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We generalize the serial dictatorship (SD) and probabilistic serial (PS) mechanism for assigning indivisible

objects (seats in a school) to agents (students) to accommodate distributional constraints. Such constraints

are motivated by equity considerations. Our generalization of SD maintains several of its desirable prop-

erties, including strategyproofness, Pareto optimality, and computational tractability while satisfying the

distributional constraints with a small error.

Our generalization of the PS mechanism finds an ordinally efficient and envy-free assignment while sat-

isfying the distributional constraint with a small error. We show, however, that no ordinally efficient and

envy-free mechanism is also weakly strategyproof. Both of our algorithms assign at least the same number

of students as the optimum fractional assignment.

1. Introduction

We consider the problem of assigning indivisible objects to agents with privately known preferences

who are interested in consuming at most one object. One classic solution for this problem is the

serial dictatorship (SD) mechanism, which considers agents in a certain order and assigns to each

agent her most preferred object from the remaining objects. Some applications of SD (with some

variations) include school choice (Abdulkadiroğlu et al. 2009, Pathak and Sönmez 2013), college

admissions (Chen and Kesten 2017, Baswana et al. 2018), on-campus housing and office allocation

(Chen and Snmez 2002). The SD mechanism has several desirable properties. It is strategyproof,

Pareto efficient, and computationally efficient. Random serial dictatorship (RSD), which picks the

order of agents uniformly at random, also treats agents with identical preferences equally in the

sense that it assigns them each object with the same probability.

In spite of RSD’s attractive features it entails an unambiguous efficiency loss ex ante. Specifically,

it fails to be ordinally efficient, as agents may be better off trading probability shares before the

outcome is realized (for a formal definition see Section 4). The probabilistic serial (PS) mechanism,
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introduced by Bogomolnaia and Moulin (2001), eliminates the inefficiency present in RSD. The

PS mechanism can be described as follows. Imagining that each object is divisible, all agents

simultaneously “eat” at rate one from their most preferred object among the remaining objects.

This process continues for one unit of time, after which objects are assigned randomly to agents

with probabilities that correspond to the divisible shares each agent has consumed. Note that these

mechanisms can be simulated using a computer after agents report their ordinal preferences over

objects. One drawback of PS is that it is not strategyproof, but satisfies a weaker notion, that is

known as weak strategyproofness (Bogomolnaia and Moulin 2001).

The goal of this paper is to extend the SD and PS mechanisms to settings with distributional

constraints. Constraints of this sort arise in various contexts. Some school districts impose quotas

for students based on geographic location in order to increase socioeconomic integration. Regional

quotas are imposed in resident matching in Japan so that programs in rural areas do not remain

underassigned (Kamada and Kojima (2014)). Quotas are imposed when assigning cadets to army

branches (Sönmez and Switzer (2013)). Similar policies are adopted in college admissions in various

countries (Braun et al. 2014, Biró et al. 2010). When assigning refugees who often have family

needs, various constraints arise due to local service capacities (Delacrétaz et al. 2016). In each of

these applications it is desirable to leave as few unassigned agents as possible.

One challenge with generalizing these mechanisms to accommodate distributional constraints

is computational; even checking whether there is an assignment that satisfies the distributional

constraints is NP-complete (Ashlagi et al. 2019) . Given this, we treat the distributional constraints

as soft and look for assignments that do not violate the given constraints by much, as following

Nguyen and Vohra (2016). In some of the above applications it is arguably reasonable to allow for

small violations of these constraints.

Next we describe our contributions. For exposition purposes, we formulate the problem in terms

of assigning students to schools. Each student in the model has a publicly known type (a type

can encode for example the neighborhood of the student, socio-economic status or race) and a

privately known ordinal ranking over schools. Each school has lower- and upper-bound quotas for

the number of students of certain types that it can admit. We are interested in assigning as many

students to schools as possible. We refer to this property as “allocative efficiency”.

Our main contribution is a generalization of the serial dictatorship mechanism, which maintains

strategyproofness, Pareto efficiency, and computational efficiency. It also produces assignments

that violate the distributional constraints by no more than the number of available types.

