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Process flexibility is widely adopted as an effective strategy for responding to uncertain demand. Many

algorithms for constructing sparse flexibility designs with good theoretical guarantees have been developed

for balanced and symmetrical production systems. These systems assume that the number of plants equals

the number of products, that supplies have the same capacity, and that demands are independently and

identically distributed.

In this paper, we relax these assumptions and consider a general class of production systems. We con-

struct a simple flexibility design to fulfill (1− ε)-fraction of expected demand with high probability (w.h.p.)

where the average degree is O(ln(1/ε)). To motivate our construction, we first consider a natural weighted

probabilistic construction from Chou et al. (2011) where the degree of each node is proportional to its

expected capacity. However, this strategy is shown to be sub-optimal. To obtain an optimal construction,

we develop a simple yet effective thresholding scheme. The analysis of our approach extends the classical

analysis of expander graphs by overcoming several technical difficulties. Our approach may prove useful in

other applications that require expansion properties of graphs with non-uniform degree sequences.

Key words : flexible manufacturing; graph expanders; thresholding; weighted probabilistic construction

1. Introduction

Process flexibility (a.k.a., capacity pooling) is a successful operational strategy in man-

ufacturing industries to hedge against demand uncertainty. The classical work of Jordan

and Graves (1995) models a manufacturing process flexibility design as a bipartite graph

G= (U ∪V,E), where U denotes a set of m supply nodes (representing production plants)

and V denotes the set of n demand nodes (representing products demanded in the mar-

ket). Edge (u, v)∈E appears if node u can supply node v (or plant u can produce product
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Figure 1 Fulfilled demand ZG(s, d) as the value of maximum flow from the supply side to the demand side.

v). Node u ∈ U has a supply (i.e., production capability) characterized by the random

variable s(u) and node v ∈ V generates a random demand d(v).1 The task of designing

process flexibility concerns about the construction of the edge set E in G. Given a flexi-

bility design G, and realizations of supplies {s(u)}u∈U and demands {d(v)}v∈V , the total

fulfilled demand ZG(s, d) is the value of the maximum flow from supply to demand nodes

(see Figure 1). A production system has full flexibility if any plant can produce all of the

products (i.e., G is a complete bipartite graph). Although full flexibility can best fulfill

uncertain demand, it comes at the expense of drastically increased implementation and/or

operational costs. An ideal design strikes the right balance between these costs and ability

to meet uncertain demand. Suppliers typically prefer sparse designs, where each plant is

only capable of producing a small number of properly chosen products. In this paper, we

aim to construct the (asymptotically) sparsest design G such that the fulfilled demand can

almost match the total expected demand with high probability (w.h.p.).

Due to the importance of this problem in manufacturing, a number of papers tackle

this question by constructing sparse designs and analyzing their performances (see, e.g.,

Chou et al. (2010), Chou et al. (2011), Simchi-Levi and Wei (2012), Simchi-Levi and Wei

(2015), Deng and Shen (2013), Wang and Zhang (2015), Chen et al. (2015), Shi et al.

(2015), Tsitsiklis and Xu (2015), Bidkhori et al. (2016), Désir et al. (2016), and refer-

ences therein). Most papers study the special setting where (1) the production system2 is

1 Supply uncertainty is common in practice. For example, the random failure or shutdown will cause the supply to
be random.

2 We use production system to denote the set of supply and demand nodes and their associated supply and demand
random variables.
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balanced (the number of supply and demand nodes are equal, i.e., m= n) and (2) symmet-

rical (the random supplies s(u) share the same deterministic capacity or are identically

independently distributed (i.i.d.) and demands d(v) are i.i.d.. These assumptions facilitate

the construction of designs and corresponding theoretical analysis (e.g., popular chaining

designs for balanced systems) at the cost of realism. The number of products is typically

orders of magnitude larger than the number of plants. Plants typically differ in capacity

and demands for products can also differ significantly. Some recent papers tackle produc-

tion systems that are unbalanced and asymmetrical. For example, when the ratio between

each realized demand and its expectation is constant, the work by Chou et al. (2010) pro-

poses a probabilistic construction that achieves (1−ε)-optimality (w.r.t. the full flexibility)

in expectation with the average degree of O(1/ε). Chou et al. (2011) further develops

a weighted probabilistic construction (see the proof of Theorem 5) that links a supply

node with a demand node with a probability proportional to their expected capacities3.

This construction with average degree O(1/ε) achieves (1− ε)-optimality for all demand

scenarios.

Deng and Shen (2013) provided several design guidelines for unbalanced but symmetrical

systems based on extensive simulation studies. Bidkhori et al. (2016) derived a distribution-

free lower bound for a generalized chaining structure using the mean and partial expecta-

tion of the demand. Shi et al. (2015) considered a multi-period general production system

and proposed the “generalized chaining condition” to measure the effectiveness of a flex-

ibility design. However, the multi-period setting in Shi et al. (2015) assumes that the

unsatisfied demands are backlogged and is thus fundamentally different from our problem

where unsatisfied demand is lost. Tsitsiklis and Xu (2015) studied the flexibility design

problem for a multi-server queuing model and showed that, with limited flexibility, it is

possible to simultaneously achieve a large capacity region and an asymptotically vanishing

delay.

1.1. Research Goal

In this paper, we focus on the construction of an optimal flexibility design in a single-period

setting. In particular, for a general system, our goal is to construct a sparse flexibility

design G that is (1− ε)-optimal with high probability (w.h.p.).

3 For the ease of presentation, expected capacity refers to either expected supply or expected demand when the
context is clear.
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More specifically, let us denote the expectation of the random demand of v ∈ V and the

random supply u∈U by d̄(v) and s̄(u), respectively; that is, d̄(v) = Ed(v) and s̄(u) = Es(u).

We assume the expected total supply matches the expected total demand, i.e.,
∑

u∈U s̄(u) =∑
v∈V d̄(v). As the expected total supply and demand are the same, we normalize them to

be one by dividing each s̄(u) by
∑
s̄(u) and each d̄(v) by

∑
d̄(v). That is,

∑
u∈U s̄(u) =∑

v∈V d̄(v) = 1. This normalization step does not result in a loss of generality. As the

maximum flow is linear in the supply and demand vectors, the normalization step does

not change the ratio between maximum flow under a sparse flexibility design and the full

flexibility design. A design G is said to be (1− ε)-optimal w.h.p. when the fulfilled demand

matches at least (1− ε)-fraction of the expected total demand w.h.p. That is,

Pr
s(·),d(·)

[ZG(s, d)≥ 1− ε]≥ 1− ζ, (1)

for some small ε > 0 and ζ = O(n̄−C) with some universal constant C > 0.4 Here, we

define n̄= max(m,n). The randomness in (1) comes from the random supply vector s(·),
{s(u)}u∈U and demand vector d(·), {d(v)}v∈V .

Our research goal is for a wide class of production systems (characterized by Assumption

1 below in Section 2), and for any optimality parameter ε > 0, to construct a design

G= (U ∪V,E) with an as small as possible average degree that is (1− ε)-optimal w.h.p.

1.2. Main Results – Optimal Construction and Technical Contributions

Chou et al. (2011) considered a weighted probabilistic construction (WPC) that links a

pair of nodes (u, v) with probability r(u, v)∝ s̄(u)d̄(v). Here, the symbol “∝” means that

r(u, v)/(s̄(u)d̄(v)) is a constant for any pair of (u, v). The idea behind this construction is

intuitive: a pair of nodes (u, v) with either a large expected supply s̄(u) or a large expected

demand d̄(v) (or both) should have a higher probability of being linked. In a balanced and

symmetrical system, the WPC naturally reduces to a uniform probabilistic construction.

By choosing the linkage probability so that each node has an average degree of O(ln(1/ε)),

Chen et al. (2015) showed that the uniform probabilistic construction achieves (1 − ε)-
optimality w.h.p. Moreover, such a construction is asymptotically optimal, which means

it has the fewest possible edges for achieving (1− ε)-optimality w.h.p. up to a constant

4 We note that the term w.h.p. requires that the event considered (e.g., ZG(s, d) ≥ 1 − ε) holds not only a with
probability tending to 1, but also at the rate of 1− n̄−Ω(1) (see the definition of “w.h.p.” in Definition of 1.1.2. in Tao
(2012) and Section 1.3 for the asymptotic notations O(·), Ω(·), Θ(·), o(·), and ω(·)).
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factor. Motivated by this success story for symmetrical and balanced systems, a question

naturally arises: for a general system, can the WPC still achieve (1− ε)-optimality w.h.p.

with an average degree of O(ln(1/ε))?

However, this question has a negative answer. When using the WPC, the expected degree

of a node u ∈ U is proportional to s̄(u) and that of a node v ∈ V is proportional to d̄(v).

In an asymmetrical system with heterogeneous expected supplies and demands, if s̄(u) or

d̄(v) are small, node u or v may be isolated under the WPC. If so, the supply of those

isolated u or demand at those isolated v can never be fulfilled. With this intuition in mind,

in Theorem 1 and Section 3.1, we construct an instance where the WPC with the average

degree O(ln(1/ε)) leads to the isolation of many nodes with small expected capacities,

and thus fails to achieve (1− ε)-optimality w.h.p. For this, the WPC requires the average

degree to be at least Ω(1/ε) to achieve (1− ε)-optimality w.h.p.

A natural fix for the WPC would be forcing every node to have a degree of at least one.

This simple fix removes isolated nodes while the degrees are still “roughly proportional” to

the node mean capacities. However, as we argue in the final paragraph of Section 3.1 below,

in some cases, nodes with small capacities (“small nodes” for short) may need degrees

almost as high as those of nodes with large mean capacities (“large nodes”).

In sum, we realize the following important facts, which make constructing an optimal

flexibility design for a general system fundamentally different from that for a balanced and

symmetrical one:

1. In a general system, the degrees of the nodes should not be exactly proportional to

their mean capacities.

2. For “small nodes”, the ratios between their degrees and the total degree should be

higher than those between the mean and total capacities.

Based on these two insights, we provide an optimal flexibility design construction that still

benefits from the simplicity of the WPC.

Our main contribution is two-fold. First, in terms of flexibility designs, we introduce a

new thresholding scheme. We treat nodes with capacities below the threshold as if they

were just on the threshold, and then apply the WPC. We call this method the thresholded

probabilistic construction (TPC). More specifically, we define the importance factor for a

supply node u, q(u)∝max{s̄(u), c/m}, and the importance factor for a demand node v,

p(v) ∝max
{
d̄(v), c/n

}
, for some appropriately chosen constant c. Then, a pair of nodes
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(u, v) is linked with a probability r(u, v)∝ q(u)p(v). It is clear that for a symmetrical system

with s̄(u) = 1
m

and d̄(v) = 1
n
, the TPC reduces to the WPC. Most of our technical effort

is to show the optimality of the TPC for general production systems, that is, it requires

only the average degree of O(ln(1/ε)) to achieve (1− ε)-optimality w.h.p. As argued in

Section 3.1 below, the “thresholding” step in our TPC solution is essential for our optimal

construction. From a practical viewpoint, when the mean supplies for different plants (and

mean demands for different products) are close to each other, the performance of the TPC

and the WPC are similar. The more heterogeneous are the mean supplies and demands,

the better the empirical performance of the TPC as compared with the WPC. Please refer

to the simulation studies in Section 3.3 in the main text and Section EC.7 in the electronic

companion (e-companion) for more details.

A second technical contribution is that our analysis provides several new techniques for

establishing generalized graph expansion properties. These may be useful for solving other

problems that require expansion properties of graphs with non-uniform degree sequences.

In particular, we first reduce the proof of the (1− ε)-optimality w.h.p. to a few general-

ized expansion properties of graphs constructed using the TPC (see Section 4.1). These

generalized expansion properties extend the notion of “probabilistic expanders” in Chen

et al. (2015). In fact, they can be viewed as a continuous generalization of the probabilistic

expansion property, which is based on the cardinality of a set of nodes. In the symmetrical

and balanced setting, to establish expansion properties from the WPC, the proof in Chen

et al. (2015) basically proceeds by two steps. First, by applying existing concentration

inequalities, it shows that the probability of an arbitrary set of nodes not expanding (i.e.,

not having many neighbors) is as small as an inverse exponential function of the number

of nodes. Second, by applying a union bound over all (exponentially many) of the sets, it

shows that the probability that a non-expanding set exists remains very small. Therefore,

the random construction via the WPC has the desired expansion property w.h.p. However,

such a proof cannot work for asymmetrical and balanced systems due to the following

technical difficulties.

When supply and demand are heterogeneous, direct applications of existing concentra-

tion inequalities (e.g., Bernstein or Chernoff inequalities) provides loose upper bounds on

the probability that an arbitrary set does not expand. To resolve this problem, we prove a
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new concentration result via the exponential moment method and exploring the property

of the moment generating function (see Lemma 7).

