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Abstract

To systematically study the implications of additional information about routes provided

to certain users (e.g., via GPS-based route guidance systems), we introduce a new class of

congestion games in which users have differing information sets about the available edges and

can only use routes consisting of edges in their information set. After defining the notion of

Information Constrained Wardrop Equilibrium (ICWE) for this class of congestion games and

studying its basic properties, we turn to our main focus: whether additional information can be

harmful (in the sense of generating greater equilibrium costs/delays). We formulate this question

in the form of Informational Braess’ Paradox (IBP), which extends the classic Braess’ Paradox in

traffic equilibria, and asks whether users receiving additional information can become worse off.

We provide a comprehensive answer to this question showing that in any network in the series of

linearly independent (SLI) class, which is a strict subset of series-parallel networks, IBP cannot

occur, and in any network that is not in the SLI class, there exists a configuration of edge-specific

cost functions for which IBP will occur. In the process, we establish several properties of the

SLI class of networks, which include the characterization of the complement of the SLI class in

terms of embedding a specific set of networks, and also an algorithm which determines whether

a graph is SLI in linear time. We further prove that the worst-case inefficiency performance of

ICWE is no worse than the standard Wardrop equilibrium.

1 Introduction

The advent of GPS-based route guidance systems, such as Waze or Google maps, promises a better

traffic experience to its users, as it can inform them about routes that they were not aware of or

help them choose dynamically between routes depending on recent levels of congestion. Though

other drivers might plausibly suffer increased congestion as the routes they were using become more
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congested due to this reallocation of traffic, or certain residents may experience elevated noise levels

in their side streets, it is generally presumed that the users of these systems (and perhaps society

as a whole) will benefit. In this paper, we present a framework for systematically analyzing how

changes in the information sets of users in a traffic network (e.g., due to route guidance systems)

impact the traffic equilibrium, and show the conditions under which even those with access to

additional information may suffer greater congestion.

Our formal model is a version of the well-known congestion games, augmented with multiple

types of users (drivers), each with a different information set about the available edges in the

network. These different information sets represent the differing knowledge of drivers about the

road network, which may result from their past experiences, from inputs from their social network,

or from the different route guidance systems they might rely on. A user can only utilize a route

(path between origin and destination) consisting of edges belonging to her information set. Each

edge is endowed with a latency/cost function representing costs due to congestion. We generalize

the classic notion of Wardrop equilibrium (Wardrop [1952], Beckmann et al. [1956] and Schmeidler

[1973]), where each (non-atomic) user takes the level of congestion on all edges as given and chooses

a route with minimum cost (defined as the summation of costs of edges on the route). Our no-

tion of Information Constrained Wardrop Equilibrium (ICWE), also imposes the same equilibrium

condition as Wardrop equilibrium, but only for routes that are contained in the information set of

each type of user.

After establishing the existence and essential uniqueness of ICWE and characterizing its main

properties for networks with a single origin-destination pair (an assumption we impose for simplicity

and later relax), we turn to our key question of whether expanding the information sets of some

group of users can make them worse off — in the sense of increasing the level of congestion they

suffer in equilibrium. For this purpose, we define the notion of Informational Braess’ Paradox

(IBP), designating the possibility that users with expanded information sets experience greater

equilibrium cost. We then provide a tight characterization of when IBP is and is not possible in a

traffic network.

Our main result is that IBP does not occur if and only if the network is series of linearly

independent (SLI). More specifically, this result means that in an SLI network, IBP can never

occur, ensuring that users with expanded information set always benefit from their additional

information. Conversely, if the network is not SLI, then there exists a configuration of latency/cost

functions for edges for which IBP will occur. To understand this result, let us consider what the

relevant class of networks comprises. The set of SLI networks is a subset of series-parallel networks,

which are those for which two routes never pass through any edge in opposite directions. An SLI

network is obtained by joining together a collection of linearly independent (LI) networks in series.

LI networks are those in which each route includes at least one edge that is not part of any other

route. The intuition of our main result is as follows. To show IBP does not occur in an SLI network,

we show the result on each of its LI parts. A key property of LI networks used in proving our main

result is that for a traffic network with multiple information types if we reduce the total traffic
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demand, then there exists a route with strictly less flow. When some users have more information,

they change their routing, redirecting it to some subnetwork A of the original network from some

other subnetwork B (and since the original network is LI, both A and B are also LI). All else equal,

this will increase flows in A and decrease flows in B. By the key property of LI networks, this will

reduce flows in some route in B and since users with more information have access to routes in B,

this rerouting cannot increase their costs. Other users adjust their routing by allocating flows away

from A (since flow in A has increased), which again by the LI property of the subnetwork implies

that costs of some routes in A decrease, establishing “if” part of our main result. The “only if” part

is proved by showing that every non-SLI network embeds one of the collection of networks, and we

demonstrate constructively that each one of these networks generates IBP (for some configuration

of costs).

We should also note that, since SLI is a restrictive class of networks, and few real-world networks

would fall into this class, we take this characterization to imply that IBP is difficult to rule out

in practice, and thus the new, highly-anticipated route guidance technologies may make traffic

problems worse.

Since the class of SLI networks plays a central role in our analysis, a natural question is whether

identifying SLI networks is straightforward. We answer this question by showing that whether a

given network is SLI or not can be determined in linear time. This result is based on the algorithms

for identifying series-parallel networks proposed by Valdes et al. [1979], Schoenmakers [1995], and

Eppstein [1992].

If, rather than considering a general change of information sets, we specialize the problem so

that only one user type does not have complete information about the available set of routes and

the change in question is to bring all users complete information, then we show that an IBP is

possible if and only if the network is not series-parallel. It is intuitive that this class of networks is

less restrictive than SLI, since we are now considering a specific change in information sets (thus

making IBP less likely to occur).

Our main focus is on traffic networks with a single origin-destination pair for which we provide

a full characterization of network topologies for occurrence of IBP. In Section 6.4, we consider

multiple origin-destination pairs and use our characterization to provide a sufficient condition on

the network topology under which IBP does not occur.

Our notion of IBP closely relates to the classic Braess’ Paradox (BP), introduced in Braess [1968]

and further studied in Murchland [1970] and Arnott and Small [1994], which considers whether an

additional edge in the network can increase equilibrium cost. When BP occurs in a network,

IBP with a single information type also occurs (since IBP with a single information type can be

shown to be identical to BP). Various aspects of BP and congestion games in general is stud-

ied in Murchland [1970], Steinberg and Zangwill [1983], Dafermos and Nagurney [1984], Patriksson

[1994], Bottom et al. [1999], Jahn et al. [2005], Ordóñez and Stier-Moses [2010], Meir and Parkes

[2014], Nikolova and Stier-Moses [2014], Chen et al. [2015], and Feldman and Friedler [2015]. Our

characterization of ICWE and IBP clarifies that our notion is different and, at least mathematically,
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more general. This can be seen readily from a comparison of our results to the most closely related

papers to ours in the literature, Milchtaich [2005, 2006]. The characterizations in Milchtaich [2006]

imply that BP can be ruled out in series-parallel networks. Since IBP is a generalization of BP, it

should occur in a wider class of networks, and this is indeed what our result shows- indeed SLI is a

strict subset of series-parallel networks. This result also indicates that IBP is a considerably more

pervasive phenomenon than BP. Notably, the mathematical argument for our key theorem is differ-

ent from Milchtaich [2006] due to the key difficulty relative to BP that not all users have access to

the same set of edges, and thus changes in traffic that benefit some groups of users might naturally

harm others by increasing the congestion on the routes that they were previously utilizing.

Issues related to Braess’ Paradox arise not only in the context of models of traffic, but in

various models of communication, pricing and choice over congested goods, and electrical circuits.

See e.g., Orda et al. [1993], Korilis et al. [1997], Kelly et al. [1998], and Low and Lapsley [1999] for

communication networks; the classic works by Pigou [1920] and Samuelson [1952] as well as more

recent works by Johari and Tsitsiklis [2003], Acemoglu and Ozdaglar [2007], Ashlagi et al. [2009]

and Perakis [2004] for related economic problems; Frank [1981], Cohen and Horowitz [1991], and

Cohen and Jeffries [1997] for mechanical systems and electrical circuits; and Rosenthal [1973] and

Vetta [2002] for general game-theoretic approaches. This observation also implies that the results

we present here are relevant beyond traffic networks, in fact to any resource allocation problem

over a network subject to congestion considerations. As pointed out in Newell [1980] and Sheffi

[1985] the Braess’ paradox and related inefficiencies are a clear and present challenge to traffic

engineers, who often try to restrict travel choices to improve congestion (e.g., via systems such as

ramp metering on freeway entrances).

Other inefficiencies created by providing more information in the context of traffic networks

have been studied in Mahmassani and Herman [1984], Ben-Akiva et al. [1991], Arnott et al. [1991],

and Liu et al. [2016]. In particular, Arnott et al. [1991] consider a model with atomic drivers in

which users decide on their departure time and route choice. They show that providing imper-

fect information regarding capacity/delay of roads might be worse than providing no information.

More broadly, inefficiencies created by providing more information in other contexts are studied

in Maheswaran and Başar [2003], Sanghavi and Hajek [2004], Yang and Hajek [2005], Harel et al.

[2014], Dughmi [2014], and Rogers et al. [2015], among others.

Because our analysis also presents “price of anarchy” type results, i.e., bounds on the overall level

of inefficiency that can occur in an ICWE, our paper is related to previous work on the price of an-

archy in congestion and related games started by seminal works of Koutsoupias and Papadimitriou

[1999] and Roughgarden and Tardos [2002] and followed by Correa et al. [2004, 2005], and Friedman

[2004], as well as more generally to the analysis of equilibrium and inefficiency in the variants

of this class of games, including Milchtaich [2004a,b], Acemoglu et al. [2007], Mavronicolas et al.

[2007], Nisan et al. [2007], Arnott and Small [1994], Lin et al. [2004], Meir and Parkes [2015], and

Anshelevich et al. [2008]. Here, our result is that the presence of users with different information

sets does not change the worst-case inefficiency traffic equilibrium as characterized, for example, in
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Roughgarden and Tardos [2002].

The rest of the paper is organized as follows. In Section 2, we introduce our model of traffic

equilibrium with users that are heterogeneous in terms of the information about routes/edges they

have access to, and then define the notion of Information Constrained Wardrop Equilibrium for

this setting. In Section 3 we prove the existence and essential uniqueness of Information Con-

strained Wardrop Equilibrium. Before moving to our main focus, in Section 4 we review some

graph-theoretic notions about series-parallel and linearly independent networks, and then intro-

duce the class of series of linearly independent networks and prove some basic properties of this

class of networks, which are then used in the rest of our analysis. Section 5 defines our notion

of Informational Braess’ Paradox. Section 6 contains our main result, showing that Informational

Braess’ Paradox occurs “if and only if” the network is not in the class of series of linearly inde-

pendent networks. Section 7 characterizes the worst-case inefficiency of Information Constrained

Wardrop Equilibrium, and finally, Section 8 concludes. All the omitted proofs are included in the

Appendix.

2 Model

We first describe the environment and then introduce our notion of Information Constrained

Wardrop Equilibrium.

2.1 Environment

We consider an undirected multigraph without self-loops denoted by G = (V, E , f) with vertex

set V , edge set E , and a function f : E → {{u, v}, u, v ∈ V, u 6= v} that maps each edge to its

end vertices. For the ease of notation we will refer to G as (V, E) and denote an edge e with

f(e) = {u, v} by e = (u, v). We use the terms node and vertex interchangeably. Each edge e ∈ E

joins two (distinct) vertices u and v, referred to as the end vertices of e. An edge e and a vertex v

are said to be incident to each other if v is an end vertex of e. A path p ∈ G of length n (n ≥ 0) is a

sequence of edges e1 . . . en in E where ei and ei+1 share a vertex. If an edge e appears on a path p,

we write e ∈ p. The first and last vertices of a path p are called the initial and terminal vertices of

p, respectively. If q is a path of the form en+1 . . . em, with the initial vertex the same as the terminal

vertex of p but all the other vertices and edges of q do not belong to p, then e1 . . . enen+1 . . . em is

also a path, denoted by p+ q. For a path p and two nodes v and u on it, we denote the section of

path between u and v by puv.

Throughout the paper, we focus on an undirected multigraph G = (V, E) together with an

ordered pair of distinct vertices, called terminals, an origin O and a destination D, referred to

as a network. A subnetwork of G is defined as (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E and for any

e = (u, v) ∈ E ′, we have u, v ∈ V ′. We assume that each vertex and edge belong to at least one

path between the initial vertex O and the terminal vertex D. This assumption is without loss of

generality because the vertices and edges that do not belong to any path from O to D are irrelevant
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for the purpose of sending traffic from O to D. Any path r with O as the initial vertex and D as

the terminal vertex will be called a route. The set of all routes in a network is denoted by R.

We suppose there are K ≥ 1 types of users (we use the terms users and players interchangeably)

and use the shorthand notation [K] = {1, . . . ,K} to denote the set of types. Each type i ∈ [K] has

total traffic demand si ∈ R
+, and we denote the vector of traffic demands by s1:K = (s1, . . . , sK).

For each type i, we use Ei ⊆ E to denote the set of edges that type i knows and Ri to denote the

routes formed by edges in Ei (assumed non-empty). We refer to Ei or Ri as type i’s information

set. We use E1:K = (E1, . . . , EK) to denote the information sets of all types.

We use f (i) = (f
(i)
r : r ∈ Ri) to denote the flow vector of type i, where for all r ∈ Ri, f

(i)
r ≥ 0

represents the amount of traffic (flow) that type i sends on route r. We use f (1:K) = (f (1), . . . , f (K))

to denote the flow vector of all types. Each edge of the network has a cost (latency) function

ce : R
+ → R

+ which is continuous, nonnegative, and nondecreasing. We denote the set of all cost

functions by c = {ce : e ∈ E}. For instance, if all the cost functions are affine functions, then for any

e ∈ E , we would have ce(x) = aex+be, for some ae, be ∈ R
+. We refer to (G, E1:K , s1:K , c) as a traffic

network with multiple information types. A feasible flow is a flow vector f (1:K) = (f (1), . . . , f (K))

such that for all i ∈ [K], f (i) is a flow vector of type i, i.e., f (i) : Ri → R
+ and

∑

r∈Ri
f
(i)
r = si.

We denote the total flow on each route r by fr, i.e., fr =
∑K

i=1 f
(i)
r .

