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Abstract

We model equilibrium allocations in a distribution network as the solution of a linear program

(LP) which minimizes the cost of unserved demands across nodes in the network. The constraints

in the LP dictate that once a given node’s supply is exhausted, its unserved demand is distributed

among neighboring nodes. All nodes do the same and the resulting solution is the equilibrium

allocation. Assuming that the demands are random (following a jointly Gaussian law), our

goal is to study the probability that the optimal cost (i.e. the cost of unserved demands in

equilibrium) exceeds a large threshold, which is a rare event. Our contribution is the development

of importance sampling and conditional Monte Carlo algorithms for estimating this probability.

We establish the asymptotic efficiency of our algorithms and also present numerical results which

illustrate strong performance of our procedures.

Key words: distribution network; linear program; rare event simulation; importance sampling;

conditional Monte Carlo

1 Introduction

Consider the following model of a distribution network. We assume that there is a commodity to

be distributed among various nodes in a network. Each node is endowed with a given supply of the
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commodity and at the same time it experiences a random demand. We assume that the commodity

is infinitely divisible. If the demand at a given node exceeds its supply, then the excess demand is

distributed according to some proportions to each of its neighbors, which in turn do the same. In

order to obtain the distribution amounts in equilibrium, we solve a linear program (LP), where the

objective function to minimize is the sum across nodes of the unserved demands.

One possible practical example where such a problem might arise is an electric power grid. Each

node represents a geographic region, and there is an edge between two nodes if transmission lines

directly connect them. Each region has generators, which provide the region’s supply of electricity.

Also, each region has a random load (i.e., demand for electricity) from consumers. If a region’s load

exceeds its supply, then the network tries to serve a node’s excess load by sending it to neighboring

regions. One of the most important issues in operating a power grid is to keep the stability of the

network and make sure demands can be satisfied. If the total amount of load not served at their

originating regions exceeds a threshold k, then we consider the network to have failed. To better

operate this power transmission system, it is essential to estimate the probability that this network

fails.

Another application involves load distribution for internet services, such as web servers, cloud-

computing services, and domain name servers (DNS). A company may have a number of fixed-

capacity servers situated in different geographic regions. As the requests to servers (i.e. the demand)

arrive, a specific server tries to fulfill its own local requests, but if the demand exceeds its capacity,

then the server may offload its excess to a neighboring server. Since this shifting may incur additional

delays for the user, we want to minimize the amount of distributed demand. This is similar to load

balancing; e.g., see [13].

Let α (k) be the probability that the sum of unserved demands, in equilibrium, exceeds threshold

k. Our goal is to estimate the probability α (k), with k = kn, where n is a rarity parameter and we

scale the supply as a function of n and we let n increase reflecting a situation in which the supply

is large. The parameter k = kn is allowed to grow with n or can be constant. Assuming jointly

distributed multivariate Gaussian demands, we provide asymptotically optimal estimators, together

with numerical experiments showing their performance, and associated large deviations results. We

recall that an unbiased estimator for α (kn) is asymptotically optimal when n goes to infinity if the

logarithm of its second moment is asymptotically equivalent to the logarithm of α2 (kn) (see [4], for

notions of efficiency in rare-event simulation).

As far as we know, this paper provides the first type of large deviations analysis and efficient

Monte Carlo for solutions of linear programs with random input. More precisely, our contributions

are as follows:

1) For our model formulation, we show that our optimal allocation is invariant if one replaces the

objective function by any other criterion that is increasing as a function of the unserved demands

(see Theorem 3).

2) We establish large deviations analysis for our class of linear programs with random input (see
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Theorem 4).

3) We develop an importance sampling (IS) algorithm for estimating α (kn), and we show that

the algorithm is asymptotically optimal as the supply gets large, and the threshold kn is a constant

or increases with n (see Section 5.2).

4) We develop a conditional Monte Carlo (CMC) algorithm for the evaluation of α (kn), and we

prove the asymptotic optimality of this procedure as the supply gets large, and the threshold kn is

a constant or increases with n (see Section 5.3).

5) We provide several numerical examples in Section 6 that validate the performance of our

algorithm.

Some of the results regarding CMC previously appeared in a conference version of this paper

([8]). Our conference paper restricted the LP’s objective function to be the sum of the unserved

demands, and we now prove its invariance, as described in contribution 1), which greatly expands

the applicability of our approach. Regarding contribution 2), we study the asymptotic behaviors

of this network which is not discussed in the conference version. Regarding contribution 3), we

develop an importance sampling algorithm which is not studied in the conference version, and we

provide a proof of asymptotic optimality and algorithm implementation. As for contribution 4),

although in the conference version, we have studied the CMC algorithm and its implementation

(see [8], Section 4.3), no mathematical proof is provided regarding the asymptotic optimality of

this algorithm. Here, in the journal version, we prove it rigorously. Finally, regarding contribution

5), instead of only comparing the naive simulation and CMC, we compare IS as well. In addition,

to show the asymptotic optimality of our algorithms, we include numerical examples in which the

rarity parameter changes.

We now explain how our paper relates to prior work. First, regarding 1), we note that similar

results, with different types of networks and other applications, have been obtained in the literature

(see [10]). We only learned about these applications after we obtained our model formulation,

but we believe the connections are relevant. For the IS algorithm (contribution 2), we introduce

a probability measure that is obtained by connecting the event of interest (i.e. total unserved

demands in equilibrium exceeding a threshold) with a simple union event involving the demands.

Then we use an IS distribution inspired by an approach developed by [1]. IS algorithms have also

been used in [18], and [16] to solve a network operation problem with random inputs. While those

two papers focus on the assessment of electrical constraints violation, we make use of IS to assess the

solution of LP which involves optimization. Regarding the CMC estimator, we express the Gaussian

demands in polar coordinates. Given the angle, the conditional probability of the LP’s optimal

objective function value exceeding k can be expressed as the probability of the radial component

of the Gaussian lying in an interval or union of intervals, and this conditional probability can be

computed analytically. The use of polar transformations for CMC and rare event simulation has

been used in the past, see for example, [3]. [4], Chapters V and VI, provide additional background

material on importance sampling and conditional Monte Carlo.
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Our work also has other potential applications, in particular to cascading failures, which has been

an interesting and important research topic. For example, [20] studies cascades in a sparse, random

network of interacting agents whose decisions are determined by the actions of their neighbors

according to a simple threshold rule. [9] consider a branching process model of cascading failures

in an electric power grid. [12] analyze a continuous-time Markov chain of a dependability model

with cascading failures. For another example, [6] study the temperature evolution of transmission

lines. While that paper provides control algorithms to limit the probability that cascading failures

happen. Our IS strategy (discussed in Section 5.2 ) can be modified to estimate the probability of

observing a cascading failure under the policy advocated by that paper. The modification consists

of defining, for instance, the objective function to be minimized as the worst case temperature over

the lines in the network. Additional constraints need to be modified or approximated by linear

constraints. [19] also study rare-event simulation for analyzing blackouts.

We would like to point out that although we assume multivariate Gaussian demands in this

paper, the CMC algorithm can be applied to the case when the demands follow an elliptical distri-

bution (see [14]). Furthermore, while an elliptical copula exhibits symmetric tail dependence, the

well known Archimedean copula allows asymmetric tail dependence ([7]). Making use of the results

in [15], we can see that CMC algorithm is also applicable to Archimedean copula, which makes this

algorithm very powerful in solving a wide range of problems. also study rare-event simulation for

analyzing blackouts.

The rest of the paper develops as follows. Section 2 presents the model of the distribution

network, and it also defines the LP problem and its dual. We establish some properties of the

primal and dual LPs in Section 3. The asymptotic behavior of the model is discussed in Section 4.

