
ar
X

iv
:1

60
5.

09
34

9v
1 

 [
m

at
h.

O
C

] 
 3

0 
M

ay
 2

01
6

Recovering Best Statistical Guarantees via the
Empirical Divergence-based Distributionally Robust

Optimization

Henry Lam
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, khlam@umich.edu

We investigate the use of distributionally robust optimization (DRO) as a tractable tool to recover the

asymptotic statistical guarantees provided by the Central Limit Theorem, for maintaining the feasibility of an

expected value constraint under ambiguous probability distributions. We show that using empirically defined

Burg-entropy divergence balls to construct the DRO can attain such guarantees. These balls, however, are

not reasoned from the standard data-driven DRO framework since by themselves they can have low or even

zero probability of covering the true distribution. Rather, their superior statistical performances are endowed

by linking the resulting DRO with empirical likelihood and empirical processes. We show that the sizes of

these balls can be optimally calibrated using χ2-process excursion. We conduct numerical experiments to

support our theoretical findings.

Key words : distributionally robust optimization, empirical likelihood, empirical process, chi-square

process, central limit theorem

1. Statistical Motivation of Distributionally Robust Optimization

We consider an expected value constraint in the form

Z0(x) :=E0[h(x; ξ)]≤ 0 (1)

where ξ ∈ Ξ is a random object under the probability measure P0, E0[·] denotes the corresponding
expectation, x∈Θ⊂Rm is the decision variable, and h is a known function. The generic constraint

(1) has appeared in various applications such as resource allocation (Atlason et al. (2004)), risk

management (Krokhmal et al. (2002), Fábián (2008)), among others.

In practice, the probability measure P0 is often unknown, but rather is observed via a finite col-

lection of data. Such uncertainty has been considered in the stochastic and the robust optimization

literature. Our main goal in this paper is to investigate, in a statistical sense, the best data-driven

reformulation of (1) in terms of feasibility guarantees.

1.1. Initial Attempt: Sample Average Approximation

To define what “best” means, we start by discussing arguably the most natural attempt for handling

(1), namely the sample average approximation (SAA) (Shapiro et al. (2014), Wang and Ahmed
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2 Henry Lam: Statistical Guarantees via the Empirical DRO

(2008), Kleywegt et al. (2002)). Suppose we have i.i.d. data ξ1, . . . , ξn. SAA entails replacing the

unknown expectation Z0(x) with the sample average (1/n)
∑n

i=1 h(x; ξi), leading to

ĥ(x) :=
1

n

n∑

i=1

h(x; ξi)≤ 0 (2)

The issue with naively using SAA in this setting is that a solution feasible according to (2) may be

mistakeably infeasible for (1). Since for any x the true mean Z0(x) can lie above or below its sample

average, both with substantial probabilities, the x’s close to the boundary of the feasible region

according to (2) could, with overwhelming probabilities, be infeasible for the original constraint

(1). Consequently, the probability

P
(
ĥ(x)≤ 0 ⇒ Z0(x)≤ 0

)

where P is with respect to the generation of data, can be much lower than an acceptable level.

One way to boost the confidence of SAA is to insert a margin, namely by using the constraint

ĥ(x)+ ǫn ≤ 0 (3)

This idea has appeared in various contexts (e.g., Wang and Ahmed (2008), Nagaraj and Pasupathy

(2014)). Choosing ǫn > 0 suitably can guarantee that

P
(
ĥ(x)+ ǫn ≤ 0 ⇒ Z0(x)≤ 0

)
≥ 1−α (4)

where 1−α is a prescribed confidence level chosen by the modeler (a typical choice is α= 0.05).

This is achieved by finding ǫn such that

P
(
Z0(x)≤ ĥ(x)+ ǫn for all x∈Θ

)
≥ 1−α (5)

Such a choice of ǫn can be obtained in terms of the maximal variance of h(x; ξ) over all x∈Θ, and

other information such as the diameter of the space Θ (e.g., Wang and Ahmed (2008) provides one

such choice).

1.2. The Statistician’s Approach: Confidence Bounds from the Central Limit Theorem

Though (5) could provide a good feasibility guarantee, the use of one single number ǫn as the

margin adjustment may unnecessarily penalize x whose h(x; ξ) bears only a small variation. From

a “classical statistician”’s viewpoint, we adopt a margin adjustment that takes into account the

variability of h(x; ξ) at each point of x, and at the same time provides a 1−α confidence guarantee,

by formulating the constraint as

ĥ(x)+ z
σ̂(x)√

n
≤ 0 (6)
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where z is the critical value of a suitable sampling distribution, and σ̂(x) is an estimate of
√
V ar0(h(x; ξ)) (V ar0(·) denotes the variance under P0), i.e., σ̂(x)/

√
n is the standard error. A

judicious choice of z can lead to the asymptotically exact guarantee

lim
n→∞

P

(
Z0(x)≤ ĥ(x)+ z

σ̂(x)√
n

for all x∈Θ

)
= 1−α (7)

Without making further assumption on the optimization objective, we set the reformulation (6)

and the guarantee (7) as our benchmark in this paper, since they stem from the central limit

theorem (CLT) widely used in statistics.

The problem with directly using (6) is that (sample) standard deviation is not a tractability-

preserving operation, e.g., σ̂(x) may not be convex in x even though the function h(x; ξ) is. Thus

the constraint (6) can be intractable despite that (1) is tractable. This motivates the investigation

of a distributionally robust optimization (DRO) approach, namely, by using

max
P∈U

EP [h(x; ξ)]≤ 0 (8)

where EP [·] denotes the expectation under P , and U := U(ξ1, . . . , ξn) is an uncertainty set (also

known as ambiguity set), calibrated from data, that contains a collection of distributions. As

documented in many previous work (e.g., Delage and Ye (2010), Ben-Tal et al. (2013)), (8) can

be made tractable by suitably choosing U . One central question in this paper is to ask:

Is there a tractable choice of U that can recover the statistician’s asymptotically exact guarantee,

namely

lim
n→∞

P
(
Z0(x)≤max

P∈U
EP [h(x; ξ)] for all x∈Θ

)
= 1−α (9)

and that

max
P∈U

EP [h(x; ξ)]≈ ĥ(x)+ z
σ̂(x)√

n
? (10)

1.3. Data-driven Distributionally Robust Optimization and Statistically “Good” Uncertainty

Sets

To answer the above question, let us first revisit the common argument in the literature of data-

driven DRO. To facilitate discussion, we call an uncertainty set U statistically “good” if it allows

lim inf
n→∞

P
(
Z0(x)≤max

P∈U
EP [h(x; ξ)] for all x∈Θ

)
≥ 1−α (11)

In contrast, a statistically “best” uncertainty set in the sense of (9) sharpens the inequality in (11)

to equality.
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The data-driven DRO framework provides a general methodology in guaranteeing (11). First,

one calibrates an uncertainty set U from data so that it contains the true distribution with prob-

ability 1−α, namely P (P0 ∈U)≥ 1−α. Note that since P0 ∈ U implies that Z0(x) =E0[h(x; ξ)]≤
maxP∈U EP [h(x; ξ)] for all x, we have

P
(
Z0(x)≤max

P∈U
EP [h(x; ξ)] for all x∈Θ

)
≥ P (P0 ∈U)≥ 1−α (12)

Similarly, a set U constructed with the asymptotic property lim infn→∞P (P0 ∈U)≥ 1−α guaran-

tees that (11) holds and, in fact, so is the stronger guarantee

lim inf
n→∞

P
(
min
P∈U

EP [h(x; ξ)]≤Z0(x)≤max
P∈U

EP [h(x; ξ)] for all x∈Θ
)
≥ 1−α

Thus, good uncertainty sets can be readily created as confidence regions for P0. Con-

structing these confidence regions and their tractability have been substantially investi-

gated. A non-exhaustive list includes moment and deviation-type constraints (Delage and Ye

(2010), Goh and Sim (2010), Wiesemann et al. (2014)), Wasserstein balls (Esfahani and Kuhn

(2015), Gao and Kleywegt (2016)), φ-divergence balls (Ben-Tal et al. (2013)), likelihood-based

(Wang et al. (2015)) and goodness-of-fit-based regions (Bertsimas et al. (2014)). Recently, Gupta

(2015) further investigates the smallest of such confidence regions as a baseline to measure the

degree of conservativeness of a given uncertainty set.

1.4. Our Contributions

Despite the availability of all the good uncertainty sets, finding the statistically best one in the

sense of (9) has not been addressed in the literature. In this paper, we construct an uncertainty

set that is close to the best (the meaning of “close to” will be apparent in our later exposition) by

leveraging one of the good sets, namely the Burg-entropy divergence ball.

Intriguingly, the way we construct these balls, and the associated statistical explanation, is com-

pletely orthogonal to the standard data-driven DRO framework discussed above. These balls are

empirically defined (as we will explain in detail) and do not have any interpretation as confidence

regions by themselves. In fact, they have low, or even zero, probability of covering the true distri-

bution. Yet the resulting DRO has the best statistical performances among all DRO formulations.

This disentanglement between set coverage and ultimate performance can be explained by a dual-

ity relation between our resulting DRO and the empirical likelihood theory, a connection that has

been briefly discussed in a few previous work (e.g., Wang et al. (2015), Lam and Zhou (2015)) but

not been fully exploited as far as we know.

Importantly, through setting up such a connection, we study optimal calibration of the sizes

of these sets by using a generalization of χ2-quantiles that involves the excursion of so-called
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χ2-processes. As a by-product, our proposed method also resolves some technical challenges

reported in the previous literature in calibrating divergence balls (e.g., Jiang and Guan (2012),

Esfahani and Kuhn (2015)). More precisely, since divergence is only properly defined between abso-

lutely continuous distributions, it has been suggested, in the case of continuous distributions, that

one needs to construct the ball using kernel estimation of density and the divergence, which is

statistically challenging, or resorting to a parametric framework. The approach we take here, on

the other hand, bypasses these issues.

To summarize, our main contributions of this paper are:

1. We systematically build an uncertainty set that, in a precise sense, is close to recovering the

guarantees (9) and (10) provided by the CLT.

2. In doing so, we expand the view on the meaning of uncertainty sets beyond the notion of

confidence regions, by showing that our empirical Burg-entropy divergence ball recovers the best

guarantees despite being a low or zero-coverage set. This is achieved through connecting the dual

of the resulting DRO with the empirical likelihood theory.

3. To achieve our claimed guarantees, we study an approach to optimally calibrate the sizes of

these balls using quantiles of χ2-process excursion.

4. As a by-product, our approach resolves the technical difficulties in enforcing absolute continuity

when calibrating divergence balls that are raised in previous works in data-driven DRO.

Finally, while the viewpoint taken by this paper is primarily statistical, we mention that there are

other valuable perspectives in the DRO literature motivated from risk or tractability considerations

(see, e.g., the survey Gabrel et al. (2014)); these are, however, beyond the scope of this work.

The rest of this paper is organized as follows. Section 2 motivates our proposed uncertainty

sets. Section 3 presents methods to calibrate their sizes and the theoretical explanation of their

statistical performances. Section 4 shows results of our numerical experiments. Section 5 concludes

and discusses future directions. Section A provides all the proofs. Appendices B and C list some

auxiliary concepts and theorems.

2. Towards the Empirical DRO

We first review some background in divergence-based inference and how to use it to create confi-

dence regions for probability distributions in Section 2.1. Through a preliminary numerical inves-

tigation in Section 2.2, we motivate and present, in Section 2.3, the empirical divergence ball as

our main tool.

2.1. Divergence-based Inference and Confidence Regions

A φ-divergence ball is in the form

U = {P ∈PQ :Dφ(P,Q)≤ η} (13)
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where

Dφ(P,Q) =

∫
φ

(
dP

dQ

)
dQ

for some baseline distribution Q and suitable function φ(·), and dP/dQ is the likelihood ratio given

by the Radon-Nikodym derivative between P and Q. The latter is well-defined only for P within

PQ, the set of all distributions absolutely continuous with respect to Q. The function φ :R+ →R

is convex and satisfies φ(1) = 0.