In addition to the above properties, the number of students our mechanism assigns is at least the

number of students that can be fractionally assigned, subject to distributional constraints (see, e.g.,

Kamada and Kojima (2014) and Ehlers et al. (2014)). We refer to this benchmark as OPT. Observe
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that some constraints may need to be violated to achieve this benchmark. One assumption we make

is that all schools are acceptable to all students; this is important to achieve allocative efficiency

together with strategyproofness (thus preventing students from truncating their preference lists).

This is a reasonable assumption when outside options are very limited, as arguably the case when

assigning refugees, assigning cadets to military schools, or assigning students with few local private

schools.

The key idea behind the mechanism is to carefully design a menu of schools that are available for

each student who is about to be assigned. This is done by iteratively solving a set of linear programs

before each assignment, one for each school, which checks whether the student can possibly be

assigned to the school in a way that eventually at least OPT students will be assigned.

We further introduce a generalization of the probabilistic serial algorithm, which produces an

ordinally efficient assignment. The main idea is that during the “eating” process, a student who is

about to violate a constraint that is associated with the school she is eating from, switches to eat

from her next most preferred school. The eating process terminates with a fractional assignment,

which is then implemented as a lottery over integral assignments such that no distributional con-

straint is violated by more than the number of existing types. We further show that the generalized

PS is envy-free (within-type) and ordinally efficient. However, in contrast to the setting without

distributional constraints, we show that no mechanism is envy-free, ordinally efficient, and weakly

strategyproof.

Finally, we note that violating constraints is necessary for a couple of reasons. First, we wish to

assign at least OPT students. Second, the set of constraints is more general than the bi-hierarchical

structure that is necessary and sufficient for implementing a random assignment using a lottery

over feasible assignments (Budish et al. 2013). In a related work Akbarpour and Nikzad (2015)

consider a class of more general constraints and show how a given feasible fractional assignment

can be implemented using lotteries over integral assignments with small errors (and do not consider

the mechanism design question).

1.1. Related work

There is a growing literature on assignment and matching mechanisms subject to distributional

constraints. Several papers study which constraints allow implementation of affirmative action

(Kojima 2012, Hafalir et al. 2013, Kominers and Sönmez 2013, Westkamp 2013, Ehlers et al. 2014,

Braun et al. 2014, Fleiner and Kamiyama 2012, Yokoi 2016, Huang 2010). These papers consider

either lower- or upper-bound constraints. Since satisfying lower-bound constraints is generally

impossible (Biró et al. 2010), some of these studies also consider soft constraints, but without

providing guarantees on constraint violations. Nor do these studies consider allocative efficiency.
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More general constraints, like “regional-caps” have been considered (Kamada and Kojima 2014,

2017), and several studies have considered lower- and upper-bound constraints simultaneously

(Ehlers et al. 2014, Fragiadakis and Troyan 2017, Fragiadakis et al. 2016, Hamada et al. 2016,

Goto et al. 2015). These studies focus on constrained efficiency or weak stability and seek non-

wasteful outcomes. Our paper allows for constraints on subsets of types while also seeking allocative

efficiency. We focus, however, only on assignment problems with no priorities.

This paper is inspired by Nguyen and Vohra (2018) and Nguyen and Vohra (2016), which,

respectively, study two-sided markets under complementarities and proportionality constraints and

find mechanisms that implement stable matchings without violating each constraint by much. To

bound the constraint violations, they adopt a novel approach using Scarf’s Lemma. We build on

more straightforward techniques though based as well on linear programming. Moreover, we have

a different objective, namely leaving few students unassigned. Noda (2018) has the same objective

as in our paper. However, he assumes constraints cannot be violated and develops, under large

market assumptions, strategyproof mechanisms that are only approximately optimal.

Finally, our paper assumes schools’ preferences are given via ranking lists and quotas are given

exogenously. We refer to Echenique and Yenmez (2015), who characterize schools’ choice rules that

account for diversity preferences and find that natural axioms yield such quotas.

