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Random graph generation is an important tool for studying large complex networks. Despite abundance

of random graph models, constructing models with application-driven constraints is poorly understood. In

order to advance state-of-the-art in this area, we focus on random graphs without short cycles as a stylized

family of graphs, and propose the RandGraph algorithm for randomly generating them. For any constant k,

when m=O(n1+1/[2k(k+3)] ), RandGraph generates an asymptotically uniform random graph with n vertices,

m edges, and no cycle of length at most k using O(n2m) operations. We also characterize the approximation

error for finite values of n. To the best of our knowledge, this is the first polynomial-time algorithm for the

problem. RandGraph works by sequentially adding m edges to an empty graph with n vertices. Recently,

such sequential algorithms have been successful for random sampling problems. Our main contributions

to this line of research includes introducing a new approach for sequentially approximating edge-specific

probabilities at each step of the algorithm, and providing a new method for analyzing such algorithms.

Key words : Network models, Poisson approximation, Random graphs

1. Introduction

Recently, a common objective in many application areas has been extracting information from data

sets that contain a network structure. Examples of such data are the Internet, social networks,

biological networks, or healthcare networks such as network of physician referrals. In the last

example, consider the question “how is the network of physician referrals formed?”. Answering this

question could allow policy makers to influence the formation of the network with the objective of

improving quality of care. This could be achieved by rewarding referrals to higher quality physicians

and penalizing referrals to lower performing physicians. Unfortunately, empirical analysis of such

network related questions is challenging since in most cases researchers have access to a single

network or a few snapshots of it over time. Specifically, the small number of samples renders the

estimation part of any parametric network formation model unreliable (Chandrasekhar 2015).

A popular approach in statistical data analysis, when facing small number of observations, is

bootstrap (Efron 1979) which increases the number of observations by creating random re-samples
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of the original data. However, creating random copies of networks can be computationally expen-

sive. For example, if the aim is to create a random copy of the physician referral network while

keeping the number of neighbors (degree) of each node fixed, the problem becomes NP hard in

general (Wormald 1999). The property of fixing the number of neighbors is relevant when it is

desired to control for variations in abilities of the physicians to form working relationships. Simi-

larly, one could be interested in creating random copies of a network when certain sub-structures

should be preserved or avoided. This problem in general is unsolved from a theoretical point of

view except for few examples where efficient algorithms are proposed (Wormald 1999). Therefore,

practitioners use non-rigorous heuristic models of random networks which may lead to incorrect

(biased) estimates, see (Milo et al. 2002) for such a heuristic.

The objective of this paper is to advance state-of-the-art in this line of research by proposing a

new algorithm and analysis technique. We present the approach for a stylized subclass of problems,

generating random graphs without short cycles, and leave extensions to other substructures for

future research. While our emphasis in this paper is on advancing the methodology, and the family

of graphs without short cycles is selected as an example of open problems in this area, we note that

randomly generating graphs from this family has practical implications in information theory. Such

graphs are used in designing low density parity check (LDPC) codes that can achieve Shannon

capacity for transmitting messages in a noisy environment (Richardson and Urbanke 2008).

1.1. Contributions

We present a simple and efficient algorithm, RandGraph, for randomly generating simple graphs

without short cycles. For any constant k, α≤ 1/[2k(k+3)], and m=O(n1+α), RandGraph generates

an asymptotically uniform random graph with n vertices, m edges, and no cycle of length k or

smaller. RandGraph uses O(n2m) operations in expectation. In addition, for finite values of n, we

calculate the approximation error. To the best of our knowledge, this is the first polynomial-time

algorithm for the problem.

RandGraph starts with an empty graph and sequentially adds m edges between pairs of non-

adjacent vertices. In every step, two distinct vertices i, j with distance at least k are selected with

probability pij, and the edge (ij) is added to the graph. The most crucial step, computing pij,

is obtained by finding a sharp estimate for the number of extensions of the partially constructed

graph, Gt, that contain (ij) and have no cycle of length at most k. This estimation is done by

computing the expected number of small cycles produced if the rest of the edges are added uniformly

at random, using a Poisson approximation.

Our analysis of RandGraph involes three approximation steps. First we approximate random

graphs that have m edges and n vertices with Erdös-Rényi (ER) graphs where each edge appears
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independently with probability m/
(
n
2

)
. The second approximation uses Janson inequality (Janson

1990) for estimating the probability1 that random ER graphs have no cycle of length at most k.

These two approximations provide us with an estimate for the uniform distribution on the family of

graphs without cycles of length at most k. In the final and third step, we approximate Gt with ER

graphs with edge density t/m to estimate the output distribution of RandGraph, and to show that

it is asymptotically equal to the uniform distribution. We emphasize that these approximations

are easy when m=O(n), and our main contribution is to show that they are sharp even when the

number of edges is super-linear in n, namely when m=O(n1+α) for small values of α.

We also provide a theoretical and empirical comparison between RandGraph and the well-known

triangle-free process that has recently been shown to produce triangle-free graphs (our problem

when k = 3) with an almost uniform distribution (Pontiveros et al. 2013, Bohman and Keevash

2013). The comparison shows that the output distribution of RandGraph is much closer to the

uniform distribution.

1.2. Organization of the Paper

The rest of the paper is organized as follows. §2 discusses related research. Description of RandGraph

and the main result are presented in §3. §4 provides the main idea behind RandGraph followed by

its analysis in §5. An efficient implementation of RandGraph is presented in §6 and a comparison

with the triangle-free process is given in §7. Finallly, an extension of RandGraph to bipartite graphs

with given degrees is discussed in §8.

2. Related Literature

Random graph models have been used in a wide variety of research areas. For example they are

used in determining the effect of having overweight friends in adolescent obesity (Valente et al.

2009), in studying social networks that result from uncoordinated random connections created

by individuals (Jackson and Watts 2002), in modeling emergence of the world wide web as an

endogenous phenomena (Papadimitriou 2001) with certain topological properties (Kleinberg 2000,

Newman 2003), and in simulating networking protocols on the Internet topology (Tangmunarunkit

et al. 2002, Faloutsos et al. 1999, Medina et al. 2000, Bu and Towsley 2002).

In information theory, random graphs are used to construct LDPC codes that can approach

Shannon capacity (Richardson and Urbanke 2008), specifically, when the graphs representing the

codes are selected uniformly at random from the set of bipartite graphs with given degree sequences

1 We note that using the Poisson approximation method in §6.2 of (Janson et al. 2000) one can estimate this probability
with an additive error that converges to 0 with a rate that is inversely polynomial in n. However, here we require a
stronger approximation since we need a multiplicative error that converges to 1. This would require the additive error
to converge to zero faster than the probability of the event itself which is exponentially small in n when m=O(n1+α).
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(Amraoui et al. 2007, Chung et al. 2001, Luby et al. 1997). While these random graphs guarantee

optimal performances asymptotically, in practice the LDPC graph has between 103 and 105 nodes

where it is shown that the existence of a small number of subgraphs spoil the code performances (Di

et al. 2002, Richardson 2003, Koetter and Vontobel 2003). The present paper studies a specific class

of such subgraphs (short cycles), but we expect our approach to be applicable to other subgraphs

as well. In addition, for the sake of simplicity, we present the relevant proofs only for the problem

of generating random graphs without short cycles (not necessarily bipartite nor with prescribed

degrees). Then we will adapt the algorithm for generating random bipartite graphs with given

degree sequences that have no short cycles2. Generalizing proofs to this case is cumbersome but

we expect that to be conceptually straightforward.

Random graph generation has also been studied extensively as an important theoretical problem

(Wormald 1999, Ioannides 2006). From a theoretical perspective, our work is related to the following

problem. Consider a graph property P that is preserved by removal of any edge from the graph. It

is a standard problem in extremal graph theory to determine the largest m such that there exists

a graph with n vertices and m edges having property P . Lower bounds on m can be obtained

through the analysis of greedy algorithms. Such algorithms proceed by sequentially choosing an

edge uniformly from edges whose inclusion would not destroy property P , adding that to the

graph, and repeating the procedure until no further edge can be added. The resulting graph is a

random maximal P -graph. The question of finding the number of edges of a random maximal P -

graph for several properties P has attracted considerable attention (Rucinski and Wormald 1992,

Erdős et al. 1995, Spencer 1995, Bollobás and Riordan 2000, Osthus and Taraz 2001, Bohman and

Keevash 2010, Wolfovitz 2011, Pontiveros et al. 2013, Bohman and Keevash 2013, Warnke 2014).

In particular, when P is the property that the graph has no cycles of length k, the above process of

sequentially growing the graph is called Ck-free process. Bohman and Keevash (2010) showed that

the process asymptotically leads to graphs with at least some constant times n(n logn)1/(k−1) edges

which improved earlier results of Bollobás and Riordan (2000) and Osthus and Taraz (2001). For

the case of k= 3, Pontiveros et al. (2013), Bohman and Keevash (2013) proved a sharper result that

with high probability (as n goes to ∞) the number of edges m would be [1 + o(1)]n
√
n log(n)/8

which is of order n1.5 up to logarithmic factors.

In addition to the bound on m, and related to the topic of this paper, the analyses by Pontiveros

et al. (2013), Bohman and Keevash (2013) show that certain graph parameters in the C3-free

process (also known as triangle-free process) concentrate around their value in uniformly random

C3-free graphs. But these papers do not provide any formal statement on closeness of the two

2 Implementation details of the application to LDPC codes can be found in this conference paper (Bayati et al. 2009a).
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distributions. In contrast, we prove that RandGraph with k = 3, which is a variant of the C3-free

process, generates graphs with a distribution that converges in total-variation distance to uniform

C3-free graphs, early in the process; i.e., when m is of order n1+1/36. We also provide the rate of

this convergence. We note that this range of m is a small subset of the range studied by (Pontiveros

et al. 2013, Bohman and Keevash 2013), but in §7 we show that our convergence results are sharper

and provide stronger concentration for the graph parameters. In §7, we also emprically demonstrate

that the output distribution of RandGraph is much closer to uniform than the C3-process.

However, we believe the value of RandGraph and its analysis is when the objective is a more

general problem; generating graphs with a given degree sequence that do not have small cycles. In

this setting we expect the natural extension of the Ck-free process would lead to Ck-free graphs with

a highly non-uniform distribution. This is motivated by (Bayati et al. 2010) that showed, when the

degree sequence is irregular, the process of adding edges uniformly at random in the configuration

model, while avoiding creation of double-edges or self-loops, generates graphs with a distribution

that is asymptotically equal to the uniform distribution multiplied by an exponentially large bias3.

However, providing such a rigorous analysis, when the constraint of avoiding small cycles is added,

is still an open problem. We view the present paper as a first step in this direction since it suggests

a design approach for the problem (see §4 for details). But to simplify the presentation, we focus

the rigorous analysis to the case where the degree sequence constraint is relaxed to just having a

fixed number of edges. And in §8, we demonstrate how the approach translates to an algorithm

when the degree sequence is prescribed and the graph is bipartite.

This paper is also closely related to the literature on designing sequential algorithms for counting

and generating random graphs with given degrees (Chen et al. 2005, Blitzstein and Diaconis 2010,

Steger and Wormald 1999, Kim and Vu 2007, Bayati et al. 2010, Blanchet 2009). In fact, the current

paper builds on this line of research and develops two mainly new techniques: (1) for obtaining

probabilities pij, instead of starting from a biased algorithm, characterizing its bias, and selecting

pij that can cancel the bias, we use Poisson approximation to directly estimate correct probabilities

pij that leads to an unbiased algorithm, and (2) for the analysis, we use graph approximation

methods, Janson inequality, and a combinatorial argument to track the accumulated error from

sequentially approximating pij in each round.

