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We extend classical force-on-force combat models to study the attrition dynamics of three-way and multilat-

eral war. We introduce a new multilateral combat model—the multiduel—which generalizes the Lanchester

models, and solve it under an objective function which values one’s own surviving force minus that of one’s

enemies. The outcome is stark: either one side is strong enough to destroy all the others combined, or all

sides are locked in a stalemate which results in collective mutual annihilation. The situation in Syria fits this

paradigm.
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1. Introduction

Conventional attrition models of armed conflicts (Ancker Jr 1995, Washburn and Kress 2009,

Kress 2012) usually feature a duel between two sides (or coalitions thereof) out of which only one

side eventually prevails as the victor. Such models have been extensively used to evaluate force

structure, military operational concepts, and tactics (Bracken et al. 1995). The most common

combat attrition models are Lanchester’s aimed-fire (square law) and ancient (linear law) models

(Washburn and Kress 2009). Another combat attrition model is the Salvo model (Hughes 1995,
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Armstrong 2004), which captures the attrition process due to an exchange of fire salvos typical

mostly in modern missile warfare.

In this paper, we define and solve a new model of multilateral war, the Lanchester aimed-fire

multiduel, in which each player’s objective is to maximize the difference between its own numbers

and the sum of its enemies’ when the war ends. We show that unless there exists a player so strong

that it can guarantee to win regardless of what the others do, the outcome is a gradual stalemate

that culminates in mutual annihilation of all players. This remarkable conclusion is independent

of the number of players and attrition data of a conflict. In the case of three players—known as

truel—our conclusion stands in contrast to a range of results for sequential-engagement scenarios

in which one player, often the weakest, can achieve a clear advantage (Kilgour and Brams 1997,

Caplow 1956).

The war in Syria since 2011 serves as a motivating example for our model. This war presents

a different paradigm than typical two-sided force-on-force engagements, with several players—the

Assad regime and its Iranian and Hezboulla affiliates, Free Syrian Army, Kurdish militia, ISIS,

and Jabhat al-Nusra—fighting each other for dominance over territory and people. This paradigm

leads to an all-out war in which each player chooses how it divides its combat effort among its foes.

Based on our multiduel attrition model, we cautiously speculate that absent an overall agreement

among the various players, the war in Syria will prolong towards mutual annihilation, unless a

significant and largely invulnerable external force such as Russia intervenes to make one player

dominant.

The rest of this paper proceeds as follows. Section 2 introduces the Lanchester aimed-fire multi-

duel, and identifies situations where one player can guarantee itself a win. Section 3 shows that if

no player is strong enough to guarantee a win, then the only possible outcome—assuming players

are selfish—is mutual annihilation of all players. Section 4 offers conclusion.

2. The Lanchester Model

Consider a conflict situation comprising n players who fight each other, and delineate the state

of the war by x= (x1, . . . , xn), the players’ current force sizes. The attrition (kill-rate) caused by
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player i to player j is θij, for i 6= j; i, j = 1, . . . , n. A fire allocation rule is an n×n matrix α= [αij],

with which player i allocates a fraction αij of its firepower at player j. A policy for player i is a

state-dependent firepower allocation rule αij(x). For a given initial state (x1(0), . . . , xn(0)), a set

of policies induces a force trajectory {(x1(t), . . . , xn(t)), t≥ 0}, according to the Lanchester model

(Lanchester 1916):

dxj(t)

dt
=−

n
∑

i 6=j,i=1

αij(x(t))θijxi(t), j = 1, . . . , n, (1)

while x(t)≥ 0. These differential equations imply that the attrition continues unless all players die

out possibly except for one. In other words, either a player will emerge as the only survivor while

all other players die out, or all players head for mutual annihilation.

We say a player is dominant if it can defeat the alliance of all other players. In other words, a

dominant player can guarantee a win regardless of what the other players do. A player is pseudo-

dominant if it can guarantee a tie for itself—no other players can win—regardless of what the

other players do.