We describe the asymptotic optimality and implementations of importance sampling and conditional

Monte Carlo methods for estimating α(kn) in Section 5. Section 6 contains the experimental results

from some examples, and we give some final comments in Section 7.

2 Model Description

As we introduce our model and discuss its properties we will follow closely the discussion in [8].

Suppose there is a directed graph G = (V,E), where V = {1, 2, . . . , d} is the set of vertices and

E = {(i, j) : ∃ directed edge from vertex i to vertex j} is the set of edges. The incidence matrix of

the graph is denoted by H = (H(i, j) : i, j ∈ V ), where H(i, j) = 1 if (i, j) ∈ E, and H(i, j) = 0

otherwise, and we assume H(i, i) = 0 for any i ∈ V . The network model we consider is induced by

this graph, and we also assume the following:

1 The network is irreducible in the sense that the matrix H is irreducible.

2 Each node i has a given fixed supply si.
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3 Each node i is subjected to a random demand Di. The demand vector D = (D1,D2 . . . ,Dd)
′ is

jointly Gaussian N(µ,Σ), where prime denotes transpose, µ is the mean vector, and Σ is the

covariance matrix.

4 The expectation of Di is less than or equal to si for each node i.

Each node tries to serve its realized demand. However, if a given node’s supply is exhausted, it

distributes the unserved demand to its neighbors, which, in turn, do the same with their respective

neighbors. Nevertheless, there is a cost associated with transferring unserved demands which should

be minimized. We construct a linear program to describe this problem. The demands achieve an

equilibrium point at each feasible solution, and the objective function is to minimize the sum of the

excess demands across the nodes. Let s = (s1, s2, . . . , sd)
′, and the LP is:

min

d∑

i=1

x+i

s.t. Di − si +
∑

j:(j,i)∈E
x+j aji = x+i − x−i ,∀i

x+i ≥ 0, x−i ≥ 0,∀i. (1)

The quantity x+i ≥ 0 represents the shedded demand from node i in equilibrium, which is

distributed among its neighbors using a fixed distribution scheme, which we describe shortly. The

quantity x−i ≥ 0 represents the unused supply at node i in equilibrium. Therefore, in equilibrium,

if x+i − x−i > 0, then node i sheds demand; if x+i − x−i < 0, then node i has unused supply. When

node j has excess demand, aji denotes the proportion of unserved demand at node j distributed

to node i. We assume that if H(i, j) = 0, then aij = 0; if H(i, j) = 1, then aij > 0. In addition,
∑d

j=1 aij = 1,∀i = 1, 2, . . . , d. The solution moves around excess demands and supplies to neighbors

but does so in such a way that the sum of x+i ’s, which are the equilibrium shedded demands, is

minimized. The problem can be expressed in matrix notation as follows. Define A(i, j) = aij (note

that A(i, i) = 0). Let 1 = (1, 1, . . . , 1)′ denote the d-dimensional column vector with all components

equal to 1. Then the previous linear programming problem (1) can be written as:

min 1′x+ + 0′x−

s.t. (A′ − I)x+ + Ix− = s−D

x+ ≥ 0,x− ≥ 0, (2)

where 0 = (0, 0, . . . , 0)′ is the d-dimensional column vector with all components equal to 0, A =

(A(i, j) : i, j ∈ V ), I is the d×d identity matrix, x+ = (x+1 , x
+
2 , . . . , x

+
d )

′, and x− = (x−1 , x
−
2 , . . . , x

−
d )

′.

The goal is that the sum of shedded demands is as small as possible because, e.g., the cost of dis-

tributing demands is high. If the cost is too high, for example, larger than a given number, say k,

or the LP is infeasible, we consider the network to have failed.
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Note that while in [8], we assume that the unserved demands are equally distributed to neighbors,

here we make a small but important extension. We allow the proportions to be any non-negative

numbers.

Now, we also introduce the dual linear program:

max y′r

s.t. My ≤ 1

y ≥ 0, (3)

where M = I −A and r = D − s.

We are interested in computing the probability that the network fails, for different values of k.

Let α(k) represent this failure probability, and L(D) denote the optimal value of the dual when

the demand vector is D. As discussed in [8],

α(k) = β0 + β1(k) = P{L(D) > k}, (4)

where β0 is the probability that the primal is infeasible, and β1(k) is the probability that the primal

is feasible, but the cost is larger than k.

Since the discussion in Section 3 is valid for all k, we do not define k as a function of the rarity

parameter n until Section 4 .

3 Properties of Our Primal and Dual Linear Programs

3.1 Feasibility of the Solutions to the Primal and Dual

Our previous conference paper proves two theorems on properties of the primal and dual LPs for

the special case when A(i, j) = H(i, j)/
∑d

l=1 H(i.l). We claim that both theorems are still valid

for our more general A(i, j), and the proofs are exactly the same. Here we only list the property

regarding feasibility which will be used later, but omit the proof.

Theorem 1. 1

(a) The dual problem (3) is always feasible.

(b) The primal problem (2) is feasible if and only if
∑d

i=1Di ≤
∑d

i=1 si.

3.2 Uniqueness and Positivity of the Solution to the Primal

Theorem 2. When the primal problem (2) is feasible, it has the following properties:

(a) It has a unique optimal solution.

(b) At the optimal solution, at most one element in the pair (x+k , x
−
k ) is strictly positive, ∀1 ≤ k ≤ d.
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To emphasize the main results of the paper, we postpone the formal proof to Appendix A, and

only give a brief explanation here. For (a), assuming there are two optimal solutions and making

use of duality theorem of linear programing, we can prove that these two solutions are the same.

Part (b) can be proved by contradiction.

3.3 Insensitivity of the Solution to the Primal

Theorem 3. Suppose x∗ =

(
x∗+

x∗−

)
is the optimal solution to the problem

min f1(x
+)

s.t. (A′ − I)x+ + Ix− = s−D

x+ ≥ 0,x− ≥ 0,

where f1(x
+) is differentiable and increasing with respect to x+. Let f2(x

+) be another differentiable

and increasing function. Then x∗ is also the optimal solution to the problem

min f2(x
+)

s.t. (A′ − I)x+ + Ix− = s−D

x+ ≥ 0,x− ≥ 0.

To prove it, we construct the solution of the dual problem and make use of Karush-Kuhn-Tucker

(KKT) conditions. See [5] for more information about KKT conditions. A detailed proof appears

in Appendix B.

Although Theorem 3 establishes the insensitivity of the optimal solution to a large class of

nonlinear objective functions, for the rest of the paper, our discussion is based on the primal

problem (2) and the dual problem (3) with linear objective functions.

4 Asymptotic Behavior

Now we discuss the asymptotic behavior of the failure probability of this distribution network, which

will be useful when we develop efficient simulation algorithms for estimating the failure probability

in the next section. We will now assume fixed number d of vertices in the network. We next specify

the vertices’ supplies and the distribution for the demands.

Let ti, i = 1, 2, . . . , d, represent these d locations in this network, and T = {t1, t2, . . . , td}.
Suppose we have positive functions γ(t), µ(t), σ(t) on T , and σ2(t, u) on T × T . For each node i

with location ti ∈ T , there is a deterministic supply sn(ti) , s(ti) = nβγ(ti), where β > 0, n is

a rarity parameter, and a random demand D(ti) ∼ N(µ(ti), σ
2(ti)), where the covariance between

the demands at two vertices with locations ti and tj is cov[D(ti),D(tj)] = σ2(ti, tj). Also note that
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only the supply function s(t) involves n, not the demand function. Let Σ be the covariance matrix

of (D(t1),D(t2), . . . ,D(td)), which we require to be symmetric positive definite.