Finally, we note that a preliminary and weaker version of our main result has appeared in

proceedings of annual ACM-SIAM Symposium on Discrete Algorithms (Bayati et al. 2009b). In

particular, Theorem 3.1 of Bayati et al. (2009b) only shows that the total variation distance

between the output distribution (for a different version) of RandGraph and the uniform distribution

3 For regular graphs (Steger and Wormald 1999, Kim and Vu 2007, Bayati et al. 2010) provide a positive result; the
output distribution becomes asymptotically uniform when the degrees of are order

√
n.
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converges to 0 as size of the graphs goes to ∞. But here, we characterize size of the total variation

distance for any finite n, that is of order n−1/2+k(k+3)α. In addition, the aforementioned discussion

on Ck-free process and its comparison with RandGraph, in §7, are new.

3. Algorithm RandGraph and Main Result

In this section we start by introducing some notation and then present our algorithm (RandGraph)

followed by the main theorem on its asymptotic performance.

The girth of a graph G is defined to be the length of its shortest cycle. Let Gn,m denote the set

of all simple graphs with m edges over n vertices and let Gn,m,k be the subset of graphs in Gn,m

with girth greater than k. Throughout the paper k is a constant and is independent of n and m.

For any positive integer s, the set of integers 1,2, . . . , s is denoted by [s]. The complete graph with

vertex set [n] is denoted by Kn. For a graph G with n vertices, we label its vertices by integers in

[n]. For each pair of distinct integers i, j ∈ [n], an edge that connects node i to node j is denoted

by (ij). All graphs considered in this paper are undirected which means (ij) and (ji) refer to the

same edge.

RandGraph starts with an empty graph G0 on n vertices and at each step t, t∈ {0,1, . . . ,m− 1},

an edge (ij) is added to Gt from Q(Gt), the set of edges that their addition to Gt does not create a

cycle of length at most k. Then Gt+1 will be Gt∪ (ij). If Q(Gt) is the empty set for some t <m then

RandGraph reports FAIL and terminates. The main technical step in RandGraph is that the edge

(ij) is selected randomly from Q(Gt), according to a carefully constructed probability distribution

that is denoted by p(ij|Gt) and is given by

p(ij|Gt)≡
1

Z(Gt)
e−Ek(Gt,ij) . (1)

Here Z(Gt)≡
∑

(ij)∈Q(Gt)
e−Ek(Gt,ij) is a normalizing term,

Ek(Gt, ij)≡
k∑
r=3

r−2∑
`=0

NGt,ij
r,` qr−1−`

t ,

qt ≡ m−t
(n2)−t

, and NGt,ij
r,` is the number of simple cycles (cycles that do not repeat a vertex) in Kn that

have length r, include (ij), and include exactly ` edges of Gt. We will provide the intuition behind

this complex-looking formula in §4. In addition, in §6 we will provide an efficient way of calculating

p(ij|Gt) using sparse matrix multiplication. Throughout the paper, to simplify the notation, in

mathematical formula we will refer to RandGraph by the short notation RG.

By construction, if RandGraph outputs a graph G then G is a member of Gn,m,k. If RandGraph

outputs FAIL the algorithm will be repeated till it produces a graph. We will show later that the

probability of FAIL output vanishes asymptotically. Let PRG(G) be the probability that RandGraph
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Algorithm 1 RandGraph.

Input: n, m, k
Output: An element of Gn,m,k or FAIL
set G0 to be a graph over vertex set [n] and with no edges
for each t in {0, . . . ,m− 1} do

if |Q(Gt)|= 0 then
stop and return FAIL

else
sample an edge (ij) with probability p(ij|Gt), defined by Eq. (1)
set Gt+1 =Gt ∪ (ij)

end if
end for
if the algorithm does not FAIL before t=m− 1 then

return Gm

end if

does not FAIL and returns graph G. Let also PU be the uniform probability on the set Gn,m,k; that

is PU(G) = 1/|Gn,m,k|. Our goal is to show that PRG(G) and PU(G) are very close in total variation

distance. The total variation distance between two probability measures P and Q on a set X is

defined by dTV (P,Q)≡ sup
{
|P(A)−Q(A)| : A⊂X

}
. Now, we are ready to state the main result

of the paper. Its proof is provided in §5.

Theorem 1. For m = O(n1+α), m ≥ n, and a constant k ≥ 3 such that α ≤ 1/[2k(k + 3)], the

failure probability of RandGraph asymptotically vanishes and the graphs generated by RandGraph

are approximately uniform. In particular,

PRG(FAIL) =O(n−1/2+k(k+3)α) and dTV (PRG,PU) =O(n−1/2+k(k+3)α) .

The next result shows a run-time guarantee for RandGraph and is proved in §6.

Theorem 2. Let n, m, and k satisfy the conditions of Theorem 1. For all n large enough, there

exist an implementation of RandGraph that uses asymptotically O(n2m) operations in expectation.

4. The Intuition Behind RandGraph

In order to understand RandGraph, and in particular the calculations for [p(ij|Gt)], it is instructive

to examine the execution tree T of a simpler version of RandGraph that sequentially adds m random

edges to an empty graph on n vertices to obtain an element of Gn,m (without any attention to

whether a short cycle is generated or not). Consider a rooted m-level tree where the root (the vertex

in level zero) corresponds to the empty graph at the beginning of this sequential algorithm and

level t vertices correspond to all pairs (Gt, πt) where Gt is a partial graph that can be constructed

after t steps, and πt is an ordering of its t edges. There is a link (edge) in T between a partial

graph (Gt, πt) from level t to a partial graph (Gt+1, πt+1) from level t+ 1 if Gt ⊂Gt+1 and the first
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t edges of πt and πt+1 are equal. Any path from the root to a leaf at level m of T corresponds to

one possible way of sequentially generating a random graph in Gn,m.

Let us denote those partial graphs Gt that have girth greater than k by valid graphs. Our goal

is to reach a valid leaf in T, uniformly at random, by starting from the root and going down the

tree. A myopic approach could be repeating the above sequential algorithm many times until its

output in step m is a valid leaf of T. However, when m=O(n1+α), the fraction of valid leaves is of

order e−n
α

(see §5 for details). Therefore, this myopic approach has an exponentially small chance

of success. Note that the myopic approach works well when m=O(n) since a constant fraction of

leaves of T are valid. Therefore, our focus is when m is super linear in n.

In contrast to the myopic approach, RandGraph is designed based on a general strategy for

uniformly randomly generating valid leaves of T (Sinclair 1993); at any step t, it chooses (ij) with

probability proportional to the number of valid leaves of T among descendant of (Gt+1, πt+1) where

Gt+1 =Gt∪ (ij). Denote this probability by ptrue(Gt+1, πt+1). The main challenge for implementing

this strategy is calculating ptrue(Gt+1, πt+1). In RandGraph we will approximate ptrue(Gt+1, πt+1) with

p(Gt+1, πt+1) as follows. Let nk(Gt+1, πt+1) denote the number of cycles of length at most k in a leaf

chosen uniformly at random among descendants of (Gt+1, πt+1) in T. Note that ptrue(Gt+1, πt+1) is

by definition equal to P{nk(Gt+1, πt+1) = 0}. Using Poisson approximation, see (Alon and Spencer

1992) for details, one expects the distribution of nk(Gt+1, πt+1) to be approximately Poisson. In

particular,

P{nk(Gt+1, πt+1) = 0} ≈ exp (−E[nk(Gt+1, πt+1)]) . (2)

Therefore, our approximation p(Gt+1, πt+1) will be chosen to be proportional to the right hand side

of Eq. (2). This is the main intuition behind Eq. (1).

A crucial step in the analysis of RandGraph, provided in §5, is to control the accumulated error

m−1∏
t=0

[
p(Gt+1, πt+1)

ptrue(Gt+1, πt+1)

]
.

Prior work (Kim and Vu 2007, Bayati et al. 2010) used sharp concentration inequalities to find a

separate upper bound, for each t, on the error term [p(Gt+1, πt+1)/ptrue(Gt+1, πt+1)]. Instead, in this

paper we simplify the final product
∏m−1

t=0 [p(Gt+1, πt+1)/ptrue(Gt+1, πt+1)] and will approximate it

directly which leads to a tighter bound.

5. Analysis of RandGraph and Proof of Theorem 1

The aim of this section is to prove Theorem 1. The core of the proof is to show that PRG(G),

probability of generating a graph G by RandGraph, is asymptotically larger than PU(G), the uniform

probability over Gn,m,k. After this result is stated in Lemma 1, it is used to prove Theorem 1. The
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rest of the section is divided to four subsections. In particular, §5.1 describes the main steps for

proving Lemma 1 which rely on auxiliary Lemmas 2 and 3. These auxiliary lemmas are stated in

§5.1 and proved in §5.2 and §5.3 respectively. Throughout this section we will introduce a large

number of new notations. For convenience, we have repeated all notations with their definition in

Table 1 of Appendix B.

Lemma 1. There exist positive constants c1 and c2 such that

PRG(G)≥
[
1− c1n

−1/2+k(k+3)α
]
PU(G) ,

for every n,m,k satisfying the conditions of Theorem 1, and all G ∈Gn,m,k except for a subset of

graphs in Gn,m,k of size c2 exp(−nkα)|Gn,m,k|.

In other words, Lemma 1 shows that for all but o(|Gn,m,k|) graphs G in Gn,m,k inequality PRG(G)≥

[1−o(1)]PU(G), holds where the term o(1) goes to zero as n goes to infinity uniformly in the graph

G. Next, we prove Theorem 1 using Lemma 1.

Proof of Theorem 1 From the definition of dTV (PRG,PU), using triangle inequality, we obtain

dTV (PRG,PU)≤
∑

G∈Gn,m,k

|PRG(G)−PU(G)| .

Then, depending on whether PRG(G)≥ PU(G) or PRG(G)< [1− c1n
−1/2+k(k+3)α]PU(G) we bound the

term |PRG(G)− PU(G)| differently. Let Bn,m,k ⊂ Gn,m,k be the set of all graphs G with PRG(G) ≤

PU(G) and let the subset Dn,m,k ⊆ Bn,m,k to be those graphs G in Bn,m,k with PRG(G) < [1 −

c1n
−1/2+k(k+3)α]PU(G). To simplify the notation, for the rest of the proof we drop the subscripts

n,m,k from Bn,m,k,Dn,m,k and Gn,m,k. Assuming Lemma 1 holds then |D| = c2 e
−nkα |G| and for

G∈B\D

|PRG(G)−PU(G)|= PU(G)−PRG(G)≤ c1n
−1/2+k(k+3)α PU(G) . (3)

Therefore,∑
G∈G

∣∣∣PRG(G)−PU(G)
∣∣∣=∑

G∈G

[
PRG(G)−PU(G)

]
+ 2

∑
G∈B

∣∣∣PRG(G)−PU(G)
∣∣∣ (4)

=
∑
G∈G

[
PRG(G)−PU(G)

]
+ 2

∑
G∈B\D

∣∣∣PRG(G)−PU(G)
∣∣∣+ 2

∑
G∈D

∣∣∣PRG(G)−PU(G)
∣∣∣

(a)

≤
∑
G∈G

PRG(G)−
∑
G∈G

PU(G) + 2c1n
−1/2+k(k+3)α

∑
G∈B\D

PU(G) + 4
∑
G∈D

PU(G)

≤ 1−PRG(FAIL)− 1 + 2c1n
−1/2+k(k+3)α + 4

|D|
|G|

≤ 2c1n
−1/2+k(k+3)α + 4c2e

−nkα −PRG(FAIL) ,
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where (a) uses Eq. (3) and triangle inequality. Also, PRG(FAIL) is the probability of failure of

RandGraph. In summary, we proved

dTV (PRG,PU) +PRG(FAIL)≤
∑
G∈G

|PRG(G)−PU(G)|+PRG(FAIL) =O(n−1/2+k(k+3)α) ,

which finishes the proof �

Throughout the rest of this section our focus will be on proving Lemma 1.