Suppose the random variable ξ lies on a finite discrete support {s1, . . . , sk}. One way to construct

a statistically good divergence ball is as follows (Ben-Tal et al. (2013)). Set the baseline distribution

as the histogram of the i.i.d. data given by p̂ = (p̂i)i=1,...,k, where p̂i = ni/n, ni is the counts on

support si, and n is the total sample size. The divergence ball (13) can be written as

U = {p ∈Pp̂ :Dφ(p, p̂)≤ η}

=

{
(p1, . . . , pk) :

k∑

i=1

p̂iφ

(
pi
p̂i

)
≤ η,

k∑

i=1

pi = 1, pi ≥ 0 for all i= 1, . . . , k

}
(14)

Under twice continuous differentiability condition on φ, the theory of divergence-based inference

(Pardo (2005)) stipulates that

2n

φ′′(1)
Dφ(p, p̂)⇒ χ2

k−1 as n→∞

where χ2
k−1 is the χ2-distribution with degree of freedom k − 1, and “⇒” denotes convergence

in distribution. This implies that taking η = φ′′(1)

2n
χ2
k−1,1−α in (14), where χ2

k−1,1−α is the 1 − α

quantile of χ2
k−1, forms an uncertainty set U that contains the true distribution with probability

asymptotically 1−α. This in turn implies that U is a good uncertainty set satisfying (11).

For instance, φ(x) = (x − 1)2 yields the χ2-distance, and setting η at χ2
k−1,1−α/n results in

the confidence region associated with the standard χ2 goodness-of-fit test for categorical data

(Agresti and Kateri (2011)). On the other hand, φ(x) =− logx+x−1 yields the Burg-entropy (or

the Kullback-Leibler) divergence (Kullback and Leibler (1951)), and η in this case should be set

at χ2
k−1,1−α/(2n). Since the Burg-entropy divergence is important in our subsequent discussion, for

convenience, we denote its divergence ball as

UBurg =

{
(p1, . . . , pk) :−

k∑

i=1

p̂i log
pi
p̂i

≤
χ2
k−1,1−α

2n
,

k∑

i=1

pi = 1, pi ≥ 0 for all i= 1, . . . , k

}
(15)

From the discussion above, UBurg is a good uncertainty set and moreover satisfies

lim
n→∞

P (P0 ∈UBurg) = 1−α (16)

for a finite discrete true distribution P0.
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The computational tractability of divergence balls has been studied in depth in Ben-Tal et al.

(2013), who reformulate maxP∈U EP [h(x; ξ)] in terms of the conjugate function of φ and propose

efficient optimization algorithms. Because of this we will not drill further on tractability and instead

refer interested readers therein.

2.2. An Initial Numerical Investigation on Coverage Accuracy

To get a sense of the coverage performance provided by UBurg, we run an experiment on estimating

Z0(x) =E0[h(x; ξ)], where we set h as

h(x; ξ) =−vmin(x, ξ)− s(x− ξ)++ l(ξ−x)++ cx+ ρ (17)

with v=10, s=5, l= 4, c= 3, and ρ= 40. This function h is adapted from the example in Section

6.3 in Ben-Tal et al. (2013). As an application, (17) can represent the loss amount in excess of the

threshold ρ for a newsvendor. In this case, v is the selling price per unit, s the salvage value per

unit, l the shortage cost per unit, c the cost per unit, ξ a random demand, and x the quantity to

order.

For now, let us fix the solution at x= 30 (so it is purely about estimating Z0(30)). We set the

random variable ξ as an exponential random variable with mean 20 that is discretized uniformly

over a k-grid on the interval [0,50], or more precisely,

P
(
ξ= 50j

k

)
=P

(
50(j−1)

k
<Exp

(
1
20

)
< 50j

k

)
for j = 1, . . . , k− 1

P (ξ = 50)= P
(
Exp

(
1
20

)
> 50(k−1)

k

) (18)

We repeat 1,000 times:

1. Simulate n i.i.d. data ξ1, . . . , ξn from the k-discretized Exp(1/20).

2. Construct UBurg, and compute minp∈UBurg
Ep[h(x; ξ)] and maxp∈UBurg

Ep[h(x; ξ)] with α =

0.05.

3. Output I
(
minp∈UBurg

Ep[h(x; ξ)]≤Z0(x)≤maxp∈UBurg
Ep[h(x; ξ)]

)
, where Z0(x) is the true

quantity calculable in closed-form, and I(·) is the indicator function.

We then output the point estimate and the 95% confidence interval (CI) of the coverage probability

from the 1,000 replications.

Step 2 above is carried out by using duality and numerically solving

min
p∈UBurg

Ep[h(x; ξ)] = max
λ≥0,γ

n∑

i=1

λ

n
log

(
1− −h(ξi)+ γ

λ

)
−λη+ γ

max
p∈UBurg

Ep[h(x; ξ)] = min
λ≥0,γ

−
n∑

i=1

λ

n
log

(
1− h(ξi)+ γ

λ

)
+λη− γ

where −0 log(1− t/0) := 0 for t≤ 0 and −0 log(1− t/0) :=∞ for t > 0 (see Ben-Tal et al. (2013)).
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Table 1a shows the estimates of coverage probabilities for different support size k. The sample

size for ξ is n= 30. The coverage probabilities are all greater than 95%, showing correct statistical

guarantees. However, more noticeable is that they are all higher than 99%, and are consistently close

to 100% for k=10 or above, thus leading to severe over-coverage. Note that this phenomenon occurs

despite that UBurg has asymptotically exactly 1−α probability of covering the true distribution as

guaranteed in (16).

k Cover. 95% C.I. of
Prob. Cover. Prob.

5 99.6% (99.3%, 99.9%)
10 100.0% (100.0%, 100.0%)
15 100.0% (100.0%, 100.0%)
20 100.0% (100.0%, 100.0%)

(a) DRO with Burg-ball of size

χ2
k−1,0.95/(2n)

k Cover. 95% C.I. of
Prob. Cover. Prob.

5 94.5% (93.3%, 95.7%)
10 95.0% (94.0%, 96.2%)
15 95.3% (94.2%, 96.4%)
20 94.8% (93.7%, 96.0%)

(b) Standard CLT

k Cover. 95% C.I. of
Prob. Cover. Prob.

5 94.1% (92.9%, 95.3%)
10 94.4% (93.2%, 95.6%)
15 95.4% (94.3%, 96.5%)
20 95.3% (94.2%, 96.4%)

(c) DRO with Burg-ball of size

χ2
1,0.95/(2n)

Table 1 Coverage probabilities for different methods and support sizes for discrete distributions

As a comparison, we repeat the experiment, but this time checking the coverage of the standard

95% CI generated from the CLT
[
ĥ(30)− z1−α/2

σ̂(30)√
n

, ĥ(30)+ z1−α/2

σ̂(30)√
n

]

where ĥ(x) = 1
n

∑n

i=1 h(x; ξi), σ̂
2(x) = 1

n−1

∑n

i=1(h(x; ξi)− h̄)2, and z1−α/2 is the (1−α/2)-quantile

of standard normal distribution. Table 1b shows that, unlike data-driven DRO, the coverage proba-

bilities are now very close to 95%, regardless of the values of k. This result is, of course, as predicted

by the CLT.

To investigate the source of inferiority in the data-driven DRO approach, we shall interpret

the degree of freedom in the χ2-distribution from another angle: In maximum likelihood theory

(Cox and Hinkley (1979)), the degree of freedom in the limiting χ2-distribution of the so-called log-

likelihood ratio is equal to the number of effective parameters to be estimated. In our experiment,

this number is one, because we are only interested in estimating a single quantity Z0(30). Indeed,

Table 1c shows that the coverage probabilities of DRO, using the quantile of χ2
1 instead of χ2

k−1,

are equally competitive as the CLT approach. This motivates us to propose our key definition of

uncertainty set next.

2.3. The Empirical Divergence Ball

Given i.i.d. data ξ1, . . . , ξn, we define the empirical Burg-entropy divergence ball as

Un(η) =

{
w= (w1, . . . ,wn) :−

1

n

n∑

i=1

log(nwi)≤ η,
n∑

i=1

wi =1, wi ≥ 0 for all i= 1, . . . , n

}
(19)
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where w is the probability weight vector on the n support points from data (some possibly with the

same values). The set (19) is well-defined whether the distribution of ξ is discrete or continuous.

It is a Burg-entropy divergence ball centered at the empirical distribution, with radius η > 0,

pretending that the support of the distribution is solely on the data. For convenience, we call the

corresponding DRO over the empirical divergence ball as the empirical DRO.

The discussion in Section 2.2 suggests to put η= χ2
1,1−α/(2n). One intriguing observation is that

Un(χ
2
1,1−α/(2n)) under-covers the true probability distribution. This can be seen by noting that,

in the discrete case, Un(χ
2
1,1−α/(2n)) is equivalent to UBurg except that χ2

k−1,1−α in its definition

is replaced by χ2
1,1−α (see Proposition 1 later). Since UBurg is asymptotically exact in providing

1 − α coverage for the true distribution, and that χ2
1,1−α < χ2

k−1,1−α, Un(χ
2
1,1−α/(2n)) must be

asymptotically under-covering. What is more, in the continuous case, the empirical distribution is

singular with respect to the true distribution. Thus Un(χ
2
1,1−α/(2n)) has as low as zero coverage.

Clearly, the performance of the empirical uncertainty set cannot be reasoned using the standard

data-driven DRO framework discussed in Section 1.3.

We close this section with Table 2, which shows additional experimental results for the same

example as above, this time the data being generated from the continuous distribution Exp(1/20).

As we can see in Table 2a, the coverages using Un(χ
2
1,1−α/(2n)) are maintained at close to 95%

when n=40 or above. As a comparison, Table 2b shows that the standard CLT performs similarly

as the empirical DRO (except that it tends to over-cover instead of under-cover when n is small).

Note that, unlike the discrete case, there is no well-defined choice of k in this setting.

n Cover. 95% C.I. of
Prob. Cover. Prob.

20 91.9% (90.5%, 93.3%)
30 92.8% (91.5%, 94.1%)
50 94.5% (93.3%, 95.7%)
80 94.4% (93.2%, 95.6%)

(a) Empirical DRO with ball size χ2
1,0.95/(2n)

n Cover. 95% C.I. of
Prob. Cover. Prob.

20 96.1% (95.1%, 97.1%)
30 96.4% (95.4%, 97.4%)
50 94.3% (93.1%, 95.5%)
80 96.4% (95.4%, 97.4%)

(b) Standard CLT

Table 2 Coverage probabilities for different methods and sample sizes for continuous distributions

3. Statistical Guarantees

We present our theoretical justification in two subsections. Section 3.1 first connects the dual of

the empirical DRO with the empirical likelihood (EL) method. Sections 3.2, 3.3 and 3.4 elaborate

this connection to develop the calibration method for the radius η in the empirical divergence ball,

via estimating the excursion of χ2-processes. We defer all proofs to Appendix A.

Throughout our exposition, “⇒” denotes weak convergence (or convergence in distribution),

“a.s.” abbreviates “almost surely”, and “ev.” abbreviates “eventually”.
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3.1. The Empirical Likelihood Method

The EL method, first proposed by Owens (Owen (1988, 2001)), can be viewed as a nonparametric

counterpart of maximum likelihood theory. Given a set of i.i.d. data ξ1, . . . , ξn, one can view the

empirical distribution, formed by putting probability weight 1/n on each data point, as a nonpara-

metric maximum likelihood in the following sense. We define the nonparametric likelihood of any

distributions supported on the data as
n∏

i=1

wi (20)

where w = (w1, . . . ,wn) ∈ Pn is any probability vector on {ξ1, . . . , ξn}. Then the likelihood of the

empirical distribution, given by
n∏

i=1

1

n
(21)

maximizes (20). This observation can be easily verified by a simple convexity argument. Moreover,

(21) still maximizes even if one considers other distributions that are not only supported on the

data, since these distributions would have
∑n

i=1wi < 1, making (20) even smaller.

The key of EL is a nonparametric analog of the celebrated Wilks’ Theorem (Cox and Hinkley

(1979)), stating the convergence of the so-called logarithmic likelihood ratio to χ2-distribution. In

the EL framework, the nonparametric likelihood ratio is defined as the ratio between any nonpara-

metric likelihood and the maximum likelihood, given by

n∏

i=1

wi

1/n
=

n∏

i=1

(nwi)

To carry out inference we need to specify a quantity of interest to be estimated. Suppose we are

interested in estimating µ0 =E0[g(ξ)] for some function g(·), where E0[·] is the expectation with

respect to the true distribution generating the data (and similarly, V ar0(·) denotes its variance).

