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Most common queueing models used for service system design assume the servers work at fixed (possibly

heterogeneous) rates. However, real-life service systems are staffed by people, and people may change their

service speed in response to incentives. The delicacy is that the resulting service speed is jointly affected by

staffing, routing, and payment decisions. Our objective in the paper is to find a joint staffing, routing, and

payment policy that induces optimal service system performance.

We do this under the assumption that there is a trade-off between service speed and quality, and employees

are paid based on both. The employees each selfishly choose their own service speed in order to maximize

their own expected utility (which depends on the staffing through their busy time). The endogenous service

rate assumption leads to a centralized control problem in which the system manager jointly optimizes over

the staffing, routing, and service rate. By solving the centralized control problem under fluid scaling, we find

four different economically optimal operating regimes—critically loaded, efficiency-driven, quality-driven,

and intentional idling (in which there is simultaneous customer abandonment and server idling). Then, we

show that a simple piece-rate payment scheme can be used to solve the associated decentralized control

problem under fluid scaling.
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1. Introduction

The service sector occupies a central position in the U.S. economy. For example, it has grown from

53.3% of GDP in 1999 to 62.4% in 2016 (Bureau of Economic Analysis 2017). Not surprisingly,

there is much research focused on service system design. One common assumption is that employees

work at fixed rates. However, recent empiric work by Buell et al. (2017), Song et al. (2015) and

Shunko et al. (2018) demonstrates that system-design related incentives can affect service speed

and/or quality. In this paper, we build a theoretic model to investigate such an effect.

The central questions when designing a service system are: how many employees should be staffed

and what should be their payment? This is because for many service systems the most significant

percentage of their operating costs is labor. Hence there are many studies (e.g., Garnett et al.

2002, Borst et al. 2004, Milkovich and Newman 2004) on staffing and payment. However, these two

problems are very often studied separately; for example, in the aforementioned book and papers,

the studies on how to structure payment ignore staffing, and the studies on staffing ignore payment

design. The issue is that the payment affects employee motivation, which affects the throughput

rate of completed tasks, which affects the staffing required to handle a given workload. On the

other hand, the staffing level affects how often there are customers waiting, and employees may

work faster (slower) in an environment in which there are usually lines (rarely lines). Moreover,

how incoming work is routed to the employees can also influence the speed at which they work.

As a result, the system design questions of staffing and payment are more nuanced, and must also

consider routing.

To study the joint staffing, routing, and payment problem, we begin with a classic model used

to inform staffing decisions that ignores employee payment. Then, we enhance the model to incor-

porate the employee incentives. Specifically, we consider an M/M/N+M queueing model except we

do not assume fixed service rates that are exogenously given. Instead, we assume each employee

(henceforth called server, to be consistent with the queueing nomenclature) chooses the service

rate that maximizes his expected utility, which equals his expected payment. This motivates solv-

ing a centralized control problem in which the system manager can control the number of servers
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staffed, the routing, and the rate at which each server works. The centralized control problem has

a cost structure that incorporates server staffing and utilization costs, as well as costs arising from

customer abandonment and service quality that deteriorates with speed. After solving the central-

ized control problem, the system manager can then decide on a payment structure that motivates

servers to work at the desired service rate.

The implicit assumption is that the servers have discretion in how long they take to complete

each service. This is natural in the professional and complex service work performed by highly

skilled workers (such as engineers and physicians), as modeled in Hopp et al. (2007). This is also

true in the factory environment at Coverking (a division of Shrin Corporation), which we visited,

where sewing is an important component of production, and sewing times decreased under a volume

based payment scheme (based on personal communication with Steve Gupta, the President of

Coverking). As a final example, employees answering email in a contact center can choose to take

more or less time constructing their responses (Hasija et al. 2010). Then, it is natural to assume

that the longer a server spends on a service, the more likely that service is to be successful.

For a fixed staffing level, the service rates chosen by the servers emerge as a Nash equilibrium

solution of the game defined through the server utility function. The main difficulty is that even

when servers are individually rewarded (for example, paid for volume and quality), their decisions

collectively govern the system performance measures. In particular, the utilization of each individ-

ual server, which affects the expected number of customers served in a time unit, depends on the

entire vector of service rates chosen by all of the servers. In other words, the server interactions

create competition between the servers for customers, which may influence their service rate. Any

payment structure that uses server utilization as an input metric must account for the resulting

server competition.

The main contributions of this paper are as follows.

• We propose a centralized control problem in which the system manager jointly optimizes over

the staffing level, the service rate, and the routing (within the class of so-called “Idle-Time-

Order-Based” rules). We establish that the solution to the centralized control problem has
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all servers working at the same rate. This allows us to focus on service rate vectors that are

symmetric Nash equilibria. See Proposition 1.

• We solve the centralized control problem under fluid scaling, as the arrival rate becomes large,

and provide conditions under which four different economically optimal operating regimes

emerge (critically loaded, efficiency-driven, quality-driven, and intentional idling). See Propo-

sition 2 and Theorem 1.

• We show that under piece-rate payment (that is, servers are paid based on individual volume

and quality) there exists a symmetric equilibrium service rate, and specify payment parameters

under which first best is achieved in a limiting sense. See Proposition 3 and Theorem 2.

• We develop an explicit and analytically tractable expression for the limiting server utilization

when one server works at one rate and all other servers work at a different rate. This expression

is useful for solving for a symmetric equilibrium service rate in a many-server queue in which

the server utility function depends on the server utilization. See Proposition 4.

The remainder of this paper is organized as follows. First, we review some related literature.

Then, in Section 2, we set up the queueing model with strategic servers, define the class of Idle-

Time-Order-Based routing rules, and specify the resulting server utilizations. Section 3 introduces

the system manager’s cost structure and formulates both the centralized control problem (in which

the system manager directly controls the service rate) and the decentralized control problem (in

which the system manager must use payment to influence the service rate). We note that any first

best contract requires first solving the centralized control problem. Section 4 solves the centralized

control problem under fluid scaling, as the arrival rate becomes large, from which we see four

different economically optimal operating regimes emerge. In Section 5, we provide the piece-rate

payment contract that is limiting first best. From an economics perspective, that piece-rate payment

contract realizes complete risk transfer when the service failure cost is linear. We make concluding

remarks in Section 6. The proofs of all results in this paper are in the electronic companion (EC).

There is a table of notation Table EC.1 at the beginning of the EC.
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1.1. Literature Review

Our model assumes there is a trade-off between speed and quality that can be critical to the cus-

tomer experience of the service. This is true in the call center application settings in the recent

papers by Mehrotra et al. (2012) and Zhan and Ward (2014). This is also true in many other appli-

cation settings, such as healthcare and manufacturing (Lovejoy and Sethuraman 2000, Kostami

and Rajagopalan 2014, Alizamir et al. 2013). The difference between these papers and ours is

that none of the aforementioned papers model the service rate as a decision made by a selfish,

utility-maximizing server.

The papers Hopp et al. (2007), Lu et al. (2009) and Anand et al. (2011) all analyze models in

which the server accounts for both speed and quality when choosing the service time that maximizes

his utility. Hopp et al. (2007) allow for dynamic decisions, whereas Lu et al. (2009) and Anand

et al. (2011) restrict to a static service rate choice, as we do. None of those papers considers the

problem of how to staff systems with a large number of servers. Our focus on staffing naturally

leads to a fluid analysis with a speed-quality trade-off, that is methodologically more similar to

Chan et al. (2014). One main difference is that in that paper the servers are restricted to have two

possible speeds, whereas we allow for a continuum of service speeds.

The service rates chosen by the servers are those that maximize their expected utility. In other

words, the service rates are the solution to a queueing game. There is a large literature on queueing

games, and we refer the reader to Hassin and Haviv (2003) and Hassin (2016). Much of that liter-

ature assumes fixed service rates, and focuses on how customers that strategically decide whether

or not to queue, and where to queue, affect system performance. Some exceptions (that is, papers

that allow the service rates to be a game equilibrium) are Kalai et al. (1992), Gilbert and Weng

(1998), Cachon and Harker (2002), Cachon and Zhang (2007), Debo et al. (2008), Geng et al.

(2015). Still, the maximum number of servers in all of the aforementioned papers is two.

The problem of how a system manager influences employee behavior can be thought of as

a principal-agent problem, pioneered by Akerlof (1970), Spence (1973), Rothschild and Stiglitz
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(1976), Holmstrom (1979). When the agents are risk neutral and only the total output is observ-

able, although individual agents have an incentive to free ride, Holmstrom (1982) shows that group

penalties can approximate a first best solution arbitrarily closely. In our service system, the outputs

of each server (number of finished services and failures) are observable, and the incentive is not

the main problem. The issue is that specifying a first best payment contract requires knowing the

solution to the centralized control problem, and that is analytically tractable only in a limiting

sense. Moreover, there is no result in the literature that establishes the existence of a symmetric

equilibrium service rate in a many-server queueing system under any payment incentive structure

– and that is necessary for a first best solution.

The spirit of our analysis is most similar to that in Maglaras and Zeevi (2003, 2005), Armony

and Maglaras (2004), Allon and Gurvich (2010), Armony and Gurvich (2010), Allon et al. (2017),

Gopalakrishnan et al. (2016), Gurvich et al. (2018), and Ibrahim (2018), all of whom use large

system asymptotics to tackle service system design problems, in which either the customers or the

servers have some decision-making power. However, with the exception of Gopalakrishnan et al.

(2016), none of these papers is focused on the effect of many servers in the same firm competing for

incoming customers. In Gopalakrishnan et al. (2016), this competition emerges in a fixed-wage or

volunteer model, meaning that the service rate chosen by each server maximizes a non-monetary

utility. In this paper, the competition emerges because each server’s payment is increasing in the

number of customers successfully served.

2. A Many Server Queue with Strategic Servers

In an M/M/N +M queue, customers arrive to a service system having N ∈ {0,1,2, . . .} servers

according to a Poisson process with rate λ≥ 0 per time unit. Each arriving customer independently

samples from an exponential distribution with mean 1/θ > 0 time units to determine how long

that customer is willing to wait for service before abandoning. Customers in the queue are served

according to the first-come-first-served discipline (although our results do not require this, due to

the exponential distributional assumptions). Each server is fully capable of handling any customer’s
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service requirements. When a customer arrives to find more than one server available, the routing

policy specifies if the customer should be delayed or should be handled immediately by one of the

available servers, and if so, which server. The time required to serve each customer is independent

and exponential and has mean 1/µ> 0 time units when the server works at rate µ. The difference

in our setting is that each server strategically chooses his service rate to maximize his own utility,

which equals the expected steady state payment per time unit.

The system manager must decide on the staffing level N , the server payment contract, and the

routing. The staffing level decision is apparent. We discuss routing and payment respectively below.

The routing policy can know when each server last became idle, but cannot assume knowledge

of the service rate. We consider routing rules that are based on the time each server has been

idle. More specifically, we generalize the class of Idle-Time-Order-Based (IOB) policies proposed

in Gopalakrishnan et al. (2016) for an M/M/N queue without abandonment. The generalization is

to be able to lower server utilization by allowing servers to idle even when customers are waiting.

Definition 1. Let I(t) be the set of servers idle at time t > 0, and, when I(t) 6= ∅, let s(t) =

(s1, . . . , s|I(t)|) denote the ordered vector of idle servers at time t, where server sj became idle before

server sk whenever j < k. For any m∈ {1, . . . ,N}, let Qm be the set of all probability distributions

over {1, . . . ,m}. An Idle-Time-Order-Based (IOB) routing rule with parameter T , or IOB(T ), is a

collection of probability distributions {p1, p2, · · · , pN}, with pm ∈Qm for all m∈ {1, . . . ,N} that:

(i) Delays each arriving customer for T ≥ 0 time units in a holding area, after which the customer

joins the queue;

(ii) Chooses idle server si ∈ I(t + T ), that is in the ith position in the vector s(t + T ), with

probability p
|I(t+T )|
i , to handle the request of a customer arriving at time t if I(t+T ) 6= ∅, and

otherwise has the customer join the end of the queue.

Finally, servers do not serve customers in the holding area, and do not idle whenever customers

are present in the queue.

Servers can idle under an IOB(T ) routing rule with T > 0 when customers are waiting in the

holding area. In contrast, an IOB(0) routing rule is non-idling (that is, servers cannot idle when
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customers are waiting). The sub-class of non-idling IOB policies includes such common policies as

randomized routing (in which the server that handles the incoming customer request is chosen at

random) and longest-idle-server-first (in which the server that has idled the longest handles the

incoming customer request). These can all be modified to be an IOB(T ) routing rule with T > 0

by intentionally delaying customers as in Definition 1.

The servers are risk neutral strategic players in a non-cooperative game, each capable of com-

pleting services at any rate µ∈ [µ,µ], where 0<µ<µ<∞. Server i∈ {1, . . . ,N} has utility Ui(~µ)

that equals his expected payment when the service rate vector is ~µ. The service rates the servers

choose will be a Nash equilibrium of this game. In particular, an equilibrium is a service rate vector

~µ that satisfies

Ui(~µ) = max
v∈[µ,µ]

Ui(µ1, · · · , µi−1, v,µi+1, · · · , µN) for all i∈ {1, . . . ,N}, (1)

and individual rationality; that is,

Ui(~µ)≥ cS for i∈ {1, . . . ,N}, (2)

where cS > 0 represents the expected payment from an outside employment alternative. Although

server i can individually choose his service rate µi, server i cannot maximize his expected utility

rate without worrying about the behavior of others since Ui(~µ) is in general a function of the entire

service rate vector ~µ.

We assume the expected payment to server i, Ui(~µ), is a function of the system steady state per-

formance. One important steady state performance measure is server utilization, or the percentage

of time each server is busy. For example, if servers are paid per task completed, then each server’s

payment Ui(~µ) depends on his utilization.

Lemma 1. In an M/M/N +M queue with arrival rate λ, service rate vector ~µ, and impatience

rate θ, all IOB(T ) routing policies have the same steady state probabilities. As a consequence, all

IOB(T ) routing policies result in the same expected steady state utilization of server i,

Bi(~µ,N,T ) :=

∑
I⊆{1,...,N}\i |I|!