2. Model

A school choice problem consists of a set of students N = {1, . . . , n} and a set of schools M =

{1, . . . ,m}∪{φ}, where φ is an outside option. Every other school is referred to as a regular school.

Each student i∈N has a strict preference ordering ≻i over M . We assume that all students

prefer every regular school to the outside option and later we discuss the robustness of the results

based on this assumption. Each student i∈N is associated with a commonly known type ti, which

belongs to a finite set of types denoted by T . Denote by Ct the number of students of type t∈ T .

An assignment of students to schools is given by a matrix [(xi,s)i∈N,s∈M ], where xi,s is the

probability that i is assigned to s, and for all i ∈N ,
∑

s∈M
xi,s = 1. An assignment is integral if

every student i∈N is assigned to a single school s ∈M with probability 1. We refer to an integral

assignment also as an allocation.

It will be useful to consider the assignment of students based on their types. A vector x =

[(xt,s)t∈T,s∈M ] is called a type-assignment if for every type t∈ T ,
∑

s∈M
xt,s =Ct. Note that every

assignment corresponds to a unique type-assignment. Throughout the paper, we will refer to a

type-assignment simply as an assignment.

Next we introduce the distributional constraints. For every s∈M , let Z(s)⊆ 2T be a collection of

subsets R⊆ T . For every s∈M and every R ∈Z(s), we are given lower- and upper-bound quotas
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q
R,s

and q̄R,s, respectively. (q̄T,s can be thought of as the capacity of school s.) We assume there

are no constraints imposed on φ, i.e. Z(φ) = ∅. Let q= [(q
R,s

)s∈M,R∈Z(s)] and q̄= [(q̄R,s)s∈M,R∈Z(s)].

We refer to q= [q, q̄] as the distributional constraints.

We say that an assignment x is feasible with respect to q if

q
R,s
≤
∑

t∈R

xt,s ≤ q̄R,s ∀s∈M,R∈Z(s).

An allocation x Pareto dominates another allocation y if no student is worse off in x than in

y and at least one student is better off. An allocation x is said to be Pareto efficient with respect

to q if there is no other allocation that is feasible with respect to q that Pareto dominates x.

Pareto-efficient allocations can differ with respect to the number of students assigned to regular

schools (see Example 1 below). We are interested in maximizing the number of students that

are assigned to regular schools. Consider the linear program (LP1), which attains this objective

over all feasible fractional assignments, and denote its objective by OPT. That is OPT is the

maximum (fractional) number of students that can be assigned to regular schools without violating

the distributional constraints.

We say that x is allocative efficient if it assigns at least OPT many students to regular schools.

We are interested in finding allocations that are allocative efficient, while violating each lower- and

upper-bound quota by at most |T |.

OPT= max
x∈RT×M

∑

t∈T

∑

s∈M\{φ}

xt,s (LP1)

s.t.
∑

t∈R

xt,s ≤ q̄R,s, s∈M,R∈Z(s)

∑

t∈R

xt,s ≥ q
R,s

, s∈M,R∈Z(s)

∑

s∈M

xt,s =Ct, t∈ T

xt,s ≥ 0, t∈ T, s ∈M.

Throughout the paper we assume that (LP1) has a feasible solution.

Example 1 (Few students assigned to regular schools). This example illustrates that

Pareto efficiency does not imply allocative efficiency and a Pareto-efficient assignment can result in

many unassigned students. To see this, suppose there are 3 types of students, t1, t2, t3, one regular

school s with 20 seats. We are given two constraints: (i) at most 10 students of types t1 or t2 can

be assigned to s, and (ii) at most 10 students of types t1 or t3 can be assigned to s. Observe that

assigning 10 students of type t1 to s, or assigning 10 students of type t2 and 10 students of type t3

to s leads to Pareto efficiency.
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Finally, a mechanism maps preference profiles to allocations. A mechanism is strategyproof

if it is a weakly dominant strategy for every student to reveal her true preferences in the game

induced by the mechanism.

3. Serial Dictatorship with Dynamic Menus

We present a generalization of SD for assignments with distributional constraints. The algorithm

outputs an assignment that satisfies allocative efficiency and violates every lower- and upper-bound

quota by at most |T |. As in SD, students in our algorithm are sequentially assigned to their most

preferred school from a given menu. A key difference is that the menu given to every student is

computed dynamically with the aid of a linear program.