The EL method utilizes the profile nonparametric likelihood ratio

R(µ) =max

{
n∏

i=1

(nwi) :
n∑

i=1

g(ξi)wi = µ,
n∑

i=1

wi = 1, wi ≥ 0 for all i= 1, . . . , n

}
(22)

where the likelihood ratios are “profiled” according to the value of
∑n

i=1 g(ξi)wi. With this defini-

tion, we have:

Theorem 1 (The Empirical Likelihood Theorem; Owen (1988)). Let ξ1, . . . , ξn ∈ Ξ be

i.i.d. data under P0. Let µ0 =E0[g(ξ)]<∞, and assume that 0<V ar0(g(ξ))<∞. Then

− 2 logR(µ0)⇒ χ2
1 as n→∞ (23)

where −2 logR(µ0) is defined as ∞ if there is no feasible solution in defining R(µ0) in (22).
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The degree of freedom 1 in the limiting χ2-distribution in (23) counts the number of effective

parameters, which is only µ0 in this case.

Phrasing in terms of our problem setup, we define

R(x;Z) =max

{
n∏

i=1

(nwi) :
n∑

i=1

h(x; ξi)wi =Z(x),
n∑

i=1

wi = 1, wi ≥ 0 for i= 1, . . . , n

}
(24)

and hence

−2 logR(x;Z)

= min

{
−2

n∑

i=1

log(nwi) :
n∑

i=1

h(x; ξi)wi =Z(x),
n∑

i=1

wi = 1, wi ≥ 0 for all i= 1, . . . , n

}

From Theorem 1, we conclude P (−2 logR(x;Z0) ≤ χ2
1,1−α)→ 1− α as n→∞ for a fixed x. The

important implication of Theorem 1 arises from a duality relation between −2 logR(x;Z0) and the

optimal values of the empirical DRO, in the sense that −2 logR(x;Z0)≤ κ if and only if

min
w∈Un(κ/(2n))

n∑

i=1

h(x; ξi)wi ≤Z0(x)≤ max
w∈Un(κ/(2n))

n∑

i=1

h(x; ξi)wi

where Un(η) is the empirical divergence ball defined in (19). This implies:

Theorem 2. Fix x ∈ Θ, and let ξ1, . . . , ξn ∈ Ξ be i.i.d. data under P0. Assume that 0 <

V ar0(h(x; ξ))<∞, and Z0(x) =E0[h(x; ξ)]<∞. We have

lim
n→∞

P
(
Zn(x)≤Z0(x)≤Zn(x)

)
=1−α (25)

where

Zn(x) = min
w∈Un(χ2

1,1−α
/(2n))

n∑

i=1

h(x; ξi)wi (26)

Zn(x) = max
w∈Un(χ2

1,1−α
/(2n))

n∑

i=1

h(x; ξi)wi (27)

Next, we argue that, in the discrete case, the empirical DRO given by Zn(x) and Zn(x) reduces to

the standard divergence-based DRO given by max/minp∈UBurg
Ep[h(x; ξ)], except that the degree

of freedom in the χ2-quantile is replaced by 1. This explains the experimental results in Section

2.2.

Proposition 1. Fix x ∈Θ. When ξ is discrete on the support set {s1, . . . , sk}, Zn(x) and Zn(x)

defined in (26) and (27) are equal to minp∈U ′

Burg
Ep[h(x; ξ)] and maxp∈U ′

Burg
Ep[h(x; ξ)] respectively,

where

U ′
Burg =

{
(p1, . . . , pk) :−

k∑

i=1

p̂i log
pi
p̂i

≤
χ2
1,1−α

2n
,

k∑

i=1

pi =1, pi ≥ 0 for all i= 1, . . . , k

}
(28)

and p̂i = ni/n, the proportion of data falling onto si.
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We complement Theorem 2 with a consistency result:

Theorem 3. Under the same conditions in Theorem 2, for any fixed x ∈Θ, both Zn(x)
a.s.→ Z0(x)

and Zn(x)
a.s.→ Z0(x) as n→∞.

We note that, in the data-driven DRO framework, if ξ is continuous, the absolute continuity

condition requires a divergence ball to center at a continuous distribution to have any chance

of containing the true distribution. This observation has been pointed out by several authors

(e.g., Jiang and Guan (2012), Esfahani and Kuhn (2015)) and forces the use of kernel density

estimators to set the baseline. Unless one assumes a parametric framework, calibrating the ball

radius requires nonparametric divergence estimation, which involves challenging statistical analyses

on bandwidth tuning and loss of estimation efficiency (e.g., Moon and Hero (2014), Nguyen et al.

(2007), Pál et al. (2010)). The empirical DRO based on the EL framework cleanly bypasses these

issues.

Our discussion in this subsection is also related to likelihood robust optimization studied in

Wang et al. (2015), which also discusses EL as well as other connections such as Bayesian statistics.

Wang et al. (2015) focuses on finite discrete distributions. The work Lam and Zhou (2015) also

investigates EL, among other techniques like the bootstrap, in constructing confidence bounds for

the optimal values of stochastic programs. However, none of these formalizes the connection, or

more precisely, the disconnection between set coverage and the statistical performance of DRO. As

our next subsection shows, this formalization is important in capturing a statistical price to attain

our best guarantee in (9). This will be our focus next.

3.2. Asymptotically Exact Coverage via χ2-Process Excursion

The discussion so far presumes a fixed x ∈ Θ. Recall in Section 1.3 that, in data-driven DRO,

a confidence region given by U guarantees Z0(x) ≤ maxP∈U EP [h(x; ξ)] with at least the same

confidence level thanks to (12). This guarantee holds regardless of a fixed x or uniformly over all

x ∈Θ. This is because the construction of such confidence regions is completely segregated from

the expected value constraint of interest. In contrast, the statistical performance of our empirical

divergence ball is highly coupled with h, since E0[h(x; ξ)] can be viewed as the parameter we want

to estimate in the EL method. Consequently, the reasoning for Theorem 2 only applies to situations

where x is fixed, and the empirical divergence ball constructed there is not big enough to guarantee

(9), which requires a bound simultaneous for all x∈Θ.

The main result in this section is to explain and to show how, depending on the “complexity”

of h, one can suitably inflate the size of the ball to match a statistical performance close to (9).

We begin our discussion by imposing the following assumptions:
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Assumption 1 (Finite mean). Z0(x) =E0[h(x; ξ)]<∞ for all x∈Θ.

Assumption 2 (Non-degeneracy). infx∈ΘE0|h(x; ξ)−Z0(x)|> 0.

Assumption 3 (L2-boundedness). E0 supx∈Θ |h(x; ξ)−Z0(x)|2 <∞

Assumption 4 (Function complexity). The collection of functions

HΘ = {h(x; ·) : Ξ→R|x∈Θ} (29)

is a P0-Donsker class.

The first three assumptions are mild moment conditions on the quantity h(x; ξ). The last assump-

tion, the so-called Donsker condition, means that the function class HΘ is “simple” enough to

allow the associated empirical process indexed by HΘ to converge weakly to a Brownian bridge

(see Definition 2 in Appendix B).

The following theorem precisely describes the radius of the empirical divergence ball needed to

attain the best guarantee in (9):

Theorem 4 (Optimal Calibration of Empirical Divergence Ball). Let ξ1, . . . , ξn ∈ Ξ be

i.i.d. data under P0. Suppose Assumptions 1, 2, 3 and 4 hold. Let qn be the (1− α)-quantile of

supx∈Θ Jn(x), i.e.

Pξ

(
sup
x∈Θ

Jn(x)≥ qn

)
= α (30)

where Jn(x) = Gn(x)
2 and Gn(·) is a Gaussian process indexed by Θ that is centered, i.e. mean

zero, with covariance

Cov(Gn(x1),Gn(x2)) =

∑n

i=1(h(x1; ξi)− ĥ(x1))(h(x2; ξi)− ĥ(x2))√∑n

i=1(h(x1; ξi)− ĥ(x1))2
∑n

i=1(h(x2; ξi)− ĥ(x2))2
(31)

for any x1, x2 ∈Θ, and ĥ(x) = (1/n)
∑n

i=1 h(x; ξi) is the sample mean of h(x; ξi)’s. Pξ denotes the

probability conditional on the data ξ1, . . . , ξn.

We have

lim
n→∞

P (Z∗
n(x)≤Z0(x)≤Z

∗
n(x) for all x∈Θ)= 1−α (32)

where

Z∗
n(x) = min

w∈Un(qn/(2n))

n∑

i=1

h(x; ξi)wi

Z
∗
n(x) = max

w∈Un(qn/(2n))

n∑

i=1

h(x; ξi)wi
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Note that, other than being a two-sided bound instead of one-sided, the guarantee (32) is precisely

(9).

The process Jn(·), as the square of a Gaussian process, is known as a χ2-process (or χ2 random

field; e.g., Adler and Taylor (2009)). Its covariance structure can be expressed explicitly in terms

of the function h and the data. The quantity Pξ (supx∈Θ Jn(x)≥ u) is the excursion probability of

Jn(·) above u. Note that we have ignored some subtle measurability issues in stating our result. To

avoid unnecessary diversion, we will stay silent on measurability throughout the paper and refer

the reader to Van Der Vaart and Wellner (1996) for detailed treatments.

We observe some immediate connection of supx Jn(x) to the χ2
1-distribution used in Theorem

2. In addition to the fact that the marginal distribution of Jn(x) at any x is a χ2
1-distribution,

we also have, by the Borell-TIS inequality (Adler (1990)), that the asymptotic tail probability of

supx Jn(x) has the same exponential decay rate as that of χ2
1, i.e.

logP (supx∈ΘG2(x)≥ ν)

logP (Y ≥ ν)
→ 1

as ν →∞, where Y is a χ2
1 random variable. This suggests a relatively small overhead in using qn

instead of χ2
1,1−α in calibrating the empirical ball when α is small.

Nevertheless, Theorem 4 offers some insights beyond Theorem 2. First, it requires the Donsker

condition on the class HΘ. One sufficient condition of P0-Donsker is:

Lemma 1. Suppose that Z0(x) =E0[h(x; ξ)]<∞ and V ar0(h(x; ξ))<∞ for all x∈Θ. Also assume

that there exists a random variable M with E0M
2 <∞ such that

|h(x1; ξ)−h(x2; ξ)| ≤M‖x1 −x2‖2

a.s. for all x1, x2 ∈Θ. Then HΘ as defined in (29) is P0-Donsker.

Lemma 1 is a consequence of the Jain-Marcus Theorem (e.g., Van Der Vaart and Wellner (1996),

Example 2.11.13). It is worth noting that the condition in Lemma 1 is also a standard sufficient

condition in guaranteeing the central limit convergence for SAA (Shapiro et al. (2014), Theorem

5.7). This is not a coincidence, as the machinery behind Theorem 4 involves an underpinning CLT,

much like in the convergence analysis of SAA.

Secondly, even though qn ≈ χ2
1,1−α when α≈ 0, qn is strictly larger than χ2

1,1−α since supx∈Θ Jn(x)

stochastically dominates χ2
1 (unless degeneracy occurs). Thus the ball constructed in Theorem 4

is always bigger than that in Theorem 2. One way to estimate this inflation is by approximating

the excursion probability of χ2-process using the theory of random geometry. We delegate this

discussion to Section 3.4. For now, we will delve into more details underlying Theorem 4 and other

properties of the empirical DRO.
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3.3. The Profile Nonparametric Likelihood Ratio Process and Other Properties of the

Empirical DRO

We explain briefly the machinery leading to Theorem 4, leaving the details to Appendix A. Our

starting point is to define the profile nonparametric likelihood ratio in (24) at the process level

{R(x;Z) : x∈Θ} (33)

We call (33) the profile nonparametric likelihood ratio process indexed by x∈Θ. Denote the space

ℓ∞(Θ) =

{
y : Θ→R

∣∣∣∣∣‖y‖Θ <∞
}

(34)

where we define ‖y‖Θ = supx∈Θ |y(x)| for any function y : Θ→R. We have a convergence theorem

for R(x;Z) uniformly over x∈Θ, in the following sense:

Theorem 5 (Limit Theorem of the Profile Nonparametric Likelihood Ratio Process).