We first introduce the little o notion, which is used in the theorem that will be discussed

momentarily.

Definition 1. Let f and g be two functions defined one some subset of the real numbers. Then

f(x) = o(g(x)) if for every C > 0, there exists a real number N such that for all x > N , we have

|f(x)| < C|g(x)|.

We now establish a theorem that describes the asymptotic behavior of this network. More

specifically, it tells what is the most likely way in which this network fails. This result is crucial in

designing an efficient importance-sampling algorithm.

Theorem 4. Let Ln(D) denote the optimal value of the dual (3), when the demand vector is D

and the rarity parameter is n. Then for all k = kn ≥ 0 with kn = o(nβ),

lim
n→∞

n−2β logP{Ln(D) > kn} = lim
n→∞

n−2β logP{ max
i=1,...,d

D(ti)− sn(ti) > kn} (5)

= − γ2(t∗)
2σ2(t∗)

, (6)

where t∗ = argmin
t∈T

γ(t)
σ(t) .

To prove this result, we derive upper and lower bounds with the same limit − γ2(t∗)
2σ2(t∗)

. The details

appear in Appendix C.

5 Efficient Algorithms: Importance Sampling and Conditional Monte

Carlo

5.1 Asymptotic Optimality

Suppose ti, i = 1, 2, . . . , d are locations of d vertices. When n is large, the failure of this network

is a rare event. To estimate this failure probability, we develop two efficient simulation algorithms:

one based on importance sampling (IS) and the other using conditional Monte Carlo (CMC). To

evaluate the efficiency of these two algorithms, we need to introduce a definition.

Definition 2. A collection (Zn : n ≥ 0) of estimators for ρ(n) is said to be asymptotically optimal

if E[Zn] = ρ(n) and if

sup
n>0

E(Z2
n)

ρ(n)2−ǫ
< ∞,∀ǫ > 0.

Asymptotic optimality also amounts to showing that

logE(Z2
n)

2 log(ρ(n))
→ 1, n → ∞.
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5.2 Importance Sampling

We now develop an IS estimator making use of a new probability measure Q:

Q{D ∈ B} =

d∑

i=1

p(i)P{D ∈ B|D(ti)− sn(ti) > 0}, (7)

where B ⊂ R
d is a Borel set, and

p(i) =
P{D(ti)− sn(ti) > 0}

∑d
j=1 P{D(tj)− sn(tj) > 0}

.

Note that Q is a mixture of d measures, where the i-th measure in the mixture is the conditional

distribution given that the i-th node’s demand exceeds its supply. In other words, we force the

demand to be larger than the supply for at least one node such that this network fails more often

under the new measure. Since

Q{D ∈ B} =
1

∑d
j=1 P{D(tj)− sn(tj) > 0}

d∑

i=1

P{D ∈ B,D(ti)− sn(ti) > 0},

it is easy to see that

dP

dQ
=

∑d
j=1 P{D(tj)− sn(tj) > 0}

∑d
j=1 I{D(tj)− sn(tj) > 0}

.

5.2.1 Asymptotic Optimality

We next establish the asymptotic optimality of the IS approach based on Q.

Theorem 5.

Zn(D) =
dP

dQ
I{Ln(D) > kn} =

∑d
j=1 P{D(tj)− sn(tj) > 0}

∑d
j=1 I{D(tj)− sn(tj) > 0}

I{Ln(D) > kn}

is an asymptotically optimal estimator for αn(kn) , P{Ln(D) > kn}, where kn = o(nβ).

To prove this result, we find an upper bound of
logEQ[Z2

n(D)]
logP{Ln(D)>kn} with limit 2, and make use of

Theorem 4. The proof appears in Appendix D.

5.2.2 Algorithm Implementation

We now explain how to implement the IS algorithm.

1. Set i = 1 and let N be the total number of replications to simulate.

2. Generate demand vector D(i) from distribution Q as in (7). To do this, we choose a node i

with probability p(i), and begin by generating untruncated normal variables and reject those
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if the demand of node i does not exceed its supply. If the acceptance rate becomes too small

after some iterations with escalating sample sizes, we switch to use a Gibbs sampler algorithm

described in [17] to sample truncated normal variables.

3. Calculate Zn(D
(i)) =

∑d
j=1

P{D(tj)−sn(tj)>0}
∑d

j=1
I{D(tj)−sn(tj )>0} I{Ln(D

(i)) > kn}.

4. If i < N , set i = i+ 1 and go to step 2; otherwise, go to step 5.

5. Compute α̂n(kn) = (
∑N

i=1 Zn(D
(i)))/N as our importance-sampling estimator of αn(kn) =

P{Ln(D) > kn}, and a 100(1 − δ)% confidence interval for αn(kn) is (α̂n(kn) ± Φ−1(1 −
δ/2)Ŝ/

√
N)), where Ŝ2 =

(∑N
i=1(Zn(D

(i))− α̂n(kn))
2
)
/(N − 1), and Φ(·) is the distribution

function of a standard normal.

5.3 Conditional Monte Carlo

We first briefly introduce the Conditional Monte Carlo (CMC) approach, which is a variance-

reduction technique. Suppose we are interested in estimating α, and U is an unbiased estimator.

According to the conditional variance formula: V ar(U) = E[V ar(U |Y )] + V ar(E[U |Y ]), we have

V ar(U) ≥ V ar(E[U |Y ]). Therefore, using E[U |Y ] as an estimator may help to reduce variance.

Now we explain how CMC is applied to our problem to estimate α(k). Note that the multivariate-

normal random demand has polar-coordinate representation (see [14])

D = µ+RWΨ, (8)

where the radiusR satisfiesR2 ∼ Γ(d/2, 1/2), i.e., its density function g(x) = xd/2−1e−x/2(1/2)d/2/Γ(d/2),

Γ(·) is the gamma function, WW T = Σ, the angle Ψ = z/‖z‖, is uniformly distributed over the

unit sphere, z = (z1, z2, . . . , zd)
′ ∼ N(0, I), and ‖z‖ =

√
z21 + z22 + · · ·+ z2d . In addition, the radius

R and angle Ψ are independent.

Making use of this representation, [8] developed a conditional Monte Carlo approach for esti-

mating α(kn), along with algorithmic details on how to implement the method. However, we did

not discuss the optimality of the CMC algorithm in the conference paper. We now provide such an

analysis.

5.3.1 Asymptotic Optimality

Recall that we defined in Section 4 the deterministic supply of node i at location ti as sn(ti) =

nβγ(ti), where β > 0 is a constant, n is the rarity parameter, and γ( · ) is a fixed positive function.

Theorem 6. 1 For kn = o(nβ), there exist n0 > 0, c3 > 0, s∗ > 0, η1 = O(nβ), such that when

n > n0,

Tn(Ψ) , P{Ln(D) > kn|Ψ} ≤ P{R > nβs∗ + η1}, ∀‖Ψ‖ = 1, (9)

P{Ln(D) > kn} ≥ c3P{R > nβs∗ +O(1)}n−(d−1)β . (10)
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Also, the conditional Monte Carlo estimator Tn(Ψ) is asymptotically optimal.

To prove (9), since the dual problem is an LP, we only need to consider the extreme points of

the feasible region. Making use of the polar-coordinate representation of the random demand, we

show that P{Ln(D) > kn|Ψ} is equal to the conditional probability that the radius R is larger

than a function of Ψ, which has minimum value nβs∗ + η1 when n is large enough.

To prove (10), we show that P{Ln(D) > kn} is equal to the probability that radius R is larger

than a function of Ψ. We then find a lower bound by considering a small ball when n is large

enough.

