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This paper considers a closed queueing network model of ridesharing systems such as Didi Chuxing, Lyft,

and Uber. We focus on empty-car routing, a mechanism by which we control car flow in the network to

optimize system-wide utility functions, e.g. the availability of empty cars when a passenger arrives. We

establish both process-level and steady-state convergence of the queueing network to a fluid limit in a large

market regime where demand for rides and supply of cars tend to infinity, and use this limit to study a

fluid-based optimization problem. We prove that the optimal network utility obtained from the fluid-based

optimization is an upper bound on the utility in the finite car system for any routing policy, both static

and dynamic, under which the closed queueing network has a stationary distribution. This upper bound is

achieved asymptotically under the fluid-based optimal routing policy. Simulation results with real-world data

released by Didi Chuxing demonstrate the benefit of using the fluid-based optimal routing policy compared

to various other policies.
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1. Introduction

This paper studies the modelling and control of ridesharing systems such as Didi Chuxing, Lyft

and Uber. We consider a system with r > 0 regions and N > 0 cars. The regions can be interpreted

as geographic regions in a city and cars drive around between regions transporting passengers. At

time t= 0, all cars start off idling empty in some region, waiting for a passenger. Passengers arrive

to region i according to a Poisson process with rate Nλi > 0, and arrivals to different regions are
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independent. When a passenger arrives to region i, if there is an empty car available there, then

the passenger occupies that car and travels to region j with probability Pij. If no empty car is

available, the passenger abandons the system and finds an alternative form of transportation to

her destination. We allow Pii > 0 to represent trips within a region. Travel times from region i

to j have mean 1/µij and are assumed to be i.i.d. exponential random variables, although this

assumption is not essential (see Remark 3 in Section 2.1). Once the passenger arrives at region

j, the car becomes empty. The empty car can either stay in region j with probability Qjj (it

becomes available to take new passengers immediately), or with probability Qjk, relocate without a

passenger to a different region k and wait for a passenger there. The time spent driving empty from

j to k is identical in distribution to that of driving with a customer. In general, the routing matrix

(also called the routing policy) Q= (Qij) is allowed to be state-dependent, i.e. Q may depend on

the current distribution of cars across the regions. In this paper, Q will be a decision variable.

We model this ridesharing network with a closed queueing network consisting of both single-

server and infinite-server stations, where cars are “jobs” moving through the queueing network.

Cars waiting in a region for a passenger are modeled with a single-server station. The buffer content

of the station corresponds to the number of cars waiting, and passenger ride requests correspond

to service completions at the station. Thus, the service times at the single-server station are the

interarrival times of passengers to the region, although there is no physical “server” at the station.

The infinite-server stations are used to model car travel between regions. When the routing policy

Q is static, i.e. not state dependent, our queueing network belongs to a class of networks called

BCMP networks Baskett et al. (1975). The precise formulation of the model can be found in

Section 2.

Because of the proliferation of ridesharing and bikesharing services, modelling and control of

these systems have become important research topics over the last few years Adelman (2007),

George and Xia (2011), Waserhole and Jost (2013, 2016), Banerjee et al. (2016), Iglesias et al.

(2016), Pavone et al. (2012), Zhang and Pavone (2016), Ozkan and Ward (2016), Yang et al. (2016),



Braverman, Dai, Liu and Ying: Empty-car Routing in Ridesharing Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

Bimpikis et al. (2016). Our paper focuses on empty-car routing as a mechanism to improve the

efficiency of the system. To illustrate the effect of this mechanism, consider the two-region example

in Figure 1. Passengers arrive at region 1 to go to region 2 according to a Poisson process with rate

800 passengers/unit time, and arrive at region 2 to go to region 1 with rate 400 passenger/unit time.

After dropping off a passenger at region 2, a driver stays at region 2 with probability Q22, or drives

empty to region 1 with probability Q21. The probabilities Q11 and Q12 are defined analogously. We

define the availability at region i to be the long-run fraction of time that there is at least one empty

car at the region available. Since Poisson arrivals see time averages (PASTA property), this is also

the probability that a passenger’s request for a ride originating from region i will get fulfilled.

1

800 passengers/unit time

2

400 passengers/unit time

Figure 1 A two-region example

A number of existing models consider one-way vehicle sharing systems, in which a vehicle can

only be moved from one region to another when carrying a passenger George and Xia (2011),

Waserhole and Jost (2016), Banerjee et al. (2016). This is a realistic assumption for bikesharing

systems, where a bicycle cannot move autonomously from one region to another, and only moves

when a passenger rides it. In such a case, the performance of the system is largely determined

by the passengers’ arrival rates and destination probabilities. In our example, a one-way system

would correspond to Q12 = Q21 = 0, and a bike taken from 1 to 2 will only return to 1 if it is

brought there by a passenger. Since, on average, region 1 sees twice as many passengers as region

2, the availability of bikes at region 1 will always be at most 50%, regardless of the number of

bikes in the system. That is, region 1 will lose at least half of its passengers to alternative modes
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of transportation. This inefficiency due to passenger imbalance has been well recognized in the

literature. Proposed solutions include demand throttling via pricing Waserhole and Jost (2016),

Banerjee et al. (2016), or periodic bike rebalancing using trucks Chemla et al. (2013), Henderson

et al. (2016).

Empty-car routing is an appropriate mechanism for commercial ridesharing systems, where

drivers often wander around to find passengers, and it is not surprising that a good routing policy

can increase the efficiency of the system. Returning to our example, we assume that there are a

total of 1200 cars in the system, and that the mean travel time in either direction is one unit.

Table 1 compares the availability in each region under several different routing policies. In partic-

ular, we see that the policy with Q21 = 1/3 is preferable to the policy with no empty-car routing

(Q12 =Q21 = 0). The question we answer in this paper is the following. Given a utility function

measuring performance in the system (average availability for example), how should one choose a

routing policy to maximize said utility.

Empty-car Availability

routing policy Region 1 Region 2

Q12 = 0, Q21 = 1/3 73.19% 97.59%

Q12 = 0, Q21 = 1/2 74.64% 74.64%

Q12 =Q21 = 0 50% 100%

Table 1 Availabilities under several empty-car routing policies with 1200 cars in the system computed using the

MVA algorithm.

Recall that with a static routing policy Q, our queueing network is a BCMP network. The

stationary distribution of a BCMP network has a product form, but the normalization constant is

expensive to compute because the state space of the network is too large. However, algorithms such

as mean value analysis (MVA) Reiser and Lavenberg (1980) or approximate mean value analysis

(AMVA) Suri and Sahu (2007) can bypass computing the normalization constant, and directly
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compute performance metrics of interest, e.g. mean queue sizes. In other words, given N, λ,µ, P,

and a static Q, steady-state performance analysis of the system can be done efficiently. However,

the problem of optimizing some performance metric over Q is difficult. Even in the 2-region case,

it can be verified numerically that

max
Q

λ1× (region 1 availability) + λ2 × (region 2 availability) (1)

is a non-convex optimization problem. The reason for this is that availabilities have a non-linear

dependence on Q. When we tried solving (1), MATLAB’s built-in solver failed to converge to a

solution. We also tried using NEOS Czyzyk et al. (1998), which is a collection of more sophisticated

optimization tools. However, even the solvers in NEOS could not reliably solve the problem.

The main contribution of this paper is provide comprehensive solution to the empty-car routing

problem, which is both theoretically grounded and efficient to implement. Namely, we show that

as the number of cars and the passenger arrival rates tend to infinity, i.e. N →∞, the optimal

solution of (1) converges to the optimal solution of a fluid-based optimization problem that can

be solved by solving a linear program. Our results also hold for much broader class of utility

functions; cf. Remark 5 in Section 2.2. We also show in Theorem 2 that the performance under the

optimal static routing policy coming from the fluid-based optimization problem is an upper bound

on the performance under any state-dependent routing policy. Furthermore, this upper bound is

asymptotically tight. For any stochastic control problem of realistic size, the true optimal policy

is rarely known. Thus, any upper bound, particularly a tight bound on the performance is valuable

to develop good policies for finite-sized systems.

The typical asymptotic regime considered for a closed BCMP network is one where the number of

jobs in the network goes to infinity, but the service rates at each station remain fixed. In the context

of our ridesharing network, this would correspond to a regime where the number of cars N increases

to infinity, while both passenger request rates and travel times remain fixed. A lot is known about

the asymptotic behavior of BCMP networks in this asymptotic regime, see for instance (George

2012, Section 4.1) and the references within. Most importantly, the limiting network always has at
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least one region with an infinite number of empty cars, i.e. a region where availability equals one.

For this reason, we refer to this as the infinite supply regime. The asymptotic regime considered

in this paper has both the number of cars N , and the passenger arrival rates Nλ going to infinity

together. We refer to this regime as the large market regime. The infinite supply and large market

regimes are qualitatively different. The latter is not guaranteed to have a region where availability

converges to 100%; we discuss the implications of this further in Section 1.1.

In practice, the large market regime is more realistic than the infinite supply regime. For starters,

it is natural that the supply of drivers in a city increases with demand for rides. Furthermore,

the large market regime does not impose any restrictions on supply-demand imbalance in a city.

The parameter λi is the rate of arriving passengers per car to region i, and gives our model the

flexibility to distinguish between cases when there is an oversupply, undersupply, or critical level

of supply of cars with respect to passenger demand. The latter two cases are more common during

morning or afternoon rush hours, and are precisely the cases where an effective choice of routing

matters the most.

Our main results are stated in the steady-state setting, assuming the system parameters stay

constant. However, in practice it is very common for parameters to depend on the time of day, e.g.

passenger arrivals spike during rush hours. In Section 3.2, we leverage our fluid-based optimization

problem to suggest a time-dependent lookahead policy that anticipates future parameter changes

and routes cars accordingly. We present several numerical examples with time-varying parameters

where this anticipative behavior yields significant performance benefits over the typical approach of

dividing time into smaller intervals and assuming constant parameters on each interval. We remark

that the purpose of this lookahead heuristic is to demonstrate that the fluid-based optimization can

guide the design of high performance empty-car routing policies in practical ridesharing systems

where some of the modeling assumptions made in this paper may not hold. However, this lookahead

is not meant to the “optimal” algorithm for these settings.

Before moving on to the literature review, we wish to say a few things about the routing mech-

anism in this model. Our model uses a centralized mechanism for routing, i.e. the ridesharing
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company generates routing decisions according to the routing matrix Q, and cars then have to

obey that decision. This mechanism is perfectly fine for systems with autonomous vehicles, which

are already experimented with by Uber Chafkin (2016). However, a model with centralized control

is still useful even when human drivers are free to make their own decisions. For instance, a cen-

tralized control mechanism is a best-case performance benchmark against which one can compare

decentralized mechanisms. A centralized mechanism can also be used to quantify the “price of

anarchy”, i.e. the difference in revenue between centralized control and the case when drivers are

free to make their own decisions. Part of this cost can then be used to incentivize drivers to obey

routing instructions, e.g. by subsidizing fuel costs for driving empty.

1.1. Related Literature

BCMP networks are natural choice for modelling ridesharing systems. The closest papers to us

are Zhang and Pavone (2016), Iglesias et al. (2016), where the authors also consider the supply

repositioning problem. BCMP networks have also been used to study fleet-sizing George and Xia

(2011) and pricing Waserhole and Jost (2016) problems in one-way vehicle systems, where no

resource repositioning takes place.

In Zhang and Pavone (2016) and Iglesias et al. (2016), authors use an empty-car routing mecha-

nism to rebalance their ridesharing networks. However, each paper focuses on a single optimization

problem, whereas our technical approach is more robust and allows us to consider a large class of

optimization problems. Like us, Iglesias et al. (2016) also faces a non-linear optimization problem.

To deal with it, the authors pass to the infinite supply regime where they obtain a simpler opti-

mization problem that they solve and apply as a heuristic to the original problem from the finite

system. The connection between the finite system and the limiting system in the infinite supply

regime received rigorous treatment in Banerjee et al. (2016), where the authors establish bounds on

the gap between the optimal values of the optimization problems of the finite and infinite supply

systems.
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The aforementioned papers Banerjee et al. (2016), Zhang and Pavone (2016), Iglesias et al. (2016)

all share the same feature that the optimization problems of those papers equalize availabilities

across all regions. This is either enforced via an explicit constraint Iglesias et al. (2016), (Zhang

and Pavone 2016, Equation 10), or arises implicitly in the optimal solution of the approximating

optimization problem in Banerjee et al. (2016). The rationale behind enforcing the equal availability

constraint is that in the infinite supply regime, at least one region achieves 100% availability.

Equalizing availabilities among regions then ensures 100% availability everywhere. Therefore, the

solutions proposed in those papers rely on an abundance of vehicle supply in the system, and are

unsuitable for problems where demand is comparable to, or even exceeds, supply. Indeed, in our

2-region example in Figure 1, the only way to equalize availabilities is to use the routing policy

Q12 = 0, and Q21 = 1/2, and we see in Table 1 that this hurts system performance.

After submission of this paper, a newer version of Banerjee et al. (2016) appeared, namely Baner-

jee et al. (2017). In both versions, the authors study approximations of optimization problems

arising in finite sized ridesharing systems. The authors directly analyze the stationary distribution

of BCMP networks to establish asymptotically tight guarantees for their approximating optimiza-

tion problems. In Banerjee et al. (2016), the focus is on pricing as a control mechanism in the

infinite supply regime. Motivated by the asymptotic regime and control mechanism considered in

this paper, the new version Banerjee et al. (2017) proves that in our Theorem 2, the ratio between

the optimal value of the optimization problem for the finite-sized system and the optimal value of

the fluid-based optimization goes to one at a rate of 1− 1/
√
N ; see appendix D.1 there.

Fluid models have been used by Pavone et al. (2012), Waserhole and Jost (2013) to study

ridesharing networks. Those fluid models are different from the fluid model in this paper. Fur-

thermore, they are only used as heuristics, and are not shown to be connected to an underlying

stochastic system. In contrast, our fluid model is proven to be the limit of the queue length process

of our BCMP network, and all fluid optimization problems considered are rigorously proven to be

the limits of their stochastic counterparts.
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We also wish to highlight some papers that either consider problems closely related to ridesharing,

or address some of the other aspects of the ridesharing problem not focused on in this paper. In

Adelman (2007), the author considers the problem of managing a network of shipping containers.

That paper uses a combination of optimization and approximate dynamic programming techniques

to determine a policy to accept/reject requests for containers. Both Ma et al. (2013), Santos and

Xavier (2015) study a carpooling problem of having multiple riders with different destinations

share the same car. In Ozkan and Ward (2016), the authors adopt a matching approach to the

setting where a passenger requesting a ride from a region with no available cars is willing to wait

a little bit for a driver to arrive from a nearby region. They study the problem of matching drivers

to passengers when the two may have two different initial locations. In Bimpikis et al. (2016), the

authors consider the issue of pricing rides in a ridesharing network. Also related to the ridesharing

problem is Yang et al. (2016), where the authors study a mean field equilibrium of a system where

agents explore and compete for resources that are both time-varying and location-dependent in

nature.

Outside of the ridesharing setting, fluid models are a widely used tool in the study of closed

queueing networks; we refer the reader to Anselmi et al. (2013) for a recent discussion of the

literature. For the type of network considered in this paper, i.e. a closed network with single-

server and infinite-server stations, process level convergence to the fluid model was established in

Krichagina (1992). The technical novelty of our paper lies in Theorem 4, which characterizes the

limiting behavior of the fluid model. A related paper is Anselmi et al. (2013), which characterizes

the limiting behavior of the fluid model corresponding to a multiclass, closed queueing network

consisting entirely of single-server stations, with no infinite-server stations. The results in Anselmi

et al. (2013) were established using a relative entropy based Lyapunov function. In this paper, we

use the L1 distance from the equilibrium as our Lyapunov function.

1.2. Contributions

The following is a summary of the main contributions of this paper.
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• Fixing a static empty-car routing policy Q= (Qij), we consider a fluid model associated with

a closed queueing network composed of single and infinite server stations. We establish process

level convergence of the scaled queue length process in our closed queueing network to a fluid

limit. The fluid model’s equilibrium set is explicitly characterized, and we show that the fluid

model converges to this equilibrium set from any initial starting condition. We then elevate the

process level convergence result to convergence of steady-state distributions, cf. Section 4. One

consequence of our result is an answer to the following question: what is the minimum number of

cars in the system needed to achieve 100% availability (asymptotically as N →∞) everywhere?

This discussion can be found in Appendix EC.4.

• To find an optimal static empty-car routing policy Q∗, we formulate a fluid-based optimization

problem that is able to accommodate a broad class of utility functions. The latter can depend on

availabilities at different regions, and fractions of both empty or occupied cars on different roads.

Then Q∗ can be solved efficiently by solving a related problem with only linear constraints, cf.

Lemma 2.

• We prove in Theorem 2 that as the number of car grows to infinity, the routing policy Q∗ from

the fluid-based optimization is asymptotically optimal among all state dependent routing policies.

For any MDP or stochastic control problem of realistic size, the true optimal policy is rarely known.

Thus, any upper bound, particularly a tight bound is valuable to developing good policies.

The rest of the paper is structured as follows. In Section 2, we formulate the fluid-based optimiza-

tion problem and state our main results, Theorems 1 and 2. In Section 3, we describe the numerical

study performed using real-world data from Didi Chuxing, China’s largest ridesharing company.

Section 4 is devoted to studying the fluid model of the ridesharing network, and establishing the

machinery needed to prove our main results. Section 5 concludes.

1.3. Notation

For a function f : R→Rn, we use ḟ(t) to denote the derivative of f(t) when the derivative exists.

For any integer n > 0, we use Dn to denote the space of all cadlag functions x : R+ → Rn, i.e.
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functions that are right-continuous on [0,∞) with left limits on (0,∞). We define

Dn0 = {x∈Dn : x(0) = 0},

Dn1 =
{
x∈Dn : x(0)∈ [0,1]n and

n∑
i=1

xi(0) = 1
}
,

Dn0+ = {x∈Dn : x(0)≥ 0}.