Moreover, the probability that the neighboring set has a low total capacity (i.e., the set

fails to expand) may not be as small as an inverse exponential function of the number

of nodes. Thus, a direct union bound will fail. This happens because a set of nodes may

connect to a small number of nodes with high expected capacities rather than a great

number of nodes with small expected capacities. While the expected total capacities are

roughly the same, a connection to fewer nodes does not guarantee the desired concentration

rate. Let us look closely at this problem. When the realization of the supply or demand of

a large node u does not reach its expected capacity, many sets connected to u do not have

the desired generalized expansion property. When the union bound is applied näıvely, the

probability that u fails to reach its expected capacity (i.e., the intersection of the events

that sets connected to u fail to expand) is counted exponentially many times, and we

cannot afford such double counting. To address this challenge, we carefully rearrange the

events in a hierarchical way so that they do not overlap too much, which leads to a much

tighter bound when applying the union bound (see Section 5.2 for details).

1.3. Organization and notations

The rest of this paper is organized as follows. In Section 2, we introduce our assumptions

about the general production systems considered and additional necessary background. In

Section 3, we provide an optimal design. In particular, we first show that the simple and

intuitive WPC is sub-optimal in Section 3.1. Then, in Section 3.2, we introduce the thresh-

olding idea to the WPC and propose our optimal construction: the TPC. Our analysis of

the performance of the TPC is rather technical, so we first outline the proof in Section 4.

In particular, we provide some generalized graph expansion properties that serve as suffi-

cient conditions of the desired (1− ε)-optimality of the design. We provide further proofs

of these generalized graph expansion properties in Section 5. The proofs of other results

and technical lemmas, in addition to some concentration inequalities are provided in the

e-companion.

Throughout the paper, we heavily use the asymptotic notations O(·), Ω(·), Θ(·), o(·),

and ω(·). Roughly speaking, f(n) = O(g(n)) means that f is bounded above by g (up

to constant factor) asymptotically; f(n) = Ω(g(n)) means that f is bounded below by g
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asymptotically; f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)); f(n) =

o(g(n)) means that f is dominated by g asymptotically; and f(n) = ω(g(n)) means that

f dominates g asymptotically. Please also see Chapter 3.1 in Cormen et al. (2009) or

https://en.wikipedia.org/wiki/Big_O_notation for rigorous definitions. In addition,

we use the standard notation “poly logn” to denote some polynomial in log(n); similarly,

“polyn” means some polynomial in n. In this paper, one should interpret the asymptotic

notation on multiple variables f(ε,n,m) =O(g(ε,n,m)) as follows: there exists a universal

constant C so that f is bounded above by C · g for sufficiently small ε and for every n

and m satisfying the assumptions (see Assumption 1 for details). Moreover, when we write

ζ = n̄−Ω(1), it means there exists some absolute constant C > 0 such that ζ ≤ n̄−C for

sufficiently small ε and all n and m as required by the assumptions.

Throughout the paper, we use c0, c1, c2, etc to denote absolute constants that do not

depend on any other parameters. We further provide the computed values for all of these

constants. To ease the understanding of the idea behind the proof, we suggest readers

simply ignore the values of these constants when reading the proof.

2. Assumptions and Background

In this section, we first describe our assumptions about the general production systems.

Let us recall that d : V → R≥0 and s : U → R≥0 denote the (possibly) random demand

and supply function, respectively. The total expected supply and demand are normalized

to one, i.e.,
∑

u∈U s̄(u) =
∑

v∈V d̄(v) = 1. Throughout this paper, we consider a general

production system in which random supply and demand functions satisfy the following

conditions (note that n̄= max(m,n)).

Assumption 1. 1. κ-bounded variation with κ≥ 1: ∀ u∈U,v ∈ V , 0≤ s(u)≤ κs̄(u) and

0≤ d(v)≤ κd̄(v).

2. Upper bounds on expected supply and demand: ∀u∈U,v ∈ V, s̄(u)≤ cε2

κ3 ln n̄
, d̄(v)≤ cε2

κ3 ln n̄

for some constant c < 1.

3. The random supply variables s(u) for u ∈ U are negatively associated and random

demand variables d(v) for v ∈ V are negatively associated.

We now comment on our assumptions, which allows both random supply and non-i.i.d.

supply and demand. The first condition, which assumes that both s(u) and d(v) have a

https://en.wikipedia.org/wiki/Big_O_notation
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bounded variation of κ, is a standard assumption in the literature (see, e.g., Chou et al.

(2011), Chen et al. (2015)).

The second assumption on the expected supply and demand is rather weak, which allows

highly heterogeneous supplies and demands. Take the demand side as an example. As∑
v∈V d̄(v) = 1 in a symmetrical system, we would have d̄(v) = 1

n
for each v ∈ V . In contrast,

our condition on d̄(v) (i.e., d̄(v) = O
(

ε2

ln n̄

)
) is exponentially looser than the symmetric

case. Moreover, our upper bounds on s̄(u) and d̄(v) are necessary, as otherwise even the

full flexibility system could not achieve (1− ε)-optimality w.h.p. To see this, suppose that

n = m and the demands d(v) are i.i.d. over the first o
(

lnn
ε2

)
demand nodes and d(v) = 0

for the rest nodes. This implies that d̄(v) = ω
(

ε2

lnn

)
for the first o

(
lnn
ε2

)
demand nodes.

Based on the standard anti-concentration results, it is easy to see that,
∑

v∈V d(v) will

not concentrate to one w.h.p. (although its expectation
∑

v∈V d̄(v) = 1). In this case, even

a fully flexible system can not guarantee that (1 − ε) fraction of the total demand will

be satisfied w.h.p. On the other hand, from a practical perspective, if any node has an

excessively large expected mean, we can simply add all of the edges to this node, which

does not significantly increase the average degree.

The third assumption relaxes the independence condition. The negative association is a

common assumption for modeling the correlation structure of multivariate distributions,

which subsumes the independence as a special case and has a wide range of applica-

tions (see, e.g., Shaked and Shanthikumar (2007), Dubhashi and Panconesi (2009)). Let

us recall the definition of negatively associated random variables. For n random variables

X1, . . . ,Xn, they are said to be negatively associated if for every pair of disjoint subsets A1

and A2 of {1, . . . , n}, Cov[f(Xi, i ∈A1), g(Xj, j ∈A2)]≤ 0 for all non-decreasing functions

f and g. Negatively associated multivariate distributions have many interesting properties

(Joag-Dev and Proschan 1983). For example, the conditional distribution of n independent

random variables X1, . . . ,Xn given its sum
∑n

i=1Xi is negatively associated (Theorem 2.8

in Joag-Dev and Proschan (1983)). This property makes negative association a kind of

realistic assumption for modeling random supplies and demands (e.g., considering the case

that each demand node receives its own demand independently but the total demand is pre-

determined). We also note that if the supply and demand variables are fully independent,

then we do not need specialized concentration inequalities for negatively associated ran-

dom variables (see Section EC.6 in the e-companion). Standard concentration inequalities

for independent variables are sufficient for our purpose.
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We deal with not only heterogeneous supplies and demands, but also unbalanced systems

where the number of supply nodes m can be significantly different from the number of

demand nodes n. In fact, item 2 of Assumption 1 implies the following relation between m

and n:

Assumption 2 (Implied by Assumption 1).
min{n,m}

ln n̄
≥ κ3

cε2
.

Here, κ and c are the constants in Assumption 1. To see this implication, based on the

normalization of the expected total supply and demand, there is a supply node u∈U with

s̄(u) ≥ 1
m

and a demand node v ∈ V with d̄(v) ≥ 1
n
. Based on item 2 of Assumption 1,

we have 1
m
≤ s̄(u)≤ cε2

κ3 ln n̄
and 1

n
≤ d̄(v)≤ cε2

κ3 ln n̄
, which further implies Assumption 2. We

also note that this assumption is not restrictive, as the gap between n and m can still be

exponentially large (e.g., n= ec
′m for some c′ < cε2

κ3 ).

In addition to the assumptions about production systems, we introduce some necessary

background and notations for our theoretical development. For any subset L ⊆ U and

K ⊆ V , we define

s(L),
∑
u∈L

s(u), d(K),
∑
v∈K

d(v),

and

s̄(L),Es(L) =
∑
u∈L

Es(u) =
∑
u∈L

s̄(u), d̄(K),Ed(K) =
∑
v∈K

Ed(v) =
∑
v∈K

d̄(v).

From the normalization of the expected total supply and demand, we have s̄(U) = d̄(V ) = 1.

Furthermore, for each L⊆U , we use Lc ,U\L to denote the complement of L with respect

to U . With a slight abuse of notation, for each K ⊆ V , Kc , V \K. We have s̄(L)+ s̄(Lc) = 1

and d̄(K) + d̄(Kc) = 1 for any L⊆U and K ⊆ V .

Given an undirected graph G and a subset K of the vertices of G, let ΓG(K) denote

the neighborhood of K. When the underlying graph G is clear from the context, we omit

the subscript G in ΓG(K). Based on the classical max-flow min-cut theorem, the fulfilled

demand with the realized supplies {s(u)}u∈U and demands {d(v)}v∈V can be written as,

ZG(s, d) = min
L⊆U

∑
u∈Lc

s(u) +
∑
v∈Γ(L)

d(v)

= min
L⊆U
{s(Lc) + d(Γ(L))} . (2)

Based on (2), the goal of (1 − ε)-optimality w.h.p. in (1) can be equivalently stated as

follow: with a probability of at least 1− ζ (with ζ = n̄−Ω(1)), s(Lc)+d(Γ(L))≥ 1− ε for any

L⊆U .
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We further show a simple fact: under Assumption 1, the realized total supply s(U) and

demand d(V ) concentrate to 1.

Lemma 1. Under Assumption 1, with a high probability over s(·) and d(·),

1− ε≤ s(U)≤ 1 + ε, and 1− ε≤ d(V )≤ 1 + ε. (3)

The proof of Lemma 1 is a direct consequence of the Bernstein’s inequality. (See its proof

in Section EC.1 in the e-companion.) From now on, for simplicity, we assume that (3)

holds. More specifically, we condition our result on the event that (3) holds, which happens

w.h.p. based on Lemma 1.

Lemma 1 also suggests that the goal of (1− ε)-optimality is achievable at least by the

full flexibility design under Assumption 1. To see this, note that the maximum flow of

a complete bipartite graph is the minimum of the total supply and l demand, that is,

ZF (s, d) = min{s(U), d(V )} (where we let F denote the design with full flexibility.). Then,

based on Lemma 1 and by applying the union bound, we have w.h.p.:

1− ε≤ZF (s, d) = min{s(U), d(V )} ≤ 1 + ε. (4)

We note that our optimality criterion in (1) is slightly different from the common (1−ε)-

optimality criterion in the literature: ZG(s, d) ≥ (1− ε)ZF (s, d). However, based on (4),

we have 1− ε ≤ ZF (s, d) ≤ 1 + ε w.h.p., and thus two optimality criteria are essentially

equivalent. We choose the optimality criterion in (1) mainly for the ease of presentation.

3. Construction

The high-level framework of our thresholding probabilistic construction (TPC) is presented

as follows. We associate a non-negative value q(u) with each supply node u∈U and a non-

negative value p(v) with each demand node v ∈ V , which represents their importance. The

importance of the pair (u, v) is defined as q(u)p(v). We connect (u, v) with a probability

proportional to the importance, that is, with a probability r(u, v) = min{γn̄q(u)p(v),1}.

The normalization factor γn̄ is chosen to ensure that the resulting random graph achieves

(1− ε) optimality w.h.p. Under this framework, the key challenge is determining how to

choose proper importance functions q(u) and p(v). We first provide a concrete example to

show that a natural choice of importance functions in the WPC, that is, q(u) = s̄(u) and

p(v) = d̄(v), would fail.
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3.1. Sub-optimality of the weighted probabilistic construction

In this subsection, we study the weighted probabilistic construction (WPC), where q(u) =

s̄(u) and p(v) = d̄(v). We prove the following theorem, which shows that the WPC is a

sub-optimal flexibility design.

Theorem 1. For any ε ∈ (0,1) and any α ∈
(

4ε, 1
ln(1/ε)

)
, there is a family of balanced

systems (n=m and n is an even number for simplicity) such that for each system in the

family, the WPC method needs Ω(n/α) edges to achieve (1− ε)-optimality w.h.p.

Proof. We first construct the system for every even integer n. The supplies are deter-

ministic, i.e., s(u) = s̄(u) is a constant for each u ∈U . The supply nodes are not uniform,

and can be split into two equal-sized subsets U1 and U2, each with n
2

nodes. We set s̄(u) =

2−α
n

for each u ∈ U1 and set s̄(u) = α
n

for each u ∈ U2. The demands are i.i.d. following a

two-point distribution:

d(v) =

 0 with probability 1/2

2d̄(v) with probability 1/2
, 5

with d̄(v) = 1
n

for every v ∈ V . It is clear Assumption 1 holds for this instance.