If all players but one effectively act in alliance—concentrating all their fire on the remaining

one player—then the multiduel model reduces to a two-player model with one side consisting of

many heterogeneous force types. Lin and MacKay (2014) characterizes the optimal policy in this

situation, which can be used to derive conditions for dominance in our multiduel model.

Lemma 1. Consider the standpoint of player 1, and without loss of generality rearrange players

2, . . . , n such that

θ12θ21 ≤ θ13θ31 ≤ · · · ≤ θ1nθn1.

For given initial forces x1, . . . , xn, player 1 dominates if and only if

x2
1 >

n
∑

i=2

θi1
θ1i

x2
i +2

n
∑

i<j;i,j=2

θi1
θ1j

xixj. (2)

Player 1 is pseudo-dominant, if the preceding is changed to an equality.

Proof. Assuming that players 2, . . . , n form an alliance and allocate all their fire to player 1 at all

time, we want to determine the minimal initial force required of player 1 in order to dominate.
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According to Theorem 5 in Lin and MacKay (2014), player 1’s optimal policy is to allocate all

its fire at player n, then player n− 1, and so on, in order to eliminate players n,n− 1, . . . ,2 in

sequence. The result then follows by applying player 1’s optimal policy in Theorem 1 in Lin and

MacKay (2014). �

The condition in Eq. (2), when applied to each of the n players, divides the state space Ω ≡

{(x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n} into n + 1 disjoint regions D1, ...,Dn,N such that player i is

dominant in Di, i = 1, . . . , n, and N ≡ Ω \ ∪n
i=1Di is the nondominant region in which no player

is dominant. The case n = 3 is illustrated in Figure 1. The surface OQR separates D1 from N ,

and likewise ORP and OPQ separate D2 and D3 from N , respectively. The line OR defines the

states where a duel between players 1 and 2 heads for mutual annihilation; that is, x3 = 0 and

θ12x
2
1 = θ21x

2
2; see Lanchester (1916). Thus, Ω has three dominant triangular cones D1,D2,D3,

which meet at three lines OP, OQ, OR, and surround the nondominant region N .

If a state belongs to a dominant region, then the corresponding dominant player will use its

optimal sequential strategy described in Lemma 1 to guarantee a win. But if a state belongs to the

nondominant region, what will happen? In order to study this question, we first prove that if the

state belongs to the nondominant region N , then there exists a fire allocation rule α= [αij] that

decreases each player’s number at the same proportional rate, namely xi(t) = xi(0)e
−λt for some

λ> 0.

Lemma 2. For every fire allocation rule α= [αij], there exists a state sA(α)∈Ω, the annihilating

state, from which the outcome is mutual annihilation for all players.

Proof. The Perron-Frobenius theorem asserts for any positive matrix the existence of a largest real

eigenvalue λ and a corresponding Perron-Frobenius (PF) eigenvector whose entries may be chosen
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Figure 1 The case with n = 3 players, where x marks initial state and the dashed trajectory marks a path to

mutual annihilation. The sphere octant is divided into four triangular cones D1,D2,D3,N , separated

by surfaces OPQ, OQR, and ORP.

to be positive. The annihilating state sA(α) is then the left PF eigenvector of the matrix

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.

As the state evolves according to Eq. (1), the force numbers decline as (x1(t), . . . , xn(t)) =

(x1(0), . . . , xn(0))e
−λt, which approaches (0, . . . ,0) as t→∞. �

The set Γ ≡ {sA(α) |αii = 0;αij ≥ 0;
∑

j 6=i
αij = 1, i = 1, . . . , n} contains the range of sA for all

possible fire allocation rules α. In order to prove that there exists a fire allocation rule α for every

state in N such that the n players head for mutual annihilation, we show next that N ⊆ Γ.
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Theorem 1. N ⊆ Γ.

Proof. We first consider the standpoint of player 1, and without loss of generality rearrange players

2, . . . , n such that

θ12θ21 ≤ θ13θ31 ≤ · · · ≤ θ1nθn1. (3)

Consider a fire allocation rule, with player 1 distributing its fire over the other n− 1 players,

while each of the other n− 1 players direct all their fire at player 1, as follows,

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1 0 0 . . . 0

...
...