∏
j∈I

µj
λ exp(−θT )

+
∑∞

m=1

∏m

k=1
λ exp(−θT )

kθ+
∑N
j=1 µj∑

I⊆{1,...,N} |I|!
∏
j∈I

µj
λ exp(−θT )

+
∑∞

m=1

∏m

k=1
λ exp(−θT )

kθ+
∑N
j=1 µj

, for i∈ {1, . . . ,N},

where
∏
j∈∅

µj
λ exp(−θT )

:= 1; that is, the product of elements from an empty set is 1 by convention.
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Lemma 1 is remarkable in the sense that the steady state probabilities (and, consequently, the

server utilizations) do not depend on the collection of probability distributions used to define

IOB(T ) routing in Definition 1. As a consequence, the system performance is uniquely specified by

setting the IOB parameter T .

A more general formulation would allow the servers to adjust their service rates dynamically over

time. The restriction to constant service rate choice ensures the control problem under consideration

in the next section does not have the added complication of being a dynamic control problem.

3. The Control Problem

The equilibrium service rate in the many-server queue with strategic servers is determined by the

staffing, the routing, and the payment, which are all decisions. These decisions are made to optimize

system performance. Section 3.1 details the assumed cost structure. If the system manager could

directly control the service rate, then the relevant optimization would be a centralized control

problem to determine the staffing, the routing, and the service rate, and we formulate that problem

in Section 3.2. The centralized control problem provides a lower bound on the minimum possible

cost. First best is achieved when the staffing, the routing, and the payment contract are set so as to

attain that lower bound cost, which requires studying the decentralized control problem detailed

in Section 3.3.

3.1. The Cost Structure

The salary cost of staffing N servers that work at service rate vector ~µ is
∑N

i=1Ui(~µ), which equals

or exceeds cSN by the individual rationality constraint (2). The operational costs include costs for

utilization, customer abandonment, and low service quality. We assume the system is operating

in steady state, and discuss each cost in turn below. The notation βi = Bi(~µ,N,T ) refers to the

expected steady state utilization of server i∈ {1, . . . ,N} given in Lemma 1.
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The utilization cost for each server gU : [0,1]→ [0,∞) captures server fatigue or machine overuse,

and is often convex because such costs tend to increase more quickly as utilization becomes closer

and closer to 1. The total utilization cost is

N∑
i=1

gU(βi). (3)

The customer abandonment cost is captured through a function gA : [0,1]→ [0,∞) that represents

the cost per abandoned customer. That cost depends on the steady state customer abandonment

probability qA, and can be linear or non-linear. The function should be non-linear when a small

abandonment probability has almost no impact on reputation but a larger probability leads to

considerable damage. When server i has expected steady state utilization βi, the rate at which

customers depart from server i is βiµi, which leads to the expected steady state number of aban-

donments in a time unit being λ−
∑N

i=1 βiµi. From the flow balance equation of the system, we

must have λ(1−qA) =
∑N

i=1 βiµi, or qA =
λ−

∑N
i=1 βiµi
λ

. This results in an abandonment cost per time

unit of (
λ−

N∑
i=1

βiµi

)
gA(qA) =

(
λ−

N∑
i=1

βiµi

)
gA

(
λ−

∑N

i=1 βiµi
λ

)
. (4)

Service quality decreases when servers work faster, which is costly. This speed-quality trade-off

is captured through a strictly decreasing function p : [µ,µ]→ [0,1] that specifies the probability of

successful service. The outcome of a service as either successful or failed is known when outcomes

can be captured by, for example, customer complaints or customer evaluation forms (in which case

a failed service does not imply the customer returns). The function gF : [0,1]→ [0,∞) represents the

cost per failed service, and depends on the steady state service failure probability qF . As in the case

of customer abandonment, gF may be linear or non-linear, depending on whether or not having the

unit cost increase in the service failure percentage is appropriate. The steady state service failure

probability qF is specified in terms of the steady state probability qi that an arriving customer

is served by server i, given that customer does not abandon; that is, qF =
∑N

i=1 qi(1− p(µi)). To

determine qi, note that since customers depart from server i at rate βiµi, the flow balance of server
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i gives λ(1− qA)qi = βiµi, which implies qi = βiµi∑N
j=1 βjµj

. The expected number of failed services of

server i per time unit is (1− p(µi))βiµi, which leads to an expected failed service cost per time

unit of
N∑
i=1

(1− p(µi))βiµigF (qF ) =
N∑
i=1

(1− p(µi))βiµigF

(∑N

i=1(1− p(µi))βiµi∑N

i=1 βiµi

)
. (5)

Assumption 1. The functions gU , gA, gF , and p are all continuous. The function gU is weakly

increasing and weakly convex on [0,1]. The function p is strictly decreasing and weakly concave on

[µ,µ]. The function gF is weakly increasing on [0,1].

3.2. The Centralized Control Problem

A lower bound on the minimum attainable cost is found by solving a centralized control problem,

in which the system manager can directly dictate the service rate vector ~µ as well as the staffing

level N and the parameter T that defines the IOB routing rule. The centralized control problem

minimizes the sum of staffing and operational costs, subject to feasibility constraints. The staffing

costs are cSN , because the service rates do not depend on the expected payment, meaning the only

requirement is to satisfy individual rationality (2). The operational costs are

C(~µ,N,T ) := (6)

N∑
i=1

gU(βi) +

(
λ−

N∑
i=1

βiµi

)
gA

(
λ−

∑N

i=1 βiµi
λ

)
+

N∑
i=1

(1− p(µi))βiµigF

(∑N

i=1(1− p(µi))βiµi∑N

i=1 βiµi

)
,

for

βi =Bi(~µ,N,T )

defined as in Lemma 1. Intuition suggests that an IOB routing rule that intentionally delays

customers results in lower server utilization than one that does not, which follows from the below

Lemma.

Lemma 2. For any N ∈ {1,2 · · · } and any service rate vector ~µ, Bi(~µ,N,T ) is strictly decreasing

in T on [0,∞) for each i∈ {1,2, . . . ,N}.
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The centralized control problem is

min
~µ,N,T

cSN + C(~µ,N,T )

subject to: N ∈ {0,1,2, . . .}, µi ∈ [µ,µ] for all i∈ {1,2, . . . ,N}, and T ≥ 0.

(7)

We let (~µ?,N?, T?) denote a solution to (7), and C? := C(~µ?,N?, T?). The minimum objective function

value is cSN? + C?.

Proposition 1. Under Assumption 1, any solution (~µ?,N?, T?) to the centralized control problem

(7) has all servers working at the same service rate ~µ?,i = µ? ∈ [µ,µ], for all i∈ {1,2, · · · ,N?}, and

having the same utilization Bi(~µ?,N?, T?) = β? ∈ [0,B(~µ?,N?,0)], for all i∈ {1,2, . . . ,N?}.

The upper bound of β? in Proposition 1 follows from Lemma 2.

We slightly abuse notation and write B(µ,N,T ) and C(µ,N,T ) to be the server utilization and

operational costs when all servers work at the same rate µ. Lemma 1 can be used to find an explicit

expression for B(µ,N,T ), and to verify that the utilization is the same for all servers. From (6),

the operational costs are,

C(µ,N,T ) =NgU(β)+(λ−Nβµ)gA

(
λ−Nβµ

λ

)
+N(1−p(µ))βµgF (1− p(µ)) , for β =B(µ,N,T ).

(8)

Proposition 1 implies the centralized control problem is equivalently specified as

min
µ,N,T

cSN + C(µ,N,T )

subject to: µ∈ [µ,µ],N ∈ {0,1,2, . . .}, T ≥ 0.

(9)

The minimum objective function value in (9) equals cSN? + C? under Assumption 1. We write

(µ?,N?, T?) to denote a solution to (9), in which case (~µ?,N?, T?) solves (7), where ~µ?,i = µ? for all

i∈ {1, . . . ,N?}, under Assumption 1.

3.3. The Decentralized Control Problem

The system manager would like to choose the payment contracts, staffing level N , and IOB routing

parameter T that ensures the equilibrium service rate will be such that the sum of staffing and
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operational costs equals the lower bound cSN?+C?. This is a decentralized control problem because

each individual agent i∈ {1, . . . ,N} controls his own service rate, which is chosen so as to selfishly

maximize his own expected payment Ui.

The payment contracts that produce the vector of expected server payments ~U = (U1, . . . ,UN)

must be computable by relying only on observable or known elements. We assume that the system

manager can observe the realized number of abandonments and number of completed and failed

services for each server during any finite time interval. The manager knows the arrival rate λ, the

cost functions gU , gA and gF , as well as the speed quality trade-off function p. We let P denote

the class of payment contracts specified by functions whose domains depend only on known and

observable parameters over a time unit and have range that is the N -dimensional non-negative

orthant. Then, Ui =E[Pi], i∈ {1, . . . ,N}, where ~P = (P1, . . . , PN)∈P, and the expectation operator

is with respect to the steady state distribution.

The differentiation between ~P and ~U is conceptually important. This is because Pi, i ∈

{1, · · · ,N}, must be computed based on observable or known elements, and so cannot explicitly

depend on the service rate vector ~µ, even though Ui can. For example, if servers are paid PS for each

completed service and the random variable Xi represents the observed number of completed services

by server i in a time unit, then Pi = PSXi for i∈ {1, · · · ,N}, which we can compute without know-

ing ~µ (even though Xi implicitly depends on ~µ). However, the computation Ui = PSµiBi(~µ,N,T )

explicitly depends on ~µ. We let S(~P ,N,T ) denote the set of equilibrium service rate vectors (which

could be the empty set) under staffing level N , IOB(T ) routing, and payment contract vector ~P .

The decentralized control problem is

min
~P ,N,T

sup
~µE∈S(~P ,N,T )

N∑
i=1

Ui + C(~µE,N,T )

subject to: ~P ∈P,N ∈ {0,1,2, . . .},S(~P ,N,T ) 6= ∅, T ≥ 0,

min
~µE∈S(~P ,N,T )

Ui =E[Pi]≥ cS for each i∈ {1, . . . ,N}.

(10)

The formulation (10) allows for the worst possible equilibrium (from the system manager’s per-

cepective) in the case of multiple equilibria. If ~µE ∈ S(~P ,N,T ), then (~µE,N,T ) is feasible for the
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centralized control problem (9). As a result, the solution to the decentralized control problem has

a lower bound cSN? + C?. If there exists an asymmetric equilbrium, from Proposition 1 the asso-

ciated cost will exceed cSN? + C?. This observation motivates us to focus on finding a symmetric

equilibrium service rate. For the remainder of this paper, an equilibrium refers to a symmetric

equilibrium, which satisfies both the equilibrium definition (1) and has all components identical,

denoted by ~µE = (µE, . . . , µE). Under a symmetric equilibrium service rate, if the manager uses

a common payment contract for all servers, then Ui will be identical for i ∈ {1, . . . ,N} and (10)

simplifies with an objective U1N + C(µ,N,T ).

The decentralized control problem can be solved via the centralized control problem by setting

N = N?, T = T?, and specifying a common payment contract P that motivates each server to

work at rate µ?. Such a contract would be easy to specify if the system manager could observe

the long-run average number of services completed per unit busy time, that is, the service rate

µi, i ∈ {1, . . . ,N?}. Then, any contract that pays strictly less than cS for service rate not equal to

µ?, such as

Ui = cS − (µi−µ?)2, i∈ {1, . . . ,N?}, (11)

ensures each server working at µ? is a unique equilibrium, and so is first best.

The issue is that (11) requires solving the centralized control problem (9). Unfortunately, (9) is a

complicated optimization that may have many local minima, because the objective function is not

convex (unless additional assumptions are imposed). Hence numeric solution techniques are not a

panacea. Furthermore, numeric solution techniques do not yield easy insight into solution structure.

For example, we would like to understand conditions under which an optimal solution results in

low customer abandonments and/or high server utilization, which does not appear possible from

an exact analysis. Therefore, we perform an asymptotic analysis.

4. Asymptotic Analysis of the Centralized Control Problem

We solve (9) asymptotically, by allowing the arrival rate to become large. Section 4.1 sets up

the asymptotic regime, and Section 4.2 shows the fluid control problem that (9) gives rise to
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in that regime. We use the solution to the aforementioned fluid control problem to propose a

policy for setting the staffing level, service rate, and routing parameter. We establish that that

policy is asymptotically optimal (that is, has identical asymptotic performance to a solution to (7),

equivalently (9) by Proposition 1) in Section 4.3. The fluid control problem solution allows us to

identify conditions on the cost structure under which different operating regimes are economically

optimal, and we detail those in Section 4.4.

4.1. Preliminaries

We consider a sequence of systems with increasing arrival rate λ ∈ (0,∞). Our convention, when

we refer to any quantity associated with the system with arrival rate λ, that may change with λ,

is to superscript the appropriate symbol by λ.

Definition 2. A policy is a sequence of staffing levels, service rates, and IOB routing parame-

ters {(µλ,Nλ, T λ) : λ≥ 0}. An admissible policy satisfies the constraints of the centralized control

problem (9) for every λ.

We would like to find an admissible policy that has close to the minimum cost cSN
λ
? + Cλ? of

the centralized control problem (7), which equals the minimum cost of (9) under Assumption 1 by

Proposition 1.

Definition 3. An admissible policy {(µλ,Nλ, T λ) : λ≥ 0} is asymptotically optimal if

lim
λ→∞

cSN
λ + C(µλ,Nλ, T λ)

cSNλ
? + Cλ?

= 1.

Initially, we do not know the functional form an asymptotically optimal policy can take. The

following proposition highlights that an asymptotically optimal policy should not have a staffing

level that grows faster than linear in the arrival rate.

Lemma 3. Any asymptotically optimal policy has

limsup
λ→∞

Nλ

λ
<∞.
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Lemma 3 implies that to find an asymptotically optimal policy we need only search within the

class of admissible policies for which 1

Nλ = bλ+ o(λ) for some b≥ 0. (12)

Lemma 4. Under IOB(T λ) routing and staffing that satisfies (12), if µλ→ µ ∈ [µ,µ] and T λ→

T ∈ [0,∞] as λ→∞, then

lim
λ→∞

B(µλ,Nλ, T λ) = β := min

(
1,

exp(−θT )

bµ

)
,

and the expected steady state abandonment probability satisfies

λ−NλB(µλ,Nλ, T λ)µλ

λ
→ a := 1− bβµ≥ 0 as λ→∞.