2.2 Information Constrained Wardrop Equilibrium

The cost of a route r with respect to a flow (f (1), . . . , f (K)) is the sum of the cost of the edges

that belong to this route, i.e., cr(f
(1:K)) =

∑

e∈r ce(fe), where fe denotes the amount of traffic that

passes through edge e, i.e., fe =
∑

r∈R : e∈r fr.

We assume flows get allocated at equilibrium according to a “constrained” version of Wardrop’s

principle: flows of each user type are routed along routes in her information set with minimal (and

hence equal) cost. We next formalize this equilibrium notion.

Definition 1 (Information Constrained Wardrop Equilibrium (ICWE)). A feasible flow

f (1:K) = (f (1), . . . , f (K)) is an Information Constrained Wardrop Equilibrium (ICWE) if for every

i ∈ [K] and every pair r, r̃ ∈ Ri with f
(i)
r > 0, we have

cr(f
(1:K)) ≤ cr̃(f

(1:K)). (1)

This implies that all the routes in Ri with positive flow from type i have the same cost, which is

smaller or equal to the cost of any other route in Ri. The equilibrium cost of type i, denoted by c(i),

is then given by the cost of any route in Ri with positive flow from type i. Note that the Wardrop

Equilibrium (WE) is a special case of this definition for a traffic network with a single information

type, i.e., K = 1.

We next provide an example that illustrates this definition and how it differs from the classic

Wardrop Equilibrium.
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e1
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Figure 1: Example of a network with edge cost functions given by ce1(x) = ce4(x) = ce6(x) = x
and ce2(x) = ce5(x) = ce7(x) = 1 + ax and ce3 = ax for some a > 0.

Example 1. Consider the network G = (V, E) given in Figure 1 with s1 = s, s2 = 1− s, and the

cost functions specified in Figure 1. There are 5 different routes from origin to destination, which

we denote by r1 = e1e3e4, r2 = e1e3e5, r3 = e2e3e4, r4 = e2e3e5, and r5 = e6e7. We let E1 = E and

E2 = {e6, e7}, which results in R1 = {r1, r2, r3, r4, r5} and R2 = {r5}, respectively.

• If s ≤ 2+a
3+2a , ICWE is f

(1)
r1 = s and f

(2)
r5 = 1 − s. The equilibrium cost of type 1 is c(1) =

cr1(f
(1:2)) = s + as + s = s(a + 2). The equilibrium cost of type 2 is c(2) = cr5(f

(1:2)) =

(1− s) + (1 + a(1− s)) = (1− s)(1 + a) + 1. Hence, the equilibrium cost of type 1 and type

2 users need not be the same.

• If s > 2+a
3+2a , ICWE is f

(1)
r1 = 2+a

3+2a , f
(1)
r5 = s − 2+a

3+2a > 0 and f
(2)
r5 = 1 − s, which give

c(1) = c(2) = (2+a)2

3+2a . This illustrates that when different types use a common route in an

equilibrium, their equilibrium costs are the same.

3 Existence of Information Constrained Wardrop Equilibrium

In this section, we show that given a traffic network with multiple information types (G, E1:K , s1:K , c),

an ICWE always exists and it is “essentially” unique, i.e., for each type, equilibrium cost is the

same for all equilibria. Our proof for existence and essential uniqueness of ICWE relies on the

following characterization, which is a straightforward extension of the well-known optimization

characterization of Wardrop Equilibrium (see Beckmann et al. [1956] and Smith [1979]).

Proposition 1. A flow f (1:K) is an ICWE if and only if it is a solution of the following optimization

problem:

min
∑

e∈E

∫ fe

0
ce(z)dz

fe =
K
∑

i=1

∑

r∈Ri : e∈r

f (i)
r ,

∑

r∈Ri

f (i)
r = si, and f (i)

r ≥ 0 for all r ∈ Ri. (2)
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We call
∑

e∈E

∫ fe
0 ce(z)dz the potential function and denote it by Φ.

Using the characterization of ICWE as the minimizer of a potential function, we can now show

the existence and essential uniqueness.

Theorem 1 (Existence and Uniqueness of ICWE). Let (G, E1:K , s1:K , c) be a traffic network

with multiple information types.

• There exists an ICWE flow f (1:K) = (f (1), . . . , f (K)).

• The ICWE is essentially unique in the sense that if f (1:K) and f̃ (1:K) are both ICWE flows,

then ce(fe) = ce(f̃e) for every edge e ∈ E.

Remark 1. As shown in Milchtaich [2005], Gairing et al. [2006], and Mavronicolas et al. [2007] the

essential uniqueness of equilibrium does not hold for multiple type congestion games where different

types of users have different cost functions for the same edge. This class of congestion games is also

referred to as player-specific congestion games. Several conditions on the edge cost functions and

network topology have been proposed to guarantee the existence of an essentially unique equilibrium

(see Konishi et al. [1997], Voorneveld et al. [1999], Milchtaich [2005], Mavronicolas et al. [2007],

Georgiou et al. [2009], and Gairing and Klimm [2013]). In particular, Milchtaich [2005] provides

sufficient and necessary conditions on the network topology under which an essentially unique

equilibrium exists. Mavronicolas et al. [2007] and Georgiou et al. [2009] show that when the edge

costs are affine functions and differ by a player-specific additive constant, then an equilibrium exists.

Our model is a special case of a player-specific congestion game in which the cost of an edge e for

a type i user is ce(·) if e ∈ Ei and ∞, otherwise. Therefore, the results of Mavronicolas et al. [2007]

and Georgiou et al. [2009] can directly be used to establish the existence of an equilibrium in our

model. For completeness, we provide an alternative proof of Theorem 1 in the Appendix 9.1 based

on the classical results of Beckmann et al. [1956], Schmeidler [1973], Smith [1979], and Milchtaich

[2000].

Theorem 1 assumes that the cost functions are non-decreasing. If we strengthen this as-

sumption to strictly increasing cost functions, then the results of Roughgarden and Tardos [2002],

Mavronicolas et al. [2007], and Georgiou et al. [2009] show that the essential uniqueness result can

be strengthened. In this case, the total flow on any edge at any equilibrium would be the same.

4 Some Graph-Theoretic Notions

In this section, we first present two classes of networks namely series-parallel and linearly in-

dependent networks which we use in our characterization of IBP. In preparation for our main

graph-theoretic results, we also present equivalent characterizations of these networks and delin-

eate the relations among them. Finally, we define a new class of networks termed series of linearly

independent and present a characterization for it in terms of embedding of a few basic networks.
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Definition 2 (Series-Parallel Network (SP)). A (two-terminal) network is called series-parallel

if two routes never pass through an edge in opposite directions. Equivalently, as was shown by

Riordan and Shannon [1942], a network is series-parallel if and only if

(i) it comprises a single edge between O and D, or

(ii) it is constructed by connecting two series-parallel networks in series, i.e., by joining the

destination of one series-parallel network with the origin of the other one, or

(iii) it is constructed by connecting two series-parallel networks in parallel, i.e., by joining the

origins and destinations of two series-parallel networks.

As an example, the networks shown in Figure 2b and Figure 2c are series-parallel networks,

while the network shown in Figure 2a is not series-parallel. The reason is that two routes e1e5e4

and e2e5e3 pass through the edge e5 in opposite directions.

An important subclass of series-parallel networks are linearly independent networks.

Definition 3 (Linearly Independent Network (LI)). A (two terminal) network is called

linearly independent if each route has at least one edge that does not belong to any other route.

Equivalently, as was shown by Holzman and Law-yone [2003], a network is linearly independent if

and only if

(i) it comprises a single edge between O and D, or

(ii) it is constructed by connecting a linearly independent network in series with a single edge

network, or

(iii) it is constructed by connecting two linearly independent networks in parallel.

This class is termed linearly independent because of an algebraic characterization of the routes

when viewed as vectors in the edge space. In particular, for any r ∈ R, let vr ∈ F
|E|
2 be vr =

(v1r , . . . , v
|E|
r ), where vir = 1 if ei ∈ r and 0, otherwise. A network G is LI if and only if the set of

vectors {vr : r ∈ R} is linearly independent (see Milchtaich [2006] and Diestel [2000]).

As Definitions 2 and 3 make it clear, the class of linearly independent networks is a subset of the

class of series-parallel networks. An alternate characterization of linearly independent and series-

parallel networks is based on the “graph embedding” notion, shown by Duffin [1965] and Milchtaich

[2006], respectively. We next define a graph embedding and then present these characterizations

which will be used later in our analysis.

Definition 4 (Embedding). A network H is embedded in the network G if we can start from

H and construct G by applying the following steps in any order:

(i) Divide an edge, i.e., replace an edge with two edges with a single common end node.

(ii) Add an edge between two nodes.

9



O D

e2

e1 e3

e4

e5

(a)

O D

(b)

O D

(c)

Figure 2: Networks that cannot be embedded in SP and LI networks: Network (a) is not embedded
in SP networks, Networks (a),(b), and (c) are not embedded in LI networks.

(iii) Extend origin or destination by one edge.

Proposition 2. (a) [Milchtaich [2006]] A network G is LI if and only if none of the networks

shown in Figure 2 are embedded in it. Furthermore, a network G is LI if and only if for every

pair of routes r and r′ and every vertex v 6= O,D common to both routes, either the section

rOv is equal to r′Ov, or rvD is equal to r′vD.

(b) [Duffin [1965] and Milchtaich [2006]] A network G is SP if and only if the network shown in

Figure 2a is not embedded in it. Furthermore, a network G is SP if and only if the vertices

can be indexed in such a way that, along each route, they have increasing indices.

This proposition shows that series-parallel networks are those in which the network shown in

Figure 2a, which is referred to as Wheatstone network (see Braess [1968]), is not embedded. LI

networks, in addition, also exclude embeddings of series-parallel networks that have routes that

“cross”as indicated in Figure 2b and Figure 2c.

We now introduce a new class of networks, which we refer to as series of linearly independent

networks (SLI).

Definition 5 (Series of Linearly Independent Network (SLI)). A (two-terminal) network

G is called series of linearly independent if and only if

(i) it comprises a single linearly independent network, or

(ii) it is constructed by connecting two SLI networks in series.

A biconnected LI network is called an LI block, where a graph is biconnected if it is connected and

after removing any node and its incident edges the graph remains connected (see Bondy and Murty

[1976, Chapter 3]). Equivalently, a network G is SLI if and only if it is constructed by connecting

several LI blocks in series (see Appendix 9.2.1 for a formal proof). We refer to each of these blocks

as an LI block of SLI network G.

We next provide a new characterization of SLI networks in terms of graph embedding using the

characterizations for SP and LI networks presented in Proposition 2.

Theorem 2 (Characterization of SLI). A network G is SLI if and only if none of the networks

shown in Figure 3 are embedded in it.
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Figure 3: Networks that cannot be embedded in SLI networks.

The class of SLI networks is a subset of series-parallel networks and a superset of linearly

independent networks. This class plays an important role in our characterization of networks that

exhibit IBP. Valdes et al. [1979] provided an algorithm to determine whether a given network is

SP in O (|E|+ |V |) steps based on a tree decomposition of SP networks. This leads to the question

whether one can find a linear time algorithm (i.e., linear in the number of vertices and edges) to

recognize an SLI network. We next use the results of Valdes et al. [1979] to show that we can

recognize whether a given network is SLI in linear time.

Proposition 3. There exists an algorithm that can determine whether a given network G is SLI

in O (|E|+ |V |).

5 Informational Braess’ Paradox

We first present the classical Braess’ Paradox (BP) which is defined for a traffic network with single

type of users with E1 = E , denoted by (G, E1, s1, c).

Definition 6 (Braess’ Paradox (BP)). Consider a traffic network with single information type

(G, E1, s1, c). BP occurs if there exists another set of cost functions ĉ with ĉe(x) ≤ ce(x) for all e ∈ E

and x ∈ R
+, such that the equilibrium cost of (G, E1, s1, ĉ) is strictly larger than the equilibrium

cost of (G, E1, s1, c).

BP refers to an unexpected increase in equilibrium cost in response to a decrease in edge

costs. We next discuss the Informational Braess’ Paradox (IBP), which arises when providing more

information to a subset of users in a traffic network increases those users’ costs.

Definition 7 (Informational Braess’ Paradox (IBP)). Consider a traffic network with mul-

tiple information types (G, E1:K , s1:K , c). IBP occurs if there exist expanded information sets Ẽ1:K

with E1 ⊂ Ẽ1 ⊆ E and Ẽi = Ei, for i = 2, . . . ,K, such that the equilibrium cost of type 1 in

(G, Ẽ1:K , s1:K , c) is strictly larger than the equilibrium cost of type 1 in (G, E1:K , s1:K , c). We de-

note the equilibrium cost of type i ∈ [K] before and after the expansion of information sets by c(i)

and c̃(i), respectively.
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The choice of type 1 users in this definition is without loss of generality, i.e., we assume that the

information set of only one type expands and the information sets of the rest of the types remain

the same. In comparing IBP to BP, first note that BP occurs in a network if and only if a special

case of BP occurs in which we decrease the cost of one of the edges from infinity to its actual

cost, i.e., equilibrium cost increases by adding a new edge to the network. The “if ”part holds

by definition and the “only if ”part holds because the special case of BP occurs in Wheatstone

network (as presented in Example 2(a)) and Wheatstone network is embedded in any network that

features BP as shown by Milchtaich [2005]. In light of this, it follows that the occurrence of IBP

is a generalization of that of BP since addition of a new edge to the network can be viewed as

expansion of the information set of a type to include that edge in a traffic network with single

information type.

The next example shows that IBP occurs in all networks shown in Figure 3, i.e., all the basic

networks that are embedded in non-SLI networks.

Example 2. In this example we will show that for all networks shown in Figure 3, there exists

an assignment of cost functions along with information sets for which IBP occurs.

(a) IBP occurs for Wheatstone network shown in Figure 3a. This follows from the occurrence of

BP on Wheatstone network as shown in Braess [1968]. We will provide the example for the

sake of completeness in Appendix 9.3.1.

(b) Consider the network shown in Figure 3b with cost functions given by ce1(x) =
1
2x, ce2(x) =

x + 3
4 , ce3(x) = 4

3x, ce4(x) = 2 and ce5(x) = x. The information sets are E1 = {e2, e3, e5},

E2 = {e1, e4, e5}, and Ẽ1 = {e1, e2, e3, e5}. For s1 =
13
4 and s2 = 1, the equilibrium flows are

f (2)
e1e4

= 1, f (2)
e5

= 0, f (1)
e2e3

=
3

4
, f (1)

e5
=

10

4
,

f̃ (2)
e1e4

= 0, f̃ (2)
e5

= 1, f̃ (1)
e2e3

= 0, f̃ (1)
e1e3

=
6

4
, f̃ (1)

e5
=

7

4
.