...
...

...

1 0 0 . . . 0


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


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













. (4)

The set

T1 ≡ {sA(α)|α takes form (4)}

forms a boundary of Γ. Intuitively, if all other players form an alliance against player 1, and player 1

can ensure mutual annihilation with some fire allocation rule, then player 1 can defeat the alliance

with its optimal policy. We next show that player 1 dominates at any point in T1.

Any point (x1, x2, . . . , xn)∈ T1 must satisfy

(x1 x2 · · · xn)


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







= λ(x1 x2 · · · xn),

which is equivalent to

n
∑

i=2

θi1xi = λx1, (5)

θ1iα1ix1 = λxi, i= 2, . . . , n. (6)
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From Eq. (6), we get

xi =
θ1iα1ix1

λ
, i= 2, . . . , n, (7)

and substitute it into Eq. (5) to get

λ2 =
n
∑

i=2

α1iθ1iθi1. (8)

We next show that if (x1, . . . , xn) ∈ T1, then it satisfies Eq. (2). Using Eq. (7), the right-hand

side of Eq. (2) becomes

n
∑

i=2

θi1
θ1i

(

θ1iα1ix1

λ

)2

+2
n
∑

i<j;i,j=2

θi1
θ1j

(

θ1iα1ix1

λ

)(

θ1jα1jx1

λ

)

=
x2
1

λ2

(

n
∑

i=2

α2
1iθ1iθi1 +2

n
∑

i<j;i,j=2

α1iα1jθ1iθi1

)

≤
x2
1

λ2

(

n
∑

i=2

α2
1iθ1iθi1 +

n
∑

i<j;i,j=2

α1iα1j(θ1iθi1 + θ1jθj1)

)

, (9)

where the inequality follows due to Eq. (3), since i < j in the summation. The inequality is strict,

unless θ1iθi1 is the same for all i= 2, . . . , n. Furthermore,

n
∑

i<j;i,j=2

α1iα1j(θ1iθi1 + θ1jθj1)

=
n
∑

i<j;i,j=2

α1j(α1iθ1iθi1)+
n
∑

i<j;i,j=2

α1i(α1jθ1jθj1)

=
n
∑

i=2

((

n
∑

j=1,j 6=i

α1j

)

α1iθ1iθi1

)

=
n
∑

i=2

(1−α1i)α1iθ1iθi1.

Therefore, the right-hand side of Eq. (9) becomes

x2
1

λ2

(

n
∑

i=2

α2
1iθ1iθi1 +

n
∑

i=2

(1−α1i)α1iθ1iθi1

)

=
x2
1

λ2

(

n
∑

i=2

α1iθ1iθi1

)

= x2
1,

which proves Eq. (2), where the last equality is due to Eq. (8). In other words, player 1 dominates

at any point in T1.

From each player’s standpoint, we can repeat the same argument to arrive at the same conclusion.

That is, by defining T2, . . . , Tn analogously, we can show that player i dominates at any point in

Ti, for i= 1, . . . , n. Because Γ is enclosed by the union of T1, . . . , Tn, it follows that N ⊆ Γ. �
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Theorem 1 shows that for any state x∈N , there exists a fire allocation α such that xi(t) = xie
−λt

for some λ > 0. In fact, there are almost always infinitely many such fire allocations, aside from

singular cases. In other words, it is always possible—and fairly easy—for the n players to find a

fire allocation that does not shift the current balance of power, by keeping the ratios xi(t)/xj(t)

fixed throughout. If all players collectively adopt such a fire allocation, then the resulting force

trajectory is a straight line toward (0, . . . ,0). If some players are unhappy with the status quo and

try to shake up the balance of power, then the relative force sizes xi(t)/xj(t) may change over time,

for some i and j. Is it possible for a player to outwit the others to become the sole winner? We

next define an n-person nonzero-sum game and use Nash equilibria to show that the only possible

outcome is mutual annihilation, as long as each player is selfish.