The probability of connecting u and v by an edge in the WPC is

γns̄(u)d̄(v) =

γ(2−α)n−1 if u∈U1

γαn−1 if u∈U2

,

and the expected number of edges of the construction is∑
u∈U,v∈V

γns̄(u)d̄(v) = γns̄(U)d̄(V ) = γn.

We now argue that we need γ = Ω( 1
α
) to achieve (1−ε)-optimality, making the total number

of edges Ω(n/α). To see this, let us suppose the contrary. If γ < 1
4α

, the expected number

of edges incident to U2 is γαn−1 · n2/2 < n/8. Therefore, by Markov inequality, with a

probability of at least 1
2

there will be fewer than n/4 edges incident to U2, leaving more

than n/4 nodes in U2 disconnected from every demand node. All the disconnected supply

nodes in U2 cannot be consumed. Therefore, more than (n/4) · s̄(u)|u∈U2 = (n/4)αn−1 > ε

supply cannot be consumed, and thus (1− ε)-optimality cannot be achieved. 2

5 Note that one can make small modifications to this construction so that the factor 2 before d̄(v) becomes an arbitrary
constant that is strictly greater than 1.
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However, if we connect every u∈U1∪U2 to 100 ln(1/ε) random nodes in V , a straightfor-

ward adaptation of the analysis in Chen et al. (2015) shows that the constructed flexibility

design achieves (1−ε)-optimality w.h.p. This design uses only O(n ln(1/ε)) edges, rendering

the WPC with the importance functions q(u) = s̄(u) and p(v) = d̄(v) sub-optimal.

Remark 1. As long as α= o
(

1
ln(1/ε)

)
, Theorem 1 states that the WPC needs ω(n ln(1/ε))

edges to achieve (1− ε)-optimality w.h.p. For example, when α=
√
ε, the WPC requires

Ω(n/
√
ε) edges to achieve (1− ε)-optimality w.h.p. It is worthwhile to note that the condi-

tion on α for the failure of the WPC does not require some supplies to be extremely small,

which implies that the failure scenario is not unrealistic. For example, when ε= 0.01 (i.e.,

the goal is to achieve 99% of the maximum flow of the full flexibility) and α=
√
ε= 0.1,

the two levels of (normalized) supplies are 1.9/n and 0.1/n, respectively, according to the

proof of Theorem 1. In this failure scenario, small supplies are not negligible as compared

with large supplies. Our experimental result shows that the TPC improves significantly

over the WPC in this case (see Figure 2(a)).

Furthermore, although the nodes in U2 have much less capacity than the nodes in U1,

their degrees should be as high as Ω(ln(1/ε)). For exemplary purposes, let us fix α=
√
ε,

and show that at least half of the nodes in U2 should have a degree greater than ln(1/ε)/8.

Suppose for contradiction that more than half of the nodes in U2 have at most ln(1/ε)/8

neighbors in V . For each of such nodes in U2, with a probability 2− ln(1/ε)/8 > ε1/4, none of its

neighbor has positive demand. Therefore, in expectation, there are at least ε1/4 · |U2|
2

= ε1/4n
4

nodes in U2 with no positive-demand neighbor, and their supply cannot be consumed.

Therefore, we lose ε1/4n
4
· α
n

= ε3/4

4
supply in expectation, and thus cannot achieve (1− ε)-

optimality w.h.p. (for small ε).

3.2. Thresholded probabilistic construction

In this section, we present the proposed optimal construction, the TPC, based on a novel

choice of the importance functions.

The example discussed in Section 3.1 suggests that the importance of a node should be

significantly higher than its mean capacity when its mean capacity is very small. Inspired

by this implication, we raise the importance of a node if its mean capacity is less than a
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threshold of O( 1
m

) (for a supply node) or O( 1
n
) (for a demand node). Formally, for each

supply node u∈U and each demand node v ∈ V , we define the importance functions

q(u) =
1

nq
max

{
s̄(u),

1

5m

}
and p(v) =

1

np
max

{
d̄(v),

1

5n

}
, (5)

where np and nq are normalization factors, so we have
∑

u∈U q(u) = 1 and
∑

v∈V p(v) = 1,

that is, nq =
∑

u∈U max
{
s̄(u), 1

5m

}
and np =

∑
v∈V max

{
d̄(v), 1

5n

}
.

For notational convenience, we also extend the definition of p(·) and q(·) to the domain

of all subsets:

q(L),
∑
u∈L

q(u), ∀L⊆U and p(K) :=
∑
v∈K

p(v), ∀K ⊆ V.

It is worth noting that p(·) and q(·) are deterministic functions on subsets of U and V ,

respectively, which are lower-bounded by s̄(·) and d̄(·) up to a constant factor, respectively.

Moreover, p(V ) and q(U) are normalized at 1. We summarize the properties of p and q in

the following proposition:

Proposition 1. Let us define the constant cL = 5/6. We have np ≤ 1
cL

and nq ≤ 1
cL

, so

p(v)≥ cL · d̄(v) and q(u)≥ cL · s̄(v) ∀u∈U,v ∈ V.

Moreover, p(V ) = q(U) = 1.

Proof. Based on the definition of np, we have np ≤
∑

v∈V d̄(v) + n · 1
5κn

= 1 + 1
5κ
≤ 6

5
.

The upper bound for nq can be established in a similar way. That p(V ) = q(U) = 1 follows

straightforwardly from the normalization. 2

We formally describe our design as follows. We use the following random process to

generate a bipartite graph G(U ∪ V,E), which serves as the process flexibility design. We

further denote the corresponding distribution of G by G.

Design from TPC: For any pair of nodes (u, v) ∈ U × V , we include (u, v) into the

edge set E of G with the probability

r(u, v) = min{γn̄q(u)p(v),1} (6)

with γ = c0κ
3 ln(eκ) ln(4κ

ε
), where c0 is an absolute constant.
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Theoretically, the constant c0 (in γ) can be set to 4376 according to our proof. However,

constants independent of n̄ and ε are not our main focus. The number of edges used in the

TPC is small in expectation and concentrates to its expectation. In fact, as shown in the

next proposition, the constructed design has an average degree of O(ln(1/ε)).

Proposition 2. For a design G= (U ∪V,E)∼G from the TPC,

E|E|=Oκ (n̄ ln (1/ε)) ,

where Oκ(·) hides a factor that depends only on the constant κ. Furthermore, we have

|E| ≤ 2E|E| w.h.p.

Proof of Proposition 2. According to the TPC and the choice of γ, the expected number

of edges is bounded from the preceding by

E|E|=
∑
u∈U

∑
v∈V

r(u, v)≤ γn̄=Oκ (n̄ ln (1/ε)) . (7)

Furthermore, based on the standard Chernoff bound, Pr [|E|< 2E|E|]≥ 1− exp
(
−E|E|

3

)
=

1− n̄−ω(1). 2

Remark 2. Our TPC can be viewed as a combination of the WPC and uniform probabilis-

tic construction (UPC) as introduced in Chen et al. (2015) for balanced and symmetrical

systems. More precisely, for properly chosen edge densities, we apply both the WPC and

UPC. The union of two constructions receives a guarantee similar to that of our TPC.

3.3. Simulation study for the effectiveness of the TPC

Before we theoretically prove that the TPC is an optimal construction in the next section,

let us provide some simulation studies to illustrate its effectiveness as compared with the

classical WPC. Let us first consider the setting in the proof of Theorem 1, where the

(normalized) deterministic supplies take the value 2−α
n

for the first half of the nodes and

the value α
n

for the remaining half. The demands are i.i.d. with a two-point distribution

and a mean of 1
n
. We choose different values of α ∈ {0.1,0.2,0.3,0.4}. For each γ (i.e.,

the average degree), we construct 100 random designs using the TPC and 100 random

designs using the WPC. We also generate 1,000 demand realizations. For each design

G and realization of the demand d, we compute the ratio between the maximum flow
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of G and that of the full flexibility F : ZG(s,d)
ZF (s,d)

. In the TPC, we use a slightly different

threshold from (5) for better empirical performance, that is, q(u) ∝ max
{
s̄(u), c

m

}
and

p(v) ∝max
{
d̄(v), c

n

}
with c = 0.5. We note that the constant in the threshold does not

affect our theoretical analysis, and we use the constant c := 1
5

in (5) only for ease of

calculation in some concentration inequalities. In practice, when using a large constant

c, the number of edges also increases by a constant factor. However, a smaller c carries

the risk of missing some random supplies/demands with small mean capacities. Thus, the

threshold parameter c controls the robustness vs. the scarcity. In practical scenarios, if

some prior knowledge of supply/demand distributions exists, then the threshold parameter

c can be tuned by offline simulations.

We set n = m = 100 in the experiment and present the averaged ratios in Figure 2.

In Figure 2, the TPC clearly achieves improved performance over the WPC, especially

when α is small (i.e., the supplies are more heterogeneous). With the averaged degree γ

of about 10, the TPC achieves more than 99% of the maximum flow of the full flexibility.

This simulation result matches the intuition in the proof of Theorem 1, which shows that

the nodes with small mean capacities need more edges. To see that, we plot two random

designs using the WPC and TPC. Due to the thresholding scheme in the TPC, the number

of edges connected to small supply nodes (i.e., the second half of the supply nodes) in the

TPC is much larger than that in the WPC. In particular, in the TPC design in Figure 3(b),

about 20% of the edges are connected to small supply nodes; while in the WPC design in

Figure 3(a), only about 10% of the edges are connected to small supply nodes.

For a wide range of heterogeneous supply and demand models, one can easily observe the

improvement of the TPC over the WPC. In Section EC.7 in the e-companion, we present

other simulation studies when the mean capacities are drawn from a uniform distribution

or power laws. In all of these settings, our experiments show that the TPC outperforms

the WPC consistently and that the superiority becomes more noticeable when the mean

capacities are more heterogeneous. For mean supplies/demands with a higher degree of

heterogeneity, the thresholding scheme in the TPC is more effective, making more edges

connected to small capacity nodes.
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(c) α= 0.3
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(d) α= 0.4

Figure 2 The comparison between the WPC and TPC. The x-axis is the average degree γ, which varies from 5

to 30. The y-axis is the averaged ratios between the maximum flow of the design G and that of the full

flexibility F (the larger the better). Each ratio plotted in the graph is averaged over 100 random graphs

for a given γ and 1,000 demand realizations.

4. Main Theoretical Result — Optimality of the TPC

In this section, we first introduce our main theorem (Theorem 2) on the optimality of the

TPC construction introduced in Section 3.2, and reduce the proof of the optimality to a

few generalized graph expansion properties of the obtained random design.

Theorem 2 (Main). Assume that ε < 1/3. With a high probability over the choice of

G= (U ∪V,E)∼G, we have

1. The number of edges in E is Oκ(n̄ ln(1/ε)), where n̄= max{m,n}, and Oκ(·) hides

a factor that depends only on the constant κ;
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(a) WPC design (b) TPC design

Figure 3 The designs using the WPC and TPC when γ = 5 and α= 0.2

2. G achieves (1− 2ε) optimality w.h.p.

We note that the (1−2ε) optimality (instead of (1−ε) optimality) of G merely facilitates

presentation of the proof and one can always introduce ε′ = 2ε. According to the lower

bound in Chen et al. (2015), the proposed TPC leads to an optimal design (i.e., the most

sparse design up to a constant factor) to achieve (1− ε) optimality w.h.p. In particular,

Corollary 2 in Chen et al. (2015) shows that in a balanced and symmetrical system, the

number of edges must be at least Ω(n̄ ln(1/ε)) to achieve (1− ε) optimality w.h.p. As we

consider a more general system that subsumes a balanced and symmetrical system as a

special case, the lower bound in Chen et al. (2015) automatically serves as a lower bound

on the requirement of the number of edges to achieve (1− ε) optimality w.h.p.

The first statement of Theorem 2 follows directly from Proposition 2 and the constant

depending on κ that hides in Oκ(·) is from (7). The key is to prove the second statement

on the optimality, that is, w.h.p. over the choice of G∼G, G achieves (1− 2ε) optimality

w.h.p. over the randomness of s(·) and d(·). This claim can be mathematically stated as

Pr
G∼G

[
Pr

s(·),d(·)
(ZG(s, d)≥ 1− 2ε)≥ 1− ζ

]
≥ 1− ζ, (8)

for some ζ = n̄−Ω(1).

Using a cut condition from the max-flow min-cut theorem (see Lemma 2), we are able

to reduce the second goal of Theorem 2 to a pair of generalized expansion properties;

see Theorem 3, Lemma 3, and Lemma 4 in Section 4.1. We then show that the obtained
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random graph G using the TPC will satisfy these generalized expansion properties w.h.p.

This high-level idea is similar to the approaches in Chou et al. (2010, 2011) and Chen et al.