Throughout the algorithm we maintain a vector y= [(yt,s)t∈T,s∈M ] that keeps track of the (pos-

sibly fractional) quantity of students of type t assigned to school s. We refer to y as an incomplete

assignment. We also maintain a vector ∆= [(∆t,s)t∈T,s∈M ] to keep track of how much the lower- and

upper-bound quotas corresponding to each type t ∈ T and school s ∈M have changed so far. For

the sake of convenience, define, for any school s ∈M and subset of types R ∈Z(s), yR,s =
∑

t∈R
yt,s

and ∆R,s =
∑

t∈R
∆t,s.

To design each student’s menu, we will need to solve the following auxiliary linear program (LP2).

The linear program takes an incomplete assignment y and distributional constraints [q+∆, q̄+∆]

as input and looks for a feasible solution x that assigns the remaining students of each type in a

way that is both allocative efficient and feasible with respect to the distributional constraints. The

objective of (LP2) is to find such a solution that maximizes the quantity of students of a given

type t̂ that are assigned to a given school ŝ, which we denote by f(t̂, ŝ).

f(t̂, ŝ) = max
x∈RT×M

xt̂,ŝ (LP2)

s.t.
∑

t∈T

∑

s∈M\{φ}

xt,s+
∑

s∈M\{φ}

yT,s ≥OPT

∑

t∈R

xt,s + yR,s ≤ q̄R,s +∆R,s, s ∈M,R∈Z(s)

∑

t∈R

xt,s + yR,s ≥ q
R,s

+∆R,s, s ∈M,R∈Z(s)

∑

s∈M

xt,s +
∑

s∈M

yt,s =Ct, t∈ T

xt,s ≥ 0, t∈ T, s∈M.

Given the above definitions, we can describe the main ideas of the algorithm. The algorithm

considers the students sequentially in a given (or random) order. Each iteration consists of two steps:

(a) assigning the next student to a school (the “Assignment Step”) and (b) resolving fractional

assignments and updating the distributional constraints (the “Resolution Step”).
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The Assignment Step. Suppose the algorithm has assigned students 1, . . . , i− 1. Let i be the

next student to be assigned and suppose si is her favorite school. We need to determine whether i

can be assigned to si. For this, we solve (LP2) with t̂= ti and ŝ= si. If f(ti, si)≥ 1, i is assigned

to si (with probability 1). If f(ti, si) = 0, i cannot be assigned to si. In this case the algorithm

proceeds to determine if i can be assigned to her next favorite school.

An interesting case arises when 0 < f(ti, si) < 1. In this case we must relax some of the dis-

tributional constraints to be able to assign student i to si. Furthermore, prior to observing the

preferences of students who are not yet assigned, it is unclear exactly which constraints should be

relaxed. Therefore at this point we assign only a fraction f(ti, si) of student i to si in the linear

program and say that student i is partially assigned. Student i remains partially assigned until

her remaining fraction is completely assigned to si (while the algorithm assigns other students).

The assignment is considered resolved once she is completely assigned.

The Resolution Step. After assigning a student (either partially or completely), we proceed to

the next step, where the algorithm attempts to resolve any existing partial assignments and update

the distributional constraints.

To explain how partial assignments are resolved, we use the following definition. A school s is

critical for type t if 0< f(t, s)< 1. Consider an arbitrary student j that is partially assigned to sj

and let rj be the remaining fraction of j that is still unassigned. We ask whether there is another

school s 6= sj that is critical for type tj. Namely, we check whether there exists a school s ∈M

such that 0< f(tj, s)< 1. If such a critical school s is found, we update the variables in a set of

operations we label (j, s)-updates:

(j, s)-updates:



























ρ←min(f(tj, s), rj)

∆tj ,s
←∆tj ,s

− ρ

∆tj ,sj
←∆tj ,sj

+ ρ

ytj ,sj ← ytj ,sj + ρ

rj← rj − ρ

The second-to-last operation increases the fraction of student j assigned to school sj. Note that this

ensures that j will eventually be assigned to sj with probability 1. The second and third operations

adjust the distributional constraints corresponding to schools s and sj so they are not violated and

(LP2) remains feasible. More importantly, they ensure that at every point during the algorithm,

there is never more than one partially assigned student of each type.