3. A Nonzero-Sum Game and Its Nash Equilibria

The Lanchester multiduel model in Section 2 has in general no analogue of the square law which

characterizes the Lanchester duel. Instead, consider it as a nonzero-sum game, where player i freely

chooses its policy αij(x) and seeks to maximize its payoff

Vi = xi(∞)−
∑

j 6=i

xj(∞), i= 1, . . . , n.

In other words, each player wants to maximize its remaining force size at the end of the war, if it

wins. If a player is annihilated, then its goal is to minimize the remaining force size of the eventual

winner. If the players head for mutual annihilation, then each player’s payoff is 0.

In a nonzero-sum game, a set of individual players’ policies form a Nash equilibrium if no player

can improve its payoff by switching to a different policy on its own (Nash 1950). Write S1 for the

set where the inequality in Eq. (2) holds with equality, and define S2, . . . , Sn analogously. In other

words, player i is pseudo-dominant in Si, which separates Di from N , and {S1, . . . , Sn} form the

boundaries of N . In Figure 1, S1 is the surface OQR.

Theorem 2. In the multiduel game, a set of policies [αij(x)] forms a Nash equilibrium, if and

only if, for x∈Di ∪Si, i= 1, . . . , n, we have that

αji(x) = 1, (10)
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for all j 6= i, and

αik(x) = 1, (11)

where k= argmaxj 6=i,xj≥0{θijθji}. The values of [αij(x)] for x∈N \∪n
i=1Si are irrelevant.

Proof. First, we prove Eqs. (10) and (11) are sufficient conditions. Suppose [αij(x)] meets Eqs. (10)

and (11).

1. If x ∈Di ∪ Si, then due to Eq. (11), it follows from Lin and MacKay (2014) that player i’s

policy maximizes xi(∞); in other words, Vi decreases if player i does not use this policy. In addition,

if player j 6= i does not allocate all its fire at player i as instructed in Eq. (10), then xi(∞) will

increase, so Vj decreases.

2. If x ∈ N , then αij(x) ensures a force trajectory that converges to (x1(∞), . . . , xn(∞)) =

(0, . . . ,0), which gives (V1, . . . , Vn) = (0, . . . ,0). No matter what player i does, the state x(t), t≥ 0,

will never cross over Si to Di. Hence, Vi ≤ 0, for i= 1, . . . , n. In other words, player i cannot improve

Vi by deviating from its policy.

Since no player can improve its payoff by switching to a different policy, [αij(x)] forms a Nash

equilibrium.

Next, we prove Eqs. (10) and (11) are necessary conditions. Suppose [αij(x)] does not meet

Eqs. (10) and (11).

1. There exists some state x, such that x∈Di ∪Si, but αij(x) does not satisfy Eq. (11). Player

i can switch to Eq. (11) to increase xi(∞) due to Lin and MacKay (2014), thus increasing Vi.

2. There exists some state x, such that x∈Di∪Si, but αji(x) does not satisfy Eq. (10); that is,

αji(x)< 1 for some j 6= i. Player j can switch to αji(x) = 1 to bring down xi(∞), thus increasing

Vj.

Hence, [αij(x)] does not form a Nash equilibrium, if it violates Eqs. (10) or (11). �

In other words, if x ∈Di ∪ Si, then the dominant (or pseudo-dominant) player will kill off the

other players according to the optimal order, while all the other players will fire at the dominant
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(or pseudo-dominant) player. In state x∈N \∪n
i=1Si, surprisingly, it does not matter what a player

does. The final outcome is the same—mutual annihilation—for any starting point in N , and no

player can do anything to evade it. It is always possible for the players to adopt a fire allocation

that keeps xi(t)/xj(t) unchanged for all pairs i and j. It is also possible that some player—by itself

or through cooperation with the others—tries to tilt xi(t)/xj(t) in its favor. The crucial observation

is that x(t) may take a variety of paths toward the point of mutual annihilation, but it will never

step outside of N . The case n= 3 can be visualized in Figure 1, which depicts a trajectory of x(t)

approaching the origin, while staying in N at all time. If x(t) gets close to S1 (surface OQR in

Figure 1), then the other players are motivated to allocate more fire at player 1 to pull the state

away from it. If x(t) ever reaches S1, where player 1 is pseudo-dominant, then the Nash equilibrium

policies described in Theorem 2 will ensure mutual annihilation to yield Vi = 0 for all i. In other

words, no player can develop a strategy to outwit the others to score a win; instead, all players are

doomed to mutual annihilation.