(2015). However, the novel part of the proof is to show that the generalized expansion

properties are satisfied w.h.p. As mentioned in the introduction, due to the heterogeneous

supplies and demands, existing concentration inequalities will lead to loose upper bounds

and a direct use of union bound will fail. We overcome these difficulties by developing new

technical tools in Section 5.

4.1. From (1− ε) optimality to generalized graph expansion properties

In this section, we reduce the proof of Theorem 2 to a set of generalized expansion prop-

erties. To this end, we first state the following lemma, which is a direct application of the

max-flow min-cut theorem in (2).

Lemma 2. Given a realization of the supply vector s(·) and demand vector d(·), the fulfilled

demand (i.e., the maximum flow) is at least (1− 2ε) if and only if for any L⊆U ,

d(Γ(L)) + s(Lc)≥ 1− 2ε. (9)

Based on Lemma 2, the second statement of Theorem 2 reduces to prove that (9) holds

w.h.p. over the choice of G and the realizations of s(·) and d(·).
Now let us place a condition on the event that the equation (3) holds (i.e., 1−ε≤ s(U)≤

1+ε and 1−ε≤ d(V )≤ 1+ε), which happens w.h.p. based on Lemma 1. For a fixed L⊆U ,

to establish (9), it suffices to show that

d(Γ(L))≥ s(L)− ε, (10)

To see this, we note that (10) implies d(Γ(L))+s(Lc)≥ s(L)+s(Lc)−ε= s(U)−ε≥ 1−2ε,

which gives (9).

Meanwhile, let K = V \Γ(L). To establish (9), it also suffices to show that

s(Γ(K))≥ d(K)− ε, (11)

as

s(Γ(K))≥ d(K)− ε⇒ s(Γ(V \Γ(L)))≥ d(V )− d(Γ(L))− ε (based on the definition of K)

⇒ d(Γ(L)) + s(Lc)≥ d(V )− ε (as Lc ⊇ Γ(V \Γ(L)))

⇒ d(Γ(L)) + s(Lc)≥ 1− 2ε. (based on (3))
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In summary, to establish (9), we can choose to prove either of (10) and (11), whichever

is easier. In other words, to prove the second statement of Theorem 2, it suffices to prove

the following theorem.

Theorem 3. With high probability over the choice of graph G and supply and demand

functions, for any subset L⊆U , either (10) or (11) holds.

The formal proof of the reduction from Theorem 2 to Theorem 3 is provided in Section

EC.2 in the e-companion. We now explain that (10) and (11) are generalizations of classical

graph expansion properties (see, e.g., Hoory et al. (2006) and the reference therein) and the

probabilistic expansion property proposed in Chen et al. (2015). For ease of illustration,

we temporarily drop the normalization assumption about s(·) and d(·) in the following

discussion. Recall that given a bipartite graph G= (U ∪V,E), the expansion property from

U to V says that for any not-too-large set L⊆ U , the size of its neighbor will be at least

λ|L| for some constant λ, that is, |ΓG(L)| ≥ λ|L|. One can similarly define the expansion

property from V to U . In (10) and (11), we obtain similar expansion criteria when s(·) and

d(·) are constant functions. For example, if s(·) is set to a constant–1 function and d(·) is set

to a constant–1
2

function, then (10) is equivalent to |Γ(L)| ≥ 2|L|−2ε, which corresponds to

λ= 2 in the expansion property if we ignore the −2ε term. When d(·) is set to the constant–

1 function and each s(u) is an independent Bernoulli random variable such that s(u) = 0

with a probability of 1
2

and s(u) = 2 with a probability of 1
2
, we define the random set

T = {u∈U : s(u) = 2}. We observe that (10) is equivalent to ∀L⊆U, |Γ(L)| ≥ 2|L∩T |− ε.

This condition is further equivalent to

∀L′ ⊆ T, |Γ(L′)| ≥ 2|L′| − ε, (12)

noting that |Γ(L)| ≥ |Γ(L∩ T )| for all L⊂ U . The property that (12) holds for a random

set T w.h.p. is essentially the probabilistic expansion property introduced in Chen et al.

(2015). A similar comparison can be made for (11). As s(·) and d(·) considered in this

paper are general continuous random functions, the properties (10) and (11) can be viewed

as generalizations of the probabilistic expansion property in Chen et al. (2015).

To prove Theorem 3, we further reduce the expansion properties in (10) and (11) to the

expansion properties involving the sampling probabilities p(·) and q(·) defined in (5). In

particular, we prove Theorem 3 by introducing the following two lemmas.
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Lemma 3. With high probability over the choice of G and the supply and demand functions

s(·) and d(·), for any L⊆U with cLε/κ≤ q(L), we have

d(Γ(L))≥min

{
1− δ, κ

cL
q(L)

}
. (13)

where δ= 1
3
, cL = 5/6 are two constants, and κ is defined in Assumption 1.

Note that the constant cL in Lemma 3 comes from Proposition 1.

Lemma 4. Assume that ε < 1/3. With high probability over the choice of G, for any L⊆U

with q(L)≥ τ , we have

p(Γ(L))≥ 1− τ, (14)

where τ = 1
2κ

.

Both lemmas show expansion-like properties of a random graph G. In contrast to normal

expansion properties using the set cardinality to measure a set, we use p(·), q(·), and d(·)

to define the measure of a set L and the associated Γ(L). The proof of Theorem 3 using

Lemma 3 and Lemma 4 is provided in Section EC.3 in the e-companion.

5. Proof of the Generalized Expansion Properties (Lemma 3 and Lemma 4)

We now need to prove Lemma 3 and Lemma 4 to complete the proof of our main theorem

(Theorem 2). Let us first build up some basics for proving Lemma 3. Lemma 4 will become

much easier to prove once Lemma 3 is established.

We first develop a useful functional form for d(Γ(L)) for a given L ⊆ U . Let IL(v) be

the shorthand for the indicator variable for the event v ∈ Γ(L), that is, IL(v) = 1 when

v ∈ Γ(L), and IL(v) = 0 otherwise. We omit the subscript L in IL(v) when it is clear from

the context. Our key quantity d(Γ(L)) can then be written as the sum of n negatively

associated random variables:

d(Γ(L)) =
∑
v∈V

d(v)1v∈Γ(L) =
∑
v∈V

d(v)IL(v). (15)

Note that {d(v)}v∈V and {IL(v)}v∈V are two independent sets of random variables. Based

on Proposition EC.4 in the e-companion, {d(v)IL(v)}v∈V are negatively associated. We

analyze our construction of the flexibility design to unveil the property of the indicator

random variable IL(v) and to prove the concentration of d(Γ(L)) using (15).
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According to our TPC of the flexibility design (see (6)), we have

Pr[IL(v) = 1] = 1−Pr[v 6∈ Γ(L)] = 1−
∏
u∈L

Pr[(u, v) 6∈E] = 1−
∏
u∈L

(1− r(u, v)) (16)

≥1−
∏
u∈L

exp (−γq(u)p(v)n̄) = 1− exp

(
−γp(v) ·

(∑
u∈L

q(u)

)
· n̄

)
= 1− exp (−γp(v)q(L)n̄) ,

where the inequality results because for any x, max(1−x,0)≤ e−x (here x= γn̄q(u)p(v)).

For notational convenience, let `(L) be q(L) multiplied by a fixed scalar:

`(L) := γn̄q(L). (17)

We use `(L) as a measure for the relative size of L. Using this new notation, equation (16)

can be written as

Pr[v ∈ Γ(L)] = Pr[IL(v) = 1]≥ 1− exp (−p(v)`(L)) . (18)

This matches our intuition: when a node v ∈ V is more important with a larger p(v) or the

subset L⊆U is larger, the chance of v being a neighbor of L increases.

5.1. Warmup analysis: the balanced and symmetrical case

To better illustrate the idea behind the proof of Lemma 3, we first prove a weaker version of

Lemma 3 under the balanced and symmetrical setting. In this special case, we assume that

m= n, s̄(u) = d̄(v) = 1
n

for all u∈U and v ∈ V , and {d(v) : v ∈ V } are independent. For ease

of illustration, we only prove the result of Lemma 3 for subsets L⊆U with q(L) = ε. The

proof of this special case demonstrates the high-level idea of the actual proof of Lemma 3.

However, to extend it to the general unbalanced and asymmetrical case, we need several

important ingredients to overcome a few technical difficulties (see Section 5.2).

Lemma 5 (Special case of Lemma 3). Let us assume m = n = n̄, s̄(u) = d̄(v) = 1
n

for

all u∈U and v ∈ V , and {d(v) : v ∈ V } are independent. For any L⊆U with q(L) = ε, we

have d(Γ(L))≥ κq(L).

We replace κ
cL
q(L) on the RHS of (13) in Lemma 3 based on κq(L) in Lemma 5. This

replacement does not change the proof idea, but makes the exposition cleaner. Under the
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assumption of Lemma 5, p(·) and q(·) reduce to constant functions, and q(L) and `(L)

become proportional to the size of the subset L, that is,

p(v) =
1

n
, q(u) =

1

n
, q(L) =

|L|
n
, and `(L) = γnq(L) = γ|L|.

We fix an L⊆U with q(L) = ε and omit the subscript L in IL(v) for notational simplic-

ity. By definition, we have `(L) = γnq(L) = γεn = Oκ(ln(1/ε)εn) < n for small enough ε.

Therefore, we have p(v)`(L) = 1
n
`(L)< 1. Using (18), we can approximate that Pr[I(v) = 1]

by

Pr[I(v) = 1]≥ 1− exp (−p(v)`(L))≥ p(v)`(L)/2, (19)

where the last inequality results because 1− exp(−x)≥ x/2 for any x∈ [0,1].

To prove Lemma 5, for each L with q(L) = ε, we prove that d(Γ(L)) is larger than q(L)

w.h.p. (as shown in the next lemma), and then take the union bound over L⊆U .

Lemma 6. Under the assumption of Lemma 5, we have

Pr[d(Γ(L))<κq(L)]≤ exp
(
−γεn

16κ

)
. (20)

Proof of Lemma 6. Recall equation (15), where we write d(Γ(L)) as a sum of indepen-

dent random variables d(Γ(L)) =
∑

v∈V d(v)I(v). We use the Chernoff bound (see Corol-

lary EC.3 in the e-companion) to prove that d(Γ(L)) is large w.h.p. We first estimate the

mean of d(Γ(L)) based on

µ,E[d(Γ(L))] =
∑
v∈V

E[d(v)I(v)]≥
∑
v∈V

d̄(v)p(v)`(L)/2 =
`(L)

2n
, (21)

where the inequality results because d(v) and I(v) are independent, and (19). The last

equality results because d̄(v) = p(v) = 1
n
. Consider that κq(L) = κ|L|/n < γ|L|/(4n) = µ/2

and that for each v ∈ V , d(v)I(v)∈ [0, κd̄(v)] is an independent random variable. Based on

the Chernoff bound in Corollary EC.3, we have

Pr[d(Γ(L))<κq(L)]≤Pr[d(Γ(L))<µ/2]≤ exp

(
−(1/2)2µ

2κd̄(v)

)
= exp

(
−µn

8κ

)
. (22)

We now combine (21) and (22), and obtain

Pr[d(Γ(L))<κq(L)]≤ exp

(
−`(L)

16κ

)
= exp

(
−γ|L|

16κ

)
= exp

(
−γεn

16κ

)
. �
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Given Lemma 6, we can take the union bound over all L such that q(L) = ε (i.e., |L|= εn),

and obtain

Pr [∀L with |L|= εn, d(Γ(L))≥ κq(L)]≥ 1−
∑

L:|L|=εn

Pr [d(Γ(L))<κq(L)]

≥ 1−
∑

L:|L|=εn

exp
(
−γεn

16κ

)
= 1−

(
n

εn

)
exp

(
−γεn

16κ

)
≥ 1−n−ω(1),

where the last step is based on γ = c0κ
3 ln(eκ) ln(4κ

ε
)� 16κ ln

(
e
ε

)
. This gives the proof of

Lemma 5.

5.2. Extensions to the unbalanced and asymmetrical case: analysis overview

We now discuss the technical difficulties of generalizing the analysis in the previous sub-

section to the unbalanced and asymmetrical case, and show how we manage to address

these difficulties.

To apply the union bound over all possible sets L in Lemma 3, we must prove that for

each fixed set, the bad event d(Γ(L))< κq(L) happens with tiny probability. That is, we

must generalize (20) in the warmup analysis, where we apply a Chernoff bound. However,

in the warmup analysis, we can directly apply the Chernoff bound because d(Γ(L)) can

be written as the sum of independent random variables with the same mean. In contrast,

in the general heterogeneous demand case, the corresponding random variables may have

significantly different means and variances.