For any x∈Dn and any T > 0, we define

‖x‖T = max
1≤i≤n

sup
0≤t≤T

|xi(t)|= sup
0≤t≤T

max
1≤i≤n

|xi(t)| . (2)

We let Cn ⊂Dn be the subspace of continuous functions x :R+→Rn, and define Cn
1 analogously to

Dn1 . For any x∈Dn, we write
∫ t

0
x(s)ds to denote a vector in Rn whose ith component is

∫ t
0
xi(s)ds.

For a vector a ∈ Rn, we use |·| to denote the max-norm, i.e. |a|= max1≤i≤n |ai|. For a set A⊂ Z,

we write |A| to denote the number of elements contained by this set. For a collection of random

variables Y,{Xn}∞n=1, we write Xn⇒ Y to denote weak convergence of Xn to Y (as n→∞).

2. The Ridesharing Optimization Problem

In this section we formally introduce the sequence of ridesharing networks discussed in the intro-

duction. We then introduce the fluid-based optimization and state our main results, Theorems 1

and 2. We then show in Lemma 2 that the fluid-based optimization can be solved efficiently by

solving a related optimization problem with linear constraints.

In our model, there are N cars serving r regions in a city. For any time t ≥ 0, let E
(N)
ij (t) be

the number of empty cars en route from region i to region j 6= i, and let E
(N)
ii (t) be the number of

empty cars that are waiting in region i for a new passenger. Similarly, let F
(N)
ij (t) be the number of

full cars driving from region i to j (by full car we mean a car with a passenger). We allow F
(N)
ii (t) to

be non-zero, because a passenger’s destination can be located in the same region as he was picked

up. Let E(N)(t) and F (N)(t) be the r× r matrices whose (i, j)th elements are E
(N)
ij (t) and F

(N)
ij (t),

respectively.

E(N) = {E(N)(t)∈Zr×r+ , t≥ 0} and F (N) = {F (N)(t)∈Zr×r+ , t≥ 0},
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Ē(N) =
{ 1

N
E(N)(t)∈Rr×r+ , t≥ 0

}
and F̄ (N) =

{ 1

N
F (N)(t)∈Rr×r+ , t≥ 0

}
,

T =

{
(e, f)∈ [0,1]r×r× [0,1]r×r :

r∑
i=1

r∑
j=1

(eij + fij) = 1

}
. (3)

Recall the dynamics introduced in Section 1. We allow the empty-car routing probabilities to be

state-dependent, i.e. the empty-car routing probability matrix at time t≥ 0 is

Q(Ē(N)(t), F̄ (N)(t)) =
(
Qij(Ē

(N)(t), F̄ (N)(t))
)
.

The process (E(N),F (N)) is then a continuous time Markov chain (CTMC), whose transition prop-

erties are listed in Table 2. Going forward, we focus on the fluid-scaled CTMC (Ē(N), F̄ (N)) and

Table 2 Markov Chain Transition Rates

Rate Transition Description

NλiPij1(E
(N)
ii (t)> 0)

E
(N)
ii (t)− 1, Passenger arrives to region i,

F
(N)
ij (t) + 1 and starts ride from i to j.

µijF
(N)
ij (t)Qjk(Ē

(N)(t), F̄ (N)(t))

F
(N)
ij (t)− 1, Passenger dropped off at region j. Car

E
(N)
jk (t) + 1 stays put if k= j, or starts driving

empty to region k if k 6= j

µijE
(N)
ij (t)1(j 6= i)

E
(N)
ij (t)− 1, Empty car arrives to region j. Stays

E
(N)
jj (t) + 1 there until next passenger.

assume it has a single recurrent class. Since the state space is finite, this implies that the CTMC

is positive recurrent. Let (Ē(N)(∞), F̄ (N)(∞)) ∈ T be the random element having the stationary

distribution of (Ē(N), F̄ (N)). Let

A
(N)
i (∞) = P(Ē

(N)
ii (∞)> 0)

be the availability at region i, and let A(N)(∞) be the r-dimensional vector with entries A
(N)
i (∞).

Our model assumes that a routing decision is made, the car is committed to the region until a

passenger arrives to take it away (as opposed to being able to hop around empty between regions).
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This assumption is reasonable in a setting with a centralized router, where the decision maker has

a global view of the system and will therefore ‘get it right the first time’ when making the routing

decisions. The incentive for cars to keep jumping around the network is further reduced by the

assumption that passengers will not linger in the system if they cannot receive service immediately.

This passenger behavior is realistic in settings when comparable transportation modes are available,

e.g. hailing a yellow cab in Manhattan, or taking public transportation.

Remark 1. The process (E(N),F (N)) can also be interpreted as the queue length process in a

closed queueing network of r single server stations and 2r2− r infinite server stations, where cars

are the “jobs” in the network. For 1≤ i≤ r, the process E
(N)
ii = {E(N)

ii (t), t≥ 0} corresponds to a

single server station with service rate Nλi, and

E
(N)
ij = {E(N)

ij (t), t≥ 0}, 1≤ i 6= j ≤ r,

F
(N)
ij = {F (N)

ij (t), t≥ 0}, 1≤ i, j ≤ r,

correspond to infinite server stations where the service rate of each server at station E
(N)
ij or F

(N)
ij is

µij. In the special case when Q is not state-dependent, this network belongs to the class of BCMP

networks Baskett et al. (1975). Note that in our model, the service time at a single-server station

can begin even before a job enters the station, e.g. the inter-arrival “timer” of the next passenger

is counting down regardless of whether there is an available car in the region or not. However,

the memoryless property of passenger inter-arrival times makes our model equivalent to one where

service starts only when the station is non-empty.

We are now ready to introduce the fluid-based optimization problem, and state our main results.

2.1. Main Results

Recall the network primitives λ,µ,P . We now consider the fluid-based optimization problem to

be fully specified from (4a) to (4g) below. In the optimization problem, cij > 0 are rewards for

completing a ride from i to j. The variables in the optimization problem are q, ē, f̄ , ā, where
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q= (qij) is an r× r matrix representing a static empty-car routing policy Q and (ē, f̄ , ā) is a point

in T × [0,1]r, whose interpretation will be given after the equations (4a)-(4g):

max
q,ē,f̄ ,ā

r∑
i=1

r∑
j=1

āiλiPijcij (4a)

subject to λiPij āi = µij f̄ij, 1≤ i, j ≤ r, (4b: full car i-j Little’s Law)

µij ēij = qij

r∑
k=1

µkif̄ki, 1≤ i, j ≤ r, j 6= i, (4c: empty car i-j Little’s Law)

λiāi =
r∑

k=1,k 6=i

µkiēki + qii

r∑
k=1

µkif̄ki, 1≤ i≤ r, (4d: car flow balance region i)

(1− āi)ēii = 0, 1≤ i≤ r, (4e: availability to idle car relation)

(ē, f̄)∈ T , (4f: unit mass)

qij ≥ 0,
r∑
j=1

qij = 1, 0≤ āi ≤ 1, 1≤ i, j ≤ r (4g)

To help guide intuition, one can think of ē, f̄ , and ā as placeholders for E[Ē(N)(∞)],E[F̄ (N)(∞)]

and A(N)(∞), respectively. We can interpret āiλiPij as the rate at which rides are initialized from

i to j, and since a ride from i to j has a reward of cij, the problem above aims to maximize revenue

generation. Our results actually hold for a much larger class of utility functions; cf. Remark 5 in

Section 2.2. The constraints in (4b) are simply Little’s Laws for the number of occupied cars on

the road from i to j in equilibrium. That is, λiPij āi is the rate at which rides are initialized, which

equals the mass of occupied cars on the road fij divided by the average travel time 1/µij. Another

interpretation is that the inflow λiPij āi into the infinite server station equals the outflow µij f̄ij.

Similarly, the constraints in (4c) are also Little’s Laws for the number of empty cars travelling from

i to j; the rate at which empty cars start their journey is qij
∑r

k=1 µkif̄ki. The constraints in (4d)

say that the total rate of outflow from region i, given by λiāi, must equal the total inflow into the

region, given by the right hand side of (4d). Constraints (4e) state that a shortage of availability

(1− āi > 0) is only possible when the fraction of cars at the region equals zero (ēii = 0), because

there are not enough cars to meet demand. Conversely, having a positive mass of cars at a region

(ēii > 0) implies that all passenger requests are satisfied there (1− āi = 0). Additional intuition can
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be gained once the fluid model is introduced and its equilibrium behavior discussed in Section 4,

where the reason why (4a)–(4g) is called the fluid-based optimization problem becomes apparent.

Finally, although this optimization problem is stated for static empty-car routing policies, the

connection to state-dependent polices will be made in Theorem 2.

The following are our main results. The first establishes the connection between the fluid-based

optimization problem and (Ē(N), F̄ (N)). The second shows that asymptotically, the optimal static

policy from the fluid-based optimization outperforms all state dependent policies. The ingredients

to prove Theorem 1 are developed in Section 4, and the proof is left to Appendix EC.5.3. Theorem 2

is proved in Appendix EC.5.4.

Theorem 1. Let q, ē, f̄ , ā be a feasible solution to the optimization problem in (4a)–(4g). Set Q= q.

Assume Pij > 0 for all 1≤ i, j ≤ r and qii > 0 for all 1≤ i≤ r. Then

F̄ (N)(∞)⇒ f̄ , (5)

Ē
(N)
ij (∞)⇒ ēij, 1≤ i 6= j ≤ r, (6)

Ē
(N)
ii (∞)⇒ 0, for i such that āi < 1, (7)∑

i:āi=1

Ē
(N)
ii (∞)⇒

∑
i:āi=1

ēii, (8)

and

P(E
(N)
ii (∞)> 0)→ āi, 1≤ i≤ r, (9)

as N →∞.

Remark 2. The assumptions that Pij > 0 for all i, j and qii > 0 for all i are made to facilitate

exposition in the proof of Theorem 4, which plays a central role in establishing Theorem 1. We

expect that Theorem 4, and hence Theorem 1, holds under the simpler assumption that (Ē(N), F̄ (N))

has a single recurrent class. Assuming qii > 0 for all i is not very restrictive, as it simply means

that a driver has a positive probability to stay in a region after dropping off a passenger there.
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Remark 3. The exponentially distributed travel time assumption is non-essential. We know that(
E(N),F (N)

)
is a BCMP network, and in full generality, BCMP networks only require that the

service time distributions in the infinite server stations have rational Laplace transforms Baskett

et al. (1975). This class of distributions is dense in the set of all probability distributions on (0,∞)

Asmussen (2003). Furthermore, stationary distribution of BCMP networks is known to depend

only on the service rates at the stations, and not on the entire distribution. Hence, the results of

Theorem 1 hold for travel time distributions with rational Laplace transforms.

Theorem 2. (a) Suppose (Ē(N), F̄ (N)) has a single recurrent class under P and Q, where Q can

be a state-dependent empty-car routing policy. Let (q∗, ē∗, f̄∗, ā∗) be an optimal solution of the

optimization problem in (4a)–(4g). Then

r∑
i=1

r∑
j=1

A
(N)
i (∞)λiPijcij <

r∑
i=1

r∑
j=1

ā∗iλiPijcij, N > 0.

(b) Let (Ē(N)∗, F̄ (N)∗) denote the CTMC under the static routing policy q∗. If Pij > 0 for all 1≤

i, j ≤ r and q∗ii > 0 for all 1≤ i≤ r, then

lim
N→∞

r∑
i=1

r∑
j=1

A
(N)∗
i (∞)λiPijcij =

r∑
i=1

r∑
j=1

ā∗iλiPijcij.

Remark 4. Part (a) of Theorem 2 states that the optimal value of the fluid-based optimization

problem (4a)–(4g) is a strict upper bound on the expected system utility of the system with N

cars under any state-dependent routing policy under which the CTMC has a single recurrent class.

Part (b) states that the upper bound is asymptotically achievable under the static routing policy

q∗ if Pij > 0 for all 1≤ i, j ≤ r and q∗ii > 0 for all 1≤ i≤ r.

2.2. Efficient Solution of the Fluid-Based Optimization

Having established the relevance of the fluid-based optimization, we now discuss how to solve it

efficiently. The main issue with solving (4a)–(4g) is the presence of bilinear constraints, e.g. (4c) and

(4d) are bilinear in q and f̄ , and in (4e), the bilinearity is in ā and ē. In this section we show that

the problem can be transformed into one with only linear constraints. Our first step is the following

lemma, which transforms the constraints in (4c) and (4d). It is proved in Appendix EC.5.1.
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Lemma 1. Consider the set of constraints

λiPij āi = µij f̄ij, 1≤ i, j ≤ r, (10a)

µij ēij ≤
r∑

k=1

µkif̄ki, 1≤ i, j ≤ r, j 6= i, (10b)

r∑
k=1,k 6=i

µkiēki ≤ λiāi ≤
r∑

k=1,k 6=i

µkiēki +
r∑

k=1

µkif̄ki, 1≤ i≤ r, (10c)

λiāi +
r∑

j=1,j 6=i

µij ēij =
r∑

k=1,k 6=i

µkiēki +
r∑

k=1

µkif̄ki, 1≤ i≤ r, (10d)

(ē, f̄)∈ T , (10e)

0≤ āi ≤ 1, 1≤ i≤ r, (10f)

(1− āi)ēii = 0, 1≤ i≤ r. (10g)

If (ē, f̄ , ā) and q satisfy (4b)–(4g), then (ē, f̄ , ā) satisfy (10a)–(10g). Conversely, suppose (ē, f̄ , ā)

satisfy (10a)–(10g) and let

qij =
µij ēij∑r

k=1 µkif̄ki
, 1≤ i 6= j ≤ r, qii =

λiāi−
∑r

k=1,k 6=i µkiēki∑r

k=1 µkif̄ki
1≤ i≤ r. (11)

Then (ē, f̄ , ā) and q satisfy (4b)–(4g).

With the help of this lemma, the fluid-based optimization problem can be rewritten as

max
ē,f̄ ,ā

r∑
i=1

r∑
j=1

āiλiPijcij (12)

subject to: (10a)− (10g). (13)

Observe that (10a)–(10f) are all linear constraints, and that only (10g) is bilinear. The following

result says that we can safely ignore (10g). It is proved in Appendix EC.5.2.

Lemma 2. Consider the relaxed optimization problem

max
ē,f̄ ,ā

r∑
i=1

r∑
j=1

āiλiPijcij (14)

subject to: (10a)− (10f), (15)

and let (ē∗, f̄∗, ā∗) be an optimal solution.
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1. If ā∗i < 1 for all 1≤ i≤ r, then ē∗ii = 0 for all 1≤ i≤ r, implying (ē∗, f̄∗, ā∗) also satisfies (10g).

2. Otherwise, choose any i′ such that ā∗i′ = 1, define ẽ by letting ẽij = ē∗ij for all 1≤ i 6= j ≤ r,

ẽi′i′ =
r∑
i=1

ē∗ii, and ẽii = 0, i 6= i′.

Then (ẽ, f̄∗, ā∗) is a feasible solution that yields the same objective value as (ē∗, f̄∗, ā∗), and

also satisfies (10g).

Solving the fluid-based optimization can be broken down into the following procedure. We first

solve (14)–(15), which has (4r2 + 2r+ 1) linear constraints and 2r2 + r variables, and can be solved

efficiently using any standard linear program solver. We then modify the solution using Lemma 2

(if needed) so that it also satisfies (10g), and recover the optimal routing policy using (11).

Remark 5. So far, we only considered the utility function defined in (4a). In fact, both Lemma 2

and Theorem 2 can be extended to hold for any function U(ē, f̄ , ā) that is

(a) nondecreasing in āi for all i,

(b) nondecreasing in f̄ij for all i and j,

(c) nonincreasing in ēij for all i 6= j,

(d) independent of ēii for all i, and

(e) concave in (ē, f̄).

Lemma 2 can be extended because its proof relies only on the objective value in (14) satisfying

conditions (a)–(d). Theorem 2 can be extended to say that

E
[
U(A(N)(∞),E(N)(∞),F (N)(∞)

]
≤U

(
A(N)(∞),E

[
E(N)(∞)

]
,E
[
F (N)(∞)

])
≤U(ā∗, ē∗, f̄∗),

where the first inequality follows from Jensen’s inequality and (e), and the second inequality is

proved by repeating the proof of Theorem 2.

3. A Numerical Study

This section is devoted to a numerical study of our empty-car routing policy. To ground the study,

we use a data set obtained from a data challenge by the Didi Research Institute (DRI 2016). Using
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the data set, we extract a nine-region network and the associated realistic parameters N,µ,λ, and

P . For more details about the dataset and how we obtained our parameters, see Appendix EC.3.1.

Figure 2 shows order fulfillment levels for each of the nine regions during the 5PM-6PM evening

rush hour, plotted over 21 days. Each point represents the total number of orders received, and

orders fulfilled during that one hour window. We can see that three of the nine regions, regions

13, 47, and 50, had significant supply shortages in most of the 21 days, while most orders in the

remaining six regions were fulfilled. Our data did not permit us to deduce the surplus of drivers in

those six regions, but these figures illustrate the significance of a good empty-car routing policy.
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Figure 2 The gaps between the number of passenger orders and the number of fulfilled orders of the nine regions

The rest of the section is structured as follows. We first compare the fluid-based optimal routing

policy to a state-dependent routing policy in Section 3.1. We then use the fluid-based optimization

to propose a lookahead policy to deal with cases where the system parameters are not constant

over time in Section 3.2. Lastly, we perform some numerical robustness tests in Section 3.3 to see

how the fluid-based policy performs when there is estimation noise present in the parameters.
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3.1. Performance Comparison with Dynamic Routing Polices

In Theorem 2, we showed that the expected utility under any state-dependent routing policy for

the finite-sized system is upper bounded by the optimal utility of the fluid-based optimization.

However, the question remains open whether a state-dependent routing policy can outperform the

static routing policy Q∗ for a finite-sized system. Choosing cij = 1/
∑r

i=k λk in (4a), we consider

the utility function

U(ē, f̄ , ā) =U(ā) =

∑r

i=1 āiλi∑r

i=1 λi
. (16)

This can be thought of as the probability that a passenger requesting a ride at any region is fulfilled.

It is impossible to consider all possible dynamic routing policies, so we focus on the following two

intuitive heuristics.