The asymptotical optimality follows since we have found an upper found of log
(
E[T 2

n(Ψ)]
)
, and

a lower bound of log (P{Ln(D) > kn}), which is less than or equal to 2 when n is large enough.

The complete proof appears in Appendix E.

6 Numerical Examples

Here we use the same basis for comparing the estimators using different simulation algorithms as

in [8]. Suppose we want to estimate α = E[X], and X1,X2, . . . ,XN are independent replications

of X. Then α̂ = (
∑N

i=1 Xi)/N is an unbiased estimator of α, and S2 = (
∑N

i=1(Xi − α̂)2)/(N − 1)

is an unbiased estimator of V ar[X] = σ2, which we assume is finite. We then define the RSE

(relative standard error) as S/(
√
Nα̂). To consider both the accuracy and computational efficiency

when comparing different unbiased estimators, as suggested in [11], we use the relative measure

RSE2 × CT (Computing Time) as the criterion.

In our experiments we apply naive simulation, importance sampling, and conditional Monte

Carlo methods to different networks, and compare RSE2 × CT . For each example, assume d

locations t1, t2, · · · , td have been chosen, we give incidence matrix H, supply parameter γ =

(γ(t1), γ(t2), . . . , γ(td))
′, and demand parameters µ,Σ. We have proven the asymptotic optimality

of the IS and CMC estimators when the threshold k is a constant or increases with the rarity pa-

rameter n. Examples 1 and 2 show how failure probability changes with n for constant kn. Example

3 shows how failure probability changes when kn is a function of n, with k = kn = 20 × n0.5 and

β = 1. We set the sample size N = 105 for all of the three examples.

We choose parameters based on the following considerations:

• Network size d: we did three experiments with networks of three different sizes d = 3, 10,

and 30. We believe that a network with 30 nodes represents a sufficiently large example for

actual applications. In addition, these experiments are used to compare the relative efficiency

among different simulation algorithms. While larger networks take more time to simulate, we

expect that the results across the methods would be similar.

• Incidence matrix H: it was chosen so that the network is irreducible.
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• Supply and demand related parameters γ,µ,Σ: it is not easy to obtain this information from

real-life examples, so we constructed them so that failure rarely happens.

• Scale parameters β, rarity parameter n and threshold k: they were chosen so that failure prob-

ability α(kn) exhibits different orders of magnitude. Although our results establish asymptotic

optimality of the IS and CMC estimators, the experiments consider a range of parameter val-

ues to study when α(kn) is not too small so we can assess the performance.

6.1 Example 1: d = 3, fixed kn

The first example is a 3-dimensional network with the following parameters:

H =



0 1 0

1 0 1

0 1 0


 , γ =




3

1

13


 , µ =



1

1

2


 , Σ =




1 0.5 0.1

0.5 1 0.5

0.1 0.5 1


 , β = 1, kn = 1.

Table 1: Results of Naive Simulation, IS, and CMC for d = 3, fixed kn.

Naive Simulation Importance Sampling Conditional MC

n α(kn) RSE2 × CT α(kn) RSE2 × CT α(kn) RSE2 × CT

1.5 6.77×10−2 5.04×10−2 6.76×10−2 1.59×10−2 6.69×10−2 4.35×10−2

2.5 6.44×10−3 5.34×10−1 6.19×10−3 4.40×10−2 6.21×10−3 7.74×10−2

3.2 6.10×10−4 5.63×100 6.92×10−4 8.82×10−2 6.88×10−4 1.14×10−1

3.9 8.00×10−5 4.27×101 4.82×10−5 4.68×10−1 4.83×10−5 1.43×10−1

4.5 0 NaN 3.39×10−6 1.62×100 3.30×10−6 1.84×10−1

4.9 0 NaN 4.80×10−7 7.08×100 4.89×10−7 2.03×10−1
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6.2 Example 2: d = 10, fixed kn

The second example is a 10-dimensional network with the following parameters:

H(i, j) = 1 for (i, j) = (1, 2), (1, 3), (2, 1), (3, 4), (3, 8), (4, 5),(4, 7), (5, 6), (6, 7), (7, 8), (8, 9),

(9, 10), (10, 1). All other elements of H are equal to 0.

γ = (3, 5, 3, 3, 3, 3, 3, 3, 3, 15)′ , µ = (1, 5, 1, 1, 1, 1, 1, 1, 1, 1)′ , β = 1, kn = 2.

Σ =




0.5 0.3 0.3 0.25 0.2 0.15 0.2 0.25 0.2 0.15

0.3 0.5 0.25 0.2 0.15 0.1 0.15 0.2 0.15 0.1

0.3 0.25 0.5 0.3 0.25 0.2 0.25 0.3 0.25 0.2

0.25 0.2 0.3 0.5 0.3 0.25 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.5 0.3 0.25 0.2 0.15 0.1

0.15 0.1 0.2 0.25 0.3 0.5 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.25 0.3 0.5 0.3 0.25 0.2

0.25 0.2 0.3 0.25 0.2 0.25 0.3 0.5 0.3 0.25

0.2 0.15 0.25 0.2 0.15 0.2 0.25 0.3 0.5 0.3

0.15 0.1 0.2 0.15 0.1 0.15 0.2 0.25 0.3 0.5




.

Table 2: Results of Naive Simulation, IS, and CMC for d = 10, fixed kn.

Naive Simulation Importance Sampling Conditional MC

n α(kn) RSE2 × CT α(kn) RSE2 × CT α(kn) RSE2 × CT

1.0 3.64×10−2 1.21×10−1 3.67×10−2 9.57×10−2 3.66×10−2 2.00×10−1

1.3 3.05×10−3 1.39×100 3.38×10−3 2.09×10−1 3.38×10−3 6.85×10−1

1.5 2.10×10−4 2.00×101 2.70×10−4 6.14×10−1 2.73×10−4 2.28×100

1.6 4.00×10−5 1.04×102 3.20×10−5 2.19×100 3.23×10−5 3.79 ×100

1.7 0 NaN 4.13×10−6 1.09×101 4.02×10−6 6.07×100

1.8 0 NaN 7.34×10−7 5.24×101 7.26×10−7 6.87×100
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6.3 Example 3: d = 30, kn changes with n

The third example is a 30-dimensional network with the following parameters:

H(i, i + 1) = 1, i = 1, 2, . . . , 29. H(30, 1) = 1. All other elements of H are equal to 0.

γ(ti) = 2, µ(ti) = 1, i = 1, 2, . . . , 30. β = 1, kn = 20× n0.5.

Σ(i, i) = σ2(ti, ti) = 1, i = 1, 2, . . . , 30. All other elements of Σ are equal to 0.4.

Table 3: Results of Naive Simulation, IS, and CMC for d = 30, kn increases with n.

Naive Simulation Importance Sampling Conditional MC

n α(kn) RSE2 × CT α(kn) RSE2 × CT α(kn) RSE2 × CT

1.20 3.29×10−2 2.09×10−1 3.22×10−2 2.94×10−1 3.23×10−2 5.96×10−1

1.50 2.72×10−3 2.16×100 2.58×10−3 1.06×100 2.61×10−3 2.96×100

1.70 2.80×10−4 2.03×101 3.03×10−4 3.33×100 3.03×10−4 1.20×101

1.95 1.00×10−5 5.78×102 1.18×10−5 2.34×101 1.17×10−5 4.47 ×101

2.05 0 NaN 2.92×10−6 6.39×101 3.02×10−6 9.92×101

2.16 0 NaN 3.83×10−7 3.07×102 3.84×10−7 2.15×102

6.4 Discussion of Results and Comparisons Between Algorithms

1. When n increases, the performance of both the naive simulation and IS deteriorates quickly

in terms of RSE2 × CT . Because we fix the number of simulations N , as in Example 1, 2,

and 3, when kn is very large, we do not get even one observation of the event {Ln(D) ≥ kn}.
However, although the performance of CMC becomes worse as well, it does not deteriorate

as quickly as the other two. No matter how large kn is, we can obtain a non-zero estimate of

α(kn).