Lemma 4 motivates taking the limit as λ→∞ in the centralized control problem (9) in order to

gain analytic tractability. More specifically, under the conditions given in Lemma 4, the limiting

objective function value to (9) satisfies

lim
λ→∞

cSN
λ +C(µλ,Nλ, T λ)

λ
= cSb+ Ĉ(µ, b, β, a), (13)

where

Ĉ(µ, b,β, a) := bgU(β) + agA(a) + (1− p(µ))µβbgF (1− p(µ)).

4.2. The Limiting Control Problem

The limiting control problem is

min
µ,b,β,a

cSb+ Ĉ(µ, b,β, a)

subject to: µ∈ [µ,µ], b≥ 0, β ∈ [0,1], and a= 1− bβµ≥ 0.

(14)

We denote a solution to the limiting control problem by (µ̂?, b̂?, β̂?, â?), and let Ĉ? := Ĉ(µ̂?, b̂?, β̂?, â?).

The minimum objective function value is cS b̂? + Ĉ?.

The decision variables in (14) do not include the routing parameter because given b and µ, from

Lemma 4, any limiting utilization β ∈
[
0,min

(
1, 1

bµ

)]
is achievable. In order to have limiting busy

percentage β ∈
[
0,min

(
1, 1

bµ

)]
, we solve exp(−θT )

bµ
= β for T , and set T λ =− log(bµβ)/θ for all λ.
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Define

ĉS(β) :=
cS + gU(β)

β
> 0 for all β ∈ [0,1].

to be an adjusted staffing cost, that also accounts for utilization. To solve (14), we first use the

equality constraint to re-write the objective function as follows

cSb+ Ĉ(µ, b,β, a) = (1− a)

(
ĉS(β)

µ
+ (1− p(µ))gF (1− p(µ))

)
+ agA(a).

Next, provided all minimizers are unique, we can observe

β̂? = arg min
β∈[0,1]

{ĉS(β)} (15)

µ̂? = arg min
µ∈[µ,µ]

{
ĉS(β̂?)

µ
+ (1− p(µ))gF (1− p(µ))

}
(16)

â? = arg min
a∈[0,1]

{
(1− a)

(
ĉS(β̂?)

µ̂?
+ (1− p(µ̂?))gF (1− p(µ̂?))

)
+ agA(a)

}
(17)

b̂? =
1− â?
β̂?µ̂?

. (18)

Assumption 2. The functions gU , gA, gF , and p are all continuous. Furthermore, gU is strictly

convex on [0,1], p is weakly concave on [µ,µ], gF is weakly convex and weakly increasing on [0,1],

agA(a) is strictly convex in a on [0,1], and
(
ĉS(β̂?)

µ̂?
+ (1− p(µ̂?))gF (1− p(µ̂?))

)
6= gA(1).

Lemma 5. Under Assumption 2, the minimizers in (15)-(18) are unique.

4.3. An Asymptotically Optimal Policy

An asymptotically optimal policy uses the solution to the limiting control problem (14) to set the

staffing level, the routing parameter, and the service rate.

Theorem 1. Under Assumptions 1 and 2, any policy

(
µ̂?,N

λ
ao, T̂?

)
having Nλ

ao = b̂?λ+ o(λ) and T̂? :=


− log(b̂?µ̂?β̂?)/θ if β̂? < 1 and â? > 0,

0 otherwise

is asymptotically optimal. Furthermore,

lim
λ→∞

B
(
µ̂?,N

λ
ao, T̂?

)
= β̂? = min

(
1,

exp(−θT̂?)
b̂?µ̂?

)
,
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and

lim
λ→∞

cSN
λ
ao + C

(
µ̂?,N

λ
ao, T̂?

)
λ

= lim
λ→∞

cSN
λ
? + Cλ?
λ

= cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?).

Theorem 1 motivates studying properties of the solution (15)-(18), in order to gain insight into the

solution to the centralized control problem (9).

The quantity

ĉ? :=
ĉS(β̂?)

µ̂?
+ (1− p(µ̂?))gF (1− p(µ̂?)) (19)

represents the minimum cost to serve a customer, adjusted to include both utilization and service

failure costs. If that minimum cost is too high, then the limiting solution does not staff and lets

all customers abandon.

Lemma 6. Under Assumption 2, if maxa∈[0,1] (agA(a))
′
= gA(1)+g′A(1)≤ ĉ?, then â? = 1 and b̂? = 0.

When the abandonment percentage is a, the scaled abandonment cost is agA(a), and so the con-

dition in Lemma 6 states in words that any marginal increase in abandonment cost cannot exceed

the minimum cost to serve a customer ĉ?.

Provided the limiting solution does not have zero staff, we can further determine conditions

for whether or not to let any customers abandon, and whether or not to push the servers to full

utilization.

Proposition 2. Suppose Assumption 2 holds, gA(1) + g′A(1)> ĉ?.

(a) If mina∈[0,1] (agA(a))
′
= gA(0)≥ ĉ?, then â? = 0; otherwise, â? ∈ (0,1).

(b) If maxβ∈[0,1] ĉ
′
S(β)≤ 0, or equivalently, g′U(1)− gU(1)≤ cS, then β̂? = 1; otherwise, β̂? ∈ (0,1).

In words, Proposition 2(a) states no customers should abandon when the marginal abandonment

cost always exceeds the minimum cost to serve a customer. Proposition 2(b) states that if the

adjusted staffing cost is weakly decreasing in utilization, then full server utilization is optimal.
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4.4. Economically Optimal Limit Regimes

Together, Proposition 2 and Theorem 1 specify four possible operating regimes for the system,

which are detailed in Table 1. This is reminiscent of the economically optimal operating regimes

detailed in Borst et al. (2004) for an M/M/N queue without abandonment (and under a different

cost structure). Although there are papers in the literature that show conditions on a cost structure

under which the critically loaded and efficiency-driven limiting regimes arise in an M/M/N +M

queue (see, for example, Whitt 2006, Ren and Zhou 2008, and Bassamboo and Randhawa 2010),

we are not aware of any paper that has provided a cost structure under which the full spectrum of

the four operating regimes detailed in Table 1 arise. Garnett et al. (2002) develop the relationship

between staffing levels and performance characteristics in an M/M/N +M queue to define three

possible operating regimes (critically loaded, quality-driven, and efficiency-driven), but do not

explicitly incorporate a cost structure, and do not discuss an intentional idling regime.

Table 1 Optimal Limiting Regimes. (The table assumes gA(1) + g′A(1)> ĉ?)

Abandonment

Cost

Utilization Cost Optimal Regime Limiting Abandon-

ment Percentage

Limiting Server

Utilization

gA(0)≥ ĉ? g′U(1)− gU(1)≤ cS Critically loaded â? = 0 β̂? = 1

gA(0)< ĉ? g′U(1)− gU(1)≤ cS Efficiency-driven â? ∈ (0,1) β̂? = 1

gA(0)≥ ĉ? g′U(1)− gU(1)> cS Quality-driven â? = 0 β̂? ∈ (0,1)

gA(0)< ĉ? g′U(1)− gU(1)> cS Intentional Idling â? ∈ (0,1) β̂? ∈ (0,1)

The utilization cost drives the appearance of an intentional idling regime in which servers can

idle while customers are waiting (because T̂? defined in Theorem 1 is positive). The utilization

cost is one mechanism through which management can internalize the negative consequences of

overworked servers becoming haggard. Then, when utilization costs are high and abandonment

costs are low, the system manager may prefer to allow the servers some rest, even when customers

are waiting. For example, in fixed low-wage environments (such as some call centers and government
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services), too high server utilization may lead to turnover, which may be more expensive than

letting customers abandon. In comparison to the literature, the only other papers in which we

have seen an intentional idling policy proposed are those in which the customers are heterogeneous

(Afeche 2013, Afeche and Pavlin 2016, Maglaras et al. 2018).

Example 1. We assume the utilization cost gU(β) = kβr, where r≥ 0, for β ∈ [0,1] and the aban-

donment cost gA(a) = cAa
s, where s ≥ 0, for a ∈ [0,1]. We further assume ĉ? < gA(1) + g′A(1) =

cA(s+ 1) so that the staffing is non-zero. The calculus is straightforward, and so is omitted.

(a) Linear and sub-linear utilization cost (0≤ r≤ 1), as well as super-linear utilization cost with

small growth rate (r > 1 and k≤ cS
r−1

), implies β̂? = 1. Then, the economically optimal operat-

ing regime is either critically loaded or efficiency-driven, depending on the abandonment cost

growth rate; that is,

â? =


0 if s= 0(

ĉ?
(s+1)cA

) 1
s

if s > 0

. (20)

(b) Super-linear utilization cost with high growth rate (r > 1 and k > cS
r−1

) implies

β̂? =

(
cS

(r− 1)k

) 1
r

< 1.

Then, the economically optimal operating regime is either quality-driven or intentional idling,

depending on the value of a? in (20).

Remark 1. In Example 1, if the abandonment cost is linear (s = 0 so that gA(a) = cA, which

implies that the total abandonment cost is agA(a) = cAa) and the utilization cost is low enough

as in part (a) in Example 1, then the economically optimal limiting regime is critically loaded.

This is consistent with Proposition 5 part (b) in Bassamboo and Randhawa (2010), noting that

their condition c/µ < p is exactly our condition ĉ? < cA that implies staffing is non-zero. This

is also consistent with Proposition 1 in Ren and Zhou (2008), and also with condition (3.22) in

Proposition 1 in Whitt (2006), noting that that condition reduces to ĉ? = cS < cA in our framework

(since that paper assumes the service rate is 1, and we do not have waiting cost or revenue).
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5. Limiting First Best Payment

We do not have convenient expressions for a solution to the centralized control problem (7).

Instead, from Theorem 1, under Assumptions 1 and 2, we have an asymptotically optimal policy(
µ̂?,N

λ
ao, T̂?

)
, where Nλ

ao = b̂?λ+ o(λ). Provided a symmetric equilibrium service rate µλE is close to

µ̂? when the staffing level satisfies b̂?λ+ o(λ) and the routing parameter is T̂?, the solution to the

decentralized control problem (10) will be close to that of the centralized control problem (7).

Definition 4. Suppose Nλ
ao = b̂?λ+ o(λ). Limiting first best payment is a sequence of contracts

~P λ ∈ P such that
{(
~P λ,Nλ

ao, T̂?
)

: λ≥ 0
}

satisfy the constraints of the decentralized control (10)

for every λ, and any sequence of symmetric equilibrium service rates satisfies

lim
λ→∞

∣∣µλE − µ̂?∣∣= 0 and lim
λ→∞

Uλ
i − cS = 0, i∈ {1,2, · · · ,Nλ

ao}.

Limiting first best payment implies that the solutions to the centralized and decentralized control

problems are identical as λ becomes large; that is,

lim
λ→∞

sup
µλ
E
∈S(~Pλ,Nλao,T

λ
ao)

∑Nλao
i=1 U

λ
i + C(µλE,Nλ

ao, T
λ
ao)

cSNλ
? + Cλ?

= 1,

under Assumptions 1 and 2 because from Theorem 1

lim
λ→∞

cSN
λ
ao + C

(
µ̂?,N

λ
ao, T̂?

)
λ

= lim
λ→∞

cSN
λ
? + Cλ?
λ

= cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?),

and from Definition 4

lim
λ→∞

sup
µλ
E
∈S(~Pλ,Nλao,T

λ
ao)

∑Nλao
i=1 U

λ
i + C(µλE,Nλ

ao, T
λ
ao)

λ
= lim

λ→∞

cSN
λ
ao + C

(
µ̂?,N

λ
ao, T̂?

)
λ

.

We would like to develop a limiting first best policy from an asymptotically optimal policy(
µ̂?,N

λ
ao = b̂?λ+ o(λ), T̂?

)
. One option is to adapt the payment (11) to accommodate the fact that

we see the realized number of services in a time unit, but not the long-run average. In fact, there

can be many payment contracts that incentivize the servers to work at or near the rate µ̂?, and

so are limiting first best. The payment contract we choose to analyze is piece-rate, because that

payment seems the most natural to use in practice.
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The piece-rate payment contract pays each server P λ
S > 0 per completed service and penal-

izes each server P λ
F ≥ 0 for each unsuccessful service. Then, when the service rate vector is ~µ,

recalling that server i ∈ {1,2, · · · ,Nλ} has utilization Bi(~µ
λ,Nλ, T λ) defined in Lemma 1, the

expected number of completed services for server i per unit time is µiBi (~µ
λ,Nλ, T λ), with (1−

p(µi))µiBi (~µ
λ,Nλ, T λ) expected to fail. This results in the expected payment per time unit to

server i

Uλ
i :=

(
P λ
S −P λ

F (1− p(µi))
)
µi×Bi(~µλ,Nλ, T λ), for each i∈ {1, . . . ,Nλ}. (21)

The piece-rate payment in (21) is in P because the realized number of completed and failed services

in a time unit is observable.

Since we focus on symmetric equilibrium, it is sufficient to focus on the utility of a tagged server

working at rate µ1, when all the other servers work at rate µ. Without loss of generality, we let

server 1 be this tagged server, and, in a slight abuse of notation, write

Uλ(µ1, µ) =
(
P λ
S −P λ

F (1− p(µ1))
)
µ1×B

(
(µ1, µ),Nλ, T λ

)
,

where B
(
(µ1, µ),Nλ, T λ

)
is the utilization of server 1 when all other servers work at rate µ, which

has explicit expression that follows from Lemma 1. A symmetric equilibrium is a fixed point of the

best response function

Rλ(µ) := arg max
µ1∈[µ,µ]

Uλ(µ1, µ). (22)

that satisfies the individual rationality contraint (2).

Proposition 3. Assume p is strictly decreasing and weakly concave on
[
µ,µ

]
. Any piece-rate

payment (21) having payment ratio P λ
R := P λ

F /P
λ
S results in the same non-empty set of fixed points

for Rλ in (22). A fixed point µλF is a symmetric equilibrium if

(
P λ
S −P λ

F (1− p(µλF ))
)
µλF ×B(µλF ,N

λ, T λ)≥ cS. (23)

We would like to show piece-rate payment is limiting first best. One way forward is to iden-

tify payment parameters P λ
S and P λ

F under which µ̂? is a fixed point of Rλ that satisfies (23)
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for each λ, and so a symmetric equilibrium. However, that is difficult. Moreover, we would pre-

fer the payment parameters to result in a unique equilibrium so that there is no selection issue,

but Proposition 3 does not guarantee uniqueness. That motivates us to develop an approxima-

tion for B
(
(µ1, µ),Nλ, T λ

)
that is more analytically tractable. We also provide intuition for that

approximation in Remark 2 at the end of this section.