Join-the-Least-Congested-Region with Threshold η (JLCR-η): When a car drops off a

passenger at region i at time t, the driver stays at region i if

(1− η)

∑
kE

(N)
ki (t)

λi
≤ min

j=1,j 6=i

∑
kE

(N)
kj (t)

λj
. (17)

Otherwise, the driver drives empty to region j∗, where

j∗ ∈ arg min
j=1,j 6=i

∑
kE

(N)
kj (t)

λj
. (18)

Ties are broken uniformly at random. �

To understand the JLCR-η policy, we note that
∑

kE
(N)
ki (t) = E

(N)
ii (t) +

∑
k 6=jE

(N)
ki (t) is the

number of empty cars both currently waiting and en-route to region i. Therefore,
∑

k E
(N)
ki

(t)

λi
is a

measure of congestion, in terms of empty cars, at region i. When η= 0, the policy routes empty cars

to the least congested region. However, such a policy can be wasteful if congestion levels among

regions are similar, because it takes time for a car to go from one region to another. We therefore

introduce the threshold η such that a driver drives empty from i to j only if the difference in

congestion levels surpasses η
∑

k E
(N)
ki

(t)

λi
. We test the policy on our 9-region network with parameters

as in (EC.62)-(EC.64). With η ranging from 0 to 1, we find that JLCR-η performs best when η
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is around 0.5. In addition to JLCR, we also consider the following policy where drivers aim to

minimize the time until their next pickup.

Shortest-Wait (SW): When a car drops off a passenger at region i at time t, the driver stays at

region i if

E
(N)
ii (t)

Nλi
≤min

j 6=i

1

µij
+

(
E

(N)
jj (t) + 1

µij

∑
k 6=j µkjE

(N)
kj (t)− Nλj

µij

)+

Nλj
,

Otherwise, the driver drives empty to region that minimizes the right hand side above. Ties are

broken uniformly at random. �

The intuition behind the SW policy is that drivers want to minimize the time to get their

next passenger. Since passengers arrive to region i every 1/Nλi time units (on average), then

E
(N)
ii (t)/Nλi is a proxy (we have not assumed any priority scheme for choosing how to allocate

passengers between multiple cars in the same region) for the amount of time it will take until the

driver gets a passenger if he stays in region i. If the driver chooses to go to region j, then the time

taken until he gets a passenger is the sum of the travel time 1/µij and the time spent idling in

region j. We use
(
E

(N)
jj (t) + 1

µij

∑
k 6=j µkjE

(N)
kj (t)− Nλj

µij

)+

/Nλj as a proxy for the latter quantity:

E
(N)
jj (t) is the number of cars idling in region j at the decision point, 1

µij

∑
k 6=j µkjE

(N)
kj (t) estimates

the number of cars to arrive to j, and
Nλj
µij

estimates the number of cars that will leave the region

due to passenger arrivals by the time the driver makes it from i to j.

Figure 3 compares the static routing policy under Q∗ to SW and JLCR-η with different values

of η in the 9-region network. In particular, we included JLCR policies with

• η= 0 : Under JLCR-0, an empty car always goes to the least congested region.

• η= 1 : Under JLCR-1, after a car drops off a passenger, it always stays at its current region.

• η= 0.5 : JLCR-0.5 maximizes system-wide availability among all JLCR-η when N = 2,000.

A few remarks are in order. The figure confirms that static routing with Q∗ outperforms both

the SW and JLCR-η family of policies. However, a typical quality of state-dependent policies

is robustness to system parameters. In our case, computing Q∗ requires knowledge of λ,µ, and
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P , whereas a JLCR-0.5 only requires knowledge of λ. Robustness to parameters is a particularly

important quality when one only has noisy observations of the true parameters, or when the

true parameters change over time. The objective of this paper is not to pursue optimal state-

dependent policies. Rather, it is to establish an initial, rigorous theoretical foundation for the

study of ridesharing networks. Our optimal static policy can then be used as a benchmark against

which one compares the performance of other routing policies. As a case in point, had Figure 3 not

included the performance of static-routing under Q∗, it would have been impossible to say whether

JLCR-η∗ was a good policy or not.
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Figure 3 Performance comparison between the static routing, JLCR and SW policies in the nine-region network.

In the plot, U∗ is the optimal utility (16) from the fluid-based optimization, and U (N) is the steady-state

utility in the finite sized system under optimal static routing.

3.2. Time-varying Parameters and the Lookahead Heuristic

The effectiveness of the fluid-based empty-car routing policy rests on the assumptions that a)

parameters remain constant over time, and b) that the system has reached equilibrium. In practice

a) is violated, e.g. when a rush hour starts. A common solution is to divide the day into periods

of time where parameters are assumed constant, and treat the system as if it were in steady-state
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during each of those periods Green et al. (2007). This approach can yield good results provided

our time windows are long enough for the system to converge to equilibrium in each of them.

The Didi dataset we use suggests it is reasonable to assume constant parameters over time win-

dows 1-2 hours in length; see Figure 4. However, numerical experiments suggest that for certain
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Figure 4 Ride requests on January 5, 2016 in region 50 of the Didi dataset. The x-axis shows the time of day,

with 0 being midnight and 12 being noon.

choices of parameters and initial conditions, convergence of our system to equilibrium can occur on

timescales on the order of 10 hours. With the rate at which parameters vary, and the slow conver-

gence to equilibrium, the system never really reaches steady-state. To address this, we now propose

a lookahead policy that is grounded in the fluid-based optimization problem. The purpose is to

demonstrate that our fluid model framework, even though developed in a stationary environment,

can potentially be used for other purposes.

The T -lookahead policy: Recall the per-ride rewards cij from (4a), and suppose that they

can depend on λ,µ, and P , i.e. cij = cij(λ,µ,P ) (like in (16)). Given time-varying parameter{
λ(t), µ(t), P (t)

}
t≥0

, the per-ride rewards cij also depend on time; for simplicity, let us write cij(t)

instead of cij(λ(t), µ(t), P (t)). Instead of using the time-independent routing matrix q∗ from the

fluid-based optimization problem (4a)–(4g), at time t ≥ 0 we use the routing matrix q∗(t) that

solves

max
q,ē,f̄ ,ā

1

T

∫ T

0

r∑
j=1

āiλi(t+u)Pij(t+u)cij(t+u)du
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subject to
1

T

∫ T

0

λi(t+u)Pij(s+u)āidu=
1

T

∫ T

0

µij(s+u)f̄ijdu, 1≤ i, j ≤ r,

1

T

∫ T

0

µij(t+u)duēij = qij

r∑
k=1

1

T

∫ T

0

µki(t+u)f̄kidu, 1≤ i, j ≤ r, j 6= i,

1

T

∫ T

0

λi(t+u)āidu

=
r∑

k=1,k 6=i

1

T

∫ T

0

µki(t+u)ēkidu+ qii

r∑
k=1

1

T

∫ T

0

µki(t+u)f̄kidu, 1≤ i≤ r,

(1− āi)ēii = 0, 1≤ i≤ r,

(ē, f̄)∈ T , qij ≥ 0,
r∑
j=1

qij = 1, 0≤ āi ≤ 1, 1≤ i, j ≤ r.

The above problem is solved in the exact same way as the fluid-based optimization. In other words,

the T -lookahead policy is a time-varying routing policy that uses paramater averages over the time

window [t, t+T ] to make a decision at time t. In theory, q∗(t) can be computed in real time at any

decision point. In our numerical results, we discretize time into ∆-spaced intervals and use q∗(k∆)

as the routing decision for all times t∈ [k∆, (k+ 1)∆], where k is some non-negative integer.

We now consider some example networks with time-varying parameters, and compare the T -

lookahead policy to both the standard fluid-based routing policy, and the state-dependent JLCR

and SW policies from Section 3.1. Since ridesharing trip lengths are typically on the order of 10-30

minutes, we choose T to equal 30 and 45 minutes in our examples. This corresponds to looking

ahead a few trips into the future.

3.2.1. The 5-Region City We consider a simplified model of a city that consists of 5 regions:

a downtown area, a midtown area, and three suburban areas. We take a typical evening, from 5pm-

11pm, and divide it into three 2-hour slots each having different parameters λ,µ,P to represent

different traffic patterns. The details of this 5-region network are provided in Appendix EC.3.2.

Table 3 displays the results of a simulation that compares the system-wide availability introduced

in (16) under several routing policies: ‘standard fluid’, JLCR-0.5, SW, 30 minute lookahead, and 45

minute lookahead. The ‘standard fluid’ policy treats the system as if it were in equilibrium during

each of the 2-hour time slots. It solves three separate fluid-based optimization problems, one for
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each of the three 2-hour time slots, and uses the resulting routing policy in the appropriate time

slot. The JLCR-0.5 and SW policies are used because they adapt quickly to changes in parameters

due to their state-dependent nature.

At 5pm, the system is initialized by assuming all cars are idle and distributing them across

regions proportionally with the expected demand in the region, i.e. region i gets λi/
∑

j λj of the

cars, where λ are the 5pm arrival rates. The results are consistent with what we would expect,

and in our experiments, the performance of the lookahead policy was consistent across different

choices of initial system configurations (e.g. starting system according to fluid equilibrium). The

standard fluid policy performs very well during the first two hours because the system was initial-

ized with a favorable initial condition, and parameters stay constant during that time. However,

the performance of this policy degrades as soon as the parameter change happens at 7pm. The

explanation for this is simple: operating under the 5-7pm parameters for the first two hours puts

the system in a state that is very far from the 7-9pm fluid equilibrium, and performance suffers

as a result. Unlike the standard fluid policy, the lookahead policies anticipate parameter changes

and prepare for them by pre-positioning the cars in the system into a more favorable state. For

example, by sacrificing 4% in performance during 6-7pm, the 45 minute lookahead policy increases

performance during 7-8pm to 86% from the 67% of the standard fluid policy. Factoring in the

different ride request rates during the above two hours, the 4% performance drop corresponds to

0.04 ∗N
∑

i λ
6−7pm
i ≈ 61 customers lost, while the 19% increase during 7-8pm means an extra 433

customers served.

3.2.2. The 9-Region Didi Network Here we present some numerical results based on the

9-region network detailed in Appendix EC.3.1. In our first experiment, we consider a 4-hour period

where passenger arrivals are constant for the first two hours, and then change abruptly in the last

two hours. Namely, for the first two hours we let our arrival rates equal 0.3λ, where λ is as in

(EC.64), and for the last two hours we use 0.85λp, where

λp =

(
0.0131 0.0624 0.1178 0.0870 0.0652 0.0381 0.0762 0.2751 0.1438

)
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5-6pm 6-7pm 7-8pm 8-9pm 9-10pm 10-11pm Total 5-11pm

Standard Fluid 0.93 0.82 0.67 0.66 0.76 0.72 0.75

JLCR-0.5 0.91 0.73 0.74 0.75 0.97 0.66 0.79

SW 0.92 0.77 0.74 0.75 0.94 0.78 0.81

T -Lookahead, T = 0.5 0.93 0.82 0.82 0.8 0.96 0.71 0.84

T -Lookahead, T = 0.75 0.93 0.78 0.86 0.76 0.93 0.76 0.83

Table 3 Comparing the performance of the lookahead policy (N = 1000). The time unit for T is hours and the

time-discretization ∆ is chosen to be one minute. Based on the utility function in (16), the values displayed are the

fraction of fulfilled ride requests. We used constant travel times, but the results remain qualitatively unchanged if

the travel times are exponentially distributed.

is a permutation of λ. With this experiment, we want to create a case where a) the passenger

request rate in the last two hours is significantly higher than the first two, and b) where the sources

of passenger requests change significantly. Similar to the 5-region city example, we initialize cars in

our system in proportion to λi/
∑

j λj, and we present our results in Table 4. The results again show

that the performance of the standard fluid policy suffers right after the change in parameters and

that the lookahead policy corrects for this. In this example, using the longer 45 minute lookahead

window does not degrade performance during hour 2 when compared to the 30 minute window (or

even the standard fluid). This happens because there is an excess supply of cars during the first

two hours, e.g. availabilities are almost 100%. This excess allows one to act suboptimally in hour

2 to preposition cars for hour 3 without hurting performance.

3.3. Robustness

The optimal fluid-based routing policy depends on perfect knowledge of system parameters λ,P,µ.

In practice, one uses estimates of these parameters, and the estimates contain noise. In this section

we provide several numerical examples to get a sense of the robustness of our optimal fluid-based

routing policy. The setup is the following: given a set of true parameters λ,µ,P and the utility

function in (16), we compute the optimal routing policy Q∗. Let σ > 0, and let ηij and ξij be
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Hour 1 Hour 2 Hour 3 Hour 4 4-hour Total

Standard Fluid 0.995 0.988 0.705 0.759 0.8

JLCR-0.5 1 1 0.715 0.717 0.79

SW 1 1 0.67 0.641 0.745

T -Lookahead, T = 0.5 0.995 0.991 0.759 0.771 0.824

T -Lookahead, T = 0.75 0.995 0.993 0.788 0.779 0.838

Table 4 Comparing the performance of the lookahead policy (N = 2000). The time unit for T is hours and the

time-discretization ∆ is chosen to be one minute. Based on the utility function in (16), the values displayed are the

fraction of fulfilled ride requests. We used constant travel times, but the results remain qualitatively unchanged if

the travel times are exponentially distributed.

i.i.d. random variables that equal 1 or −1 with equal probability. To simulate noisy estimates of

passenger request rates along a route λiPij and mean travel times 1/µij, we use

λiPij(1 +σηij), and (1/µij)(1 +σξij), 1≤ i, j ≤ r,

respectively. We use four sets of parameters: the first set corresponds to the 9-region network

(EC.62)–(EC.64), and the other three sets correspond to the three parameters sets used with the

5-region model in Section 3.2.1. Given a true parameter set and a realization of the ηij and ξij’s, we

compute a routing matrix Q̂∗ based on the fluid optimization with the noisy parameters. To obtain

a measure of suboptimality, we then evaluate (16) with the true parameters λ,µ,P but with routing

matrix Q̂∗. We treat the objective value under Q̂∗ as a random variable (it depends on ηij and ξij),

and report its mean and standard deviation in Table 5. We see that 5% and 10% estimation errors

lead to policies that are approximately 5% and 10% suboptimal, respectively. Outside these four

examples, the sensitivity of the optimal solution will depend on the choice of parameters. However,

the table gives us an idea of the magnitude of the suboptimality due to estimation error.

In the next section we introduce the fluid model together with the tools needed to prove Theo-

rems 1 and 2.
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Parameter

Set

Optimal

Fluid

Q̂∗ Performance

σ= 0.05

(mean, std. dev.)

Relative

Suboptimality

(σ= 0.05)

Q̂∗ Performance

(σ= 0.1)

(mean, std. dev.)

Relative

Suboptimality

(σ= 0.1)

5-region, 5-7pm 0.91 (0.87,0.024) 0.044 (0.82,0.044) 0.099

5-region, 7-9pm 0.92 (0.88,0.015) 0.043 (0.84,0.028) 0.087

5-region, 9-11pm 0.92 (0.86,0.031) 0.065 (0.81,0.053) 0.120

9-region 0.8403 (0.818868, 0.01503) 0.021478 (0.800520, 0.029091) 0.039826

Table 5 The third and fifth columns report the performance of the routing policy obtained from noisy

parameters, Q̂∗, under the true parameters λ,µ,P . We ran 1000 replications, where in each replication we generated

a value for ηij and ξij ; 2r2 random variables per replication in total.

4. The Fluid Model

In this section we study the fluid model of the ridesharing network in Section 2 and prepare all the

ingredients needed to prove Theorem 1. We start by introducing the fluid model for static empty-car

routing matrices Q, and establish process-level convergence in Theorem 3. In Section 4.1, we then

characterize the fluid model’s set of equilibria. This equilibrium behavior motivates the fluid-based

optimization in Section 2. Theorem 1 then follows from a standard argument involving process-level

convergence and the convergence of the fluid model to its equilibrium, and we therefore relegate it

to Appendix EC.5.3.

Recall the primitive parameters λ,µ,P , and assume a static empty-car routing matrix Q is given.

Recall the set T defined in (3). Let

I
(N)
i (t) =

∫ t

0

1
(
E

(N)
ii (s) = 0

)
ds

be the cumulative idle time of the single-server station corresponding to E
(N)
ii . The following is a

process-level convergence result for (Ē(N), F̄ (N)), and is proved in Appendix EC.1.

Theorem 3. Assume
(
Ē(N)(0), F̄ (N)(0)

)
⇒ (e(0), f(0))∈ T as N →∞. There exists a unique solu-

tion (e, f) :R+→T and u :R+→Rr+ to the dynamical system

fij(t) = fij(0) +λiPij
(
t−ui(t)

)
−µij

∫ t

0

fij(s)ds, 1≤ i, j ≤ r, (19)
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eij(t) = eij(0)−µij
∫ t

0

eij(s)ds+Qij

r∑
k=1

µki

∫ t

0

fki(s)ds, 1≤ i 6= j ≤ r, (20)

eii(t) = eii(0)−λi
(
t−ui(t)

)
+

r∑
j=1
j 6=i

µji

∫ t

0

eji(s)ds+Qii

r∑
j=1

µji

∫ t

0

fji(s)ds, 1≤ i≤ r, (21)

u(t) is non-decreasing with u(0) = 0, and

∫ ∞
0

eii(s)dui(s) = 0 for all 1≤ i≤ r. (22)

Furthermore, for all T ≥ 0,

lim
N→∞

‖
(
Ē(N), F̄ (N), I(N)

)
− (e, f,u)‖T = 0 (23)

almost surely.

Remark 6. Theorem 1 assumes that Pij > 0 for all i, j and Qii > 0 for all i. This assumption is

not used in the proof of Theorem 3, but appears in Section 4.1.

We refer to equations (19)-(22) as the fluid model of the ridesharing network, and to
(
e, f,u

)
as

the fluid analog of
(
Ē(N), F̄ (N), I(N)

)
. Note that Pij = 0 implies fij(t) ≡ 0, and Qij = 0 for i 6= j

implies eij(t)≡ 0. It will come in handy later on to know that, e(t), f(t), and u(t) are Lipschitz

continuous. To see why, observe that for any ε > 0, (23) says that we can choose N large enough

such that

|u(t)−u(s)| ≤
∣∣u(t)− I(N)(t)

∣∣+ ∣∣I(N)(t)− I(N)(s)
∣∣+ ∣∣I(N)(s)−u(s)

∣∣
≤ ε+ |t− s|+ ε,

where in the second inequality we used the definition of I(N) to get

∣∣I(N)(t)− I(N)(s)
∣∣≤ |t− s| , 0≤ s, t <∞.