Under Assumptions 1, 2, 3 and 4, the profile likelihood ratio process defined in (33) satisfies

−2 logR(·;Z0)⇒ J(·) in ℓ∞(Θ)

where J(x) = G(x)2 and G(·) is a Gaussian process indexed by x ∈ Θ that has mean zero and

covariance

Cov(G(x1),G(x2)) =
Cov0(h(x1; ξ), h(x2; ξ))√

V ar0(h(x1; ξ))V ar0(h(x2; ξ))

for any x1, x2 ∈Θ.

Theorem 5 is the empirical-process generalization of Theorem 2. It implies that

P (supx∈Θ{−2 logR(x;Z0)}≤ q∗) → 1 − α for q∗ selected such that P (supx∈Θ J(x)≤ q∗) =

1 − α. By a duality-type argument similar to that in Section 3.1, we have

−2 logR(x;Z0) ≤ q∗ for all x ∈ Θ, if and only if minw∈Un(q∗/(2n))

∑n

i=1 h(x; ξi)wi ≤
Z0(x) ≤ maxw∈Un(q∗/(2n))

∑n

i=1 h(x; ξi)wi for all x ∈ Θ, which implies

limn→∞P
(
minw∈Un(q∗/(2n))

∑n

i=1 h(x; ξi)wi ≤Z0(x)≤maxw∈Un(q∗/(2n))

∑n

i=1 h(x; ξi)wi for all x∈Θ
)
=

1− α for the same choice of q∗. However, since J relies on information about the unknown true

distribution P0, q∗ is unknown. The following result closes the gap by arguing that J can be

“plugged-in” by Jn, and consequently q∗ by qn as depicted in Theorem 4:

Lemma 2. Under Assumptions 1, 2, 3 and 4, conditional on almost every data realization (Pn :

n≥ 1),

Gn(·)⇒G(·) in ℓ∞(Θ)

where Gn(·) and G(·) are defined in Theorems 4 and 5 respectively.
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Theorem 4 can then be proved by combining Theorem 5 and Lemma 2. Moreover, consistency

of the empirical DRO also holds uniformly over x∈Θ:

Theorem 6 (Uniform Strong Consistency). Under Assumptions 1, 2, 3 and 4,

sup
x∈Θ

|Z∗
n(x)−Z0(x)| a.s.→ 0

sup
x∈Θ

|Z∗
n(x)−Z0(x)| a.s.→ 0

as n→∞.

Lastly, the following theorem highlights that the width of the confidence band [Z∗
n(x),Z

∗
n(x)]

varies with the standard deviation at each x:

Theorem 7 (Pertaining to the Variability at Each Decision Point). Suppose Assump-

tions 1, 2, 3 and 4 hold. Additionally, suppose that h(·; ·) is bounded. Then

Z∗
n(x) = ĥ(x)−√

qn
σ̂(x)√

n
+O

(
1

n

)

Z
∗
n(x) = ĥ(x)+

√
qn

σ̂(x)√
n

+O

(
1

n

)

uniformly over x ∈ Θ a.s.. Here ĥ(x) = 1
n

∑n

i=1 h(x; ξi) is the sample mean, σ̂2(x) =

1
n

∑n

i=1(h(x; ξi)− ĥ(x))2 is the sample variance at each x, and qn is defined in Theorem 4.

Theorem 7 gives rise to (10). In particular,
√
qn is analogous to the critical value in a confidence

band. In summary, Theorems 4 and 7 show that our empirical divergence ball Un(qn/(2n)), cal-

ibrated via the quantile of χ2-process excursion qn, satisfies our benchmark guarantees (9) and

(10), except that it provides a two-sided bound instead of one-sided. The difference of two- versus

one-sided bound is the reason we have claimed “close to” the best in Section 1.3.

3.4. Approximating the Quantile of χ2-process Excursion

We discuss how to estimate qn in Theorem 4. One approach is to approximate the excursion

probability of χ2-process by the mean Euler characteristic approximation (e.g., Adler and Taylor

(2009), Theorem 13.4.1 and Section 15.10.2, and Adler and Taylor (2011), Theorem 4.8.1):

P

(
sup
x∈Θ

Jn(x)≥ u

)
≈

m∑

j=0

(2π)−j/2Lj(Θ)Mj(u) (35)

Here m is the dimension of the decision space Θ ⊂ Rm. The coefficients Lj(Θ) on the RHS of

(35) are known as the Lipschitz-Killing curvatures of the domain Θ, which measure the “intrinsic

volumes” of the domain Θ using the Riemannian metric induced by the Gaussian process Gn
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(Adler and Taylor (2009), equation (12.2.2)). In particular, the highest-dimensional coefficient is

given by

Lm(Θ) =

∫

Θ

det(Λ(x))1/2dx

(Adler and Taylor (2009), equation (12.2.22), and Adler and Taylor (2011), equation (5.4.1)) where

Λ(x) = (Λij(x))i,j=1,...,m ∈Rm×m, and

Λij(x) =Cov

(
∂Gn(x)

∂xi

,
∂Gn(x)

∂xj

)
=

∂2

∂yi∂zj
Cov(Gn(y),Gn(z))

∣∣∣
y=x,z=x

(36)

for differentiable Gn (in the L2 sense), with xi and xj the i and j-th components of x. Thus (36) can

be evaluated by differentiating (31). Lower-dimensional coefficients can be evaluated by integration

over lower-dimensional surfaces of Θ, and L0(Θ) = 1.

On the other hand, the quantities Mj(u)’s are the Gaussian Minkowski functionals for the

excursion set, independent of Θ and h, and are given by

Mj(u) = (−1)j
dj

dyj
P (Y ≥ y)

∣∣∣
y=

√
u

where Y is the square root of a χ2
1 random variable. Thus, for instance, M0(u) = P (χ2

1 ≥ u), and

M1(u) = 2φ(
√
u) where φ(·) is the standard normal density.

(35) is a very accurate approximation for P (supx∈Θ Jn(x)≥ u) in the sense

∣∣∣∣∣P
(
sup
x∈Θ

Jn(x)≥ u

)
−

m∑

j=0

(2π)−j/2Lj(Θ)Mj(u)

∣∣∣∣∣≤Ce−βu/2

where C > 0 and β > 1 (Adler et al. (in preparation), Section 5.3.2). In other words, the approxi-

mation error is exponentially smaller than all the terms in (35) as u increases. In practice, however,

the formula for Lj(Θ) could get increasingly complex as j decreases, in which case only the first

and the second highest order coefficients of Lj(Θ) are used.

In light of the above, an accurate approximation of qn can be found by solving the root of

m∑

j=0

(2π)−j/2Lj(Θ)Mj(u) =α

As an explicit illustration, when m= 1, and h is twice differentiable almost everywhere, we have

P

(
sup
x∈Θ

Jn(x)≥ u

)
=P (χ2

1 ≥ u)+

∫

Θ

√
∂2

∂y∂z
Cov(Gn(y),Gn(z))

∣∣∣
y=x,z=x

dx
e−u/2

π
+O(e−βu/2)

for some β > 1. An approximate qn can then be found by solving the root of

P (χ2
1 ≥ u)+

∫

Θ

√
∂2

∂y∂z
Cov(Gn(y),Gn(z))

∣∣∣
y=x,z=x

dx
e−u/2

π
= α (37)
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4. Numerical Illustrations for the Empirical DRO

This section shows some numerical results on the statistical performance of empirical DRO. We

use the newsvendor loss function in (17) as our h. We repeat 1,000 times:

1. Simulate n i.i.d. data ξ1, . . . , ξn from the k-discretized Exp(1/20).

2. Estimate qn using (37), and compute Z∗
n(x) = minw∈Un(qn/(2n))

∑n

i=1 h(x; ξi)wi and Z
∗
n(x) =

maxw∈Un(qn/(2n))

∑n

i=1 h(x; ξi)wi, with α set to be 0.05.

3. Output

I

(
Z∗

n(x)≤Z0(x)≤Z
∗
n(x) for x=

50j

20
, j = 1, . . . ,20

)

and

I

(
Z0(x)≤Z

∗
n(x) for x=

50j

20
, j = 1, . . . ,20

)

where Z0(x) is the true function of interest that is calculable in closed-form.

We then output the point estimates and the 95% CIs of the two- and one-sided

coverage probabilities, i.e. P
(
Z∗

n(x)≤Z0(x)≤Z
∗
n(x) for x= 50j

20
, j =1, . . . ,20

)
and

P
(
Z0(x)≤Z

∗
n(x) for x= 50j

20
, j =1, . . . ,20

)
, from the 1,000 replications. These proba-

bilities serve as proxies for the probabilities P
(
Z∗

n(x)≤Z0(x)≤Z
∗
n(x) for x∈Θ

)
and

P
(
Z0(x)≤Z

∗
n(x) for x∈Θ

)
respectively.

We first set ξ as a k-discretized Exp(1/20) as in (18). For comparison, we also repeat the above

experiment but using χ2
k−1,0.95 and χ2

1,0.95 in place of qn. Table 3 shows the results of two-sided

coverage probabilities as we vary the sample size from n = 20 to 80. The coverage probabilities

appear to be stable already starting at n = 20. As we can see, the coverages using the χ2
k−1,0.95

calibration (Table 3a) are around 99%, much higher than 95%, as k − 1 is over-determining the

number of parameters we want to estimate from the EL perspective. The coverage probabilities

using the χ2
1,0.95 calibration (Table 3b), on the other hand, are in the range 86% to 87%, significantly

lower than 95%, since it does not account for simultaneous estimation errors. Lastly, the coverage

probabilities using the χ2-process excursion (Table 3c) are very close to 95% in all cases, thus

confirming the superiority of our approach.

Next, Table 4 shows the results for one-sided coverage instead of two-sided. These one-sided

coverage probabilities are slightly higher than the two-sided counterparts as the coverage condition

is now more relaxed. Nonetheless, the magnitudes of these changes are very small compared to the

effects brought by the choice of calibration methods. In particular, using χ2
k−1,0.95 appears to be

severely over-covering at about 99% to 100%, while using χ2
1,0.95 gives under-coverage at about 89%

to 91%. Using the χ2-process excursion shows 95% to 96% coverage performances, thus significantly

better than the other two methods. These show that, even though our statistical guarantees in

Theorem 4 are two-sided, the loss of inaccuracy for one-sided coverage is very minor compared to



Henry Lam: Statistical Guarantees via the Empirical DRO 19

n 2-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 98.3% (98.0%, 98.6%)
30 98.8% (98.7%, 100.0%)
40 98.9% (98.8%, 100.0%)
50 98.8% (98.7%, 100.0%)
60 98.9% (98.8%, 100.0%)
80 98.8% (98.6%, 98.9%)

(a) χ2
k−1,0.95/(2n)

n 2-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 85.6% (85.0%, 86.2%)
30 85.9% (85.4%, 86.5%)
40 86.6% (86.1%, 87.1%)
50 86.6% (86.1%, 87.1%)
60 86.1% (85.5%, 86.7%)
80 86.8% (86.3%, 87.3%)

(b) χ2
1,0.95/(2n)

n 2-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 94.4% (93.8%, 95.0%)
30 94.6% (94.0%, 95.2%)
40 94.7% (94.2%, 95.3%)
50 94.7% (94.2%, 95.3%)
60 94.4% (93.8%, 94.9%)
80 95.0% (94.5%, 95.5%)

(c) Approximate 95%-quantile of

supx Jn(x)
Table 3 Two-sided coverage probabilities for different Burg-divergence ball sizes and sample sizes for a discrete

distribution with k=5

the improvement in the calibration method used. This experimentally justifies our claim of “close

to” the best at the end of Section 3.3.

n 1-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 98.6% (98.1%, 99.2%)
30 99.6% (99.4%, 100.0%)
40 99.7% (99.6%, 100.0%)
50 99.6% (99.4%, 100.0%)
60 99.7% (99.6%, 100.0%)
80 99.5% (99.3%, 99.8%)

(a) χ2
k−1,0.95/(2n)

n 1-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 88.5% (87.2%, 89.8%)
30 89.2% (88.0%, 90.4%)
40 90.5% (89.4%, 91.6%)
50 90.5% (89.4%, 91.6%)
60 89.5% (88.3%, 90.7%)
80 90.9% (89.9%, 91.9%)

(b) χ2
1,0.95/(2n)

n 1-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 94.8% (93.7%, 96.0%)
30 95.1% (94.0%, 96.3%)
40 95.4% (94.3%, 96.5%)
50 95.4% (94.3%, 96.5%)
60 94.7% (93.5%, 95.8%)
80 96.0% (95.0%, 97.0%)

(c) Approximate 95%-quantile of

supx Jn(x)

Table 4 One-sided coverage probabilities for different Burg-divergence ball sizes and sample sizes for a discrete

distribution with k=5

Finally, we repeat the experiments using the continuous distribution Exp(1/20). We compare

the use of χ2
1,0.95 with the χ2-process excursion (there is no notion of k in this case). Table 5 shows

that the two-sided coverages using χ2
1,0.95 are under-covering at between 82% and 85%. The χ2-

process excursion gives about 93% at n= 20 and converges to close to 95% at n= 80. Thus, similar

to the discrete case, the calibration using χ2-process excursion gives significantly more accurate

two-sided coverages than using χ2
1,0.95. Table 6 draws similar conclusion for one-sided coverages.