The resulting equilibrium costs are c(1) = c(2) = 10
4 and c̃(1) = c̃(2) = 11

4 . Since c̃
(1) > c(1), IBP

occurs in this network. The main intuition for this example is as follows. After adding e1 to

E1, type 1 users will no longer use e2e3 and instead redirect part of their flow over e1e3. This

in turn will increase the cost of e1e4 for type 2 users, and induce them to redirect all their

flow from e1e4 to e5. In balancing the costs of e1e3 and e5 for type 1 users, their equilibrium

cost goes up.

(c) Finally, for the networks shown in Figures 3c, 3d, 3e, 3f, 3g, 3h, and 3i, IBP occurs if we use

the same setting as part (b) and include extra edges in all information sets with zero cost.

Remark 2. In Appendix 9.3.2, we show that Example 2(b) is not degenerate and provide an

infinite set of (affine) cost functions for which IBP occurs in this network. Similar to Example 2(c),

this argument extends to show that there are infinitely many cost functions for which IBP occurs

in networks shown in Figures 3c,. . . , 3i. Finally, for the network shown in Figure 3a, there are
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infinitely many cost functions for which BP occurs when edge e5 is added, hence IBP occurs as well

(see e.g. Steinberg and Zangwill [1983]).

In a seminal paper, Milchtaich [2006] provided necessary and sufficient conditions on the network

topology under which BP occurs. In particular, Milchtaich [2006] showed that for a given traffic

network with single information type (G, E1, s1, c), BP does not occur if and only if G is SP. That

is, if G is SP, then for any assignment of cost functions c and traffic demand, BP does not occur,

and if G is not SP, then there exists an assignment of cost functions c for which BP occurs.

We next investigate conditions on the topology of the network under which IBP occurs. Similar

to the characterization provided by Milchtaich [2006], we will identify classes of networks for which

IBP does not occur regardless of the cost functions of the edges. Since, as already noted, IBP

is a strict generalization of BP, we will see that IBP can occur in a broader class of networks,

underscoring the problem mentioned in the introduction that IBP is likely to be a more pervasive

problem.

6 Characterization of Informational Braess’ Paradox

In this section, after establishing the key lemmas which underpin the rest of our analysis, we provide

our main characterization of IBP. In Subsection 6.3 we provide a characterization for IBP for a

more restricted type of change in information sets. We conclude this section with a discussion of

extensions of our results to multiple origin-destination pairs.

6.1 Three Key Lemmas

The following lemmas identify properties of the traffic network consisting of heterogeneous users

over an LI network.

Lemma 1. (a) Given an LI network G , let f (1:K) and f̃ (1:K) be two arbitrary non-identical

feasible flows for two traffic networks (G, E1:K , s1:K , c) and (G, E1:K , s̃1:K , c), respectively. If
∑K

i=1 si ≥
∑K

i=1 s̃i, then there exists a route r such that
∑K

i=1 f
(i)
r >

∑K
i=1 f̃

(i)
r and fe ≥ f̃e,

for all e ∈ r.

(b) Given an LI network G, let c(i) and c̃(i) denote the equilibrium cost of type i ∈ [K] users in

traffic networks (G, E1:K , s1:K , c) and (G, Ẽ1:K , s1:K , c), respectively. If E1 ⊆ Ẽ1 and Ẽi = Ei,

for i = 2, . . . ,K, then there exists some i ∈ [K] such that c̃(i) ≤ c(i).

This lemma directly follows from Milchtaich [2006, Lemma 5 and Theorem 3]. The first part

of the this lemma shows that in an LI network, if the total traffic increases, then there exists at

least one route whose flow strictly increases, and the flow on each of its edges weakly increases.

The second part shows that in an LI network, if we expand the information set of type 1 users,

then the equilibrium cost of at least one of the types does not increase. In fact, a similar argument

shows that even if we expand the information set of multiple types, then the equilibrium cost of at
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least one of the types does not increase (see Milchtaich [2006, Theorem 3]). Note that this result is

not sufficient for establishing that IBP does not occur over LI networks because what we need to

establish is that it is the equilibrium cost of type 1 users that does not increase. For completeness,

in Appendix 9.4.1, we show how this lemma follows from the results of Milchtaich [2006].

The next lemma shows a property of equilibrium flows and equilibrium costs in a network which

is the result of attaching two networks in series. We use the following definition to state the lemma.

Suppose f (1:K) is a feasible flow for (G, E1:K , s1:K , c) where G is the result of attaching G1 and

G2 in series. We denote the attaching point of G1 and G2 by D1. The restriction of f (1:K) to G1

(similarly to G2) is defined as f̄ (1:K) = (f̄ (1), . . . , f̄ (K)) where the flow of type i on any route r̄ in

G1 is the summation of the flows of type i on all routes of G which contain r̄. Formally, for any

i ∈ [K] we have f̄ (i)(r̄) =
∑

r∈R̄i(r̄)
f (i)(r), where R̄i(r̄) = {r ∈ Ri : rOD1 = r̄}. Note that f̄ (1:K)

is a feasible flow on G1.

Lemma 2. (a) If G is the result of attaching two networks G1 and G2 in series, then the restric-

tion of an equilibrium flow for G to each of G1 and G2 is an equilibrium flow.

(b) If G is the result of attaching two networks G1 and G2 in series, then the equilibrium cost of

any type on G is the summation of the equilibrium costs of that type on G1 and G2.

The third lemma shows our key lemma that we will use in the proof of Theorem 3. Intuitively,

this lemma states that in an LI network, if we decrease the traffic on one subset of routes RA of the

network and reroute it through the rest of the routes in the network, denoted by RB = R\RA, then

the maximum cost improvement over all the routes in RA cannot be smaller than the minimum

cost improvement over all the routes in RB . This result will enable us to establish that in an LI or

SLI network, the reallocation of traffic due to one type of users obtaining more information cannot

harm that type.

Lemma 3. Given an LI network G, we let RA,RB 6= ∅ denote a partition of routes R, i.e.,

RB = R \RA. We let f (1:K) and f̃ (1:K) be two feasible flows for traffic networks (G, E1:K , s1:K , c)

and (G, E1:K , s̃1:K , c), respectively. For these two flows, we let the traffic over RA and RB be sA =
∑

r∈RA

∑K
i=1 f

(i)
r , s̃A =

∑

r∈RA

∑K
i=1 f̃

(i)
r , sB =

∑

r∈RB

∑K
i=1 f

(i)
r , and s̃B =

∑

r∈RB

∑K
i=1 f̃

(i)
r . If

s̃A ≤ sA and s̃B ≥ sB, then we have

max
r∈RA

{cr − c̃r} ≥ min
r∈RB

{cr − c̃r},

where for any route r, cr and c̃r denote the cost of this route with flows f (1:K) and f̃ (1:K), respec-

tively.

Before proving this lemma for a general LI network, let us show it for the special case where

G consists of parallel edges from O to D. In this case RA and RB are two disjoint sets of edges

from O to D. Since s̃A ≤ sA, there exists an edge eA in RA such that f̃eA ≤ feA. Similarly, since

s̃B ≥ sB , there exists eB ∈ RB such that f̃eB ≥ feB . Since the cost functions are nondecreasing,
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we have

max
r∈RA

{cr − c̃r} ≥ ceA(feA)− ceA(f̃eA) ≥ 0 ≥ ceB (feB)− ceB (f̃eB) ≥ min
r∈RB

{cr − c̃r},

which is the desired result. The proof for the general case is by induction on the number of edges

and is included next.

Proof. We first note a consequence of Proposition 2:

Claim 1: If a network G is LI then for any vertex v, either the sections from O to v of all routes

that pass through v (which consists of v and all the vertices and edges preceding it on the route)

are identical or the sections from v to D of all routes that pass through v (which consists of v

and all the vertices and edges succeeding it on the route) are identical. Consider a route r that

passes through v. First, note that since G is SP, part (b) of Proposition 2 implies that the only

common node of rOv and rvD is v. Also, the only common node of r′Ov and r′vD is v. Claim 1

follows since if the contrary holds, then there exist two routes r = rOv + rvD and r′ = r′Ov + r′vD
with a common vertex v such that rOv 6= r′Ov and rvD 6= r′vD. This contradicts the statement of

part (a) of Proposition 2.

We now prove Lemma 3 using induction on the number of edges. For a single edge it evidently

holds. For a general LI network, we have the following cases:

• There exists r ∈ RA such that cr ≥ c̃r and r′ ∈ RB such that cr′ ≤ c̃r′ . This leads to

max
r∈RA

{cr − c̃r} ≥ cr − c̃r ≥ 0 ≥ cr′ − c̃r′ ≥ min
r∈RB

{cr − c̃r},

which concludes the proof in this case.

• For any r ∈ RA, we have cr < c̃r. We break the proof into three steps.

Step 1: There exists a route r ∈ RA and an edge e ∈ r with the following properties: (i)

The flow on r from s̃A is less than or equal to the flow on r from sA. (ii) The flow on e from

s̃B is larger than the flow on e from sB and the flow on e from s̃A is less than or equal to the

flow on e from sA.

This step follows from invoking part (a) of Lemma 1. Since s̃A ≤ sA, using part (a) of Lemma

1 there exists a route r ∈ RA such that the flow on each edge of r from s̃A is less than or

equal to the flow from sA. However, we know that the overall cost of any r ∈ RA has gone

up, i.e., c̃r > cr. This implies that there exists an edge e ∈ r such that the flow from s̃B on e

is more than the flow from sB on e.

Step 2: Let Re denote the set of routes using edge e = (ue, ve) as defined in Step 1. Re has

the following properties: (i) Either there exists a vertex D′ ∈ V such that all routes r ∈ Re

have a common path from O to ve and a common path from D′ to D, or there exists a vertex

O′ ∈ V such that all routes r ∈ Re have a common path from ue to D and a common path

from O to O′. Without loss of generality, we assume it is the former case. (ii) There exists
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a subnetwork G′ with origin O′ = ve and destination D′ such that for the restricted parts

of RA and RB over G′, denoted by R′
A and R′

B , if we let s′A, s̃
′
A, s

′
B, and s̃′B to denote the

corresponding traffic demands on R′
A and R′

B , then we have s̃′A ≤ s′A and s̃′B ≥ s′B.

Using Claim 1, for an edge e = (ue, ve) either there is a unique path from O to ve, or there

is a unique path from ve to D; we assume without loss of generality it is the former case.

We let D′ to be the first node on route r such that all routes in Re coincide from D′ to D.

Therefore, all routes r ∈ Re have a common path from O to ve and a common path from D′

to D, showing the first property.

We next show that the subnetwork consisting of all routes from ve to D′, denoted by G′,

satisfies the second property. To see this, note that the flows on G′ are only the ones that are

passing through edge e. From Step 1, we know that the flow on e from s̃B is larger than the

flow on e from sB and the flow on e from s̃A is less than or equal to the flow on e from sA,

showing the second property.

Step 3: Using steps 1 and 2, and induction hypothesis for G′, we will show that

max
r∈RA

{cr − c̃r} ≥ min
r∈RB

{cr − c̃r}.

First note that Re ∩ RA 6= ∅ since r ∈ RA and e ∈ r. Furthermore, Re ∩ RB 6= ∅, since as

explained in Step 1, the flow on e from s̃B is strictly positive. This in turn shows that R′
A

and R′
B are nonempty. Using Step 2, all the conditions of Lemma 3 hold for subnetwork G′.

Therefore, we can use the induction hypothesis for LI network G′ to obtain

max
r∈R′

A

{cr − c̃r} ≥ min
r∈R′

B

{cr − c̃r}.

Using Step 2, for all the routes in Re the costs of going from O to O′, denoted by cO′→O are

the same. Similarly, the costs of all routes in Re going from D′ to D, denoted by cD′→D are

the same. Therefore, we have

max
r∈RA

{cr − c̃r} ≥ max
r∈RA∩Re

{cr − c̃r} = (cO→O′ − c̃O→O′) + max
r∈R′

A

{cr − c̃r}+ (cD′→D − c̃D′→D)

≥ (cO→O′ − c̃O→O′) + min
r∈R′

B

{cr − c̃r}+ (cD′→D − c̃D′→D) = min
r∈RB∩Re

{cr − c̃r} ≥ min
r∈RB

{cr − c̃r},

which concludes the proof in this case.

• For any r ∈ RB , we have cr > c̃r. The proof of this case is similar to the previous case. We

state the three steps without repeating the reasoning for each of them.

Step 1: There exists a route r ∈ RB and an edge e ∈ r with the following properties: (i)

The flow on r from s̃B is larger than or equal to the flow on r from sB. (ii) The flow on e

from s̃A is smaller than the flow on e from sA and the flow on e from s̃B is larger than or

equal to the flow on e from sB.
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Step 2: Let Re denote the set of routes using edge e = (ue, ve) as defined in Step 1. We have

the following properties: (i) Either there exists a vertex D′ ∈ V such that all routes r ∈ Re

have a common path from O to ve and a common path from D′ to D, or there exists a vertex

O′ ∈ V such that all routes r ∈ Re have a common path from ue to D and a common path

from O to O′. Without loss of generality, we assume it is the former case. (ii) There exists

a subnetwork G′ with origin O′ = ve and destination D′ such that for the restricted parts

of RA and RB over G′, denoted by R′
A and R′

B , if we let s′A, s̃
′
A, s

′
B, and s̃′B to denote the

corresponding traffic on R′
A and R′

B , then we have s̃′A ≤ s′A and s̃′B ≥ s′B.

Step 3: Again, using steps 1 and 2, and induction hypothesis for G′, we have

max
r∈RA

{cr − c̃r} ≥ min
r∈RB

{cr − c̃r},

which completes the proof.

6.2 Characterization of Informational Braess’ Paradox

We next present our main result, which states that IBP does not occur if and only if the network

is SLI. The idea of this result, as already discussed in the Introduction, is the following. To show

the “if” part, we note that using Lemma 2 it suffices to show IBP does not occur in LI networks.

Consider an expansion of the information set of type 1 and the new equilibrium flows. If the

equilibrium cost of type 1 increases, then ICWE definition implies the following:

• Consider all types with increased equilibrium costs (including type 1). All routes used by

these types (in the equilibrium before information expansion) have higher costs in the new

equilibrium.

• Consider all types with decreased equilibrium costs. All routes used by these types (in the

equilibrium after information expansion) have lower costs in the new equilibrium.

Using these two claims, it follows that the total flow sent over the routes with higher costs is lower,

and the total flow sent over the routes with lower costs is higher (see Figure 4). Since the network

is LI, Lemma 3 leads to a contradiction. The “only if” part holds because any non-SLI network

embeds one of the networks shown in Figure 3, and an IBP can be constructed for each of them

(Example 2) which then extends to an IBP for the non-SLI network.