Hence,

|u(t)−u(s)| ≤ |t− s| , 0≤ s, t <∞. (24)

Combining (19)–(21) with (24) and the fact that
(
e(t), f(t)

)
is bounded (because it is in T ),

we deduce that both e(t) and f(t) are also Lipschitz-continuous. The next section considers the

equilibrium behavior of the fluid model.
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4.1. Equilibrium Points

We begin with an informal discussion on how to characterize the equilibrium of the fluid model.

In equilibrium, we expect
(
ė(t), ḟ(t)

)
to equal zero. Taking derivatives in (19)–(21) and setting the

left hand sides to zero gives us

0 = λiPij
(
1− u̇i(t)

)
−µijfij(t), 1≤ i, j ≤ r, (25)

0 =−µijeij(t) +Qij

r∑
k=1

µkifki(t), 1≤ i 6= j ≤ r, (26)

0 =−λi
(
1− u̇i(t)

)
+

r∑
j=1
j 6=i

µjieji(t) +Qii

r∑
j=1

µjifji(t), 1≤ i≤ r. (27)

The derivative u̇(t) above exists for almost every t because u(t) is Lipschitz continuous by (24).

Next, by adding up all the terms in (19)–(21) we can see that the total amount of fluid in the

system always equals one, or

(
e(t), f(t)

)
∈ T . (28)

Lastly, we combine Lipschitz continuity of u(t) together with (22) to see that

∫ ∞
0

eii(s)dui(s) =

∫ ∞
0

eii(s)u̇i(s)ds= 0.

Since eii(t)≥ 0 and u̇i(t)≥ 0 (because u(t) is an increasing function), for all t≥ 0 where u̇i(t) exists,

eii(t)u̇i(t) = 0. (29)

Therefore, we expect the equilibrium of the fluid model (if it exists) to satisfy (25)–(29). The

following lemma addresses the issue of existence of an equilibrium. In the lemma, we use āi ∈

[0,1] as a placeholder for 1− u̇i(t) to represent the equilibrium server utilization at the station

corresponding to eii. We let ā be the r-dimensional vector whose components are āi. We can now

see that (25)–(29) are exactly the constraints in the fluid-based optimization problem (4b)–(4g).
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Lemma 3. Assume Pij > 0 and Qii > 0 for all i, j = 1, . . . , r. The system of equations

λiPij āi = µij f̄ij, 1≤ i, j,≤ r, (30a)

µij ēij =Qij

r∑
k=1

µkif̄ki, 1≤ i≤ r, j 6= i, (30b)

λiāi =
r∑

k=1
k 6=i

µkiēki +Qii

r∑
k=1

µkif̄ki, 1≤ i≤ r, (30c)

(1− āi)ēii = 0, 1≤ i≤ r, (30d)

(ē, f̄)∈ T , ā∈ [0,1]r (30e)

has at least one solution (ē, f̄ , ā). Multiple solutions may exist, but the only difference between

solutions are in the components ēii for i such that āi = 1. In other words, the components ā, f̄ , ēij

for i 6= j, and ēii for i such that āi < 1, are identical across all solutions.

Define

E =
{

(ē, f̄)∈ T : ∃ ā∈ [0,1]r such that (ē, f̄ , ā) solves (30a)–(30d)
}
. (31)

Lemma 3 implies that we can associate a unique ā to the set E . Furthermore, the lemma implies

that the quantity m̄, defined as

m̄=
∑
i:āi=1

ēii = 1−
r∑
i=1

r∑
j=1

f̄ij −
r∑
i=1

r∑
j=1
j 6=i

ēij (32)

is unique. In light of the following theorem, we refer to E as the equilibrium set. The theorem is

proved in Appendix EC.2 and is the final ingredient to prove Theorem 1.

Theorem 4. Let
(
e(t), f(t), u(t)

)
be the unique solution to (19)–(22) with initial condition

(e(0), f(0))∈ T . Assume Pij > 0 and Qii > 0 for all i, j = 1, . . . , r. Then for any ε > 0, there exists

a T > 0 such that

inf
x∈E

∣∣(e(t), f(t)
)
−x
∣∣< ε, t≥ T.

Remark 7. In Lemma 3 and Theorem 4, we make use of the assumption that Pij > 0 for all i, j and

Qii > 0 for all i. We expect that the result holds if the CTMC has a single recurrent class, but our

extra assumption greatly facilitates exposition. This is especially true in the proof of Theorem 4,

which is already rather cumbersome.
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5. Conclusions

This paper considered empty-car routing in a ridesharing network under a regime where both

supply and demand for cars tend to infinity, and provided a comprehensive analysis of the design of

an optimal empty-car routing policy based on asymptotic fluid analysis. A numerical study using

real-world ridesharing data confirmed the effectiveness of our solution. Our paper is only a first

step to understand ridesharing networks, and poses some interesting problems for future research

directions:

Decentralized routing: Our routing policy is a centralized solution that assumes the rideshar-

ing platform has full control over its empty cars, which provides a best-case benchmark. One future

research topic is the design of decentralized incentive mechanisms for achieving the routing prob-

abilities of the centralized solution. One can use the centralized routing policy as a benchmark to

quantify the efficiency of a decentralized mechanism.

Time-varying parameters: Our T -lookahead policy is just one heuristic for dealing with time

varying parameters, but it would be very interesting to be able to say something rigorous about

time-varying policies. Along this line, studying the transient control problem would also be of

interest (given the long time it takes the fluid to converge to equilibrium from certain initial

conditions). Even studying the fluid transient control problem is non-trivial, because the fluid

model is a non-linear dynamical system.

Robust routing policies: We witnessed in Figure 3 that certain state-dependent policies can

attain performance levels close to those of the optimal static policy, yet have the benefit of not

requiring explicit knowledge of system parameters. Now that a benchmark has been established,

can we find state-dependent policies that are provably asymptotically optimal, yet rely as little as

possible on primitive system parameters?
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Appendix

EC.1. Process Level Convergence for Closed Networks of Single and Infinite
Server Stations

In this section we consider closed queueing networks with exponential service times that consist

of both single-server and infinite-server stations. We prove that as both the number of jobs in the

network, and the service rates at the single server stations increase, the appropriately scaled queue

length process converges to a fluid limit. The ridesharing model in Section 2 is a special type of

such networks, meaning that Theorem 3 will be a special case of the results here. We remark that

process-level convergence for the class of networks considered here is a consequence of the results

in Krichagina (1992). However, in that paper the limiting process is defined as the solution to a

differential inclusion, and our proof technique is sufficiently different to merit a separate write-up.

We consider a closed queueing network with N > 0 jobs and J stations, consisting of both single-

server and infinite-server stations. We let the stations be indexed by the set J = {1, . . . , J}. Let

I ⊂ J and S ⊂ J be the non-empty index sets corresponding to the infinite server stations, and

single server stations, respectively. To describe the network dynamics, we introduce the following

primitives. Let Q(N)(0) ∈ ZJ+ with
∑

i∈J Q
(N)
i (0) = N be the vector representing the initial job

distribution in the network. To keep track of service completions at each stations, we let

Si = {Si(t), t≥ 0}, i∈J

be a collection of unit-rate Poisson processes with Si independent of Sj for i 6= j. Let λ,µ∈RJ+ be

two vectors with λi = 0 for i ∈ I and µi = 0 for i ∈ S, which we will use to represent the service

rates at different stations. We assume that the service rate of each server at station i∈J is

Nλi, i∈ S

µi, i∈ I.
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Let

{(
Φi1(n), . . . ,ΦiJ(n)

)
∈ZJ+, n∈Z+

}
, i∈J

be a collection of routing processes defined as follows. For each n∈Z+ and each i∈J , the vector

(
Φi1(n), . . . ,ΦiJ(n)

)
=

n∑
m=1

φi(m),

where
{
φi(m)∈ {0,1}J

}∞
m=1

is a sequence of i.i.d. random variables with

P(φi(1) = e(j)) =Rij, i, j ∈J .

Furthermore, the sequences
{
φi(m)

}∞
m=1

and
{
φj(m)

}∞
m=1

are assumed to be independent for i 6= j.

Let R be the routing probability matrix whose i, jth entry is Rij, and observe that it is a column

stochastic matrix.

Using an inductive argument similar to the proof of (Chen and Mandelbaum 1991, Theorem

2.1), one can show that there exists a unique process

Q(N) = {Q(N)(t) = (Q
(N)
1 (t), . . . ,Q

(N)
J (t)), t≥ 0}

satisfying

Q
(N)
i (t) = Q

(N)
i (0)−Si

(
NλiT

(N)
i (t)

)
+
∑
j∈S

Φji

(
Sj
(
NλjT

(N)
j (t)

))
+
∑
k∈I

Φki

(
Sk

(
µk

∫ t

0

Q
(N)
k (s)ds

))
, i∈ S, (EC.1)

Q
(N)
i (t) = Q

(N)
i (0)−Si

(
µi

∫ t

0

Q
(N)
i (s)ds

)
+
∑
j∈S

Φji

(
Sj
(
NλjT

(N)
j (t)

))
+
∑
k∈I

Φki

(
Sk

(
µk

∫ t

0

Q
(N)
k (s)ds

))
, i∈ I, (EC.2)

where

T
(N)
i =

{
T

(N)
i (t) =

∫ t

0

1(Q
(N)
i (s)> 0)ds

}
, i∈ S,

is the cumulative busy time process of the server at each single server station. At any time t≥ 0,

Q
(N)
i (t) is the job count at station i∈J . It is a straightforward exercise to verify that Q(N) satisfies



e-companion to Braverman, Dai, Liu and Ying: Empty-car Routing in Ridesharing Systems ec3

the Markov property and is therefore a CTMC. Furthermore, the CTMC (E(N),F (N)) introduced

in Section 2 is a special case of Q(N).

To write (EC.1)–(EC.2) in a form that is more convenient for analysis, for any t≥ 0 let us define

Ŝi(t) = Si(t)− t, i∈J ,

Φ̂ij(n) = Φij(n)−Rijn, i, j ∈J , n∈Z+,

and

M̂
(N)
i (t) = − Ŝi

(
NλiT

(N)
i (t)

)
+
∑
j∈S

[
Φ̂ji

(
Sj
(
NλjT

(N)
j (t)

))
+RjiŜj

(
NλjT

(N)
j (t)

)]

+
∑
k∈I

[
Φ̂ki

(
Sk

(
µk

∫ t

0

Q
(N)
k (s)ds

))
+RkiŜk

(
µk

∫ t

0

Q
(N)
k (s)ds

)]
, i∈ S, (EC.3)

M̂
(N)
i (t) = − Ŝi

(
µi

∫ t

0

Q
(N)
i (s)ds

)
+
∑
j∈S

[
Φ̂ji

(
Sj
(
NλjT

(N)
j (t)

))
+RjiŜj

(
NλjT

(N)
j (t)

)]

+
∑
k∈I

[
Φ̂ki

(
Sk

(
µk

∫ t

0

Q
(N)
k (s)ds

))
+RkiŜk

(
µk

∫ t

0

Q
(N)
k (s)ds

)]
, i∈ I, (EC.4)

and let M̂ (N)(t) be the vector whose components are M̂
(N)
i (t). For t≥ 0, we also define

I
(N)
i (t) = 0 for i∈ I and I

(N)
i (t) = t−T (N)

i (t) for i∈ S, (EC.5)

and let I(N) = {I(N)(t) ∈RJ+, t≥ 0}. Then for i ∈ S, I
(N)
i (t) represents the cumulative idle time up

to time t. Setting

Q̄(N)(t) =
1

N
Q(N)(t) and M̄ (N)(t) =

1

N
M̂ (N)(t),

we from (EC.1)–(EC.4) that

Q̄
(N)
i (t) = Q̄

(N)
i (0) + M̄i(t) +

(∑
j∈S

Rjiλj −λi
)
t+
∑
k∈I

Rkiµk

∫ t

0

Q̄
(N)
k (s)ds

+λiI
(N)
i (t)−

∑
j∈S

RjiλjI
(N)
j (t), i∈ S, (EC.6)

Q̄
(N)
i (t) = Q̄

(N)
i (0) + M̄i(t) +

(∑
j∈S

Rjiλj

)
t−µi

∫ t

0

Q̄
(N)
i (s)ds

+
∑
k∈I

Rkiµk

∫ t

0

Q̄
(N)
k (s)ds−

∑
j∈S

RjiλjI
(N)
j (t), i∈ I. (EC.7)

In the next section, we describe the fluid model to which the process Q̄(N) will converge to as

N →∞.
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EC.1.1. The Fluid Model

Recalling that µi = 0 for i∈ S and λi = 0 for i∈ I, we set

M = diag(µ) and Λ = diag(λ). (EC.8)

We also define the J ×J matrix R̃ by setting

R̃ij = Rij, i∈ S,

R̃ij = 0, i∈ I.

That is R̃ is the matrix R with all rows corresponding to infinite server stations being set to zero.

Since I 6= ∅, the matrix R̃T is sub-stochastic. The following lemma is proved in Section EC.1.2.

Lemma EC.1. For each x ∈ DJ1 , there exists a unique (q, v) ∈ D2J , with q(t) ∈ RJ+ and v(t) ∈ RJ+

for all t≥ 0, such that

q(t) = x(t)− (I −RT )M

∫ t

0

q(s)ds+ (I − R̃T )v(t) (EC.9)

q(t)≥ 0, t≥ 0, (EC.10)

v(·) is non-decreasing with v(0) = 0, (EC.11)∫ ∞
0

qi(s)dvi(s) = 0, i∈J . (EC.12)

Furthermore, the map Υ : DJ1 → D2J given by Υ(x) = (q, v) is well-defined and is Lipschitz-

continuous, in the sense that for any x, x̃ ∈ DJ1 , and any T > 0, there exists a constant cTΥ such

that

‖Υ(x)−Υ(x̃)‖T ≤ cTΥ‖x− x̃‖T , (EC.13)

Theorem EC.1. Assume Q̃(N)(0)→ a as N →∞ for some a∈ [0,1]J with
∑J

i=1 ai = 1. Let e∈RJ

be the vector of ones, and let γ :R+→R+ be the identity map defined by γ(t) = t. Set

(q, v) = Υ
(
a+

(
(RT − I)Λe

)
γ
)
. (EC.14)
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Then for any T > 0,

lim
n→∞
‖Q̃(N)(t)− q(t)‖T = 0,

lim
n→∞
‖I(N)(t)− v(t)‖T = 0.

Proof of Theorem EC.1. From (EC.6)–(EC.7) we see that

(
Q̄(N), I(N)

)
= Υ

(
Q̄(N)(0) + M̄ (N) +

(
(RT − I)Λe

)
γ
)
,

where M̄ (N) = {M̄ (N)(t)∈RJ , t≥ 0}. Suppose we knew that for every T ≥ 0,

lim
N→∞

‖M̄ (N)‖T = 0 almost surely. (EC.15)

Then the continuous mapping theorem Billingsley (1999), together with (EC.13) would imply

Theorem EC.1. The proof of (EC.15) involves a standard argument using the functional strong

law of large numbers (FSLLN), and is therefore omitted. For an example of such an argument, see

the proof of (5.6) in Dai et al. (2010).

Remark EC.1. Since I
(N)
i (t) = 0 for i∈ I and t≥ 0, Theorem EC.1 implies

vi(t) = 0, i∈ I. (EC.16)

Establishing (EC.16) by relying on convergence of
(
Q̄(N), I(N)

)
to (q, v) may seem strange, because

(EC.16) should be a standalone property of Υ
(
a+
(
(RT −I)Λe

)
γ
)

. Indeed, it is possible to establish

(EC.16) using a direct argument that relies on Proposition 1 of Reiman (1984). However, we avoid

using said argument because it is significantly longer.

We immediately see that Theorem 3 is a special case of Theorem EC.1. The rest of this section is

devoted to proving Lemma EC.1.
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EC.1.2. Proof of Lemma EC.1

In order to prove Lemma EC.1, we first need to introduce the Skorohod problem. Let Q̃ be a

J × J column sub-stochastic matrix with non-negative entries. For any x ∈ DJ0+, let (z, y) ∈ D2J

with z(t)∈RJ+ and y(t)∈RJ+ for all t≥ 0 be the solution to

z = x+ (I − Q̃T )y, (EC.17)

z ≥ 0, (EC.18)

y(·) is non-decreasing and y(0) = 0, (EC.19)∫ ∞
0

zi(s)dyi(s) = 0, 1≤ i≤ J. (EC.20)

Existence and uniqueness of (z, y) was proved in Harrison and Reiman (1981) when x is continuous,

but the arguments there hold for x ∈ DJ0+ as well. We refer to (EC.17)–(EC.20) as the Skorohod

problem associated with (x, Q̃), and write SP(x, Q̃) for short. We refer to (z, y)∈D2J as the solution

to SP(x, Q̃) if it satisfies (EC.17)–(EC.20). Furthermore, for any x ∈DJ0+ we define the Skorohod

map ΨQ̃ :DJ0+→D2J by

ΨQ̃(x) =
(
ΨQ̃
z (x),ΨQ̃

y (x)
)

= (z, y),

where (z, y) is the solution of SP(x, Q̃). From (EC.17) it is clear that

ΨQ̃
z (x) = x+ (I − Q̃T )ΨQ̃

y (x), x∈DJ , x(0)≥ 0. (EC.21)

Both ΨQ̃
z and ΨQ̃

y are Lipschitz-continuous, in the sense that for any T > 0, there exists constants

cTz , c
T
y > 0, which depend on Q̃, such that for any x, x̃∈DJ0+,

‖ΨQ̃
y (x)−ΨQ̃

y (x̃)‖T ≤ cTy ‖x− x̃‖T ,

‖ΨQ̃
z (x)−ΨQ̃

z (x̃)‖T ≤ cTz ‖x− x̃‖T ,

where ‖·‖T is defined in (2). This was established in (Harrison and Reiman 1981, p. 305) when

both x and x̃ are continuous, but the argument used there holds for x, x̃∈DJ0+ as well. We are now

ready to prove Lemma EC.1.
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Proof of Lemma EC.1. Fix x∈DJ1 and omitting the superscript R̃, let (Ψz,Ψy) be the Skorohod

map associated with SP(x, R̃). Define the integral operator α :DJ1 ×DJ →DJ by

α(x,w)(t) = x(t)− (I −RT )M

∫ t

0

w(s)ds, (EC.22)

and consider the integral equation

q= Ψz(α(x, q)) = α(x, q) + (I − R̃T )Ψy(α(x, q)) (EC.23)

q ∈DJ , (EC.24)

where the second equality in (EC.23) follows from (EC.21). Provided (EC.23)–(EC.24) has a unique

solution q, we can set v= Ψy(α(x, q)) and observe that by definition of α and (Ψz,Ψy),

(q, v) = Υ(x).