To illustrate this difficulty, let us consider the following direct approach of generaliz-

ing the proof of Lemma 6. We again obtain a lower bound on µ similar to (21) using

Proposition 1 and (19) as follows:

µ,E[d(Γ(L))]≥ `(L)

2

∑
v∈V

d̄(v)p(v)≥ cL`(L)

2

∑
v∈V

d̄(v)2 ≥ cL`(L)

2n

(∑
v∈V

d̄(v)

)2

=
cL`(L)

2n
,

(23)

where the last inequality uses Jensen’s inequality. Based on the definition of `(L) in (17),

it is easy to check that the lower bound in (23) is greater than the RHS of (13) by a

multiplicative Θ(ln(1/ε)) factor. However, as each random variable d(v)I(v) ∈ [0, κd̄(v)],

where d̄(v) can be as large as 1/poly logn (see item 2 in Assumption 1), a direct application

of the Chernoff bound would result exp(−poly logn) in the probability bound, which is far

from the desired exp(−Ω(n)) bound.
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It is worth noting that d(v)I(v) have different variances (for different v ∈ V ). Instead

of the Chernoff bound, one possible attempt is to investigate the variances and apply

Bernstein’s inequality. (See the statement in Theorem EC.2 in the e-companion.) To apply

Bernstein’s inequality, we compute the sum of the variance of d(v)I(v) as follows:

σ2 ,
∑
v∈V

V [d(v)I(v)]≤
∑
v∈V

V [d(v)]E[I(v)]≤
∑
v∈V

(
κd̄(v)2

)
(p(v)`(L)) .

Here, V[·] denotes the variance of a random variable. Note that E[I(v)] = Pr(I(v) = 1)≤∑
u∈L r(u, v)≤ p(v)`(L). As p(v) and d̄(v) can be as large as 1/poly logn, the estimated

upper bound on σ2 can be as large as κ`(L)/poly logn. Thus, unfortunately, Bernstein’s

inequality still results exp(−poly logn) in the probability bound at best, making the next

step union bound over L fail.

The reasons for the two failed attempts stem from the looseness of the Chernoff bound

or Bernstein’s inequality for such a particular type of random variable d(v)I(v). At a high

level, the special property of d(v)I(v) can be summarized as follows: although d(v)I(v) has

a large variance, the probability that d(v)I(v) becomes the largest possible value is small.

However, known concentration inequalities such as Chernoff and Bernstein only charac-

terize random variables via their maximum possible values and variances, and therefore

cannot make use of this special property. Using the special property of our random vari-

ables, we are able to prove a new probability bound (see Lemma 7 below) that serves as a

generalization of (20).

We now give a more detailed introduction of how to generalize (20). First, we set up a few

more notations. Recall that in fixing an L⊆U , we have Pr[IL(v) = 1]≥ 1−exp(−p(v)`(L))

from (19). Ideally, we want to simplify this via the approximation 1− exp(−x)≈ x. How-

ever, this approximation is only true when x is small. To handle the case when p(v)`(L) is

large, we partition the set of demand nodes V into two sets:

VL = {v ∈ V : p(v)`(L)> c1} and V c
L = {v ∈ V : p(v)`(L)≤ c1}, (24)

for some constant c1 = 4 ln(eκ). By setting the threshold c1, VL is the set of “large” nodes v,

where Pr[IL(v) = 1] is very close to 1. That is, a node v ∈ VL is quite important in putting

v in the neighborhood of L with a large probability. The complement of VL, denoted by

V c
L , is the set of those “small” nodes v where Pr[IL(v) = 1] is bounded away from 1. For
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example, when m≤ n, for a typical node with d̄(v)≈ 1
n

and for a small L with q(L)≈ ε,

as the importance value p(v) ≈ 1
n
, `(L) = γn̄q(L) < n̄ = n, according to (24), the node v

should belong to V c
L .

Given the partition of V in place, we rewrite d(Γ(L)) as

d(Γ(L)) =
∑
v∈V c

L

d(v)I(v)

︸ ︷︷ ︸
QL

+
∑
v∈VL

d(v)I(v)︸ ︷︷ ︸
WL

. (25)

The main rationale behind the partition is that the terms QL and WL are bounded from

below in different situations. When d̄(V c
L) is large (i.e., d̄(V c

L) = Ω(1)), there are many small

nodes in V c
L . Therefore, QL should concentrate to its expectation, and this concentration

is the analog of (20). We can also estimate the expectation E[QL] =
∑

v∈V c
L
d̄(v)E[I(v)] =∑

v∈V c
L

Ω(d̄(v)p(v)`(L)). As p(v) is at least Ω(1/n) according to our thresholded con-

struction (see (5)), we further have E[QL] =
∑

v∈V c
L

Ω(d̄(v)`(L)/n) = Ω(d̄(V c
L)`(L)/n) =

Ω(`(L)/n). Together with the concentration property ofQL, we should be able to prove that

QL is Ω(`(L)/n) with very high probability. The following lemma, proved in Section EC.4.1,

quantitatively characterizes this intuition. As discussed before, this concentration inequal-

ity is novel, as Bernstein/Chernoff is not tight enough for our purpose.

Lemma 7. If d̄(V c
L)≥ δ/3, then

Pr

[
QL ≥

c2`(L)

κn

]
≥ 1− exp

(
− c3`(L)

κ ln(eκ)

)
, (26)

where the absolute constant δ = 1/3, c2 = 0.0008330, and c3 = 0.00160.

However, when d̄(VL) is larger than 1−δ/3 (i.e., d̄(V c
L) = 1− d̄(VL)< δ/3), we claim that

WL is at least (1− δ) w.h.p. As defined in (25), when v ∈ VL, I(v) is 1 with a probability

very close to 1; therefore, one should expect WL to be very close to
∑

v∈VL d(v) = d(VL).

As it is assumed that d̄(VL) is large, there should be enough terms in the summation∑
v∈VL d(v) = d(VL), and d(VL) (and therefore WL) should concentrate around its mean∑
v∈VL d̄(v) = d̄(VL). Therefore, the term WL will be at least 1− δ w.h.p.

Although the preceding argument on lower bounding the term WL seems reasonable,

the analysis presents a significant difficulty. Even when d̄(VL) is large, the probability

of WL failing to concentrate to d̄(VL) (and therefore being greater than 1 − δ) is not

as exponentially small as exp(−Ω(`(L)) in Lemma 7, but only as small as 1/poly(n).
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This prevents us from taking the union bound over exponentially many possible Ls. This

problem mainly results because WLs (for different Ls) share a common pattern of failure:

d(VL) fails to be greater than (1− δ). To solve this problem, we break the cause of the

event of WL failing to be greater than (1− δ) into the following two events:

1. d(VL) fails to be greater than (1− 2δ/3);

2. WL fails to be greater than (d(VL)− δ/3).

For each event separately. we will show that the event does not hold for any L with

d̄(VL)≥ 1− δ/3 w.h.p.

For the second event, we follow the classical approach to show that the probability of WL

failing to be greater than (d(VL)− δ/3) is exponentially small, and apply the union bound

over exponentially many Ls. For the first event, we make the following crucial observation:

although there are exponentially many Ls, the number of different sets for VL is only on the

order of O(n). To see this, let Vθ = {v ∈ V : p(v)> θ}. We then have VL = Vθ for θ= c1/`(L).

We call the set {Vθ} the level sets of V . It is clear that there are only (n+1) different level

sets, as |V |= n. Therefore, there are at most (n+ 1) different sets for VL. This important

observation allows us to bound the probability of the first event by showing that for each

fixed VL, the probability that d(VL) fails to be greater than (1−2δ/3) is polynomially small

(i.e., n−Ω(1) rather than exponentially small) and then applying the union bound over O(n)

possible VLs.

We now formally describe our approach. We first define Ī(v) = 1− I(v) and split WL

into WL,1 and WL,2 as follows.

WL ,
∑
v∈VL

d(v)I(v) =
∑
v∈VL

d(v)︸ ︷︷ ︸
WL,1

−
∑
v∈VL

d(v)Ī(v)︸ ︷︷ ︸
WL,2

. (27)

As discussed previously, WL,1 = d(VL) takes only (n+1) different values for all Ls and does

not depend on the choice of G at all. Therefore, we can simply bound the probability that

they are larger than 1−2δ/3 for all Ls via a simple concentration inequality and by taking

the union bound over (n+ 1) events. In particular, we prove the following lemma for WL,1.

Lemma 8. With high probability (1− n̄−3) over the randomness of d(·), for every L⊆ U
such that d̄(VL) = 1− d̄(V c

L)≥ 1− δ/3, we have WL,1 ≥ 1− 2δ
3
.

The term WL,2 depends on the graph G due to the term Ī(v). For each fixed L⊆U , the

following lemma shows that WL,2 is small with a probability exponentially close to 1.
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Lemma 9. For any fixed L⊆U ,

Pr[WL,2 ≤ δ/3]≥ 1− exp

(
−c4`(L)

κ2

)
, (28)

where δ= 1
3

and c4 = 0.00550.

With Lemma 9, we are able to apply the union bound to show that WL,2 ≤ δ/3 for all

possible Ls w.h.p. Then, together with Lemma 8, we are able to show that WL ≥ 1− δ

for all possible Ls w.h.p. The detailed proofs of Lemma 8 and Lemma 9 are relegated to

Section EC.4.2 in the e-companion.

5.3. The formal proof of Lemma 3 and Lemma 4

We now have the tools to prove Lemma 3 (in addition to Lemma 4), which gives our main

Theorem 2 as shown in Section 4.1. To prove Lemma 3, we take the union bound over

every L such that q(L) ≥ cLε/κ (recall that cL = 5/6 is an absolute constant defined in

Lemma 3), where the failure probability is controlled by Lemma 7 and Lemma 9 according

to whether d̄(V c
L) ≤ δ/3. To make the proof flow more smoothly, we extract the union

bound calculation in the following lemma, which is used in the proof of Lemma 3 and

Lemma 4. (See its proof in Section EC.5 in the e-companion.)

Lemma 10. For α≥ 7n̄ ln(2/ζ) with ζ ≥ ε
2κ

and sufficiently large m with m
ln n̄
≥ 6

ζ
, we have∑

L:q(L)≥ζ

exp (−αq(L))≤ n̄−3. (29)

Proof of Lemma 3. We first classify L according to whether Lemma 7 or Lemma 8 and

Lemma 9 should be used. Let

L1 = {L : d̄(VL)≥ 1− δ/3}= {L : d̄(V c
L)≤ δ/3} and L2 = {L : d̄(V c

L)> δ/3}. (30)

It is easy to see that L1 and L1 form a partition of the power set of U (denoted by 2U), that

is, L1 ∩L2 = ∅ and L1 ∪L2 = 2U . In other words, each L⊆ U belongs to either L1 or L2.

We also note that L1 and L2 are two deterministic sets and that p(VL) is a deterministic

function that depends only on L.

For L ∈ L1, let EL be the event that WL,2 > δ/3, and for L ∈ L2, with a slight abuse of

notation, let EL be the event that QL <
c2`(L)
κn

, where c2 = 0.0008330 is defined in Lemma 7.

Let F be the event where there exists L∈L1 such that WL,1 < 1− 2δ/3.
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Note that if none of EL happens for all Ls with cLε/κ≤ q(L), and F does not happen

either, then we can conclude that the following event happens:

∀ L⊆U s.t cLε/κ≤ q(L), d(Γ(L))≥min

{
1− δ, c2`(L)

κn

}
. (31)

This is achieved in the following case study:

1. If L ∈ L1, given that EL does not happen (i.e., WL,2 ≤ δ/3) and that F does not

happen (i.e., ∀L∈L1, WL,1 ≥ 1− 2δ/3), we have

d(Γ(L))≥WL,1−WL,2 ≥ 1− 2δ/3− δ/3≥ 1− δ.

2. If L∈L2, then given that EL does not happen (i.e., QL ≥ c2`(L)
κn

), we have

d(Γ(L))≥QL ≥
c2`(L)

κn
.

Next, we bound the probability that none of the events EL and F happens. Based on

the union bound, we have

Pr

 ⋃
L:cLε/κ≤q(L)

EL

⋃F
≤Pr[F ] +

∑
L:cLε/κ≤q(L)

Pr[EL] (32)

Based on Lemma 7, we have the following: for L ∈ L2, Pr[EL] ≤ exp
(
− c3`(L)
κ ln(eκ)

)
,

where c3 = 0.00160. Based on Lemma 9, we have the following: when L ∈ L1, Pr[EL] ≤

exp
(
− c4`(L)

κ2

)
, where c4 = 0.00550. Therefore, for any L with cLε/κ ≤ q(L), we have

Pr[EL] ≤ exp
(
− c5`(L)

κ2

)
, for some absolute constant c5 = min{c3, c4} = 0.00160. Moreover,

based on Lemma 8, we know that Pr[F ]≤ n̄−3. Therefore,

RHS of (32)≤ n̄−3 +
∑

L:cLε/κ≤q(L)

exp

(
−c5`(L)

κ2

)
; (33)

thus, it suffices to prove that ∑
L:cLε/κ≤q(L)

exp

(
−c5`(L)

κ2

)
≤ n̄−3. (34)

Note that `(L) = γn̄q(L), and γ ≥ c0κ
2 ln(4κ

ε
) with c0 = 4376. Then, c5`(L)

κ2 is at least

αq(L) with

α= c5c0n̄ ln

(
4κ

ε

)
≥ 7n̄ ln(2/ζ), (35)



30

for ζ = cLε/κ≥ ε
2κ

. We can then invoke Lemma 10 and obtain∑
L:cLε/κ≤q(L)

exp

(
−c5`(L)

κ2

)
≤ n̄−3. (36)

as desired.