For χ2
1,0.95, the coverage probability is about 84% at n= 20 and 90% at n= 80, therefore severely

under-covering. On the other hand, χ2-process excursion gives 94% to 96% coverages among all

the n’s. This once again shows the insignificance of one- versus two-sided coverage compared to

the improvement in the choice of calibration method. In overall, our proposed scheme of using

χ2-process excursion gives much more accurate coverages than using χ2
1,0.95.
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n 2-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 82.4% (81.3%, 83.5%)
30 82.8% (81.7%, 83.8%)
40 83.5% (82.5%, 84.5%)
50 84.3% (83.3%, 85.2%)
60 84.2% (83.2%, 85.2%)
80 85.1% (84.2%, 86.1%)

(a) χ2
1,0.95/(2n)

n 2-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 92.8% (91.1%, 94.6%)
30 93.6% (92.3%, 94.9%)
40 94.4% (93.1%, 95.8%)
50 94.4% (93.1%, 95.8%)
60 95.7% (94.6%, 96.9%)
80 95.3% (94.1%, 96.5%)

(b) Approximate 95%-quantile of supx Jn(x)

Table 5 Two-sided coverage probabilities for different Burg-divergence ball sizes and sample sizes for a

continuous distribution

n 1-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 83.9% (81.7%, 86.1%)
30 84.6% (82.4%, 86.8%)
40 86.1% (84.0%, 88.2%)
50 87.7% (85.7%, 89.7%)
60 87.5% (85.4%, 89.6%)
80 89.5% (87.6%, 91.4%)

(a) χ2
1,0.95/(2n)

n 1-sided 95% C.I. of
Cover. Prob. Cover. Prob.

20 93.6% (91.9%, 95.3%)
30 94.4% (93.1%, 95.7%)
40 95.2% (93.9%, 96.5%)
50 95.2% (93.9%, 96.5%)
60 96.5% (95.4%, 97.6%)
80 96.1% (94.9%, 97.3%)

(b) Approximate 95%-quantile of supx Jn(x)

Table 6 One-sided coverage probabilities for different Burg-divergence ball sizes and sample sizes for a

continuous distribution

5. Conclusion

We have motivated and investigated the construction of tractable uncertainty sets that can recover

the feasibility guarantees on par with the implications of CLT. We have shown that the empiri-

cal Burg-entropy divergence balls are capable of achieving such guarantees. We have also shown,

intriguingly, that these balls are invalid confidence regions in the standard framework of data-driven

DRO, and can have low or zero coverages on the true underlying distributions. Rather, we have

explained their statistical performances via linking the resulting DRO with empirical likelihood.

This link allows us to derive the optimal sizes of these balls, using the quantiles of χ2-process excur-

sion. Such a calibration approach also bypasses some documented difficulties in using divergence

balls in the data-driven DRO literature. Future work includes further developments of the theory

and calibration methods to incorporate optimization objectives and more general constraints.

Acknowledgments

The author gratefully acknowledges support from the National Science Foundation under grants CMMI-

1400391/1542020 and CMMI-1436247/1523453. He also thanks Zhiyuan Huang and Yanzhe Jin for assisting

with the numerical experiments.

References

Adler R, Taylor JE (2011) Topological Complexity of Smooth Random Functions: École D’Été de Probabilités
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Appendix A: Technical Proofs

Theorem 2 is a simple consequence of the following proposition:

Proposition 2. Under the same conditions as Theorem 2, Zn(x)≤ Z0(x)≤ Zn(x) if and only if

−2 logR(Z0(x))≤ χ2
1,1−α.

Proof of Proposition 2. We first argue that the optimization defining (38) must have

an optimal solution, if it is feasible. Since −2
∑n

i=1 log(nwi) → ∞ as wi → 0 for any i,

it suffices to consider only wi such that wi ≥ ǫ for some small ǫ > 0. Since the set

{∑n

i=1 h(x; ξi)wi =Z0(x),
∑n

i=1wi =1, wi ≥ ǫ for all i= 1, . . . , n} is compact, by Weierstrass The-

orem, there exists an optimal solution for (38).

Suppose −2 logR(Z0(x)) ≤ χ2
1,1−α. Then the optimization in −2 logR(Z0(x)) is feasible, and

there must exist a probability vector w = (w1, . . . ,wn) such that −2
∑n

i=1 log(nwi) ≤ χ2
1,1−α and

∑n

i=1 h(x; ξi)wi =Z0(x). This implies Zn(x)≤Z0(x)≤Zn(x).

To show the reverse direction, note first that the set

{
n∑

i=1

h(x; ξi)wi :−2
n∑

i=1

log(nwi)≤ χ2
1,1−α,

n∑

i=1

wi =1, wi ≥ 0 for all i= 1, . . . , n

}

is an interval, since
∑n

i=1 h(x; ξi)wi is a linear function of the convex set

{
(w1, . . . ,wn) :−2

n∑

i=1

log(nwi)≤ χ2
1,1−α,

n∑

i=1

wi = 1, wi ≥ 0 for all i= 1, . . . , n

}

Moreover, since the latter set is compact, by Weierstrass Theorem again, there must exist optimal

solutions in the optimization pair

max/min

{
n∑

i=1

h(x; ξi)wi :−2

n∑

i=1

log(nwi)≤ χ2
1,1−α,

n∑

i=1

wi = 1, wi ≥ 0 for all i= 1, . . . , n

}

Therefore, Zn(x) ≤ Z0(x) ≤ Zn(x) implies that there exists a probability vector w such that
∑n

i=1 h(x; ξi)wi =Z0(x) and −2
∑n

i=1 log(nwi)≤ χ2
1,1−α, leading to −2 logR(Z0(x))≤ χ2

1,1−α. �

Proof of Theorem 2. By Theorem 1, we have limn→∞P (−2 logR(Z0(x))≤ χ2
1,1−α) = 1−α for a

fixed x∈Θ, where

−2 logR(Z0(x))

= min

{
−2

n∑

i=1

log(nwi) :
n∑

i=1

h(x; ξi)wi =Z0(x),
n∑

i=1

wi = 1, wi ≥ 0 for all i=1, . . . , n

}
(38)

Thus, to show (25), it suffices to prove that Zn(x)≤Z0(x)≤Zn(x) if and only if −2 logR(Z0(x))≤
χ2
1,1−α. Proposition 2 finishes the proof. �
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Proof of Proposition 1. By relabeling the weights under membership of the support points, we

rewrite

Zn(x) = min

{
k∑

i=1

h(x;si)

ni∑

j=1

wij :−
1

n

k∑

i=1

ni∑

j=1

log(nwij)≤
χ2
1,1−α

2n
,

k∑

i=1

ni∑

j=1

wij = 1, wij ≥ 0 for i= 1, . . . , k, j = 1, . . . , ni

}
(39)

and

Zn(x) = max

{
k∑

i=1

h(x;si)

ni∑

j=1

wij :−
1

n

k∑

i=1

ni∑

j=1

log(nwij)≤
χ2
1,1−α

2n
,

k∑

i=1

ni∑

j=1

wij =1, wij ≥ 0 for i= 1, . . . , k, j = 1, . . . , ni

}
(40)

To avoid repetition, we focus on the maximization formulation. We show that, for any feasible p

in maxp∈U ′

Burg
Ep[h(x; ξ)], we can construct a feasible w for Zn(x) that attains the same objective

value, and vice versa.

To this end, for any p= (p1, . . . , pk)∈ U ′
Burg, we define wij = pi/ni for all j =1, . . . , ni. Then

− 1

n

k∑

i=1

ni∑

j=1

log(nwij) =−
k∑

i=1

ni

n
log

npi
ni

=−
k∑

i=1

p̂i log
pi
p̂i

≤
χ2
1,1−α

2n

as well as
∑k

i=1

∑ni

j=1wij =
∑k

i=1 pi = 1, and wij ≥ 0 for all i and j. Hence wij is feasible for (40).

Moreover,
∑k

i=1 h(x;si)
∑ni

j=1wij =
∑k

i=1 h(x;si)pi, thus the same objective value is attained.

On the other hand, supposew= (wij) is a feasible solution for (40). We then define pi =
∑ni

j=1wij .

By Jensen’s inequality we have − log(pi/ni)≤−(1/ni)
∑ni

j=1 logwij , and so

−
k∑

i=1

ni

n
log

npi
ni

≤− 1

n

k∑

i=1

ni∑

j=1

log(nwij)≤
χ2
1,1−α

2n

Together with the simple observation that
∑k

i=1 pi =
∑k

i=1

∑ni

j=1wij = 1 and pi ≥ 0 for all

i, we get that p = (pi) is feasible for maxp∈U ′

Burg
Ep[h(x; ξ)]. Moreover,

∑k

i=1 h(x;si)pi =
∑k

i=1 h(x;si)
∑ni

j=1wij , thus the same objective value is attained in this case as well.

Similar arguments apply to the minimization formulation, and we conclude the proof. �

Proof of Theorem 5. First, Assumption 1 allows us to define h̃(x; ξ) = h(x; ξ)−Z0(x). Also, we

denote the classes of functions Ξ→R

H1
Θ = {|h̃(x; ·)| : x∈Θ}

H2
Θ = {h̃(x; ·)2 : x∈Θ}
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H+
Θ = {h̃(x; ·)+ : x∈Θ}

H−
Θ = {h̃(x; ·)− : x∈Θ}

where

y+ =

{
y if y≥ 0
0 if y < 0

and y− =

{
0 if y > 0
−y if y ≤ 0

SinceHΘ is a P0-Donsker class, it is P0-Glivenko-Cantelli (GC) (e.g., the discussion before Example

2.1.3 in Van Der Vaart and Wellner (1996)). By the preservation theorem (Theorem 8 in Appendix

B), since E0‖h̃(·; ξ)2‖Θ = E‖h̃(·; ξ)‖2Θ <∞ by Assumption 3, H2
Θ is also P0-GC. Moreover, since

E‖h̃(·; ξ)±‖Θ ≤ E‖h̃(·; ξ)‖Θ ≤
√
E‖h̃(·; ξ)‖2Θ <∞, H+

Θ, H−
Θ and H1

Θ are all P0-GC as well. Letting

Pn be the empirical measure generated from ξ1, . . . , ξn, the above imply

‖Pn −P0‖H+
Θ

a.s.→ 0 (41)

‖Pn −P0‖H−

Θ

a.s.→ 0 (42)

‖Pn −P0‖H2
Θ

a.s.→ 0 (43)

where ‖Pn −P0‖F = supf∈F |Pn(f)−P0(f)| for Pn indexed by F , and similarly defined for P0 (see

Appendix B).

Note that (43) in particular implies the uniform convergence of the empirical variance
∥∥∥∥∥
1

n

n∑

i=1

(h(·; ξi)−Z0(·))2−σ0(·)
∥∥∥∥∥
Θ

a.s.→ 0 (44)

where σ0(x) = V ar0(h(x; ξ)).