Hence, we now establish the existence and uniqueness of a solution q to (EC.23)–(EC.24). Construct

a sequence {qn ∈DJ}∞n=0 by letting

q0(t)≡ x(0), t≥ 0,

qn+1(t) = Ψz

(
α(x, qn)

)
(t), t≥ 0.

Observe that qn(0) = x(0) for all n≥ 0. We first show that for any T > 0, this sequence is a Cauchy

sequence in the Hilbert space
(
DJ [0, T ],‖·‖T

)
. Let µ̄= maxi∈I{µj} (remembering that µi = 0 for

i∈ S), and observe that

‖qn+1− qn‖T ≤ cTz ‖α(x, qn)−α(x, qn−1)‖T

= cTz max
i∈J

sup
0≤t≤T

∣∣(α(x, qn)
)
i
(t)−

(
α(x, qn−1)

)
i
(t)
∣∣

≤ cTz µ̄J max
i∈I

{∫ T

0

∣∣qni (s)− qn−1
i (s)

∣∣ds}
≤ cTz µ̄J

∫ T

0

max
i∈I

∣∣qni (s)− qn−1
i (s)

∣∣ds
≤ (cTz µ̄JT )n

n!
‖q1− q0‖T . (EC.25)
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The first inequality follows from the Lipschitz property of Ψz, the second inequality is from the

form of α, and the last inequality follows by recursion. From this point it is not hard to conclude

(see for instance (11.22) of Mandelbaum et al. (1998)) that {qn}∞n=0 is a Cauchy sequence in(
|DJ [0, T ],‖·‖T

)
for each T > 0. Therefore, qn converges to some limit q ∈ DJ [0, T ] that satisfies

(EC.23). Since the choice of T > 0 was arbitrary, we have proved existence of a solution to (EC.23)–

(EC.24). Uniqueness can be argued by taking two potential solutions q and q̃, and applying the

chain of arguments in (EC.25) with ‖q− q̃‖T on the left hand side there.

It remains to prove the Lipschitz-continuity of Υ. Fix any x, x̃∈DJ1 , and set

(q, v) = Υ(x) and (q̃, ṽ) = Υ(x̃).

Repeating the logic used to obtain (EC.25), we see that for any n≥ 1,

‖q− q̃‖T = ‖Ψz

(
α(x, q)

)
−Ψz

(
α(x̃, q̃)

)
‖T

≤ cTz ‖x− x̃‖T + cTz µ̄J

∫ T

0

max
i∈I
|qi(s)− q̃i(s)|ds

≤ cTz ‖x− x̃‖T
n−1∑
k=0

(
cTz µ̄JT

)k
k!

+

(
cTz µ̄JT

)n
n!

‖q− q̃‖T ,

where the last inequality follows by recursion. Choosing n large enough so that

(
cTz µ̄JT

)n
n!

< 1, we

conclude the existence of a constant cTΥ,q > 0 such that

‖q− q̃‖T ≤ cTΥ,q‖x− x̃‖T . (EC.26)

Similarly, we see that

‖v− ṽ‖T = ‖Ψy

(
α(x, q)

)
−Ψy

(
α(x̃, q̃)

)
‖T

≤ cTy ‖x− x̃‖T + cTy µ̄J

∫ T

0

max
i∈I
|qi(s)− q̃i(s)|ds

≤ cTy ‖x− x̃‖T + cTy µ̄JT‖q− q̃‖T ,

and by (EC.26), there exists a constant cTΥ,v > 0 satisfying

‖v− ṽ‖T ≤ cTΥ,v‖x− x̃‖T .

This establishes (EC.13) and concludes the proof the lemma.
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EC.2. Proof of Theorem 4

This section is devoted to proving Theorem 4. For the remainder of this section, we fix an initial

condition
(
e(0), f(0)

)
∈ T and let

(
e(t), f(t), u(t)

)
be the unique solution to the fluid model with

this initial condition. Furthermore, we fix (ē, f̄)∈ E and let ā and m̄ be defined by (30a) and (32),

respectively. For (x, y)∈ T , define the function V : T →R+ by

V (x, y) =
r∑
i=1

r∑
j=1

∣∣yij − f̄ij∣∣+ r∑
i=1

r∑
j=1
i 6=j

|xij − ēij|+
r∑

i:āi<1

xii +
∣∣∣m̄− r∑

i:āi=1

xii

∣∣∣. (EC.27)

To prove Theorem 4, we will show that V (e(t), f(t)) is a Lyapunov function. We know that

V
(
e(t), f(t)

)
is a Lipschitz-continuous function from R+→R+ because V (·), e(·), and f(·) are all

Lipschitz-continuous.

We say t > 0 is a regular point of V
(
e(t), f(t)

)
if for all i, j = 1, . . . , r, the functions eii(t),∣∣fij(t)− f̄ij∣∣, |eij(t)− ēij| for i 6= j, and

∣∣m̄−∑r

i:āi=1 eii(t)
∣∣ are differentiable at t. Since these func-

tions are all Lipschitz-continuous, then almost every point is a regular point. Furthermore, if t is

a regular point, we claim that

fij(t) = f̄ij ⇒ ḟij(t) = 0, 1≤ i, j ≤ r (EC.28)

eii(t) = 0 ⇒ ėii(t) = 0, 1≤ i≤ r, (EC.29)

eij(t) = ēij ⇒ ėij(t) = 0, 1≤ i 6= j ≤ r (EC.30)

r∑
i:āi=1

eii = m̄ ⇒
r∑

i:āi=1

ėii = 0, (EC.31)

u̇i(t) exists for all 1≤ i≤ r. (EC.32)

Most of these properties are follow directly from the definition of a regular point. For instance, the

existence of
d|fij(t)−f̄ij|

dt
together with fij(t) = f̄ij implies ḟij(t) = 0; the same argument applies to

(EC.29)–(EC.31). We know (EC.32) is true because u̇i(t) must exist in order for ėii(t) to exist; cf.

(21).

Lemma EC.2. Assume Pij > 0 and Qii > 0 for all i, j = 1, . . . , r. If t > 0 is a regular point of

V
(
e(t), f(t)

)
, then V̇

(
e(t), f(t)

)
≤ 0. Furthermore, if

(
e(t), f(t)

)
/∈ E, then V̇

(
e(t), f(t)

)
< 0.
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We postpone the proof of Lemma EC.2 to the end of this section, and first demonstrate how it

is used to prove Theorem 4 via LaSalle’s Invariance Principle (Khalil 2002, Theorem 4.4). To do

so, we need to introduce a few definitions. A point p ∈ T is said to be a positive limit point of(
e(t), f(t)

)
if there exists a sequence {tn}∞n=1 with tn→∞ such that

(
e(tn), f(tn)

)
→ p as n→∞.

A set B ⊂T is said to be positively invariant if for any s≥ 0,

(
e(s), f(s)

)
∈B ⇒

(
e(t), f(t)

)
∈B, ∀ t≥ s.

The following lemma is a version of (Khalil 2002, Lemma 4.1) adapted to the setting of this paper.

We prove it in Section EC.2.4.

Lemma EC.3. Let L+ be the set of all positive limit points of
(
e(t), f(t)

)
. Then L+ is a nonempty,

compact, and positively invariant set. Moreover,

lim
t→∞

inf
x∈L+
‖
(
e(t), f(t)

)
−x‖= 0

We are now ready to prove Theorem 4. The following argument is repeated from the proof of

(Khalil 2002, Theorem 4.4).

Proof of Theorem 4. We know that V
(
e(t), f(t)

)
is a bounded function from R+→R+, because

V (·) is continuous and
(
e(t), f(t)

)
belong to the compact set T for all t ≥ 0. Furthermore,

Lemma EC.2 implies that it is a non-increasing function. Therefore, limt→∞ V
(
e(t), f(t)

)
exists,

and we denote it by `. Recall by Lemma EC.3 that L+, the set of positive limit points of
(
e(t), f(t)

)
,

is not empty. For any point p ∈ L+, there exists a sequence {tn}∞n=1 such that
(
e(tn), f(tn)

)
→ p.

By continuity of V (·),

V (p) = lim
n→∞

V
(
e(tn), f(tn)

)
= `, ∀p∈L+.

Now suppose
(
ẽ(t), f̃(t)

)
is a solution to the fluid model with initial condition

(
ẽ(0), f̃(0)

)
∈ L+.

Since L+ is positively invariant, ẽ(t), f̃(t)∈L+ for all t≥ 0, which implies that V
(
ẽ(t), f̃(t)

)
= `, or

V̇
(
ẽ(t), f̃(t)

)
= 0.

Using Lemma EC.2, we conclude that L+ ⊂E , which proves Theorem 4.
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The rest of this section is devoted to proving Lemma EC.2. Fix a regular point t > 0. For

notational simplicity, we omit the time index t when referring to V
(
e(t), f(t)

)
, eij(t), fij(t), ui(t),

or their derivatives. From (19)–(21) we can see that

r∑
i=1

r∑
j=1

ėij +
r∑
i=1

r∑
j=1

ḟij = 0. (EC.33)

Set

f̂ij = fij − f̄ij, 1≤ i, j ≤ r,

êij = eij − ēij, 1≤ i 6= j ≤ r.

Recall that t is a regular point, meaning (EC.28)–(EC.32) hold. Therefore,

1

2
V̇ (e, f) =

1

2

r∑
i:āi<1

ėii +
1

2

r∑
i=1

r∑
j=1
j 6=i

ėij1
(
eij > ēij

)
− 1

2

r∑
i=1

r∑
j=1
j 6=i

ėij1
(
eij < ēij

)

+
1

2

r∑
i=1

r∑
j=1

ḟij1
(
fij > f̄ij

)
− 1

2

r∑
i=1

r∑
j=1

ḟij1
(
fij < f̄ij

)
+ 1
( ∑
i:āi=1

eii > m̄
)1

2

∑
i:āi=1

ėii− 1
( ∑
i:āi=1

eii < m̄
)1

2

∑
i:āi=1

ėii

=
r∑

i:āi<1

ėii +
r∑
i=1

r∑
j=1
j 6=i

ėij1
(
eij > ēij

)
+

r∑
i=1

r∑
j=1

ḟij1
(
fij > f̄ij

)

+ 1
( ∑
i:āi=1

eii > m̄
) ∑
i:āi=1

ėii, (EC.34)

where the second equality follows from (EC.33). The expression in (EC.34) will soon become very

bulky to work with, so before moving forward we first present an illustrative example to help the

reader gain some intuition.

EC.2.1. An Illustrative Example

Suppose r= 3 and that (λ,µ,P,Q) are such that ā1 < 1, ā2 = ā3 = 1, and m̄ > 0. For simplicity, we

also assume that all entries of P and Q are strictly positive. We now compute 1
2
V̇ (e, f) for several

choices of (e, f) /∈ E , and show that it is always strictly negative. The list of cases we consider is by

no means exhaustive, but is nevertheless helpful to develop intuition.
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Case 1: Suppose eii > 0 for i= 1,2,3 and e22 + e33 > m̄. Furthermore, suppose f̂ij < 0 for all i, j,

and êij < 0 for all i 6= j. Using (EC.34) and (27), we see that

1

2
V̇ (e, f) = ė11 + ė22 + ė33 =

3∑
i=1

[
−λi

(
1− u̇i

)
+

3∑
j=1
j 6=i

µjieji +Qii

3∑
j=1

µjifji

]
.

By (29), u̇i = 0 for i= 1,2,3 because eii > 0. Furthermore, using (30c) we see that

3∑
j=1
j 6=i

µjieji +Qii

3∑
j=1

µjifji =
3∑
j=1
j 6=i

µjiēji +Qii

3∑
j=1

µjif̄ji +
3∑
j=1
j 6=i

µjiêji +Qii

3∑
j=1

µjif̂ji

= λiāi +
3∑
j=1
j 6=i

µjiêji +Qii

3∑
j=1

µjif̂ji, 1≤ i≤ 3.

Recalling that ā2 = ā3 = 1, we arrive at

1

2
V̇ (e, f) = λ1(1− ā1) +

3∑
i=1

[ 3∑
j=1
j 6=i

µjiêji +Qii

3∑
j=1

µjif̂ji

]
< 0.

Case 2: Suppose e11 = e22 = 0, e33 > m̄, f̂ij = 0 for all i, j, ê12 < 0 and êij = 0 for all other i, j

with i 6= j. In such a case, (EC.34) and (27) tell us that

1

2
V̇ (e, f) = ė33 =−λ3(1− u̇3) +

3∑
j=1
j 6=3

µj3ej3 +Q33

3∑
j=1

µj3fj3.

Now e33 > 0 and (29) implies that u̇3 = 0. Furthermore, we know êj3 = 0 for j = 1,2 and f̂j3 = 0 for

j = 1,2,3. Therefore, we can use (30c) to see that

1

2
V̇ (e, f) =−λ3 +

3∑
j=1
j 6=3

µj3ēj3 +Q33

3∑
j=1

µj3f̄j3 = 0,

which appears to contradict what we set out to prove. However, it turns out that the time t

corresponding to this configuration of (e, f) is not a regular point. If t were a regular point, then

by (EC.28) we would have ḟ2k = 0 for all k = 1,2,3, because f̂2k = 0. However, by (25), the fact

that f̂2k = 0, and (30a) we see that

ḟ2k = λ2P2k(1− u̇2)−µ2kf2k = λ2(1− u̇2)−λ2P2kā2.
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Since e22 = 0, (EC.29) forces ė22 = 0, which together with (27) implies that

λ2P2k(1− u̇2) =
3∑
j=1
j 6=2

µj2ej2 +Q22

3∑
j=1

µj2fj2 <
3∑
j=1
j 6=2

µj2ēj2 +Q22

3∑
j=1

µj2f̄j2 = λ2P2kā2,

where in the inequality we used that f̂j2 = ê32 = 0, and ê12 < 0, and in the last equality we used

(30c). Therefore, we just showed that ḟ2k < 0, which is a contradiction to the assumption that t is

a regular point.

Having worked through the example, we now present a general algebraic expansion of 1
2
V̇ (e, f) in

Lemma EC.4, which is proved in Section EC.2.3. A line by line inspection of (EC.35) and (EC.36)

confirms that V̇ (e, f) ≤ 0, but proving V̇ (e, f) < 0 requires more careful arguments presented in

Section EC.2.2.

Lemma EC.4. If {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii ≤ m̄, then

1

2
V̇ (e, f) =

r∑
i:āi<1

λi(āi− 1)
(

1−
r∑
j=1

Pij1(f̂ij > 0)
)

1(u̇i = 0)

−
r∑
i=1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0)
)

1(u̇i > 0)

+
r∑
i=1

( r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)
)

1(u̇i > 0)

+
r∑

i:āi<1

1(u̇i = 0)

[ r∑
j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)

]

+
r∑
i=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0)

−
r∑

i:āi<1

(
1−Qii−

r∑
j=1
j 6=i

Qij1
(
êij > 0

)) r∑
j=1

µjif̂ji1(f̂ji ≥ 0)

−
r∑

i:āi=1

1(u̇i = 0)
r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)

−
r∑

i:āi=1

(
1−Qii1(u̇i > 0)−

r∑
j=1
j 6=i

Qij1(êij > 0)
) r∑
j=1

µjif̂ji1(f̂ji ≥ 0). (EC.35)
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and if {i : āi = 1}= ∅, or {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄, then

1

2
V̇ (e, f) =

r∑
i:āi<1

λi(āi− 1)
(

1−
r∑
j=1

Pij1(f̂ij > 0)
)

1(u̇i = 0)

−
r∑
i=1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0)
)

1(u̇i > 0)

+
r∑
i=1

( r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)
)

1(u̇i > 0)

+
r∑
i=1

1(u̇i = 0)

[ r∑
j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)

]

+
r∑
i=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0)

−
r∑
i=1

(
1−Qii−

r∑
j=1
j 6=i

Qij1
(
êij > 0

)) r∑
j=1

µjif̂ji1(f̂ji ≥ 0). (EC.36)

EC.2.2. Proof of Lemma EC.2

Proof of Lemma EC.2. For notational simplicity, we omit the argument t when referring to

V
(
e(·), f(·)

)
, e(·), f(·), u(·) and their derivatives. We first work in the case when {i : āi = 1} 6= ∅ and∑r

i:āi=1 eii ≤ m̄, meaning that 1
2
V̇ (e, f) is given by (EC.35). The following is a list of conditions

that are necessary for V̇ (e, f) = 0, and are obtained by equating each line in (EC.35) to zero. These

conditions are necessary because each line in (EC.35) is non-positive. Any condition on êij for some

i 6= j assumes Qij > 0, because if Qij = 0 then eij always equals zero.

1. Consider i such that āi < 1 and u̇i = 0. Setting line 1 of (EC.35) to zero requires f̂ij > 0 for

all i, j. Line 4 requires f̂ji ≥ 0 for all i, j and êji ≥ 0 for all i 6= j. Line 6 requires êij > 0 for all

i 6= j.

2. Consider i such that āi < 1 and u̇i > 0. One of the following three mutually exclusive sets of

conditions must hold:

a. To set line 2 to zero, we choose to enforce f̂ij > 0 for all i, j. Line 3 then requires f̂ji ≥ 0

for all i, j and êji ≥ 0 for all i 6= j. Line 6 requires êij > 0 for all i 6= j.
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b. This time, to set line 2 to zero, we choose to enforce f̂ji ≤ 0 for all i, j, and êji ≤ 0 for i 6= j.