Therefore, the event (31) happens with a probability of at least (1− 2n̄−3). Note that

`(L) = γn̄q(L), and γ ≥ c0κ
2 ln
(

4κ
ε

)
with c0 = 4376. We have c2`(L)

κn
≥ c2c0 ln

(
4κ
ε

)
κq(L) ≥

κ
cL
q(L). Therefore, with probability at least 1−2n̄−3, d(Γ(L))≥min

{
1− δ, κ

cL
q(L)

}
, which

completes the proof. 2

We now proceed to prove Lemma 4. Similar to d(Γ(L)), we decompose with p(Γ(L))

while simply ignoring the counterpart for QL,

p(Γ(L))≥
∑
v∈VL

p(v)I(v)︸ ︷︷ ︸
W p

L

=
∑
v∈VL

p(v)︸ ︷︷ ︸
W p

L,1

−
∑
v∈VL

p(v)Ī(v)︸ ︷︷ ︸
W p

L,2

. (37)

Now we prove Lemma 4 by lower bounding W p
L,1 and upper bounding W p

L,2.

Proof of Lemma 4. We fix an L⊆ U with q(L)≥ τ = 1
2κ

. Based on Proposition 1, (5),

(17), and noting γ ≥ c0κ
2 ln(4κ

ε
) with c0 = 4376, for any v ∈ V , we have

p(v)`(L)≥ 5

6
· 1

5n
· γn̄q(L)≥ γq(L)

6
≥ γ

12κ
≥ 4 ln(eκ).

As p(v)`(L) ≥ 4 ln(eκ) for every v ∈ V , based on the definition of VL in (24), we have

VL = V . Therefore, we have W p
L,1 = 1. We can bound the term W p

L,2 from below based on

Pr
[
W p

L,2 ≥ δ
]
≤ exp

(
−c6`(L)

κ2

)
,

where c6 = 0.00826. We separate this lower bound into Lemma EC.2 in Section EC.4.3

in the e-companion and provide its proof. Taking the union bound over all Ls we are

interested in, we have

Pr
[
∃L⊆U s.t. q(L)≥ τ,W p

L,2 ≥ δ
]
≤

∑
L:q(L)≥τ

exp

(
−c6`(L)

κ2

)
. (38)

Let α= c6γn̄
κ2 so that c6`(L)

κ2 = αq(L) based on (17). We have

α=
c6γn̄

κ2
=
c6c0κ

2 ln
(

4κ
ε

)
n̄

κ2
≥ 7n̄ ln(2/ζ), (39)
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with ζ = cLε/κ. As ε < 1/3 (according to the assumption in the theorem statement), we

also have ζ ≤ 1
2κ

= τ . We use Lemma 10 and obtain

∑
L:q(L)≥τ

exp

(
−c6`(L)

κ2

)
≤

∑
L:q(L)≥ζ

exp

(
−c6`(L)

κ2

)
≤ n̄−3. (40)

In sum, with a probability of at least 1− n̄−3, for any L ⊆ U with q(L) ≥ τ , we have

W p
L,2 < δ. It follows that under this event, which happens with a probability of at least

1− n̄−3,

p(Γ(L))≥W p
L,1−W

p
L,2 ≥ 1− δ,

which completes the proof. 2

6. Conclusions and Future Directions

In this paper, we investigate the problem of designing process flexibility to fulfill uncertain

demand for a wide class of unbalanced and asymmetrical production systems with hetero-

geneous random supplies and demands. The proposed design is based on a new thresholding

probabilistic construction and is asymptotically optimal. The main idea behind the proof is

to reduce the (1− ε) optimality to generalized expansion properties of the random design.

To establish the generalized expansion properties of our construction, we develop new

concentration results and an economical way to apply the union bound.

The thresholding idea can be a useful guideline for process flexibility design. Indeed,

one key message is that the expected demand of a product is not the only criterion when

deciding how many plants should have the corresponding production line. To hedge against

the demand uncertainty, even if a product’s expected demand is not high, it is still better

to give a few different plants the capability to produce this product. This principle can

be combined with useful design guidelines. For example, Chou et al. (2011) proposed a

greedy heuristic for adding new links to an existing design based on the so-called node

expansion ratio. It is interesting to explore the benefit of applying a thresholding scheme to

the node expansion ratio. In addition, this paper extends the classical analysis framework

for establishing expansion property from a random construction to deal with the hetero-

geneity of supply and demand. We would like to explore the applications of the generalized

expansion property developed in this paper. Finally, one interesting future direction is to

consider cost-sensitive production systems, where different edges have different weights,
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with the goal of finding a sparse graph with minimum total weight while still fulfilling

most of the demand. This is a challenging problem that may require the development of

new optimization techniques and spectral graph theory.
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Online Appendix to “Optimal Design of Process Flexibility
for General Production Systems”

EC.1. Proof of Lemma 1

Lemma 1(restated). With high probability over s(·) and d(·),

1− ε≤ s(U)≤ 1 + ε, and 1− ε≤ d(V )≤ 1 + ε.

Proof. According to Assumption 1, we have

σ2 ,
∑
u∈U

V[s(u)]≤
∑
u∈U

κs̄(u)2 ≤ κ

(∑
u∈U

s̄(u)

)(
max
u∈U

s̄(u)

)
= κ · 1 · O(ε2)

κ3 ln n̄
=O

(
ε2

κ2 ln n̄

)
,

where V[·] denotes the variance of a random variable. Moreover, for each u∈U ,

|s(u)− s̄(u)| ≤ κs̄(u),M =O

(
ε2

κ2 ln n̄

)
.

By the Bernstein inequality for negative associated random variables (Theorem EC.2 and

Corollary EC.4), we have

Pr

[∑
u∈U

s(u)<
∑
u∈U

s̄(u)− ε

]
≤ exp

(
− ε2

2σ2 + 2
3
Mε

)

= exp

(
− ε2

O
(

ε2

κ2 ln n̄

)
+O

(
ε2

κ2 ln n̄

)
ε

)
≤ exp

(
−Ω

(
κ2 ln n̄

))
= n̄−Ω(1). (EC.1)

Therefore, we have s(U) ≥ s̄(U) − ε = 1 − ε with probability 1 − n̄−Ω(1). By symmetry,

we have s(U) ≤ s̄(U) + ε = 1 + ε with probability 1− n̄−Ω(1). By the union bound, with

probability 1 − n̄−Ω(1), we have 1 − ε ≤ s(U) ≤ 1 + ε. Similarly, we can also obtain that

1− ε≤ d(V )≤ 1 + ε w.h.p. 2

EC.2. Proof of the second statement of Theorem 2 via Theorem 3

Let us condition on the event that (3) holds, i.e., 1− ε≤ s(U)≤ 1 + ε and 1− ε≤ d(V )≤

1 + ε. We have seen that for any fixed L⊆U and K = V \Γ(L), either (10) or (11) implies

(9). For notational simplicity, let (3) denote the event in (3). Further, let (9), (10) and (11)
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denote the event in (9), (10) and (11) holds for any L⊆ U , respectively. Using the basic

properties of conditional probabilities, we have,

Pr[(9)]≥Pr[(9) | (3)] ·Pr[(3)]≥Pr[ (10) or (11) | (3)] ·Pr[(3)]

= Pr[ (10) or (11) ]−Pr[ (10) or (11) | not (3)] ·Pr[not (3)]≥Pr[ (10) or (11) ]−Pr[not (3)],

where all the probabilities above are over the choice of G and supply and demand functions.

By Lemma 1 we have Pr[not (3)] = n̄−Ω(1); and by Theorem 3 we have Pr[ (10) or (11) ] =

1− n̄−Ω(1). Therefore, together with Lemma 2, we have

Pr
G∼G,s(·),d(·)

[ZG(s, d)≥ 1− 2ε]≥ Pr
G∼G,s(·),d(·)

[(9)]≥ 1− ζ2, (EC.2)

for some ζ = n̄−Ω(1). Let us rewrite

Pr
G∼G,s(·),d(·)

[ZG(s, d)≥ 1− 2ε] = EG∈GX,

where X , Prs(·),d(·)[ZG(s, d)≥ 1− 2ε] ∈ [0,1] is a random variable. From (EC.2), we have

EG∈G(1−X)≤ ζ2. Combining it with the Markov’s inequality, we have

Pr
G∼G

[X ≥ 1− ζ] = Pr
G∼G

[1−X ≤ ζ] = 1−Pr[1−X > ζ]≥ 1− EG∼G(1−X)

ζ
≥ 1− ζ,

which completes the proof of (8) and thus the second statement of Theorem 2. In other

words, with high probability, the random graph G∼G achieves (1− 2ε)-optimality w.h.p.

EC.3. Proof of Theorem 3

Theorem 3 (restated). With high probability over the choice of graph G and supply and

demand functions, for any subset L⊆U , either (10) or (11) holds.

To prove Theorem 3 using Lemma 3 and Lemma 4, we first introduce the following

corollaries of Lemma 3 and Lemma 4.

Corollary EC.1. Assume that ε < 1/3. With high probability over the choice of G and

the supply and demand functions s(·) and d(·), for any L⊆U such that cLε/κ≤ q(L)≤ τ ,

d(Γ(L))≥ κ

cL
q(L), (EC.3)

where τ = 1
2κ

and cL = 5/6 are two constants.



e-companion to Chen, Ma, Zhang and Zhou: Optimal Design of Process Flexibility for General Production Systems ec3

Proof of Corollary EC.1. Let us condition on the event in Lemma 3. We will prove that

the desired event in Corollary EC.1 happens. When cLε/κ ≤ q(L) ≤ τ = 1
2κ

(noting that

cLε <
5
6
· 1

3
< 1

2
), we have that 1−δ= 2

3
> 1

2cL
≥ κ

cL
q(L). Therefore by Lemma 3, we conclude

that

d(Γ(L))≥min

{
1− δ, κ

cL
q(L)

}
≥ κ

cL
q(L), (EC.4)

which is (EC.3). 2

Since demand and supply are symmetric, Corollary EC.1 directly implies the following

corollary.

Corollary EC.2. Assume that ε < 1/3. With high probability over the choice of G and

the choice of the supply and demand functions s(·) and d(·), for any K ⊆ V such that

cLε/κ≤ p(K)≤ τ ,

s(Γ(K))≥ κ

cL
p(K), (EC.5)

where τ = 1
2κ

and cL = 5/6 are two constants.

Proof of Theorem 3. Let us condition on that the events in Lemma 4, Corollary EC.1,

and Corollary EC.2 happens (which will happen w.h.p. by the union bound).

Now fixing a subset L⊆U , we consider the following three cases according to q(L).

1. If q(L)≤ cLε/κ, by Assumption 1 and Proposition 1, we have

s(L)≤ κs̄(L)≤ κ

cL
q(L)≤ ε.

Therefore, (10) always holds since the right hand side (RHS) of (10) is less than or equal

to 0.

2. If cLε/κ < q(L)≤ τ , where τ = 1
2κ

, then by (EC.3) of Corollary EC.1, Proposition 1

and Assumption 1

d(Γ(L))≥ κ

cL
q(L)≥ κs̄(L)≥ s(L).

Therefore, we have that (10) holds.

3. If q(L)> τ , where τ = 1
2κ

, then by (14) of Lemma 4, we have that p(Γ(L))≥ 1− τ .

Let K = V \ Γ(L). It follows that p(K) ≤ τ . Now we discuss the following two subcases

according to the value of p(K).

(a) If p(K)≤ cLε/κ, by Proposition 1, we have

d(K)≤ κd̄(K)≤ κ

cL
p(K)≤ ε,

and thus (11) holds since the RHS of (11) is less than or equal to 0.
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(b) if cLε/κ ≤ p(K) ≤ τ , then by (EC.5) of Corollary EC.2, Proposition 1 and

Assumption 1

s(Γ(K))≥ κ

cL
p(K)≥ κd̄(K)≥ d(K),

and thus (11) holds.

By the above case study, we have proved that either (10) or (11) is true, which completes

the proof of Theorem 3. 2

EC.4. Proofs of Lemma 7, Lemma 8, and Lemma 9

EC.4.1. Lower bounding QL

In this subsection, we prove Lemma 7. Similar to the standard proof of Chernoff bound, we

use the exponential moment method. However, the choice of parameters (e.g. the param-

eter t) in the proof is different from that of Chernoff bound. We first restate the lemma

statement.