Now, for each x,

E0h̃(x; ξ)
++E0h̃(x; ξ)

− =E0|h̃(x; ξ)|

E0h̃(x; ξ)
+ −E0h̃(x; ξ)

− =E0h̃(x; ξ) = 0

which gives E0h̃(x; ξ)
+ =E0h̃(x; ξ)

− =E0|h̃(x; ξ)|/2. Hence

inf
x∈Θ

E0h̃(x; ξ)
± = inf

x∈Θ

E0|h̃(x; ξ)|
2

≥ c

2
(45)

where we define c as a constant such that infx∈ΘE0|h(x; ξ)−Z0(x)| ≥ c, which exists by Assumption

2. By Jensen’s inequality,

inf
x∈Θ

E0h̃(x; ξ)
2 ≥
(
inf
x∈Θ

E0|h̃(x; ξ)|
)2

≥ c2 (46)

by using Assumption 2 again. From (41), (42) and (45), we have infx∈Θ(1/n)
∑n

i=1 h̃(x; ξi)
+

and infx∈Θ(1/n)
∑n

i=1 h̃(x; ξi)
− > 0 for large enough n a.s.. When this occurs, min1≤i≤n h(x; ξi) <

Z0(x)<max1≤i≤n h(x; ξi) for every x, and the optimization defining − logR(x;Z0), namely

min

{
−

n∑

i=1

log(nwi)

∣∣∣∣∣
n∑

i=1

h(x; ξi)wi =Z0(x),
n∑

i=1

wi =1, wi ≥ 0 for i= 1, . . . , n

}
(47)
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has a unique optimal solution w(x) = (w1(x), . . . ,wn(x)) with wi(x)> 0 for all i, for any x. This

is because setting any wi(x) = 0 would render −2
∑n

i=1 log(nwi) =∞ which is clearly suboptimal.

Hence it suffices to replace wi ≥ 0 with wi ≥ ǫ for all i for some small enough ǫ > 0. In this modified

region, the optimum exists and is unique since −∑n

i=1 log(nwi) is strictly convex.

Now consider the optimization (47) when min1≤i≤n h(x; ξi)<Z0(x)<max1≤i≤n h(x; ξi). We adopt

the proof technique in Section 11.2 of Owen (2001), but generalize at the empirical process level.

For convenience, we write h̃i = h̃(x; ξi) = h(x; ξi)−Z0(x), and also suppress the x in wi =wi(x) and

Z0 =Z0(x). The Lagrangian is written as

−
n∑

i=1

log(nwi)+λ

(
n∑

i=1

h̃iwi −Z0

)
+ γ

(
n∑

i=1

wi − 1

)

where λ= λ(x) and γ = γ(x) are the Lagrange multipliers. Differentiating with respect to wi and

setting it to zero, we have

− 1

wi

+λh̃i + γ = 0 (48)

Setting
∑n

i=1 h̃iwi = 0 and
∑n

i=1wi = 1, multiplying both sides of (48) by wi and summing up over

i, we get γ = n. Using (48) again, we have

wi =
1

n

1

1+λh̃i

(49)

where the λ in (49) is rescaled by a factor of n. Note that we can find λ such that

n∑

i=1

1

n

h̃i

1+λh̃i

= 0 (50)

and 1
n

1

1+λh̃i
> 0 for all i, upon which the Karush-Kuhn-Tucker (KKT) condition can be seen to hold

and conclude that wi in (49) is the optimal solution. Indeed, let h̃∗ =maxi h̃i > 0 and h̃∗ =mini h̃i <

0. Note that
∑n

i=1
1
n

h̃i

1+λh̃i
→∞ as λ→−1/h̃∗, and →−∞ as λ→−1/h̃∗. Since

∑n

i=1
1
n

h̃i

1+λh̃i
is a

continuous function in λ between−1/h̃∗ and −1/h̃∗, there must exist a λ that solves (50). Moreover,

1
n

1

1+λh̃i
> 0 for all i for this λ.

Given this characterization of the optimal solution, the rest of the proof is to derive the asymp-

totic behavior of −2 logR(x;Z0) as n→∞. First, we write

1

1+λh̃i

= 1− λh̃i

1+λh̃i

Multiplying both sides by h̃i/n and summing up over i, we get

n∑

i=1

1

n

h̃i

1+λh̃i

= h̄−λ
n∑

i=1

1

n

h̃2
i

1+λh̃i



Henry Lam: Statistical Guarantees via the Empirical DRO 27

where h̄ := h̄(x) = (1/n)
∑n

i=1 h̃(x; ξi), and hence

h̄= λ
n∑

i=1

1

n

h̃2
i

1+λh̃i

(51)

by (50). Now let

s := s(x) =
1

n

n∑

i=1

h̃(x; ξi)
2

be the empirical variance. Note that, from (49), wi > 0 implies 1 + λh̃i > 0. Together with s≥ 0,

we get

|λ|s≤
∣∣∣∣∣λ

n∑

i=1

1

n

h̃2
i

1+λh̃i

∣∣∣∣∣

(
1+ |λ| max

1≤i≤n
|h̃i|
)

= |h̄|
(
1+ |λ| max

1≤i≤n
|h̃i|
)

by using (51), and hence

|λ|
(
s− |h̄| max

1≤i≤n
|h̃i|
)
≤ |h̄| (52)

By Lemma 3 in Appendix C, E‖h̃(x; ξ)‖2Θ <∞ in Assumption 3 implies that

max
1≤i≤n

‖h̃i‖Θ = o(n1/2) a.s. (53)

Moreover, since HΘ is P0-Donsker, we have
√
nh̄ =

√
n(Pn(h(·; ·))− P0(h(·; ·)))⇒ G̃ in ℓ∞(HΘ),

where G̃(·) is a tight Gaussian process indexed by h(x; ·)∈HΘ that is centered and has covariance

Cov(G̃(h(x1; ·)), G̃(h(x2; ·))) = Cov0(h(x1; ξ), h(x2; ξ)) for any h(x1; ·), h(x2; ·) ∈ HΘ. Noting that

the map ℓ∞(HΘ)→ ℓ∞(Θ) defined by y(·) 7→ y(h(·; ·)) is continuous, by the continuous mapping

theorem (Theorem 9 in Appendix C), we have
√
nh̄⇒ G̃ in ℓ∞(Θ) where G̃ is now indexed by

x ∈ Θ. As the norm in ℓ∞(Θ), ‖ · ‖Θ is a continuous map. By the continuous mapping theorem

again,
√
n‖h̄‖Θ = ‖√nh̄‖Θ ⇒ ‖G̃‖Θ, so that ‖h̄‖Θ = Op(n

−1/2). Moreover, ‖|h̄|max1≤i≤n |h̃i|‖Θ ≤
‖h̄‖Θmax1≤i≤n ‖h̃i‖Θ =Op(n

−1/2)o(n1/2) = op(1).

Next, from (44) and (46), we have infx∈Θ s(x)≥ c1 for some c1 > 0 ev.. Pick any constant ε < c1.

We have

P

(
inf
x∈Θ

{
s(x)− |h̄(x)| max

1≤i≤n
|h̃i(x)|

}
≥ c1 − ε

)
≥P

(
inf
x∈Θ

s(x)≥ c1,

∥∥∥∥|h̄(x)| max
1≤i≤n

|h̄i(x)|
∥∥∥∥
Θ

≤ ε

)
→ 1

(54)

Over the set {infx∈Θ{s(x)− |h̄(x)|max1≤i≤n |h̄i(x)|}> c1 − ε}, (52) implies

|λ(x)| ≤ |h̄(x)|
s− |h̄(x)|max1≤i≤n |h̄i(x)|

for all x∈Θ, so that

‖λ‖Θ ≤ ‖h̄‖Θ
c1 − ε

(55)
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We argue that ‖λ‖Θ =Op(n
−1/2). This is because, for any given δ > 0, we can find a large enough

B > 0 such that

limsup
n→∞

P (‖λ‖Θ >Bn−1/2)

≤ limsup
n→∞

(
P

(
‖λ‖Θ >Bn−1/2, inf

x∈Θ

{
s(x)− |h̄(x)| max

1≤i≤n
|h̃i(x)|

}
> c1 − ε

)

+P

(
inf
x∈Θ

{
s(x)− |h̄(x)| max

1≤i≤n
|h̃i(x)|

}
≤ c1 − ε

))

≤ limsup
n→∞

(
P (‖h̄‖Θ > (c1 − ε)Bn−1/2)+P

(
inf
x∈Θ

{
s(x)− |h̄(x)| max

1≤i≤n
|h̃i(x)|

}
≤ c1 − ε

))

by (55)

< δ

by (54) and that ‖h̄‖Θ =Op(n
−1/2) as shown above. This and (53) together gives

max
1≤i≤n

sup
x∈Θ

|λ(x)h̃i(x)| ≤ ‖λ‖Θ max
1≤i≤n

‖h̃i‖Θ =Op(n
−1/2)o(n1/2) = op(1) (56)

Now (50) can be rewritten as

0 =

n∑

i=1

1

n
h̃i

(
1−λh̃i+

λ2h̃2
i

1+λh̃i

)

= h̄−λs+
n∑

i=1

1

n

λ2h̃3
i

1+λh̃i

(57)

The last term in (57) satisfies
∣∣∣∣∣

n∑

i=1

1

n

λ2h̃3
i

1+λh̃i

∣∣∣∣∣≤
1

n

n∑

i=1

h̃2
iλ

2 max
1≤i≤n

|h̃i| max
1≤i≤n

(1+λh̃i)
−1

Taking supθ∈Θ on both sides, we get
∥∥∥∥∥

n∑

i=1

1

n

λ2h̃3
i

1+λh̃i

∥∥∥∥∥
Θ

≤‖s‖Θ‖λ‖2Θ max
1≤i≤n

‖h̃i‖Θ max
1≤i≤n

sup
x∈Θ

(1+λh̃(x, ξi))
−1 (58)

Now, ‖s‖Θ →‖σ0‖Θ by (44). Moreover, for any small ε > 0,

P

(
max
1≤i≤n

sup
x∈Θ

(1+λh̃(x, ξi))
−1 >

1

1− ε

)
= P

(
1

1+λh̃(x, ξi)
>

1

1− ε
for some 1≤ i≤ n and θ ∈Θ

)

≤ P (λh̃(x, ξi)<−ε for some 1≤ i≤ n and x∈Θ)

≤ P

(
max
1≤i≤n

sup
x∈Θ

|λh̃(x, ξi)|> ε

)
→ 0

by (56). Thus (58) is bounded from above by

O(1)Op(n
−1)o(n1/2)Op(1) = op(n

−1/2) (59)
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From (57) and (59), we have

0= h̄−λs+ ǫ

where ‖ǫ‖Θ = op(n
−1/2). Since (44) and (46) implies infx∈Θ s(x)≥ c1 for some c1 > 0 ev., we further

get

λ= s−1(h̄+ ǫ) (60)

Now consider

−2 logR(x;Z0) =−2
n∑

i=1

log(nwi)

= 2
n∑

i=1

log(1+λh̃i)

= 2
n∑

i=1

(
λh̃i−

1

2
λ2h̃2

i + νi

)
(61)

where

νi =
1

3

1

(1+ ζi)3
(λh̃i)

3

with ζi = ζi(x) between 0 and λh̃i by Taylor’s expansion. So

|νi| ≤
1

3

1

|1+ ζi|3
|λh̃i|3 (62)

For any large enough B1 > 0, we have

P (|νi(x)|>B1|λ(x)h̃(x, ξi)|3 for all x∈Θ and 1≤ i≤ n)

≤ P

(
(3B1)

1/3 max
1≤i≤n

‖1+ ζi‖Θ < 1

)
from (62)

= P

(
(3B1)

1/3 max
1≤i≤n

‖1+ ζi‖Θ < 1, max
1≤i≤n

‖ζi‖Θ < ε

)

+P

(
(3B1)

1/3 max
1≤i≤n

‖1+ ζi‖Θ < 1, max
1≤i≤n

‖ζi‖Θ > ε

)
for some sufficiently large 0< ε< 1

≤ P

(
(3B1)

1/3 max
1≤i≤n

(1− ε)< 1

)
+P

(
max
1≤i≤n

‖ζi‖Θ > ε

)

→ 0 (63)

since max1≤i≤n ‖ζi‖Θ ≤max1≤i≤n ‖λh̃i‖Θ = op(1) by (56). Now (61) gives

2nλh̄−λ2ns+2
n∑

i=1

νi

= 2ns−1(h̄+ ǫ)h̄−nss−2(h̄2 +2ǫh̄+ ǫ2)+ 2
n∑

i=1

νi by (60)