Theorem 3 (Characterization of IBP). IBP does not occur if and only if G is SLI. More

specifically, we have the following.

(a) If G is SLI, for any traffic network (G, E1:K , s1:K , c) with arbitrary assignment of cost func-

tions c, K, traffic demands s1:K , and information sets E1:K , IBP does not occur.
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(b) If G is not SLI, there exists an assignment of cost functions c, K, traffic demands s1:K , and

information sets E1:K in which IBP occurs.

Proof. Part (a): To reach a contradiction, suppose that c̃(1) > c(1). By Definition 5, G is obtained

from attaching several LI blocks in series, denoted by G1, . . . , GN for some N ≥ 1. Using part

(b) of Lemma 2, we have c̃(1) =
∑N

t=1 c̃
(1)
t >

∑N
t=1 c

(1)
t = c(1), where c

(1)
t denotes the equilibrium

cost of type 1 users in Gt. Therefore, there exists one LI block such as j for which c̃
(1)
j > c

(1)
j .

Also, using part(a) of Lemma 2, the restriction of equilibrium flows f (1:K) and f̃ (1:K) to Gj creates

an equilibrium flow for this LI block. Therefore, IBP occurs in LI block Gj . In the rest of the

proof of part (a), we will assume IBP occurs in an LI block (and hence LI network) and reach a

contradiction. We let f (1:K) and f̃ (1:K) be the equilibrium flows before and after the information

set expansion. Also, for any route r ∈ R, we let cr and c̃r to denote the cost of route r with flows

f (1:K) and f̃ (1:K), respectively.

We partition the set [K] into groups A and B as follows

A = {i ∈ [k] : c̃(i) > c(i)},

and

B = {i ∈ [k] : c̃(i) ≤ c(i)},

i.e., set A denotes all types with higher equilibrium cost in the game with higher information, and

set B denotes the rest of the types.

We also partition the routes of the network into two subsets RA and RB , where

RA = {r ∈ R : c̃r > cr},

and

RB = {r ∈ R : c̃r ≤ cr},

i.e., RA denotes all routes that have higher costs in the game with higher information, and RB

denotes the rest of the routes. We show the following claims:

Claim 1: For any type i ∈ A and any route r ∈ RB , we have f
(i)
r = 0, i.e., for a given type i,

if the equilibrium cost increases in the game with higher information, then the cost of all routes

that type i was using (with strictly positive flow) also increases. This follows since if r 6∈ Ri, then

f
(i)
r = 0. Otherwise, r ∈ Ri which implies r ∈ R̃i as well, where R̃i denotes the set of available

routes to type i in the expanded information set. Assuming i ∈ A and r ∈ RB , we have

cr ≥ c̃r ≥ c̃(i) > c(i),

where the first inequality follows from the definition of the set RB . The second inequality follows

from the definition of ICWE. The third inequality follows from the definition of set A. The overall

inequality and the definition of ICWE show that f
(i)
r = 0.
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Figure 4: Proof of Theorem 3: set A (B) represents types with higher (lower) equilibrium costs and
set RA (RB) represents routes with higher (lower) costs. There is no dashed (blue) arrow from A
to RB which illustrates Claim 1 and there is no solid arrow (red) from B to RA which illustrates
Claim 2.

Claim 2: For any type i ∈ B and any route r ∈ RA, we have f̃
(i)
r = 0, i.e., for a given route, if

the cost of the route in the equilibrium increases in the game with higher information, then the

equilibrium costs of all types that are using this route in the equilibrium of the higher information

game also increases. This follows since if r 6∈ R̃i, then f̃
(i)
r = 0. Otherwise, r ∈ R̃i which implies

r ∈ Ri, because 1 6∈ B and information set of all other types are fixed. Assuming i ∈ B and

r ∈ RA, we have

c̃r > cr ≥ c(i) ≥ c̃(i),

where the first inequality follows from the definition of the set RA. The second inequality follows

from the definition of ICWE. The third inequality follows from the definition of set B. The overall

inequality and the definition of ICWE show that f̃
(i)
r = 0.

Claim 3: Letting sA =
∑

r∈RA

∑K
i=1 f

(i)
r , s̃A =

∑

r∈RA

∑K
i=1 f̃

(i)
r , sB =

∑

r∈RB

∑K
i=1 f

(i)
r , and

s̃B =
∑

r∈RB

∑K
i=1 f̃

(i)
r , we have s̃A ≤ sA and s̃B ≥ sB .

This follows from Claims 1 and 2. The traffic on the routes in RA from f (1:K) is sA which is the

entire traffic demand si for all i ∈ A (Claim 1) and possibly some portion of the traffic demand sj

for j ∈ B. On the other hand, the traffic on the routes in RA from f̃ (1:K) is s̃A, which contains

only some portion of the traffic demand si for i ∈ A. Claim 2 implies that for all j ∈ B the traffic

demand s̃j is only sent on the routes in RB . This shows that s̃A ≤ sA which in turn leads to

s̃B ≥ sB (see Figure 4 for an illustration of the partitioning and the flows).

Part (b) of Lemma 1 shows that there exists type i for which c̃(i) ≤ c(i), which in turn shows

that set B is nonempty. Also by the contradiction assumption 1 ∈ A, which implies that both A

and B are nonempty. Using Claim 1, if A is nonempty, then RA 6= ∅ as the flow f (1:K) of the types

in A can only go to routes in RA. Also using Claim 2, since B is nonempty, we have RB 6= ∅ as

the flow f̃ (1:K) of the types in B can only go to routes in RB . Therefore, we have partitioned the

routes of the network into two nonempty sets RA and RB such that c̃r > cr for all r ∈ RA and

c̃r ≤ cr for all r ∈ RB. In other words, we have maxr∈RA
{cr − c̃r} < 0 and minr∈RB

{cr − c̃r} ≥ 0.
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We now have all the pieces to use Lemma 3 which yields

0 > max
r∈RA

{cr − c̃r} ≥ min
r∈RB

{cr − c̃r} ≥ 0,

which is a contradiction, completing the proof of part (a).

Part (b): The proof of this part follows from Theorem 2. Let G be a non-SLI network. Using

Theorem 2, one of the networks shown in Figure 3 must be embedded in G. Using Example 2, for

all networks shown in Figure 3, there exists an assignment of cost functions and information sets

for which IBP occurs.

To construct an example for G we start from the cost functions for which the embedded network

features IBP (as shown in Example 2) and then following the steps of embedding, given in Definition

4, we will update the information sets as well as the cost functions in a way that IBP occurs in the

final network G. The updates of information sets and cost functions are as follows.

(i) If the step of embedding is to divide an edge, we assign half of the original edge cost to each

of the new edges and update the information set by adding both newly created edges to the

same information set as of the original edge. This guarantees that the equilibrium flow of the

network after dividing an edge is the same as the one before.

(ii) If the step of embedding is to add an edge, then we include that edge in none of the information

sets (or equivalently assign cost infinity to it). This guarantees that the new edge is never

used in any equilibrium.

(iii) If the step of embedding is to extend origin or destination, we let the cost of the new edge to

be c(x) = x and update all of the information sets by adding this edge to them. Since this

edge will be used by all types and the flow on it will not change, this step of embedding does

not affect the equilibrium flow.

This construction establishes that since IBP is present in the initial network, i.e., one of the networks

shown in Figure 3, it will be present in the network G as well. This completes the proof of part

(b).

Recall that in Remark 2 we showed for each of the networks shown in Figure 3 there exist

infinitely many cost functions for which IBP occurs. This shows that if IBP occurs in a network,

then it occurs for infinitely many cost functions. Because, if IBP occurs in a network G, Theorem 3

part (a) implies G is not SLI and Theorem 2 shows that one of the basic networks shown in Figure

3 is embedded in G. Finally, by construction of the proof of Theorem 3 part (b), the cost function

configuration of the basic network can be extended to network G, showing that IBP occurs for

infinitely many cost functions.

20



6.3 IBP with Restricted Information Sets

In this subsection, we show that restricting focus to networks with a much more specific information

structure — whereby only one type does not know all the edges and the change in question informs

this type of all edges — allows us to establish that IBP does not occur in a larger set of networks.

Interestingly, in this case, IBP does not occur in exactly the same set of networks on which BP

does not occur, series-parallel networks, though the two concepts continue to be very different even

under this more specific information structure. The similarity is that after the change, as in the

classic Wardrop Equilibrium setting studied for BP, there is no more heterogeneity among users.

We first define IBP with restricted information sets and then state the characterization of network

topology which leads to it.

Definition 8 (IBP with Restricted Information Sets). Consider a traffic network with

multiple information types (G, E1:K , s1:K , c). IBP with restricted information sets occurs if there

exist expanded information sets Ẽ1:K with E1 ⊂ Ẽ1 = E , and Ei = Ẽi = E for i = 2, . . . ,K, such that

the equilibrium cost of type 1 in (G, Ẽ1:K , s1:K , c) is strictly larger than the equilibrium cost of type

1 in (G, E1:K , s1:K , c). We denote the equilibrium cost of type i ∈ [K] before and after expansion

of information by c(i) and c̃(i), respectively.

Theorem 4. IBP with restricted information sets does not occur if and only if the network G is

SP. More specifically, we have the following.

(a) If G is SP, for any network with multiple information sets (G, E1:K , s1:K , c) with arbitrary

assignment of cost functions c, K, traffic demands s1:K , and information set E1, IBP with

the restricted information sets does not occur.

(b) If G is not SP, there exists an assignment of cost functions c, K, traffic demands s1:K , and

information set E1 in which IBP with restricted information sets occurs.

6.4 Extension to Multiple Origin-Destination Pairs

In this subsection, we consider networks with multiple information types and multiple origin-

destination pairs as defined next.

Definition 9. Consider a graph G = (V, E) containing m origin-destination pairs denoted by

(Oi,Di), i ∈ [m]. For any i ∈ [m], there areKi types of users, each with information set Ei,j ⊆ E , for

j ∈ [Ki]. We refer to (i, j) as the type of a user where i ∈ [m] denotes the origin-destination pair of

this type and j ∈ [Ki] represents its information set. The traffic network with multiple information

types and multiple origin-destination pairs is denoted by
(

G, {Ei,1:Ki
}m
i=1 , {si,1:Ki

}m
i=1 , c

)

. We let

Ri,j to denote the set of routes available to a user of type (i, j) (i.e., routes formed by edges in

Ei,j). A feasible flow is a flow vector f = (f (1,1:K1), . . . , f (m,1:Km)) such that f (i,1:Ki) is a feasible

flow for origin-destination pair (Oi,Di).
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We denote the total flow on an edge e by fe where fe =
∑m

i=1

∑Ki

j=1

∑

r∈Ri,j : e∈r f
(i,j)
r . Note

that since G is an undirected graph, the total flow on each edge is the sum of the flows sent through

that edge in either direction (see Lin et al. [2011] and Holzman and Monderer [2015]). The cost of

a route r is defined as cr(f) =
∑

e∈r ce(fe). ICWE in this case is defined naturally as follows:

A feasible flow f = (f (1,1:K1), . . . , f (m,1:Km)) is an Information Constrained Wardrop Equilib-

rium (ICWE) if for every i ∈ [m] and j ∈ [Ki] and every pair r, r̃ ∈ Ri,j with f
(i,j)
r > 0, we

have

cr(f) ≤ cr̃(f). (3)

This implies that all routes of type (i, j) with positive flow have the same cost, which is smaller

than or equal to the cost of any other route in Ri,j. The equilibrium cost of type (i, j), denoted by

c(i,j), is then given by the cost of any route in Ri,j with positive flow from type (i, j).

The existence of ICWE in this setting follows from an identical argument to that of Theorem

1. Finally, the definition of IBP for this extended setting is as follows.

Definition 10 (IBP with Multiple Origin-destination Pairs). Consider a traffic network with

multiple information types and multiple origin-destination pairs
(

G, {Ei,1:Ki
}m
i=1 , {si,1:Ki

}m
i=1 , c

)

.

IBP occurs if there exists an expanded information set
{

Ẽi,1:Ki

}m

i=1
with E1,1 ⊂ Ẽ1,1 and Ẽi,j =

Ei,j, for all (i, j) 6= (1, 1), i ∈ [m], j ∈ [Ki], such that the equilibrium cost of type (1, 1)

in
(

G,
{

Ẽi,1:Ki

}m

i=1
, {si,1:Ki

}m
i=1 , c

)

is strictly larger than the equilibrium cost of type (1, 1) in
(

G, {Ei,1:Ki
}m
i=1 , {si,1:Ki

}m
i=1 , c

)

.

Note that the choice of type (1, 1) for information expansion is arbitrary and without loss of

generality. We next establish a sufficient condition on the network topology under which IBP

with multiple origin-destination pairs does not arise. We will use the following definitions from

Chen et al. [2016].

Definition 11.

• For any origin-destination pair (Oi,Di), the relevant network i denoted by Gi = (Vi, Ei)

consists of all edges and nodes of G that belong to at least one route from Oi to Di in G.

• For an SLI network Gi, each LI block has two terminal nodes, an origin and a destination,

such that the origin is the first node and the destination is the last node in the block visited

on any route in Gi. For two SLI networks Gi and Gj , a coincident LI block is a common

LI block of Gi and Gj with the same set of terminal nodes, allowing origin of one to be the

destination of other.

Note that the definition of relevant network Gi as well as its LI blocks depend only on the

network G and the origin-destination pair (Oi,Di), not on the information sets. Based on this

definition, we next provide a sufficient condition for excluding IBP.

Proposition 4. Let G be a graph with m ≥ 1 origin-destination pairs. For any i ∈ [m], let

Gi = (Vi, Ei) be the relevant network for origin-destination pair (Oi,Di). IBP does not occur if the

following two conditions hold.
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(a) For any i ∈ [m], the network Gi is SLI.

(b) For any i, i′ ∈ [m] either Ei∩Ei′ = ∅ or Ei ∩Ei′ consists of all coincident blocks of Gi and Gi′ .