Line 2 then requires f̂ij ≤ 0 for all i, j. Line 5 requires that if f̂ki < 0 for some k, then êij ≤ 0

for all j 6= i.

c. Suppose fij > 0 and fik ≤ 0 for some j, k= 1, . . . , r. The only way to make both lines 2 and

3 equal zero is to enforce f̂ji = 0 for all i, j and êji = 0 for i 6= j.

3. Consider i such that āi = 1 and u̇i = 0. Since we assumed Qii > 0, setting line 8 to zero requires

f̂ji ≤ 0 for all i, j. Line 7 requires êji ≤ 0 for i 6= j, and line 5 requires that if f̂ki < 0 for some

k, then êij ≤ 0 for all j 6= i.

4. Consider i such that āi = 1 and u̇i > 0. One of the following three mutually exclusive sets of

conditions must hold:

a. To set line 2 to zero, we choose to enforce f̂ij > 0 for all i, j. Line 3 then requires f̂ji ≥ 0

for all i, j and êji ≥ 0 for all i 6= j. Line 8 requires that êij > 0 for all i 6= j.

b. This time, to set line 2 to zero, we choose to enforce f̂ji ≤ 0 for all i, j, and êji ≤ 0 for i 6= j.

Line 2 then requires f̂ij ≤ 0 for all i, j. Line 5 requires that if f̂ki < 0 for some k, then êij ≤ 0

for all j 6= i.

c. Suppose fij > 0 and fik ≤ 0 for some j, k= 1, . . . , r. The only way to make both lines 2 and

3 equal zero is to enforce f̂ji = 0 for all i, j and êji = 0 for i 6= j.

We now argue that there does not exist a configuration of eij’s and fij’s that satisfies conditions

1–4. If region i satisfies condition 1, we refer to it as a type 1 region. This convention is adopted

for all other conditions as well. Recall our assumption that Pij > 0 and Qii > 0 for all i, j. While

we conjecture this lemma to hold even without these conditions, we impose them to prevent the

following arguments from becoming even more involved.

First observe that a region i can never be of type 4a or 4c. For such a region, the fact that u̇i > 0,

together with (29) and (EC.29) will imply that ėii = 0, or

λi(1− u̇i) =
r∑
j=1
j 6=i

µjieji +Qii

r∑
j=1

µjifji.
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However, the conditions in 4a and 4c also imply that

r∑
j=1
j 6=i

µjieji +Qii

r∑
j=1

µjifji ≥
r∑
j=1
j 6=i

µjiēji +Qii

r∑
j=1

µjif̄ji = λi,

where the equality above follows from (30c) and the fact that āi = 1. This leads to a contradiction

because conditions 4a and 4c require that u̇i > 0.

Second, by our assumption that {i : āi = 1} 6= ∅, there must always be a region of either type 3

or type 4b. This implies that there are no type 1 or type 2a regions. If i were a type 1 or 2a region

and j were a type 3 or 4b region, then the conditions in 1 and 2a would require f̂ij > 0, but the

conditions in 3 and 4b would require that f̂ij ≤ 0, which is a contradiction.

Third, we argue that there cannot be a type 2c region. Suppose i is a type 2c region. Then for

some region j, we would have f̂ij > 0. However, this region j could not belong to any of types 2b,

2c, 3, or 4b, causing a contradiction.

Lastly, we show why it cannot be that V̇ (e, f) = 0. We have shown that all regions must be of

types 2b, 3, or 4b, which means that f̂ji ≤ 0 for all i, j and êji ≤ 0 for all j 6= i. We also assumed

that
∑r

i:āi=1 eii ≤ m̄. Since we assumed (e, f) /∈ E , at least one of the previous inequalities must be

strict. This implies that

r∑
i=1

r∑
j=1

fji +
r∑
i=1

r∑
j=1
j 6=i

eji +
r∑
i=1

eii =
r∑
i=1

r∑
j=1

fji +
r∑
i=1

r∑
j=1
j 6=i

eji +
r∑

i:āi=1

eii

<
r∑
i=1

r∑
j=1

f̄ji +
r∑
i=1

r∑
j=1
j 6=i

ēji + m̄= 1,

where in the first equality we used the fact that any region i with āi < 1 is of type 2b and must

satisfy u̇i > 0, which together with by (29) implies eii = 0. The result above implies that the total

mass in the system is strictly less than one, which is impossible because the total mass in the

system must always equal one. Hence, we have just shown that at any regular point, V̇ (e, f)< 0

in the case when {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii ≤ m̄.

We now assume that {i : āi = 1} = ∅, or {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄. Just as before,

we assume that V̇ (e, f) = 0 and use (EC.36) to list the necessary conditions required for that to
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happen. Observe that lines 1–3, and 5–6 of both (EC.35) and (EC.36) are identical. There is a

slight difference in line 4 of both equations. In the former, the outside summation is over i : āi < 1,

whereas in the latter the sum is over all i. Therefore, conditions 1, 2, and 4 must hold as before,

and a region cannot be of type 4a or 4c. Only condition 3 changes slightly:

3′ Consider i such that āi = 1 and u̇i = 0. Setting line 4 of (EC.36) to zero requires f̂ji ≥ 0 for

all i, j, and êji ≥ 0 for all i 6= j. Line 6 requires that if f̂ki > 0 for some k, then êij > 0 for all

j 6= i.

Again, any condition on êij assumes Qij > 0, because otherwise eij always equals zero.

First, we show that there must be a region of type 2b, 2c or 4b. If that were not the case, then

all regions would be of type 1, 2a or 3′. Recall our assumption that (e, f) /∈ E , {i : āi = 1}= ∅, or

{i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄. If {i : āi = 1}= ∅, then all regions are of type 1 or 2a and

r∑
i=1

r∑
j=1

fij +
r∑
i=1

r∑
j=1
j 6=i

eij +
r∑
i=1

eii =
r∑
i=1

r∑
j=1

fij +
r∑
i=1

r∑
j=1
j 6=i

eji +
r∑

i:āi<1

eii

>
r∑
i=1

r∑
j=1

f̄ij +
r∑
i=1

r∑
j=1
j 6=i

ēji

=
r∑
i=1

r∑
j=1

f̄ij +
r∑
i=1

r∑
j=1
j 6=i

ēji +
r∑

i:āi<1

ēii = 1.

The inequality holds because if region i is of type 1 or 2a, then f̂ij > 0 for all j and êji ≥ 0 for all

j 6= i, and the second last equality holds because ēii = 0 for i such that āi < 1. The inequality above

is a contradiction because the total fluid mass in the system must always equal one. By similar

reasoning, if {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄, then

r∑
i=1

r∑
j=1

fij +
r∑
i=1

r∑
j=1
j 6=i

eij +
r∑
i=1

eii >
r∑
i=1

r∑
j=1

f̄ij +
r∑
i=1

r∑
j=1
j 6=i

ēij + m̄= 1,

which is again a contradiction because fluid mass is conserved. Hence, it cannot be that all regions

are of type 1, 2a or 3′. The fact that there is always a region of type 2b, 2c or 4b implies that there

cannot be any type 1 or 2a regions. If j belonged to the former group and i to the latter, then the
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definitions of type 1 or 2a would imply that f̂ij > 0, which would contradict the requirements in

types 2b, 2c and 4b.

Second, we show that there must always be a region of type 3′. If there is a region of type 4b

then it must be that {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄. However, if i is a type 4b region, then

ēii = 0 because ui > 0. Hence, for
∑r

i:āi=1 eii > m̄ to be true, the set {i : āi = 1} must contain at

least one type 3′ region. Now suppose there is no region of type 4b. We argue that it cannot be

the case that all regions are exclusively of type 2b or exclusively of type 2c. The former case would

imply that the total mass in the system is strictly less than one, and the latter case cannot happen

by definition of 2c (i.e. if i were of type 2c then there would be some j with f̂ij > 0, but this j

could not be of type 2b or 2c). The same reasoning implies that the regions cannot be a mixture

of exclusively types 2b and 2c. Therefore, there must always exist a region of type 3′.

Lastly, we show why it cannot be that V̇ (e, f) = 0. Let i be a type 3′ region with eii > 0 (such a

region must always exist because
∑r

i:āi=1 eii > m̄). Since fluid mass is conserved, there must exist

some k, `, such that either f̂k` < 0, or k 6= ` and êk` < 0. Observe that ` cannot be a type 2c or 3′

region, so it must be a type 2b or 4b region. Furthermore, since i is of type 3′ and ` is of type 2b or

4b, it must be true that f̂`i = 0, and by (EC.28) this would imply that ḟ`i = 0. We will now show

that ḟ`i must also be strictly less than zero, leading to a contradiction. Using (19), (30a), and the

fact that f`i = f̄`i, it follows that

0 = ḟ`i = λ`P`i(1− u̇`)−µ`if`i = λ`P`i(1− u̇`)−λ`P`iā`.

We know that u̇` > 0 by definition of a type 2b and 4b region. Hence, e`` = 0 by (29), which in

turn means that ė`` = 0 by (EC.29), and therefore

λ`
(
1− u̇`

)
=

r∑
j=1
j 6=`

µj`ej` +Q``

r∑
j=1

µj`fj`

= λ`ā` +
r∑
j=1
j 6=`

µj`êj` +Q``

r∑
j=1

µj`f̂j`, (EC.37)
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where the first equality follows from differentiating (21) and setting the left hand side to zero, and

the second equality follows from (30c). Combining (EC.37) with the form of ḟ`i, we see that

ḟ`i = P`i

(
λ`ā` +

r∑
j=1
j 6=`

µj`êj` +Q``

r∑
j=1

µj`f̂j`

)
−λ`P`iā` = P`i

( r∑
j=1
j 6=`

µj`êj` +Q``

r∑
j=1

µj`f̂j`

)
.

Since ` is of type 2b or 4b, it follows that f̂j` ≤ 0 for all j and êj` ≤ 0 for all j 6= `. Furthermore,

we know that either f̂k` < 0, or k 6= ` and êk` < 0, which implies that ḟ`i < 0. However, this is

a contradiction because ḟ`i = 0 at regular points. Therefore, the necessary conditions required

for V̇ (e, f) = 0 to hold cause a contradiction, and so V̇ (e, f) < 0. This concludes the proof of

Lemma EC.2.

EC.2.3. Proof of Lemma EC.4

Proof of Lemma EC.4. We begin with the case that {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii ≤ m̄. Start-

ing with (EC.34), and taking derivatives in (19)–(21), we know that

1

2
V̇ (e, f) =

r∑
i:āi<1

(
−λi

(
1− u̇i

)
+

r∑
j=1
j 6=i

µjieji +Qii

r∑
j=1

µjifji

)
(EC.38)

+
r∑
i=1

r∑
j=1
j 6=i

(
−µijeij +Qij

r∑
k=1

µkifki

)
1
(
êij > 0

)
(EC.39)

+
r∑
i=1

r∑
j=1

(
λiPij

(
1− u̇i

)
−µijfij

)
1
(
f̂ij > 0

)
, (EC.40)

The first line, (EC.38), equals

r∑
i:āi<1

(
−λi

(
1− u̇i

)
+

r∑
j=1
j 6=i

µjiēji +Qii

r∑
j=1

µjif̄ji

)
+

r∑
i:āi<1

( r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)

=
r∑

i:āi<1

(
−λi

(
1− u̇i

)
+λiāi

)
+

r∑
i:āi<1

( r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)

=
r∑

i:āi<1

λi(āi− 1)1(u̇i = 0) +
r∑

i:āi<1

(
−λi

(
1− u̇i

)
+λiāi

)
1(u̇i > 0)

+
r∑

i:āi<1

( r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
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=
r∑

i:āi<1

λi(āi− 1)1(u̇i = 0)
(

1−
r∑
j=1

Pij1(f̂ij > 0)
)

+
r∑

i:āi<1

λi(āi− 1)1(u̇i = 0)
r∑
j=1

Pij1(f̂ij > 0)

+
r∑

i:āi<1

(
−λi

(
1− u̇i

)
+λiāi

)
1(u̇i > 0)

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)

+
r∑

i:āi<1

(
−λi

(
1− u̇i

)
+λiāi

)
1(u̇i > 0)

r∑
j=1

Pij1(f̂ij > 0)

+
r∑

i:āi<1

( r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
, (EC.41)

where the first equality comes from (30c). The second line, (EC.39), equals

r∑
i=1

r∑
j=1
j 6=i

(
−µij ēij +Qij

r∑
k=1

µkif̄ki

)
1
(
êij > 0

)
+

r∑
i=1

r∑
j=1
j 6=i

(
−µij êij +Qij

r∑
k=1

µkif̂ki

)
1
(
êij > 0

)

= −
r∑
i=1

r∑
j=1
j 6=i

µjiêji1
(
êji > 0

)
+

r∑
i=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki, (EC.42)

where in the equality we used (30b). Similarly, we use (30a) to see that the third line, (EC.40),

equals

r∑
i=1

r∑
j=1

(
λiPij

(
1− u̇i

)
−µij f̄ij

)
1
(
f̂ij > 0

)
−

r∑
i=1

r∑
j=1

µij f̂ij1
(
f̂ij > 0

)
=

r∑
i=1

1(u̇i = 0)λi(1− āi)
r∑
j=1

Pij1
(
f̂ij > 0

)
+

r∑
i=1

1(u̇i > 0)
r∑
j=1

Pij

(
λi
(
1− u̇i

)
−λiāi

)
1
(
f̂ij > 0

)
−

r∑
i=1

r∑
j=1

µjif̂ji1
(
f̂ji > 0

)
=

r∑
i=1

1(u̇i = 0)λi(1− āi)
r∑
j=1

Pij1
(
f̂ij > 0

)
+

r∑
i:āi<1

(
λi
(
1− u̇i

)
−λiāi

)
1(u̇i > 0)

r∑
j=1

Pij1
(
f̂ij > 0

)
+

r∑
i:āi=1

(
λi
(
1− u̇i

)
−λiāi

)
1(u̇i > 0)

r∑
j=1

Pij1
(
f̂ij > 0

)
−

r∑
i=1

r∑
j=1

µjif̂ji1
(
f̂ji > 0

)
(EC.43)

In addition to (EC.41)–(EC.43), we will require the equation

λi(1− u̇i)−λiai =
r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji, for i such that u̇i > 0, (EC.44)
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which is argued in the same way as (EC.37). We now combine (EC.41)–(EC.44) to see that

1

2
V̇ (e, f) =

r∑
i:āi<1

λi(āi− 1)
(

1−
r∑
j=1

Pij1(f̂ij > 0)
)

1(u̇i = 0) (EC.45)

−
r∑

i:āi<1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
1(u̇i > 0) (EC.46)

+
r∑

i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
1(u̇i > 0) (EC.47)

+
r∑

i:āi<1

( r∑
j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
(EC.48)

−
r∑
i=1

r∑
j=1
j 6=i

µjiêji1
(
êji > 0

)
+

r∑
i=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki (EC.49)

−
r∑
i=1

r∑
j=1

µjif̂ji1
(
f̂ji > 0

)
. (EC.50)

Since the term above is very bulky, we manipulate one line at a time to help exposition. We leave

(EC.45) as is, and decompose (EC.46) into

−
r∑

i:āi<1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0
)

1(u̇i > 0)

−
r∑

i:āi<1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0
)

1(u̇i > 0).

We leave (EC.47) as is. The term in (EC.48) equals

r∑
i:āi<1

( r∑
j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0)

)

+
r∑

i:āi<1

( r∑
j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)

)
.

The term in (EC.49) equals

−
r∑

i:āi<1

r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi<1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0)

+
r∑

i:āi<1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≥ 0)
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−
r∑

i:āi=1

r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki,

and the term in (EC.50) equals

−
r∑

i:āi<1

r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
−

r∑
i:āi=1

r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
.

Putting all of these expansions back into (EC.45)–(EC.50), we see that

1

2
V̇ (e, f) =

r∑
i:āi<1

λi(āi− 1)
(

1−
r∑
j=1

Pij1(f̂ij > 0)
)

1(u̇i = 0) (EC.51)

−
r∑

i:āi<1

(
1−

r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0
)

1(u̇i > 0)

(EC.52)

+
r∑

i:āi<1

( r∑
j=1

Pij1(f̂ij > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)
)

1(u̇i > 0)

(EC.53)

+
r∑

i:āi<1

1(u̇i = 0)

( r∑
j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)

)
(EC.54)

+
r∑

i:āi<1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0) (EC.55)

−
r∑

i:āi<1

(
1−Qii−

r∑
j=1
j 6=i

Qij1
(
êij > 0

)) r∑
j=1

µjif̂ji1(f̂ji ≥ 0) (EC.56)

+
r∑

i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
1(u̇i > 0) (EC.57)

−
r∑

i:āi=1

r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki (EC.58)

−
r∑

i:āi=1

r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
. (EC.59)

It remains to manipulate the terms in (EC.57)–(EC.59) to get them into the form we need. We

begin with (EC.57), which equals

r∑
i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)
)

1(u̇i > 0)
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+
r∑

i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0)
)

1(u̇i > 0).

The term in (EC.58) equals

−
r∑

i:āi=1

r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0)

+
r∑

i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≥ 0),

and the term in (EC.59) equals

−
r∑

i:āi=1

(
1−Qii1(u̇i > 0)

) r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
−

r∑
i:āi=1

Qii1(u̇i > 0)
r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
.

Inserting these expansions back into (EC.57)–(EC.59), we see that

r∑
i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji +Qii

r∑
j=1

µjif̂ji

)
1(u̇i > 0)

−
r∑

i:āi=1

r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki

−
r∑

i:āi=1

r∑
j=1

µjif̂ji1
(
f̂ji ≥ 0

)
=

r∑
i:āi=1

( r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≤ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≤ 0)
)

1(u̇i > 0)

−
r∑

i:āi=1

(
1−

r∑
k=1

Pik1(f̂ik > 0)
)( r∑

j=1
j 6=i

µjiêji1(êji ≥ 0) +Qii

r∑
j=1

µjif̂ji1(f̂ji ≥ 0)
)

1(u̇i > 0)

−
r∑

i:āi=1

1(u̇i = 0)
r∑
j=1
j 6=i

µjiêji1
(
êji ≥ 0

)
+

r∑
i:āi=1

r∑
j=1
j 6=i

Qij1
(
êij > 0

) r∑
k=1

µkif̂ki1(f̂ki ≤ 0)

−
r∑

i:āi=1

(
1−Qii1(u̇i > 0)−

r∑
j=1
j 6=i

Qij1(êij > 0)
) r∑
j=1

µjif̂ji1(f̂ji ≥ 0).