2. Although both IS and CMC are asymptotically optimal, when n is small, IS performs better

than CMC, as we now explain. The IS method only needs to solve a single optimization prob-

lem to determine Zn(D) (see Section 5.2.2) in each replication i. In contrast, our conditional

Monte Carlo method needs to solve several optimization problems to find the roots R∗
i which

equate the optimal value of the primal and the threshold kn for a fixed angle Ψ (see equation

(8) in [8]) in each replication i. Thus, the added computational effort required by CMC can

lead to it performing worse than IS. However, as n increases, conditional Monte Carlo method

works much better. The larger n is, the bigger the advantage CMC has compared to naive

simulation. The advantage arises because of the significant variance reduction obtained for

large n overwhelms the additional computational effort. In conclusion, for a given network,

IS performs best when n is small, and CMC is better when n is large.

3. We have established the asymptotic optimality of our methods as the rarity parameter n → ∞.

But as with any technique for which an asymptotic property has been proven, the performance
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for fixed n when the asymptotics are not yet in effect may differ from that for large n, and

may not outperform naive simulation. We explore this by varying n in our experiments.

7 Final Comments

We discuss a distribution network model with each node subjected to given fixed supply and Gaus-

sian random demand. The unserved demand at a node is distributed proportionally to its neighbors.

The equilibrium point is determined by a linear program whose objective is to minimizing the sum

of excess demands across all nodes in this network. We developed IS and CMC approaches to effi-

ciently estimate the failure probability. Numerical results show that these two algorithms greatly

outperform naive simulation, especially when the threshold n is large.

We can make several extensions.

• Cost Structure: We assume unit cost associated with pushing unit demand from one node

to another. In other words, let ci,j be the cost by distributing unit demand from node i to

node j. Currently, ci,j = 1 for all (i, j) ∈ E. We can generalize this setting by using a path

dependent cost structure, which means ci,j can be different for different (i, j). At the same

time, the objective function of the primal problem (2) now becomes

min

d∑

i=1

d∑

j=1

x+i aijcij.

Here, we claim that, all theorems in the paper are still valid for the generalized structure as

long as ci,j > 0 for all (i, j) ∈ E. To see this, Theorem 3 has generalized the cost structure for

Theorems 1 and 2. We can also prove Theorems 4, 5, and 6 with straightforward modifications.

• Elliptical Copula: For CMC algorithm, note that the algorithm requires that the radial com-

ponent, R, is a positive continuous random variable and that we are able to calculate the root

for the optimal value of the primal as a function of R conditional on the angular part, Ψ.

Therefore the conditional Monte Carlo algorithm applies as long as the demand vector D is

an elliptical copula.

• Growing Number of Nodes: In this paper, all of our discussion focuses on a given graph with

a fixed number of nodes. We can also consider the asymptotic behavior of a graph when the

number of nodes grows large. Similar properties and simulation algorithms can be developed

by embedding the Gaussian vector of demands in a continuous Gaussian random field, so that

Borell-TIS inequality ([2], p. 50) can be applied in the proof of Theorem 4.
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A Proof of Theorem 2

Proof. Proof: Suppose both x1 =

(
x+
1

x−
1

)
and x2 =

(
x+
2

x−
2

)
are optimal solutions. Let d∗ = x1−x2 =

(
x+
1 − x+

2

x−
1 − x−

2

)
=

(
d∗+

d∗−

)
, which is of dimension 2d. We want to prove that d∗ = 0. Consider the

following linear program:

(P ) min 0′d

s.t. 1′d+ = 0

(A′ − I)d+ + Id− = 0

d ≥ ej,

where ej is a 2d-dimensional vector with the jth element equal to 1 and other elements equal to 0.

Equivalently, we write the LP (P ) as

min 0′d

s.t. Bd = 0 (α)

d ≥ ej , (β)

where B =

(
1′ 0′

A′ − I I

)
. Then we only need to prove the above LP is infeasible for all 1 ≤ j ≤ 2d.

Consider the corresponding dual problem:

(D) max β′ej

s.t. B′α+ β = 0

β ≥ 0.
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Then, for all m > 0, α =

(
−m

−m1

)
,β =

(
m1

m1

)
is a feasible solution to (D) since (I−A)1 = 0. The

value of the objective function is m. Due to the arbitrariness of m, we see that the optimal value of

the dual is unbounded. Therefore, for all 1 ≤ j ≤ 2d, the primal is infeasible. Hence, each element

of d must be 0, which means that x1 = x2, proving part (a). Note that the objective function of

the LP can be of multiple forms since we only aim to prove the infeasibility, and different choice of

the objective function only leads to different construction of α and β.

To establish (b), suppose (x+,x−) is the optimal solution of the primal (2). Suppose for some

1 ≤ k ≤ d, both x+k and x−k are strictly positive, i.e., x+k > δ and x−k > δ for some δ > 0. Let

x̂+k = x+k − δ, x̂−k = x−k − δ, and define a new vector (x̄+, x̄−) as follows:




x̄+i = x̂+k , x̄

−
i = x̂−k , if i = k;

x̄+i = x+i , x̄
−
i = x̄i

+ − (Di − si +
∑

j:(j,i)∈E x̄+j aji), otherwise.

Then it is not hard to show that x̄ =

(
x̄+

x̄−

)
is a feasible solution to the problem (2). In addition,

the value of the objective function at x̄ is strictly less than the value at x, which conflicts with the

optimality of x. Therefore, at least one element in the pair (x+k , x
−
k ) is zero, ∀1 ≤ k ≤ d.

B Proof of Theorem 3

Proof. Proof: Consider the problem

(P ′) min f1(x
+)

s.t. (A′ − I)x+ + Ix− = s−D (α)

x+ ≥ 0 (µ)

x− ≥ 0, (λ)

Suppose x∗ =

(
x∗+

x∗−

)
is the optimal solutions to (P ′), and the Lagrange function is

L(x∗,α,µ,λ) = f(x∗+) +α′[(A′ − I)x∗+ + Ix∗− − s+D]− µ′x∗+ − λ′x∗−.

Then (x∗+,x∗−) and (α,µ,λ) satisfy the Karush-Kuhn-Tucher (KKT) conditions when f = f1,
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i.e. 



∇x+f + (A− I)α− µ = 0

α− λ = 0

x∗+i µi = 0,∀i
x∗−i λi = 0,∀i
(A′ − I)x∗+ + Ix∗− = s−D

x∗+ ≥ 0,x∗− ≥ 0,µ ≥ 0,λ ≥ 0,

where ∇x+f represents the gradient of f with respect to x+. Now we would like to construct the

dual solution vector (α̂, µ̂, λ̂), such that when f = f2, (x
∗+,x∗−) and (α̂, µ̂, λ̂) satisfy the above

KKT conditions. Then we can claim that (x∗+,x∗−) is also the optimal solution when f = f2.

Define H = {1 ≤ i ≤ d : x∗+i > 0}, and H̄ = {1, 2, . . . , d}\H. For each i ∈ H, set µ̂i = 0;

and for each i ∈ H̄, set λ̂i = 0. Without loss of generality we assume that H = {1, 2, . . . , |H|}.