Proof. We let f and f̃ denote the equilibrium flows before and after the expansion of information

set of type (1, 1). To reach a contradiction suppose c̃(1,1) > c(1,1). Using Lemma 2 part (b) and

condition (a) of the proposition, the equilibrium cost of type (1, 1) users is the sum of equilibrium

cost of the LI blocks of G1. Since c̃(1,1) > c(1,1), there exists an LI block of G1 for which the

equilibrium cost after expanding information set of type (1, 1) increases. We denote this LI block

by G∗ and its corresponding origin and destination by O∗ and D∗. Using condition (b) for any

i 6= 1 we have one of the following two cases: (i) Gi does not have any common edge with G∗ and

therefore none of the route flows of (Oi,Di) go through any edge of G∗ (ii) O∗ and D∗ belong to

all routes of Gi and therefore all route flows of (Oi,Di) go through G∗. We let C be the set of

indices of such origin-destination pairs, i.e., C = {i ∈ [m] : O∗,D∗ ∈ r,∀r ∈ Gi}. We next define

a traffic network with single origin-destination pair (O∗,D∗) over G∗ for which IBP has occurred.

The types of users are
(
⋃

i∈C{(i, j) : j ∈ [Ki]}
)
⋃

{(1, j) : j ∈ [K1]} with their corresponding

traffic demands. Note that for all i ∈ C, even though our definition of coincident LI block allows

the route flows of (Oi,Di) to go from O∗ to D∗ in either direction, without loss of generality, we can

assume that route flows go from O∗ to D∗. This is because the cost of any edge is a function of the

sum of the flows that passes through that edge in either direction and reversing the flows does not

change the equilibrium flows on edges. Using Lemma 2 part (a) the restriction of equilibrium flows

f and f̃ to G∗ are equilibrium flows for the congestion game with multiple information types and

single origin-destination pair defined on G∗. Note that G∗ is an LI network and the equilibrium

cost of type (1, 1) users after expanding their information set has gone up, which is a contradiction

using Theorem 3.

Figure 5a shows two SLI networks with their corresponding LI blocks and Figure 5b shows a

graph with two origin-destination pairs which satisfies our sufficient condition.

The next example shows that the conditions of Proposition 4 are not necessary for non-

occurrence of IBP.

Example 3. Consider the network G shown in Figure 6. The common LI block of relevant

networks G1 and G2 is G itself which is not a coincident LI block because the sets of terminals of

this block for G1 and G2 are different. Therefore, this network does not satisfy the conditions of

Proposition 4. However, in Appendix 9.4.4 we show that for any set of edge cost functions, IBP

does not occur in this network.

In concluding this subsection we should note that BP with multiple origin destination pairs has

been studied in Epstein et al. [2009], Lin et al. [2011], Fujishige et al. [2015], Holzman and Monderer

[2015], and Chen et al. [2016]. In particular, Chen et al. [2016] provide a full characterization of

network topologies for which BP occurs with multiple origin-destination pairs. BP as defined in

Chen et al. [2016] occurs if adding an edge (decreasing cost of an edge) increases the equilibrium
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Figure 5: (a) Two SLI networks with their corresponding LI blocks. (b) A graph with two OD
pairs for which IBP does not occur.

O1, O2O1, O2

e2e2

D2D2

e3e3

e1e1

D1D1

Figure 6: Example 3: IBP does not occur on this network.

cost of the users of one of the origin-destination pairs, even if that edge is never used by the users

of that origin-destination pair. With this definition it is possible to have a network for which IBP

does not occur while BP occurs. For instance, BP occurs in the network considered in Example 3

(see Chen et al. [2016]) while we showed IBP does not occur in this network.

7 Efficiency of Information Constrained Wardrop Equilibrium

In this section, we provide bounds on the inefficiency of ICWE. We show that the worst-case

inefficiency remains the same as the standard Wardrop Equilibrium, even though our notion of

ICWE is considerably more general than Wardrop Equilibrium since it allows for a rich amount of

heterogeneity among users.

We start by defining the social optimum defined as the feasible flow vector that minimizes the

total cost over all edges. We focus on aggregate efficiency loss defined as the ratio of total cost

experienced by all users at social optimum and ICWE. We provide tight bounds on this measure of

efficiency loss which are realized for different classes of cost functions. We also consider type-specific

efficiency loss defined as the ratio of total cost experienced by type i users at social optimum and

ICWE. We show that the bounds in this case are different from the ones in the standard Wardrop

Equilibrium.

Given a traffic network with multiple information types (G, E1:K , s1:K , c), we define the social

optimum, denoted by f
(1:K)
so = (f

(1)
so , . . . , f

(K)
so ) (or simply fso), as the optimal solution of the
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following optimization problem:

min
∑

e∈E

fe ce(fe),

fe =
K
∑

i=1

∑

r∈Ri : e∈r

f (i)
r ,

∑

r∈Ri

f (i)
r = si, and f (i)

r ≥ 0 for all r ∈ Ri and i. (4)

This optimization problem minimizes the total cost over all edges incurred by all users of all types.

Under the assumption that each cost function is continuous, it follows that the optimal solution of

problem Eq. (4) and hence a social optimum always exists. We denote the total cost of a feasible

flow f (1:K) by

C(f (1:K)) ,
∑

e∈E

fece(fe).

Similarly, for a feasible flow f (1:K), we define the total cost incurred by type i users as

C(i)(f (1:K)) ,
∑

e∈E

f (i)
e ce(fe).

Consequently, we define the socially optimal cost of type i as C
(i)
so = C(i)(f

(1:K)
so ) for i ∈ [K] and the

overall cost (over all types) of social optimum as Cso = C(f
(1:K)
so ). Similarly, we define equilibrium

cost of type i as C
(i)
cwe = C(i)(f

(1:K)
cwe ) for i ∈ [K] and the overall cost (over all types) of ICWE

as Ccwe = C(f
(1:K)
cwe ), where f

(1:K)
cwe (or simply fcwe) denotes an ICWE. Note that C(i)(f

(1:K)
cwe ) is

different from equilibrium cost of type i denoted by c(i), as the latter notion is the cost per unit of

flow and the former is the aggregate cost. The relation between these two is simply C
(i)
cwe = si c

(i),

i ∈ [K].

The following result from Roughgarden and Tardos [2002] and Correa et al. [2005] presents

bounds on the efficiency loss of Wardrop Equilibrium, which provides bounds on the efficiency loss

of ICWE in a traffic network with single information type with E1 = E denoted by (G, E1, s1, c).

Proposition 5 (Roughgarden and Tardos [2002]). Consider a traffic network with a single infor-

mation type (G, E1, s1, c). Let fwe be a Wardrop Equilibrium and fso be a social optimum. Then,

we have

(a) inf(G,E1,s1,c): ce convex
Cso
Cwe

= 0.

(b) Suppose ce(x) is an affine function for all e ∈ E. Then, we have Cso
Cwe

≥ 3
4 , and this bound is

tight.
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(c) Let C be a class of latency functions and let β(C) = supc∈C, x≥0 β(c, x), where

β(c, x) = max
z≥0

z (c(x) − c(z))

x c(x)
.

Then, we have Cso
Cwe

≥ 1− β(C), and the bound is tight.

Our next result shows that Proposition 5 holds exactly for ICWE, indicating that within the

class of heterogeneous, information-constrained traffic equilibria we consider, the worst-case sce-

nario occurs for networks with homogeneous users.

Proposition 6. Consider a traffic network with multiple information types (G, E1:K , s1:K , c). Let

fcwe be an ICWE and fso be a social optimum. Then, we have

(a) inf(G,E1:K ,s1:K ,c): ce convex
Cso
Ccwe

= 0.

(b) Suppose ce(x) is an affine function for all e ∈ E. Then, we have Cso
Ccwe

≥ 3
4 , and this bound is

tight.

(c) Let C be a class of latency functions and let β(C) = supc∈C,x≥0 β(c, x), where

β(c, x) = max
z≥0

z (c(x) − c(z))

x c(x)
.

Then, we have Cso
Ccwe

≥ 1− β(C), and the bound is tight.

Proof. We first show that for any type i, and any feasible flow f (i) for this type, we have

∑

e∈E

ce(fe,cwe)(fe,cwe
(i) − f (i)

e ) ≤ 0. (5)

The reason is that in ICWE each type uses only the routes with the minimal costs. Therefore, for

any type i and any feasible flow f (i) for type i, we have

∑

r∈Ri

cr(f
(1:K)
cwe )f (i)

r,cwe ≤
∑

r∈Ri

cr(f
(1:K)
cwe )f (i)

r .

This leads to

0 ≥
∑

r∈Ri

cr(f
(1:K)
cwe )(f (i)

r,cwe − f (i)
r ) =

∑

r∈Ri

(

∑

e:e∈r

ce(fe,cwe)

)

(f (i)
r,cwe − f (i)

r )

=
∑

e∈E

ce(fe,cwe)
∑

r∈Ri: e∈r

(f (i)
r,cwe − f (i)

r ) =
∑

e∈E

ce(fe,cwe)(f
(i)
e,cwe − f (i)

e ),

which is the desired inequality, showing Equation Eq. (5). We next proceed with the proof.

Part (a): this holds because a traffic network with one type is a special case of traffic network
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with multiple information types and part (a) of Proposition 5 shows the infimum is zero.

Part (b): using Equation Eq. (5) for f (i) = f
(i)
so for any i ∈ [K], and taking summation over all

types i ∈ [K], we obtain

Ccwe =
∑

e∈E

fe,cwece(fe,cwe) =
K
∑

i=1

∑

e∈E

ce(fe,cwe)f
(i)
e,cwe ≤

K
∑

i=1

∑

e∈E

ce(fe,cwe)f
(i)
e,so

=
∑

e∈E

ce(fe,cwe)
K
∑

i=1

f (i)
e,so =

∑

e∈E

fe,soce(fe,cwe)

=
∑

e∈E

fe,soce(fe,so) +
∑

e∈E

fe,so (ce(fe,cwe)− ce(fe,so))

≤
∑

e∈E

fe,soce(fe,so) +
1

4

∑

e∈E

fe,cwece(fe,cwe),

where the last inequality comes from the fact that with ce(x) = aex+ be for be, ae ≥ 0, we have

fe,so (ce(fe,cwe)− ce(fe,so)) = aefe,so(fe,cwe − fe,so) ≤
1

4
f2
e,cweae ≤

1

4
fe,cwece(fe,cwe).

The proof of tightness follows from part (b) of Proposition 5 as a traffic network with one type is

a special case of a traffic network with multiple information types.

Part (c): using the same argument as in part (b), we obtain

Ccwe =
∑

e∈E

fe,cwece(fe,cwe) ≤
∑

e∈E

fe,soce(fe,so) +
∑

e∈E

fe,so (ce(fe,cwe)− ce(fe,so))

≤
∑

e∈E

fe,soce(fe,so) + β(C)
∑

e∈E

fe,cwece(fe,cwe),

where the last inequality comes from the fact that

fe,so (ce(fe,cwe)− ce(fe,so)) ≤ β(ce, fe,cwe)fe,cwece(fe,cwe) ≤ β(C)fe,cwece(fe,cwe).

The proof of the tightness follows from part (c) of Proposition 5.

In concluding this section, we should note that in this environment with heterogeneous users,

there are alternatives to our formulation of the social optimum problem, which considers the “util-

itarian” social optimum, summing over the costs of all groups. An alternative would be to consider

a weighted sum or focus on the class of users suffering the greatest costs. We next illustrate that

if we focus on type-specific costs, even with affine cost functions, some groups of users may have

worse than 3/4 performance relative to the social optimum.

Example 4. Consider the network shown in Figure 7 with E1 = {e1}, E2 = {e1, e2}. The ICWE

is f
(1)
e1,cwe = s1 and f

(2)
e1,cwe = 1

a
− s1, f

(2)
e2,cwe = s2 −

1
a
+ s1. The equilibrium costs are C

(1)
cwe = s1

and C
(2)
cwe = s2. The social optimum is f

(1)
e1,so = s1 and f

(2)
e1,so = 1

2a − s1, f
(2)
e2,so = s2 −

1
2a + s1. The
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Figure 7: Example 4, type-specific efficiency loss versus aggregate efficiency loss.

corresponding costs are C
(1)
so = s1

2 and C
(2)
so = −1

4a + s2 +
s1
2 (assuming 1

2a ≥ s1 and s2 ≥ 1
a
− s1).

Therefore, we have

C
(1)
so

C
(1)
cwe

=
1

2
,
C

(2)
so

C
(2)
cwe

=
−1
4a + s2 +

s1
2

s2
, and

C
(1)
so + C

(2)
so

C
(1)
cwe + C

(2)
cwe

=
s1 + s2 −

1
4a

s1 + s2
.

We next show that the ratio of the aggregate costs is greater than or equal to 3/4. We have

s1 + s2 ≥
1
a
which leads to

Cso

Ccwe
=

s1 + s2 −
1
4a

s1 + s2
= 1−

1

4a

1

s1 + s2
≥ 1−

1

4a
a =

3

4
.

However, the type-specific efficiency loss can be smaller than 3
4 as we have C

(1)
so

C
(1)
cwe

< 3
4 .

8 Concluding Remarks

GPS-based route guidance systems, such as Waze or Google maps, are rapidly spreading among

drivers because of their promise of reduced delays as they inform their users about routes that they

were not aware of or help them choose dynamically between routes depending on recent levels of

congestion. Nevertheless, there is no systematic analysis of the implications for traffic equilibria

of additional information provided to subsets of users. In this paper, we systematically studied

this question. We first extended the class of standard congestion games used for analysis of traffic

equilibria to a setting where users are heterogeneous because of their different information sets about

available routes. In particular, each user’s information set contains information about a subset of

the edges in the entire road network, and drivers can only utilize routes consisting of edges that are

in their information sets. We defined the notion of Information Constrained Wardrop Equilibrium

(ICWE), an extension of the classic Wardrop Equilibrium notion, and established the existence and

essential uniqueness of ICWE.

We then turned to our main focus, which we formulate in the form of Informational Braess’

Paradox (IBP). IBP asks that whether users receiving additional information can become worse

off. Our main result is a comprehensive answer to this question. We showed that in any network

in the Series of Linearly Independent (SLI) class, which is a strict subset of series-parallel network,

IBP cannot occur, and in any network that is not in the SLI class, there exists a configuration of

28



edge-specific cost functions for which IBP will occur. The SLI class is comprised of networks that

join linearly independent networks in series, and linearly independent networks are those for which

every path between origin and destination contains at least one edge that is not in any other such

path. This is the property that enables us to prove that IBP cannot occur in any SLI network.

We also showed that any network that is not in the SLI class necessarily embeds at least one of a

specific set of basic networks, and then used this property to show that IBP will occur for some

cost configurations in any non-SLI network. We further proved that whether a given network is

SLI can be determined in linear time. Finally, we also established that the worst-case inefficiency

performance of ICWE is no worse than the standard Wardrop Equilibrium with one type of users.

