeled “a”
(resp. “b”). The 5 % worst-case measure, which corresponds to the average over the 5 simulations out
100 that yield the lowest probability of arriving on-time, is particularly relevant as commuters opting
for this risk function would expect the approach to have good results even under bad scenarios. We
also plot the average runtime for each of the method as a function of the time budget in Figure 8.
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(a) Average probability of on-time arrival.
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(b) 5% worst-case probability of on-time arrival.
Figure 6 λ= 0.002, average number of samples per link: ∼ 9.4.
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(b) 5% worst-case probability of on-time arrival.
Figure 7 λ= 0.005, average number of samples per link: ∼ 25.1.
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Figure 8 Average computation time as a function of the time budget for λ= 0.001.

Conclusions. As can be observed on the figures, Empirical is not competitive when only a few

samples are available. To be specific, RobustM slightly outperforms the other methods when there

are very few measurements, see Figure 5, while RobustMD is a clear winner when more samples are



Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty
30

available, in terms of both average and worst-case performances, see Figures 6 and 7. Observe that,
as expected, the performance of Empirical improves as more samples get available and Empirical
eventually outperforms RobustM, see Figure 7. Our interpretation of these results is that relying on
quantities, either moments or distributions, that cannot be accurately estimated may be misleading
even for robust strategies. On the other hand, failure to capture the increasing knowledge on the
actual travel-time probability distributions (e.g. by estimating more moments) as the amount of
available data increases may lead to poor performances.

6. Extensions

In this section, we sketch how to extend the results derived in Sections 3 and 4 when either Assumption
1 or Assumption 2 is relaxed. Most of the results also extend when both assumptions are relaxed
at the same time but we choose to discuss one assumption at a time to highlight their respective
implications.

6.1. Relaxing the independence Assumption 1: Markovian costs

We consider here the case where the experienced costs of crossing arcs define a Markov chain of finite
order m. To simplify the presentation, we provide in details the extensions of our previous results to
the case m = 1. Adapting these extensions to a general m amounts to augmenting the state space
of the underlying MDP by the costs of the last m visited arcs. We emphasize that while Markov
chains can model the reality of the decision making process more accurately, this comes at a price:
this requires an estimation of m-dimensional probability distributions, and the computational time
needed to find an optimal strategy grows exponentially with m.

Extension for the nominal problem. A variant of Theorem 1 can be shown to hold if the arc cost
distributions are discrete. Under this assumption and as soon as the total cost spent so far is larger
than T −Tf , the optimal strategy coincides with the strategy of minimizing the expected costs, which
may no longer be a shortest path but can still be shown to be a solution without cycles. Under
the same assumption, Proposition 1 remains valid under the following higher-dimensional dynamic
program:

ud(t, z, θ) = f(t) t≤ T, z ∈A(d), θ ∈Θzd

ui(t, z, θ) = max
j∈V(i)

∫ ∞
0

pij(ω | z, θ) ·uj(t−ω, i,ω)dω i 6= d, t≤ T, z ∈A(i), θ ∈Θzi

π∗f (i, t, z, θ)∈ arg max
j∈V(i)

∫ ∞
0

pij(ω | z, θ) ·uj(t−ω, i,ω)dω i 6= d, t≤ T, z ∈A(i), θ ∈Θzi,

(15)

where A(i) denotes the set of immediate antecedents of i in G, Θzi is the finite set of possible values
taken by czi for z ∈ A(i), and pij(· | z, θ) is the conditional distribution of cij given that the last
visited node is z and that czi = θ. The discretization scheme of Section 3.2.1 can be adapted for this
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new dynamic equation and the approximation guarantees carry over. To solve this new discretization

scheme, the label-setting approach from Section 3.2.2 can be adapted by observing that the functions

(ui(·, z, θ))i∈V,z∈A(i),θ∈Θzi can be computed block by block by interval increments of size δinf . However,

the schemes based on fast Fourier transforms and the idea of zero-delay convolution do not apply

anymore, and we need to use the pointwise definition of convolution products with computational

complexity:

O( max
(i,j)∈A

|Θij| ·
|A| · (T −Tf ) + |V|2 · δsup

∆t ).

Extension for the robust problem. For any (i, j) ∈ A, z ∈ A(i), and θ ∈ Θzi, pij(· | z, θ) is only

known to lie in the ambiguity set Pij,z,θ. If Pij,z,θ is only comprised of discrete distributions with

finite support Θij , a variant of Theorem 2 can be shown to hold. Specifically, as soon as the total cost

spent so far is larger than T −T rf , the optimal strategy coincides with the strategy of minimizing the

worst-case expected costs, which can also be shown not to cycle. Under this assumption, Proposition

3 remains valid under the following higher-dimensional dynamic program:

ud(t, z, θ) = f(t) t≤ T, z ∈A(d), θ ∈Θzd

ui(t, z, θ) = max
j∈V(i)

inf
pij∈Pij,z,θ

∫ ∞
0

pij(ω) ·uj(t−ω, i,ω)dω i 6= d, t≤ T, z ∈A(i), θ ∈Θzi

π∗f,P(i, t, z, θ)∈ arg max
j∈V(i)

inf
pij∈Pij,z,θ

∫ ∞
0

pij(ω) ·uj(t−ω, i,ω)dω i 6= d, t≤ T, z ∈A(i), θ ∈Θzi.

(16)

The discretization scheme of Section 4.3.1 can be adapted for this new set of equations and the

approximation guarantees of Proposition 4 carry over. Moreover, the label-setting approach can also

be adapted along the same lines as for the nominal problem. The ideas underlying the algorithmic

developments of Section 4.3.3 remain valid but we now have to recompute the convex hulls from

scratch at each time step using Andrew’s monotone chain convex hull algorithm, as opposed to using

a dynamic convex hull algorithm, which leads to the computational complexity:

O( max
(i,j)∈A

|Θij| · log( max
(i,j)∈A

|Θij|) ·
|A| · (T −T rf ) + |V|2 · δsup

∆t · log(
|V|+ T−T rf

δinf

ε
)),

when we want to compute an ε-approximate strategy solution to the discretization scheme (9).

6.2. Relaxing Assumption 2: τ -dependent arc cost probability distributions

Extension for the nominal problem. For any τ ≥ 0 and (i, j)∈A, we denote by pτij the distribution

of cτij and by mτ
ij the mean of pτij . Theorem 1 remains valid if, for any (i, j) ∈ A, mτ

ij converges as

τ →∞, in which case the shortest-path tree mentioned in the statement is defined with respect to the

limits of the mean arc costs. For instance, this assumption is satisfied when the distributions are time-

varying during a peak period and stationary anytime thereafter, see Miller-Hooks and Mahmassani
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(2000). Under this assumption, Proposition 1 also remains valid but for the slightly modified dynamic

program:
ud(t) = f(t) t≤ T

ui(t) = max
j∈V(i)

∫ ∞
0

pT−tij (ω) ·uj(t−ω)dω i 6= d, t≤ T

π∗f (i, t)∈ arg max
j∈V(i)

∫ ∞
0

pT−tij (ω) ·uj(t−ω)dω i 6= d, t≤ T.

(17)

The discretization scheme of Section 3.2.1 can be trivially adapted for this new dynamic equation,

although we may loose the approximation guarantees provided by Proposition 2. For them to carry

over, we need additional assumptions. To be specific, one of the following properties must be satisfied:

• the arc cost distributions vary smoothly, in the sense that, for any arc (i, j)∈A, there exists K

such that the Kolmogorov distance between pτ1ij and pτ2ij is smaller than K · |τ1− τ2| for any τ1, τ2 ≥ 0,

• the arc cost distributions are discrete and the discretization length ∆t is chosen appropriately,

• the arc cost distributions change finitely many times and the discretization length ∆t is chosen

appropriately.

To solve the discretization scheme, the label-setting approach described in Section 3.2.2 remains

relevant but we now have to apply the pointwise definition of convolution products, as opposed to

using fast Fourier transforms and zero-delay convolutions, with computational complexity quadratic

in 1
∆t :

O( |A| · (T −Tf ) + |V|2 · δsup

∆t · δ
sup− δinf

∆t ).

Extension for the robust problem. For any τ ≥ 0 and (i, j) ∈ A, pτij is only known to lie in the

ambiguity set Pτij . First observe that (3) turns into:

sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pτ

ij

Epτ [f(T −Xπ)],

which is exactly the robust counterpart of (1), as opposed to a robust relaxation when the arc cost

distributions are stationary. Theorem 2 remains valid if, for any (i, j) ∈ A, maxpij∈Pτij EX∼pij [X]

converges as τ →∞, in which case the shortest-path tree mentioned in the statement is defined

with respect to the limits. Again, this assumption is, for instance, satisfied when the ambiguity sets

are time-varying during a peak period and stationary anytime thereafter. Under this assumption,

Proposition 3 also remains valid but for the slightly modified dynamic program:

ud(t) = f(t) t≤ T

ui(t) = max
j∈V(i)

inf
pij∈P

T−t
ij

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T

π∗f,P(i, t)∈ arg max
j∈V(i)

inf
pij∈P

T−t
ij

∫ ∞
0

pij(ω) ·uj(t−ω)dω i 6= d, t≤ T.