= ns−1h̄2 −ns−1ǫ2 +2
n∑

i=1

νi (64)
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Note that

‖ns−1ǫ2‖Θ ≤ nO(1)op(n
−1) = op(1) (65)

since infx∈Θ s(x)≥ c1 > 0 ev., and ‖ǫ‖Θ = op(n
−1/2). Moreover, over the set {|νi(x)| ≤B1|λ(x)h̃i(x)|3

for all x∈Θ and 1≤ i≤ n}, we have
∣∣∣∣∣

n∑

i=1

νi

∣∣∣∣∣≤B1|λ|3
n∑

i=1

|h̃i|2 max
1≤i≤n

|h̃i|

for all x∈Θ. Note that∥∥∥∥∥B1|λ|3
n∑

i=1

|h̃i|2 max
1≤i≤n

|h̃i|
∥∥∥∥∥
Θ

≤B1Op(n
−3/2)nO(1)o(n1/2) = op(1) (66)

since ‖λ‖Θ =Op(n
−1/2), ‖s‖Θ =O(1), and max1≤i≤n ‖h̃i‖Θ = o(n1/2). Now, for any ε > 0,

P

(∥∥∥∥∥
n∑

i=1

νi

∥∥∥∥∥
Θ

> ε

)

≤ P

(∥∥∥∥∥
n∑

i=1

νi

∥∥∥∥∥
Θ

> ε, |νi(x)| ≤B1|λ(x)h̃i(x)|3 for some x∈Θ and 1≤ i≤ n

)

+P (|νi(x)|>B1|λ(x)h̃i(x)|3 for all x∈Θ and 1≤ i≤ n)

≤ P

(∥∥∥∥∥B1|λ|3
n∑

i=1

|h̃i|2 max
1≤i≤n

|h̃i|
∥∥∥∥∥
Θ

> ε

)
+P (|νi|>B1|λh̃i|3 for all x∈Θ and 1≤ i≤ n)

→ 0

by (63) and (66). Hence we have ∥∥∥∥∥
n∑

i=1

νi

∥∥∥∥∥
Θ

= op(1) (67)

Using (65) and (67), (64) implies that

− 2 logR(x;Z0) = ns−1h̄2 + ǫ1 (68)

where ‖ǫ1‖Θ = op(1).

Note that
√
nh̄⇒ G̃ in ℓ∞(Θ) where G̃(·) is defined previously as the centered Gaussian pro-

cess with covariance Cov(G̃(x1), G̃(x2)) = Cov(h(x1; ξ), h(x2; ξ)) for any x1, x2 ∈ Θ. By Slutsky’s

Theorem (Theorem 10 in Appendix C) and (44), (
√
nh̄, s)⇒ (G̃, σ0) in (ℓ∞ × ℓ∞)(Θ) defined as

(ℓ∞ × ℓ∞)(Θ) =

{
(y1, y2) : Θ→R

2

∣∣∣∣∣‖y1‖Θ + ‖y2‖Θ <∞
}

Note that pointwise division and (·)2 are continuous maps on (ℓ∞× ℓ∞)(Θ)→ ℓ∞(Θ) and ℓ∞(Θ)→
ℓ∞(Θ) respectively. Also, infx∈Θ σ0(x)> 0 by Assumption 2 and Jensen’s inequality. By continuous

mapping theorem, we have ns−1h̄2 ⇒ J in ℓ∞(Θ) where J(·) is as defined in the theorem. Finally,

from (68) and ‖ǫ1‖Θ = op(1), we get further that −2 logR(·;Z0)⇒ J(·) in ℓ∞(Θ). This concludes

the proof. �
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Proof of Lemma 2. First define G̃(·) as a centered Gaussian process indexed by x ∈ Θ with

covariance Cov(G̃(x1), G̃(x2)) = Cov0(h(x1; ξ), h(x2; ξ)). Conditional on almost every data real-

ization (Pn : n ≥ 1), define G̃n(·) as a centered Gaussian process indexed by x ∈ Θ with

covariance Cov(G̃n(x1), G̃n(x2)) = (1/n)
∑n

i=1(h(x1; ξ) − ĥ(x1))(h(x2; ξ) − ĥ(x2)), and ĥ(x) =

(1/n)
∑n

i=1 h(x; ξi).

We first show that G̃n(·)⇒ G̃(·) in ℓ∞(Θ). Note that, by the property of Gaussian processes,

any finite-dimensional vector (G̃n(x1), . . . , G̃n(xd)) is distributed as N(0,Σn), where 0 is the zero

vector and

Σn =

(
1

n

n∑

k=1

(h(xi; ξk)− ĥ(xi))(h(xj; ξk)− ĥ(xj))

)

i,j=1,...,d

On the other hand, (G̃(x1), . . . , G̃(xd)) is distributed as N(0,Σ), where Σ =

(Cov0(h(xi; ξ), h(xj; ξ))i,j=1,...,d. Note that Σn → Σ a.s. in each entry, and hence

(G̃n(x1), . . . , G̃n(xd))⇒ (G̃(x1), . . . , G̃(xd)) (by using for example convergence of the characteristic

function).

Next, note that by Assumption 4, HΘ is P0-Donsker and hence is totally bounded equipped

with the semi-metric ρ0(h(x1; ·), h(x2; ·)) := (V ar0(h(x1; ξ) − h(x2; ξ)))
1/2 (Section 2.1.2 in

Van Der Vaart and Wellner (1996)). Equivalently, Θ is totally bounded under the semi-metric

ρ0(x1, x2) := (V ar0((h(x1; ξ)−h(x2; ξ)))
1/2.

We shall also show that G̃n(·) is uniformly equicontinuous in probability under the same semi-

metric. To this end, we want to show that

lim
δ→0

limsup
n→∞

Pξ

(
sup

ρ0(x1x2)<δ

|G̃n(x1)− G̃n(x2)|> ǫ

)
= 0 (69)

where Pξ(·) is the probability conditional on the data ξ. First, by using the covariance structure

of the Gaussian process G̃n(·),

E(G̃n(x1)− G̃n(x2))
2 = V̂ arn(h(x1; ξ)−h(x2; ξ))

=
1

n

n∑

i=1

(h(x1; ξ)− ĥ(x1))
2+

1

n

n∑

i=1

(h(x2; ξ)− ĥ(x2))
2 − 2

n

n∑

i=1

(h(x1; ξ)− ĥ(x1))(h(x2; ξ)− ĥ(x2))

Now define h̃(x; ξ) = h(x; ξ)−Z0(x) under Assumption 1. Note that

E

[
sup
x,y∈Θ

(h̃(x; ξ)− h̃(y; ξ))2
]
≤E

[
sup
x∈Θ

h̃(x; ξ)2+sup
y∈Θ

h̃(y; ξ)2 +2sup
x∈Θ

|h̃(x; ξ)| sup
y∈Θ

|h̃(x; ξ)|
]

= 4E‖h̃(·; ξ)‖2Θ <∞

by Assumption 3. Viewing h̃(x; ·) and h̃(y; ·) each as a function (x, y)∈Θ2 →R, we can apply the

preservation theorem to conclude that the class of functions

HΠ
Θ = {(h̃(x; ·)− h̃(y; ·))2 : (x, y)∈Θ2}
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is a P0-GC class. Therefore,

sup
x,y∈Θ

∣∣∣∣∣
1

n

n∑

i=1

(h̃(x; ξi)− h̃(y; ξi))
2−E0(h̃(x; ξi)− h̃(y; ξi))

2

∣∣∣∣∣→ 0 a.s. (70)

Now, note that

V̂ arn(h(x1; ξ)−h(x2; ξ))

=
1

n

n∑

i=1

((
h(x1; ξi)− ĥ(x1)

)
−
(
h(x2; ξi)− ĥ(x2)

))2

=
1

n

n∑

i=1

((
h̃(x1; ξi)− h̃(x2; ξi)

)
−
(
(ĥ(x1)−Z0(x1))− (ĥ(x2)−Z0(x2))

))2

=
1

n

n∑

i=1

(
h̃(x1; ξi)− h̃(x2; ξi)

)2
−
((

ĥ(x1)−Z0(x1)
)
−
(
ĥ(x2)−Z0(x2)

))2

(71)

SinceHΘ is P0-GC, ‖ĥ(·)−Z0(·)‖Θ → 0 a.s.. Hence supx1,x2∈Θ

((
ĥ(x1)−Z0(x1)

)
−
(
ĥ(x2)−Z0(x2)

))2

→
0 a.s.. Combining with (70), we have, from (71),

sup
x1,x2∈Θ

|V̂ arn(h(x1; ξ)−h(x2; ξ))−V ar0(h(x1, ξ)−h(x2, ξ))|→ 0 a.s. (72)

by noting that V ar0(h(x1, ξ)−h(x2, ξ)) =E0(h̃(x; ξ)− h̃(y; ξ))2.

Therefore, by (72), for any γ > 1, we have

Eξ(G̃n(x1)−G̃n(x2))
2 = V̂ arn(h(x1; ξ)−h(x2; ξ))≤ γV ar0(h(x1; ξ)−h(x2; ξ)) =E(G̃γ(x1)−G̃γ(x2))

2

a.s. for any x1, x2 ∈ Θ, when n is sufficiently large, where G̃γ(·) := γG(·) and Eξ[·] denotes the

expectation conditional on ξ. Thus, by the argument for the Sudakov-Fernique inequality (the first

equation in the proof of Theorem 2.9 in Adler (1990)), we have

Eξ

[
sup

ρ0(x1,x2)<δ

|G̃n(x1)− G̃n(x2)|
]
≤E

[
sup

ρ0(x1,x2)<δ

|G̃γ(x1)− G̃γ(x2)|
]
= γE

[
sup

ρ0(x1,x2)<δ

|G̃(x1)− G̃(x2)|
]

when n is large. Note that

lim
δ→0

E

[
sup

ρ0(x1,x2)<δ

|G̃(x1)− G̃(x2)|
]
=0

since G̃(·) is tight by the P0-Donsker property of HΘ. Thus

limsup
n→∞

Pξ

(
sup

ρ0(x1x2)<δ

|G̃n(x1)− G̃n(x2)|> ǫ

)

≤ limsup
n→∞

Eξ

[
supρ0(x1x2)<δ |G̃n(x1)− G̃n(x2)|

]

ǫ
by Chebyshev’s inequality

≤
γEξ

[
supρ0(x1x2)<δ |G̃(x1)− G̃(x2)|

]

ǫ

→ 0
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as δ→ 0. We have therefore proved (69). Together with total boundedness, we have G̃n(·)⇒ G̃(·)
in ℓ∞(Θ) (Section 2.1.2 in Van Der Vaart and Wellner (1996)).

Finally, note that infx∈Θ σ0(x) > 0 by Assumption 2 and Jensen’s inequality. Using (44) and

that pointwise division is a continuous map (ℓ∞ × ℓ∞)(Θ)→ ℓ∞(Θ), Slutsky’s Theorem and the

continuous mapping theorem conclude that Gn(·)⇒G(·) in ℓ∞(Θ). �

Proof of Theorem 4. By Theorem 5 and Lemma 2, and using the fact that (·)2 and supx∈Θ · are
continuous maps ℓ∞(Θ)→ ℓ∞(Θ) and ℓ∞(Θ)→R respectively, we have supx∈Θ{−2 logR(x;Z0)}⇒
supx∈Θ J(x) and supx∈Θ Jn(x)⇒ supx∈Θ J(x), where Jn(·) and J(·) are defined in Theorems 4 and

5. Moreover, since supx∈Θ J(x) has a continuous distribution function, pointwise convergence of

distribution functions to that of supx∈Θ J(x) implies uniform convergence. Hence we have

sup
q∈R+

∣∣∣∣Pξ

(
sup
x∈Θ

Jn(x)≤ q

)
−P

(
sup
x∈Θ

J(x)≤ q

)∣∣∣∣→ 0 (73)

and

sup
q∈R+

∣∣∣∣P
(
sup
x∈Θ

{−2 logR(x;Z0)} ≤ q

)
−P

(
sup
x∈Θ

J(x)≤ q

)∣∣∣∣→ 0 (74)

Selecting qn such that Pξ (supx∈Θ Jn(x)≤ qn) = 1−α, (73) and (74) implies that

P

(
sup
x∈Θ

{−2 logR(x;Z0)}≤ qn

)
→ 1−α

By applying Proposition 2 to every point x∈Θ and with χ2
1,1−α with qn, we have −2 logR(x;Z0)≤

qn if and only if Z∗
n(x)≤Z0(x)≤Z

∗
n(x), for each x∈Θ. Hence

P

(
sup
x∈Θ

{−2 logR(x;Z0)} ≤ qn

)
= P (−2 logR(x;Z0)≤ qn for all x∈Θ)

= P (Z∗
n(x)≤Z0(x)≤Z

∗
n(x) for all x∈Θ)→ 1−α

�

Proof of Theorem 6. To avoid repetition, we focus on Zn(x). Consider

Zn(x)−Z0(x) = max
w∈Un(qn/(2n))

n∑

i=1

h̃(x; ξi)wi (75)

where h̃(x; ξ) = h(x; ξ)−Z0(x). With Lagrangian relaxation, the program (75) can be written as

min
λ≥0,γ

max
w≥0

n∑

i=1

h̃(x; ξi)wi −λ

(
− 1

n

n∑

i=1

log(nwi)−
qn
2n

)
+ γ

(
n∑

i=1

wi − 1

)

= min
λ≥0,γ

n∑

i=1

λ

n
max
wi≥0

{
h̃(x; ξi)+ γ

λ
nwi + log(nwi)−nwi+1

}
+λ

qn
2n

− γ

= min
λ≥0,γ

−
n∑

i=1

λ

n
log

(
1− h̃(x; ξi)+ γ

λ

)
+λ

qn
2n

− γ (76)
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where −0 log(1 − t/0) := 0 for t ≤ 0 and −0 log(1− t/0) := ∞ for t > 0, by using the conjugate

function of − log r+ r−1 as supr≥0{tr+log r− r+1}=− log(1− t) for t < 1, and ∞ for t≥ 1 (e.g.,

Ben-Tal et al. (2013)).