Proposition 4. Fix b ≥ 0. Under IOB(T λ) routing and staffing Nλ that satisfies (12), if T λ→

T <∞ as λ→∞, then for any µ1, µ∈
[
µ,µ

]
,

lim
λ→∞

B
(
(µ1, µ),Nλ, T λ

)
= B̂(µ1, µ), where B̂(µ1, µ) :=

µ exp(−θT )

µ exp(−θT ) +µ1 [bµ− exp(−θT )]
+ .

Proposition 4 implies that we would like to find piece-rate payment parameters under which the

approximating best response function

R̂(µ) := arg max
µ1∈[µ,µ]

Û(µ1, µ), where Û(µ1, µ) = (PS −PF (1− p(µ1)))µ1× B̂(µ1, µ)

has any desired fixed point µ∈ [µ,µ] (and in particular, has fixed point µ̂?), which is unique.

Lemma 7. Assume p is strictly decreasing and weakly concave on [µ,µ]. Given b > 0, µ ∈ [µ,µ],

and T > 0, define

PR(b,µ,T ) :=
1

1− p(µ)−µp′(µ)max{bµ exp(θT ),1}
.

If PS > 0 and PF ≥ 0 are such that PF/PS = PR, then µ is the unique fixed point of R̂.

We develop a limiting first best policy from an asymptotically optimal policy
(
µ̂?,N

λ
ao = b̂?λ+

o(λ), T̂?
)

in Theorem 1 as follows. We define P ?
R := PR(b̂?, µ̂?, T̂?) as in Lemma 7, which, from the

relationship β̂? = min
(

1, exp(−θT̂?)

b̂?µ̂?

)
is equivalently written as

P ?
R =

1

1− p(µ̂?)− µ̂?p′(µ̂?)/β̂?
. (24)

Let Sλ(P ?
R) be the set of fixed points of the best response function Rλ, which is not empty by

Proposition 3. Set the payment parameter P λ
S to ensure individual rationality is satisfied for any

fixed point; that is,

P λ
S := sup

µ∈Sλ(P?
R

)

cS(
1− (1− p (µ))P ?

R

)
µB
(
µ,Nλ

ao, T̂?
) , for any Nλ

ao = b̂?λ+ o(λ). (25)
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The payment ratio P ?
R then determines the payment parameter

P λ
F := P λ

SP
?
R. (26)

Since P λ
S and P λ

F are such that (23) is satisfied for all fixed points, any µλE = µλF (P λ
R) is a symmetric

equilibrium.

Theorem 2. The piece-rate payment ~Uλ = (Uλ
1 , . . . ,U

λ
N) in (21) having parameters P λ

S and P λ
F

defined by (25) and (26) from P ?
R in (24) is limiting first best.

The payment parameters (25) and (26) are difficult to interpret. Instead, we set

P ?
S := lim

λ→∞
P λ
S and P ?

F := lim
λ→∞

P λ
F = P ?

SP
?
R,

and use the limiting parameters to provide simpler expressions. We use those expressions in Exam-

ple 2 below to see how the system manager transfers her costs to the servers. For this, we take the

limit as λ→∞ in (21) to find

(P ?
S −P ?

F (1− p(µ̂?))µ̂?) β̂? = cS,

or, equivalently,

P ?
S (1−P ?

R(1− p(µ̂?))µ̂?) β̂? = cS, (27)

where we have used Theorems 1, 2, and the definition of limiting first best payment. From (24)

and (27),

P ?
S =

−cS
µ̂2
?p
′(µ̂?)

(
1− p(µ̂?)− µ̂?p

′
(µ̂?)/β̂?

)
, (28)

which implies

P ?
F =

−cS
µ̂2
?p
′(µ̂?)

. (29)

Example 2. Suppose each service failure costs cF , so that gF (x) = cF for x∈ [0,1]. Further assume

µ̂? ∈ (µ,µ) so that µ̂? in (16) solves the first order condition

− ĉS(β̂?)

µ̂2
?

− cFp
′
(µ̂?) = 0,
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and the minimum cost to serve a customer in (19) becomes

ĉ? =
ĉS(β̂?)

µ̂?
+ cF (1− p(µ̂?)) = cF

(
1− p(µ̂?)− µ̂?p

′
(µ̂?)

)
.

Substituting the above expressions into (28) and (29) yields

P ?
S =

cS

ĉS(β̂?)

1− p(µ̂?)− µ̂?p
′
(µ̂?)/β̂?

1− p(µ̂?)− µ̂?p′(µ̂?)
ĉ? and P ?

F =
cS

ĉS(β̂?)
cF . (30)

The above expressions show that the system manager can transfer her costs to the servers in a

way that induces the servers to work at rate µ̂? (in the limit), as we explain in the two cases below.

Case 1: g′U(1)− gU(1)≤ cS. Then, β̂? = 1 from Proposition 2, and so from (30),

P ?
S =

cS
cS + gU(1)

ĉ?, P ?
F =

cS
cS + gU(1)

cF .

If there is no utilization cost (gU(·) = 0), then each server is paid the minimum cost to serve a

customer for each service, P ?
S = ĉ?, and is penalized the cost of service failure for any failed service,

P ?
F = cF . Otherwise, when gU(·)> 0, since only the manager experiences the utilization cost, paying

ĉ? for each service would lead to an expected payment higher than cS. To overcome this, the

manager reduces the payments by identical fractions, so that P ?
R, and therefore the service rate

is unchanged (remains µ̂?), but the individual rationality constraint continues to be satisfied with

equality.

Case 2: g′U(1)−gU(1)> cS. Then, β̂? < 1 from Proposition 2. The servers have idle time and do not

experience utilization costs and, therefore, prefer to work slower than the system manager desires in

order to avoid the service failure costs, thereby increasing their utilization to one. Hence in (30) the

system manager increases their payment for service completion by the factor 1−p(µ̂?)−µ̂?p
′
(µ̂?)/β̂?

1−p(µ̂?)−µ̂?p′ (µ̂?)
> 1

to encourage them to complete more services. That factor is the ratio between the P ?
R in (24) under

β̂? and the P ?
R in (24) when the servers have their preferred utilization of one.

The cost transfer in Example 2 is possible because the costs that affect the service rate decisions

can be assigned (proportionally) to an individual server. This is not true for general, instead of

linear, service failure cost functions. Then, the cost transfer is much more complicated. Neither the

pre-limit payment parameters, P λ
S and P λ

F , nor the limiting payment parameters, P ?
S and P ?

F , give

rise to a clear intuition.
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Remark 2. When bµ≤ exp(−θT ), the system is overloaded, and so B̂(µ1, µ) = 1 for all µ1 ∈ [µ,µ].

Otherwise, when bµ > exp(−θT ), the system is underloaded, and the intuition for the approxima-

tion in Proposition 4 is less straightforward to see. When the system is underloaded, each server

experiences alternative busy periods and idle periods. Due to the IOB routing, each server who

finishes a service has to join a queue of idle servers to get the next customer and each idle period

should have the same expected length. Moreover, since all the servers besides server 1 are working

at µ, the average busy period length is 1/µ, and the utilization is about exp(−θT )/(bµ)< 1. We

can solve for an approximate idle period length x in

1/µ

1/µ+x
≈ exp(−θT )

bµ
.

In particular, the average idle period length is approximately b exp(θT )−1/µ. When server 1 works

at µ1, server 1 has the average busy period length 1/µ1, so that his busy time percentage is

Busy period length

Busy period length + Idle period length
≈ 1/µ1

1/µ1 + b exp(θT )− 1/µ
=

µ exp(−θT )

µ exp(−θT ) +µ1 (bµ− exp(−θT ))
.

6. Concluding Remarks

The rate at which a server works is influenced by the payment structure. That observation has

important consequences for staffing decisions. This is because the rate at which servers work is a

first-order determinant of the staffing level required to handle a given arrival rate. The delicacy is

that the staffing level, as well as the routing, can also affect the service rate. This motivates solving

a joint optimization problem (i.e., a centralized control problem) to determine the staffing level,

routing, and desired service rate. Depending on the system manager’s cost structure, the solution

to that joint optimization problem dictates whether the system manager should allow servers to

idle and/or allow customers to abandon – and may require a routing policy that idles servers even

when customers are waiting.

The system manager cannot control the service rates. The service rates arise as a Nash equi-

librium solution to a game in which the servers each selfishly maximize their own utility, which

is determined by their expected payment. Then, to achieve first best, the system manager must
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use a payment contract that ensures the servers work at her desired service rate. We developed

a simple approximation for an equilibrium service rate under piece-rate payment in systems with

large arrival rates, and used that approximation to show piece-rate payment is limiting first best.

The reason to define limiting first best is that a first best payment contract requires knowledge of

the solution to the centralized control problem, and the centralized control problem must be solved

in the limit to find an analytic solution.

We provide conditions under which any solution to the centralized control problem has all servers

working at the same rate. This would not be the case if the servers were heterogeneous in their

ability levels, in which case the speed-quality trade-off function p would not be the same for

all servers. Such server heterogeneity requires expanding the scope of this work to include non-

symmetric equilibria.

We assume a routing policy that is based on the idle time of each server, show that any policy

in this class has the same steady state probabilities as the common longest-idle-server-first rule,

and allow a generalization whose purpose is to reduce the server utilization (meaning the routing

policy may or may not be work conserving). All policies in this class assume customers queue in

a single line and have exactly one service. Both assumptions merit further thought. First, a failed

service could also mean one in which the service must be repeated. This brings into play much

more complicated routing questions, such as whether or not the server responsible for the failed

service should be the one to re-do the service, as studied in Lu et al. (2009) in a system with two

servers. Next, the recent empiric work of Song et al. (2015) and Shunko et al. (2018) has shown

that separating customers into multiple lines (i.e., “unpooling” the system) affects server behavior

and can improve performance. One explanation is that servers who are responsible only for their

own line have more incentive to change their service rate based on line length. This motivates

future work to answer the question “to pool or not to pool”, as studied in Armony et al. 2016 in

a system with two servers.

Our current cost structure can be extended in two directions. On the customer side, a customer

may prefer being turned away before waiting rather than abandoning after waiting (which moti-

vated the problem formulation in Ward and Kumar 2008). This motivates adding the option of
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admission control, and charging a smaller cost for customers turned away in comparison with those

that abandon. An admission control policy that admits each arrival with independent probability

exp(−θT ) has the same customer abandonment probability as IOB(T ) routing, but lower cost. On

the server side, a server may prefer to have longer and less frequent breaks rather than frequent

short idle periods, given the same utilization. This could be encapsulated either by modifying

the utilization cost, or by changing the server utility function to reflect a non-monetary value on

breaks. The technical challenge is that the resulting effect on customer wait time is complicated

and potentially changes the abandonment probability. See Sun and Whitt (2018) for work in this

direction in a many-server model without abandonment and with exogeneous (not endogenous)

service rates, in which breaks occur randomly over time.

Another interesting direction for future research is to incorporate time-varying arrival rates or

arrival rate uncertainty. There is a large literature that studies how to staff such systems (e.g.,

Bassamboo et al. (2010), He et al. (2016)), Liu (2018)). However, most all such papers assume

fixed service rates. We wonder whether the server payments could be used to leverage the staffing

decisions, by inducing the servers to speed up or slow down, depending on the arrival rate.

Finally, in our model, we assume that the number of completed services in any finite time

interval can be observed, but that the long-run average service rate must be estimated. This is

straightforward to handle because the servers are risk neutral, and make decisions based on their

expected payment in a time unit. However, a more natural assumption is that servers are risk

averse, which would require more careful consideration of the payment structure.

Endnotes

1. From Lemma 3, we know that Nλ

λ
must have a converge subsequence Nλi

λi
. Assume the subse-

quence converges to b. Then we can focus on this subsequence and have Nλi = bλi+o(λi). Therefore,

without loss of generality, we need only search within the staffing policy in (12).
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Staffing, Routing and Payment to Trade Off Speed and
Quality in Large Service Systems: Electronic Companion

In this e-companion, we first list the notations in the main body in Table EC.1, and then give

the proofs for all the lemmas, propositions and theorems, both in the order of their appearance in

the main body.

Table EC.1 Notation Table

Symbol Definition

N The number of servers

λ Customer arrival rate, the independent parameter that becomes large

θ The impatience parameter

µ The service rate

I(t) The set of idle servers at time t

s(t) The vector of idle servers at time t, ordered by how long they have been idle

T The holding time parameter of IOB routing

p(µ) The probability of service success

µ,µ The lower and upper bounds of the service rate

~µ,µi The N -dimensional service rate vector, the service rate of sever i

~U The expected steady state payment vector

~P The payment contract vector

cS The payment per unit time of an outside employment option

βi =Bi(~µ,N,T ) The steady state utilization of server i under IOB(T )

qA The steady state customer abandonment probability

qF The steady state probability of service failure

gU(βi) The utilization cost of server i, as a function of his steady state utilization
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gA(qA) The cost per abandonment, as a function of steady state abandonment percentage

gF (qF ) The cost per failed service, as a function of steady state service failure percentage

C(µ,N,T ) The system manager’s expected operational cost per time unit in steady state

P The class of implementable payment contracts

µE A symmetric equilibrium service rate

S(~P ,N,T ) The set of symmetric equilibrium service rate vectors

(~µ?,N?, T?) The optimal service rate vector, staffing, and routing parameter solving (7)

C? The minimum cost of (7)

µ? The common optimal service rate of each server under Assumption 1

(µλ,Nλ, T λ) A policy superscripted by the system arrival rate λ

b The staffing level parameter

Ĉ(µ, b,β, a) The limiting objective function

ĉS(β) The limiting adjusted staffing cost that accounts for payment and utilization cost

β̂?, µ̂?, â?, b̂? The limiting optimal utilization, service rate, abandonment probability, staffing level

T̂?, ĉ? The limiting optimal routing parameter, cost of serving a customer

(µ̂?,N
λ
ao, T̂?) An asymptotically optimal policy

P λ
S , P

λ
F The payment per completed service, penalty per each failed service

B
(
(µ1, µ),N,T

)
The steady state utilization of server 1 working at µ1, when all others work at µ

Uλ(µ1, µ) The steady state utility of server 1, when all others work at µ

Rλ(µ) The best response function of server 1, when all others work at µ

B̂(µ1, µ), Û(µ1, µ)The approximate steady state utilization, utility of server 1

R̂(µ) The approximate best response function of server 1 when others work at µ

P ?
R The limiting first best payment ratio between penalty and reward

P ?
S , P

?
F The limit of the limiting first best payment per service, penalty per failure
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A. Proof of Lemma 1

We define N := {1, . . . ,N}. Each arriving customer independently abandons from the holding area

with probability 1 − exp(−θT ). As a result, the effective arrival rate to the queue is a thinned

Poisson process with rate a= λ exp(−θT ). The queue state space is as follows.