(18)
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Similarly as for the nominal problem, the discretization scheme can be trivially adapted but we may
loose the approximation guarantees provided by Proposition 4. For them to carry over, one of the
following properties has to be satisfied:
• the ambiguity sets vary smoothly, in the sense that, for any arc (i, j) ∈A, there exists K such

that the Kolmogorov distance between Pτ1ij and Pτ2ij is smaller than K · |τ1− τ2| for any τ1, τ2 ≥ 0,
• the ambiguity sets are only comprised of discrete distributions and the discretization length ∆t

is chosen appropriately,
• the ambiguity sets change finitely many times and the discretization length ∆t is chosen appro-

priately.
In contrast to the nominal problem, all the algorithms developed in Section 4.3.3 can still be used
to solve the discretization sheme with the same computational complexity as long as the ambiguity
sets are defined by confidence intervals on piecewise affine statistics, as precisely defined in Section
4.3.2.
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Prékopa, A. 1990. The discrete moment problem and linear programming. Discrete Applied Math. 27(3)
235–254.

Puterman, M. 2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons.



Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty
35

Samaranayake, S., S. Blandin, A. Bayen. 2012a. Speedup techniques for the stochastic on-time arrival

problem. 12th Workshop Algorithmic Approaches Transportation Model. Optim. Systems (ATMOS

2012), vol. 25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 83–96.

Samaranayake, S., S. Blandin, A. Bayen. 2012b. A tractable class of algorithms for reliable routing in

stochastic networks. Transportation Res. C 20(1) 199–217.

Shapiro, A. 2001. On duality theory of conic linear problems. Semi-Infinite Programming, vol. 57. Kluwer

Academic Publishers, 135–165.

Vandenberghe, L., S. Boyd, K. Comanor. 2007. Generalized Chebyschev bounds via semidefinite program-

ming. SIAM Rev. 49(1) 52–64.

White III, C. C., H. K. Eldeib. 1994. Markov decision processes with imprecise transition probabilities. Oper.

Res. 42(4) 739–749.

Wiesemann, W., D. Kuhn, B. Rustem. 2013. Robust markov decision processes. Math. of Oper. Res. 38(1)

153–183.

Wiesemann, W., D. Kuhn, M. Sim. 2014. Distributionally robust convex optimization. Oper. Res. 62(6)

1358–1376.

Xu, H., C. Caramanis, S. Mannor. 2012. Optimization under probabilistic envelope constraints. Oper. Res.

60(3) 682–699.

Xu, H., S. Mannor. 2010. Distributionally robust markov decision processes. Adv. Neural Inform. Processing

Systems. 2505–2513.

Xu, H., S. Mannor. 2011. Probabilistic goal Markov decision processes. Proc. 22th Internat. Joint Conf.

Artificial Intelligence (AAAI). AAAI Press, 2046–2052.



e-companion to Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty ec1

Online Supplement
Appendix A: Tailored dynamic convex hull algorithm

The fact that deletions and insertions always occur on the same side of the set allows us to deal with
deletions in an indirect way, by building and merging upper convex hulls of partial input data. The
only downside is that this requires an efficient merging procedure. In this respect, we state without
proof a result derived from Overmars and Leeuwen (1981).

Lemma EC.1. Consider a set S of N points in R2 partitioned into two sets of points S1 and S2 such
that, for any two points (x1, y1) ∈ S1 and (x2, y2) ∈ S2 we have x1 < x2. Suppose that the extreme
points of Ŝ1 (resp. Ŝ2) are stored in an array A1 (resp. A2) of size N in ascending order of their first
coordinates. We can find two indices l1 and l2 in O(log(N)) time such that the set comprised of the
points contained in A1 with index smaller than l1 and the points contained in A2 with index larger
than l2 is precisely the set of extreme points of Ŝ.

Algorithm. We use two arrays Aleft and Aright along with a stack S. The arrays Aleft and Aright are
of size L′−L+ 1, indexed from 0 to L′−L, and store points in R2 in ascending order of their first
coordinates. The stack S stores stacks of points in R2. We keep track of two indices lleft and lright

such that, at any step k = kr,min
i + p · (L′ − L+ 2) + r for some p ∈ N and 0 ≤ r ≤ L′ − L+ 1, the

following invariant holds:
• {Aleft[l], l = lleft + 1, · · · ,L′ − L} is the set of extreme points of the upper convex hull of {(l ·

∆t, u∆t
j (l ·∆t)), l= k−L′, · · · , k−L− r},

• {Aright[l], l= 0, · · · , lright−1} is the set of extreme points of the upper convex hull of {(l ·∆t, u∆t
j (l ·

∆t)), l= k−L− r+ 1, · · · , k−L}.
Using the procedure of Lemma EC.1 and this invariant, we can find a pair of indices (l1, l2) in
O(log(L′ −L)) time such that {Aleft[l], l = lleft + 1, · · · , l1} ∪ {Aright[l], l = l2, · · · , lright − 1} is the set
of extreme points of Ĉk. Hence, all we have left to do is to provide a procedure to maintain Aleft,
Aright, lleft and lright, which we do next.
Aleft, Aright, and S are initially empty. The algorithm proceeds in two phases and loops back to the

first one every L′−L+ 2 steps. For convenience, we define cross as the function taking as an input
three points a, b, c in R2 and returning the cross product of the vector ~ab and ~ac.
Phase 1: Suppose that the current step is k. Hence, the values u∆t

j (k − L′), · · · , u∆t
j (k − L) are

available. This phase is based on Andrew’s monotone chain convex hull algorithm to find the extreme
points of Ĉk with the difference that we store the points removed along the process in stacks for
future use. Specifically, set lleft = L′−L and lright = 0 and for l decreasing from k−L to k−L′, do
the following:
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(a) Initialize a new stack S ′,
(b) While lleft ≤L′−L− 2 and cross(Aleft[lleft + 2],Aleft[lleft + 1], (l ·∆t, u∆t

j (l ·∆t)))≥ 0:
• Push Aleft[lleft + 1] to S ′,
• Increment lleft,

(c) Push S ′ to S,
(d) Set Aleft[lleft] = (l ·∆t, u∆t

j (l ·∆t)) and decrement lleft. At this point, {Aleft[l], l= lleft + 1, · · · ,L′−
L} is the set of extreme points of the upper convex hull of {(m ·∆t, u∆t

j (m ·∆t)), m= l, · · · , k−L}.
Phase 2: At step k + l, for l increasing from 1 to L′ − L, observe that the value u∆t

j (k + l − L)
becomes available. To maintain Aleft and lleft, we remove the leftmost point (x, y) and reinsert the
points, stored in the topmost stack of S, that were previously removed from Aleft when appending
(x, y) to Aleft in the course of running Andrew’s monotone chain convex hull algorithm. Specifically:
(a) Increment lleft,
(b) Pop the topmost stack S ′ out of S,
(c) While S ′ is not empty:

• Pop the topmost point (x, y) of S ′,
• Set Aleft[lleft] = (x, y),
• Decrement lleft.

To maintain Aright and lright, we run an iteration of Andrew’s monotone chain convex hull algorithm.
Specifically:
(a) While lright ≥ 2 and cross(Aright[lright−2],Aright[lright−1], ((k+ l−L) ·∆t, u∆t

j ((k+ l−L) ·∆t)))≤
0:
• Decrement lright,

(b) Set Aright[lright] = ((k+ l−L) ·∆t, u∆t
j ((k+ l−L) ·∆t)) and increment lright.

Complexity Analysis. Observe that any point added to Aleft can only be removed once, and the
same holds for Aright. This means that Phase 1 and Phase 2 take O(L′−L) computation time. These
two phases are repeated

⌈
b T∆tc−kr,min

i

L′−L+2

⌉
times leading to an overall complexity of O(

⌊
T
∆t

⌋
− kr,min

i ).
Since the merging procedure outlined in Lemma EC.1 takes O(log(L′−L)) computation time at each
step, the global complexity is O((

⌊
T
∆t

⌋
− kr,min

i ) · log(L′−L)).

Appendix B: Omitted Proofs

B.1. Proof of Theorem 1

Proof of Theorem 1. Let us start with the last part of the theorem. If the support of f(·) is
included in [Tf ,∞), any strategy is optimal when having already spent a budget of T − Tf with an
optimal objective function of 0.

Let us now focus on the first part of the theorem. Consider an optimal strategy π∗f solution to
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(1). For a given history h ∈ H, we define th as the remaining budget, i.e. T minus the total cost

spent so far, and ih as the current location. The policy π∗f maps h ∈H to a probability distribution

over V(ih). Observe that randomizing does not help because the costs are independent across time

and arcs so that, without loss of generality, we can assume that π∗f actually maps h to the node in

V(ih) minimizing the objective function given h. For h∈H, we denote by Xh
π∗
f

the random cost-to-go

incurred by following strategy π∗f , i.e. not including the total cost spent up to this point of the history

T − th. We define (mij)(i,j)∈A as the expected arc costs and by Mi as the minimum expected cost to

go from i to d for any i∈ V . We also define πs as a policy associated with an arbitrary shortest path

from i to d with respect to the expected costs. Specifically, πs maps the current location ih to a node

in T (ih), irrespective of the history of the process. Similarly as for π∗f , we denote by Xh
πs

the random

cost-to-go incurred by following strategy πs for h∈H. We first show that there exists Tf such that,

for both cases (a) and (b):

E[Xh
π∗
f
]−Mih <min

i6=d
min

j∈V(i),j /∈T (i)
{mij +Mj −Mi} ∀h∈H such that th ≤ Tf , (EC.1)

with the convention that the minimum of an empty set is equal to infinity. Note that the right-hand

side is always positive. Let α= |V| · δsup.