The form of 1
2
V̇ (e, f) we obtain by plugging the above back into (EC.51)–(EC.59) can be compared

with (EC.35) to see that it matches.
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Now suppose that {i : āi = 1} = ∅, or {i : āi = 1} 6= ∅ and
∑r

i:āi=1 eii > m̄. We argue that we

have already done all the hard work to justify (EC.36). Indeed, the same logic used to derive

(EC.38)–(EC.40) implies that

1

2
V̇ (e, f) =

r∑
i=1

(
−λi

(
1− u̇i

)
+

r∑
j=1
j 6=i

µjieji +Qii

r∑
j=1

µjifji

)

+
r∑
i=1

r∑
j=1
j 6=i

(
−µijeij +Qij

r∑
k=1

µkifki

)
1
(
êij > 0

)

+
r∑
i=1

r∑
j=1

(
λiPij

(
1− u̇i

)
−µijfij

)
1
(
f̂ij > 0

)
.

The difference between the equation above and that of (EC.38)–(EC.40) is that the summation in

the first line is over all i= 1, . . . , r, as opposed to only those i for which āi < 1. It can therefore be

verified, by repeating the logic of this proof, that 1
2
V̇ (e, f) equals (EC.51)–(EC.56) with summations

over all i= 1, . . . , r, instead of only i such that āi < 1. This verifies (EC.36) and concludes the proof

of this lemma.

EC.2.4. Proof of Lemma EC.3

Proof of Lemma EC.3. Lemma EC.3 follows from the argument used in (Khalil 2002, Lemma

4.1) after the following observation. In Khalil (2002), the author states Lemma 4.1 for functions

x :R→Rn that satisfy

ẋ(t) = g(x(t)), (EC.60)

for some locally Lipschitz g :Rn→Rn. Only three properties of x(t) are really necessary for Lemma

4.1: that x(t) is guaranteed to exist, be unique, and be continuous with respect to its initial

condition. The latter property means that if x(t) and x̃(t) both satisfy (EC.60) with x(0) 6= x̃(0),

then for every t≥ 0 and every ε > 0, there exists a δ > 0 such that

|x(0)− x̃(0)|< δ ⇒ |x(t)− x̃(t)|< ε. (EC.61)
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In our case,
(
e(t), f(t)

)
are defined as the solution to (19)–(22) and cannot be written in the form

of (EC.60). In fact,
(
ė(t), ḟ(t)

)
is not even guaranteed to exist for all t≥ 0. Nevertheless, we know

that
(
e(t), f(t)

)
is unique by Lemma EC.1, and that it satisfies the analogue of (EC.61) by (EC.13)

of Lemma EC.1. Hence, the proof of Lemma 4.1 can be carried through to prove Lemma EC.3 as

well.

EC.3. Two Examples of Networks

In this section we describe both the 9-region, and 5-region networks we used for the numerical

examples in Section 3.

EC.3.1. 9-Region Didi Network

The Di-Tech Challenge data set contains individual order information for trips taken between

January 1, 2016 until January 21, 2016, in an unspecified city in China. The city is partitioned

into a number of distinct geographical regions. The data is divided into 10-minute time slots, i.e.

144 times slots per day. Each data entry represents a single order. An order is a passenger request

for a car, and may or may not be fulfilled due to lack of cars in proximity. A single data entry

contains information about the origin and intended destination of the order, a time-stamp of when

the order was made, whether the order was fulfilled, and in the case when the order was fulfilled,

the ID of the car fulfilling the order, as well as the total trip price. Although the data set had more

than nine regions, we focus on these because they are the ‘major’ ones. That is, they have a much

higher volume of request rates compared to the rest of the regions.

We restrict our attention to data between 5-6pm each day, because we identified this to be

the time of the evening rush hour; see Figure 4 in Section 3.2. Using the data set, we extract a

nine-region network. We estimate λ, P , and µ as follows. To calculate Pij, we consider all rides
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happening in the 5-6pm window each day. We tally the total number of orders from i to j, and

divide by the total number of orders originating at i. The result is the matrix P , which equals



Region 10 11 18 13 19 27 45 47 50

10 0.230 0.297 0.372 0.004 0.026 0.029 0.009 0.018 0.015

11 0.044 0.655 0.146 0.005 0.079 0.038 0.018 0.005 0.011

18 0.165 0.291 0.288 0.007 0.054 0.126 0.017 0.025 0.027

13 0.0013 0.010 0.006 0.139 0.031 0.185 0.101 0.117 0.409

19 0.005 0.096 0.026 0.037 0.25 0.333 0.218 0.012 0.027

27 0.004 0.031 0.032 0.088 0.121 0.426 0.148 0.059 0.092

45 0.002 0.023 0.011 0.066 0.142 0.269 0.399 0.020 0.069

47 0.004 0.008 0.023 0.067 0.011 0.095 0.019 0.400 0.374

50 0.001 0.004 0.005 0.095 0.010 0.059 0.030 0.185 0.610



. (EC.62)

To calculate µ, we used the average trip cost as a proxy for travel times, since travel times are not

provided in the data set. Trip costs are a reasonable proxy because the price of a trip is typically a

linear function of distance traveled, and time spent in car. To estimate µij, we first calculated the

average trip cost between regions i and j, and then set the average travel time to equal the average

trip cost. Since our time unit is a time-slot, which is 10-minute interval, we set 1/µij to equal the

average trip cost divided by 10. For example, the average trip cost between region 47 and region

50 is 14.1 CNY, so we assumed the average travel time is 14 minutes, and set µ47,50 = 1.41. The
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resulting matrix 1/µ is

Region 10 11 18 13 19 27 45 47 50

10 0.83 1.87 1.07 3.89 3.25 2.79 4.25 2.94 4.37

11 1.78 0.89 1.18 3.24 1.24 1.99 2.89 3.46 4.18

18 1.02 1.31 0.78 2.82 1.45 1.36 3.26 2.17 3.04

13 3.52 3.13 2.76 0.93 1.5 1.26 1.49 1.75 1.6

19 2.86 1.42 1.64 1.55 0.84 1.04 1.45 2.88 2.89

27 2.61 2.17 1.54 1.31 1.15 0.81 1.86 1.78 2.2

45 4.38 3.02 2.79 1.36 1.35 1.65 0.94 3.1 3

47 2.93 3.06 2.26 1.75 2.69 1.62 3.23 0.9 1.48

50 3.58 4.18 2.8 1.49 2.46 2.02 2.72 1.43 1.01



. (EC.63)

To determine the arrival rate to region i, we counted the average number of orders to region i per

time slot. This gave us an estimate Nλi. Our data did not provide the exact number N of cars in

the network. To determine a reasonable choice for N , we summed up the number of fulfilled orders

across all 9 regions in Figure 2. As a result, we chose N = 2000. Although not exact, this number

is of the correct order of magnitude. Furthermore, our numerical results in Section 3 remained

(qualitatively) consistent even for different choices of N around 2000. Hence, we set our vector λ

to Region i 10 11 18 13 19 27 45 47 50

λi 0.0131 0.0624 0.0381 0.0652 0.0870 0.1178 0.0762 0.1438 0.2751

 (EC.64)

EC.3.2. 5-Region Network

Let us consider a simplified model of a city illustrated in Figure EC.1 that consists of 5 regions:

a downtown area D, a midtown area M , and three suburban areas S1, S2, S3. The downtown

area represents a central business district, where many people work but few people live. Midtown

represents a region with restaurants and night-life, where people visit after work. The suburb

regions are residential areas, and do not have as many entertainment options as midtown. For
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S1

S2

S3

M D

0.25

0.2 0.4

0.30.
1

1.0 0.
65

0.25

Figure EC.1 The 5-region city where edge weights represent mean travel times (in hours). Travel times longer

than 1 hour are omitted to help with vizualisation.

convenience, we enumerate S1, S2, S3,M,D as 1,2,3,4,5, respectively. The parameters from 5-11pm

are as follows:

1. From 5-7pm, the city experiences a rush hour as people go home from work. Most of the

traffic originates in downtown, and flows into the suburbs as people go home after work. The

parameters during this time-slot are

λ=



0.108

0.108

0.108

0.108

1.08


, P =



0.6 0.1 0 0.3 0

0.1 0.6 0 0.3 0

0 0 0.7 0.3 0

0.2 0.2 0.2 0.2 0.2

0.3 0.3 0.3 0.1 0


,
(
1/µij

)
=



0.15 0.25 1.25 0.2 0.4

0.25 0.10 1.1 0.1 0.3

1.25 1.1 0.1 1 0.65

0.25 0.15 1 0.15 0.25

0.5 0.4 0.75 0.25 0.2


.

Above,
(
1/µij

)
is the matrix of mean travel times (in hours) from region i to j, and λ is a

vector representing the number of passenger arrivals per hour, per car.
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2. From 7-9pm, most of the traffic is headed into midtown as people go out in the evening to

restaurants and for entertainment. The parameters during this time-slot are

λ=



0.72

0.48

0.48

0.48

0.12


, P =



0.1 0 0 0.9 0

0 0.1 0 0.9 0

0 0 0.1 0.9 0

0.05 0.05 0.05 0.8 0.05

0 0 0 0.9 0.1


,
(
1/µij

)
=



0.15 0.25 1.25 0.2 0.4

0.25 0.10 1.1 0.1 0.3

1.25 1.1 0.1 1 0.65

0.2 0.1 1 0.15 0.25

0.4 0.3 0.65 0.25 0.2


3. From 9-11pm, traffic flows mainly from midtown to the suburbs as people go home for the

night. The parameters during this time-slot are

λ=



0.12

0.12

0.12

1.32

0.12


, P =



0.9 0.05 0 0.05 0

0.05 0.9 0 0.05 0

0 0 0.9 0.1 0

0.3 0.3 0.3 0.05 0.05

0 0 0 0.1 0.9


,
(
1/µij

)
=



0.15 0.25 1.25 0.2 0.4

0.25 0.10 1.1 0.1 0.3

1.25 1.1 0.1 1 0.65

0.2 0.1 1 0.15 0.25

0.4 0.3 0.65 0.25 0.2


EC.4. Achieving 100% Availability Globally

It may be the case, e.g. during rush hours, that customer demand is so high that there are simply

not enough cars in the system to fulfill all passenger requests, no matter what kind of routing policy

is used. A natural question to ask then is how many cars does one need to achieve 100% availability

in every region? In this section we address this question using the fluid-based optimization problem.

Fix N > 0 and some static routing policy Q. Since the CTMC
(
E(N),F (N)

)
is positive recurrent

and has a finite state space, it must be the case that A
(N)
i (∞)< 1. In other words, with a finite

number of cars, the availability at any region can never be 100%. However, it is possible to have

A
(N)
i (∞)→ 1 as N →∞. We say that our system (asymptotically) achieves perfect availability

(under routing policy Q) if

lim
N→∞

A
(N)
i (∞) = 1, 1≤ i≤ r.
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We also say that perfect availability is feasible if there exists some routing matrix Q under which

the system achieves perfect availability.

The question of whether perfect availability is feasible is a question of whether there is enough

supply of cars to meet passenger demand. If perfect availability is not feasible, we want to know

the amount by which to increase our fleet size in order to make it feasible. Conversely, if perfect

availability is feasible, we want to know how much slack, or excess capacity, our system has. Since

the passenger arrival rate to each region, Nλi, depends on the number of cars N , we need to clarify

what we mean by increasing or decreasing the fleet size.

Consider a system with N cars, passenger arrival rate Nλi, travel choices Pij, and travel time

means 1/µij, and recall that the associated fluid-based optimization problem is given by (4a)–(4g).

We can consider a related system, where all parameters are the same except that the number of

cars is now κN for some κ > 0. In this system, N is no longer the number of cars, but represents

the size of the market. The passenger arrival rate to region i is Nλi = κN(λi/κ), and therefore,

the associated fluid-based optimization problem is (4a)–(4g), but with λi replaced by λi/κ there.

That is, multiplying the number of cars in the system by a factor of κ is equivalent to dividing λi

by a factor of κ. This makes sense because λi is the arrival rate of passengers per car to region i.

The following result states that determining the balance between supply and demand needed to

achieve perfect availability can be done by solving a linear program. The proof can be found in

Appendix EC.4.1.

Theorem EC.2. The feasibility region of the linear program

min
q

r∑
i=1

r∑
j=1

f̄ij +
r∑
i=1

r∑
j=1,j 6=i

ēij (EC.65a)

subject to λiPij = µij f̄ij, 1≤ i, j ≤ r, (EC.65b)

µij ēij = qij

r∑
k=1

µkif̄ki, 1≤ i, j ≤ r, j 6= i, (EC.65c)

λi =
r∑

k=1,k 6=i

µkiēki + qii

r∑
k=1

µkif̄ki, 1≤ i≤ r, (EC.65d)

qij ≥ 0,
r∑
j=1

qij = 1, 1≤ i, j ≤ r. (EC.65e)
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is non-empty. Let κ> 0 be the optimal objective value, and assume that

1

µik
≤ 1

µij
+

1

µjk
, 1≤ i 6= j 6= k≤ r,

i.e. travel time means satisfy the triangle inequality.

1. If κ> 1 then perfect availability is not feasible, but it becomes feasible if λ is reduced to λ/κ,

i.e. an increase in fleet size by a factor of κ.

2. If κ ≤ 1 then perfect availability is feasible, and it remains feasible even if λ is increased to

λ/κ.

The value κ from Theorem EC.2 is the minimal ‘fluid mass’ needed in the system to achieve perfect

availability, and can be interpreted a measure of imbalance of supply and demand in the system.

If κ> 1, then passenger demand exceeds vehicle supply, and if κ< 1 then the reverse is true.

EC.4.1. Proof of Theorem EC.2

Proof of Theorem EC.2 To see that the feasibility region is non-empty (and hence an optimal

solution exists), observe that

qij =
µjifji∑r

k=1 µkifki
, 1≤ i, j ≤ r (EC.66)

is a feasible solution. The intuition behind deriving (EC.66) is that every car that completes a trip

from i to j with a passenger must drive back empty from j to i.

Recall that κ > 0 is the optimal value of the linear program, and let qκ be the solution that

achieves this minimum. Also let ēκ and f̄κ be the corresponding values of ē and f̄ under qκ, i.e.

the optimal value κ=
∑r

i=1

∑r

j=1 f̄
κ
ij +

∑r

i=1

∑r

j=1,j 6=i ē
κ
ij; observe that (EC.65b)–(EC.65e) place no

constraints on ēκii, so we will choose our ēκ with ēκii = 0. Lastly, let āκ ∈ Rr be a vector whose

elements all equal to one.

Suppose first that κ > 1. To show that perfect availability is not feasible, we argue that if

(q, ē, f̄ , ā) is a point in the feasible region of the fluid-based optimization (4a)–(4g), then it must

be that āi < 1 for some i. Assume this is not the case, i.e. (q, ē, f̄ , ā) satisfies the constraints of
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the fluid-based optimization and āi = 1 for all 1≤ i≤ r. Then (4b)–(4d) and (4g) are identical to

(EC.65b)–(EC.65d) and (EC.65e), respectively. Since the optimal value in (EC.65a) is greater than

one, it means that constraint (4f) of the fluid-based optimization can never be satisfied under any

q, which proves that perfect availability is not feasible.

Now consider a new system where λi is replaced instead by λi/κ. It can be checked that (EC.65b)–

(EC.65e) in this new system is satisfied by qκ, and that the resulting objective value is

1

κ

( r∑
i=1

r∑
j=1

f̄κij +
r∑
i=1

r∑
j=1,j 6=i

ēκij

)
= 1.

One can then check that (qκ, ēκ/κ, f̄κ/κ, āκ) is a feasible solution to the fluid-based optimization

problem of this new system. Assuming for now that qκii > 0 for all 1≤ i≤ r, we can invoke Theorem 1

to conclude that the new system achieves perfect availability under qκ.

Now if κ≤ 1, a similar argument can be used to see that the system achieves perfect availability

under routing matrix qκ, i.e. one confirms that (qκ, ēκ, f̄κ, āκ) is a feasible solution to the fluid-based

optimization. Furthermore, if we consider a new system where λi is replaced by λi/κ, then the new

system still achieves perfect availability when qκ is taken to be the routing matrix; this can again

be verified just like in the κ> 1 case.

To conclude the proof, we need to show that we can always find an optimal solution to (EC.65a)–

(EC.65e) such that qκii > 0 for all 1 ≤ i ≤ r (this is a minor technical condition needed to invoke

Theorem 1). Suppose qκ is an optimal solution and qκii = 0 for some i; we now construct another

optimal solution q̂κ such that q̂κii > 0. We know that

0<λi =
r∑

k=1,k 6=i

µkiē
κ
ki + qκii

r∑
k=1

µkif̄ki =
r∑

k=1,k 6=i

µkiē
κ
ki,

where the first equality is from (EC.65d). The above implies that there must exist some ` such

that ēκ`i > 0, and consequently (by (EC.65c) and (EC.65b)) qκ`i > 0. Furthermore, since qκii = 0, there

must exist some m such that qκim > 0, and hence ēκim > 0.

The idea of the following argument is to redirect some empty cars going from ` to i to instead

go from ` to m, i.e. reduce qκ`i to increase qκ`m. This will allow region i to keep some of the cars it



e-companion to Braverman, Dai, Liu and Ying: Empty-car Routing in Ridesharing Systems ec33

otherwise would have sent to m, i.e. reduce qκim to increase qκii. It remains to specify precisely the

changes to qκ so that the objective value in (EC.65a) does not increase. To this end, fix ε > 0 and

let

q̂κ`i = qκ`i− ε

q̂κ`m = qκ`m + ε

q̂κim = qκim− ε
∑r

k=1 λkPk`∑r

k=1 λkPki

q̂κii = qκii + ε

∑r

k=1 λkPk`∑r

k=1 λkPki
,

and let all other elements of q̂κ be the same as those of qκ. Provided ε is small enough, q̂κ satisfies

(EC.65e), i.e. its rows are probability distributions. It is also not hard to check that q̂κ satisfies

(EC.65b)–(EC.65d), and that the objective value under q̂κ is

r∑
i=1

r∑
j=1

f̄κij +
r∑
i=1

r∑
j=1,j 6=i

ēκij + ε
r∑

k=1

λkPk`

( 1

µ`m
− 1

µ`i
− 1

µim

)
,

which is not larger than the objective value under qκ by our assumption that the mean travel times

satisfy the triangle inequality. Therefore, q̂κ is an optimal solution, and this concludes the proof.