There are several natural research directions which are opened up by our study. These include:

• Our analysis focused on the effect of additional information on the set of users receiving the

information. For what classes of networks is additional information very harmful for other

users? This question is important from the viewpoint of fairness and other social objectives.

We may like that users utilizing route guidance systems are experiencing lower delays, but

not if this comes at the cost of significantly longer delays for others.

• How “likely” are the cost function configurations that will cause IBP to occur in non-SLI

networks. This question is important for determining, ex-ante before knowing the exact

traffic flows, whether additional information for some sets of users, coming for example from

route guidance systems, might be harmful.

• Is there an “optimal information” configuration for users of a traffic network? Specifically,

one could consider the following question: given the traffic demands of K types, s1, . . . , sK ,

find the information sets E1, . . . , EK that generate the minimum overall cost for all types in

an ICWE. This question is related to Roughgarden [2001, 2006] who investigate the question

of finding the subnetwork of the initial network that leads to optimal equilibrium cost with

one type of user.

• We established a sufficient condition under which IBP does not occur on a traffic network

with multiple origin-destination pairs. One natural question is to find sufficient and necessary

condition for this problem.

• Finally, our study poses an obvious empirical question, complementary to similar studies for

the Braess’ Paradox: are there real-world settings where we can detect IBP?
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9 Appendix

9.1 Proofs of Section 3

9.1.1 Proof of Proposition 1

Since for any e ∈ E the function ce(·) is nondecreasing,
∫ fe
0 ce(z)dz as a function of f

(i)
r is convex

and continuously differentiable.

Claim 1: If f (1:K) is an optimal solution of Eq. (2), then it is an ICWE.

Since the objective function is convex and the constraints are affine functions, regularity conditions

holds and KKT conditions are satisfied, i.e., there exists µi,r ≤ 0 and λi such that for all i ∈ [K]

and r ∈ Ri we have

∂

∂f
(i)
r





∑

e∈E

∫ fe

0
ce(z)dz −

K
∑

i=1

λi





∑

r∈Ri

f (i)
r − si



+
∑

r,i

µr,if
(i)
r



 = 0, (6)

where µr,i = 0 for f
(i)
r > 0 Bertsekas [1999, Chapter 3]. We show that the flow f (1:K) is an

ICWE with the equilibrium cost of type i being λi. First, note that f (1:K) is a feasible flow by the

constraints of Eq. (2). Second, we can rewrite Eq. (6) as

∑

e∈E

∂fe

∂f
(i)
r

ce(fe) =
∑

e∈E : e∈r

ce(fe) =







= λi if f
(i)
r > 0,

≥ λi if f
(i)
r = 0,

(7)

where we used µr,i = 0 for f
(i)
r > 0 in the first case and µr,i ≤ 0 for f

(i)
r = 0 in the second case.

This is exactly the definition of ICWE which completes the proof of Claim 1.

Claim 2: If f (1:K) is an ICWE, then it is an optimal solution of Eq. (2).

We let the equilibrium cost of type i users be λi which leads to the following relation

∑

e∈E : e∈r

ce(fe) =







= λi if f
(i)
r > 0,

≥ λi if f
(i)
r = 0.

(8)

For all i ∈ [K] and r ∈ Ri, if f
(i)
r > 0, then we define µi,r = 0 and if f

(i)
r = 0, then we define

µi,r = λi −
∑

e∈E : e∈r ce(fe). First, note that µi,r ≤ 0 and if f
(i)
r > 0, then µi,r = 0. Second, note

that

∂

∂f
(i)
r





∑

e∈E

∫ fe

0
ce(z)dz −

K
∑

i=1

λi





∑

r∈Ri

f (i)
r − si



+
∑

r,i

µr,if
(i)
r



 = 0. (9)

Therefore, the flow f (1:K) together with λi and µi,r satisfy the KKT conditions. Since the objective

function of Eq. (2) is convex and the constraints are affine functions, KKT conditions are sufficient

for optimality Bertsekas [1999, Chapter 3], proving the claim.
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9.1.2 Proof of Theorem 1

The set of feasible flows f (1:K) is a compact subset of K|R|-dimensional Euclidean space. Since edge

cost functions are continuous, the potential function is also continuous. Weierstrass extreme value

theorem establishes that optimization problem Eq. (2) attains its minimum which by Proposition

1 is an ICWE.

We next, show that in two different equilibria f (1:K) and f̃ (1:K), the equilibrium cost for each type

is the same. By Proposition 1, both f (1:K) and f̃ (1:K) are optimal solutions of Eq. (2). Since Φ(·)

is a convex function, we have

Φ
(

αf (1:K) + (1− α)f̃ (1:K)
)

≤ αΦ
(

f (1:K)
)

+ (1− α)Φ
(

f̃ (1:K)
)

,

for any α ∈ [0, 1]. Since Φ
(

f (1:K)
)

and Φ
(

f̃ (1:K)
)

are both equal to optimal value of Eq. (2), and

for each e, the function
∫ fe
0 ce(z)dz is convex (its derivative with respect to fe is ce(fe) which is

non-decreasing), the functions
∫ fe
0 ce(z)dz for any e ∈ E must be linear between values of fe and

f̃e. This shows that all cost functions ce are constant between fe and f̃e and in particular the

equilibrium costs are the same.

9.2 Proofs of Section 4

9.2.1 Proof of Equivalence in Definition 5

We first show that each LI network G is the result of attaching several LI blocks in series. This

follows by induction on the number of edges. Using Definition 3, G is either the result of attaching

two LI networks in parallel or the result of attaching an LI network and a single edge in series. If G

is the result of attaching two LI networks in parallel, then G is biconnected and so is an LI block.

If G is the result of attaching an LI network G1 with a single edge, then the single edge is an LI

block and by induction hypothesis G1 is series of several LI blocks. Therefore, G is the result of

attaching several LI blocks in series.

We next show that the following two definitions are equivalent.

• An SLI network is either a single LI network or the connection of two SLI networks in series.

We let SET1 to denote the set of such networks.

• An SLI network consists of attaching several LI blocks in series. We let SET2 to denote the

set of such networks.

We show that SET1=SET2 by induction on the number of edges, i.e., we suppose that for any

network with number of edges less than or equal to m these two sets are equal and then show that

for networks with m+ 1 edges the two sets are equal as well (note that the base of this induction

for m = 1 corresponds to a single edge which evidently holds).

• If a network G belongs to SET1, then either it is a single LI network or is the result of

attaching two SLI networks in series. In the former case, it belongs to SET2 as we have
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Figure 8: Proof of Theorem 2: G1 is not LI and G2 has at least one route from O to D.

shown each LI network is the result of attaching several LI blocks. In the latter case, by

induction hypothesis both SLI subnetworks are the series of several LI blocks and so is their

attachment in series. This shows SET1 ⊆ SET2.

• If a network G belongs to SET2, then either it is a single LI block or is the result of attaching

several LI blocks in series. In the former case, by definition it belongs to SET1. In the latter

case, we let G1 to denote the LI block that contains origin and the series of the rest of LI

blocks by G2. G1 is SLI by definition as it is a single LI block and G2 is SLI by induction

hypothesis. Therefore, the series attachment of G1 and G2 belongs to SET1. This shows

SET2 ⊆ SET1, completing the proof.

9.2.2 Proof of Theorem 2

We first show that if a network G belongs to the class SLI, then none of the networks shown in

Figure 3 is embedded in it. First note that since all networks in the class SLI are series-parallel,

using part (b) of Proposition 2 implies that the Wheatstone network shown in Figure 3a is not

embedded in it. The SLI network G consists of several LI blocks that are attached in series. Using

part (a) of Proposition 2 none of the networks shown in Figure 3 (i.e., networks shown in Figs. 3b,

3c, 3d, 3e, 3f, 3g, 3h, and 3i) can be embedded in one of the LI blocks. We next show that they

cannot be embedded in the series of two LI blocks as well. We let G1 and G2 be two LI blocks that

are attached in series where the resulting network from this attachment is H. Also, we let the node

c be the attaching node of these two networks. We will show that the network shown in Figure 3b

can not be embedded in H (a similar argument shows that the rest of the networks shown in Figure

3 cannot be embedded in it). In order to reach to a contradiction, we suppose the contrary, i.e., H

is obtained from the network shown in Figure 3b by applying the embedding procedure described

in Definition 4. We define the corresponding routes to e5, e1e4, and e2e3 in H by r3, r1 and r2.

Formally, we start from r3 = e5, r1 = e1e4, and r2 = e2e3 in the network shown in Figure 3b and at

each step of the embedding procedure whenever we divide an edge on ri (i = 1, 2, 3) we will update

ri by adding that edge and whenever we extend origin or destination we will add the new edge to

all ri’s. Given this construction, in the network H we have three routes r3, r1, and r2, where r1
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and r2 have a common node and they do not have any common node (except O and D) with r3.

This is a contradiction as all routes in H must have node c in common. This completes the proof

of the first part.

We next show that if none of networks shown in Figure 3 is embedded in G, then G belongs to the

class SLI. Proposition 2(b) implies that since Figure 3a is not embedded in G, it is series-parallel.

We next show that given a series-parallel network G, if G is not SLI then we can find an embedding

of one of networks shown in Figures 3b, · · · ,3i in it. The proof is by induction on the number of

edges of G. Following Definition 2, consider the last building step of the network G. If the last step,

is attaching two networks G1 and G2 in series, then assuming that G is not SLI, we conclude that

either G1 or G2 (or both) is not SLI. Therefore, by induction hypothesis, we can find an embedding

of one of the networks shown in Figures 3b,· · · , 3i in either G1 or G2, which in turn shown it is

embedded in G. If the last step, is attaching two networks G1 and G2 in parallel, then it must be

the case that that either G1 or G2 is not LI. Because otherwise the parallel attachment of two LI

networks is LI (Definition 3) and hence SLI, which contradicts the fact that G is not SLI. Without

loss of generality, we let the network that is not LI to be G1. Therefore, part (a) of Proposition 2

shows that there exist two routes r and r′ and a vertex v common to both routes such that both

sections rOv and r′Ov as well as rvD and r′vD are not equal (note that v 6∈ {O,D} because otherwise

if v = O, then rOv = r′Ov as both are the single node O).

Note that using part (b) of Proposition 2, there is a way to index vertices such that along

any route, the vertices have increasing indices. We let A be the last vertex (with the prescribed

indexing) before which the two routes r and r′ become the same (this vertex can be O itself). Since

v is the common vertex of theses two routes and rOv 6= r′Ov such a vertex exists. Because v is a

common vertex of r and r′ the two routes r and r′ have a common vertex between A and v. We

let A′ to be the first such vertex (it can be v itself). Similarly, we define B as the first vertex after

which r and r′ become the same (B can be D itself) and B′ as the last vertex after v for which r

and r′ coincide (B′ can be v itself). Given these definitions for the nodes v,A,A′, B, and B′, we

know that rAA′ (the path between A and A′ on r) and r′AA′ (the path between A and A′ on r′) do

not have any vertex in common and similarly rBB′ and r′BB′ do not have any vertex in common.

The definition of the nodes A,A′, B,B′ is illustrated in Figure 8. Next, we show that one of the

networks shown in Figures 3b,. . . , 3i is embedded in G. We have the following cases:

• A = O, B = D, A′ = v, and B′ = v: in this case, the network shown in Figure 3b is embedded

in G. This is because there are two disjoint paths from O to v and from v to D and there is

at least one path from O to D in G2. Since any other edge and vertex of the network belongs

to a path that connects O to D, we can construct the graph G by starting from the network

shown in Figure 3b and applying the embedding procedure.

• A = O, B = D, and A′ 6= v or B′ 6= v: in this case, the network shown in Figure 3c is

embedded in G. This is because there is at least one path from O to D in G2 and the

network shown in Figure 3c is embedded in G1. To see this, note that the edges e1 and e2
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Figure 9: Two operations that turns a series-parallel network into a single edge.

are embedded in the section of the routes r and r′ between O and A′, and the edges e3 and

e4 are embedded in the the section of the routes r and r′ between B′ and D. Also, note that

the single edge e6 is embedded in the network between A′ and B′ (single edge is embedded

in any network).

• A 6= O, B = D, and A′ = v and B′ = v: the network shown in Figure 3d is embedded in G.

• A = O, B 6= D, and A′ = v and B′ = v: the network shown in Figure 3e is embedded in G.

• A = O, B 6= D, and A′ 6= v or B′ 6= v: the network shown in Figure 3f is embedded in G.

• A 6= O, B = D, and A′ 6= v or B′ 6= v: the network shown in Figure 3g is embedded in G.

• A 6= O, B 6= D, and A′ 6= v or B′ 6= v: the network shown in figure 3h is embedded in G.

• A 6= O, B 6= D, and A′ = v and B′ = v: the network shown in Figure 3i is embedded in G.

This completes the proof.

9.2.3 Proof of Proposition 3

We use the following results and definitions in this proof.

Proposition 7 (Valdes et al. [1979]). A network is series-parallel if following the steps S and P

shown in Figure 9 in any order, turns the network into a single edge connecting origin to destination.

Moreover, if a network is series-parallel, then in linear time O(|E| + |V |) we can obtain a binary

tree decomposition (shown in Figure 10) which indicates a sequence of S and P that turns G into

a single edge.

We now proceed with the proof of Proposition 3. Using Proposition 7, we first verify whether

G is series-parallel or not, which can be done in linear time. If G is not series-parallel, then it is

not SLI as well. If G is series-parallel, then a binary tree decomposition can be obtained in linear

time (again using Proposition 7). Note that the binary tree decomposition is not unique and the

following argument works with any binary tree decomposition. In this tree the edges of G are

represented by the leaves of the tree. We label the incident edges to origin by O and the incident

edges to destination by D (an edge might be labeled both O and D). Since G is SP, by definition

it is the result of attaching two SP networks in series or parallel. If it is the result of attaching two

SP networks in series, then there exist a node of the tree labeled S, referred to as the root of the
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Figure 10: Binary tree decomposition of a series-parallel network.

tree, such that on one of the subtrees starting from that node we only have O labeled leaves and

on the other subtree we only have D labeled leaves (this can be done in linear time by traversing

the tree). If G is the result of attaching two SP networks in parallel, then there exists a node of

the tree labeled P , again referred to as the root of the tree, such that on both subtrees starting

from it we have both O and D labeled leaves.

We next show by induction on the size of tree that whether the binary tree represents an SLI

network can be verified in linear time. If the root of the tree is S, then we have series of two

networks. By induction hypothesis in linear time we can verify whether each of these subtrees

represent and SLI network, which in turn determines whether G is SLI. If the root of the tree is P ,

we need to check whether each subtree represents an LI network. We next show this can be done

in linear time which concludes the proof.