(a) For h∈H such that th <T1, we have, using a Taylor’s series expansion:

f(th−Xh
π∗
f
) = f(th−α) + f ′(th−α) · (α−Xh

π∗
f
) + 1

2 · f
′′(ξh) · (α−Xh

π∗
f
)2,

where ξh ∈ [min(th−α, th−Xh
π∗
f
),max(th−α, th−Xh

π∗
f
)], and:

f(th−Xh
πs

) = f(th−α) + f ′(th−α) · (α−Xh
πs

) + 1
2 · f

′′(ζh) · (α−Xh
πs

)2,

where ζh ∈ [min(th−α, th−Xh
πs

),max(th−α, th−Xh
πs

)]. Using Bellman’s Principle of Optimality for

π∗f , we have:

E[f(th−Xh
π∗
f
)] = E[f(T − ((T − th) +Xh

π∗
f
)]≥E[f(T − ((T − th) +Xh

πs
)]≥E[f(th−Xh

πs
)].

Expanding and rearranging yields:

−f ′(th−α) · (E[Xh
π∗
f
]−E[Xh

πs
])≥ 1

2 · (E[−f ′′(ξh) · (α−Xh
π∗
f
)2] +E[f ′′(ζh) · (α−Xh

πs
)2]).

Since the costs are independent across time and arcs:

E[Xh
πs

] =Mih .
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Concavity of f(·) implies that f ′′(ξh) · (α−Xh
π∗
f
)2 ≤ 0 almost surely. Since f(·)(−∞,T1) is increasing,

we obtain E[Xh
π∗
f
]−Mih ≤

E[−f ′′(ζh)·(α−Xhπs )2]
2·f ′(th−α) . As Xh

πs
is the cost of a path, Assumption 3 implies

0≤Xh
πs
≤ α. We get that ζh ∈ [th−α, th] and:

E[Xh
π∗
f
]−Mih ≤−α

2 ·
inf

[th−α,th]
f ′′

2 · f ′(th−α) .

As f ′′(·) is continuous, there exists αth ∈ [0, α] such that inf
[th−α,th]

f ′′ = f ′′(th − αth). Since f ′(·) is
non-increasing on (−∞, T1), we derive:

E[Xh
π∗
f
]−Mih ≤−α

2 ·
f ′′(th−αth)

2 · f ′(th−αth) .

By assumption f ′′

f ′ (·) vanishes at −∞ therefore we can pick Tf small enough to get the desired
inequality.
(b) As f ′→−∞ a > 0, we can find Tf <T1 small enough such that:

|f ′(t)− a|< ε ∀t≤ Tf ,

with ε= a · β
2α+β and where β is the right-hand side of the desired inequality. Consider h ∈H such

that th ≤ Tf . Using Bellman’s Principle of Optimality for π∗f , we have:

E[f(th−Xh
π∗
f
)] = E[f(T − ((T − th) +Xh

π∗
f
)]≥E[f(T − ((T − th) +Xh

πs
)]≥E[f(th−Xh

πs
)].

Since f is C1 on (−∞, Tf ), this yields:

0≤E[f(th−Xh
π∗
f
)− f(th−Xh

πs
)]

≤E[f(th−Xh
π∗
f
)− f(th) + f(th)− f(th−Xh

πs
)]

≤E[−
∫ th

th−Xhπ∗
f

f ′+
∫ th

th−Xhπs
f ′]

≤E[−(a− ε) ·Xh
π∗
f

+ (a+ ε) ·Xh
πs

].

Since the costs are independent across time and arcs:

E[Xh
πs

] =Mih .

Rearranging the last inequality, we derive:

E[Xh
π∗
f
]−Mih ≤

2ε
a− ε

·Mih

≤ 2ε
a− ε

·α

< β,
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where we use the fact that Mih ≤ α and the definition of ε.

Starting from (EC.1), consider h∈H such that th ≤ Tf and suppose by contradiction that π∗f (h) =

jh /∈ T (ih). Even though the overall policy can be fairly complicated (history-dependent), the first

action is deterministic and incurs an expected cost of mihjh because the costs are independent across

time and arcs. Moreover, when the objective is to minimize the average cost, the optimal strategy

among all history-dependent rules is to follow the shortest path with respect to the mean arc costs

(once again because the costs are independent across time and arcs). As a result:

E[Xh
π∗
f
]≥mihjh +Mjh ,

which implies:

E[Xh
π∗
f
]−Mih ≥mihjh +Mjh −Mih ,

a contradiction. �

B.2. Proof of Proposition 1

Proof of Proposition 1. Using Theorem 1, the optimization problem (1) can be equivalently for-

mulated as a discrete-time finite-horizon MDP in the extended space state (i, t) ∈ V × [T − δsup ·⌈
T−Tf
δinf

⌉
, T ] where i is the current location and t is the, possibly negative, remaining budget. Specifi-

cally:

• The time horizon is
⌈
T−Tf
δinf

⌉
,

• The initial state is (s,T ),

• The set of available actions at state (i, t), for i 6= d, is taken as V(i). Picking j ∈ V(i) corresponds

to crossing link (i, j) and results in a transition to state (j, t−ω) with probability pij(ω)dω,

• The only available action at a state (d, t) is to remain in this state,

• The transition rewards are all equal to 0,

• The final reward at the epoch
⌈
T−Tf
δinf

⌉
for any state (i, t) is equal to fi(t), which is the optimal

expected objective-to-go when following the shortest path tree T starting at node i with remaining

budget t. Specifically, the collection of functions (fi(·))i∈V is a solution to the following program:

fd(t) = f(t), t≤ Tf ,

fi(t) = max
j∈T (i)

∫ ∞
0

pij(ω) · fj(t−ω)dω i 6= d, t≤ Tf .

Observe that Theorem 1 is crucial to be able to define the final rewards. Proposition 4.4.3 of Puterman

(2014) shows that any Markov policy solution to (4) is an optimal solution to (1).

�



ec6 e-companion to Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty

B.3. Proof of Proposition 2

Proof of Proposition 2. For any node i ∈ V , and t ≤ T , we denote by uπ
∆t
i (t) the expected risk

function when following policy π∆t starting at i with remaining budget t. We deal with each case
separately.

Case 1. We use the following useful facts:
• The functions (ui(·))i∈V are non-decreasing,
• The functions (u∆t

i (·))i∈V are non-decreasing,
• The functions (u∆t

i (·))i∈V lower bound the functions (ui(·))i∈V .
The main difficulty in proving convergence lies in the fact that the approximation u∆t

i (t) may not
necessarily improve as ∆t decreases. However, this is the case for regular mesh size sequences such
as (∆tp = 1

2p )p∈N. Hence, we first demonstrate convergence in that particular case in Lemma EC.2
and rely on this last result to prove pointwise convergence in general in Lemma EC.3.

Lemma EC.2. For the regular mesh (∆tp = 1
2p )p∈N, the sequence (u∆tp

i (t))p∈N converges to ui(t) for
almost every point t in [kmin

i ·∆t, T ].
Proof First observe that, for any t, the sequence (u∆tp

i (t))p∈N is non-decreasing since (i) the
discretization mesh used at step p+1 is strictly contained in the discretization mesh used at step p and
(ii) the functions (ui(·))i∈V are non-decreasing. This shows that the functions (u∆tp

i (·))i∈V converge
pointwise to some limits (fi(·))i∈V . Using the preliminary remarks, we get:

fi(t)≤ ui(t) ∀t∈ [kmin
i ·∆t, T ],∀i∈ V .

Next, we establish that for any i∈ V , t∈ [kmin
i ·∆t, T ] and ε > 0, fi(t)≥ ui(t−ε). This will enable us to

squeeze fi(t) to finally derive fi(t) = ui(t). We start with node d. Observe that, by construction of the
approximation, u∆t

d (·) converges pointwise to f(·) at every point of continuity of f(·). Furthermore,
since fd(·) and ud(·) are non-decreasing, we have fd(t)≥ ud(t− ε) for all t∈ [kmin

d ·∆t, T ] and for all
ε > 0. Consider ε > 0 and a large enough p such that ε > 1

2p which implies ∆tp · b t
∆tp c ≥ t− ε. We first

show by induction on the level of the nodes in T that:

fi(t)≥ ui(t− level(i,T ) · ε) ∀t∈ [kmin
i ·∆t,

⌊
Tf
∆t

⌋
·∆t),∀i∈ V .

The base case follows from the discussion above. Assume that the induction property holds for all
nodes of level less than l and consider a node i∈ V of level l+1. We have, for t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t):

u
∆tp
i (t) = u

∆tp
i (

⌊
t

∆tp

⌋
·∆tp)

≥ max
j∈T (i)

E[u∆tp
j (

⌊
t

∆tp

⌋
·∆tp− cij)]

≥ max
j∈T (i)

E[u∆tp
j (t− ε− cij)].
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To take the limit p→∞ in the previous inequality, note that, for any j ∈ T (i):

u
∆tp
j (t− ε− cij)≥ u∆t1

j (t− ε− δsup),

while (u∆tp
j (t− ε− cij))p∈N is non-decreasing and converges almost surely to fj(t− ε− cij) as p→∞.

Therefore, we can apply the monotone convergence theorem and derive:

fi(t)≥E[fj(t− ε− cij)].

As the last inequality holds for any j ∈ T (i), we finally obtain:

fi(t)≥ max
j∈T (i)

E[fj(t− ε− cij)] ∀t∈ [kmin
i ·∆t,

⌊
Tf
∆t

⌋
·∆t).