Now, to get an upper bound for (76), pick γ = 0, and λ as λn =Θ(nε) where 1/2< ε< 1. Then,

by using (53), we have

max
1≤i≤n

‖h̃(·; ξi)‖Θ ≤ λn

2
ev.

Using the fact that − log(1− t)≤ t+2t2 for any |t| ≤ 1/2, we have (76) bounded from above by

n∑

i=1

λn

n

(
h̃(x; ξi)

λn

+2
h̃(x; ξi)

2

λ2
n

)
+λn

qn
2n

=
1

n

n∑

i=1

h̃(x; ξi)+ 2
(1/n)

∑n

i=1 h̃(x; ξi)
2

λn

+λn

qn
2n

(77)

where 1
n

∑n

i=1 h̃(x; ξi)→ 0 and 1
n

∑n

i=1 h̃(x; ξi)
2 satisfy

∥∥∥∥∥
1

n

n∑

i=1

h̃(·; ξi)
∥∥∥∥∥
Θ

→ 0 a.s.

∥∥∥∥∥
1

n

n∑

i=1

h̃(·; ξi)2 −σ2
0(·)
∥∥∥∥∥
Θ

→ 0 a.s.

by the P0-GC property of HΘ and (44). Moreover, by (73) in the proof of Theorem 4, we have

P (supx∈Θ J(x)≤ qn)→ 1−α a.s.. By the continuity of supx∈Θ J(x), we get qn → q∗ a.s. where q∗

satisfies P (supx∈Θ J(x)≤ q∗) = 1−α. Hence qn/(2n) =Θ(1/n). These imply that (77) converges to

0 uniformly over Θ.

On the other hand, plugging in w = (1/n)1≤i≤n, Z
∗
n(x)−Z0(x) in (75) is bounded from below

by (1/n)
∑n

i=1 h̃(x; ξi), which converges to 0 uniformly over Θ. Combining with above, we get

‖Z∗
n(·)−Z0(·)‖Θ → 0 a.s. (78)

�

Proof of Theorem 3. For any fixed x, Zn(x)→ Z0(x) and Zn(x)→ Z0(x) follows as a special

case of (78). �

Proof of Theorem 7. To avoid redundancy, we focus only on the upper bound Z
∗
n(x). Consider

Z
∗
n(x)− ĥ(x), which can be written as

max

{
n∑

i=1

wiĥ(x; ξi) :−
1

n

n∑

i=1

log(nwi)≤
qn
2n

,
n∑

i=1

wi =1, wi ≥ 0 for all i= 1, . . . , n

}
(79)
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where ĥ(x; ξi) = h(x; ξi)− ĥn(x). Similar to the proof of Theorem 6, a Lagrangian relaxation of

(79) gives

min
λ≥0,γ

max
w≥0

n∑

i=1

wiĥ(x; ξi)−λ

(
− 1

n

n∑

i=1

log(nwi)−
qn
2n

)
+ γ

(
n∑

i=1

wi − 1

)

≤ min
λ>0,γ

n∑

i=1

λ

n
max
wi≥0

{
nwi

ĥ(x; ξi)+ γ

λ
+ log(nwi)−nwi+1

}
+

λqn
2n

− γ

≤ min
λ>0,γ,

ĥ(x;ξi)+γ

λ
<1 for all i=1,...,n

−
n∑

i=1

λ

n
log

(
1− ĥ(x; ξi)+ γ

λ

)
+

λqn
2n

− γ (80)

by using the fact that − log(1− t) = supr≥0{tr+log r− r+1} is the conjugate function of − log r+

r− 1, defined for t < 1.

Now, given x, we choose γ = 0, and λ=
√
nσ̂(x)√
qn

. Similar to the proof of Theorem 6, we have

∥∥∥∥∥
1

n

n∑

i=1

ĥ(·; ξi)2 −σ2
0(·)
∥∥∥∥∥
Θ

→ 0 a.s.

by the P0-GC property of HΘ and (44), and qn → q∗ a.s. where q∗ satisfies P (supx∈Θ J(x)≤ q∗) =

1−α. Moreover,

σ̂2(x) =
1

n

n∑

i=1

(h(x; ξi)−Z0(x))
2− (ĥ(x)−Z0(x))

2

By Assumptions 1, 3 and 4, {(h(x; ·)−Z0(x))
2 : x∈Θ} is P0-Donsker, and we have

sup
x∈Θ

|σ̂2(x)−σ2
0(x)| → 0 as n→∞ a.s.

Together with the assumption that h is bounded, we have

ĥ(x; ξi)+ γ

λ
=

ĥ(x; ξi)
√
qn√

nσ̂(x)
→ 0 (81)

a.s. uniformly for all i= 1, . . . , n as n→∞.

Therefore, (80) is bounded from above ev. by

−
n∑

i=1

σ̂(x)√
nqn

log

(
1−

ĥ(x; ξi)
√
q
n√

nσ̂(x)

)
+

√
q
n
σ̂(x)

2
√
n

=
n∑

i=1

σ̂(x)√
nqn


 h̃(x; ξi)

√
q
n√

nσ̂(x)
+

1

2

(
h̃(x; ξi)

√
q
n√

nσ̂(x)

)2

+O



(
ĥ(x; ξi)

√
q
n√

nσ̂(x)

)3



+

√
q
n
σ̂(x)

2
√
n

where O(·) is uniform over x∈Θ

=

√
qnσ̂(x)

2
√
n

+O

(
µ̂3(x)qn
nσ̂(x)2

)
+

√
q
n
σ̂(x)

2
√
n

since
n∑

i=1

ĥ(x; ξi) = 0 and
1

n

n∑

i=1

ĥ(x; ξi)
2 = σ̂2(x),
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where µ̂3(x) =
1

n

n∑

i=1

|ĥ(x; ξi)|3, which is uniformly bounded over x∈Θ a.s. since h is bounded

=

√
qnσ̂(x)√

n
+O

(
1

n

)
(82)

On the other hand, choose

wi =
1

n

(
1+

ĥ(x; ξi)
√
qn√

nσ̂(x)

(
1− C√

n

))

for some large enough C > 0. When n is large enough, we have wi > 0 a.s. for all i = 1, . . . , n

and x ∈ Θ since
ĥ(x;ξi)

√
qn√

nσ̂(x)
< 1 ev. by the same argument in (81). Note that

∑n

i=1wi = 1 since
∑n

i=1 ĥ(x; ξi) = 0 by definition. Moreover,

− 1

n

n∑

i=1

log(nwi)

= − 1

n

n∑

i=1

log

(
1+

ĥ(x; ξi)
√
qn√

nσ̂(x)

(
1− C√

n

))

= − 1

n

n∑

i=1

ĥ(x; ξi)
√
qn√

nσ̂(x)

(
1− C√

n

)
+

1

n

1

2

n∑

i=1

ĥ(x; ξi)
2qn

nσ̂(x)2

(
1− C√

n

)2

+O

(
µ̂3(x)q

3/2
n

n3/2σ̂(x)3

(
1− C√

n

)3
)

where O(·) is uniform over x∈Θ

=
qn
2n

(
1− 2C√

n

)
+O

(
1

n2

)
+O

(
µ̂3(x)q

3/2
n

n3/2σ̂(x)3

)

where the last O(·) has leading term that is independent of C

≤ qn
2n

when n is large enough, by choosing a large enough C. Therefore, the chosen wi’s form a feasible

solution in Un(qn/(2n)). We have

n∑

i=1

wiĥ(x; ξi) =
n∑

i=1

ĥ(x; ξi)
1

n

(
1+

ĥ(x; ξi)
√
qn√

nσ̂(x)

(
1− C√

n

))

=
√
qn

σ̂(x)√
n

(
1− C√

n

)

=
√
qn

σ̂(x)√
n

+O

(
1

n

)
(83)

Combining the bound for the dual and the primal bounds (82) and (83), we conclude that

Z
∗
n(x) =

√
qn

σ̂(x)√
n
+O

(
1
n

)
uniformly over x∈Θ. The proof for Z∗

n(x) follows by merely replacing h

with −h. This concludes the theorem. �
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Appendix B: Review of Empirical Processes

We review some terminologies and results in the empirical process theory that are related to our

developments. Given a class of functions F = {f : Ξ → R}, we define the empirical measure Pn,

generated from i.i.d. ξ1, . . . , ξn each under P , as a map from F to R such that

Pn(f) =
1

n

n∑

i=1

f(ξi)

We also define P (f) =
∫
f(ξ)dP (ξ)=EP [f(ξ)] where EP [·] is the expectation under P . The empir-

ical process indexed by f ∈F is defined as

√
n(Pn −P )

For any functions y :F →R, we define ‖y‖F = supf∈F |y(f)|. We also define the envelope of F as

a function that maps from Ξ to R given by

sup
f∈F

|f(ξ)|

Definition 1. We call F a P -Glivenko-Cantelli (GC) class if the empirical measure under P

satisfies

‖Pn −P‖F := sup
f∈F

|Pn(f)−P (f)| a.s.→ 0 as n→∞

Definition 2. We call F a P -Donsker class if the empirical process under P satisfies

√
n(Pn −P )⇒G in ℓ∞(F) (84)

where G is a Gaussian process indexed by F , centered, with covariance function

Cov(G(f1),G(f2)) =CovP (f1(ξ), f2(ξ)) =P (f1f2)−P (f1)P (f2)

where CovP (·, ·) denotes the covariance under P , and

ℓ∞(F) =

{
y :F →R

∣∣∣∣∣‖y‖F <∞
}

Moreover, the process G has uniformly continuous sample paths with respect to the canonical

semi-metric ρP (f1, f2) = V arP (f1(ξ)− f2(ξ)), where V arP (·) denotes the variance under P .

We have ignored the measurability issues, in particular the use of outer and inner probability

measures, in the definitions (see Van Der Vaart and Wellner (1996)).

Theorem 8 (Preservation of GC classes; Van Der Vaart and Wellner (2000), Theorem 3).

Suppose that F1, . . . ,Fk are P -GC classes of functions, and that ϕ : Rk → R is continuous. Then

H= ϕ(F1, . . . ,Fk) is P -GC provided that it has an integrable envelope function.
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Appendix C: Other Useful Theorems

Lemma 3 (Owen (2001), Lemma 11.2). Let Yi be i.i.d. random variables on R with EY 2
i <∞.

Then max1≤i≤n |Yi|= o(n1/2) a.s..

Theorem 9 (Continuous Mapping Theorem;Van Der Vaart and Wellner (1996),Theorem 1.3.6).

Let g :D→E be continuous at every point D0 ⊂D. If Xn ⇒X and X takes its values in D0, then

g(Xn)⇒ g(X).

Theorem 10 (Slutsky’s Theorem; Van Der Vaart and Wellner (1996), Example 1.4.7).

If Xn ⇒X and Yn ⇒ c where X is separable and c is a constant, then (Xn, Yn)⇒ (X,c) under the

product topology.
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