1. State B is the state where all servers are busy and no customer in queue;

2. State s = (s1, s2, · · · , s|I|) is the ordered vector of non-empty set of idle servers I ⊆N ;

3. State m (m≥ 1) is the state where all servers are busy and m jobs are in the queue, in which

case the queue behaves as an M/M/1 +M with service rate µΣ =
∑N

j=1 µj.

From the local balance equations, the associated steady state probabilities must satisfy

πm = πB

m∏
k=1

a

µΣ + kθ
,m≥ 1.

πs = πB
∏
j∈I

µj
a
, for all s = (s1, s2, · · · , s|I|), if |I|> 0, and πs = πB, if I = ∅,

and this can be verified exactly as in the proof of Theorem 9 in Gopalakrishnan et al. (2016). Since

for any set I of idle servers, all |I|! permutations of ordered vectors (s1, s2, · · · , s|I|) have identical

steady state probabilities, the normalization condition that the steady state probabilities sum to

one gives

πB =
1∑

I⊆N |I|!
∏
j∈I

µj
a

+ z
, where z :=

∞∑
m=1

m∏
k=1

a

µΣ + kθ
.

When server i is busy, the state s is a subset I ∈N\i, and so the probability server i is busy is

πB
∑
I⊆N\i

|I|!
∏
j∈I

µj
a

+
∞∑
i=1

πm,

which results in Bi(~µ,N,T ) defined as in the statement of Lemma 1. �

B. Proof of Lemma 2

Without loss of generality, we want to show B1(~µ,N,T ) defined in Lemma 1 is strictly decreasing

in T . To do this, we regard B1(~µ,N,T ) as a function of x(T ) = 1
λ exp(−θT )

, and show B1 is strictly

decreasing in x. Recall N := {1, · · · ,N}, and define

Ă(x) :=
∑

∅6=I⊆N\1

x|I||I|!
∏
j∈I

µj, B̆(x) :=
∑
∅6=I⊆N

x|I||I|!
∏
j∈I

µj, and z(x) :=
∞∑
m=1

m∏
k=1

1

(µΣ + kθ)x
,
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so that

B1(x) =
1 + Ă(x) + z(x)

1 + B̆(x) + z(x)
∈ [0,1] for x> 0.

To show B1(x) is strictly decreasing in x, it is equivalent to show

1−B1(x) =
B̆(x)− Ă(x)

1 + B̆(x) + z(x)
=

1− Ă(x)

B̆(x)

1 + 1+z(x)

B̆(x)

is strictly increasing in x. For that, it is sufficient to show the denominator in the above display is

strictly decreasing in x and the numerator is strictly increasing in x. The denominator is strictly

decreasing because B̆(x) is strictly increasing and z(x) is strictly decreasing, so that 1+z(x)

B̆(x)
is

strictly decreasing in x on (0,∞). To show the numerator is strictly increasing, it is sufficient to

show that d
dx

(
Ă(x)/B̆(x)

)
< 0 for x∈ (0,∞), or that

Ă
′
(x)B̆(x)< Ă(x)B̆

′
(x). (EC.1)

To show (EC.1), it is helpful to define

c(i,1) := i!
∑

|I|=i,I⊆N\1

∏
j∈I

µj, for i∈N\N, c(i) := i!
∑

|I|=i,I⊆N

∏
j∈I

µj, for j ∈N .

so that

Ă(x) =
N−1∑
i=1

c(i,1)xi, B̆(x) =
N∑
i=1

c(i)xi.

Then, (EC.1) is equivalent to(
N−1∑
i=1

ic(i,1)xi−1

)(
N∑
j=1

c(j)xj

)
<

(
N−1∑
i=1

c(i,1)xi

)(
N∑
j=1

jc(j)xj−1

)
,

or
2N−2∑
k=1

∑
i+j=k+1,i∈N\N,j∈N

ic(i,1)c(j)xk <
2N−2∑
k=1

∑
i+j=k+1,i∈N\N,j∈N

jc(i,1)c(j)xk.

Since x> 0, to show (EC.1) and complete the proof, it is sufficient to show that

∑
i+j=k+1,i∈N\N,j∈N

ic(i,1)c(j)<
∑

i+j=k+1,i∈N\N,j∈N

jc(i,1)c(j),

or ∑
i+j=k+1,i∈N\N,j∈N

(i− j)c(i,1)c(j)< 0, for all k ∈ {1,2, · · · ,2N − 2}. (EC.2)
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To show (EC.2), we first observe

c(j) = j!

 ∑
|I|=j,I⊆N ,1∈I

∏
j∈I

µj +
∑

|I|=j,I⊆N ,1/∈I

∏
j∈I

µj


= j!

 ∑
|I|=j−1,I⊆N\1

µ1

∏
j∈I

µj +
∑

|I|=j,I⊆N\1

∏
j∈I

µj


= µ1jc(j− 1,1) + c(j,1), for j ∈N\{1,N},

which can be extended to j ∈ N by defining c(0,1) := 1, c(N,1) := 0. Then, the left-hand side of

(EC.2) satisfies ∑
i+j=k+1,i∈N\N,j∈N

(i− j)c(i,1)c(j) = σ1 +µ1σ2, (EC.3)

where

σ1 :=
∑

i+j=k+1,i∈N\N,j∈N

(i− j)c(i,1)c(j,1), σ2 :=
∑

i+j=k+1,i∈N\N,j∈N

(i− j)jc(i,1)c(j− 1,1).

Since c(N,1) = 0, by adding zero terms,

σ1 =
∑

i+j=k+1,i∈N ,j∈N

(i− j)c(i,1)c(j,1).

Since i and j are symmetric, we can label i by j and label j by i without changing the summation;

i.e., ∑
i+j=k+1,i∈N ,j∈N

(i− j)c(i,1)c(j,1) =
∑

j+i=k+1,i∈N ,j∈N

(j− i)c(j,1)c(i,1).

Summing both sides gives

2σ1 =
∑

i+j=k+1,i∈N ,j∈N

(i− j)c(i,1)c(j,1) + (j− i)c(j,1)c(i,1) = 0,

and so σ1 = 0. Then, to show (EC.3) is negative and complete the proof, we need only show σ2 < 0.

Since (i− j)jc(i,1)c(j− 1,1) = 0 when j = 0, by removing these zero terms,

σ2 =
∑

i+j=k+1,i∈N\N,j∈N\1

(i− j)jc(i,1)c(j− 1,1).

Substituting j
′
= j− 1 yields

σ2 =
∑

i+j
′
=k,i∈N\N,j′∈N\N

(i− j
′
− 1)(j

′
+ 1)c(i,1)c(j

′
,1).
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Since i and j
′
are symmetric, we can label i by j

′
and label j

′
by i without changing the summation;

i.e.,

∑
i+j
′
=k,i∈N\N,j′∈N\N

(i−j
′
−1)(j

′
+1)c(i,1)c(j

′
,1) =

∑
j
′
+i=k,j

′∈N\N,i∈N\N

(j
′
− i−1)(i+1)c(j

′
,1)c(i,1).

Summing both sides gives

2σ2 =
∑

i+j
′
=k,i∈N\N,j′∈N\N

(i− j
′
− 1)(j

′
+ 1)c(i,1)c(j

′
,1) + (j

′
− i− 1)(i+ 1)c(j

′
,1)c(i,1)

=
∑

i+j
′
=k,i∈N\N,j′∈N\N

(−(i− j
′
)2− i− j

′
− 2)c(i,1)c(j

′
,1)< 0.

and so, σ2 < 0. �

C. Proof of Proposition 1

Suppose (~µ= (µ1, · · · , µN),N,T ) solves the centralized control problem (7), where we have dropped

the ? subscript to simplify notation in this proof. Then, N <∞ because otherwise the objective

function in (7) is infinite. Furthermore, if N = 0, the service rate vector has no components, and, if

N = 1, the service rate vector has one component; in either case, the proposition is trivially valid.

Therefore, we assume N ≥ 2. If T =∞, whenever N = 0, βi = 0 for all i ∈ N and C(~µ,N,∞) =

λgA(1) for any service rate vector ~µ, which implies the objective function in (7) is minimized at

N = 0. Hence we assume T <∞.

The proof is by contradiction. Suppose µi 6= µj for some (i, j)∈N ×N . Set

µ :=
1

N

N∑
i=1

µi and β :=
1

Nµ

N∑
i=1

µiBi(~µ,N,T ),

When the service rate vector ~µ has all components identical and equal to µ, from Lemma 1,

B(µ,N,T0) =

∑N−1

i=0

(
λ exp(−θT0)

µ

)i+1
1
Ni!

+
(
λ exp(−θT0)

µ

)N
1
N !

∑∞
i=1

∏i

k=1
λ exp(−θT0)

Nµ+kθ∑N

i=0

(
λ exp(−θT0)

µ

)i
1
i!

+
(
λ exp(−θT0)

µ

)N
1
N !

∑∞
i=1

∏i

k=1
λ exp(−θT0)

Nµ+kθ

. (EC.4)

Suppose we can show the following result.

Lemma EC.1. There exists T1 ≥ 0 such that B(µ,N,T1) = β.
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Then, to find the contradiction, it is enough to show

C(~µ,N,T )> C(µ,N,T1), (EC.5)

where C(~µ,N,T ) and C(µ,N,T1) are as in (6) and (8) respectively (recalling the slight abuse of

notation that replaces ~µ with µ when all vector components are identical). To show (EC.5), we do

a term-by-term comparison.

(a) The utilization cost. From Lemma 1, if µi < µj, then Bi(~µ,N,T ) > Bj(~µ,N,T ), which

implies the weighted average is smaller than the unweighted average; i.e.,

N∑
i=1

(
Bi(~µ,N,T )∑N

j=1Bj(~µ,N,T )

)
µi <

∑N

i=1 µi
N

.

Hence from the definitions of β and µ,

β =

∑N

i=1Bi (~µ,N,T )µi∑N

i=1 µi
<

∑N

j=1Bj (~µ,N,T )

N
.

Since gU(β) is weakly convex and weakly increasingly in β

NgU(β)≤NgU

(∑N

j=1Bj (~µ,N,T )

N

)
≤

N∑
j=1

gU(Bj (~µ,N,T )). (EC.6)

(b) The abandonment cost. The definitions of β and µ imply

λ−Nβµ= λ−
N∑
i=1

Bi (~µ,N,T )µi, (EC.7)

and so the second term in (6) exactly equals the second term in (8).

(c) The service failure cost. Suppose we can show the following result.

Lemma EC.2. If µi >µj, then Bi(~µ,N,T )µi >Bj(~µ,N,T )µj, for i, j ∈N .

From Lemma EC.2, the weighted average is larger than the unweighted average; i.e.,

N∑
i=1

µiBi(~µ,N,T )∑N

j=1 µjBj(~µ,N,T )
µi >

∑N

i=1 µi
N

= µ.

Since p(x) is weakly concave and strictly decreasing in x,

N∑
i=1

µiBi(~µ,N,T )∑N

j=1 µjBj(~µ,N,T )
p(µi)≤ p

(
N∑
i=1

µiBi(~µ,N,T )∑N

j=1 µjBj(~µ,N,T )
µi

)
< p(µ),
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which from the definitions of β and µ implies

N∑
i=1

p(µi)µiBi(~µ,N,T )< p(µ)Nβµ, or
N∑
i=1

(1− p(µi))µiBi(~µ,N,T )> (1− p(µ))Nβµ,

and also when combined with the fact that gF (x) is weakly increasing in x implies

gF (1− p(µ))≤ gF

(
1−

∑N

i=1 p(µi)µiBi (~µ,N,T )∑N

i=1Bi (~µ,N,T )µi

)
.

The above two display together imply

N(1− p(µ))βµgF (1− p(µ))<
N∑
i=1

(1− p(µi))µiBi (~µ,N,T )gF

(
1−

∑N

i=1 p(µi)µiBi (~µ,N,T )∑N

i=1Bi (~µ,N,T )µi

)
.

(EC.8)

The contradiction (EC.5) follows from (EC.6), (EC.7), and (EC.8).

To complete the proof, we must establish Lemmas EC.1 and EC.2, which is done below.

Proof of Lemma EC.1. Recall from the first paragraph of this proof that (~µ,N,T ) is an

assumed solution to (7) with N ≥ 2 and T <∞. Also recall the definitions of µ and β. We must

show there exists T1 ≥ 0 such that

B(µ,N,T1) = β.

From Lemma 2, B(µ,N,T1) is strictly decreasing in T1. From (EC.4), B(µ,N,T ) is continuous

and converges to 0 (the numerator converges to 0 and the denominator converges to 1) as T →∞.

Then, it is sufficient to show B(µ,N,T )≥ β, or, equivalently,

λ−NB(µ,N,T )µ≤ λ−
N∑
i=1

µiBi(~µ,N,T ); (EC.9)

that is, the abandonment rate cannot be larger. Let Q̄(~µ,N,T ) and Q̄(µ,N,T ) be the respective

mean queue length when the staffing level is N , the routing parameters is T , and the service

rate vector is either ~µ or has all components identical and equal to µ, and let πB(~µ,N,T ) and

πB(µ,N,T ) be the associated steady state probabilities defined in the proof of Lemma 1. From

flow balance (and recalling µΣ =
∑N

i=1 µi was defined in the proof of Lemma 1),

λ−
N∑
i=1

µiBi(~µ,N,T ) = θQ̄(~µ,N,T ) = πB(~µ,N,T )θ
∞∑
i=1

i

(
i∏

k=1

λ exp(−θT )

µΣ + kθ

)
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and

λ−NB(µ,N,T )µ= θQ̄(µ,N,T ) = πB(µ,N,T )θ
∞∑
i=1

i

(
i∏

k=1

λ exp(−θT )

µΣ + kθ

)
.