5.1. Lower Bound For PRG(G): Proof of Lemma 1

We break proof of Lemma 1 into four main steps. Two of these steps (steps 1 and 3 below) will be

major and involve proving additional Lemmas that will be later proved in §5.2 and §5.3.

Step 1 in Proof of Lemma 1: Approximating PU via Jansen inequality. Since PU = 1/|Gn,m,k|,

we will find an asymptotic estimate for |Gn,m,k| using Janson inequality (Janson 1990) that shows

the number of cycles of constant length in Gn,m is approximately a Poisson random variable. The

result is summarized in the following lemma that is proved in §5.2. Before stating the lemma, we

define Cr to be the set of all simple cycles of length r in Kn and introduce notation N for total

number of edges in Kn which is equal to
(
n
2

)
.

Lemma 2. Let m=O(n1+α) with α< 1/(2k− 1), k≥ 3, and m≥ n, then

PU(G){(
N
m

)
exp

[
−
∑k

r=3 |Cr|
(
m
N

)r]}−1 = e
O

(
n

3kα−1
2

)
. (5)

In other words, the number of graphs with n vertices, m edges, and no cycle of length up to k is

(1 + o(1))
(
N
m

)
exp[−

∑k

r=3 |Cr|(m/N)r] where the o(1) term is of order n
3kα−1

2 .

The remaining steps will provide necessary approximations and algebraic simplifications to find an

asymptotic lower bound for PRG which will be equal to the denominator term in Eq. (5).

Step 2 in Proof of Lemma 1: Using convexity and Jensen Inequality. Let us start by writing

an expression for PRG(G) when G is a fixed element of Gn,m,k. Note that RandGraph sequentially

adds edges to an empty graph to produce a graph with m edges. Hence for the fixed graph G, there

are m! permutations of the edges of G that can be generated by RandGraph and each permutation

can be output with a different probability. Let π be any permutation of edges of G (i.e. a one-to-one

mapping from {1, . . . ,m} to the edges of G), and let Gπ
t be the graph having [n] as vertex set and

{π(1), . . . , π(t)} as edge set. This is the partial graph that is generated after t steps of RandGraph

conditioned on having π as output. Now we can write

PRG(G) =
∑
π

m−1∏
t=0

p(π(t+ 1)|Gπ
t ) .
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Additionally, consider the uniform distribution on the set of all m! permutations π. Then,
∑

π can

be replaced by m!Eπ where Eπ is expectation with respect to a random permutation π. Hence,

PRG(G) =m!Eπ

{
m−1∏
t=0

p(π(t+ 1)|Gπ
t )

}
=m!Eπ exp

{
m−1∑
t=0

log p(π(t+ 1)|Gπ
t )

}

≥m! exp

{
m−1∑
t=0

Eπ log p(π(t+ 1)|Gπ
t )

}
, (6)

where the inequality is by Jensen inequality for the convex function ex. Next, applying the definition

of p(π(t+ 1)|Gt) from Eq. (1) we get

PRG(G)≥m! exp

[
−
m−1∑
t=0

Eπ Ek(Gπ
t , π(t+ 1))−

m−1∑
t=0

Eπ logZ(Gπ
t )

]
. (7)

Now, we define F (Gπ
t ) to be the set of all forbidden pairs at step t, pairs of nodes i and j that

adding (ij) to Gπ
t creates a cycle of length at most k, and set Z0(Gπ

t )≡N − t−|F (Gπ
t )|. Note that,

logZ(Gπ
t ) = logZ0(Gπ

t ) + log
Z(Gπ

t )

Z0(Gπ
t )

= log

[
(N − t)(1− |F (Gπ

t )|
N − t

)

]
+ log

Z(Gπ
t )

Z0(Gπ
t )

≤ log(N − t)− |F (Gπ
t )|

N − t
+ log

Z(Gπ
t )

Z0(Gπ
t )
, (8)

using inequality log(1−x)≤−x for x∈ (−∞,1] that holds since |F (Gπ
t )| ≤N − t. Combining Eqs.

(7) and (8) and using 1/(N − t)≥ 1/N , we arrive at the following modified lower bound for PRG(G)

PRG(G)≥ 1(
N
m

) exp


[
−
m−1∑
t=0

EπEk(Gπ
t , π(t+ 1))

]
︸ ︷︷ ︸

S1(G)

+

[
1

N

m−1∑
t=0

Eπ|F (Gπ
t )|

]
︸ ︷︷ ︸

S2(G)

+

[
−
m−1∑
t=0

Eπ log
Z(Gπ

t )

Z0(Gπ
t )

]
︸ ︷︷ ︸

S3(G)

 .

(9)

The next step is the most important part of our effort in the journey to prove Lemma 1.

Step 3 in Proof of Lemma 1: Simplifying S1(G) +S2(G) +S3(G). This step shows the main

benefit of deferring the calculation of approximation errors for p(ij|Gπ
t ) to the final step. We will

show that even though the terms Si(G) for i = 1,2,3 can be large and dependent on G, many

terms in their combined sum cancel out and the resulting expression will be independent of G. In

particular, we will show that the only negative term4, S1(G), will completely cancel S2(G) and all

graph dependent parts of S3(G). Throughout the rest, since G is fixed, we often drop the references

to G in Si : i= 1,2,3.

The main result of this step is summarized in the following lemma. First we define Cr,`(G) to be

the set of all simple cycles of length r, belonging to Kn, that include exactly ` edges of G.

4 S3(G) will be positive since Z(Gπt )<Z0(Gπt ).
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Lemma 3. Let m be larger than n and also satisfy m = O(n1+α) where α ≤ 1/[2k(k + 3)] for a

constant k≥ 3. Then for all but O(e−n
kα

) fraction of graphs G in Gn,m,k the three inequalities below

hold. In other words, the number of graphs in Gn,m,k that violate at least one of the inequalities has

size of order e−n
kα |Gn,m,k|.

(a) S1(G)≥−O
(
n(k−1)(k+3)α−1

)
−
∑k

r=3

∑r−1

`=1 |Cr,`(G)|
(
m
N

)r−`
`
∫ 1

0
θ`−1(1− θ)r−`dθ.

(b) S2(G)≥−O
(
nk(k+3)α−1/2

)
+
∑k

r=3 |Cr,r−1(G)|
(
m
N

)∫ 1

0
θr−1dθ.

(c) S3(G)≥−O(nk(k+3)α−1/2) +
∑k

r=3

∑r−2

`=0 |Cr,`(G)|(m
N

)r−`(r− `)
∫ 1

0
θ`(1− θ)r−`−1dθ.

We defer proof of Lemma 3 to §5.3.

Step 4 and the Final Step in Proof of Lemma 1. Next we will show how the different terms in

lower bounds for Si’s from Lemma 3 cancel each other. The main idea in relating the terms in the

lower bounds is the following equation which is obtained using integration by parts for r−1≥ ` > 1,

`

∫ 1

0

θ`−1(1− θ)r−`dθ= (r− `)
∫ 1

0

θ`(1− θ)r−`−1dθ . (10)

Using (10) we can see that, when adding the right hand sides of the three inequalities in Lemma

3, all terms in the lower bound for S1 with 1≤ `≤ r−2 are canceled with the corresponding terms

in the lower bound for S3. In addition, the `= r− 1 terms in the lower bound of S1 are canceled

with the lower bound of S2. Therefore, the uncanceled terms are `= 0 terms from the lower bound

of S3 which we will see below to be asymptotically independent of G. More formally, combining

Eq. (9) and Lemma 3, for all graphs G in Gn,m,k except a subset of size O(e−n
kα |Gn,m,k|),

PRG(G) ≥ 1(
N
m

) exp [S1(G) +S2(G) +S3(G)]

≥ 1(
N
m

) exp

[
−O(nk(k+3)α−1/2) +

k∑
r=3

|Cr,0(G)|
(m
N

)r
r

∫ 1

0

(1− θ)r−1dθ

]

=
1(
N
m

) exp

[
−O(nk(k+3)α−1/2) +

k∑
r=3

|Cr,0(G)|
(m
N

)r]
. (11)

We note that even though the equality (10) is just an algebraic fact, it can be viewed as double-

counting a combinatorial quantity using two different approaches. The quantity would be number

of times a cycle in Kn would be considered in calculation of probability terms p(π(t + 1)|Gπ
t ).

In §5.3 we perform both counting arguments and then approximate the result of each counting

argument with integration with respect to θ= t/m.

Comparing (11) and the asymptotic expression for PU(G) given by the denominator in left hand

side of Eq. (5), we see that the only difference in the exponent is the use of |Cr,0(G)| instead of |Cr|

and the following lemma, proved in §A, provides the final piece.
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Lemma 4. If m=O(n1+α) and k is constant then |Cr\Cr,0(G)|/|Cr|=O(nα−1).

Using Lemma 4 we have

k∑
r=3

|Cr,0(G)|
(m
N

)r
≥

k∑
r=3

|Cr|
[
1−O(nα−1)

](m
N

)r
≥−O(n(k+1)α−1) +

k∑
r=3

|Cr|
(m
N

)r
,

where the last inequality uses |Cr|=O(nr) and m=O(n1+α). Summarizing, using Lemmas 2-3, for

all graphs G in Gn,m,k except a subset of size O(e−n
kα |Gn,m,k|) we have

PRG(G)≥
exp

[
−O(nk(k+3)α−1/2) +

∑k

r=3 |Cr|
(
m
N

)r](
N
m

)
≥ exp

[
−O(nk(k+3)α−1/2)−O(n(3kα−1)/2)

]
PU(G)

= exp
[
−O(nk(k+3)α−1/2)

]
PU(G)

≥
[
1−O(nk(k+3)α−1/2)

]
PU(G) .

Here the last inequality uses ex ≥ 1 + x. The above equation means that there is a constant c1

where PRG(G) ≥ [1− c1n
k(k+3)α−1/2)]PU(G) for the same family of graphs which finishes proof of

Lemma 1. Therefore, all we need now is proving Lemmas 2-3 �

5.2. Approximating |Gn,m,k| and Proof of Lemma 2

Before delving into the details, we provide a high-level overview of the proof. The main idea is

to look at the random graph model Gn,m and estimate the probability of the event of having

a graph with girth larger than k using Janson inequality. However, we will do all of this on an

approximation to the random graph model Gn,m, namely random graph model Gn,p where each

edge on vertices of [n] appears independently randomly with probability p = m/N . This type of

approximation is well-known in random graph literature (Janson et al. 2000). Any graph in Gn,p

would have on average m edges, making Gn,p a natural approximation to Gn,m.