Using the induction property along with Theorem 1, we get:

fi(t)≥ max
j∈T (i)

E[uj(t− level(i,T ) · ε− cij)]

≥ ui(t− level(i,T ) · ε),

for all t ∈ [kmin
i ·∆t,

⌊
Tf
∆t

⌋
·∆t), which concludes the induction. We can now prove by induction on

m, along the same lines as above, that:

fi(t)≥ ui(t− (|V|+m) · ε) ∀t∈ [kmin
i ·∆t,

⌊
Tf
∆t

⌋
·∆t+m · δinf),∀i∈ V ,

for all m∈N. This last result can be reformulated as:

fi(t)≥ ui(t− ε) ∀ε > 0,∀t∈ [kmin
i ·∆t, T ],∀i∈ V .

Combining this lower bound with the upper bound previously derived, we get:

ui(t)≥ fi(t)≥ ui(t−) ∀t∈ [kmin
i ·∆t, T ],∀i∈ V ,

where ui(t−) refers to the left one-sided limit of ui(·) at t. Since, ui(·) is non-decreasing, it has
countably many discontinuity points and the last inequality shows that fi(·) = ui(·) almost everywhere
on [kmin

i ·∆t, T ]. �

Lemma EC.3. For any sequence (∆tp)p∈N converging to 0, the sequence (u∆tp
i (t))p∈N converges to

ui(t) for almost every point t in [kmin
i ·∆t, T ].

Proof In contrast to the particular case handled by Lemma EC.2, our approximation of ui(t) may
not improve as p increases. For that reason, there is no straightforward comparison between (u∆tp

i (t))p
and ui(t). However, for a given i ∈ V, t ∈ [kmin ·∆t, T ], ε > 0 and a large enough p, (u∆tp

i (t))p can
be shown to be lower bounded by a subsequence of (u

1
2p
i (t− ε))p. This is how we proceed to establish

convergence.
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Consider i∈ V, t∈ [kmin ·∆t, T ], ε > 0 and p∈N. Define σ(p)∈N as the unique integer satisfying
1

2σ(p)−1 < ∆tp ≤ 1
2σ(p) . Since limp→∞∆tp = 0, we necessarily have limp→∞ σ(p) =∞. Remark that

u
1

2σ(p)
i (·) has steps of size 1

2σ(p) ≥∆tp, i.e. u∆tp
i (·) is expected to be a tighter approximation of ui(·)

than u
1

2σ(p)
i (·) is. However, the time steps do not overlap (multiples of either ∆tp or 1

2p ) making

the two sequences impossible to compare. Nevertheless, the time steps differ by no more than ∆tp.

Thus, if p is large enough so that ∆tp < ε, for each update needed to calculate u
1

2σ(p)
i (t− ε), there

is a corresponding update for a larger budget to compute u
∆tp
i (t). As a consequence, the sequence

(u
1

2σ(p)
i (t− ε))p constitutes a lower bound on the sequence of interest (u∆tp

i (t))p. Using the preliminary

remarks, we are able to squeeze (u∆tp
i (t))p:

u
1

2σ(p)
i (t− ε)≤ u∆tp

i (t)≤ ui(t),

for all i∈ V, t∈ [kmin ·∆t, T ], ε > 0 and for p large enough. This can be proved first by induction on

the level of the nodes in T and then by interval increments of size δinf along the same lines as what

is done in Lemma EC.2. Yet, Lemma EC.2 shows that:

lim
p→∞

u
1

2σ(p)
i (t− ε) = ui(t− ε),

provided t − ε is a point of continuity for ui(·). As ui(·) has countably many discontinuity points

(it is non-decreasing), the last inequality shows, by taking p large enough and ε small enough, that

u
∆tp
i (t)→p→∞ ui(t) for t a point of continuity of ui(·). �

Case 2. The first step consists in proving that the functions (ui(·))i∈V are continuous on (−∞, T ].

By induction on l, we start by proving that ui(·) is continuous on (−∞, Tf ) for all nodes i of level l

in T . The base case follows from the continuity of f(·). Assuming the property holds for some l≥ 1,

we consider a node i of level l+1 in T , t < Tf and a sequence tn→n→∞ t. Using Theorem 1, we have:

|ui(t)−ui(tn)| ≤ max
j∈T (i)

E[|uj(t− cij)−uj(tn− cij)|].

For any j ∈ T (i), we can use the uniform continuity of uj(·) on [t − 2 · δsup, t] to prove that this

last term converges to 0 as n→∞. We conclude that all the functions (ui(·))i∈V are continuous

on (−∞, Tf ). By induction on m, we can then show that the functions (ui(·))i∈V are continuous on

(−∞, Tf +m · δinf), to finally conclude that they are continuous on (−∞, T ]. We are now able to

prove uniform convergence. Since [Tf −|V| · δsup, T ] is a compact set, the functions (ui(·))i∈V are also

uniformly continuous on this set. Take ε > 0, there exists α> 0 such that:

∀i∈ V , |ui(ω)−ui(ω′)| ≤ ε, ∀(ω,ω′)∈ [Tf − |V| · δsup, T ]2 with |ω−ω′| ≤ α.



e-companion to Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty ec9

Building on this, we can show, by induction on the level of the nodes in T , that:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t)

|ui(ω)−u∆t
i (ω)| ≤ level(i,T ) · ε, ∀i∈ V .

This follows from the sequence of inequalities:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t)

|u∆t
i (ω)−ui(ω)| ≤ sup

k∈{kmin
i

,··· ,
⌊
Tf
∆t

⌋
−1}

|u∆t
i (k ·∆t)−ui(k ·∆t)|

+ sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t]

|ui(ω)−ui(
⌊
ω

∆t

⌋
·∆t)|

≤ sup
k∈{kmin

i
,··· ,
⌊
Tf
∆t

⌋
−1}

max
j∈T (i)

E[|u∆t
j (k ·∆t− cij)−uj(k ·∆t− cij)|]

+ ε

≤ (level(i,T )− 1) · ε+ ε

≤ level(i,T ) · ε.

We conclude that:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t)

|ui(ω)−u∆t
i (ω)| ≤ |V| · ε,∀i∈ V .

Along the same lines, we can show by induction on m that:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t+m·δinf)

|u∆t
i (ω)−ui(ω)| ≤ (|V|+m) · ε, ∀i∈ V .

This implies:

sup
ω∈[kmin

i
·∆t,T ]

|u∆t
i (ω)−ui(ω)| ≤ (|V|+

⌈
T −Tf
δinf

⌉
+ 1) · ε, ∀i∈ V ,

assuming ∆t ≤ δinf . In particular, this shows uniform convergence. To conclude the proof of Case

2, we show that π∆t is a o(1)-approximate optimal solution to (1) as ∆t→ 0. Using the last set of

inequalities derived in combination with the uniform continuity of the functions (ui(·))i∈V , we can

show that:

∀i∈ V , |u∆t
i (ω)−u∆t

i (ω′)| ≤ (2 · |V|+ 2 ·
⌈
T −Tf
δinf

⌉
+ 3) · ε, ∀(ω,ω′)∈ [kmin

i ·∆t, T ]2 with |ω−ω′| ≤ α,

(EC.2)

and:

∀i∈ V , |u∆t
i (ω)−ui(ω′)| ≤ (|V|+

⌈
T −Tf
δinf

⌉
+2) · ε, ∀(ω,ω′)∈ [kmin

i ·∆t, T ]2 with |ω−ω′| ≤ α. (EC.3)
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We can now prove, by induction on the level of the nodes in T , that:

uπ
∆t
i (t)≥ ui(t)− 3 · level(i,T ) · (|V|+

⌈
T −Tf
δinf

⌉
+ 2) · ε, ∀t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t),∀i∈ V .

This follows from the sequence of inequalities:

uπ
∆t
i (t) =

∫ ∞
0

piπ∆t(i,t)(ω) ·uπ∆t

π∆t(i,t)(t−w)dω

≥
∫ ∞

0
piπ∆t(i,t)(ω) ·uπ∆t(i,t)(t−w)dω− 3 · (level(i,T )− 1) · (|V|+

⌈
T −Tf
δinf

⌉
+ 2) · ε

≥
∫ ∞

0
piπ∆t(i,t)(ω) ·u∆t

π∆t(i,t)(t−w)dω− ε− 3 · (level(i,T )− 1) · (|V|+
⌈
T −Tf
δinf

⌉
+ 2) · ε

≥
∫ ∞

0
piπ∆t(i,t)(ω) ·u∆t

π∆t(i,b t
∆tc·∆t)(

⌊
t

∆t

⌋
·∆t−w)dω− ε− (2 · |V|+ 2 ·

⌈
T −Tf
δinf

⌉
+ 3) · ε

− 3 · (level(i,T )− 1) · (|V|+
⌈
T −Tf
δinf

⌉
+ 2) · ε

≥ u∆t
i (
⌊
t

∆t

⌋
·∆t)− 3 · level(i,T ) · (|V|+

⌈
T −Tf
δinf

⌉
+ 2) · ε,

where we use the induction property for the first inequality, the uniform convergence for the second,
(EC.2) for the third, the definition of π∆t(i, t) for the fourth and finally (EC.3). We conclude that:

uπ
∆t
i (t)≥ ui(t)− 3 · |V| · (|V|+

⌈
T −Tf
δinf

⌉
+ 2) · ε, ∀t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t),∀i∈ V .