Hence to show (EC.9), it is equivalent to show

πB(µ,N,T )≤ πB(~µ,N,T ). (EC.10)

From the proof of Lemma 1,

πB(~µ,N,T ) =
1∑

I⊆N |I|!
∏
j∈I

µj
λ

+ z
, where z =

∞∑
m=1

m∏
k=1

λ

µΣ + kθ
.

Since z is identical for both sides of (EC.10), it is equivalent to show that

∑
I⊆N

|I|!
∏
i∈I

µi
λ
≤
∑
I⊆N

|I|!
(µ
λ

)|I|
.

We define xi := µi
λ
> 0, x̄i :=

∑i
j=1 xj

i
, for i ∈ N . Note that x̄N := µ

λ
. The above inequality can be

written as
N∑
I=1

I!
∑

I⊆N ,|I|=I

∏
i∈I

xi ≤
N∑
I=1

I!

(
N

I

)
(x̄N)

I
.

It is sufficient to show ∑
I⊆N ,|I|=I

∏
i∈I

xi ≤
(
N

I

)
(x̄N)

I
, for all I ∈N ,

or more generally, by defining Nm := {1,2, · · · ,m} for all m∈N , to show

∑
I⊆Nm,|I|=I

∏
i∈I

xi ≤
(
m

I

)
(x̄m)

I
, for all m∈N and I ∈Nm, (EC.11)

It is trivially valid for m ∈N , I = 1 from the definition that x̄m =
∑m

j=1 xj/m. It is also valid for

m ∈ N , I =m by the fact that the geometric average of positive numbers is no larger than their

arithmetic average. With (EC.11) being valid on the two boundary lines of the triangle set (I,m),

we next use a two-dimensional induction to show it is valid over the whole triangle.

For anyK ∈ {3,4, · · · ,N}, given I ∈NK−1, suppose (EC.11) is valid form=K−2 andm=K−1,

we show it is valid for m=K. Without loss of generality, we order xi such that

x1 ≤ x2 ≤ · · · ≤ xN , and therefore, x̄i ≤ xj, for all i, j ∈N and i≤ j.
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∑
I⊆NK ,|I|=I

∏
i∈I

xi =
∑

I⊆NK ,|I|=I,K /∈I

∏
i∈I

xi +
∑

I⊆NK ,|I|=I,K∈I

∏
i∈I

xi

=
∑

I⊆NK−1,|I|=I

∏
i∈I

xi +xK
∑

I⊆NK−1,|I|=I−1

∏
i∈I

xi

≤
(
K − 1

I

)
x̄IK−1 +xK

(
K − 1

I − 1

)
x̄I−1
K−1.

It is sufficient to show

(
K − 1

I

)
x̄IK−1 +

(
K − 1

I − 1

)
x̄I−1
K−1xK ≤

(
K

I

)
x̄IK .

That is equivalent to

(K − I) + I
xK
x̄K−1

≤K
(

x̄K
x̄K−1

)I
.

K

(
x̄K
x̄K−1

)I
=K

(
1 +

x̄K − x̄K−1

x̄K−1

)I
=K

(
1 + I

x̄K − x̄K−1

x̄K−1

+ · · ·
)

≥K
(

1 + I
x̄K − x̄K−1

x̄K−1

)
=K

(
1 + I

(
((K − 1)x̄K−1 +xK)/K

x̄K−1

− 1

))
=K

(
1 + I

xK − x̄K−1

x̄K−1

)
= (K − I) + I

xK
x̄K−1

.

Now we can use induction to prove (EC.11). We know that it is valid for (m,I) = (m,1) and

(m,I) = (m,m), for all m ∈ NN . Starting from I = 2, (2,1) and (2,2) are both valid. From the

argument in the preceding paragraph we can use induction to show (m,2) is valid, for all m ∈

{2,3, · · · ,N}. Next, for I = 3, we know (3,2) and (3,3) are both valid. By induction (m,3) is valid

for all m∈ {3,4, · · · ,N}. Keeping doing this till I =N , we prove (EC.11) is valid.

Proof of Lemma EC.2. Without loss of generality, suppose µ1 >µ2, which means x1 >x2. We

want to show B1 <B2 and x1B1 >x2B2. From Lemma 1,

Bi(~µ,N,T ) :=

∑
I⊆N\i |I|!

∏
j∈I xj + z∑

I⊆N |I|!
∏
j∈I xj + z

.

B1 and B2 has the same denominator, the numerator of B1 is

∑
I⊆N\{1,2}

|I|!
∏
j∈I

xj +x2

∑
I⊆N\{1,2}

(|I|+ 1)!
∏
j∈I

xj + z,
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and the numerator of B2 is

∑
I⊆N\{1,2}

|I|!
∏
j∈I

xj +x1

∑
I⊆N\{1,2}

(|I|+ 1)!
∏
j∈I

xj + z.

The numerators of x1B1 and x2B2 are

x1

( ∑
I⊆N\{1,2}

|I|!
∏
j∈I

xj + z

)
+x1x2

∑
I⊆N\{1,2}

(|I|+ 1)!
∏
j∈I

xj,

x2

( ∑
I⊆N\{1,2}

|I|!
∏
j∈I

xj + z

)
+x1x2

∑
I⊆N\{1,2}

(|I|+ 1)!
∏
j∈I

xj.

We see x1B1 >x2B2 also by comparing the numerators. �

D. Proof of Lemma 3

Any policy that does not staff (Nλ
0 := 0) and let all customers abandon has, from (8), for any

µ∈ [µ,µ],

cSN
λ
0 + C(µλ0 ,Nλ

0 , T
λ
0 )

λ
= gA(1) for all λ≥ 0.

Assuming gA(1) > 0 (otherwise zero staffing is the optimal policy), any admissible policy

(µλ,Nλ, T λ) satisfies

cSN
λ + C(µλ,Nλ, T λ)

cSNλ
? + Cλ?

=

(
cSN

λ + C(µλ,Nλ, T λ)

λ

)
×
(

λ

cSNλ
0 + C(µλ0 ,Nλ

0 , T
λ
0 )

)
×
(
cSN

λ
0 + C(µλ0 ,Nλ

0 , T
λ
0 )

cSNλ
? + Cλ?

)
≥
(
cS
Nλ

λ

)
×
(

λ

cSNλ
0 + C(µ,Nλ

0 , T
λ
0 )

)
.

If lim supλ→∞N
λ/λ=∞, then any subsequence λi on which Nλi/λi =∞ has

cSN
λi + C (µλi ,Nλi , T λi)

cSN
λi
? + Cλi?

→∞ as λi→∞,

and so (µλ,Nλ, T λ) cannot be an asymptotically optimal policy. �

E. Proof of Lemma 4

Under the routing rule in Definition 1, the fraction of customers that abandon from the holding

area is 1−exp(−θT λ), and the fraction of customers that enter the queue is exp(−θT λ). The queue

operates as a M/M/Nλ +M queue with arrival rate λ exp (−θT λ), and we denote the expected
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steady state abandonment probability from the queue by P (AbλQ). It follows that the expected

steady state abandonment probability is

qλA =
(
1− exp

(
−θT λ

))
+ exp

(
−θT λ

)
P (AbλQ). (EC.12)

From Theorem 1 in Garnett et al. (2002) adapted to our setting, noting that

λ exp (−θT λ)

Nλµλ
→ ρ∞ :=

exp(−θT )

bµ
, as λ→∞,

we conclude

lim
λ→∞

P (AbλQ) =


0 if ρ∞ ∈ [0,1]

1− bµ
exp(−θT )

if ρ∞ > 1

. (EC.13)

Taking the limit in (EC.12) and using (EC.13) establishes that

a= lim
λ→∞

qλA =


1− exp(−θT ) if ρ∞ ∈ [0,1]

1− bµ if ρ∞ > 1

.

The agent utilization must satisfy

B
(
µλ,Nλ, T λ

)
=
λ (1− qλA)

Nλµλ
→ β := min(ρ∞,1) as λ→∞,

from which a= 1− bβµ≥ 0 follows. �

F. Proof of Lemma 5

We show the minimizer in each of (15)-(18) is unique, one-by-one, in order of their appearance.

β̂? in (15). There exists a stationary point in (0,1) if and only if ĉ
′
S(β) = 0, which occurs if and

only if

βg′U(β)− gU(β) = cS, for some β ∈ (0,1). (EC.14)

Since gU is strictly convex, [βg′U(β)− gU(β)]′ = βg′′U(β)> 0 implies the left-hand-side of (EC.14) is

strictly increasing. Hence either there exists one solution to (EC.14) or no solution. In either case,

noting that ĉS(β)→∞ as β ↓ 0, so that the endpoint 0 is not a candidate to be a minimizer, the

minimizer β̂? is unique.



e-companion to Zhan and Ward: Staffing, Routing and Payment ec13

µ̂? in (16). Define f(µ) := ĉS(β̂?)/µ+ (1− p(µ))gF (1− p(µ)). Since

f ′′(µ) =

2ĉS(β̂?)

µ3
+ (1− p(µ))

(
p
′
(µ)
)2

g
′′

F (1− p(µ))− gF (1− p(µ))p
′′
(µ) + g

′

F (1− p(µ))

(
2
(
p
′
(µ)
)2

− (1− p(µ))p
′′
(µ)

)
is positive whenever p is weakly concave and gF is weakly convex and weakly increasing, we conclude

f is strictly convex. Hence the minimizer µ̂? is unique.

â? in (17). The strict convexity of agA(a) in a on [0,1] implies there is at most one critical

point, which, if it exists, is the minimizer. Otherwise, if no critical point exists, then the minimizer

occurs either at 0 or at 1. Both 0 and 1 cannot be minimizers because ĉ? 6= gA(1) by assumption,

where ĉ? is defined in (19).

b̂? in (18). Uniqueness is immediate from the fact that β̂?, µ̂?, and â? are all unique. �

G. Proof of Theorem 1

From Lemma 4,

lim
λ→∞

B(µλao,N
λ
ao, T

λ
ao) = min

(
1,

exp(−θT̂?)
b̂?µ̂?

)
,

and therefore, from the definition of T̂?,

min

(
1,

exp(−θT̂?)
b̂?µ̂?

)
=


β̂? if β̂? < 1 and â? > 0,

min
(

1, 1

b̂?µ̂?

)
otherwise.

From (18), if β̂? = 1, then b̂?µ̂? = 1− â? ≤ 1, and min
(

1, 1

b̂?µ̂?

)
= 1; if â? = 0, then b̂?µ̂? = 1

β̂?
≥ 1,

and min
(

1, 1

b̂?µ̂?

)
= β̂?. In summary, limλ→∞B(µλao,N

λ
ao, T

λ
ao) = β̂?.

As in (13), Lemma 4 implies

lim
λ→∞

cSN
λ
ao + C(µao,N

λ
ao, Tao)

λ
= cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?).

From Proposition 1, which holds by Assumption 1, a solution to (7) has all servers working at

the same rate, and so (7) and (9) have the same minimum objective function value. Then, since

(µλ? ,N
λ
? , T

λ
? ) solves (9) for each λ,

cSN
λ
? + C (µλ? ,N

λ
? , T

λ
? )

λ
≤ cSN

λ
ao + C(µao,N

λ
ao, Tao)

λ
for each λ.
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Hence

limsup
λ→∞

cSN
λ
? + C (µλ? ,N

λ
? , T

λ
? )

λ
≤ cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?). (EC.15)

We next establish

lim inf
λ→∞

cSN
λ
? + C (µλ? ,N

λ
? , T

λ
? )

λ
≥ cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?), (EC.16)

which, together with (EC.15) implies

lim
λ→∞

cSN
λ
? + C (µλ? ,N

λ
? , T

λ
? )

λ
= cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?),

and so completes the proof. If (EC.16) is not true, then there is a subsequence λi such that

lim
λi→∞

cSN
λi
? + C (µλi? ,N

λi
? , T

λi
? )

λi
< cS b̂? + Ĉ(µ̂?, b̂?, β̂?, â?). (EC.17)

Since µλi? ∈ [µ,µ] for all λi, 0≤ limsupλi→∞N
λi
? /λi <∞ from (EC.15), and βλi? :=B(Nλi

? , µ
λi
? , T

λi
? )∈

[0,1] for all λi, the Bolzano-Weierstrass theorem implies there exists a further subsequence λij on

which

µ
λij
? → µ0,

N
λij
?

λij
→ b0, and β

λij
? → β0, as λij →∞.

Furthermore, on that subsequence, since λij −N
λij
? β

λij
? µ

λij
? ≥ 0 for each λij ,

λij −N
λij
? β

λij
? µ

λij
?

λij
→ 1− b0β0µ0 ≥ 0 as λij →∞.

Then, directly from the expression for C in (8),

lim
λij→∞

cSN
λij
? + C

(
µ
λij
? ,N

λij
? , T

λij
?

)
λij

= cSb0 + Ĉ (µ0, b0, β0,1− b0β0µ0) ,

which contradicts (EC.17) because the minimizers µ̂?, b̂?, β̂?, and â? are unique by Lemma 5, under

Assumption 2. We conclude (EC.16) holds. �
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H. Proof of Lemma 6

Define f(a) := (1− a)ĉ? + agA(a). The first order condition f ′(a) = 0 is equivalent to

ag′A(a) + gA(a) = ĉ?.

Since agA(a) is strictly convex in a on [0,1], the left-hand-side in the above display strictly increases

from gA(0) to g′A(1) + gA(1). If g′A(1) + gA(1) < ĉ?, then no solution to the first order condition

exists. In that case, since f(0) = ĉ?, f(1) = gA(1), and g′A(1)≥ 0, the minimizer â? = 1, which from

(18) implies b̂? = 0. �

I. Proof of Proposition 2

Part (a). Define f(a) := (1−a)ĉ?+agA(a). Since f is strictly convex, if a solution to the first-order

condition

ag′A(a) + gA(a) = ĉ? (EC.18)

exists, then it is a minimum. The left-hand side of (EC.18) increases from gA(0) to g′A(1) + gA(1),

and so if gA(0)< ĉ?, then a? ∈ (0,1). Otherwise, if gA(0) = ĉ?, then a? = 0 solves (EC.18), and if

gA(0)> ĉ?, then no solution to (EC.18) exists. If no solution to (EC.18) exists, then a? = 0 because

f ′(a) =−ĉ? + gA(a) + ag′A(a)≥−ĉ? + min
a∈[0,1]

(agA(a))
′
=−ĉS + gA(0)> 0

implies f is strictly increasing.