5.2.1. Approximating Pn,p(Ak) via Janson Inequality. First we define Janson inequality.

Definition 1 (Janson Inequality). Let I be a set of graphs on the vertex set [n]. Now consider

a random graph G from Gn,p, for any i ∈ I we define a “bad event” Bi to be when G contains i

as a subgraph. Janson inequality aims to estimate the probability that G does not contain any

subgraph in I, that is equal to P
(
∩i∈I B(c)

i

)
, when the events {B(c)

i }i∈I are almost independent.

More formally, let η, ξ be real numbers such that and for all i in I,

P(Bi)≤ η < 1 and
∑
Bj∼Bi

P(Bi ∩Bj) = ξ .
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Here Bi ∼Bj means that Bi, Bj are dependent which means the subgraphs i and j have at least

one common edge. Then Janson inequality is

∏
i∈I

P(B
(c)
i )≤ P

(
∩i∈IB(c)

i

)
≤ exp

(
ξ

2(1− η)

)∏
i∈I

P(B
(c)
i ) . (12)

In particular, for ξ = o(1) we have P
(
∩i∈IB(c)

i

)
= (1 + o(1))

∏
i∈I P(B

(c)
i ).

Remark 1. Janson inequality is not necessarily about subgraphs of a random graph and is more

general. For brevity we stated the inequality in the above form and defer the reader to (Janson

1990) or (Alon and Spencer 1992) for the more general version.

Let us denote the probability with respect to the randomness in Gn,p and Gn,m by Pn,p and Pn,m
respectively. Let Ak be the event that a random graph, selected from G(n,p) or G(m,n), has girth

greater than k. Our next step is to calculate Pn,p(Ak).

For every cycle i of length at most k on vertices of [n] we consider a bad event Bi that is the

event that a random graph G from Gn,p contains cycle i. In particular, I=∪kr=3Cr. It is not difficult

to see that P(Bi) =O(pk) and ξ =O(
∑k

r1=3

∑k

r2=3 n
r1+r2−2pr1+r2−1). And since p=O(nα−1) then

using Janson inequality (12),

∏
i∈I

P(B
(c)
i )≤ Pn,p(Ak)≤ eO(n(2k−1)α−1)

∏
i∈I

P(B
(c)
i )

which gives the following for α< 1/(2k− 1),

Pn,p(Ak) = eO(n(2k−1)α−1)
∏
i∈I

P(B
(c)
i )

= eO(n(2k−1)α−1)
∏
i∈I

(
1− plength(i)

)
= exp

[
O
(
n(2k−1)α−1

)
+

k∑
r=3

|Cr| log(1− pr)

]

= exp

[
O
(
n(2k−1)α−1

)
−

k∑
r=3

|Cr|pr
]
. (13)

The last step uses log(1−x) =−x+O(x2) and |Cr|p2r =O(n2rα−r) =O(n(2k−1)α−1).

5.2.2. Approximating Pn,m(Ak) with Pn,p(Ak). We start by stating the following result on

monotone properties of Gn,p and Gn,m. However, we only state it for the specific event Ak but it

applies to more general events that satisfy the following property. If G is in Ak then any graph G′,

obtained by removal of an edge from G, would also be contained in Ak. Such events are known as

monotone graph properties.
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Proposition 1 (Lemma 1.10 in (Janson et al. 2000)). For 0≤ p≤ p′ ≤ 1 and 0≤m≤m′ ≤
N we have Pn,p(Ak)≥ Pn,p′(Ak) and Pn,m(Ak)≥ Pn,m′(Ak).

Proof of Lemma 2. First define m(G) to be the number of edges for any graph G. Now we state

the following lemma for comparing Pn,p(Ak) and Pn,m(Ak) that is proved in Appendix A.

Lemma 5. For any 0< p< 1, 1<m<N , and the monotone event Ak described above we have

Pn,p(Ak)≤ Pn,m(Ak) +Pn,p
(
m(G)<m

)
, (14)

Pn,p(Ak)≥ Pn,m(Ak)−Pn,p
(
m(G)>m

)
. (15)

Next, we state a lemma, proved in §A using Hoeffding inequality, that provides a sharp upper

bound for the probability of the event that a graph G in Gn,p does not have exactly m edges when

p is close to m/N .

Lemma 6. For β with 0<β < 1 if m is large enough and p1 ≡ m−m
1+β
2

N
and p2 ≡ m+m

1+β
2

N
, we have

Pn,p1
(
m(G)>m

)
≤ e−m

β/8 , (16)

Pn,p2
(
m(G)<m

)
≤ e−m

β/8 . (17)

Now we can use (15) for m and p1 together with (16) to obtain

Pn,m(Ak)≤ Pn,p1(Ak) +Pn,p1
(
m(G)>m

)
≤ Pn,p1(Ak) + e−

mβ

8 . (18)

Similarly, (14) for m and p2 combined with (17) gives

Pn,m(Ak)≥ Pn,p2(Ak)−Pn,p2
(
m(G)<m

)
≥ Pn,p2(Ak)− e−

mβ

8 . (19)

5.2.3. Finalizing Proof of Lemma 2. First, to simplify the formulas we introduce new

notation that will only be used in §5.2.3 . Recall from (13) that Pn,p = exp[−H(p) +O(n(2k−1)α−1)]

where H(p) =
∑k

r=3 |Cr|pr. Combining (18) and (19) and using this new notation we have,

eH(p)−H(p2)+O(n(2k−1)α−1)− e−m
β

8 +H(p) ≤ Pn,m(Ak)

exp[−H(p)]
≤ eH(p)−H(p1)+O(n(2k−1)α−1) + e−

mβ

8 +H(p) . (20)

Note that the condition pi =O(nα−1) needed for (13) holds since β < 1. Now, using the mean value

theorem, for each i∈ {1,2} there is a p∗i between p and pi such that

|H(p)−H(pi)|= |pi− p| · |H ′(p∗i )|=O

(
m

(1+β)
2

N

)
O
(
n(k−1)α+1

)
=O

(
n

(1+α)(1+β)
2 +(k−1)α−1

)
.

Now, for β < (k+ 1)α/(1 +α), the right hand side in the above will be O(n(3kα−1)/2). On the other

hand, using H(p) = O(nkα), when β > kα/(1 + α) the term e−m
β/8+H(p) will be o(1). Combining

these with Eq. (20), and choosing β in the interval
(

kα
1+α

, (k+1)α

1+α

)
we have

Pn,m(Ak)

exp [−H(m/N)]
= exp

{
O(n

3kα−1
2 ) +O(n(2k−1)α−1)

}
= exp

{
O(n

3kα−1
2 )

}
.
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Note that, since α < 1/(2k − 1) then such β would be in (0,1) which is needed by Lemma 6.

Therefore,

PU(G) =
1

|Gn,m,k|
=

1(
N
m

)
Pn,m(Ak)

=
1(

N
m

)
exp

{
O
(
n

3kα−1
2

)
−
∑k

r=3 |Cr|
(
m
N

)r} .
which finishes proof of Lemma 2 �

5.3. Proof of Lemma 3

Before going into the details we will provide a high level overview of the proof, focusing on S1(G).

5.3.1. A High-level Overview of the Proof. By definition

S1(G) =−
m−1∑
t=0

EπEk(Gπ
t , π(t+ 1)) =−

m−1∑
t=0

k∑
r=3

r−2∑
`=0

Eπ
[
N
Gt,ij
r,` qr−1−`

t

]
.

The first approximation we use is to change the randomness given by π. Since the partial graph Gπ
t

is a uniformly random subgraph of G that has exactly t edges, we can look at Gθ which is a random

subgraph of G that has each edge of G independently with probability θ = t/m. The subgraph

Gθ has t edges in expectation which makes it a good approximation for Gπ
t . We use this to show

that −
∑m−1

t=0 EπEk(Gπ
t , π(t+ 1)) is approximately equal to −mEθ

∫ 1

0
Ek(Gθ, (ij))dθ where (ij) is a

uniformly random edge of G. This step is carried out algebraically via Lemma 9. Next, note that

Ek(Gt, ij) would be approximately sum of the terms qr−`−1
t for all pairs (γ, ij) where γ is in Cr,`(G),

and (ij) is an edge in (G\Gθ)∩ γ. For any fixed r, ` we will see that the sum of all qr−`−1
t terms

corresponding to such (γ, ij) pair is dominated by the cases where |γ∩Gθ|= |γ∩G|−1 = `; in other

words when (ij) is the only edge of G∩ γ that is not in Gθ. This means each cycle γ ∈ Cr,`+1(G)

would have a (fixed) contribution of qr−`−1
t which is why a term |Cr,`+1| appears on the right hand

side for S1 in Lemma 3(a) (in fact it is |Cr,`| for a shifted range 1≤ `≤ r− 1).

5.3.2. Additional Definitions and Lemmas. Next, we will state three axillary lemmas

that will be used for the proof. But first we introduce an important subset of Gn,m,k. For any graph

G, denote its maximum degree by ∆(G). Also, note that Cr,r(G) counts the number of simple cycles

of length r that are contained in G. Define the set of graphs Hn,m,k by,

Hn,m,k ≡Gn,m,k ∩
{
G

∣∣∣∣ ∆(G)≤ n(k+3)α

}
∩
(
∩2k−2
s=k+1

{
G

∣∣∣∣ |Cs,s(G)| ≤ n(2k−1)(k+1)α

})
The next lemma will show that Hn,m,k contains almost all of Gn,m,k and its proof is given in

Appendix A

Lemma 7. If m,n,k satisfy conditions of Lemma 3 then |Hn,m,k| ≥
[
1−O(e−n

kα
)
]
|Gn,m,k|.
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We also need to state the following useful upper bound, proved in Appendix A, on the terms NGt,ij
r,`

appearing in Si’s.

Lemma 8. If m,n,k satisfy conditions of Lemma 3 then for all 3≤ r≤ k and G∈Hn,m,k we have

(a) If 0≤ ` < r− 1 then N
Gπt ,ij
r,` =O (∆(G)`nr−2−`) =O

(
nr−2−`+`(k+3)α

)
.

(b) If 0≤ s < r then |Cr,s(G)|=O (∆(G)s−1nr−s+α) =O
(
nr−s+s(k+3)α

)
.

Before stating the last auxiliary lemma we need to define the following.

Definition 2. Let e1, . . . , es be a set of s edges of G. Define At,πe1,...,es to be the event that for all

1≤ i≤ s : ei ∈Gπ
t . Similarly, define Bt,π

e1,...,es
to be the event that for all 1≤ i≤ s : ei /∈Gπ

t . Let

also Ct,π
ei

be the event that π(t+ 1) = ei. Also, as a convention (when the index s= 0 is used) the

two sets At,π∅ Bt,π
∅ contain everything hand have probability 1.

Lemma 9. If m,n,k satisfy conditions of Lemma 3 then for any three integers a, b, c in {0,1, . . . , k}
and any set of edges e1, e2, . . . , ea+b+1 of G the following hold

(a)
∑m−1

t=0 Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c ≤O(1) +m

∫ 1

0
θa(1− θ)b+cdθ.

(b)
∑m−1

t=0 Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

∩Ct,π
ea+b+1

)
(1− t

m
)c ≤O( 1

m
) +
∫ 1

0
θa(1− θ)b+cdθ.

(c)
∑m−1

t=0 Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c ≥−O(

√
m) +m

∫ 1

0
θa(1− θ)b+cdθ.

Proof of Lemma 9 is provided in Appendix A. Next, we prove Lemma 3.