Let µH̄ = {µ|H|+1, µ|H|+2, . . . , µd}, λH = {λ1, λ2, . . . , λ|H|}, and ξ =

(
λH
µH̄

)
. Let Q be a d × d

diagonal matrix with the first |H| diagonal elements equal to 1 and the remaining elements equal

to 0. Considering the second KKT condition, the first KKT condition becomes

∇x+f + (A− I)α− µ = ∇x+f + (A− I)λ− µ = ∇x+f + (A− I)Qξ − (I −Q)ξ = 0

⇒ [(I −Q)− (A− I)Q]ξ = ∇x+f

⇒ (I −AQ)ξ = ∇x+f.

Notice that the matrix A is irreducible and stochastic. Also we claim that Q cannot be the identity

matrix with probability 1. To see this, suppose Q is the identity matrix, in other words, x∗+i >

0,∀1 ≤ i ≤ d. Note that the conclusion of Theorem 2(b) is still valid when the objective function

is f , and the proof is exactly the same. Then x∗−i = 0,∀1 ≤ i ≤ d. Adding all constraints in

the primal problem (2) gives us
∑d

i=1Di =
∑d

i=1 si. But this equality holds with probability 0.

Therefore, (I − AQ) is invertible with probability 1, and ξ = (I − AQ)−1∇x+f . Because f is

increasing in x+ and (I − AQ)−1 ≥ 0, we have that ξ ≥ 0. It is obvious that (x∗+,x∗−) and

(α̂, µ̂, λ̂) = (Qξ, (I −Q)ξ, Qξ) satisfy the above KKT conditions when f = f2.

C Proof of Theorem 4

Proof. Proof: We will prove this result by establishing upper and lower bounds on P{Ln(D) > kn}.
We start with deriving an upper bound. Note that h(t) ,

D(t)−µ(t)
σ(t) follows standard Gaussian

distribution. We first claim that

{Ln(D) > kn} ⊆ { max
i=1,...,d

D(ti)− sn(ti) > 0}. (11)
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To see this, if we assume max
i=1,...,d

D(ti) − sn(ti) ≤ 0, then D(ti) ≤ s(ti),∀i = 1, 2, . . . , d. According

to Theorem 1(b), the primal problem (2) is feasible, and it is easy to see that x+i = 0, x−i =

sn(ti) − D(ti) ≥ 0,∀i = 1, 2, . . . , d, is an optimal solution to the primal problem. In this case

Ln(D) = 0. Thus { max
i=1,...,d

D(ti) − sn(ti) > 0}c ⊆ {Ln(D) > kn}c, where “c” represents the

complement of a set, and Equation (11) is valid. Therefore,

P{Ln(D) > kn} ≤ P{ max
i=1,...,d

D(ti)− sn(ti)

σ(ti)
> 0}

= P{max
t∈T

(h(t) − sn(t)− µ(t)

σ(t)
) > 0}.

Set t̂ = argmax
t∈T

µ(t)
σ(t) . Note that when n is large enough, nβγ(t∗)

σ(t∗) − µ(t̂)

σ(t̂)
> 0. Then

P{Ln(D) > kn} ≤ P{max
t∈T

h(t) >
nβγ(t∗)
σ(t∗)

− µ(t̂)

σ(t̂)
}

≤ C̄ exp{−1

2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)

σ(t̂)
)2}, (12)

where C̄ is some positive constant, and the last step makes use of the fact that if a random variable

X follows standard Gaussian distribution, then for any x > 0, P{X > x} ≤ exp{−x2/2}
x
√
2π

. This

establishes the desired upper bound on P{Ln(D) > kn}.
To obtain a lower bound on the probability, define g(t) , 1√

2π

σ(t)
sn(t)−µ(t)+kn

exp{− (sn(t)−µ(t)+kn)2

2σ2(t)
},

t ∈ T , where kn ≥ 0 is some constant. We now claim that

P{Ln(D) > kn} ≥ P{ max
i=1,...,d

D(ti)− sn(ti) > kn}.

To see this, note that if maxi=1,...,dD(ti) − sn(ti) > k, then there exists some 1 ≤ i0 ≤ d such

that D(ti0) − sn(ti0) > kn. Let y be the vector with the i0-th element equal to 1 and the rest of

the elements equal to 0. It is easy to see that y is a feasible solution to the dual problem (3) and

y′(D − s) = D(ti0)− sn(ti0) > k. Therefore, Ln(D) > kn. Then,

P{Ln(D) > kn} ≥ P{ max
i=1,...,d

D(ti)− sn(ti) > kn} (13)

≥ P{D(t∗)− sn(t
∗) > kn}

≥ 1√
2π

σ(ti0)

sn(ti0)− µ(ti0) + kn
exp{−(sn(ti0)− µ(ti0) + kn)

2

2σ2(ti0)
}

= g(t∗)C, (14)

where C is some positive constant, and the second-to-last step applied the fact that if a random
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variable X ∼ N(µ̄, σ̄2), where σ̄ > 0, then for all α > µ̄,

P{X > α} ≥ 1√
2π

σ̄

α− µ̄
exp{−(α− µ̄)2

2σ̄2
}, (15)

giving us the desired lower bound on P{Ln(D) > kn}.
Therefore, (12), (13), and (14) imply for n sufficiently large,

1√
2π

σ(t∗)
nβγ(t∗)− µ(t∗) + kn

exp{−(nβγ(t∗)− µ(t∗) + kn)
2

2σ2(t∗)
}C

≤ P{ max
i=1,...,d

D(ti)− sn(ti) > kn}

≤ P{Ln(D) > kn} ≤ exp{−1

2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)

σ(t̂)
)2}C̄.

Taking logarithms, we have

log[
1√
2π

σ(t∗)
nβγ(t∗)− µ(t∗) + kn

]− (nβγ(t∗)− µ(t∗) + kn)
2

2σ2(t∗)
+ logC]

≤ logP{ max
i=1,...,d

D(ti)− sn(ti) > kn}

≤ logP{Ln(D) > kn} ≤ −1

2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)

σ(t̂)
)2 + log C̄.

Because

lim
n→∞

1

n2β

(
log [

1√
2π

σ(t∗)
nβγ(t∗)− µ(t∗) + kn

]− (nβγ(t∗)− µ(t∗) + kn)
2

2σ2(t∗)
+ logC

)

= lim
n→∞

− 1

n2β

1

2

(nβγ(t∗)− µ(t∗) + kn)
2

σ2(t∗)
= − γ2(t∗)

2σ2(t∗)
,

it follows that

lim
n→∞

n−2β logP{Ln(D) > kn} = lim
n→∞

n−2β logP{ max
i=1,...,d

D(ti)− sn(ti) > kn} = − γ2(t∗)
2σ2(t∗)

,

thereby verifying (5) and (6).
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D Proof of Theorem 5

Proof. Proof: Let EQ denote the expectation under Q, so by (11), we have

logEQ[Z
2
n(D)] = logEQ[(

dP

dQ
I{Ln(D) > kn})2]

≤ logEQ[
(dP
dQ

I{ max
i=1,...,d

D(ti)− sn(ti) > 0}
)2
].

Since I{ max
i=1,...,d

D(ti)− sn(ti) > 0} = 1 implies
∑d

j=1 I{D(tj)− sn(tj) > 0} ≥ 1, and under measure

Q,
∑d

j=1 I{D(tj)− sn(tj) > 0} ≥ 1,

dP

dQ
I{ max

i=1,...,d
D(ti)− sn(ti) > 0} =

∑d
j=1 P{D(tj)− sn(tj) > 0}

∑d
j=1 I{D(tj)− sn(tj) > 0}

I{ max
i=1,...,d

D(ti)− sn(ti) > 0}

≤
d∑

j=1

P{D(tj)− sn(tj) > 0}.