We can then prove by induction on m, in the same fashion as above, that:

uπ
∆t
i (t)≥ ui(t)− 3 · (m+ |V|) · (|V|+

⌈
T −Tf
δinf

⌉
+ 2) · ε,∀t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t+m · δinf),∀i∈ V ,

for all m. We conclude that uπ∆t
s (T )≥ us(T )− 3 · (|V|+

⌈
T−Tf
δinf

⌉
+ 2)2 · ε, which establishes the claim.

Case 3. The first step consists in showing that the functions (ui(·))i∈V are Lipschitz on [Tf −
|V| · δsup, T ]. Take K to be a Lipschitz constant for f(·) on [Tf − (

⌈
T−Tf
δinf

⌉
+ 2 · |V| − 1) · δsup, T ]. We

first show by induction on l that ui(·) is K-Lipschitz on [Tf − (
⌈
T−Tf
δinf

⌉
+ 2 · |V| − l) · δsup, Tf ] for

all nodes i of level l in T . The base case follows from the definition of K. Assuming the property
holds for some l ≥ 1, we consider a node i of level l + 1 in T . Using Theorem 1, we have, for
(t, t′)∈ [Tf − (

⌈
T−Tf
δinf

⌉
+ 2 · |V|− l− 1) · δsup, Tf ]2:

|ui(t)−ui(t′)| ≤ max
j∈T (i)

E[|uj(t−ω)−uj(t′−ω)|]

≤K · |t− t′|,

where we use the induction property for l (recall that pij(ω) = 0 for ω≥ δsup). We conclude that the
functions (ui(·))i∈V are all K−Lipschitz on [Tf−(

⌈
T−Tf
δinf

⌉
+ |V|) ·δsup, Tf ]. We now prove, by induction

on m, that the functions (ui(·))i∈V are all K-Lipschitz on [Tf − (
⌈
T−Tf
δinf

⌉
−m+ |V|) ·δsup, Tf +m ·δinf ].
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The base case follows from the previous induction. Assuming the property holds for some m, we have
for i∈ V and for (t, t′)∈ [Tf − (

⌈
T−Tf
δinf

⌉
−m− 1 + |V|) · δsup, Tf + (m+ 1) · δinf ]2:

|ui(t)−ui(t′)| ≤ max
j∈V(i)

E[|uj(t−ω)−uj(t′−ω)|]

≤K · |t− t′|,

where we use the fact that pij(ω) = 0 for ω≤ δinf or ω≥ δsup and the induction property. We conclude
that the function (ui(·))i∈V are all K-Lipschitz on [Tf − |V| · δsup, T ]. Using this last fact, we can
prove, by induction on the level of the nodes in T , in a similar fashion as done for Case 2, that:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t)

|u∆t
i (ω)−ui(ω)| ≤ level(i,T ) ·K ·∆t, ∀i∈ V .

By induction on m, we can then show that:

sup
ω∈[kmin

i
·∆t,
⌊
Tf
∆t

⌋
·∆t+m·δinf)

|u∆t
i (ω)−ui(ω)| ≤ (|V|+m) ·K ·∆t, ∀i∈ V ,∀m∈N.

This implies:

sup
ω∈[kmin

i
·∆t,T ]

|u∆t
i (ω)−ui(ω)| ≤ (|V|+

⌈
T −Tf
δinf

⌉
+ 1) ·K ·∆t, ∀i∈ V ,

assuming ∆t≤ δinf . This shows uniform convergence at speed ∆t. To conclude the proof of Case 3,
we show that π∆t is a O(∆t)-approximate optimal solution to (1) as ∆t→ 0. We can show, using
the last inequality derived along with the same sequence of inequalities as in Case 2, by induction
on the level of the nodes in T that:

uπ
∆t
i (t)≥ ui(t)− 6 · level(i,T ) · (|V|+

⌈
T −Tf
δinf

⌉
+ 1) ·K ·∆t, ∀t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t),∀i∈ V .

We can then prove by induction on m, in the same fashion as in Case 2, that:

uπ
∆t
i (t)≥ ui(t)−6 · (m+ |V|) · (|V|+

⌈
T −Tf
δinf

⌉
+1) ·K ·∆t,∀t∈ [kmin

i ·∆t,
⌊
Tf
∆t

⌋
·∆t+m ·δinf),∀i∈ V ,

for all m∈N. We conclude that uπ∆t
s (T )≥ us(T )− 6 · (|V|+

⌈
T−Tf
δinf

⌉
+ 1)2 ·K ·∆t, which establishes

the claim.
Case 4. In this situation, we can show by induction on m that the functions (ui(·))i∈V are contin-

uous on [0,m · δinf ] and conclude that the functions (ui(·))i∈V are continuous on [0, T ]. Since [0, T ] is
a compact set, these functions are also uniformly continuous on [0, T ]. Moreover, u∆t

i (t) = ui(t) = 0
for all t≤ 0 and i∈ V . Using these two observations, we can apply the same techniques as in Case 2
to obtain the same results. �
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B.4. Proof of Theorem 2

Proof of Theorem 2. As in Theorem 1, the last part of the theorem is trivial because any strategy
is optimal when having already spent a budget of T −T rf .

The proof for the first part is an extension of Theorem 1 and follows the same steps. We denote
by (mij)(i,j)∈A the worst-case expected costs, i.e.:

mij = sup
pij∈Pij

EX∼pij [X] ∀(i, j)∈A.

Observe that these quantities are well-defined as Pij is not empty and EX∼pij [X] ≤ δsup for any
pij ∈ Pij . Furthermore, there exists p∗ij ∈ Pij such that mij = EX∼p∗

ij
[X] as Pij is compact for the

weak topology. For any node i 6= d, we define Mi as the length of a shortest path from i to d in G
when the arc cots are taken as (mij)(i,j)∈A. Just like in Theorem 1, we consider an optimal strategy
π∗f,P solution to (3). For a given history h∈H, we define th as the remaining budget, i.e. T minus the
total cost spent so far, and ih as the current location. The policy π∗f,P maps h ∈H to a probability
distribution over V(ih). Observe that randomizing does not help because (i) the costs are independent
across time and arcs and (ii) the ambiguity set is rectangular. Hence, without loss of generality, we
may assume that π∗f,P actually maps h to the node in V(ih) minimizing the worst-case objective
function given h. For h∈H, we denote by Xh

π∗
f,P

the random cost-to-go incurred by following strategy
π∗f,P , i.e. not including the total cost spent up to this point of the history T − th. We define πs as a
policy associated with an arbitrary shortest path from i to d with respect to (mij)(i,j)∈A. Specifically,
πs maps the current location ih to a node in T r(ih), irrespective of the history of the process. Similarly
as for π∗f,P , we denote by Xh

πs
the random cost-to-go incurred by following strategy πs for h ∈ H.

Using Bellman’s Principle of Optimality for π∗f,P , we have:

Ep∗ [f(th−Xh
π∗
f,P

)]≥ inf
∀τ≥T−th,∀(i,j)∈A, pτij∈Pij

Epτ [f(t−Xh
π∗
f,P

)]

≥ sup
π∈Π

inf
∀τ≥T−th,∀(i,j)∈A, pτij∈Pij

Epτ [f(t−Xh
π )]

≥ inf
∀τ≥T−th,∀(i,j)∈A, pτij∈Pij

Epτ [f(t−Xh
πs

)]

≥Eqτ [f(t−Xh
πs

)],

where (qτij)(i,j)∈A,τ≥T−th is given by the worst-case scenario in the ambiguity sets, i.e.:

(qτij)(i,j)∈A,τ≥T−th ∈ arg min
∀τ≥T−th,∀(i,j)∈A, pτij∈Pij

Epτ [f(t−Xh
πs

)],

which can be shown to exist because the ambiguity sets are compact. Using the last inequality
derived, we can prove, using the exact same sequence of inequalities as in Theorem 1, that there
exists T rf such that, for both cases (a) and (b):

Ep∗ [Xh
π∗
f,P

]−Eqτ [Xh
πs

]<min
i 6=d

min
j∈V(i),j /∈T r(i)

{mij +Mj −Mi} ∀h∈H such that th ≤ T rf , (EC.4)
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with the convention that the minimum of an empty set is equal to infinity. Starting from (EC.4),
consider h ∈H such that th ≤ T rf and suppose by contradiction that π∗f,P(h) = jh /∈ T r(ih). As men-
tioned in Theorem 1, even though π∗f,P can be fairly complicated, the first action is deterministic and
incurs an expected cost of mihjh because the costs are independent across time and arcs. Moreover,
when the objective is to minimize the average cost, the optimal strategy among all history-dependent
rules is to follow the shortest path with respect to the mean arc costs (once again because the costs
are independent across time and arcs). As a result:

Ep∗ [Xh
π∗
f,P

]≥mihjh +Mjh .

Additionally, by definition of (p∗ij)(i,j)∈A:

Eqτ [Xh
πs

]≤Ep∗ [Xh
πs

]

≤Mih .

This implies:
Ep∗ [Xh

π∗
f,P

]−Eqτ [Xh
πs

]≥mihjh +Mjh −Mih ,

a contradiction. We conclude that:

π∗f,P(h)∈ T r(ih) ∀h∈H such that th ≤ T rf .

�

B.5. Proof of Proposition 3.