Observe that for some critical school s ∈M and some subset of types R ∈Z(s), the lower bound

quotas in (LP2), i.e., q
R,s

+∆R,s, may become negative after a set of (j, s)-updates operations. This,

however, does not create a problem, since the feasible solution is required to be nonnegative. While
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the upper bound quotas, q̄R,s+∆R,s, can also decrease after a set of (j, s)-updates operations, they

never become negative by the definition of ρ. Also observe that if for some type t, there is a less

than one unit of students of type t remaining to be assigned, the outside option becomes critical

for t. Therefore, while resolving a partially assigned student, we will treat the outside option as

any other school.

Next we provide a formal description of the algorithm, called serial dictatorship with dynamic

menus. In addition to y and ∆, we also maintain a set P of partially assigned students throughout

the algorithm.

Algorithm 1 Serial Dictatorship with Dynamic Menus

1: ∆←~0, y←~0, P ←{}.

2: For i= 1 to n,

3: S←M .

4: While i is not assigned, [Assignment Step]

5: si← i’s most preferred school in S.

6: S← S \ si.

7: If f(ti, si)≥ 1 then

8: assign i to si.

9: yti,si← yti,si +1.

10: Else if 0< f(ti, si)≤ 1 then

11: partially assign i to si.

12: P ← P ∪{i}, ri← 1− f(ti, si).

13: yti,si← yti,si + f(ti, si).

14: End

15: While ∃ (j ∈P and s ∈M \ {sj}) such that 0< f(tj, s)< 1, [Resolution Step]

16: (j, s)-updates:

17: ρ←min(f(tj, s), rj).

18: ∆tj ,s
←∆tj ,s

− ρ.

19: ∆tj ,sj
←∆tj ,sj

+ ρ.

20: ytj ,sj ← ytj ,sj + ρ.

21: rj← rj − ρ.

22: If rj =0 then ⊲ Assignment of j to sj is resolved

23: P ← P \ {j}.

24: End

25: End
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Our main result is given and analyzed in Section 3.2. In the next section we illustrate Algorithm

1 on a simple example.

3.1. A simple example

To illustrate Algorithm 1 consider the following simple example (see Appendix A for a more involved

example). There are two schools s1 and s2. There are three students i, j, and k, whose types are

t1, t2, and t3, respectively. Students i and j prefer s1 over s2 and student k prefers s2 over s1. We

are given the following distributional constraints. For each school s∈ {s1, s2} and every two types

t 6= t′, 1≤ xt,s +xt′,s≤ 2.

Observe that the unique feasible fractional solution is the one, in which each student is assigned

to each school with probability 0.5, i.e., xt,s = 0.5 for every t∈ {t1, t2, t3} and s ∈ {s1, s2}. Assume

the order of students to be i, j and k. In the first assignment step, i is partially assigned to s1

(with 0.5), and is added to the set of partially assigned students. In the first resolution step, s2 is

critical for type t1 and f(t1, s2) = 0.5. Therefore, s2 is used to resolve the assignment of i to s1 by

applying the (i, s2)-updates. After this procedure, the constraints of schools s1 and s2 are updated

as follows:

1.5≤ xt1,s1 +xt2,s1 ≤ 2.5, 0.5≤ xt1,s2 +xt2,s2 ≤ 1.5,

1≤ xt2,s1 +xt3,s1 ≤ 2, 1≤ xt2,s2 +xt3,s2 ≤ 2,

1.5≤ xt3,s1 +xt1,s1 ≤ 2.5, 0.5≤ xt3,s2 +xt1,s2 ≤ 1.5.