EC.5. Miscellaneous Proofs

EC.5.1. Proof of Lemma 1

Proof of Lemma 1. Given (ē, f̄ , ā) and q that satisfy (4b)–(4g), it can be easily verified that

(ē, f̄ , ā) satisfies conditions (10a)–(10g) based on the fact that 0≤ qij ≤ 1.

Now given (ē, f̄ , ā) that satisfies (10a)–(10g), we define

qij =
µij ēij∑r

k=1 µkif̄ki
, 1≤ i 6= j ≤ r, qii =

λiāi−
∑r

k=1,k 6=i µkiēki∑r

k=1 µkif̄ki
1≤ i≤ r,

and let q be the r× r matrix whose entries are qij. Then conditions (4c) and (4d) hold according

to the definition of q. Furthermore, qij ≥ 0 because µij ≥ 0, ēij ≥ 0, and λiāi ≥
∑r

k=1,k 6=i µkiēki by

(10c). Finally,

r∑
j=1

qij =
r∑

j=1,j 6=i

µij ēij∑r

k=1 µkif̄ki
+
λiāi−

∑r

k=1,k 6=i µkiēki∑r

k=1 µkif̄ki
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=
λiāi +

∑r

j=1,j 6=i µij ēij −
∑r

k=1,k 6=i µkiēki∑r

k=1 µkif̄ki

(a)
=

∑r

k=1 µkif̄ki∑r

k=1 µkif̄ki

= 1,

where equality (a) is obtained based on (10d). Therefore, (4g) holds and we can conclude that

(ē, f̄ , ā) and our newly defined q satisfy (4b)–(4g).

EC.5.2. Proof of Lemma 2

Proof of Lemma 2. Suppose ā∗i < 1, for all 1≤ i≤ r. We argue by contradiction that this implies

ē∗ii = 0, for all i. Suppose there exists region i′ such that ē∗i′i′ > 0. We now construct another solution

(ẽ, f̃ , ã) that is better than (ē∗, f̄∗, ā∗). Assume for now that there exists an r × r matrix with

non-negative entries πij, such that
∑r

i=1

∑r

j=1 πij = 1, and

Pij
∑
k

πkiµki = µijπij, 1≤ i, j ≤ r. (EC.67)

Fix ε > 0 to be specified later, and let

ẽi′i′ = ē∗i′i′ − ε

ẽii = ē∗ii, i 6= i′,

f̃ij = f̄∗ij + επij, 1≤ i, j ≤ r,

ẽij = ē∗ij, i 6= j,

ãi = ā∗i + ε

∑r

k=1 πkiµki
λi

, 1≤ i≤ r.

Since ãi ≥ ā∗i for all i, it follows that

r∑
i=1

r∑
j=1

ā∗iλiPijcij ≤
r∑
i=1

r∑
j=1

ãiλiPijcij. (EC.68)

We now check that (ẽ, f̃ , ã) satisfies (10a)–(10f), and is therefore a feasible solution. Since (ē∗, f̄∗, ā∗)

is a feasible solution and satisfies (10a), it follows that

λiPij ãi = λiPij

(
ā∗i + ε

∑r

k=1 πkiµki
λi

)
= µij f̄

∗
ij + εPij

r∑
k=1

πkiµki
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= µij f̄
∗
ij + εµijπij

= µij f̃ij, 1≤ i, j ≤ r,

meaning (ẽ, f̃ , ã) satisfies (10a). Next, we see that

µij ẽij = µij ē
∗
ij ≤

r∑
k=1

µkif̄
∗
ki ≤

r∑
k=1

µkif̃ki, 1≤ i 6= j ≤ r,

where the first inequality follows because (ē∗, f̄∗, ā∗) satisfies (10b). Thus, (ẽ, f̃ , ã) satisfies (10b).

Next we check constraint (10c). Since (ē∗, f̄∗, ā∗) satisfies (10c), we know that

r∑
k=1,k 6=i

µkiẽki =
r∑

k=1,k 6=i

µkie
∗
ki ≤ λiā∗i ≤ λiãi, 1≤ i≤ r,

and

λiãi = λi

(
ā∗i + ε

∑r

k=1 πkiµki
λi

)
≤

r∑
k=1,k 6=i

µkiē
∗
ki +

r∑
k=1

µkif̄
∗
ki + ε

r∑
k=1

πkiµki

=
r∑

k=1,k 6=i

µkiē
∗
ki +

r∑
k=1

µki(f̄
∗
ki + επki)

=
r∑

k=1,k 6=i

µkiẽki +
r∑

k=1

µkif̃ki, 1≤ i≤ r.

Therefore (ẽ, f̃ , ã) satisfies (10c). To verify (10d), observe that

λiãi +
r∑

j=1,j 6=i

µij ẽij −
r∑

k=1,k 6=i

µkiẽki−
r∑

k=1

µkif̃ki

=λiā
∗
i +

r∑
j=1,j 6=i

µij ē
∗
ij −

r∑
k=1,k 6=i

µkiē
∗
ki−

r∑
k=1

µkif̄
∗
ki + ε

r∑
k=1

πkiµki− ε
r∑

k=1

µkiπki

=0,

and therefore (10d) holds under (ẽ, f̃ , ã). Lastly, ε can be chosen small enough so that both (10e)

and (10f) hold (the former also uses the fact that
∑

ij πij = 1). We conclude that (ẽ, f̃ , ã) is a feasible

solution to (14)–(15) that is better than (ē∗, f̄∗, ā∗), which contradicts the fact that (ē∗, f̄∗, ā∗) is

an optimal solution.

It remains to verify that we can choose non-negative πij’s to satisfy
∑

ij πij = 1 and (EC.67).

Consider a CTMC defined on the space {1, · · · , r}2. For all 1≤ i, j, k ≤ r, the transition rate from
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(k, i) to (i, k) is µkiPik. No other transitions are possible. Since the CTMC is defined on a finite

state space, it has a stationary distribution. Furthermore, any stationary distribution ν must satisfy

the flow-balance equations

r∑
k=1

νkiµkiPij =
r∑
`=1

νijµijPj`, 1≤ i, j ≤ r,

or

Pij

r∑
k=1

νkiµki = νijµij, 1≤ i, j ≤ r,

which are precisely the same as (EC.67). Therefore we can take the πij’s to be any of the stationary

distributions of such a CTMC.

In the case when there exists i′ such that ā∗i′ = 1, the claim of the lemma is straightforward to

verify.

EC.5.3. Proof of Theorem 1

The proof of (5)–(8) hinges on combining Theorems 3 and 4 with Theorem 5.1 of Anantharam

and Benchekroun (1993). Below, we repeat the argument from Anantharam and Benchekroun

(1993) for completeness. We know that the sequence {(Ē(N)(∞), F̄ (N)(∞))}N is tight, because the

support of (Ē(N)(∞), F̄ (N)(∞)) is the compact set T . It follows by Prohorov’s Theorem Billingsley

(1999) that the sequence is also relatively compact. We will now show that any subsequence of

{(Ē(N)(∞), F̄ (N)(∞))}N has a further subsequence that converges weakly to a probability measure

that assigns a mass of one to the equilibrium set E , thereby proving (5)–(8).

Fix N > 0 and initialize (Ē(N)(0), F̄ (N)(0)) according to (Ē(N)(∞), F̄ (N)(∞)). Prohorov’s Theo-

rem implies that for any subsequence

{(Ē(N ′)(0), F̄ (N ′)(0))}N ′ ⊂ {(Ē(N)(0), F̄ (N)(0))}N ,

there exists a further subsequence

{(Ē(N ′′)(0), F̄ (N ′′)(0))}N ′′ ⊂ {(Ē(N ′)(0), F̄ (N ′)(0))}N ′
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that converges weakly to some probability measure (e0, f0) with support in T . Now for any t≥ 0,

(Ē(N ′′)(0), F̄ (N ′′)(0))
d
= (Ē(N ′′)(t), F̄ (N ′′)(t))⇒ (e(t), f(t)),

as N ′′→∞, where (e(t), f(t)) is the fluid model with intial condition (e(0), f(0)) = (e0, f0), and

the weak convergence follows from Theorem 3. Since (e(t), f(t)) converges to the set E as t→∞,

it must be the case that (e0, f0)∈ E with probability one. This proves (5)–(8).

To prove (9), we need to use the generator of (Ē(N), F̄ (N)), which we call G(N). Since (Ē(N), F̄ (N))

takes values in a bounded set, Proposition 3 of Glynn and Zeevi (2008) tells us that any function

g : T →R satisfies

E
[
G(N)g

(
Ē(N)(∞), F̄ (N)(∞)

)]
= 0. (EC.69)

In particular, fix i, j between 1, . . . , r and choose g(e, f) = fij. Then

G(N)g(e, f) =NλiPij1(eii > 0)
(
(fij + 1/N)− fij

)
+µijNfij

(
(fij − 1/N)− fij

)
,

which implies

E
[
G(N)g

(
Ē(N)(∞), F̄ (N)(∞)

)]
= λiPijP(Ē

(N)
ii (∞)> 0)−µijEF̄ (N)

ij (∞) = 0. (EC.70)

Hence,

lim
N→∞

P(Ē
(N)
ii (∞)> 0) = lim

N→∞

µij
λiPij

EF̄ (N)
ij (∞) =

µij
λiPij

f̄ij = āi,

where in the second equality we used (5) and the fact that F̄
(N)
ij (∞) ∈ [0,1] to conclude that the

sequence of expected values E[F̄
(N)
ij (∞)] converges to f̄ij, and in the last equality we used (30a).

EC.5.4. Proof of Theorem 2

Proof of Theorem 2. We will show that the performance measures(
E[Ē(N)(∞)],E[F̄ (N)(∞)],A(N)(∞)

)
are a feasible solution to the optimization problem (14)–(15).

Lemma 2 then implies part (a) of the theorem is satisfied but only with a non-strict inequality.
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To show the inequality is strict, note that the lemma also tells us that the optimal solution

to (14)–(15) can never be achieved by performance measures of a CTMC with finitely many

cars under any routing policy. This is because the CTMC is positive recurrent and has finitely

many states, and so its stationary distribution assigns positive mass to each state. It follows that

A
(N)
i (∞) = P(Ē

(N)
ii (∞)> 0)< 1 and E[Ē

(N)
ii (∞)]> 0 for all regions i. The first claim in Lemma 2

then prevents any performance measures from being the optimal solution, which proves the strict

inequality.

Part (b) of the theorem is an immediate consequence of Theorem 1 by setting Q = q∗. Recall

from (EC.69) that any function g : T →R satisfies

E
[
G(N)g

(
Ē(N)(∞), F̄ (N)(∞)

)]
= 0. (EC.71)

We now show that
(
E[Ē(N)(∞)],E[F̄ (N)(∞)],A(N)(∞)

)
satisfies (10a)–(10f).

• Condition (10a) was already verified in (EC.70).

• To check condition (10b), we fix i 6= j, and use the test function g(e, f) = eij. Then

G(N)g(e, f) =Qij(e, f)
r∑

k=1

µkiNfki
(
(eij + 1/N)− eij

)
+µijNeij

(
(eij − 1/N)− eij

)
,

where Qij(e, f) is the probability that upon dropping a passenger off at region i, a car drives

empty to region j given the current state of the system is (e, f). Using (EC.71) and the fact that

Qij(e, f)∈ [0,1], we see that

0 =E

[
Qij

(
Ē(N)(∞), F̄ (N)(∞)

) r∑
k=1

µkiF̄
(N)
ki (∞)−µijĒ(N)

ij (∞)

]
(EC.72)

≤
r∑

k=1

µkiE[F̄
(N)
ki (∞)]−µijE[Ē

(N)
ij (∞)].

• For condition (10c), we fix i and use the test function g(e, f) = eii. Then

G(N)g(e, f) = Nλi1(eii > 0)
(
(eii− 1/N)− eii

)
+
(
Qii(e, f)

r∑
k=1

µkiNfki +
r∑

k=1,k 6=i

µkiNeki

)(
(eii + 1/N)− eii

)
.
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Taking the expected value and using (EC.71), we see that

λiP(ĒN
ii (∞)> 0)

= E
[
Qii(Ē

(N)(∞), F̄ (N)(∞))
r∑

k=1

µkiF̄
(N)
ki (∞) +

r∑
k=1,k 6=i

µkiĒ
(N)
ki (∞)

]
(EC.73)

Using the fact that Qii(e, f)∈ [0,1], we conclude that

0≤
r∑

k=1

µkiE[F̄
(N)
ki (∞)] +

r∑
k=1,k 6=i

µkiE[Ē
(N)
ki (∞)]−λiP(Ē

(N)
ii (∞)> 0),

and

0≥
r∑

k=1,k 6=i

µkiE[Ē
(N)
ki (∞)]−λiP(Ē

(N)
ii (∞)> 0).

• Fix i. To check condition (10d), we could use the test function g(e, f) =
∑r

j=1 eij. Alternatively,

it is easier to just add up (EC.72) for all j 6= i together with (EC.73) to arrive at

λiP(Ē
(N)
ii (∞)> 0) +

r∑
j=1,j 6=i

µijE[Ē
(N)
ij (∞)]

=
r∑

k=1

µkiE[F̄
(N)
ki (∞)] +

r∑
k=1,k 6=i

µkiE[Ē
(N)
ki (∞)].

• Conditions (10e) and (10f) hold trivially.

EC.5.5. Proof of Lemma 3

Proof of Lemma 3. Substituting (30a) and (30b) into (30c), we obtain

λiāi =
r∑
`=1
` 6=i

Q`i

r∑
k=1

µk`f̄k` +Qii

r∑
k=1

µkif̄ki =
r∑
`=1

Q`i

r∑
k=1

λkPk`āk

=
r∑

k=1

λkāk

r∑
`=1

Pk`Q`i, 1≤ i≤ r.

In matrix form, these equations can be written as

(
I −B

)
Λā= 0, (EC.74)

where I is the r× r identity matrix, and B and Λ are r× r matrices defined as

Bij =
r∑
`=1

Pj`Q`i, and Λ = diag(λ). (EC.75)
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Observe that B is a column stochastic matrix, i.e. columns sum to one. We now argue that B is

irreducible because the CTMC
(
E(N),F (N)

)
is. For any 1≤ i, j ≤ r, the entry Bij is the probability

that a car picks up a passenger at region i, drives him to some region k, and then drives empty to

region j to wait for a new passenger there (or stay and wait at region j if k= j). Therefore, B can

be interpreted as the transition probability matrix of a discrete-time Markov chain (DTMC) that

describes the motion of a single car in a network, i.e. how it serves passengers and makes routing

decisions, as if travel times were zero. Irreducibility of B then means that starting from any region

the car in the DTMC can visit any other region, which is clearly satisfied when Pij > 0 and Qii > 0

for all i, j = 1, . . . , r.

Since B is column stochastic and irreducible, (EC.74) has a unique solution up to a multiplicative

constant. That is, any solution to (EC.74) must be of the form ca∗ ≥ 0, where c > 0, and a∗ ≥ 0 is

a unique vector in Rr+. We now argue that (30d) and (30e) uniquely define c. First, we use (30e)

and (30a)–(30b) to write

1 =
r∑
i=1

r∑
j=1

f̄ij +
r∑
i=1

r∑
j=1
j 6=i

ēij +
r∑
i=1

ēii

=
r∑
i=1

r∑
j=1

λiPij
µij

āi +
r∑
i=1

r∑
j=1
j 6=i

Qij

µij

r∑
k=1

µkif̄ki +
r∑
i=1

ēii

=
r∑
i=1

r∑
j=1

λiPij
µij

āi +
r∑
i=1

r∑
j=1
j 6=i

Qij

µij

r∑
k=1

λkPkiāk +
r∑
i=1

ēii.

The equation above can be written as

1 =
r∑
i=1

c̃iāi +
r∑
i=1

ēii = c
r∑
i=1

c̃ia
∗
i +

r∑
i=1

ēii

where c̃1, . . . , c̃r > 0, and in the second equality we used ā= ca∗. Now if

1∑r

i=1 c̃ia
∗
i

a∗i ≤ 1, 1≤ i≤ r, (EC.76)

then c = 1/
∑r

i=1 c̃ia
∗
i and ēii = 0 for all i are the unique choices under which both (EC.76) and

(30d) hold, and we are done.
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Now suppose (EC.76) is violated. We cannot choose c= 1/
∑r

i=1 c̃ia
∗
i , because that would violate

the requirement that ā∈ [0,1]r. Instead, choose

c= sup{s > 0 : sa∗ ∈ [0,1]r}, (EC.77)

and observe that such a choice necessarily satisfies c < 1/
∑r

i=1 c̃ia
∗
i . To satisfy (30d), we must set

ēii = 0 for all i such that āi < 1. The only restriction on ēii for i such that āi = 1 is that

r∑
i:āi=1

ēii = 1− c
r∑
i=1

c̃ia
∗
i .

It remains to verify that the only viable choice of c is given by (EC.77). Choosing c < sup{s > 0 :

sa∗ ∈ [0,1]r} implies ā∈ (0,1)r, and consequently, (30d) implies that ēii = 0 for all i. In such a case,

c
r∑
i=1

c̃ia
∗
i +

r∑
i=1

ēii = c
r∑
i=1

c̃ia
∗
i < 1,

because sup{s > 0 : sa∗ ∈ [0,1]r} < 1/
∑r

i=1 c̃ia
∗
i , and a contradiction is reached. Choosing c >

sup{s > 0 : sa∗ ∈ [0,1]r} forces some element of ā to be greater than one, which violated the require-

ment that ā∈ [0,1]r. This concludes the proof.
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