Thus the outcome of the game is either a win by a dominant player who is capable of defeating the

alliance formed by all other players, or attritional stalemate leading to mutual annihilation without

a winner. This conclusion does not rely on any specific mathematical assumptions in the model; it

is much more general. For instance, any objective function which is monotonically increasing in a

player’s own surviving number and decreasing in its opponents’ would give the same results. The

same conclusion also holds if there are small perturbations, such as a small misstep by a player, a

small force-recruitment effort by a player, a small change in the attrition rate θij, a small random

event, or an introduction of additional nondominant players. As long as the small perturbation

moves the state to another point still in the nondominant region, the result of mutual annihilation

will remain true. In practice, each player is motivated to move the state toward the center part of

the nondominant region—away from its boundaries ∪n
i=1Si—so as to keep the mutual annihilation

result as robust as possible against potential unpredictable events.

Is it possible for some players to form a temporary alliance to eliminate some other players first,

before fighting it out among themselves? In theory, Nash equilibrium does not preclude alliances,
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but it is practically impossible when only 3 players remain. If players 1 and 2 form a temporary

alliance with the goal to eliminate player 3, then player 3’s best response is to allocate its fire

carefully so that at its own demise, players 1 and 2 head for mutual annihilation—tracking the

straight line OR in Figure 1. However, pushing the state toward the straight line OR in Figure 1

with precision is practically impossible, if we allow small perturbations in the system. When the

state gets very close to the line OR, or to any boundary of N , a small perturbation will tip the

state outside of N , which is undesirable for all but one player. What is more likely to happen in

the real world is, again, for all players to keep the state in the center part of the nondominant

region in order to avoid the emergence of a dominant player.

4. Conclusion

Models are abstractions of realities (Epstein 2008), and our model is no exception. However, with

all the caveats associated with Lanchester modeling, we believe that the model realistically captures

the essential dynamics of multilateral war. The results are general and robust: they also apply to

Lanchester’s linear model where attrition is fixed; see Appendix A. The insight is crystal clear:

either a single player is strong enough to beat all other opponents combined, or all players share

an ineluctable fate of a prolonged attritional stalemate that will culminate in mutual annihilation.

These two possible outcomes are in contrast to the conventional Lanchester aimed-fire duel

and stochastic duels (Kikuta 1986, Lin 2014), which always (except for singular cases) uniquely

determine a winner. They also contrast those in the Salvo duel model (Armstrong 2004), which

allows the possibility of no attrition at all, if each player has a strong defensive mechanism—such as

using surface-to-air missiles to intercept the enemy’s incoming missiles. The two possible outcomes

of our multiduel model are also strikingly different from those in three-way fights—known as truels

(Kilgour and Brams 1997)—where a common feature, with survival as everyone’s goal, is that the

apparently weakest player has a surprisingly high chance of being the last man standing. Similar

situations have long been known in sociology, where “the triadic situation often favors the weak

over the strong” (Caplow 1956). This result can be recovered in our model with a different, more
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tactical and defensive objective, in which each player has the instantaneous goal of maximizing

only the decline of its own casualty rate; see Appendix B. The central insight to emerge from our

model is that, in a war of attrition, as long as each player values its opponents’ destruction as well

as its own survival, the players are destined for mutual annihilation.