Lemma 7 (restated). If d̄(V c
L)≥ δ/3, then

Pr

[
QL ≥

c2`(L)

κn

]
≥ 1− exp

(
− c3`(L)

κ ln(eκ)

)
,

where absolute constant δ= 1/3 and c2 = 0.0008330 and c3 = 0.00160.

Proof of Lemma 7. Recall the definition V c
L = {v : p(v)`(L) ≤ c1} in (24) and a(v) =

Pr[I(v) = 1] ≥ 1 − exp(−p(v)`(L)) in (18). By invoking Proposition EC.1 with x =

−p(v)`(L), we have that for any v ∈ V c
L ,

a(v) = Pr[I(v) = 1]≥ 1− exp(−p(v)`(L))≥ 1− e−c1
c1

p(v)`(L) =
c7p(v)`(L)

ln(eκ)
, (EC.6)

where c7 = (1−e−c1 ) ln(eκ)
c1

≥ 0.25.

Therefore, for each v ∈ V ,

E[d(v)I(v)] = d̄(v)a(v)≥ c7d̄(v)p(v)`(L)

ln(eκ)
. (EC.7)

Now we begin proving the inequality in the lemma statement by

Pr

[
QL <

c2`(L)

κn

]
= Pr

[
nQL <

c2`(L)

κ

]
= Pr

n∑
v∈V c

L

d(v)I(v)<
c2`(L)

κ


= Pr

exp

tn∑
v∈V c

L

d(v)I(v)

> exp

(
t · c2`(L)

κ

) , (EC.8)
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where t < 0 is an constant that will be decided later. By Markov’s inequality, we have

(EC.8)<E exp

tn∑
v∈V c

L

d(v)I(v)

 exp

(
−t · c2`(L)

κ

)

≤

∏
v∈V c

L

E exp (tnd(v)I(v))

 exp

(
−t · c2`(L)

κ

)
, (EC.9)

where the second inequality is because d(v)I(v) are negative associated (Proposition EC.4)

and Proposition EC.5.

Now we state the following claim and defer its proof to the end of proof of Lemma 7.

Claim EC.1. E exp(tnd(v)I(v))≤ 1 +
a(v)

κ

(
exp(tnκd̄(v))− 1

)
.

By Claim EC.1, we have

(EC.9)≤ exp

(
−t · c2`(L)

κ

) ∏
v∈V c

L

(
1 +

a(v)

κ

(
exp(tnκd̄(v))− 1

))
≤ exp

(
−t · c2`(L)

κ

) ∏
v∈V c

L

exp

(
a(v)

κ

(
exp(tnκd̄(v))− 1

))

= exp

(
−t · c2`(L)

κ

)
exp

∑
v∈V c

L

a(v)

κ

(
exp(tnκd̄(v))− 1

) , (EC.10)

where the second inequality is by 1 + x≤ ex. Now we apply (EC.6) (with t < 0 in mind)

and get

(EC.10)≤ exp

(
−t · c2`(L)

κ

)
exp

∑
v∈V c

L

p(v)`(L)

4κ ln(eκ)

(
exp(tnκd̄(v))− 1

)
≤ exp

(
−t · c2`(L)

κ

)
exp

∑
v∈V c

L

5d̄(v)`(L)

24κ ln(eκ)

(
exp(tnκd̄(v))− 1

) . (EC.11)

where the last inequality is by Proposition 1 and t < 0.

Now we apply Proposition EC.2 to the second exponential form in (EC.11), and get

(EC.11)≤ exp

(
−t · c2`(L)

κ

)
exp

(
5`(L)

24κ ln(eκ)
· d̄(V c

L)

(
exp

(
tnκd̄(V c

L)

|V c
L |

)
− 1

))
≤ exp

(
−t · c2`(L)

κ

)
exp

(
5`(L)

24κ ln(eκ)
· d̄(V c

L)
(
exp

(
tκd̄(V c

L)
)
− 1
))
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≤ exp

(
−t · c2`(L)

κ

)
exp

(
5`(L)

24κ ln(eκ)
· 1
9

(
exp

(
tκd̄(V c

L)
)
− 1
))

≤ exp

(
−t · c2`(L)

κ

)
exp

(
5`(L)

216κ ln(eκ)
(exp (tκ/9)− 1)

)
, (EC.12)

where the second inequality used |V c
L | ≤ |V |= n, and both the third and the fourth inequal-

ities used the assumption d̄(V c
L)≥ δ/3 = 1/9.

Now we pick t=− 1
ln(eκ)

and summarize all deductions from (EC.8) to (EC.12), and get

Pr

[
QL <

c2`(L)

κn

]
≤ exp

(
c2`(L)

κ ln(eκ)

)
exp

(
5`(L)

216κ ln(eκ)

(
exp

(
− κ

9 ln(eκ)

)
− 1

))
≤ exp

(
c2`(L)

κ ln(eκ)

)
exp

(
5`(L)

216κ ln(eκ)

(
exp

(
−1

9

)
− 1

))
≤ exp

(
− c3`(L)

κ ln(eκ)

)
, (EC.13)

where the second inequality is because κ
ln(eκ)

≥ 1 when κ≥ 1, and we choose

c3 = 0.00160≤−
(
c2 +

5

216
(exp(−1/9)− 1)

)
. �

It remains to prove Claim EC.1.

Proof of Claim EC.1. Let us assume that the random variable X = d(v)I(v) belongs

to a discrete probability space (Ω, x, p). In general cases, similar argument can be made.

Observe that EX =
∑

ω∈Ω x(ω)p(ω) = E[d(v)I(v)] = d̄(v)a(v), X ∈ [0, κd̄(v)], and our

goal is to prove that

E exp(tnX)≤ 1 +
EX
κd̄(v)

(
exp(tnκd̄(v))− 1

)
.

We begin with

E exp(tnX) =
∑
ω∈Ω

p(ω) exp(tnx(ω)). (EC.14)

Now since exp(tnx) is a convex function of x, for each ω ∈Ω, we have

exp(tnx(ω))≤
(

1− x(ω)

κd̄(v)

)
exp(tn ·0)+

x(ω)

κd̄(v)
·exp(tnκd̄(v)) = 1+

x(ω)

κd̄(v)

(
exp(tnκd̄(v))− 1

)
.

We continue with

(EC.14)≤
∑
ω∈Ω

p(ω)

(
1 +

x(ω)

κd̄(v)

(
exp(tnκd̄(v))− 1

))
= 1 +

EX
κd̄(v)

(
exp(tnκd̄(v))− 1

)
. �



e-companion to Chen, Ma, Zhang and Zhou: Optimal Design of Process Flexibility for General Production Systems ec7

EC.4.2. Bounds for WL,1 and WL,2

We first prove Lemma 8, restated as follows.

Lemma 8 (restated). With high probability (1− n̄−3) over the randomness of d(·), for

every L⊆U such that d̄(VL) = 1− d̄(V c
L)≥ 1− δ/3, we have

WL,1 ≥ 1− 2δ/3.

To prove Lemma 8, it suffices to prove the following lemma.

Lemma EC.1. For any real value z ≥ 0, let Vz = {v : p(v)≥ z}. With probability at least

(1− n̄−3) over the randomness of d(·), we h ave that for any z ≥ 0,

d(Vz) =
∑
v∈Vz

d(v)≥ d̄(Vz)− δ/3. (EC.15)

Note that for each L ⊆ U , we have VL = {v : p(v)`(L) ≥ c1} as defined in (24), and

therefore VL is Vz with z = c1/`(L) in the definition in Lemma EC.1. As a consequence of

Lemma EC.1, with high probability at least (1− n̄−3) over the randomness d(·), for any

L⊆U such that d̄(V c
L)≤ δ/3 (i.e., d̄(VL) = 1− d̄(V c

L)≥ 1− δ/3),

WL,1 =
∑
v∈VL

d(v)≥ d̄(VL)− δ/3≥ 1− 2δ/3, (EC.16)

and this proves Lemma 8.

Now we prove Lemma EC.1.

Proof of Lemma EC.1. We prove Lemma EC.1 by applying Bernstein Inequality. First

observe that d(Vz) =
∑

v∈Vz d(v) is the sum of negative associated random variables with

the mean E(d(Vz)) = d̄(Vz) and the sum of the variances

σ2 =
∑
v∈Vz

V[d(v)]≤
∑
v∈Vz

E
[
(d(v))2

]
≤
∑
v∈Vz

E
[
κd̄(v)d(v)

]
=
∑
v∈Vz

κd̄(v)2

≤ κ
(

max
v∈Vz

d̄(v)

)
·
∑
v∈Vz

d(v)≤ κmax
v∈V

d̄(v) = κM,

where

M ,max
v∈V

d̄(v)≤ c

κ3 ln n̄
. (EC.17)
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by Assumption 1. Also note |d(v)− d̄(v)| ≤ κd̄(v)≤ κM (again by Assumption 1). Applying

Bernstein inequality, we have that

Pr
[
d(Vz)≥ d̄(Vz)− t

]
≥ 1− exp

(
− t2

2κM + 2κMt/3

)
. (EC.18)

Taking t= δ/3 and δ= 1
3κ

, we deduce from (EC.18) that

Pr
[
d(Vz)≥ d̄(Vz)− δ/3

]
≥ 1− exp (−4 ln n̄) = 1− n̄−4. (EC.19)

Although there are infinitely many possible values of z, there are only at most n different

Vz’s. This is because of the monotonicity property of Vz, i.e., for z1 ≤ z2, Vz1 ⊇ Vz2 . In other

words, if we sort p(v) for v ∈ V in an increasing order, Vz can only consist of consecutive

elements from one with the smallest value p(v) to the one with the largest value. This

property allows us to take the union bound over all possible values of z,

Pr
[
∀z ≥ 0, d(Vz)≥ d̄(Vz)− δ/3

]
≥ 1−n · n̄−4 ≥ n̄−3,

which completes the proof. 2

Now we prove Lemma 9, which simply follows the sub-Gaussian property of WL,2.

Lemma 9 (restated). For any fixed L⊆U ,

Pr[WL,2 ≤ δ/3]≥ 1− exp

(
−c4`(L)

κ2

)
,

where δ= 1
3

and c4 = 0.00550.

Proof of Lemma 9. To prove Lemma 9, we invoke Proposition EC.4 and Proposi-

tion EC.3 to show that d(v)Ī(v) for all v ∈ VL are negative associated sub-Gaussian ran-

dom variables and then apply sub-Gaussian concentration to obtain (28). Recall VL = {v :

p(v)`(L)> c1} in (24). By (18), for any v ∈ VL, we have

Pr[Ī(v) = 1] = Pr[I(v) = 0]≤ exp(−p(v)`(L))≤ exp(−c1)≤ e−2, (EC.20)

where the last inequality is because c1 = 4 ln(eκ).

By Proposition EC.3, we know that d(v)Ī(v) are sub-Gaussian random variables with

the variance proxy

6κ2d̄(v)2

ln
(

1
exp(−p(v)`(L))

) =
6κ2d̄(v)2

p(v)`(L)
≤ 216κ2p(v)

25`(L)
,
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where the inequality is due to the fact that p(v) ≥ 5
6
· d̄(v) (Proposition 1). Also, by

Proposition EC.4, we know that d(v)Ī(v) are negative associated. Therefore, WL,2 =∑
v∈VL d(v)Ī(v) is a sub-Gaussian random variable with variance proxy∑

v∈VL

216κ2p(v)

25`(L)
=

216κ2

25`(L)

∑
v∈VL

p(v)≤ 216κ2

25`(L)
≤ 9κ2

`(L)
.

Applying the sub-Gaussian tail bound, we obtain that,

Pr

[∑
v∈VL

d(v)Ī(v)≥E

[∑
v∈VL

d(v)Ī(v)

]
+ t

]
≤ exp

(
−t

2`(L)

18κ2

)
. (EC.21)

We also note that

E

[∑
v∈VL

d(v)Ī(v)

]
≤
∑
v∈VL

exp (−p(v)`(L)) d̄(v)≤ e−c1
∑
v∈VL

d̄(v)≤ e−c1. (EC.22)

Let t= 1
9
− e−4 ≤ δ

3
− e−c1. By (EC.22) and (EC.21), we have that

Pr

[∑
v∈VL

d(v)Ī(v)≥ δ/3

]
≤Pr

[∑
v∈VL

d(v)Ī(v)≥E

[∑
v∈VL

d(v)Ī(v)

]
+ t

]

≤ exp

(
−c4`(L)

κ2

)
, (EC.23)

where the absolute constant c4 = 0.00550≤ t2

18
=

( 1
9
−e−4)

2

18
. 2

EC.4.3. A lower bound for W p
L,2

We prove a counterpart of Lemma 9 for the term W p
L,2, which is needed for proving

Lemma 4.

Lemma EC.2. For any fixed L⊆U ,

Pr
[
W p

L,2 ≥ δ
]
≤ exp

(
−c6`(L)

κ2

)
, (EC.24)

where δ= 1/3 and the absolute constant c6 = 0.00826.