Proof of Proposition 3. The proof uses a reduction to distributionally robust finite-horizon MDPs
in a similar fashion as in Proposition 1. Using Theorem 2, the optimization problem (3) can be
equivalently formulated as a discrete-time finite-horizon distributionally robust MDP in the extended
space state (i, t) ∈ V × [T − δsup ·

⌈
T−T rf
δinf

⌉
, T ] where i is the current location and t is the, possibly

negative, remaining budget. Specifically:
• The time horizon is

⌈
T−T rf
δinf

⌉
,

• The initial state is (s,T ),
• The set of available actions at state (i, t), for i 6= d, is taken as V(i). Picking j ∈ V(i) corresponds

to crossing link (i, j) and results in a transition to state (j, t−ω) with probability pij(ω)dω,
• The probability of transitions are only known to lie in the rectangular ambiguity set:

∏
(i,j)∈A

t∈[T−δsup·

⌈
T−Tr

f

δinf

⌉
,T ]

Pij ,
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• The only available action at a state (d, t) is to remain in this state,

• The transition rewards are all equal to 0,

• The final reward at the epoch
⌈
T−T rf
δinf

⌉
for any state (i, t) is equal to fi(t), which is the optimal

worst-case expected objective-to-go when following the shortest path tree T r starting at node i with

remaining budget t. Specifically, the collection of functions (fi(·))i∈V is a solution to the following

program:

fd(t) = f(t), t≤ T rf

fi(t) = max
j∈T r(i)

inf
pij∈Pij

∫ ∞
0

pij(ω) · fj(t−ω)dω i 6= d, t≤ T rf .

As a consequence, we can conclude the proof with Theorem 2.2 of Iyengar (2005) (or equivalently

Theorem 1 of Nilim and Ghaoui (2005)). �

B.6. Proof of Proposition 4

The proofs are along the same lines as for Proposition 2.

Proof of Proposition 4. We deal with each case separately.

Case 1. We make use the following facts:

• The functions (u∆t
i (·))i∈V are non-decreasing,

• The functions (ui(·))i∈V are non-decreasing,

• The functions (u∆t
i (·))i∈V lower bound the functions (ui(·))i∈V .

We follow the same recipe as in Proposition 2. We start by proving convergence for the discretizattion

sequence (∆tp = 1
2p )p∈N. Then, we conclude the general study with the exact same argument as in

Lemma EC.3.

Lemma EC.4. For the regular mesh (∆tp = 1
2p )p∈N, the sequence (u∆tp

i (t))p∈N converges to ui(t) for

almost every point t in [kr,min
i ·∆t, T ].

Proof Just like in Lemma EC.2 we can prove that the sequence (u∆tp
i (t))p∈N is non-decreasing for

any t and i∈ V. Hence, the functions (u∆tp
i (·))i∈V converge pointwise to some limits (fi(·))i∈V . Using

the preliminary remarks, we get:

fi(t)≤ ui(t) ∀t∈ [kr,min
i ·∆t, T ],∀i∈ V .

Next, we establish that for any t∈ [kr,min
i ·∆t, T ] and for any ε > 0, fi(t)≥ ui(t−ε). This will enable us

to squeeze fi(t) to finally derive fi(t) = ui(t). We start with node d. Observe that, by construction of

the approximation, u∆t
d (·) converges pointwise to f(·) at every point of continuity of f(·). Furthermore,

since fd(·) and ud(·) are non-decreasing, we have fd(t)≥ ud(t− ε) for all t ∈ [kr,min
d ·∆t, T ] and for
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all ε > 0. Consider ε > 0 and a large enough p such that ε > 1
2p which implies ∆tp · b t

∆tp c ≥ t− ε. We
first show by induction on the level of the nodes in T r that:

fi(t)≥ ui(t− level(i,T r) · ε) ∀t∈ [kr,min
i ·∆t,

⌊
T rf
∆t

⌋
·∆t],∀i∈ V .

The base case follows from the discussion above. Assume that the induction property holds for all
nodes of level less than l and consider a node i∈ V of level l+1. We have, for t∈ [kr,min

i ·∆t,
⌊
T rf
∆t

⌋
·∆t]:

u
∆tp
i (t)≥ u∆tp

i (
⌊
t

∆tp

⌋
·∆tp)

≥ max
j∈T r(i)

inf
pij∈Pij

EX∼pij [u
∆tp
j (

⌊
t

∆tp

⌋
·∆tp−X)]

≥ max
j∈T r(i)

inf
pij∈Pij

EX∼pij [u
∆tp
j (t− ε−X)].

Take j ∈ T r(i). Since u∆tp
j (·) is continuous and Pij is compact, the infimum in the previous inequality

is attained for some ppij ∈Pij which gives:

u
∆tp
i (t)≥EX∼pp

ij
[u∆tp
j (t− ε−X)].

As the sequence (u∆tp
j (t− ε−ω))p is non-decreasing for any ω, we have, for any m≤ p:

u
∆tp
i (t)≥EX∼pp

ij
[u∆tm
j (t− ε−X)].

Because Pij is a compact set for the weak topology, there exists a subsequence of (ppij)p converging
weakly in Pij to some probability measure pij. Without loss of generality, we continue to refer to this
subsequence as (ppij)p. We can now take the limit p→∞ in the previous inequality which yields:

fi(t)≥EX∼pij [u
∆tm
j (t− ε−X)],

since u∆tm
j (·) is continuous. To take the limit m→∞, note that:

u∆tm
j (t− ε−X)≥ u∆t1

j (t− ε− δsup),

while (u∆tm
j (t− ε−X))m∈N is non-decreasing and converges almost surely to fj(t− ε−X) as m→∞.

Therefore, we can apply the monotone convergence theorem and derive:

fi(t)≥EX∼pij [fj(t− ε−X)],

which further implies
fi(t)≥ inf

pij∈Pij
EX∼pij [fj(t− ε−X)].

As the last inequality holds for any j ∈ T r(i), we finally obtain:

fi(t)≥ max
j∈T r(i)

inf
pij∈Pij

EX∼pij [fj(t− ε−X)] ∀t∈ [kr,min
i ·∆t,

⌊
T rf
∆t

⌋
·∆t],∀i∈ V .
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Using the induction property along with Theorem 2, we get:

fi(t)≥ max
j∈T r(i)

inf
pij∈Pij

EX∼pij [uj(t− level(i,T r) · ε−X)]

≥ ui(t− level(i,T r) · ε),

for all t ∈ [kr,min
i ·∆t,

⌊
T rf
∆t

⌋
·∆t], which concludes the induction. We can now prove by induction on

m, along the same lines as above, that:

fi(t)≥ ui(t− (|V|+m) · ε) ∀t∈ [kr,min
i ·∆t,

⌊
T rf
∆t

⌋
·∆t+m · δinf ],∀i∈ V ,

for all m∈N. This last result can be reformulated as:

fi(t)≥ ui(t− ε) ∀ε > 0,∀t∈ [kr,min
i ·∆t, T ],∀i∈ V .

Combining this lower bound with the upper bound previously derived, we get:

ui(t)≥ fi(t)≥ ui(t−) ∀t∈ [kr,min
i ·∆t, T ],∀i∈ V ,

where ui(t−) refers to the left one-sided limit of ui(·) at t. Since, ui(·) is non-decreasing, it has
countably many discontinuity points and the last inequality shows that fi(·) = ui(·) almost everywhere
on [kr,min

i ·∆t, T ]. �

Case 2. The first step consists in proving that the functions (ui(·))i∈V are continuous on (−∞, T ].
By induction on l, we start by proving that ui(·) is continuous on (−∞, T rf ] for all nodes i of level l
in T r. The base case follows from the continuity of f(·). Assuming the property holds for some l≥ 1,
we consider a node i of level l+ 1 in T r, t≤ T rf and a sequence tn→n→∞ t. Using Theorem 2, we
have:

|ui(t)−ui(tn)| ≤ max
j∈T r(i)

sup
pij∈Pij

∫ ∞
0

pij(ω) · |uj(t−ω)−uj(tn−ω)|dω.

For any j ∈ T r(i), we can use the uniform continuity of uj(·) on [t− 2 · δsup, t] to prove that this
last term converges to 0 as n→∞. We conclude that all the functions (ui(·))i∈V are continuous
on (−∞, T rf ]. By induction on m, we can then show that the functions (ui(·))i∈V are continuous on
(−∞, T rf +m · δinf ], to finally conclude that they are continuous on (−∞, T ]. We are now able to
prove uniform convergence. Since [T rf −|V| · δsup, T ] is a compact set, the functions (ui(·))i∈V are also
uniformly continuous on this set. Take ε > 0, there exists α> 0 such that:

∀i∈ V , |ui(ω)−ui(ω′)| ≤ ε, ∀(ω,ω′)∈ [T rf − |V| · δsup, T ]2 with |ω−ω′| ≤ α.

Building on this, we can show, by induction on the level of the nodes in T r, that:

sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t]

|ui(ω)−u∆t
i (ω)| ≤ 2 · level(i,T r) · ε, ∀i∈ V .
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This follows from the sequence of inequalities:

sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t]

|u∆t
i (ω)−ui(ω)| ≤ sup

k∈{kr,min
i

,··· ,

⌊
Tr
f

∆t

⌋
}

|u∆t
i (k ·∆t)−ui(k ·∆t)|

+ sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t]

|ui(ω)−ui(
⌊
ω

∆t

⌋
·∆t)|

+ sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t]

|ui(ω)−ui(
⌈
ω

∆t

⌉
·∆t)|

≤ sup
k∈{kr,min

i
,··· ,

⌊
Tr
f

∆t

⌋
}

max
j∈T (i)

sup
pij∈Pij

{
∫ ∞

0
pij(ω) · |u∆t

j (k ·∆t−ω)−uj(k ·∆t−ω)|dω}

+ 2 · ε

≤ 2 · (level(i,T r)− 1) · ε+ 2 · ε

≤ 2 · level(i,T r) · ε.