5.3.3. Finalizing Proof of Lemma 3.

Proof of Lemma 3 (a). Recall that S1(G) = −
∑m−1

t=0

∑k

r=3

∑r−2

`=0 Eπ N
Gπt ,π(t+1)
r,` qr−1−`

t , where

N
Gπt ,π(t+1)
r,` is number of cycles of length r in Kn that include edge π(t+ 1) and have exactly `

edges belonging to Gπ
t . Every such cycle, will contain at least `+ 1 edges of G so it belongs to

Cr,s(G) for some s with r− 1≥ s≥ `+ 1. This suggests another way to calculate S1(G). For every

cycle that belongs to Cr,s(G) we can calculate its contribution in S1(G). Precisely, fix a cycle

γr,s ∈ Cr,s(G). Let s1(γr,s) be sum of all terms in S1(G) that are contributed by this cycle. Let

{e1, . . . , es} be the set of all s edges in γr,s ∩G. In order for γr,s to be considered in N
Gπt ,π(t+1)
r,` we

need to have `+ 1 distinct indices i1, . . . , i`+1 in [s] such that {ei1 , . . . , ei`} ∈ Gπ
t , ei`+1

= π(t+ 1)

and {e1, . . . , es}\{ei1 , . . . , ei`+1
} ∈ G\(Gπ

t ∪ {e`+1}). There are
(
s
`

)
ways to pick the first ` indices

and (s− `) ways to pick e`+1 from the remaining ones. Therefore,

s1(γr,s) = −
s−1∑
`=0

(
s

`

)
(s− `)

m−1∑
t=0

P(At,πei1 ,...,ei`
∩Ct,π

ei`+1
∩Bt,π

{e1,...,es}\{ei1 ,...,ei`+1
})q

r−1−`
t . (21)

Now, using qt = m−t
N−t = ( N

N−t)(
m
N

)(m−t
m

) ≤ ( N
N−m)(m

N
)(m−t

m
), Eq. (21), Lemma 9(b) for a = `, b =

s− (`+ 1), c= r− `− 1, and that N/(N −m)≥ 1, we have

s1(γr,s) ≥ −
(

N

N −m

)r−1 s−1∑
`=0

(
s

`

)
(s− `)

(m
N

)r−1−`
[
O(

1

m
) +

∫ 1

0

θ`(1− θ)r+s−2`−2dθ

]
.
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It is easy to see that the summation is dominated by the term ` = s− 1 since other terms are

an extra factor m/N smaller. The same way, all of the terms involving O(1/m) are smaller by a

factor m. Therefore, using [1 +m/(N −m)]r−1 = 1 +O(m/N), the largest order term is equal to

−(m/N)r−ss
∫ 1

0
θs−1(1−θ)r−sdθ and everything else is dominated by a constant times (m/N)r−s+1;

i.e.,

s1(γr,s) ≥ −
[
1 +O(

m

N
)
](m

N

)r−s
s

∫ 1

0

θs−1(1− θ)r−sdθ .

Now, considering all possible cycles γr,s we obtain

S1(G)≥−
[
1 +O(

m

N
)
] k∑
r=3

r−1∑
s=1

|Cr,s(G)|
(m
N

)r−s
s

∫ 1

0

θs−1(1− θ)r−sdθ .

The last step involves simplifying the terms that involve an extra O(m/N) term. In particular,

using Lemma 8(b) we have

O(
m

N
)

k∑
r=3

r−1∑
s=1

|Cr,s(G)|
(m
N

)r−s
s

∫ 1

0

θs−1(1− θ)r−sdθ=O

(
k∑
r=3

r−1∑
s=1

n(r−s)+s(k+3)α+(r−s+1)α−(r−s+1)

)
=O

(
nα(k+3)(k−1)−1

)
.

This finishes proof of part (a).

Proof of Lemma 3 (b). First we need to approximate the number of forbidden pairs |F (Gπ
t )|.

|F (Gπ
t )|=

∑
(ij)

I(
k∑
r=3

N
Gπt ,ij
r,r−1 > 0) (22)

≥
k∑
r=3

∑
γ∈Cr,r−1(G)

I
(
γ ∈ Cr,r−1(Gπ

t )
)
−
∑
(ij)

[
k∑
r=3

N
Gπt ,ij
r,r−1

]
I
( k∑
r=3

N
Gπt ,ij
r,r−1 > 1

)
,

where the inequality is based on a version of inclusion-exclusion formula. In particular, each edge

(ij) with
∑k

r=3N
Gπt ,ij
r,r−1 = 1 is counted exactly once in both sides of the inequality. But the edges

(ij) with
∑k

r=3N
Gπt ,ij
r,r−1 > 1 could be counted at most

∑k

r=3N
Gπt ,ij
r,r−1 times in the first summation of

the right hand side. Next, we are going to show that the second term on the right hand side can

be ignored. In particular, the second term is less than the number of times two vertices i and j are

connected by two paths of length at most k− 1 in Gπ
t . This means i and j are two vertices of a

cycle of length between k+ 1 to 2k− 2 in Gπ
t (note that by design Gπ

t has no cycle of length up to

k). Since the number of vertices in such cycles is still a constant, we have

∑
(ij)

[
k∑
r=3

N
Gπt ,ij
r,r−1

]
I
( k∑
r=3

N
Gπt ,ij
r,r−1 > 1

)
=O

(
2k−2∑
s=k+1

|Cs,s(G)|

)
=O(n(2k−1)(k+1)α) , (23)

where the last equality uses G∈Hn,m,k.
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On the other hand, for any cycle γ ∈ Cr,r−1(G), using Lemma 9(c) for a = r − 1, b = c = 0, we

have
m−1∑
t=0

EπI
(
γ ∈ Cr,r−1(Gπ

t )
)
≥−O(

√
m) +m

∫ 1

θ=0

θr−1dθ .

Thus,

S2(G) =
1

N

m−1∑
t=0

EπF (Gπ
t )

≥ −O
(
n(2k−1)(k+1)α+α−1

)
−
√
m

N

k∑
r=3

|Cr,r−1(G)|+ m

N

k∑
r=3

|Cr,r−1(G)|
∫ 1

θ=0

θr−1dθ

≥ −O
(
n2k(k+2)α−1

)
−O(n

α
2−

1
2 )O(n1+(k−1)(k+3)α) +

m

N

k∑
r=3

|Cr,r−1(G)|
∫ 1

θ=0

θr−1dθ (24)

≥ −O
(
nk(k+3)α−1/2

)
+
m

N

k∑
r=3

|Cr,r−1(G)|
∫ 1

θ=0

θr−1dθ .

Here Eq. (24) uses Lemma 8(b). This concludes proof of part (b).

Proof of Lemma 3 (c). Recall the set Q(Gt) from §3. First note that by definition of Z(Gπ
t )

and Z0(Gπ
t ) we obtain

S3(G) = −
m−1∑
t=0

Eπ log

∑(ij)∈Q(Gπt ) exp
(
−
∑k

r=3

∑r−2

`=0 N
Gπt ,ij
r,` qr−1−`

t

)
∑

(ij)∈Q(Gπt ) 1

 .

Now using e−x ≤ 1−x+ x2

2
for x> 0 we have

S3(G) ≥ −
m−1∑
t=0

Eπ log

1−
∑

(ij)∈Q(Gπt )

(∑k

r=3

∑r−2

`=0 N
Gπt ,ij
r,` qr−1−`

t

)
|Q(Gπ

t )|
−

1
2

(∑k

r=3

∑r−2

`=0 N
Gπt ,ij
r,` qr−1−`

t

)2

|Q(Gπ
t )|

 .

Also note that, using Lemma 8(a), we have

∑
(ij)∈Q(Gπt )

(∑k

r=3

∑r−2

`=0 N
Gπt ,ij
r,` qr−1−`

t

)2

|Q(Gπ
t )|

=O

[ k∑
r=3

r−2∑
`=0

nr−`−2+`(k+3)αn(r−1−`)(α−1)

]2


=O
(
n2(k+3)(k−1)α−2

)
,

and, using a similar argument, each term
∑k

r=3

∑r−2

`=0 N
Gπt ,ij
r,` qr−1−`

t is of order n(k+3)(k−1)α−1. There-

fore, this term and its squared are asymptotically very small (in particular, added together, they

are less than 1). This means we can use − log(1−x)≥ x for x< 1 and |Q(Gπ
t )| ≤N to obtain

S3(G)≥Eπ

 1

N

m−1∑
t=0

∑
(ij)∈Q(Gπt )

k∑
r=3

r−2∑
`=0

N
Gπt ,ij
r,` qr−1−`

t

−mO
(
n2(k+3)(k−1)α−2

)

≥ 1

N

m−1∑
t=0

k∑
r=3

r−2∑
`=0

Eπ

 ∑
(ij)∈Q(Gπt )

N
Gπt ,ij
r,` qr−1−`

t

−O (n2k(k+3)α−1
)
. (25)
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Also, in Eq. (25), the summation
∑

(ij)∈Q(Gπt ) can be broken to two parts; when (ij) ∈Q(Gπ
t ) \G

and when (ij)∈Q(Gπ
t )∩G. The latter group is small since, using the same bounds as above, those

terms satisfy

1

N

m−1∑
t=0

k∑
r=3

r−2∑
`=0

Eπ

 ∑
(ij)∈Q(Gπt )∩G

N
Gπt ,ij
r,` qr−1−`

t

=O

(
m2n(k+3)(k−1)α−1

N

)
=O(n(k+3)kα−1)

that can be absorbed in the O
(
n2(k+3)kα−1

)
term of Eq. (25).

Now, similar to the proof of (a) we will find contribution of a cycle γr,s ∈ Cr,s(G) that is denoted

by s3(γr,s). The only difference is that this time the edge (ij) should be part of the (r− s) edges

γr,s\{e1, . . . , es} that are not in G. Then we use part (c) of Lemma 9 for a = `, b = (s− `), c =

r− `− 1, and qt ≥ (m/N)(1− t/m) to obtain,

s3(γr,s) =
1

N

s∑
`=0

(
s

`

)
(r− s)

m−1∑
t=1

P(At,πei1 ,...,ei`
∩Bt,π

{e1,...,es}\{ei1 ,...,ei`}
)qr−1−`
t

≥ 1

N

s∑
`=0

(m
N

)r−1−`
(
s

`

)
(r− s)

[
m

∫ 1

0

θs(1− θ)r+s−2`−1dθ−O(
√
m)

]
. (26)

Similar to part (a), the contribution of `= s term will dominate and the remaining terms can be

absorbed to the O(
√
m) term. In particular,

s3(γr,s)≥O
(

(
m

N
)r−s(r− s)

∫ 1

0

θs(1− θ)r−s−1dθ

)
−O

(
(
m

N
)r−s
√
m
)
.

Therefore,

S3(G)≥
k∑
r=3

r−2∑
s=0

|Cr,s(G)|
(m
N

)r−s
(r− s)

∫ 1

0

θs(1− θ)r−s−1dθ−O

(
k∑
r=3

r−2∑
s=0

|Cr,s(G)|(m
N

)r−sm−
1
2

)
.