Proof of Lemma EC.2. We use the same technique for proving Lemma 9 to prove

Lemma EC.2. By Proposition EC.3 (treating p(v) as a constant random variable), we know

that p(v)Ī(v) are independent sub-Gaussian random variables with the variance proxy

6p(v)2

ln
(

1
exp(−p(v)`(L))

) =
6p(v)

`(L)
.
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Therefore, W p
L,2 =

∑
v∈VL p(v)Ī(v) is a sub-Gaussian random variable with variance proxy∑

v∈VL

6p(v)

`(L)
≤ 6

`(L)
.

Applying the sub-Gaussian tail bound, we obtain that,

Pr

[∑
v∈VL

p(v)Ī(v)≥E

[∑
v∈VL

p(v)Ī(v)

]
+ t

]
≤ exp

(
−t

2`(L)

12

)
. (EC.25)

We also note that

E
[
W p

L,2

]
=E

[∑
v∈VL

p(v)Ī(v)

]
≤
∑
v∈VL

exp (−p(v)`(L))p(v)≤ e−c1
∑
v∈VL

p(v)≤ e−c1 , (EC.26)

where we used p(v)`(L) > c1 = 4 ln(eκ) by the definition of VL in (24). Let t = 1
3
− 1

e4
≤

δ− e−c1 = 1
3
− exp(−4 ln(eκ)). By (EC.25) and (EC.26), we have that

Pr

[∑
v∈VL

p(v)Ī(v)≥ τ

]
≤Pr

[∑
v∈VL

p(v)Ī(v)≥E

[∑
v∈VL

p(v)Ī(v)

]
+ t

]
≤ exp

(
−c6`(L)

κ2

)
,

(EC.27)

where absolute constant c6 = 0.00826≤ t2

12
=

( 1
3
− 1

e4 )
2

12
. 2

EC.5. Proof of Lemma 10

Lemma 10 (restated). For α ≥ 7n̄ ln(2/ζ) with ζ ≥ ε
2κ

and sufficiently large m with

m
ln n̄
≥ 6

ζ
, we have ∑

L:q(L)≥ζ

exp (−αq(L))≤ n̄−3.

Proof of Lemma 10. To prove this, we argue that it suffices to prove a stronger inequal-

ity ∑
L⊆U

exp(q(L)n̄) · exp(−αq(L))≤ n̄−3 · exp (ζn̄) (EC.28)

To see why (EC.28) implies the result in the lemma statement,

LHS of (EC.28)≥
∑

L:q(L)≥ζ

exp(q(L)n̄) · exp(−αq(L))≥ exp(ζn̄)
∑

L:q(L)≥ζ

exp(−αq(L)),

and it follows from (EC.28) that∑
L:q(L)≥ζ

exp(−αq(L))≤ n̄−3.
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as desired.

Now we prove (EC.28). Using the binomial expansion theorem and the fact that q(L) =∑
u∈L q(u) we can decompose the LHS of (EC.28) as follows,

∑
L⊆U

exp(q(L)n̄) · exp(−αq(L)) =
∑
L⊆U

∏
u∈L

exp(q(u)n̄) · exp(−αq(u))

=
∏
u∈U

(1 + exp(q(u)n̄) · exp(−αq(u))) . (EC.29)

Therefore, since α≥ 7n̄ ln(4κ/ε)≥ 6n̄ ln(4κ/ε) + n̄ and ζ ≥ ε
2κ

, we have that

1 + exp(q(u)n̄) · exp(−αq(u))≤ 1 + exp(−6n̄ ln(2/ζ)q(u))

≤ 1 + exp(− ln(2/ζ)) = 1 + ζ/2≤ exp (ζ/2) ,

where the second inequality is by the fact that q(u)≥ 1
nq
· 1

5m
≥ 1

6m
≥ 1

6n̄
since Proposition 1

and n̄≥m.

Since m is sufficiently large ( m
ln n̄
≥ 6

ζ
), we have that

ζ/2≤ ζ − 3 ln n̄

m
,

and therefore, we altogether we have

RHS of (EC.29)≤
∏
u∈U

exp

(
ζ

2

)
≤
∏
u∈U

exp

(
ζ − 3 ln n̄

m

)
= n̄−3 · exp (ζm)≤ n̄−3 · exp (ζn̄) .

We have proved (EC.28) and therefore the whole lemma. 2

EC.6. Some Analysis and Probability Tools

Proposition EC.1. For any real t≤ x≤ 0, ex ≤ 1 + et−1
t
·x.

Proof of Proposition EC.1. Consider function f(x) = ex−1− et−1
t
·x, we have that f(x)

is convex. Therefore the maximum value is achieved at the boundary. Therefore we have

that f(x)≤max{f(0), f(t)}= 0 for all x∈ [t,0]. 2

Proposition EC.2. Suppose x1, x2, . . . , xz ≥ 0. For every α≤ 0, we have

z∑
i=1

xi exp(αxi)≤

(
z∑
i=1

xi

)
exp

(
α

z

z∑
i=1

xi

)
.

Proof of Proposition EC.2. This proposition can be proved by a straightforward appli-

cation of Jensen’s inequality. 2
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Theorem EC.1 (Chernoff Bound). Suppose X1,X2, . . . ,Xn are independent random

variables taking values in {0,1}. Let X denote their sum and let µ=E[X] denote the sum’s

expected value. Then for any δ ∈ (0,1),

Pr[X ≥ (1 + δ)µ]≤ exp

(
−δ

2µ

3

)
and Pr[X ≤ (1− δ)µ]≤ exp

(
−δ

2µ

2

)
.

A simple corollary of Theorem EC.1 is as follows.

Corollary EC.3. Suppose X1,X2, . . . ,Xn are independent random variables taking val-

ues in [0,M ]. Let X denote their sum and let µ= E[X] denote the sum’s expected value.

Then for any δ ∈ (0,1),

Pr[X ≥ (1 + δ)µ]≤ exp

(
− δ

2µ

3M

)
and Pr[X ≤ (1− δ)µ]≤ exp

(
− δ

2µ

2M

)
.

Theorem EC.2 (Bernstein’s inequality (Bennett 1962)). Let x1, . . . , xn be indepen-

dent variables with finite variance σ2
i = V[xi] and bounded by M so that |xi−E[xi]| ≤M .

Let σ2 =
∑

i σ
2
i . Then we have

Pr

[∣∣∣∣∣
n∑
i=1

xi−E

[
n∑
i=1

xi

]∣∣∣∣∣> t
]
≤ 2 exp

(
− t2

2σ2 + 2
3
Mt

)
.

Proposition EC.3. Suppose random variable X = I ·D, where I and D are independent

random variables such that I ∈ {0,1}, b = Pr[I = 1] ≤ e−2, and D has the property that

0 ≤D ≤ κED with κ ≥ 1. Let d̄ = ED. Then X is sub-Guassian with the variance proxy

6κ2d̄2

ln 1
b

.

Proof of Proposition EC.3. We prove that X satisfies the ψ2-condition, i.e. that

E[exp (a2(X −EX)2)]≤ 2 for a2 = ln 1/b

2κ2d̄2 . Let EX = µ. We have that µ= b · d̄≤ d̄, and thus

|D−µ| ≤ κED= κd̄. For b≤ e−2, we have

E[exp
(
a2(X −µ)2

)
] = (1− b) exp(a2µ2) + bE[exp(a2(D−µ)2))]

≤ (1− b) exp(a2b2d̄2) + b exp(a2κ2d̄2)

≤ (1− b) exp

(
1

2
b2 ln

(
1

b

))
+ b exp

(
1

2
ln

(
1

b

))
≤ 2.

Therefore, X is a sub-Gaussian random variable with the variance proxy

3

a2
=

6κ2d̄2

ln 1
b

. �
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The following property of negative associated random variables can be found in e.g.

Joag-Dev and Proschan (1983).

Proposition EC.4. Let X1,X2, . . . ,Xn and Y1, Y2, . . . , Yn be two independent sets of neg-

ative associated random variables. Then X1Y1,X2Y2, . . . ,XnYn are negative associated.

Proposition EC.5. Let X1,X2, . . . ,Xn be negative associated. Then for every real number

λ,

E expλ
n∑
i=1

Xi ≤
n∏
i=1

E expλXi.

Proof of Proposition EC.5. When λ≥ 0, since expλ(X1 +X2 + · · ·+Xn−1) and expλXn

are non-decreasing functions, we have

E expλ
n∑
i=1

Xi ≤

(
E expλ

n−1∑
i=1

Xi

)
(E expλXn) .

By induction on we know that

E expλ
n−1∑
i=1

Xi ≤
n−1∏
i=1

E expλXi.

Therefore

E expλ
n∑
i=1

Xi ≤

(
n−1∏
i=1

E expλXi

)
(E expλXn) =

n∏
i=1

E expλXi.

When λ < 0, by Proposition EC.4 we know that −X1,−X2, . . . ,−Xn are also negative

associated. Therefore

E expλ
n∑
i=1

Xi =E exp(−λ)
n∑
i=1

(−Xi)≤
n∏
i=1

E expλXi.

2

As a corollary of Proposition EC.5, many concentration inequalities for sum of indepen-

dent random variables also hold for negative associated random variables.

Corollary EC.4. Chernoff Bound (Theorem EC.1, Corollary EC.3) and Bernstein’s

inequality (Theorem EC.2) hold for negative associated random variables.

Proof sketch. In the standard proofs of these inequalities (e.g. Alon and Spencer (2004),

Bennett (1962)), the only place that used the independence of random variables is the

equality

E expλ

n∑
i=1

Xi =

n∏
i=1

E expλXi,
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for every real number λ. One can replace the inequality by the inequality shown in Propo-

sition EC.5 and the proofs still go through. 2

Similarly, we have the following corollary.

Corollary EC.5. Let X1,X2, . . . ,Xn be negative associated sub-Gaussian random vari-

ables with variance proxies σ2
1, σ

2
2, . . . , σ

2
n. Then X1 + X2 + · · · + Xn is a sub-Gaussian

random variable with variance proxy σ2
1 +σ2

2 + · · ·+σ2
n.

EC.7. Additional Experiments

In this section, we provide more experiments to compare the effectiveness of the TPC and

the WPC. Instead of using the two level supplies as in Section 3.3 in the main paper, we

study the cases where mean supplies and demands change more smoothly. In particular,

we consider the following two setups:

1. The mean supplies ({s̄(u)}u∈U) and mean demands ({d̄(v)}v∈V ) are generated from

a power law. In particular, we generate the mean supplies and demands from a Pareto

distribution with the scale parameter 1 and shape parameter β ∈ {0.5,1,1.5} (Newman

2004) (see Figure 1(a)). We further truncate excessively large mean supplies and demands

to 50, which makes the setting more realistic. In fact, the TPC leads to even more significant

improvement over the WPC when there is no truncation (since the mean supplies and

mean demands will become more heterogeneous).

2. The mean supplies ({s̄(u)}u∈U) and mean demands ({d̄(v)}v∈V ) are generated from

the uniform distribution on [0,1].

Given the mean supplies ({s̄(u)}u∈U) (and mean demands ({d̄(v)}v∈V ), we normalize

them so that the sum of the mean supplies (and the mean demands) is 1. We adopt the

same experimental setup as in Section 3.3 in the main text. In particular, the m = 100

supplies are deterministic which take the values of mean supplies, and the n= 100 demands

follow i.i.d. two-point distributions.

As one can see from Figure EC.1, the TPC outperforms the WPC when the mean

supplies and demands follow a Pareto distribution. When the shape parameter β becomes

smaller, the corresponding Pareto distribution is more heavy-tailed, which leads to more

heterogeneous supplies and demands. In such a case, the improvement of the TPC over the

WPC is more significant. The maximum flow of the TPC achieves more than 99% of the

maximum flow of the full flexibility when the average degree γ is around 10. The Figure
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(b) β = 0.5
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(c) β = 1
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(d) β = 1.5

Figure EC.1 In (a), we plot the densities of Pareto distributions with different shape parameters β. In (b)-(d),

we present the comparison between the WPC and the TPC when the mean supplies and demands

follow the Pareto distribution with different shape parameters (with a truncation at the value 50).

The x-axis is the average degree γ, which varies from 5 to 30. The y-axis the averaged ratios between

the maximum flow of the design G and that of the full flexibility F (the larger the better). Each

ratio plotted in the graph is averaged over 100 random graphs for a given γ and 1,000 demand

realizations.

EC.2 illustrates the performance comparison between the TPC over the WPC when the

mean supplies and demands are drawn from the uniform distribution.
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Figure EC.2 We present the comparison between the WPC and the TPC when the mean supplies and demands

follow the uniform distribution on [0,1]. The x-axis is the average degree γ, which varies from 5 to

30. The y-axis the averaged ratios between the maximum flow of the design G and that of the full

flexibility F (the larger the better). Each ratio plotted in the graph is averaged over 100 random

graphs for a given γ and 1,000 demand realizations.
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