In the next assignment step, since f(t2, s1) = 0.5, j will we partially assigned to s1. Similarly, in

the next resolution step, s2 is used to resolve her assignment. The constraints are updated to:

2≤ xt1,s1 +xt2,s1 ≤ 3, 0≤ xt1,s2 +xt2,s2 ≤ 1,

1.5≤ xt2,s1 +xt3,s1 ≤ 2.5, 0.5≤ xt2,s2 +xt3,s2 ≤ 1.5,

1.5≤ xt3,s1 +xt1,s1 ≤ 2.5, 0.5≤ xt3,s2 +xt1,s2 ≤ 1.5.

In the final assignment step, k will be partially assigned to s2 since f(t3, s2) = 0.5. Since f(t3, s1) =

0.5, her assignment will be resolved in the following resolution step using the (k, s1)-updates. The

final constraints are:

2≤ xt1,s1 +xt2,s1 ≤ 3, 0≤ xt1,s2 +xt2,s2 ≤ 1,

1≤ xt2,s1 +xt3,s1 ≤ 2, 1≤ xt2,s2 +xt3,s2 ≤ 2,

1≤ xt3,s1 +xt1,s1 ≤ 2, 1≤ xt3,s2 +xt1,s2 ≤ 2,

and the algorithm terminates with i and j assigned to s1 and k assigned to s2.
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3.2. Analysis of Algorithm 1

Before we prove our main result, we establish a few useful properties of Algorithm 1.

Claim 1. Fix a (j, s)-updates sequence of operations for student j and school s.

(i) Let x be a feasible solution to (LP2) before the (j, s)-updates that satisfies xtj ,s
≥ ρ. Then

setting xtj ,s
← xtj ,s

− ρ generates a feasible solution to (LP2) after the (j, s)-updates.

(ii) Let x be a feasible solution to (LP2) after the (j, s)-updates. Then setting xtj ,s
← xtj ,s

+ ρ

generates a feasible solution to (LP2) before the (j, s)-updates.

Proof. We show the first part (the other part follows similar arguments). Observe that after

the (j, s)-updates,
∑

s∈M\{φ} yT,s increase by ρ and
∑

t∈T

∑

s∈M\{φ} xt,s decreases by ρ, implying

that the first constraint of (LP2) holds.

The second and third constraints in (LP2) hold for all schools other than s and sj since the values

of x and y and ∆ remain the same for these schools. These constraints also hold for school s because

∆tj ,s
and xtj ,s

have decreased by the same amount whereas the value of ytj ,s remains unchanged.

Similarly they hold for school sj because ytj ,sj and ∆tj ,sj
have increased by the same amount

while xtj ,sj
remains unchanged. The fourth constraint holds because after the (j, s)-updates, xtj ,s

decreases by ρ, ytj ,sj increases by ρ, and all other coordinates of x and y remain the same. Therefore,
∑

s∈M
xt,s+

∑

s∈M
yt,s remains constant for each t∈ T . �

Lemma 1. (LP2) is feasible after each assignment step and after each resolution step in Algorithm

1.

Proof. At the beginning of the algorithm, before any assignments are made, (LP2) is feasible

based on the assumption that there is a feasible solution for (LP1). We next show that (LP2) is

feasible after each assignment step and after each (j, s)-update in the resolution step.

Consider an assignment step and let i be the student that is being assigned to school si (pos-

sibly partially). Observe that the only change in y when i is being assigned is yti,si ← yti,si +

min(f(ti, si),1). Let x be a solution for f(ti, si) just before assigning i to si. Then setting xti,si
←

xti,si
−min(xti,si

,1) while keeping all other coordinates of x the same generates a feasible solution

to (LP2) immediately after i is assigned.

Now consider a resolution step and assume that x is a feasible solution of f(tj, s) just before the

(j, s)-updates step and let r be the remaining unassigned fraction of student j. Then, by Claim

1, setting xtj ,s
← xtj ,s

−min(xtj ,s
, r) while keeping all other coordinates of x the same generates a

feasible solution to (LP2) after the (j, s)-updates. This completes the proof. �

Lemma 2. After Algorithm 1 terminates, no student remains partially assigned.
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Proof. We first show that at any point during the running of algorithm, at most one student

per type is partially assigned. For the sake of contradiction, suppose students i and j (i > j) are the

first two students of the same type that are both partially assigned at some point in the algorithm.