Thus

logEQ[Z
2
n(D)] ≤ log

( d∑

j=1

P{D(tj)− sn(tj) > 0}
)2

= 2 log
d∑

j=1

P{D(tj)− sn(tj) > 0}.

Since

P{ max
i=1,...,d

D(ti)− sn(ti) > 0} ≤
d∑

j=1

P{D(tj)− sn(tj) > 0} ≤ d× P{ max
i=1,...,d

D(ti)− sn(ti) > 0},

we have

lim
n→∞

log
∑d

j=1 P{D(tj)− sn(tj) > 0}
log P{ max

i=1,...,d
D(ti)− sn(ti) > 0} = 1.

Therefore,

lim
n→∞

logEQ[Z
2
n(D)]

log P{Ln(D) > kn}
≤ lim

n→∞

2 log
∑d

j=1 P{D(tj)− sn(tj) > 0}
logP{ max

i=1,...,d
D(ti)− sn(ti) > 0}

log P{ max
i=1,...,d

D(ti)− sn(ti) > 0}

logP{Ln(D) > kn}
= 2,

where the last equation follows from Theorem 4.

E Proof of Theorem 6

Proof. Proof: We first prove (9). Let Ω = {y : My ≤ 1,y ≥ 0} denote the feasible region of the dual

problem (3). Then Ln(D) = maxy′(µ+ RWΨ− nβγ),y ∈ Ω, where γ = (γ(t1), γ(t2), . . . , γ(td))
′
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as defined in Section 4. We are interested in the failure probability, which includes two cases as we

noted previously in Section 2. One case is that the primal problem is infeasible, which, according

to Theorem 1(b), occurs if and only if when 1′(µ+ RWΨ− nβγ) > 0. The other case is that the

primal problem is feasible but the optimal value is greater than kn. Since the dual problem is an

LP, for the second case, we can focus on the extreme points of the feasible region Ω. Since kn ≥ 0,

when y = 0, the optimal value is 0, so we do not have a failure. Therefore, we do not need to

consider the solution 0 when calculating the failure probability.

Suppose {ỹi : i = 1, 2, . . . ,m} are the extreme points of Ω, excluding 0, and we have

{Ln(D) > kn} = {1′(µ+RWΨ− nβγ) > 0}
⋃[ m⋃

i=1

{ỹ′
i(µ+RWΨ− nβγ) > kn}

]

=

m⋃

i=0

{ỹ′
i(µ+RWΨ− nβγ) > ki},

where ỹ0 = 1, and

ki =




0, i = 0;

kn, i = 1, 2, . . . ,m.

Let n1 = max{0, max
i=0,1,...,m

ỹ′

iµ−ki
ỹ′

iγ
}1/β .Then when n > n1, we have nβỹ′

iγ − ỹ′
iµ + ki > 0. Recall

that R is a positive random variable, so

ỹ′
i(µ+RWΨ− nβγ) > ki ⇒




R >

nβỹ′

iγ−ỹ′

iµ+ki
ỹ′

iWΨ
, if ỹ′

iWΨ > 0;

R ∈ ∅, if ỹ′
iWΨ ≤ 0.

Define

Γ0 = {Ψ : ‖Ψ‖ = 1, max
i=0,1,...,m

ỹ′
iWΨ > 0},

MΨ = {i = 0, 1, . . . ,m : ỹ′
iWΨ > 0}.

For Ψ ∈ Γ0, define

H(Ψ, n) = min
i∈MΨ

nβỹ′
iγ − ỹ′

iµ+ ki
ỹ′
iWΨ

,

S(Ψ) = min
i∈MΨ

ỹ′
iγ

ỹ′
iWΨ

, iΨ ∈ arg min
i∈MΨ

ỹ′
iγ

ỹ′
iWΨ

, ỹΨ = ỹiΨ .

It is easy to see that when n > n1,

P{Ln(D) > kn} = P{R > H(Ψ, n)}. (16)

In the non-trivial case when Γ0 6= ∅, there exists some Ψ0 ∈ Γ0. Let a = max
i=0,1,...,m

ỹ′
iWΨ0 > 0.
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Define

Γa = {Ψ : ‖Ψ‖ = 1, max
i=0,1,...,m

ỹ′
iWΨ ≥ a}.

Let us consider inequality (9) first. We have

Tn(Ψ) = P{R > H(Ψ, n)|Ψ} ≤ P{R > inf
Ψ∈Γ0

H(Ψ, n)} = P{R > inf
Ψ∈Γa

H(Ψ, n)},

and

inf
Ψ∈Γa

H(Ψ, n) = inf
Ψ∈Γa

min
i∈MΨ

nβỹ′
iγ − ỹ′

iµ+ ki
ỹ′
iWΨ

≥ inf
Ψ∈Γa

min
i∈MΨ

nβỹ′
iγ

ỹ′
iWΨ

+ inf
Ψ∈Γa

min
i∈MΨ

−ỹ′
iµ+ ki

ỹ′
iWΨ

= nβ inf
Ψ∈Γa

S(Ψ) + inf
Ψ∈Γa

min
i∈MΨ

−ỹ′
iµ+ ki

ỹ′
iWΨ

.

Note that both S(Ψ) and min
i∈MΨ

−ỹ′

iµ+ki
ỹ′

iWΨ
are continuous with respect to Ψ on the compact set Γa.

Then there exist Ψ∗ ∈ Γa and η1 = O(nβ) such that

inf
Ψ∈Γa

S(Ψ) = S(Ψ∗) =
ỹ′
Ψ

∗γ

ỹ′
Ψ

∗WΨ∗ ,

inf
Ψ∈Γa

min
i∈MΨ

−ỹ′
iµ+ ki

ỹ′
iWΨ

= η1. (17)

Therefore,

inf
Ψ∈Γa

H(Ψ, n) ≥ nβS(Ψ∗) + η1.

Then we have

Tn(Ψ) ≤ P{R > nβS(Ψ∗) + η1}.

Let s∗ , S(Ψ∗), then (9) is established.

Now we consider the inequality (10). We claim that for any Ψ in Γa, there exists n2(Ψ) > 0

such that when n > n2(Ψ),

H(Ψ, n) = nβS(Ψ) +
kΨ − ỹ′

Ψ
µ

ỹ′
Ψ
WΨ

, (18)

where kΨ is the ki corresponding to ỹΨ. To see why this is true, observe that for any i ∈ MΨ,

λi ,nβS(Ψ) +
kΨ − ỹ′

Ψ
µ

ỹ′
Ψ
WΨ

− nβỹ′
iγ − ỹ′

iµ+ ki
ỹ′
iWΨ

=nβ
(
S(Ψ)− ỹ′

iγ

ỹ′
iWΨ

) + (
kΨ − ỹ′

Ψ
µ

ỹ′
Ψ
WΨ

− ki − ỹ′
iµ

ỹ′
iWΨ

)
.
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We know that S(Ψ)− ỹ′

iγ

ỹ′

iWΨ
≤ 0. Define

IΨ = {i ∈ MΨ : S(Ψ)− ỹ′
iγ

ỹ′
iWΨ

= 0}, I−
Ψ

= {i ∈ MΨ : S(Ψ)− ỹ′
iγ

ỹ′
iWΨ

< 0}.