Part (b). Define h(β) := βg′U(β) − gU(β), and note that h′(β) = βg′′U(β) > 0 (recalling gU is

strictly convex), so that h is strictly increasing on [0,1]. If h(1) = g′U(1)− gU(1)≤ cS, then

ĉ′S(β) =
h(β)− cS

β2
<
h(1)− cS

β2
≤ 0

implies β̂? = 1. Otherwise, if h(1) = g′U(1)− gU(1) > cS, then h(0) = −gU(0) < cS < h(1) implies

there exists a solution β0 ∈ (0,1) to the first-order condition ĉ′S(β) = 0, so that h(β0) = cS. Since

ĉ
′′

S(β) =
β2h′(β)− 2β (h(β)− cS)

β4
,

we find ĉ
′′
S (β0) = h′(β0)/β2

0 > 0, meaning β0 is a local minimum. Since β0 is the only stationary

point on [0,1], we conclude β̂? = β0 ∈ (0,1). �
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J. Proof of Proposition 3

We drop the superscript λ for convenience in presentation. Also, we write B(µ1, µ) instead of

B((µ1, µ),N,T ).

We first observe that the best response function (22) is equivalently written as

R(µ) = arg max
µ1∈[µ,µ]

(1−PR(1− p(µ1)))µ1×B(µ1, µ),

where we have substituted PR = PF/PS in (22). The implication is that any fixed point µF depends

on PF and PS only through the payment ratio PR. Therefore, if we set

PS =
cS

(1−PR(1− p(µF )))µF ×B(µF , µF )

to ensure the individual rationality constraint (23) is satisfied, and PF = PS × PR, then µF is a

symmetric equilibrium service rate. In summary, we must show there exists a fixed point of (22).

The existence of a fixed point µF follows if R(µ) is continuous in µ. This is because the domain of

R is
[
µ,µ

]
and the range of R is a subset of

[
µ,µ

]
, which implies there exists at least one µ∈

[
µ,µ

]
such that R(µ) = µ. A sufficient condition for the continuity of R is that the function U(µ1, µ) is

quasiconcave in µ1 on
[
µ,µ

]
for any fixed µ ∈

[
µ,µ

]
so it has a unique maximizer. Figure EC.1

illustrates why a small change of µ can lead to a large change in R1(µ) if U(µ1, µ) is multimodal.

Figure EC.1 Illustration of Possible Discontinuity in R1(µ)

To show the desired quasiconcavity, we use the second partial derivative to argue U(µ1, µ) can

have at most one stationary point, which is a local maximum. For

P (µ) := (PS −PF (1− p(µ)))µ, for µ∈
[
µ,µ

]
, (EC.19)
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so that

U(µ1, µ) = P (µ)×B(µ1, µ),

the first partial derivative is

∂U(µ1, µ)

∂µ1

= P (µ1)
∂B(µ1, µ)

∂µ1

+P ′(µ1)B(µ1, µ),

and the second partial derivative is

∂2U(µ1, µ)

∂µ2
1

= P
′′
(µ)B(µ1, µ) + 2P

′
(µ1)

∂B(µ1, µ)

∂µ1

+P (µ1)
∂2B(µ1, µ)

∂µ2
1

= P
′′
(µ1)B(µ1, µ) +

P (µ1)

B(µ1, µ)

(
B(µ1, µ)

∂2B(µ1, µ)

∂µ2
1

− 2

(
∂B(µ1, µ)

∂µ1

)2
)

+ 2
∂U(µ1, µ)

∂µ1

∂B(µ1,µ)

∂µ1

B(µ1, µ)
.

(EC.20)

The first term is negative because P (µ) is strictly concave on
[
µ,µ

]
by assumption on p. The

second term is negative from the following result, whose proof is provided below.

Lemma EC.3. For any µ1, µ∈
[
µ,µ

]
,

B(µ1, µ)
∂2B(µ1, µ)

∂µ2
1

− 2

(
∂B(µ1, µ)

∂µ1

)2

< 0.

For the third term, at a stationary point satisfying ∂U(µ1,µ)

∂µ1
= 0, the third term is zero. As a result,

∂2U(µ1,µ)

∂µ21
< 0. Hence, any stationary point is a local maximum. Since any stationary point must be

a local maximum, there can exist at most one stationary point. Therefore, U(µ1, µ) has at most

one stationary point on
[
µ,µ

]
, which is a local maximum, implying quasiconcavity.

Proof of Lemma EC.3. Define a := λ exp(−θT ), and z :=
∑∞

i=1

∏i

k=1
a

(N−1)µ+µ1+kθ
. From

Lemma 1,

B1(µ1, µ) =

∑
I⊆N\1 |I|!

(
µ
a

)|I|
+ z∑

I⊆N\1 |I|!
(
µ
a

)|I|
+
∑

I⊆N & 1∈I |I|!
µ1
a

(
µ
a

)|I|−1
+ z

.

From combinatorics,

∑
I⊆N\1

|I|!
(µ
a

)|I|
=

N−1∑
i=1

(N − 1)!

(N − 1− i)!

(µ
a

)i
+1,

∑
I⊆N & 1∈I

|I|!µ1

a

(µ
a

)|I|−1

=
µ1

a

N∑
i=1

i
(N − 1)!

(N − i)!

(µ
a

)i−1

.
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Multiplying both numerator and denominator by
(
a
µ

)N−1 1
(N−1)!

and so

B1(µ1, µ) =

∑N−1

j=0 ( a
µ
)j 1
j!

+ ( a
µ
)N−1 z

(N−1)!∑N−1

j=0 ( a
µ
)j 1
j!

+ µ1
a

∑N−1

j=0 ( a
µ
)j N−j

j!
+ ( a

µ
)N−1 z

(N−1)!

.

For notation simplification we use B1(µ1µ) instead of B1 ((µ1, µ),N,T ). Let X be a Poisson random

variable with parameter a
µ
, and observe that by multiplying both numerator and denominator by

exp
(
− a

µ

)
, we can rewrite B1 as follows:

B1 ((µ1, µ),N,T ) =
Pr(X ≤N − 1) +P (X =N − 1)z

Pr(X ≤N − 1) + µ1N
a

Pr(X ≤N − 1)− µ1
µ

Pr(X ≤N − 2) + Pr(X =N − 1)z

=
K + z

K +µ1

(
K
(
N
a
− 1

µ

)
+ 1

µ

)
+ z

, (EC.21)

where

K :=
Pr(X ≤N − 1)

Pr(X =N − 1)
.

We have

B(µ1, µ) =
K + z

K +Jµ1 + z
, where J :=K

(
N

a
− 1

µ

)
+

1

µ
.

Define fi(µ1) :=
∏i

k=1
λ

(N−1)µ+µ1+kθ
, so that z =

∑∞
i=1 fi(µ1). From calculus,

f
′

i (µ1) =−fi(µ1)
i∑

k=1

1

(N − 1)µ+µ1 + kθ
=−fi(µ1)gi(µ1), for gi(µ1) :=

i∑
k=1

1

(N − 1)µ+µ1 + kθ
,

and

g
′
i(µ1) =−hi(µ1) for hi(µ1) :=

i∑
k=1

1

((N − 1)µ+µ1 + kθ)2
.

Assuming the interchange of summation and derivative, and dropping the arguments µ1 from

fi, gi, hi for simplicity,

∂B(µ1, µ)

∂µ1

=−
J(K + z+µ1

∑∞
k=1 fkgk)

(K +Jµ1 + z)2
. (EC.22)

Next, using the above expression and again assuming the interchange of summation and derivative,

∂2B(µ1, µ)

∂µ2
1

= J
2(J −

∑∞
k=1 fkgk)(K + z+µ1

∑∞
k=1 fkgk) +µ1(K +Jµ1 + z)

∑∞
k=1 fk(g

2
k +hk)

(K +Jµ1 + z)3
.

(EC.23)
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Substitution then shows

B(µ1, µ)
∂2B(µ1, µ)

∂µ2
1

− 2

(
∂B(µ1, µ)

∂µ1

)2

=
J

(K +Jµ1 + z)
3

−2 (K + z)
∞∑
k=1

fkgk− 2µ1

(
∞∑
k=1

fkgk

)2

+µ1 (K + z)
∞∑
k=1

fk(g
2
k +hk)

 .

Suppose we can show

z
∞∑
k=1

fk(g
2
k +hk)< 2

(
∞∑
k=1

fkgk

)2

. (EC.24)

Then,

B(µ1, µ)
∂2B(µ1, µ)

∂µ2
1

− 2

(
∂B(µ1, µ)

∂µ1

)2

<
J

(K +Jµ1 + z)
3

−2 (K + z)

∞∑
k=1

fkgk− 2µ1

(
∞∑
k=1

fkgk

)2

+
2µ1(K + z)

z

(
∞∑
k=1

fkgk

)2


=
2J
∑∞

k=1 fkgk

(K +Jµ1 + z)
3

(
− (K + z) +

µ1K

z

∞∑
k=1

fkgk

)
,

so that showing

µ1K
∞∑
k=1

fkgk−Kz− z2 < 0 (EC.25)

is sufficient to complete the proof. (EC.22), (EC.23) and (EC.24) are shown in Lemma EC.4.

Since gk ≤ kg1 for k≥ 1, to show (EC.25) is valid, it is sufficient to show

K

(
g1µ1

∞∑
k=1

kfk− z

)
− z2 < 0. (EC.26)

We divide the argument into tow cases: a≤ (N − 1)µ and a> (N − 1)µ.

• Case 1 (a≤ (N − 1)µ): We show that

∞∑
k=1

kfk
z
− 1

g1µ1

< 0, (EC.27)

which implies (EC.26) is valid. Define ρ := λ
(N−1)µ+µ1

< 1. Since θ > 0, for given k > 1, we have

fi < fkρ
i−k when i > k, and fi > fkρ

i−k when 1≤ i < k, which implies

∞∑
i=k

fi <
∞∑
i=k

fkρ
i−k,

k−1∑
i=1

fi >
k−1∑
i=1

fkρ
i−k, for any k > 1.
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If we view fk
z

as a probability distribution and G as a geometric random variable with param-

eter ρ, then∑∞
i=k fi
z

=

∑∞
i=k fi∑k−1

i=1 fi +
∑∞

i=k fi
<

∑∞
i=k fkρ

i−k∑k−1

i=1 fkρ
i−k +

∑∞
i=k fkρ

i−k
= ρk−1 = P (G≥ k),

which implies stochastic dominance. Then since G has mean 1
1−ρ ,

∞∑
k=1

kfk
z
<

1

1− ρ
,

and algebra shows that

1

1− ρ
=

(N − 1)µ+µ1

(N − 1)µ+µ1− a
<

(N − 1)µ+µ1 + θ

µ1

=
1

g1µ1

,

(EC.27) follows.

• Case 2 (a> (N − 1)µ): For any 1≤ j ≤N ,

Pr(X =N − j)
Pr(X =N − 1)

=

(
a
µ

)N−j
1

(N−j)!(
a
µ

)N−1
1

(N−1)!

=

(
(N − 1)µ

a

)j−1 ∏j−1

k=1(N − k)

(N − 1)j−1
≤
(

(N − 1)µ

a

)j−1

,

(EC.28)

which implies

K =
Pr(X ≤N − 1)

Pr(X =N − 1)
≤

N∑
j=1

(
(N − 1)µ

a

)j−1

<
a

a− (N − 1)µ
. (EC.29)

Then, to establish (EC.26), it is sufficient to show

a

a− (N − 1)µ

(
g1µ1

∞∑
k=1

kfk− z

)
− z2 < 0. (EC.30)

Define u := (N−1)µ

θ
> 0, v := a

θ
> 0,w := µ1

θ
> 0. Due to λ > (N − 1)µ, v > u. From Equation (12)

in Ancker and Gafarian (1962), regarding z as a function of u, v and w, we have

z(u, v,w) = exp(v)v−u−wγ(u+w+ 1, v), (EC.31)

where γ(u+w+ 1, v) :=
∫ v

0
tu+w exp(−t)dt is the lower incomplete Gamma function. Next, we have

∂fi
∂v

=
ivi−1∏i

j=0(u+w+ j)
=
ifi
v
.
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Then, assuming the interchange of summation and derivative,

∞∑
i=1

ifi = v
∞∑
i=1

∂fi
∂v

= v
∂z

∂v
= v

∂ (v−u−w exp(v)γ(u+w+ 1, v))

∂v

= (v−u−w)v−u−w exp(v)γ(u+w+ 1, v) + v= (v−u−w)z+ v.

(EC.32)

where the interchange of summation and derivative required for the second equality is shown in

Lemma EC.4. Therefore, (EC.30) is equivalent to

v

v−u

(
w

u+w+ 1
((v−u−w)z+ v)− z

)
− z2 < 0.

Since the quadratic having input z defines a parabola that opens downwards with one positive root

and one negative root, showing the above is equivalent to showing

z(u, v,w)>R(u, v,w), for all v > u> 0,w > 0. (EC.33)

where

R(u, v,w) := v

√
(1 +u+w− (v−u)w+w2)2 + 4(v−u)(u+w+ 1)w− (1 +u+w− (v−u)w+w2)

2(v−u)(u+w+ 1)

is the positive root of the aforementioned quadratic.

We first show the inequality (EC.33) at the boundary. We have

lim
v↓u

R(u, v,w) =
uw

1 +u+w+w2
, for any given u> 0,w > 0.

To show z(u,u,w)> limv↓uR(u, v,w), it is sufficient to show the following lower bound

z(u, v,w) =
∞∑
i=1

i∏
j=1

v

u+w+ j
>

vw

1 +u+w+w2
, for v≥ u> 0,w > 0. (EC.34)

We denote the partial sums by zn :=
∑n

i=1

∏i

j=1
v

u+w+j
. We use induction to show that

zn−
vw

1 +u+w+w2
>

(n−w)unv

(1 +u+w+w2)
∏n

j=1(u+w+ j)
. (EC.35)

Showing (EC.35) implies (EC.34) because for n0 > w, the right hand side of (EC.35) is positive

and z = limn→∞ zn > zn0 .
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• When n= 1,

z1−
vw

1 +u+w+w2
=

uv+ v−wuv
(1 +u+w+w2)(u+w+ 1)

>
(1−w)uv

(1 +u+w+w2)(u+w+ 1)

verifies (EC.35).