The situation in Syria since 2011 appears to conform more to our model than to truels or

more nuanced coalitional models (Mesterton-Gibbons et al. 2011). The various players in this

conflict—Assad regime, Free Syrian Army, ISIS, and others—have been entangled in a violent

conflict, killing each other, with no end in sight. In terms of our model, all the Syrian players

have been in the nondominant region. Based on the insights gleaned from our model, and absent

any external “shock” such as an effective introduction of non-conventional weapons by one of the

players, we speculate that there are only two ways to stop the attritional process before all players

become dysfunctional: (a) a political agreement that stops the violence; or (b) an intervention by

a significant external force that supports one of the players and pushes the state to a dominant

region of our model. The intervention of Russia in supporting the Assad regime suggests that the

latter solution may prevail.

Appendix A: The Lanchester Ancient Model

The article mainly concerns the Lanchester aimed-fire (square law) model, but an analogous result

holds for the Lanchester ancient (linear law) model (Lanchester 1916). In the Lanchester ancient

model, a player has constant fire power as long as it is still alive. We use the same notation as in

the article, but in the ancient warfare model with n players, the state evolution is governed by

dxj(t)

dt
=−

∑

i 6=j,xi>0

αij(x(t))θij, j = 1, . . . , n. (12)

The counterpart to Lemma 1 is presented below.

Lemma 3. For given initial forces x1, . . . , xn, consider the standpoint of player 1, and without loss

of generality rearrange players 2, . . . , n such that

θ12θ21
x2

≤
θ13θ31
x3

≤ · · · ≤
θ1nθn1
xn

.

Player 1 dominates if and only if

x1 >
n
∑

j=2

(

n
∑

k=j

xk

θ1k
θj1

)

. (13)
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In addition, the optimal policy is for player 1 to allocate all its fire at player n, then player n− 1,

and so on, in order to eliminate players n,n− 1, . . . ,2 in sequence.

Proof. Assuming that players 2, . . . , n form an alliance and allocate all their fire to player 1 at

all time, we want to determine the minimal initial force required for player 1 to win. Among all

policies that end up killing off the other players in an arbitrary order i1, i2, . . . , in−1, the policy that

minimizes player 1’s loss is the one that allocates all its fire at player i1, then player i2, and so on, in

order to eliminate players i1, . . . , in−1 in sequence. Therefore, it remains to find which of the (n−1)!

sequences is optimal. By comparing the two sequences i, j, . . . and j, i, . . ., it is straightforward to

show the optimal sequence as stated.

Using the optimal policy, the time it takes to eliminate player j is

n
∑

k=j

xk

θ1k
,

during which time player 1’s loss due to player j’s fire is

(

n
∑

k=j

xk

θ1k

)

θj1.

Hence, the right-hand side in Eq. (13) is the total loss of player 1 until it eliminates all other

players, which concludes the proof. �

The counterpart to Lemma 2 is presented below.

Lemma 4. For every fire allocation rule α= [αij], there exists a state sA(α)∈Ω, the annihilating

state, from which the outcome is annihilation for all players.

Proof. According to Eq. (12), for a fire allocation rule α, the n players head for mutual annihilation

if

xj
∑

i 6=j
αijθij

= λ, j = 1, . . . , n, (14)

for some λ > 0. Therefore, for an arbitrary λ > 0, let xj = λ
∑

i 6=j
αijθij, and the state (x1, . . . , xn)

is an annihilating state of α. �

The set Γ ≡ {sA(α) |αii = 0;αij ≥ 0;
∑

j 6=i
αij = 1, i = 1, . . . , n} contains the range of sA for all

possible fire allocation rules α. The counterpart to Theorem 1 is presented below.

Theorem 3. N ⊆ Γ.
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Proof. We first consider the standpoint of player 1, and without loss of generality rearrange players

2, . . . , n such that
θ12θ21
x2

≤
θ13θ31
x3

≤ · · · ≤
θ1nθn1
xn

.

Consider a policy, with player 1 distributing α1i of its fire at player i 6= 1, while each of the other

n− 1 players direct all its fire at player 1. According to Eq. (14), for the n players to head for

mutual annihilation, we require that

x1
∑

i 6=1 θi1
=

x2

α12θ12
=

x3

α13θ13
= · · ·=

xn

α1nθ1n
= λ> 0. (15)

The set

T1 ≡ {sA(α)|α satisfies (15)}

forms a boundary of Γ. We next show that player 1 dominates at any point in T1.