Choose

iΨ ∈ argmin
i∈IΨ

kΨ − ỹ′
Ψ
µ

ỹ′
Ψ
WΨ

,

then λi ≤ 0,∀i ∈ IΨ. For i ∈ I−
Ψ
, note that both S(Ψ)− ỹ′

iγ

ỹ′

iWΨ
and

kΨ−ỹ′

Ψ
µ

ỹ′

Ψ
WΨ

− ki−ỹ′

iµ

ỹ′

iWΨ
are bounded

on Γa. Then there exist η2(Ψ), η3(Ψ) > 0, such that

S(Ψ)− ỹ′
iγ

ỹ′
iWΨ

≤ −η2(Ψ),

−η3(Ψ) ≤ kΨ − ỹ′
Ψ
µ

ỹ′
Ψ
WΨ

− ki − ỹ′
iµ

ỹ′
iWΨ

≤ η3(Ψ).

Since kn = o(nβ), there exists n2(Ψ) > 0, such that when n > n2(Ψ), λi ≤ 0,∀i ∈ I−
Ψ
. Therefore,

when n > max{n1, n2(Ψ
∗)}, it follows that λi ≤ 0,∀i ∈ MΨ

∗ , so

H(Ψ∗, n) = nβS(Ψ∗) +
kΨ∗ − ỹ′

Ψ
∗µ

ỹ′
Ψ

∗WΨ∗ . (19)

We also claim that there exist c1 > 0, c2 ∈ R , such that if n > max{n1, n2(Ψ
∗)}, then

H(Ψ, n)−H(Ψ∗, n) ≤ (nβc1 + c2)‖Ψ −Ψ∗‖ on Γa. To see this, for any δ > 0 and θ ∈ Γa , define

B(θ, δ) = {Ψ ∈ Γa : ‖Ψ − θ‖ ≤ δ}. Note that there exists δ1 > 0, such that when 0 < δ ≤ δ1, and

n > max{n1, n2(Ψ
∗)}, for any Ψ ∈ B(Ψ∗, δ), we have that the index corresponding to ỹΨ

∗ is in

MΨ, and

H(Ψ, n)−H(Ψ∗, n) = min
i∈MΨ

nβỹ′
iγ − ỹ′

iµ+ ki
ỹ′
iWΨ

− nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗

ỹ′
Ψ

∗WΨ∗

≤ nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗

ỹ′
Ψ

∗WΨ
− nβỹ′

Ψ
∗γ − ỹ′

Ψ
∗µ+ kΨ∗

ỹ′
Ψ

∗WΨ∗

= (nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗)
ỹ′
Ψ

∗WΨ∗ − ỹ′
Ψ

∗WΨ

ỹ′
Ψ

∗WΨỹ′
Ψ

∗WΨ∗

= (nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗)
W ′ỹ′

Ψ
∗Ψ∗ −Ψ

ỹ′
Ψ

∗WΨỹ′
Ψ

∗WΨ∗ .

Since ỹ′
Ψ

∗WΨỹ′
Ψ

∗WΨ∗ is continuous on B(Ψ∗, δ), there exists δ2 ≥ 0 such that when 0 < δ ≤
min{δ1, δ2}, we have

ỹ′
Ψ

∗WΨỹ′
Ψ

∗WΨ∗ ≥ (ỹ′
Ψ

∗WΨ∗)2 − c0 > 0,

where c0 is some positive constant.



25

Define c1 = ỹ′
Ψ

∗γ
‖W ′ỹΨ∗‖

(ỹ′

Ψ∗WΨ
∗)2−c0

> 0, c2 = (kΨ∗ − ỹ′
Ψ

∗µ)
‖W ′ỹΨ∗‖

(ỹ′

Ψ∗WΨ
∗)2−c0

. Since kn = o(nβ), there

exists n3(Ψ
∗) > 0, such that when n > max{n1, n2(Ψ

∗), n3(Ψ
∗)}, we have nβc1+c2 > 0. Therefore,

H(Ψ, n)−H(Ψ∗, n) ≤ (nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗)
W ′ỹ′

Ψ
∗Ψ∗ −Ψ

ỹ′
Ψ

∗WΨỹ′
Ψ

∗WΨ∗

≤ (nβỹ′
Ψ

∗γ − ỹ′
Ψ

∗µ+ kΨ∗)
‖W ′ỹΨ

∗‖‖Ψ∗ −Ψ‖
(ỹ′

Ψ
∗WΨ∗)2 − c0

= (nβc1 + c2)‖Ψ∗ −Ψ‖.

So for any Ψ ∈ B(Ψ∗, δ),

H(Ψ, n) ≤ H(Ψ∗, n) + (nβc1 + c2)δ. (20)

Since Ψ is uniformly distributed over the unit sphere, which is a (d− 1)-dimensional manifold,

there exists some constant c3 > 0 such that

P{‖ Ψ−Ψ∗ ‖≤ δ} ≥ c3δ
(d−1).

Let δ = n−β. By equations (16) and (20), it follows that

P{Ln(D) > kn} = P{R > H(Ψ, n)}
≥ P{R > H(Ψ∗, n) + (nβc1 + c2)δ, ‖ Ψ−Ψ∗ ‖≤ δ}
≥ c3P{R > H(Ψ∗, n) + (nβc1 + c2)δ}δ(d−1)

= c3P{R > nβS(Ψ∗) +
kΨ∗ − ỹ′

Ψ
∗µ

ỹ′
Ψ

∗WΨ∗ + (c1 + c2n
−β)}n−(d−1)β (21)

= c3P{R > nβS(Ψ∗) +O(1)}n−(d−1)β .

Hence, we have proven (10).

We now establish the last part of the theorem. By (9) and (21), we have

log
(
E[T 2

n(Ψ)]
)

log (P{L(D) > kn})
≤ log

(
P 2{R > nβS(Ψ∗) + η1}

)

log
(
c3P{R > nβS(Ψ∗) +

kΨ∗−ỹ′

Ψ∗µ

ỹ′

Ψ∗WΨ
∗ + (c1 + c2n−β)}n−(d−1)β

)

=
2 log

(
P{R > nβS(Ψ∗) + η1}

)

log c3 + log
(
P{R > nβS(Ψ∗) +

kΨ∗−ỹ′

Ψ∗µ

ỹ′

Ψ∗WΨ
∗ + (c1 + c2n−β)}

)
− (d− 1)β log n

= 2
( log

(
P{R > nβS(Ψ∗) +

kΨ∗−ỹ′

Ψ∗µ

ỹ′

Ψ∗WΨ
∗ + (c1 + c2n

−β)}
)

log (P{R > nβS(Ψ∗) + η1})
+

log c3 − (d− 1)β log n

log (P{R > nβS(Ψ∗) + η1})
)−1

.

(22)
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Recall that nβc1 + c2 > 0 when n > max{n1, n2(Ψ
∗), n3(Ψ

∗)}, so (17) implies

η1 = inf
Ψ∈Γa

inf
i∈MΨ

−ỹ′
iµ+ ki

ỹ′
iWΨ

≤ kΨ∗ − ỹ′
Ψ

∗µ

ỹ′
Ψ

∗WΨ∗ + (c1 + c2n
−β).

Therefore,

P{R > nβS(Ψ∗) +
kΨ∗ − ỹ′

Ψ
∗µ

ỹ′
Ψ

∗WΨ∗ + (c1 + c2n
−β)} ≤ P{R > nβS(Ψ∗) + η1},

and

logP{R > nβS(Ψ∗) +
kΨ∗−ỹ′

Ψ∗µ

ỹ′

Ψ∗WΨ
∗ + (c1 + c2n

−β)}
log P{R > nβS(Ψ∗) + η1}

≥ log P{R > nβS(Ψ∗) + η1}
log P{R > nβS(Ψ∗) + η1}

= 1.

When n > n4 = elog c3/β(d−1) , the second term inside the parentheses in (22) is non-negative. Then

when n > n0 = max{n1, n2(Ψ
∗), n3(Ψ

∗), n4}, it follows that (22) is bounded above by 2, thereby

concluding the result.
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