Consider the resolution step just before the algorithm proceeds to assign student i. By design,

while the assignment of student j is not resolved and there exists a critical school s′ for type tj,

the algorithm uses that school to resolve the assignment of j. Since by the end of the resolution

step, the assignment of student j is not resolved, there must be no remaining critical schools for

type tj. Therefore student i cannot be partially assigned.

We can now show that no student is partially assigned after the algorithm terminates. Suppose,

for the sake of contradiction, that this is not the case and there is a student j of type t that remains

partially assigned and let rj be the fraction of j that remains. By the above argument, j is the

only student of type t that is partially assigned. We claim that in the resolution step of the last

iteration, assignment of j to sj will be resolved. Suppose this is not the case, then by Lemma 1,

(LP2) is still feasible after termination and has some solution x. Since j is the only student of type

t that is partially assigned, it must be that
∑

s∈M
xt,s = rj . Therefore, since rj < 1, this implies

that there exists some school that is critical with respect to t, contradicting the assumption that

the algorithm has terminated.

�

Lemma 3. After Algorithm 1 terminates, the only feasible solution for (LP2) is ~0.

Proof. Assume the algorithm has terminated. By Lemma 1, (LP2) is feasible and by Lemma 2,

all students are assigned to some school (including, possibly, to the outside option) with probability

1. This implies that for every t ∈ T ,
∑

s∈M
yt,s = Ct. Thus ~0 is the unique feasible solution for

(LP2). �

Lemma 4. For every s′ ∈M and every t′ ∈ T , f(t′, s′) does not increase after each assignment step

and each resolution step in Algorithm 1.

Proof. Let s′ ∈M be an arbitrary school and t′ ∈ T an arbitrary type. After an assignment

step, f(t′, s′) cannot increase since y only increases after an assignment. We next show that during

the resolution step, f(t′, s′) cannot increase after updating ∆ and y (i.e., after any (j, s)-updates).

Consider a (j, s)-updates step for some student j and a critical school s for tj. Let P1 be the set

of all feasible solutions for (LP2) right before the (j, s)-updates and P2 be the set of all feasible

solutions for (LP2) after the (j, s)-updates. Fix a feasible solution x ∈ P2. By Claim 1, updating

x so that xtj ,s
← xtj ,s

+ ρ, where ρ is defined as in the (j, s)-updates, generates a feasible solution

in P1. Since the value of f(t′, s′) before and after the (j, s)-updates is defined as the maximum of

xt′,s′ over all feasible solutions x in P1 and P2 respectively, it cannot be increasing. �
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Lemma 5. After Algorithm 1 terminates, |∆R,s| ≤ |T | for every s∈M and every R ∈Z(s).

Proof. Since for any R ∈ Z(s), ∆R,s =
∑

t∈R
∆t,s, it suffices to show that for any school s and

for any type t, −1≤∆t,s ≤ 1. We show in fact that these inequalities hold at any time during the

algorithm.

Let j be a student that is partially assigned to sj. We first argue that if ∆tj ,sj
increases (line 19),

it must be true that f(tj, sj) = 0. To see this, note that after j is partially assigned to sj and ytj ,sj

is increased (line 13), f(tj, sj) = 0, and therefore, by Lemma 4, f(tj, sj) remains zero thereafter.

Moreover, when s is critical for tj, ∆tj ,s
can only decrease. This means that for all s′ ∈M and

t′ ∈ T , as long as f(t′, s′) > 0, ∆t′,s′ can only decrease. And once f(t′, s′) becomes zero (which

happens by Lemma 3), ∆t′,s′ only increases.

Suppose ∆tj ,s
decreases by some amount ρ (at line 18) and suppose f(tj, s) = a immediately

before this decrease. By Claim 1, f(tj, s) = a− ρ after the (j, s)-updates. Therefore, since school s

is critical with respect to tj, ∆tj ,s
can decrease by at most 1. On the other hand, ∆tj ,sj

increases

when we attempt to resolve the partial assignment of student j to school sj. Let rj be the remaining

fraction of j to be assigned. Whenever ∆tj ,sj
increases by ρ (line 19), rj decreases by ρ (line 21).