Using Eq. (15), the right-hand side of Eq. (13) is

n
∑

j=2

(

n
∑

k=j

xk

θ1k
θj1

)

= λ
n
∑

j=2

(

n
∑

k=j

α1kθj1

)

≤ λ
n
∑

j=2

θj1 = x1,

with equality if and only if α1n = 1. Thus, according to Eq. (13), player 1 dominates at any point

in T1.

From each player’s standpoint, we can repeat the same argument to arrive at the same conclusion.

That is, by defining T2, . . . , Tn analogously, we can show that player i dominates at any point in

Ti, for i= 1, . . . , n. Because Γ is the enclosure of T1, . . . , Tn, it follows that N ⊆ Γ. �

Appendix B: A Defensive Tactical Objective

In various multiduel models with three players—known as truels—in which survival is the common

goal, the apparently-weakest player has a surprisingly high chance of winning, since it presents the

least threat to the others. Similar ideas and results can be recovered in our aimed-fired model via

a different objective function, where player i maximizes the rate of reduction of its casualty rate,

namely ẍi. We make a simplification in which player i has kill rate θi against either opponent,

i = 1,2,3, and let θ1 ≥ θ2 ≥ θ3 without loss of generality. Player 1 is the strongest player, while

player 3 is the weakest.

Taking the second derivative of x1 with respect to t yields

ẍ1 = θ1(α12θ2α21 +α13θ3α31)x1 +α12-independent terms,

which player 1 wants to maximize, and similarly for x2 and x3. Hence, the players’ best responses

are
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• Player 1: choose α12 = 1 (resp. α12 = 0) according as θ2α21 − θ3α31 > 0 (resp. < 0).

• Player 2: choose α23 = 1 (resp. α23 = 0) according as θ3α32 − θ1α12 > 0 (resp. < 0).

• Player 3: choose α31 = 1 (resp. α31 = 0) according as θ1α13 − θ2α23 > 0 (resp. < 0).

In terms of (α12, α23, α31), the line from (1,0,0) to (1,0,1), in which players 1 and 2 fight each

other while player 3 is neutral between them, is stable, since θ1 ≥ θ2 ≥ θ3. The only other semi-

stable point is (0,1,1), at which players 1 and 2 attack player 3, but player 2 is then neutral as

between attacking player 1 and attacking player 3.

One could go further and make the determination of policies a differential game, in which the

players all rapidly adjust their policies, on a timescale much smaller than that of the attrition, in

proportion to the advantage gained by doing so. With τ = t2attrition/tadaptive, we have

1

τ

dα12

dt
= θ1(θ2α21 − θ3α31),

1

τ

dα23

dt
= θ2(θ3α32 − θ1α12),

1

τ

dα31

dt
= θ3(θ1α13 − θ2α23).

This is a dynamical system within the unit cube of admissible policies. An analysis of the system’s

stable regions and basins of attraction again shows an advantage for player 3. The line from (1,0,0)

to (1,0,1), in which players 1 and 2 fight each other while player 3 is neutral between them, is

again stable. There is a stable line segment from (0,1− θ3/θ2,1) to (0,1,1), with a smaller basin,

along which players 1 and 3 fight while player 2 divides its fire. If θ2+ θ3 > θ1, there is also a short

stable segment from (1− θ2/θ1,1,0) to (θ3/θ1,1,0) in which players 2 and 3 fight, while player 1’s

fire is finely balanced between players 2 and 3 in such a way that neither player 2 nor player 3 is

suffering so badly from that fire as to wish to attack player 1 instead. If θ2+θ3 < θ1, no such region

exists, and player 1 is never left unattacked.

This scenario most closely matches the typical insights associated with classic truels (Kilgour and

Brams 1997): The (in some sense) weakest player gains advantage from being the least immediate

threat to the others. But note that this only applies because of our choice of objective function, in

which each player cares only for its own hurt, in contrast to the objective in the main article, which

was not merely to win but, if winning was impossible, to cause as many casualties as possible to

opponents.
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