We conclude that:

sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t]

|u∆t
i (ω)−ui(ω)| ≤ 2 · |V| · ε, ∀i∈ V .

Along the same lines, we can show by induction on m that:

sup
ω∈[kr,min

i
·∆t,

⌊
Tr
f

∆t

⌋
·∆t+m·δinf ]

|u∆t
i (ω)−ui(ω)| ≤ 2 · (|V|+m) · ε, ∀i∈ V .

This implies:
sup

ω∈[kr,min
i

·∆t,T ]
|u∆t
i (ω)−ui(ω)| ≤ 2 · (|V|+

⌈
T −T rf
δinf

⌉
) · ε, ∀i∈ V ,

assuming ∆t≤ δinf . In particular, this shows uniform convergence. To conclude the proof of Case 2,
we show that π∆t is a o(1)-approximate optimal solution to (3) as ∆t→ 0. We denote by uπ∆t

i (t) the
worst-case expected risk function when following policy π∆t starting at i with remaining budget t.
We can show, by induction on the level of the nodes in T r, that :

uπ
∆t
i (t)≥ ui(t)− 12 · level(i,T r) · (|V|+

⌈
T −T rf
δinf

⌉
) · ε, ∀t∈ [kr,min

i ·∆t, T rf ],∀i∈ V .

To do so, we can use the same sequence of inequalities as in Case 2 of Proposition 2, except that we
also take the infimum over piπ∆t(i,t) ∈Piπ∆t(i,t). We derive:

uπ
∆t
i (t)≥ ui(t)− 12 · |V| · (|V|+

⌈
T −T rf
δinf

⌉
) · ε, ∀t∈ [kr,min

i ·∆t, T rf ],∀i∈ V .
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Along the same lines, we can show by induction on m that:

uπ
∆t
i (t)≥ ui(t)− 12 · (|V|+m) · (|V|+

⌈
T −T rf
δinf

⌉
) · ε, ∀t∈ [kr,min

i ·∆t, T rf +m · δinf ],∀i∈ V .

We conclude that uπ∆t
s (T )≥ us(T )− 12 · (|V|+

⌈
T−T rf
δinf

⌉
)2 · ε, which establishes the claim.

Case 3. This case is essentially identical to Case 2 substituting uniform continuity for Lipschitz
continuity and the proof mirrors the proof of Case 3 of Proposition 2.

�

B.7. Proof of Lemma 1

Proof of Lemma 1. For a real value x, δx refers to the Dirac distribution at x. We denote by
(mij)(i,j)∈A the worst-case expected costs, i.e.:

mij = sup
pij∈Pij

EX∼pij [X] ∀(i, j)∈A.

We define Mi as the length of a shortest path from i to d in G when the arc costs are taken as
(mij)(i,j)∈A. Observe that f(·) is increasing since f(·) is convex and f ′→−∞ a > 0. We use Proposition
3 and consider a solution (π∗f,P , (ui(·))i∈V) to the dynamic programming equation (7). We first prove
by induction on the level of the nodes in T r that:

ui(t) = f(t−Mi) ∀t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T rf ],

for all nodes i∈ V . The base case is trivial. Assume that the property holds for all nodes of level less
than l and consider a node i∈ V of level l+ 1. Take t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T rf ]. Using
Theorem 2, we have:

ui(t) = max
j∈T r(i)

inf
pij∈Pij

EX∼pij [uj(t−X)]

= max
j∈T r(i)

inf
pij∈Pij

EX∼pij [f(t−X −Mj)]

≥ max
j∈T r(i)

inf
pij∈Pij

f(t−EX∼pij [X]−Mj)

≥ max
j∈T r(i)

f(t−mij −Mj)

≥ f(t− min
j∈T r(i)

mij −Mj)

≥ f(t−Mi)

≥ max
j∈T r(i)

EX∼δmij [f(t−X −Mj)],

where the first inequality results from the convexity of f(·) and the third inequality is a consequence
of the monotonicity of f(·). Since δmij ∈ Pij , the last inequality shows that ui(t) = f(t−Mi). This
concludes the induction. We move on to prove by induction on m that:

ui(t) = f(t−Mi) ∀t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T rf +m · δinf ],∀i∈ V .
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Assume that the inductive property holds for some m∈N. Consider i 6= d. We have, for t∈ [T rf +m ·
δinf , T rf + (m+ 1) · δinf ]:

ui(t) = max
j∈V(i)

inf
pij∈Pij

EX∼pij [uj(t−X)]

= max
j∈V(i)

inf
pij∈Pij

EX∼pij [f(t−X −Mj)]

≥ max
j∈V(i)

inf
pij∈Pij

f(t−EX∼pij [X]−Mj)

≥ max
j∈V(i)

f(t−mij −Mj)

≥ f(t− min
j∈V(i)

mij −Mj)

≥ f(t−Mi)

≥ max
j∈V(i)

EX∼δmij [f(t−X −Mj)],

using the convexity and the monotonicity of f(·). The last inequality shows that ui(t) = f(t−Mi).
This concludes the induction. Hence:

ui(t) = f(t−Mi) ∀t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T ],∀i∈ V .

Using Theorem 2 and plugging this last expression back into (7), we conclude that:

π∗f,P(i, t)∈ T r(i) ∀t≤ T,∀i 6= d.

Moreover, for any arc (i, j) ∈ A, we have proved that the infimum appearing in (7) is attained at
δmij irrespective of the remaining budget t. This shows:

sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)]≥ sup
π∈Π

Eδ[f(T −Xπ)]

≥ sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)],

where the notation δ refers to the fact the costs (cij)(i,j)∈A are independent and distributed according
to (δmij )(i,j)∈A. Since (3) is a relaxation of (2), we get:

sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)] = sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)],

and an optimal strategy for both problems is to always follow the shortest-path tree T r. �

B.8. Proof of Lemma 2

Proof of Lemma 2. Without loss of generality, we assume that f (K+1) > 0. The proof is almost
identical in the converse situation. We use Proposition 3 and consider a solution (π∗f,P , (ui(·))i∈V) to
the dynamic programming equation (7). We first prove by induction on the level of the nodes i in G
that u(K+1)

i > 0 and that, for j the immediate successor of i in G, there exists pij ∈Pij such that:

ui(t) = EX∼pij [uj(t−X)] ∀t≤ T if i 6= d. (EC.5)
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Assume that the property holds for all nodes of level less than l and consider a node i ∈ V of level
l + 1. Let j be the immediate successor of i in G. As Pij is not empty, Lemma 3.1 from Shapiro
(2001) shows that Pij contains a discrete distribution whose support is a subset of {δ0, · · · , δK+2}
with δ0 = δinf

ij < δ1 < · · ·< δK+2 = δsup
ij . For any n∈N, we define the ambiguity set:

Pnij = {p∈Pij | supp(p)⊂ {δ0, δ0 + δ1− δ0

n
, δ0 + 2 · δ1− δ0

n
, · · · , δ1, δ1 + δ2− δ1

n
, · · · , δK+1}},

which can be interpreted as a discretization of Pij . Observe that, by design, Pnij is not empty.
Additionally, we define the sequence of functions (fni (·))n∈N by:

fni (t) = inf
p∈Pn

ij

EX∼p[uj(t−X)] ∀t≤ T. (EC.6)

Since u(K+1)
j > 0, Prékopa (1990) shows that there exists pnij ∈Pnij such that:

fni (t) = EX∼pn
ij

[uj(t−X)] ∀t≤ T.

Because Pij is compact with respect to the weak topology and since Pnij ⊂ Pij , we can take a sub-
sequence of (pnij)n∈N such that pnij → pij ∈ Pij as n→∞ for the weak topology. Without loss of
generality, we continue to denote this sequence (pnij)n∈N. Since uj(·) is continuous, we derive that the
sequence of functions (fni (·))n∈N converges simply to a function fi(·) which satisfies:

fi(t) = EX∼pij [uj(t−X)] ∀t≤ T. (EC.7)

We now move on to show that fi(t) = ui(t) for all t≤ T . This will conclude the induction because
we can take the (K + 1)th derivative in (EC.7) since pij has compact support. Take t≤ T and ε > 0.
The function uj(·) is continuous on [t− δsup, t− δinf ] hence, by uniform continuity, there exists α> 0
such that:

|uj(t−ω)−uj(t−ω′)| ≤ ε

as soon as |ω−ω′| ≤ α and (ω,ω′)∈ [δinf
ij , δ

sup
ij ]2. Consider n> δ

sup
ij
−δinf

ij

α
. Using conic duality, Corollary

3.1 of Shapiro (2001) shows that ui(t) is the optimal value of the infinite linear program:

sup
(a1,··· ,aK ,b)∈RK+1

K∑
k=1

ak ·mk
ij + b

subject to
K∑
k=1

ak ·ωk + b≤ uj(t−ω) ∀ω ∈ [δinf
ij , δ

sup
ij ].

(EC.8)

Using strong linear programming duality, we also have that fni (t) is the optimal value of the finite
linear program:

sup
(a1,··· ,aK ,b)∈RK+1

K∑
k=1

ak ·mk
ij + b

subject to
K∑
k=1

ak ·ωk + b≤ uj(t−ω) ∀ω ∈ {δ0, δ0 + δ1− δ0

n
, δ0 + 2 · δ1− δ0

n
, · · · , δK+1}.