Claim: Given the binary tree decomposition, we can verify whether the underlying network is LI

in linear time.

We show this claim by induction on the size of the tree as well. Starting from the root of the tree,

if the root has label P , then by induction hypothesis, for each of the subtrees denoted by T1 and

T2, we can verify whether the underlying network is LI in O(VT1) and O(VT2), respectively. The

underlying network is LI if and only if both of these subtrees represent an LI network. Therefore,

in O(V ) it can be verified whether the underlying network is LI. If the root is labeled S, then the

underlying network is LI if and only if one of the subtrees is only labeled S, and the other subtree

is LI. Using any traversing algorithm (breadth first search, or depth first search), one can visit all

nodes in both subtrees in linear time, verifying if it only has S labels. Furthermore, by induction

we can verify whether each subtree represents an LI network. Therefore, in linear time, we can

verify whether the network is LI, completing the proof.

9.3 Proofs of Section 5

9.3.1 Expansion of Example 2

We provide the example for part (a) of Example 2. Let K = 1, ce1(x) = x, ce2(x) = 1, ce3(x) =

1, ce4(x) = x, ce5(x) = 0 and s1 = 1. Also, we let the information sets be E1 = {e1, e2, e3, e4} and
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Ẽ1 = {e1, e2, e3, e4, e5}. In equilibrium, we have f
(1)
e1e3 = f

(1)
e2e4 = 1

2 with c(1) = 3
2 and f̃

(1)
e1e3 = f̃

(1)
e2e4 =

0, f̃
(1)
e1e5e4 = 1 with c̃(1) = 2. Therefore, after expanding the information set of type 1 users their

equilibrium cost has increased from 3
2 to 2.

9.3.2 Proof of the Claim of Remark 2

We will show that there are infinitely many cost functions for the network shown in Figure 3b for

which IBP occurs. In particular, we show the following claim.

Claim: For any a1, a3, a5 > 0 such that a1+a3 > a5, there exist non-negative b1, b2, b3, b4, b5, a2, s1,

and s2 such that with cost functions cei(x) = aix+bi, 1 ≤ i ≤ 5, IBP occurs in the network shown in

Figure 3b. In particular, we show the following cost function parameters along with E2 = {e1, e4, e5},

E1 = {e2, e3, e5}, and Ẽ1 = {e1, e2, e3, e5} leads to IBP.

a4 = b1 = b3 = b5 = 0,

b2 = a1y = a1
a5(s1 + s2)

a1 + a3 + a5
,

b4 =
a5a3(s1 + s2)

a1 + a3 + a5
,

s1
s1 + s2

∈

(

a1 + a3
a1 + a3 + a5

,min

{

(a3 + a5)(a3a5 + a21 + a1a3 + a1a5)− a1a
2
5

(a1 + a3 + a5) (a3a5 + a3a1 + a1a5)
, 1

})

,

a2 =
a25

(

s1
s1+s2

(a1 + a3 + a5)− a1

)

a5 (a1 + a3 + a5)
s1

s1+s2
− a1 (a1 + a3 + a5)

s2
s1+s2

− a3a5
− a3 − a5.

Proof: we let a4 = b1 = b3 = b5 = 0 and then find a2, b2, b4, s1, and s2 for which IBP occurs

with E2 = {e1, e4, e5}, E1 = {e2, e3, e5}, and Ẽ1 = {e1, e2, e3, e5}. We will find the a2, b2, b4, s1, and

s2 parameters such that before expanding the information set, the equilibrium flow is f
(2)
e5 = 0,

f
(2)
e1e4 = s2, and f

(1)
e5 = s1 − x, f

(1)
e2e3 = x. We will further impose the constraint that the cost of

route e5 for type 2 users is equal to the cost of route e1e4. For this to hold it is sufficient and

necessary to have a5(s1 − x) = a2x+ b2 + a3x, which leads to

x =
a5s1 − b2

a2 + a3 + a5
∈ [0, s1]. (10)

We also have a1s2 + b4 = a5(s1 − x), which leads to

a1s2 + b4 = a5

(

s1 −
a5s1 − b2

a2 + a3 + a5

)

(11)

We will also choose a2, b2, b4, s1, and s2 parameters such that after expanding the information set,

the equilibrium flow becomes f̃
(2)
e5 = s2, f̃

(2)
e1e4 = 0, f̃

(1)
e5 = s1 − y, f̃

(1)
e2e3 = 0, and f̃

(1)
e1e3 = y. We will

further impose the constraint that the cost of all available routes for each type of users are equal.
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For this to hold it is sufficient and necessary to have a5(s1 + s2 − y) = a1y + a3y, which leads to

y =
a5(s2 + s1)

a1 + a3 + a5
∈ (0, s1). (12)

We also have a1y + a3y = b2 + a3y, which after substituting y from Eq. (12) leads to

b2 = a1y = a1
a5(s2 + s1)

a1 + a3 + a5
. (13)

Also, for type 2 users we have a1y + b4 = a5(s2 + s1 − y), which after substituting y from Eq. (12)

leads to

b4 =
a5a3(s2 + s1)

a1 + a3 + a5
. (14)

Therefore, Equations Eq. (14) and Eq. (13) determine b2 and b4 as a function of other parameters.

In what follows we will show how to choose non-negative s1, s2, and a2 such that Equations Eq. (10),

Eq. (11), and Eq. (12) hold as well. After some rearrangements, we can see that the constraints

imposed by Equations Eq. (10) and Eq. (12) are equivalent to

s1
s2 + s1

≥
max{a5, a1}

a1 + a3 + a5
. (15)

Furthermore, IBP occurs if we have a1y + b4 > a1s2 + b4, which leads to s2
s2+s1

< a5
a1+a3+a5

or

equivalently

s1
s2 + s1

>
a1 + a3

a1 + a3 + a5
. (16)

Using a1 + a3 > a5, Equations Eq. (15) and Eq. (16) become equivalent to

s1
s2 + s1

>
a1 + a3

a1 + a3 + a5
. (17)

Using Equation Eq. (11), we can find a2 as follows

a2 =
a25

((

s1
s2+s1

(a1 + a3 + a5)
)

− a1

)

a5

(

s1
s2+s1

(a1 + a3 + a5)
)

− a5a3 + a1

(

s1
s2+s1

(a1 + a3 + a5)
)

− a1(a1 + a3 + a5)
− a3 − a5,

(18)

with the condition that the right-hand side of Equation Eq. (18) is non-negative. From Eq. (17)

the non-negativity of a2 becomes equivalent to

s1
s1 + s2

(a1 + a3 + a5) ≤
(a3 + a5)(a3a5 + a21 + a1a3 + a1a5)− a1a

2
5

(a3 + a5)(a5 + a1)− a25
. (19)
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Choosing s1
s1+s2

(a1 + a3 + a5) which satisfies both Equations Eq. (19) and Eq. (17) is feasible if we

have

a1 + a3 <
(a3 + a5)(a3a5 + a21 + a1a3 + a1a5)− a1a

2
5

(a3 + a5)(a5 + a1)− a25
,

which after simplification becomes equivalent to a3a
2
5 > 0, and therefore holds. Hence, by choosing

s1
s1+s2

(a1 + a3 + a5) such that

s1
s1 + s2

(a1 + a3 + a5) ∈

(

a1 + a3,min

{

(a3 + a5)(a3a5 + a21 + a1a3 + a1a5)− a1a
2
5

(a3 + a5)(a5 + a1)− a25
, a1 + a3 + a5

})

,

(20)

all the conditions are satisfied and IBP occurs in this network for infinitely many cost functions.

9.4 Proofs of Section 6

9.4.1 Proof of Lemma 1

Given the feasible flow f (1:K) for (G, E1:K , s1:K , c) we construct a feasible flow f with load
∑K

i=1 si

for a single type of users by letting fr =
∑K

i=1 f
(i)
r . Using this constructions, from two feasible flows

f (1:K) and f̃ (1:K) we obtain two feasible flows f and f̃ for a single type congestion game such that

the load of f is larger than or equal to the traffic demand of f̃ . Therefore, part (a) follows from

Milchtaich [2006, Lemma 5].

We next show part (b). Since part (a) holds for any two feasible flows, we can apply it for the

equilibrium flows f (1:K) and f̃ (1:K) over the traffic networks (G, E1:K , s1:K , c) and (G, Ẽ1:K , s1:K , c),

respectively (we can view f (1:K) as a feasible flow over the traffic network (G, Ẽ1:K , s1:K , c) as well).

It follows that there exists a route r such that
∑K

i=1 f
(i)
r >

∑K
i=1 f̃

(i)
r and fe ≥ f̃e for all e ∈ r.

From the first inequality it follows that
∑K

i=1 f
(i)
r > 0 which shows at least one of the types, say

type i, sends a positive traffic on route r. Note that i can be any element of [K] (it can also be 1

as the flow f (1:K) is a feasible flow for the traffic network (G, E1:K , s1:K , c)). We obtain

c(i) = cr ≥ c̃r ≥ c̃(i),

where the first equality follows from f
(i)
r > 0. The first inequality follows from fe ≥ f̃e for all e ∈ r.

The second inequality follows from the definition of ICWE and the fact that if type i users can use

route r in (G, E1:K , s1:K , c), then they can use it in (G, Ẽ1:K , s1:K , c) as well since the information

sets are not smaller in the second game. This completes the proof.

9.4.2 Proof of Lemma 2

Part (a): Suppose f (1:K) is an equilibrium flow on G. We next show that the restriction of f (1:K)

to G1 creates an equilibrium for G1. Consider type i users and let r1 be a route in G1 such that
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f
(i)
r1 > 0 and let r′1 be another route in G1 which belongs to the information set of type i users.

The route r1 is part of a route r in G for which f
(i)
r > 0. We let r2 be the restriction of r to G2 (so

that r = r1 + r2). Since f (1:K) is an equilibrium of G, we have cr = cr1 + cr2 ≤ cr′1 + cr2 = cr′1+r2

which leads to cr1 ≤ cr′1 , showing that the restriction of f (1:K) to G1 is an equilibrium. Similarly,

the restriction to G2 is an equilibrium.

Part (b): We consider an equilibrium f (1:K) for G and then using part (a) we consider the equilibria

of G1 and G2 obtained by restriction of f (1:K) to G1 and G2. For a type i and route r such that

f
(i)
r > 0, we have c(i) = cr = cr1 + cr2 , where r1 and r2 are the restriction of r to G1 and G2,

respectively (note that the only common node of r1 and r2 is the destination of G1 which is the

same as the origin of G2, hence the operation r1 + r2 is a valid operation). Since f
(i)
r1 > 0 and

f
(i)
r2 > 0 we have cr1 = c

(i)
1 and cr2 = c

(i)
2 , which leads to c(i) = c

(i)
1 + c

(i)
2 .

9.4.3 Proof of Theorem 4

We first show two lemmas that we will use in the proof. The first lemma directly follows from the

results of Milchtaich [2006] for single type congestion game.

Lemma 4. Consider a traffic network with multiple information types (G, E1:K , s1:K , c). Let f (1:K)

and f̃ (1:K) be two (arbitrary) non-identical feasible flows such that
∑K

i=1 si ≥
∑K

i=1 s̃i. If G is

series-parallel, there exists a route r such that fe ≥ f̃e and fe > 0 for all e ∈ r.

Proof. Similar to the proof of Lemma 1, given a feasible flow f (1:K) for (G, E1:K , s1:K , c) we define

a feasible flow f with traffic demand
∑K

i=1 si for a congestion game with a single information type.

Therefore, this lemma follows from Milchtaich [2006, Lemma 2].

Lemma 5. Consider a traffic network with multiple information types (G, E1:K , s1:K , c) where Ei =

E for i = 2, . . . ,K, E1 ⊆ E, and G is a SP network. Consider an ICWE with flow (f (1), . . . , f (K))

and let r be a route for which fe > 0 for any e ∈ r. We have

cr ∈

[

min
i∈[K]

c(i),max
i∈[K]

c(i)
]

,

where for any i ∈ [K], c(i) denotes the equilibrium cost of type i users.

Proof. Since all the types except type 1 have full information, we have c(i) = c(j), for all i, j ∈

{2, . . . ,K}, maxi∈[K] c
(i) = c(1), and mini∈[K] c

(i) = c(j), j 6= 1. By definition of ICWE, we have

cr ≥ c(i) (as r ∈ Ri) for all i ≥ 2. This leads to cr ≥ mini∈[K] c
(i), showing the lower bound. We

will next show the upper bound. We will prove this by induction on the number of edges of G. It

evidently holds for a single edge as all equilibrium costs are equal to cr. We next show the result

for a series-parallel network G. Since G is SP, it is either the result of attaching two SP networks

in series or attaching two SP networks in parallel. If G is the result of attaching two SP networks

GA and GB in series, then using part (a) of Lemma 2, an ICWE for the overall network is obtained

by concatenating an ICWE for GA with an ICWE for GB . We let rA and rB denote the sections
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of r that belong to GA and GB , respectively. We also let c
(i)
A and c

(i)
B be the equilibrium costs of

type i users in GA and GB , respectively. By induction hypothesis, we have crA ≤ maxi∈[K] c
(i)
A and

crB ≤ maxi∈[K] c
(i)
B . Since the traffic demands of type 1 users on both GA and GB are non-zero, we

have maxi∈[K] c
(i)
A = c

(1)
A and maxi∈[K] c

(i)
B = c

(1)
B . This leads to

cr = crA + crB ≤ c
(1)
A + c

(1)
B = c(1),

where we used part (b) of Lemma 2 in the last equality.

Now suppose that G is the result of attaching GA and GB in parallel and suppose r ∈ GA.

Let T = {i ≥ 2 : f
(i)
A > 0} denotes the set of types that are sending a non-zero flow over GA.

Depending on whether T = ∅, we have the following two cases:

• T = ∅: since fe > 0 for all e ∈ r, at least one type must send a non-zero flow over GA and

since T = ∅, only type 1 sends a non-zero flow over GA. Therefore, we have cr = c(1). We

also have c(1) ≤ maxi∈[K] c
(i), leading to cr ≤ maxi∈[K] c

(i).

• T 6= ∅: we either have f
(1)
A > 0 or f

(1)
A = 0. If f

(1)
A > 0, then by induction hypothesis, we have

cr ≤ max
i∈T∪{1}

c
(i)
A = max

i∈T∪{1}
c(i) ≤ max

i∈[K]
c(i),

where the equality holds because each type i ∈ T ∪ {1} sends a positive flow over A and its

equilibrium cost in G is the same as its equilibrium cost in GA. If f
(1)
A = 0, then again by

induction hypothesis and using T 6= ∅, we have

cr ≤ max
i∈T

c
(i)
A = max

i∈T
c(i) ≤ max

i∈[K]
c(i),

where the equality holds because each type i ∈ T sends a positive flow over A.