• Suppose (EC.35) is valid for n> 1. Then, (EC.35) also holds for n+ 1 because

zn+1−
vw

1 +u+w+w2
>

(n−w)unv

(1 +u+w+w2)
∏n

j=1(u+w+ j)
+

vn+1∏n+1

j=1 (u+w+ j)

>
(n−w)unv

(1 +u+w+w2)
∏n

j=1(u+w+ j)
+

unv∏n+1

j=1 (u+w+ j)

=
((n+ 1−w)u+n2 +n+ 1)unv

(1 +u+w+w2)
∏n+1

j=1 (u+w+ j)

>
(n+ 1−w)un+1v

(1 +u+w+w2)
∏n+1

j=1 (u+w+ j)
.

The last step in the proof is to show that for any given u > 0,w > 0, z should be always above

R(u, v,w) as v increases from u to ∞. If at some point z =R(u, v,w), denote by v0 the smallest

v > u that equalizes the two. Since z(u, v,w)> limv↓uR(u, v,w), at the intersection, we must have

∂z

∂v

∣∣∣∣
v=v0

<
∂R

∂v

∣∣∣∣
v=v0

. (EC.36)

We use contradiction to show that such a v0 cannot exist. Recall from (EC.32)

∂z

∂v
=
v−u−w

v
z+ 1.

We check two cases:

• If v0 ≥ u+w, then ∂z
∂v

∣∣
v=v0
≥ 1. We can use Mathematica’s Reduce function (see the second

to last line of code at the end of the proof) to show that

0<
∂R

∂v
< 1, for v > u> 0,w > 0.

It is a contradiction to (EC.36).

• If v0 ∈ (u,u+w), then we have

∂z

∂v

∣∣∣∣
v=v0

>
v0−u−w

v0

R (u, v0,w) + 1.
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We can also use Mathematica’s Reduce function (see the last line of code at the end of the

proof) to show that

∂R

∂v
<
v−u−w

v
R+ 1, for v > u> 0,w > v−u.

It is also a contradiction to (EC.36). In summary, we have

z(u, v,w)>R(u, v,w), for v > u> 0,w > 0.

Finally, to complete the proof, we have the following Lemma.

Lemma EC.4. The equalities (EC.22), (EC.23), (EC.32), and the inequality (EC.24) hold.

Proof of Lemma EC.4: The results can be shown using similar arguments to those in the proof

of Lemma 1 in Zhan and Ward (2018). Specifically, the interchanges of summation and derivative

leading to (EC.22), (EC.23) and (EC.32) follow as in the the last paragraph of Step 1 in that proof.

Next, (EC.24) follows by observing that display (2) in Zhan and Ward (2018) holds when the µ

that appears in the B(µ), ai(µ), bi(µ), ci(µ) defined in that paper (the second display after (1) and

in the display after (2) in that paper) is replaced by (N − 1)µ+µ1 + θ.

Mathematica Code for Algebra Proof:

R= v(Sqrt[(1 +u+w+uw− vw+wˆ2)ˆ2 + 4(v−u)w(1 +u+w)]− (1 +u+w+uw− vw+wˆ2))

/(2(v−u)(1 +u+w))

DR= D[R,v]

Reduce[0<DR< 1&&w> 0&&u> 0&&v > u]

Reduce[DR<R(v−u−w)/v+ 1&&v > u> 0&&w> v−u]

�
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K. Proof of Proposition 4.

From (EC.21), adding the superscript λ in the notation,

Bλ
1

(
(µ1, µ),Nλ, T λ

)
=

Kλ + zλ

Kλ

(
1 + µ1Nλ

aλ
− µ1

µ

)
+ µ1

µ
+ zλ

, (EC.37)

We divide the argument into two cases: bµ< exp(−θT ) and bµ≥ exp(−θT ).

Case 1: bµ< exp(−θT ). From (EC.29),

Kλ ≤
Nλ∑
j=1

(
(Nλ− 1)µ

aλ

)j−1

<
∞∑
j=1

(
Nλµ

aλ

)j−1

.

Since bµ< exp(−θT ) implies Nλµ

aλ
< 1 for all large enough λ,

∞∑
j=1

(
Nλµ

aλ

)j−1

=
1

1− Nλµ

aλ

→ exp(−θT )

exp(−θT )− bµ
, as λ→∞.

Hence,

limsup
λ→∞

Kλ ≤ exp(−θT )

exp(−θT )− bµ
. (EC.38)

Next, by defining Cλ := (Nλ− 1)µ+µ1, from (EC.31)we have

zλ =

(
aλ

θ

)−Cλθ
exp

(
aλ

θ

)
γ

(
Cλ

θ
+ 1,

aλ

θ

)
.

From Pagurova (1965),

lim
a→∞

γ (a,a+x
√
a)

Γ(a)
= Φ(x),

where Γ(a) :=
∫∞

0
exp(−t)ta−1dt is the Gamma function and Φ(x) is the c.d.f. of standard normal

distribution. For any given t > 1, x> 0, when a is large enough, ta > a+x
√
a, and therefore

lim inf
a→∞

γ (a, ta)

Γ(a)
≥ lim

a→∞

γ (a,a+x
√
a)

Γ(a)
= Φ(x).

The above is valid for any x> 0, implying the liminf is 1. Note γ(a,x)< Γ(a) for any x> 0, implying

the limsup is also 1. Therefore,

lim
a→∞

γ (a, ta)

Γ(a)
= 1, for any t > 1.



e-companion to Zhan and Ward: Staffing, Routing and Payment ec25

Note limλ→∞
aλ/θ

Cλ/θ+1
= exp(−θT )

bµ
> 1, we have γ

(
Cλ

θ
+ 1, a

λ

θ

)
∼ Γ

(
Cλ

θ
+ 1
)
∼
√

2πCλ

θ

(
Cλ

eθ

)Cλ
θ

, and

zλ ∼
√

2πCλ

θ
exp

(
aλ

θ
− C

λ

θ
+
Cλ

θ
log

(
Cλ

aλ

))
=

√
2πCλ

θ
exp

(
Cλ

θ

(
aλ

Cλ
− 1− log

(
aλ

Cλ

)))
.

Since limλ→∞
aλ

Cλ
= exp(−θT )

bµ
> 1, limλ→∞ z

λ =∞. Then, from (EC.38) we have limλ→∞K
λzλ =∞.

From (EC.37), we have limλ→∞B
λ
1 ((µ1, µ),Nλ, T λ) = 1.

Case 2: bµ ≥ exp(−θT ). For any fixed j ≥ 1, noting Nλ > j when λ is large enough,

limλ→∞

∏j−1
k=1

(Nλ−k)

(Nλ−1)j−1 = 1. Then, from (EC.28),

lim
λ→∞

Pr(Xλ =Nλ− j)
Pr(Xλ =Nλ− 1)

=

(
bµ

exp(−θT )

)j−1

≥ 1.

That means, given any ε ∈ (0,1), and any integer I > 0, there exists Λ(ε, I) such that when λ >

Λ(ε, I), Nλ > I, and for any 1≤ j ≤ I,

Pr(Xλ =Nλ− j)
Pr(Xλ =Nλ− 1)

> 1− ε

I
.

Therefore,

Kλ =
Pr(Xλ ≤Nλ− 1)

Pr(Xλ =Nλ− 1)
>

I∑
j=1

Pr(Xλ =Nλ− j)
Pr(Xλ =Nλ− 1)

>
I∑
j=1

(
1− ε

I

)
= I − ε > I − 1.

Since I can be arbitrarily large, we have

lim
λ→∞

Kλ =∞. (EC.39)

If bµ= exp(−θT ), we have limλ→∞
Nλ

aλ
= 1

µ
, and therefore, from (EC.37),

lim
λ→∞

Bλ
1

(
(µ1, µ),Nλ, T λ

)
= lim

λ→∞

Kλ + zλ

Kλ + µ1
µ

+ zλ
= 1.

If bµ> exp(−θT ), since

zλ =
∞∑
i=1

i∏
k=1

aλ

(Nλ− 1)µ+µ1 + kθ
≤
∞∑
i=1

(
aλ

(Nλ− 1)µ

)i
,

and bµ> exp(−θT ) implies aλ

(Nλ−1)µ
< 1 for all large enough λ, so that

∞∑
i=1

(
aλ

(Nλ− 1)µ

)i
=

1

1− aλ

(Nλ−1)µ

→ exp(−θT )

bµ− exp(−θT )
, as λ→∞,

we find limsupλ→∞ z
λ <∞. Combined with limλ→∞K

λ =∞ in (EC.39), we have

lim
λ→∞

Bλ
1

(
(µ1, µ),Nλ, T λ

)
=

1

1 +µ1
b

exp(−θT )
− µ1

µ

=
µ exp(−θ)T

µ exp(−θT ) +µ1 (bµ− exp(−θT ))
.

�
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L. Proof of Lemma 7.

We first establish the existence of a fixed point of R̂, second show its uniqueness, and third derive

the payment ratio PR that results in the unique fixed point being µ.

Existence. As in the third paragraph of the proof of Proposition 3, a sufficient condition for the

existence of a fixed point is that Û(µ1, µ) is quasiconcave in µ1 on
[
µ,µ

]
for any fixed µ ∈

[
µ,µ

]
.

If bµ≤ exp(−θT ), then B̂(µ1, µ) = 1, meaning Û(µ1, µ) = P (µ1) for P defined in (EC.19), and so

Û is strictly concave (and therefore quasiconcave) by assumption on p. If bµ > exp(−θT ), then as

in (EC.20),

∂2Û(µ1, µ)

∂µ2
1

= P
′′
(µ1)B̂(µ1, µ)+

P (µ1)

B̂(µ1, µ)

B̂(µ1, µ)
∂2B̂(µ1, µ)

∂µ2
1

− 2

(
∂B̂(µ1, µ)

∂µ1

)2
+2

∂U(µ1, µ)

∂µ1

∂B̂(µ1,µ)

∂µ1

B̂(µ1, µ)
.

Straightforward calculation shows

2

(
∂B̂(µ1, µ)

∂µ1

)2

− B̂(µ1, µ)
∂2B̂(µ1, µ)

∂µ2
1

= 0,

and so the same argument as in the paragraph surrounding Lemma EC.3 shows Û(µ1, µ) has at

most one stationary point in
[
µ,µ

]
, which is a local maximum, implying quasiconcavity in µ1.

Similar to the proof in of Proposition 3, we conclude that R̂1(µ) is continuous in µ, and a fixed

point exists.

Uniqueness. If bµ ≤ exp(−θT ), the uniqueness follows because Û is strictly concave. If bµ >

exp(−θT ), then for PR = PF/PS the FOC is

∂Û(µ1, µ)

∂µ1

=
exp(−2θT )(1−PR(1− p(µ1))) + exp(−θT )

(
µ1(exp(−θT ) + (b− exp(−θT )/µ)µ1)PRp

′
(µ1)

)
(exp(−θT ) + (b− exp(−θT )/µ)µ1)

2 = 0.

(EC.40)

Define F (µ1, µ) := exp(−2θT )(1−PR(1−p(µ1)))+exp(−θT )
(
µ1(exp(−θT ) + (b− exp(−θT )/µ)µ1)PRp

′
(µ1)

)
.

Since from the implicit function theorem

dµ1

dµ
=−

∂F (µ1,µ)

∂µ

∂F (µ1,µ)

∂µ1

,
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and

∂F (µ1, µ)

∂µ1

= exp(−θT )PR(exp(−θT ) + (b− exp(−θT )/µ)µ1)× (p(µ1)µ1)
′′
< 0

∂F (µ1, µ)

∂µ
=

exp(−2θT )µ2
1PRp

′
(µ1)

µ2
< 0,

we conclude

dµ1

dµ
< 0,

which implies (EC.40) has a unique solution.

Payment Ratio. We solve for the parameter under which

∂Û(µ1, µ)

∂µ1

∣∣∣∣∣
µ1=µ

= 0. (EC.41)

Noting that

∂Û(µ1, µ)

∂µ1

∣∣∣∣∣
µ1=µ

=


P
′
(µ) = PS(1−PR(1− p(µ)−P ′(µ)µ)) if b?µ? ≤ exp(−θT ?),

F (µ,µ)

(exp(−θT )+bµ−exp(−θT ))2
if b?µ? > exp(−θT ?),

we find that the PR defined in the statement of Lemma 7 solves (EC.41). �

M. Proof of Theorem 2.

As observed directly before the theorem statement, µλE = µλF (P ?
R) is a symmetric equilibrium ser-

vice rate (not necessarily unique). Furthermore, for each λ, the policy
(
µ̂?,N

λ = b̂?λ+ o(λ), T̂?

)
that is asymptotically optimal by Theorem 1 under Assumptions 1 and 2 is such that(
µλF ,N

λ = b̂?λ+ o(λ), T̂?

)
satisfies the constraints of the decentralized control problem (10). From

the definition of P λ
S and P λ

F in (25)-(26), Uλ
i = cS for all λ and so limλ→∞U

λ
i −cS = 0, i∈NNλ holds

trivially. To complete the proof, we must show any sequence of symmetric equilibrium service rates

satisfies

lim
λ→∞

∣∣µλF − µ̂?∣∣= 0.

The proof is by contradiction. Suppose not. Then, there exists a subsequence λi on which µλiF does

not converge to µ̂?. Since µλiF ∈ [µ,µ] is a bounded sequence, it fails to converge to µ̂? either because
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it converges to µ̃ 6= µ̂?, or because it alternates - in which case there exists a further subsequence

λij on which µ
λij
F → µ̃ 6= µ̂? as λij →∞. Hence we may assume there exists a subsequence λk on

which µ
λk
F → µ̃ 6= µ̂? as λk→∞. For each λk, from the definition of an equilibrium,

P (µ
λk
F )Bλk(µ

λk
F , µ

λk
F )≥ P (µ1)Bλk(µ1, µ

λk
F ), for all µ1 ∈ [µ,µ]. (EC.42)

Taking limits in the above display and applying Proposition 4 shows that

P (µ̃)B̂(µ̃, µ̃)≥ P (µ1)B̂(µ1, µ̃), for all µ1 ∈ [µ,µ],

which implies µ̃ is also a fixed point of the approximating best response function R̂. This contradicts

the uniqueness of µ̂? shown in Lemma 7. �
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