Now, using Lemma 8(b), we have

O

(
k∑
r=3

r−2∑
s=0

|Cr,s(G)|(m
N

)r−sm−
1
2

)
=O(n−1/2+(k+3)kα)

which finishes the proof �

6. Running Time of RandGraph and Proof of Theorem 2

In this section we will prove that RandGraph can be implemented in a way that its expected

running time would be of order n2m operations. The idea is to define surrogate quantities for

probabilities p(ij|Gt) that are efficiently computable using sparse matrix multiplications (take order

n2 operations per each step of the algorithm). The key point is that, by definition, p(ij|Gt) is a

weighted sum over simple cycles. It is known that one can count all cycles (not necessarily simple
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cycles) of a graph via matrix multiplication of the its adjacency matrix. We will use this fact and

prove that the contribution of non-simple cycles will be negligible.

During the execution of RandGraph, after adding t edges, let Mt and M
(c)
t be the adjacency

matrices of the partially constructed graph Gt and its complement G
(c)
t respectively. In addition,

let Qt be the adjacency matrix of the graph obtained by all edges (ij) such that Gt∪ (ij)∈Gn,t+1,k.

We modify RandGraph so that it selects the (t + 1)th edge from all pairs (ij) with probability

p′(ij|Gt) that is equal to (i, j) entry of the symmetric matrix P′Gt , defined by

P′Gt ≡ [p′(ij|Gt)]≡
1

Z ′(Gt)
Qt� êxp

[
−

k−1∑
r=2

(
Mt +

m− t(
n
2

)
− t

M
(c)
t

)r ]
. (27)

Here Z ′(Gt) is a normalization constant. Symbols � and êxp represent the coordinate-wise mul-

tiplication and exponentiation of square matrices. More precisely, for n× n matrices A,B,C the

expression A = B�C means that for all i, j ∈ [n] we have aij = bijcij, and similarly A = êxp(B)

means for all i, j ∈ [n] we have aij = ebij . Let us call this modification RandGraph′.

The key result of this section is the following Lemma and is proved in Appendix A.

Lemma 10. For any non-zero probability term p′(ij|Gt),

p′(ij|Gt)≥
1

Z(Gt)
e
−Ek(Gt,ij)−O

(
nk(k+3)α−2

)
,

where Z(Gt) =
∑

rs∈Q(Gt)
e−Ek(Gt,rs) is the normalization term in definition of p(ij|Gt) from §3.

Using Lemmas 1 and 10 we can see that the output distribution of RandGraph′ still satisfies the

inequality PRG′(G)≥ e−c′1n−1/2+k(k+3)αPU(G) for all but O(e−n
kα

)|Gn,m,k| graphs G in Gn,m,k. More

formally, a variant of Lemma 1 holds for PRG′ using Lemma 1 for PRG and Lemma 10. Next, we

focus on the implementation of RandGraph′.

The fact that RandGraph′ has polynomial running time is clear since the matrix of the probabil-

ities at any step, PGt , can be calculated using matrix multiplication. In fact a myopic calculation

shows that PGt can be calculated with O(k n3) =O(n3) operations. This is because rth power of a

matrix for any r takes O(rn3) operations to compute. So we obtain the simple bound of O(n3m)

for the running time. But we can improve this running time by at least a factor n with exploiting

the structure of the matrices.

Notice that the adjacency matrix Qt is equal to Jn − ŝign(
∑k−1

r=0 Mr
t ) where Jn is the n by n

matrix of all ones and the ŝign(B) for any matrix B means the sign function is applied to each

entry of B. This is correct since any bad pair (ij), that cannot be added to Gt, corresponds to a

path in Gt of length r between i and j for 0≤ r≤ k−1. Such path forces the ij entry of the matrix

Mr
t to be positive.
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Now we can store the matrices Mt, . . . ,M
k−1
t at the end of each iteration and use them to

efficiently calculate Mt+1, . . . ,M
k−1
t+1 . This is because the differences Mt+1−Mt are sparse matrices

and updating the matrix multiplications can be done with O(n2). More precisely, we can use

Mr
t+1 = [Mt + (Mt+1−Mt)]

r
= Mr

t + L ,

where L is a linear sum of matrix products where each term contains at least one of (Mt+1 −
Mt), · · · , (Mt+1 −Mt)

r−1. Since Mt+1 −Mt has O(1) non-zero entries then the total operations

required for calculating L is of O(n2). A similar argument can be used for calculating
[
Mt+1 +

m−t+1

(n2)−t+1
M

(c)
t+1

]r
using sparsity of both Mt+1−Mt and M

(c)
t+1−M

(c)
t .

Since Theorem 1 shows that RandGraph and hence RandGraph′ are successful with probability

1−n−1/2+k(k+3)α, the expected running-time of RandGraph′ for generating an element of Gn,m,k is

also O(n2m), for n large enough, which finishes proof of Theorem 2 �

7. Comparing RandGraph and Ck-free Process

In this section, we perform a theoretical (§7.1) and an empirical comparison (§7.2) between our

results for RandGraph and existing theory for Ck-free process. The motivation for this comparison

is due to recent research by Pontiveros et al. (2013), Bohman and Keevash (2013). They show

that certain graph parameters in the C3-free process concentrate around their value in uniformly

random C3-free graphs. But these papers do not provide any formal statement on closeness of

the two distributions. Our goal is to understand how close the output distribution of C3-free and

RandGraph are to the uniform distribution on Gn,m,k.

7.1. Concentration Inequality for Graph Parameters

Recall that Q(G) was defined to be the subset of edges in Kn that adding them to G does not

create a cycle of length at most k. We enrich this notation by adding a subscript k, i.e. using

Qk(G). Also let TF be the short notation for the triangle-free (C3-free) process. We will show

that Theorem 1 provides a sharper concentration than Theorem 2.1 of Pontiveros et al. (2013) for

Q3(G). Pontiveros et al. (2013) show that

lim
n→∞

PTF

{ ∣∣∣∣1− |Q3(G)|
EU|Q3(G)|

∣∣∣∣< 2e2m2/n3n−1/4(logn)3

}
= 1 . (28)

On the other hand, we note the following corollary of Theorem 1 for Qk(G) that is proved in

Appendix A.

Corollary 1. Let n, m, and k satisfy the conditions of Theorem 1. Then there exists a constant

c3 such that

PRG

{ ∣∣∣∣1− |Qk(G)|
EU|Qk(G)|

∣∣∣∣< c3n
−1+(2k−1)(k+1)α

}
= 1−O(n−1/2+k(k+3)α) . (29)
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For small enough α, the bound (29) is clearly more general than (28) since it applies to k ≥ 3

and the rate of convergence for the probability is provided. But, more importantly, the error term

n−1+(2k−1)(k+1)α is much smaller than 2e2m2/n3n−1/4(logn)3 ≈ n−1/4 when (2k − 1)(k + 1)α < 3/4.

For example, when k= 3 and α< 0.025, the error term in (29) is O(n−1/2). We should note that the

result of Pontiveros et al. (2013) is instead valid for a much larger range of graphs (up to m≈ n1.5)

compared to our bound that is valid for m=O(n1+α).

Pontiveros et al. (2013) also prove similar asymptotic approximations as in (28) for several other

graph parameters than |Q(G)|. We expect the same argument as above can be applied to obtain

sharper concentrations for those parameters as well (when α is a small).

It is worth noting that the above comparison is between the bounds proved for two different

algorithms, Ck-free process and RandGraph. But an interesting comparison, that we leave for future

research, could be done by applying the analysis of RandGraph from this paper to Ck-free process

and obtaining a similar variant of (29) for the Ck-free process.

7.2. Empirical Comparison

In last section we showed that our bound on dTV (PRG,PU) is sharper than existing theory on

closeness of C3-free process to PU. But we did not answer the question: Is dTV (PRG,PU) is smaller

than dTV (PTF,PU). In order to shed light on this, below we perform an empirical comparison between

RandGraph and triangle-free process.

Given that at step t of either algorithm we know the value of p(π(t+ 1)|Gπ
t ), we can use that to

(empirically) compare the output distribution of each algorithm with uniform. In particular, for a

successful run of RandGraph that outputs a graph G with ordering π of its edges we estimate its

multiplicative bias by

BiasπRG ≡
m!
∏m−1

t=0 p(π(t+ 1)|Gπ
t ){(

N
m

)
exp

[
−
(
n
3

) (
m
N

)3
]}−1 . (30)

From Lemma 2, for α<min[1/(2k−1),1/(3k)]≈ 0.11, the denominator in BiasπRG is close to PU(G)

and the numerator is approximately equal to PRG(G) since there are m! orderings π for edges of G.

Similarly, we can define BiasπTF by using the values p(π(t+ 1)|Gπ
t ) from the triangle-free process.

Therefore, BiasπRG and BiasπTF are approximations to PRG/PU and PTF/PU respectively. In other words,

if the multiplicative bias of an algorithm is closer to 1 then its output distribution is also closer to

uniform.

Next, for n in {50,100,200,400} andm= n1+α where α= 0.1, we execute RandGraph and triangle-

free process 1,000 times. First we note that no algorithm failed during the 1,000 repetitions. Figure

1 shows the histograms of BiasπRG and BiasπTF for each n. The following observations can be made

from the simulation:
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(a) n= 50 (b) n= 100

(a) n= 200 (b) n= 400
Figure 1 Histogram of multiplicative bias for 1,000 runs of RandGraph and triangle-free process (i.e., BiasπRG and

BiasπTF) for n∈ {50,100,200,400}. In all cases m= n1+α with α= 0.1.

• Bias values for RandGraph are more concentrated around 1 than the ones by triangle-free

process. This supports the fact that the distance between PRG and PU is less than the distance

between PTF and PU.

• The bias of RandGraph seems to converge to 1 as n grows which suggests that our results

(possibly) hold for a larger range of α than what is required by Theorem 1, i.e., α∈ (0,0.11) versus

α∈ (0,0.027).
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8. Extension to Bipartite Graphs with Given Degrees

The ideas described in §4 can be used to generate random bipartite graphs with given node degrees.

Such graphs define the standard model for irregular LDPC codes. In this section we will show how

to modify RandGraph for this application. The analysis of this extension is somewhat cumbersome

and is beyond the scope of this paper but we expect it to be conceptually similar to the analysis of

RandGraph. Since this is a short section, the notation introduced here is not presented in Table 1.

Consider two ordered sequences of positive integers r̄ = (r1, . . . , rn1) and c̄ = (c1, . . . , cn2) for

degrees of the vertices such that m =
∑n1

i=1 ri =
∑n2

j=1 cj. We would like to generate a random

bipartite graph G(V1, V2), V1 = [n1] and V2 = [n2], with girth greater than k and with degree

sequence (r̄, c̄). We also assume that k is an even number. Denote the set of all such graphs by

Gr̄,c̄,k. The algorithm is a natural generalization of RandGraph where the probabilities p(ij|Gt) are

adjusted properly.

Algorithm 2 BipRandGraph.

Input: Degree sequence (r̄, c̄) and k
Output: An element of Gr̄,c̄,k or FAIL
set G0 to be a graph over vertex sets V1 = [n1], V2 = [n2] and with no edges.
let r̂= (r̂1, . . . , r̂n) and ĉ= (ĉ1, . . . , ĉm) be ordered sets that are initialized by r̂= r̄ and ĉ= c̄
for each t in {0, . . . ,m− 1} do

if adding any edge to Gt creates a cycle of length at most k then
stop and return FAIL

else
sample an edge (ij) from V1×V2 with probability p′′(ij|Gt), defined by Eq. (31)
set Gt+1 =Gt ∪ (ij)
set r̂i = r̂i− 1 and ĉj = ĉj − 1

end if
end for
if the algorithm does not FAIL before t=m− 1 then

return Gm

end if

Here each probability p′′(ij|Gt) is an approximation to the probability that a uniformly random

extension of graph Gt∪ (ij) has girth larger than k (the intuitive reason for this is described in §4).