This concludes the proof of lemma.

Proof of part (a) of Theorem 4: After expanding information set of type 1 users to E , we

obtain c̃(i) = c̃(1) for all i ∈ [K]. Using Lemma 4, there exists a route r such that fe ≥ f̃e and

fe > 0 for any e ∈ r. We have

cr ≥ c̃r ≥ c̃(i) = c̃(1), ∀ i ∈ [K],

where the first inequality follows form fe ≥ f̃e, the second inequality follows from the definition

of ICWE, and the equality follows from Ẽi = E for all i = 1, . . . ,K. Since E1 ⊆ E , we have

c(i) = c(j) ≤ c(1) for all i, j = 2, . . . ,K. Using Lemma 5, this leads to

cr ≤ max
i∈[K]

c(i) = c(1).

Combining the previous two relations leads to c̃(1) ≤ c(1).
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Proof of part (b) of Theorem 4: The proof is similar to the proof of part (b) of Theorem 3.

In Example 2 we have provided an example showing that IBP with restricted information sets can

occur over Wheatstone network shown in Figure 3a.

Suppose that a network G is not series-parallel. Using Proposition 2, G can be constructed from

Wheatstone network shown in Figure 3a by following the steps of embedding. To construct an

example for G, we start from the cost functions for which the embedded network features IBP with

restricted information sets and then following the steps of embedding we will update the information

sets as well as the cost functions in a way that IBP occurs in the final network which is G. The

updates are identical to those described in the proof of part (b) of Theorem 3 and establishes that

if IBP with restricted information sets is present in the initial network (i.e., the Whetstone network

shown in Figure 3a), it will be present in network G as well. This completes the proof of part (b).

9.4.4 Omitted Proof of Example 3

First, note that after expansion of information, without loss of generality, each type of users (i, j),

i = 1, 2 have at least two routes from Oi to Di. Because, otherwise, if a type with traffic demand s

has only one route r, we can consider an equivalent game in which we update the cost of all edges

on r from ce(x) to ce(x+s). Also, note that due to symmetry we can only consider the information

expansion of one of the types of the form (1, j). Therefore, without loss of generality we assume

that there exists one type from O2 to D2 with information about all edges of the network and there

exist either one or two types from O1 to D1. Below, we examine all possible cases and show that

IBP does not occur:

(1) There exist two types {(1, 1), (2, 1)} such that R2,1 = {e1e3, e2}, R1,1 = {e1}, and R̃1,1 =

{e1, e2e3}: If type (1, 1) does not use route e2e3 after information expansion, then equilibrium

remains the same. Now suppose, type (1, 1) uses route e2e3 (i.e., f̃
(1,1)
e1 < f

(1,1)
e1 = s1,1). If

f̃e1 ≤ fe1 , then we have

c̃(1,1) ≤ ce1(f̃e1) ≤ ce1(fe1) = c(1,1),

which shows IBP does not occur. Now suppose f̃e1 > fe1 , which in turn shows f̃e2 < fe2 as

f̃e1 + f̃e2 = fe1 + fe2 = s1,1 + s2,1. We have

f̃e3 = f̃ (1,1)
e2e3

+ f̃ (2,1)
e1e3

> f (1,1)
e2e3

+ f (2,1)
e1e3

= fe3 ,

where we used f̃
(1,1)
e2e3 > f

(1,1)
e2e3 = 0 and f̃

(2,1)
e1e3 ≥ f

(2,1)
e1e3 , which holds because f̃

(2,1)
e1e3 = f̃e1−f̃

(1,1)
e1 >

fe1 − s1,1 = fe1 − f
(1,1)
e1 = f

(2,1)
e1e3 . Therefore, we have

ce1(f̃e1) + ce3(f̃e3) ≤ ce2(f̃e2) ≤ ce2(fe2) ≤ ce1(fe1) + ce3(fe3), (21)

where the first inequality holds because f̃
(2,1)
e1e3 > f

(2,1)
e1e3 ≥ 0, the second inequality holds because

f̃e2 < fe2 , and the third inequality holds because f
(2,1)
e2 = s2,1−f

(2,1)
e1e3 > s2,1− f̃

(2,1)
e1e3 = f̃

(2,1)
e2 ≥
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0. Inequality Eq. (21) together with ce1(f̃e1) ≥ ce1(fe1) and ce3(f̃e3) ≥ ce3(fe3) shows that

the cost of all three edges before and after information expansion are the same, leading to

the same equilibrium cost for all types. Therefore, IBP does not occur in this case.

(2) There exist two types {(1, 1), (2, 1)} such that R2,1 = {e1e3, e2}, R1,1 = {e2e3}, and R̃1,1 =

{e1, e2e3}: If type (1, 1) does not use e1 after information expansion, then equilibrium remains

the same. Now suppose type (1, 1) uses route e1. We show IBP does not occur in this case

by considering all possibilities as follows:

– f̃e1 ≤ fe1 : Since fe1 + fe2 = s1,1 + s2,1 = f̃e1 + f̃e2 , we have f̃e2 ≥ fe2 . We also have

f̃e3 < fe3 , because

f̃e3 = f̃ (1,1)
e2e3

+ f̃ (2,1)
e1e3

< f (1,1)
e2e3

+ f (2,1)
e1e3

= fe3 ,

where we used f̃
(1,1)
e2e3 < f

(1,1)
e2e3 as type (1, 1) is using e1 after information expansion and

f̃
(2,1)
e1e3 < f

(2,1)
e1e3 as f̃

(2,1)
e1e3 = f̃e1 − f̃

(1,1)
e1 < fe1 = f

(2,1)
e1e3 . The inequality f̃

(2,1)
e1e3 < f

(2,1)
e1e3 implies

f̃
(2,1)
e2 > f

(2,1)
e2 ≥ 0. Therefore, we have

ce2(f̃e2) ≤ ce1(f̃e1) + ce3(f̃e3) ≤ ce1(fe1) + ce3(fe3) ≤ ce2(fe2), (22)

where the first inequality follows from f̃
(2,1)
e2 > 0, the second inequality follows from

f̃e1 ≤ fe1 and f̃e3 ≤ fe3 , and the third inequality follows from f
(2,1)
e1e3 > f̃

(2,1)
e1e3 ≥ 0.

Inequality Eq. (22) leads to

c(1,1) = ce2(f̃e2) + ce3(f̃e3) ≤ ce2(fe2) + ce3(fe3) ≤ c̃(1,1),

showing IBP does not occur.

– f̃e1 > fe1 : Since fe1 + fe2 = s1,1 + s2,1 = f̃e1 + f̃e2 , we have f̃e2 < fe2 . If f̃e3 ≤ fe3 , then

we have

c(1,1) = ce2(f̃e2) + ce3(f̃e3) ≤ ce2(fe2) + ce3(fe3) ≤ c̃(1,1),

showing IBP does not occur. Otherwise, we have f̃e3 > fe3 . First note that if f̃e3 > fe3 ,

then f̃
(2,1)
e1e3 > f

(2,1)
e1e3 . This inequality holds because

f̃ (2,1)
e1e3

= f̃e3 − f̃ (1,1)
e2e3

> fe3 − f (1,1)
e2e3

= f (2,1)
e1e3

,

where we used f̃e3 > fe3 and f̃
(1,1)
e2e3 < f

(1,1)
e2e3 as (1, 1) uses e1 after the expansion of

information (i.e., f
(1,1)
e2e3 = s1,1 and f̃

(1,1)
e2e3 < s1,1). Therefore, we have

ce1(f̃e1) + ce3(f̃e3) ≤ ce2(f̃e2) ≤ ce2(fe2) ≤ ce1(fe1) + ce3(fe3), (23)
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where the first inequality holds because f̃
(2,1)
e1e3 > f

(2,1)
e1e3 ≥ 0, the second inequality holds

because f̃e2 < fe2 , and the third inequality holds because f
(2,1)
e2 = s2,1 − f

(2,1)
e1e3 > s2,1 −

f̃
(2,1)
e1e3 = f̃

(2,1)
e2 ≥ 0. Inequality Eq. (23) together with f̃e1 > fe1 and f̃e3 > fe3 leads to

ce1(fe1) = ce1(f̃e1), ce2(fe2) = ce2(f̃e2), and ce3(fe3) = ce3(f̃e3). Therefore, we have

c̃(1,1) ≤ ce2(f̃e2) + ce3(f̃e3) = ce2(fe2) + ce3(fe3) = c(1,1),

showing IBP does not occur.

(3) There exist three types {(1, 1), (1, 2), (2, 1)} such that R2,1 = {e1e3, e2}, R1,2 = {e1, e2e3},

R1,1 = {e1}, and R̃1,1 = {e1, e2e3}: This case is similar to the first case. If type (1, 1) does

not use e2e3 after the expansion of information, then equilibrium remains the same. Now

suppose, type (1, 1) uses route e2e3 (i.e., f̃
(1,1)
e1 < f

(1,1)
e1 = s1,1). If f̃e1 ≤ fe1 , then we have

c̃(1,1) ≤ ce1(f̃e1) ≤ ce1(fe1) = c(1,1),

which shows IBP does not occur. Now suppose f̃e1 > fe1 , which in turn shows f̃e2 < fe2 as

f̃e1 + f̃e2 = fe1 + fe2 = s1,1 + s1,2 + s2,1. We consider the following two cases:

– f̃
(1,1)
e1 + f̃

(1,2)
e1 < f

(1,1)
e1 + f

(1,2)
e1 (note that f

(1,1)
e1 = s1,1): we have

f̃ (2,1)
e1e3

= f̃e1 −
(

f̃ (1,1)
e1

+ f̃ (1,2)
e1

)

> fe1 −
(

f (1,1)
e1

+ f (1,2)
e1

)

= f (2,1)
e1e3

,

f̃ (1,1)
e2e3

+ f̃ (1,2)
e2e3

= s1,1 + s1,2 −
(

f̃ (1,1)
e1

+ f̃ (1,2)
e1

)

> s1,1 + s1,2 −
(

f (1,1)
e1

+ f (1,2)
e1

)

= f (1,2)
e2e3

.

These two inequalities lead to

f̃e3 = f̃ (2,1)
e1e3

+ f̃ (1,1)
e2e3

+ f̃ (1,2)
e2e3

> f (2,1)
e1e3

+ f (1,2)
e2e3

= fe3 .

Therefore, we have

ce1(f̃e1) + ce3(f̃e3) ≤ ce2(f̃e2) ≤ ce2(fe2) ≤ ce1(fe1) + ce3(fe3), (24)

where the first inequality holds because f̃
(2,1)
e1e3 > f

(2,1)
e1e3 ≥ 0, the second inequality holds

because f̃e2 < fe2 , and the third inequality holds because f
(2,1)
e2 = s2,1 − f

(2,1)
e1e3 > s2,1 −

f̃
(2,1)
e1e3 = f̃

(2,1)
e2 ≥ 0. Inequality Eq. (24) together with f̃e1 > fe1 and f̃e3 > fe3 leads to

ce1(fe1) = ce1(f̃e1), ce2(fe2) = ce2(f̃e2), and ce3(fe3) = ce3(f̃e3). Therefore, the cost of all

three edges before and after information expansion are the same, leading to the same

equilibrium cost for all types. Therefore, IBP does not occur in this case.
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– f̃
(1,1)
e1 + f̃

(1,2)
e1 ≥ f

(1,1)
e1 + f

(1,2)
e1 : We have

f̃ (1,2)
e1

=
(

f̃ (1,1)
e1

+ f̃ (1,2)
e1

)

− f̃ (1,1)
e1

≥
(

f (1,1)
e1

+ f (1,2)
e1

)

− f̃ (1,1)
e1

>
(

f (1,1)
e1

+ f (1,2)
e1

)

− f (1,1)
e1

= f (1,2)
e1

,

(25)

f̃ (1,1)
e2e3

+ f̃ (1,2)
e2e3

= s1,1 + s1,2 −
(

f̃ (1,1)
e1

+ f̃ (1,2)
e1

)

≤ s1,1 + s1,2 −
(

f (1,1)
e1

+ f (1,2)
e1

)

= f (1,2)
e2e3

.

(26)

If f̃
(2,1)
e1e3 ≤ f

(2,1)
e1e3 , then Inequality Eq. (26) leads to

f̃e3 = f̃ (1,1)
e2e3

+ f̃ (1,2)
e2e3

+ f̃ (2,1)
e1e3

≤ f (1,2)
e2e3

+ f (2,1)
e1e3

= fe3 .

Therefore, we obtain

ce1(f̃e1) = ce2(f̃e2) + ce3(f̃e3) ≤ ce2(fe2) + ce3(fe3) ≤ ce1(fe1), (27)

where the first equality holds because using Inequality Eq. (25) we obtain f̃
(1,2)
e1 >

f
(1,2)
e1 ≥ 0 and f̃

(1,1)
e2e3 > 0, the first inequality holds because f̃e2 < fe2 and f̃e3 < fe3 ,

and the second inequality holds because using Inequality Eq. (25) we obtain f
(1,2)
e2e3 =

s1,2 − f
(1,2)
e1 > s1,2 − f̃

(1,2)
e1 ≥ 0. Inequality Eq. (27) leads to

c̃(1,1) ≤ ce1(f̃e1) ≤ ce1(fe1) = c(1,1),

showing IBP does not occur in this case.

Now suppose f̃
(2,1)
e1e3 > f

(2,1)
e1e3 which leads to

ce1(f̃e1) ≤ ce1(f̃e1) + ce3(f̃e3) ≤ ce2(f̃e2) ≤ ce2(fe2) ≤ ce2(fe2) + ce3(fe3) ≤ ce1(fe1),

(28)

where the second inequality holds because f̃
(2,1)
e1e3 > f

(2,1)
e1e3 ≥ 0, the third inequality holds

because f̃e2 < fe2 , and the last inequality holds because using Inequality Eq. (25) we

obtain f
(1,2)
e2e3 = s1,2 − f

(1,2)
e1 > s1,2 − f̃

(1,2)
e1 ≥ 0. Inequality Eq. (28) leads to

c̃(1,1) ≤ ce1(f̃e1) ≤ ce1(fe1) = c(1,1),

showing IBP does not occur in this case.

(4) There exist three types {(1, 1), (1, 2), (2, 1)} such that R2,1 = {e1e3, e2}, R1,2 = {e1, e2e3},

R1,1 = {e2e3}, and R̃1,1 = {e1, e2e3}: This case is similar to the second case.
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