(EC.9)



e-companion to Flajolet, Blandin and Jaillet: Robust Adaptive Routing Under Uncertainty ec21

Take (an1 , · · · , anK , bn) an optimal basic feasible solution to (EC.9). By a standard linear programming
argument:

max( max
k=1,··· ,K

|ank |, |bn|)≤U,

where U = ((K+1) ·max(1, uj(t−δinf), (δsup
ij )K))(K+1) does not depend on n. Let us use the shorthand:

V =U · (δsup
ij − δinf

ij ) ·
K∑
k=1

k · (δsup
ij )(k−1),

and define b= bn− V
n
− ε. We show that (an1 , · · · , anK , b) is feasible for (EC.8). For any w ∈ [δinf

ij , δ
sup
ij ],

take w′ ∈ {δ0, δ0 + δ1−δ0
n

, δ0 + 2 · δ1−δ0
n

, · · · , δK+1} such that |w−w′| ≤ δ
sup
ij
−δinf

ij

n
. We have:

K∑
k=1

ank ·ωk + b=
K∑
k=1

ank · (ω′)k + bn +
K∑
k=1

ank · (ωk− (ω′)k)− V

n
− ε

≤ uj(t−ω′) +
K∑
k=1
|ank | · |ωk− (ω′)k| − V

n
− ε

≤ uj(t−ω) +
K∑
k=1

U · k · (δsup
ij )(k−1) · |ω−ω′| − V

n

≤ uj(t−ω),

where we use the fact that (an1 , · · · , anK , bn) is feasible for (EC.9) in the first inequality, the uniform
continuity of uj(·) in the second and the definition of V in the last one. We derive:

fi(t)−
V

n
− ε≤ ui(t)≤ fi(t).

Taking n→∞ and ε→ 0, we obtain fi(t) = ui(t). This concludes the induction.
As a consequence of (EC.5), the infimum in (7) is always attain for pij , irrespective of the remaining

budget t, so we can conclude that (2) and (3) are equivalent. �

B.9. Proof of Lemma 3

This result is a direct consequence of the following observations:
• when the risk function is f(t) = t, following the shortest path with respect to

(maxp∈Pij EX∼p[X])(i,j)∈A is an optimal strategy for (3),
• when the risk function is f(t) = exp(t), following the shortest path with respect to

(maxp∈Pij − log(EX∼p[exp(−X)]))(i,j)∈A is an optimal strategy for (3),
• when the risk function is f(t) = − exp(−t), following the shortest path with respect to

(maxp∈Pij log(EX∼p[exp(X)]))(i,j)∈A is an optimal strategy for (3).
As a consequence, for any of these risk functions, (2) and (3) are equivalent. Define g(·) as any of
these risk functions. Assuming that γ · g(t) + β ≥ f(t)≥ a · g(t) + b,∀t≤ T , we get:

sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)]≤ sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[γ · g(T −Xπ) + β]
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≤ β+ γ · sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[g(T −Xπ)]

≤ β+ γ · sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [g(T −Xπ)]

≤ β− γ

a
· b+ γ

a
· sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [a · g(T −Xπ) + b]

≤ β− γ

a
· b+ γ

a
· sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)].

This last inequality along with:

sup
π∈Π

inf
∀(i,j)∈A, pij∈Pij

Ep[f(T −Xπ)]≥ sup
π∈Π

inf
∀τ,∀(i,j)∈A, pτ

ij
∈Pij

Epτ [f(T −Xπ)]

yields the claim with some basic algebra.

B.10. Proof of Lemma 4

Proof of Lemma 4. For any k ∈N, we define (πk, (uki (·))i∈V) as a solution to the dynamic program
(7) when the ambiguity sets are taken as (Pkij)(i,j)∈A. Similarly, we define (π∞, (u∞i (·))i∈V) as a
solution to the dynamic program (7) when the ambiguity sets are taken as (∩k∈NPkij)(i,j)∈A. Along the
sames lines as what is done in the proof of Proposition 4, we can show that the functions (uki (·))k∈N
and u∞i (·) are continuous for any i ∈ V . Because the ambiguity sets are nested, observe that the
sequence (uki (t))k∈N is non-decreasing for any t ≤ T , hence it converges to a limit fi(t) ≤ u∞i (t).
Moreover, fd(t) = f(t) for all t≤ T . Take i 6= d and t≤ T . We have, for any k ∈N and m≤ k:

fi(t)≥ uki (t)

≥ max
j∈V(i)

inf
p∈Pk

ij

∫ ∞
0

p(ω) ·ukj (t−ω)dω

≥ max
j∈V(i)

∫ ∞
0

pkij(ω) ·ukj (t−ω)dω

≥ max
j∈V(i)

∫ ∞
0

pkij(ω) ·umj (t−ω)dω,

where pkij ∈ Pkij achieves the minimum for any j ∈ V(i), which can be shown to exist since Pkij is
compact and ukj (·) is continuous. Because Pkij is compact for the weak topology, we can take a
subsequence of (pkij)k∈N that converges to a distribution p∞ij in ∩k∈NPkij . Without loss of generality we
continue to refer to this sequence as (pkij)k∈N. Taking the limit k→∞ in the last inequality derived
yields:

fi(t)≥ max
j∈V(i)

∫ ∞
0

p∞ij (ω) ·umj (t−ω)dω.

Observing that umj (t− ω) ≥ u1
j(t− ω), we can use the monotone convergence theorem for m→∞

and conclude that:

fi(t)≥ max
j∈V(i)

∫ ∞
0

p∞ij (ω) · fj(t−ω)dω

≥ max
j∈V(i)

inf
p∈∩k∈NPkij

∫ ∞
0

p(ω) · fj(t−ω)dω.
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We use Theorem 2 for the ambiguity sets (∩k∈NPkij)(i,j)∈A and denote by T rf (resp. T r) the time budget
(resp. the tree) put forth in the statement of the theorem. Using the last sequence of inequalities
derived, we can prove, by induction on the levels of the nodes in T r that:

fi(t)≥ u∞i (t) ∀t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T rf ],∀i∈ V ,

and then by induction on m∈N that:

fi(t)≥ u∞i (t) ∀t∈ [T rf − (|V|− level(i,T r) + 1) · δsup, T rf +m · δinf ],∀i∈ V .

We finally obtain fs(T )≥ u∞s (T ) which concludes the proof.
�

B.11. Proof of Lemma 7

Proof of Lemma 7. First observe that, along the sames lines as in general case, the constraint

z+ (x− y) · l ·∆t≤ u∆t
j ((k− l) ·∆t)

does not limit the feasible region if (l ·∆t, u∆t
j ((k− l) ·∆t)) is not an extreme point of the upper convex

hull of {(l ·∆t, u∆t
j (l ·∆t)), l= k−

⌈
δ
sup
ij

∆t

⌉
, · · · , k−

⌊
δinf
ij

∆t

⌋
}∪{(δsup

ij , u∆t
j (k ·∆t−δsup

ij )), (δinf
ij , u

∆t
j (k ·∆t−

δinf
ij ))}. Hence, we can discard the constraints that do no satisfy this property from (14). We denote

by S the sorted projection of the set of extreme points onto the first coordinate. Observe that the
feasible region is pointed as the polyhedron described by the inequality constraints does not contain
any line, therefore there exists a basic optimal feasible solution for which at least three inequality
constraints are binding. By definition of S, only two of the constraints

z+ (x− y) ·ω≤ u∆t
j (ω) ω ∈ S

can be binding which further implies that at least one of the constraints x≥ 0 and y ≥ 0 must be
binding. There are three types of feasible basis depending on whether these last two constraints are
binding or if only one of them is. We show that, for each type, we can identify an optimal basis
among the basis of the same type by binary search on the first coordinate of the extreme points.
This will conclude the proof as it takes constant time to compare the objective function achieved by
each of the three potentially optimal basis. Since, by definition of S, u∆t

j (·) is convex on S, we can
partition S into S1 and S2 such that u∆t

j (·) is non-increasing on S1 and non-decreasing on S2 with
max(S1) = min(S2).

If x≥ 0 and y≥ 0 are binding then z is the only non-zero variable and the objective is to maximize
z. Hence, the optimal basis of this type is given by x = 0, y = 0 and z = min

ω∈S
u∆t
j (ω) which can be

computed by binary search since u∆t
j (·) is convex on S.
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If only x≥ 0 is binding, then the line ω→ z− y ·ω must be joining two consecutive points in S1.
Since the objective function is precisely the value taken by the line ω→ z− y ·ω at βij , the optimal
straight line joins two consecutive points in S1, ω1 and ω2, that satisfy ω1 ≤ βij ≤ ω2 assuming
max(S1)≥ βij . If max(S1)< βij , the feasible basis of this type are dominated by the optimal basis
of the first type. Computing ω1 and ω2 or showing that they do not exist can be done with a single
binary search on S.

The discussion is analogous if only y≥ 0 is binding instead. The line ω→ z+x ·ω must be joining
two consecutive points in S2. Since the objective function is precisely the value taken by this line at
αij , the optimal straight line joins two consecutive points in S2, ω1 and ω2, that satisfy ω1 ≤ αij ≤ ω2

assuming αij ≥min(S2). If min(S2)>αij , the feasible basis of this type are dominated by the optimal
basis of the first type. Computing ω1 and ω2 or showing that they do not exist can be done with a
single binary search on S.

�
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