The estimation procedure for p′′(ij|Gt) is slightly more involved than the one used for p(ij|Gt).

It relies on considering a configuration model representation for the graphs with degree sequence

(r̄, c̄), see (Bender and Canfield 1978, Bollobás 1980) for more details on configuration model. Then,

building on the idea discussed in §4, we get the following Poisson-type approximation for p′′(ij|Gt),

p′′(ij|Gt)≡
r̂iĉje

−E′′k (Gt,ij)

Z ′′(Gt)
, (31)
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where Z ′′(Gt) is a normalization term, and r̂i ĉj, denote the remaining degrees of i and j. Further-

more, E′′k (Gt, ij)≡
∑k/2

r=1

∑
γ∈C2r
(ij)∈γ

ptij(γ), where C2r is the set of all simple cycles of length 2r in the

complete bipartite graph on vertices of V1 and V2 Also, ptij(γ) is approximately the probability that

γ is in a random extension of Gt to a random bipartite graph with degree sequence (r̄, c̄). More

precisely,

ptij(γ) =
(m− t− 2r+ |γ ∩Gt|)!

∏
`∈γ∩V1 R

t
ij(`, γ)

∏
`∈γ∩V2 C

t
ij(`, γ)

(m− t− 1)!
,

where

Rt
ij(`, γ) =


r̂`(r̂`− 1) If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 0 ,

r̂` If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 1 ,

1 If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 2 .

Similarly,

Ct
ij(`, γ) =


ĉ`(ĉ`− 1) If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 0 ,

ĉ` If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 1 ,

1 If deg`

(
γ ∩
[
Gt ∪ (ij)

])
= 2 .

Here the notation degv(H) for a node v of graph G and subgraph H of G refers to the induced

degree of v in H.

Appendix A: Proofs of Auxiliary Lemmas

Proof of Lemma 4 It is easy to see that |Cr|= constant ·nr. Now we try to find an upper bound

for the number of paths of length r that intersect at least one edge of G. The number of paths

γ that intersect a fixed edge (ij) in G is of order O(nr−2) since there are
(
n−2
r−2

)
ways to pick the

remaining r− 2 vertices of γ and this is the dominating term. And Therefore,

|Cr\Cr,0(G)|
|Cr|

=O

(∑
(ij)∈G n

r−2

nr

)
=O

(
mn−2

)
=O

(
nα−1

)
�

Proof of Lemma 5 We note that for any 0< p< 1, the random graph model G(n,p) is equivalent

to the random graph model Gn,m conditioned on m(G) =m. Thus, for a random graph G we have

Pn,p(Ak) = Pn,p
(
Ak ∩{m(G)≥m}

)
+Pn,p

(
Ak ∩{m(G)<m}

)
≤

N∑
`=m

Pn,p
(
Ak
∣∣m(G) =m

)
Pn,p

(
m(G) = `

)
+Pn,p

(
m(G)<m

)

≤ Pn,p
(
Ak
∣∣m(G) =m

) N∑
`=m

Pn,p
(
m(G) = `

)
+Pn,p

(
m(G)<m

)
≤ Pn,m(Ak) +Pn,p

(
|m(G)|<m

)
,
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where the second inequality uses monotonicity of property Ak. Similarly,

Pn,p(Ak)≥ Pn,p
(
Ak ∩{m(G)≤m}

)
=

m∑
`=0

Pn,p
(
Ak
∣∣m(G) = `

)
Pn,p

(
m(G) = `

)
≥ Pn,p

(
Ak
∣∣m(G) =m

) m∑
`=0

Pn,q
(
m(G) = `

)
, using monotonicity of Ak

= Pn,m(Ak)Pn,p
(
m(G)≤m

)
= Pn,m(Ak)−Pn,p

(
m(G)>m

)
.

Proof of Lemma 6 First we state the following modified version of Hoeffding inequality, adapted

from Corollary 3.2 in (Steger and Wormald 1999).

Proposition 2 (Hoeffding inequality). Let X1, . . . ,Xn be independent variables with 0≤Xi ≤
1 for all i∈ [n], and let X =

∑n

i=1Xi. Then for δ≤ 4/5,

P
[ ∣∣X −E(X)

∣∣> δE(X)
]
≤ e−δ

2E(X)/4 .

We can now take N iid Bernoulli(p) random variables corresponding to the potential edges of G

in Gn,p and use Proposition 2 to obtain, for any 0< p< 1 and 0< δ < 4/5,

Pn,p
( ∣∣m(G)−Np

∣∣> δNp )≤ e−δ2Np/4 .
Now we can see that by taking δ = m(1+β)/2

m−m(1+β)/2 , when β ∈ (0,1) and m is large enough, we have

δ < 4/5, (1 + δ)Np1 =m, and δ2Np1 ≥mβ/2 which give

Pn,p1
(
m(G)>m

)
≤ Pn,p1

(
m(G)> (1 + δ)Np1

)
≤ e−δ

2Np1/4 ≤ e−m
β/8 .

For the second inequality, Pn,p2
(
m(G) <m

)
≤ e−mβ/8, we take δ = m(1+β)/2

m+m(1+β)/2 , which gives (1−
δ)Np2 =m and δ2Np2 ≥mβ/2 and the result similarly follows �

Proof of Lemma 7 First, we will find an upper bound for probability of the event ∆(G) >

n(k+3)α and a separate bound for the event
∑2k−2

s=k+1 |Cs,s(G)| > n2kα. Then we combine them via

union bound.

For maximum degree, we use the following version of Chernoff inequality, Theorem A.1.18 in

(Alon and Spencer 1992). For i.i.d. Bernoulli random variables X1, . . . ,XN with mean p

P

(
N∑
i=1

Xi > η+Np

)
< e−2η2 .

Now combining this with a union bound, for graphs G in Gn,m,k we have for any p∈ (0,1)

Pn,p
[
∆(G)> (n− 1)p+ η

]
< ne−2η2 .
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Note that the event {∆(G) > (n− 1)p+ η} is a monotone property (see beginning of §5.2.1 for

definition) but in the opposite direction as Ak that is adding edges to G maintains the property.

Therefore, similar to the proof of Lemma 2 we can take p2 = m+m
1+β
2

N
and obtain

Pn,m
[
∆(G)> (n− 1)p2 + η

]
< Pn,p2

[
∆(G)> (n− 1)p2 + η

]
+Pn,p2

[
m(G)<m

]
<ne−2η2 + e−

mβ

8 .

Thus, for β = 1/2 and η = n
(k+2)α

2 , combining the above bounds with np2 = O(nα) and mβ/8 >

2n(k+2)α we have

Pn,m
[
∆(G)>n(k+3)α

]
< e−n

(k+1)α

. (32)

Next, we will find a similar bound for Pn,p[
∑2k−2

s=k+1 |Cs,s(G)|>n2kα]. For this, we use the following

concentration inequality for |Cs,s(G)| in Gn,p that is adapted from Corollary 6.2 of Vu (2002),

Pn,p
[
|Cs,s(G)|>En,p|Cs,s(G)|+ns(k+1)α

]
=O(e−n

(k+1)α

) . (33)

In fact, Corollary 6.2 of Vu (2002) provides a bound for more general subgraph counts (not neces-

sarily cycle counts). But in Vu’s bound the tail is of order En,p|Cs,s(G)|=O(nsα) and the probability

is of order exp(−nα). However, we require a smaller probability of order exp(−n(k+1)α) and can

afford to pick a larger tail. By choosing λ= 4anα(k+1) instead of λ= anα, and leaving everything

else unchanged in Vu’s proof, all conditions satisfy and we obtain (33). Therefore,

Pn,p
[ 2k−2∑
s=k+1

|Cs,s(G)|>n(2k−1)(k+1)α
]
≤ Pn,p

[ 2k−2∑
s=k+1

|Cs,s(G)|>
2k−2∑
s=k+1

(
En,p|Cs,s(G)|+ns(k+1)α

)]
≤

2k−2∑
s=k+1

Pn,p
[
|Cs,s(G)|>En,p|Cs,s(G)|+ns(k+1)α

]
=O(e−n

(k+1)α

) .

Now, defining p2, m, and β the same as above and repeating the same argument for the monotone

property
∑2k−2

s=k+1 |Cs,s(G)|>n(2k−1)(k+1)α we have

Pn,m
[ 2k−2∑
s=k+1

|Cs,s(G)|>n(2k−1)(k+1)α
]
< Pn,p2

[ 2k−2∑
s=k+1

|Cs,s(G)|>n(2k−1)(k+1)α
]

+Pn,p2
[
m(G)<m

]
=O(e−n

(k+1)α

) .

Finally, note that in §5.2 we explicitly calculated Pn,m(Ak) which shows that Pn,m(Ak)
−1 is of

order eO(nkα). Hence,

|Hn,m,k|
|Gn,m,k|

= Pn,m

([
∆(G)≤ n(k+3)α

]
∩
[ 2k−2∑
s=k+1

|Cs,s(G)| ≤ n(2k−1)(k+1)α
] ∣∣∣∣G∈Gn,m,k

)
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=
Pn,m

([
∆(G)≤ n(k+3)α

]
∩
[∑2k−2

s=k+1 |Cs,s(G)| ≤ n(2k−1)(k+1)α
]
∩Ak

)
Pn,m(Ak)

≥
Pn,m(Ak)−Pn,m

[
∆(G)>n(k+3)α

]
−Pn,m

[∑2k−2

s=k+1 |Cs,s(G)|>n(2k−1)(k+1)α
]

Pn,m(Ak)

= 1−O(e−n
(k+1)α+O(nkα)) = 1−O(e−n

kα

) .

This finishes proof of Lemma 7 �

Proof of Lemma 8 Clearly NGt,ij
r,` is bounded from above by the number of paths (not neces-

sarily simple paths) of length r− 1 from i to j that have at least ` edges of the Gt. Number of all

such paths is equal to the number of sequences C = (i= i0, i1, . . . , ir−1 = j) with is ∈ [n] for all s,

and at least ` of pairs (isis+1) in Gt. Since ` < r− 1 there is a pair (isis+1) that does not belong to

Gt. We take s to be the smallest such number. So any path C breaks into C =C1 ∪{(isis+1)}∪C2

where C1 is a path starting from i with length s and completely lies inside Gt. Number of such

paths is at most ∆(G)s. Similarly C2 is a path with one endpoint equal to j and length r− 2− s

that contains exactly `−s edges of Gt. Number of such paths is at most ∆(G)`−snr−2−`. Therefore

using G∈Hn,m,k,

NGt,ij
r,` ≤

∑̀
s=0

∆(G)`nr−2−` =O(nr−2−`+(k+3)`α) , (34)

which finishes proof of part (a).

Proof of part (b) is similar. If s= 0 then clearly the bound O(nr) is valid since it is the order of

all cycles of length r. Otherwise, each cycle in Cr,s contains an edge (ij)∈G. So the cycle contains

a path of length r that contains (ij) and exactly s− 1 edges of G \ {(ij)}. Therefore, the number

of such cycles is at most O(
∑

(ij)∈GN
G\{(ij)},(ij)
r,s−1 ). Note that each cycle is counted at most s times

in the bound which is a constant and can be ignored. Using part (a), this number is of order

O(m∆(G)s−1nr−s−1) =O(∆(G)s−1nr−s+α) which finishes the proof (b).

�

Proof of Lemma 9 Note that Gπ
t is a random subgraph of G that has t edges. Therefore,

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
=

(
m−a−b
t−a

)(
m
t

)
=

[
ma+b

m · · · (m− a− b+ 1)

][
(m− t) · · · (m− t− b+ 1)

(m− t)b

][
t · · · (t− a+ 1)

ta

]
fa,b(t)



30

where fa,b(t) = ( t
m

)a(m−t
m

)b. This means,

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c ≤

(
1 +

a+ b

m− a− b

)a+b

fa,b+c(t)

≤
(

1 +O(
1

m
)

)
fa,b+c(t) . (35)

Now using the fact that the function θa(1− θ)b has at most one maximum in the interval (0,1)

then ∑m−1

t=0 fa,b+c(t)

m
≤
∫ 1

θ=0

θa(1− θ)b+c dθ+O(
1

m
) . (36)

Combining Eqs. (35) and (36) proves part (a) of Lemma 9.

Part (b) is now easy to prove. In particular, given that

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

∩Ct,π
ea+b+1

)
(1− t

m
)c =

(
m−a−b−1

t−a

)
(m− t)

(
m
t

)(1− t

m
)c ,

using a similar bound as above, but with an extra m in the denominator, we have

m−1∑
t=0

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

∩Ct,π
ea+b+1

)
(1− t

m
)c ≤ O(

1

m
) +

∑m−1

t=0 fa,b+c(t)

m
,

which finishes proof of part (b) via Eq. (36).

Now, we prove part (c). First we use Bernoulli’s inequality (1−x)y ≥ 1− yx for 0≤ x< 1, y≥ 1

to show that for m−
√
m> t>

√
m

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c = (1− t

m
)c
(
m−a−b
t−a

)(
m
t

)
≥ (1− a

t
)a(1− b

m− t
)bfa,b+c(t)

≥
[
1−O(

1√
m

)

]
fa,b+c(t) . (37)

Also, as before, ∑m−1

t=0 fa,b+c(t)

m
≥
∫ 1

θ=0

θa(1− θ)b+c dθ−O(
1

m
) . (38)

Hence,

m−1∑
t=0

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c ≥

∑
√
m<t<m−

√
m

Pπ
(
At,πe1,...,ea ∩B

t,π
ea+1,...,ea+b

)
(1− t

m
)c

≥
(

1−O(
1√
m

)

) ∑
√
m<t<m−

√
m

fa,b+c(t)

≥
(

1−O(
1√
m

)

)m−1∑
t=0

fa,b+c(t)−O(
√
m)

≥
(
m−O(

√
m)
)∫ 1

θ=0

θa(1− θ)b+c dθ−O(
√
m)

= m

∫ 1

θ=0

θa(1− θ)b+c dθ−O(
√
m) ,



31

which finishes proof of Lemma 9 �

Proof of Lemma 10 The main idea is that each entry of the matrix Mt+
m−t
(n2)−t

M
(c)
t corresponds

to sum of all products of entries of the matrix Mt + m−t
(n2)−t

M
(c)
t that correspond to paths of length

r in Kn. Moreover the sum is dominated by those products that correspond to simple paths rather

than self intersecting paths. Below, we will show this formally.

By definition, for any non-zero (ij) entry of the matrix P′Gt we have:

(P′Gt)ij = exp

(
−

k∑
r=3

r−2∑
`=0

NGt,ij
r,` qr−1−`

t −
k∑
r=3

r−2∑
`=0

M
Gt,(ij)
r,` qr−1−`

t

)

where M
Gt,(ij)
r,` is the number of self intersecting cycles of length r in Kn that include (ij) and

exactly ` edges of Gt. Similarly to the argument used in Lemma 8 to prove an upper bound for

NGt,ij
r,` , we can show that

MGt,ij
r,` =O(nr−3−`+(k+3)`α) . (39)

There is one factor n less in the right hand side of Eq. (39) compared to the bound we showed

in Lemma 8 for NGt,ij
r,` and the reason is, due to self-intersection of the paths, there exist one less

degree of freedom. Therefore,

(P′Gt)ij = exp

(
−

k∑
r=3

r−2∑
`=0

N
Gt,(ij)
r,` qr−1−`

t −O
(
nk(k+3)α−2

))
.

For simplicity of the notation let DGt
ij = exp

(
−
∑k

r=3

∑r−2

`=0 N
Gt,(ij)
r,` qr−1−`

t

)
. Hence,

p′(ij|Gt) =
(P′Gt)ij

Z ′(Gt)

=
(P′Gt)ij∑

rs∈Q(Gt)
(P′Gt)rs

(40)

=
DGt
ij exp

(
−O

(
nk(k+3)α−2

))∑
rs∈Q(Gt)

DGt
rs exp (−O (nk(k+3)α−2))

(41)

≥
DGt
ij∑

rs∈Q(Gt)
DGt
rs

exp
(
−O

(
nk(k+3)α−2

))
which finishes the proof �

Proof of Corollary 1 Recall from §5 that F (G) is the number of edges in Kn that when added

to G a cycle of length at most k is created. Clearly, Q(G) =N −m−F (G). On the other hand, it

is clear that F (G)≤
∑k

r=3 |Cr,r−1|. Therefore, using Lemma 8(b), for all G in Hn,m,k

F (G) =O(n(k−1)(k+3)α+1) .
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Hence,

1− |Qk(G)|
EU|Qk(G)|

≤ 1− N −m−O(n(k−1)(k+3)α+1)

N −m
=
O(n(k−1)(k+3)α+1)

N −m
=O(n(k−1)(k+3)α−1) .

Similarly,

1− |Qk(G)|
EU|Qk(G)|

≥ 1− N −m
N −m−O(n(k−1)(k+3)α+1)

=−O(n(k−1)(k+3)α+1)

O(n2)
=−O(n(k−1)(k+3)α−1) .

Therefore, combining the above two equations and using Lemma 7, there is a constant c3 such that

PU

{∣∣∣∣1− |Qk(G)|
EU|Qk(G)|

∣∣∣∣< c3n
(k−1)(k+3)α−1

}
= 1−O(e−n

kα

) . (42)

Now, define the event A by

A=

{∣∣∣∣1− |Qk(G)|
EU|Qk(G)|

∣∣∣∣> c3n
(k−1)(k+3)α−1

}
.

From the definition of dTV and Theorem 1 we have

|PRG(A)−PU(A)| ≤ dTV (PRG,PU) =O(n−1/2+k(k+3)α) .

Therefore, combining this with Eq. (42),

PRG(A)≤ PU(A) +O(n−1/2+k(k+3)α) =O(e−n
kα

) +O(n−1/2+k(k+3)α) =O(n−1/2+k(k+3)α)

which finishes the proof �

Appendix B: Mathematical Notations

Notation Description

[n]: When n is a positive integer it denotes the set {1,2, . . . , n}.
Kn: Complete graph with vertex set [n].
O: For sequences {an}n≥1,{bn}n≥1 big O notation an =O(bn) means lim supn→∞ an/bn <∞.
o: For sequences {an}n≥1,{bn}n≥1 little O notation an = o(bn) means lim supn→∞ an/bn = 0.
(ij): An edge that connects node i to node j (i, j ∈ [n]) (in a graph G with vertices [n]).
n: Number of vertices of graphs considered in the paper.
m: Number of edges of most graphs in the paper.
N : Defined to be

(
n
2

)
.

m(G): Number edges of a graph G.
Gn,m: Set of all simple graphs with m edges and vertices [n].
Gn,p: Random graph model of simple graphs on [n] where each edge is present (independently) with probability p.
Pn,m: Uniform probability distribution over Gn,m.
Pn,p: Probability distribution obtained by random graph model Gn,p.
Gn,m,k: The subset of graphs in Gn,m with girth greater than k.

Hn,m,k: The set of graphs G in Gn,m,k with maximum degree of order O(n(k+3)α)
Gn,m,k(τ): Subset of graphs G in Gn,m,k where PRG(G)< (1− τ)PU(G).
PRG: Output distribution of RandGraph which is a distribution on Gn,m,k.
PU: Uniform distribution on Gn,m,k.
dTV (P,Q): Total variation distance between measures on X and is equal to sup{|P(A)−Q(A)| : A⊂X}.
Gt: Partially constructed graph in RandGraph after t steps.
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qt: Equals to (m− t)/(N − t).
θ: Equals to t/m.
π: A permutation of the edges of G where G∈Gn,m.
Gπt : The graph having [n] as vertex set and {π(1), . . . , π(t)} as edge set.
Eπ: Expectation with respect to a uniformly random permutation π.
Pπ: Probability with respect to a uniformly random permutation π.
γ: Notation used for cycles.
Q(Gt): The set of edges (ij) that do not belong to Gt and Gt ∪ (ij)∈Gn,t+1,k.
p(ij|Gt): For each (ij)∈Q(Gt), it is the probability of selecting (ij) in step t of RandGraph.

Ek(Gt, ij): Equals to
∑k
r=3

∑r−2
`=0 N

Gt,ij
r,` qr−1−`

t .

T: Execution tree of a sequential graph generation algorithm like RandGraph (see §4 for details).
πt: For a partially constructed graph Gt, it is an ordering (permutation) of its edges.
nk(Gt, πt): Number of cycles of length at most k in a random extension of of a pair (Gt, πt) in T.

NG,ij
r,` : Number of simple cycles in Kn that have length r, include (ij), and include exactly ` edges of G.

Z(G): Normalization constant in definition of p(ij|Gt) in Eq. (1).
F (Gπt ): The set of edges (ij) where Gπt ∪ (ij) has a cycle of length at most k.
Z0(G): Is equal to N − t−F (Gπt ).

S1(G): Equals to −
∑m−1
t=0 EπEk(Gπt , π(t+ 1)).

S2(G): Equals to 1
N

∑m−1
t=0 EπF (Gπt ).

S3(G): Equals to −
∑m−1
t=0 Eπ log

Z(Gπt )

Z0(G
π
t )

.

Cr: Set of all simple cycles of length r in Kn.
Cr,`(G): Cycles in Cr that include exactly ` edges of G.
γr,s: An element of Cr,`(G).
si(Cr,s): For each i= 1,2,3 denotes contribution of cycle Cr,s in Si(G).
Ak: The event that a random graph has girth greater than k.
degv(H): Induced degree of a note v in a subgraph H of a larger graph containing v.
∆(G): Maximum degree of graph G.
At,πe1,...,es : The event {∀i∈ [s] : ei ∈Gπt } when e1, . . . , es are edges of G.
Bt,πe1,...,es : The event {∀i∈ [s] : ei /∈Gπt } when e1, . . . , es are edges of G.
Ct,πe : The event {π(t+ 1) = e} for edge e in G.
Mt: Adjacency matrix of Gt.

M
(c)
t : Adjacency matrix of complement of Gt.

Qt: Adjacency matrix of all edges in Q(Gt).
A = B�C: For n×n matrices A,B,C it means that for all i, j ∈ [n]: aij = bijcij .

A = êxp(B): For n×n matrices A,B it means that for all i, j ∈ [n]: aij = ebij .

A = ŝign(B): For n×n matrices A,B it means that for all i, j ∈ [n]: aij = sign(bij).
Jn: It is the n by n matrix of all ones.

Table 1: Mathematical notations.
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