Therefore, by definition, ∆tj ,sj
cannot increase by more than 1. �

Theorem 1. Consider a school choice problem with distributional constraints q. Algorithm 1 out-

puts an allocation y and a vector ∆ such that:

(i) y is feasible with respect to [q+∆, q̄+∆],

(ii) y is allocative efficient,

(iii) |∆R,s| ≤ |T | for every s∈M and every R∈Z(s), and

(iv) y is Pareto efficient with respect to [q+∆, q̄+∆].

Moreover, the mechanism induced by Algorithm 1 is strategyproof.

Proof. The first three properties follow directly from Lemmas 1, 3, and 5.

Next we show that the mechanism induced by Algorithm 1 is strategyproof. Fix some arbitrary

student i. We claim that i’s preferences cannot affect the assignments of all students that are

assigned prior to i∈N . Note that once a student is partially assigned to a school, she will eventually

be assigned to that school with probability 1 by Lemma 2 and since the remainder of a partially

assigned student j is always assigned to sj. So the only way in which i can affect the assignment

of a student j < i is through her type, which cannot be altered. Finally, when it is i’s turn to

be assigned, she has no reason to misreport her preferences since, again, even if she is partially

assigned to si, she will be eventually assigned to that school with probability 1.

We proceed to prove part (iv). For this we need the following two claims.
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Claim 2. Throughout the algorithm, for any t∈ T and s ∈M , yt,s−∆t,s does not decrease.

Proof. Observe that during the assignment step the claim holds since y can only increase and

∆ does not change. Consider a (j, s)-updates step. Either the value of ∆tj ,s
decreases (line 18)

while the corresponding value ytj ,s remains unchanged, or the values of ∆tj ,sj
and ytj ,sj increase

together by the same amount (lines 19-20). �

Claim 3. Consider the values y and ∆ after a resolution step.

(i) Suppose x is a feasible solution for (LP2). Then x+ y−∆ is an optimal feasible solution for

(LP1).

(ii) Let x be an optimal feasible solution for (LP1) such that x− y+∆≥~0. Then x− y+∆ is a

feasible solution for (LP2).

Proof. We prove the first part (the second part follows from similar arguments). Note, by

Lemma 1, that the set of feasible solutions for (LP2) is not empty.

Observe (from the updates in the resolution step) that
∑

s∈M
∆t,s = 0 for all t∈ T . This implies

that if x is feasible for (LP2), then x+ y −∆ assigns at least OPT students to regular schools

because

∑

t∈T

∑

s∈M\{φ}

(x+ y−∆)t,s =
∑

t∈T

∑

s∈M\{φ}

xt,s +
∑

s∈M\{φ}

yT,s ≥OPT.

Since x is a feasible solution for (LP2), for every s ∈M and every R∈Z(s),

∑

t∈R

(x+ y)t,s ≤ q̄R,s +∆R,s,

and therefore the first constraint in (LP1) also holds, namely for every s ∈M and every R ∈Z(s),

∑

t∈R

(x+ y−∆)t,s ≤ q̄R,s.

Other constraints can be similarly verified. Moreover, by Claim 2 and because y ≡~0 and ∆≡~0

at the beginning of the algorithm, it must be true that (x+ y−∆)t,s ≥ 0 for all t∈ T and s ∈M .

�

We can now complete the proof. Let y and ∆ be the outcomes of the algorithm (as in the

statement of Theorem 1). For the sake of contradiction, suppose there exists an allocation y′ that

is feasible with respect to [q+∆, q̄+∆] and Pareto dominates y. Let student i be the first student

(with respect to the order of the algorithm) who is assigned to different schools under y and y′,

and let these schools be s and s′, respectively. Note that i prefers s′ to s.
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Let γ be the time during which the algorithm reaches the assignment step at iteration i. Let yγ

and ∆γ be the values of y and ∆ at time γ.

Since the algorithm did not assign i to s′, it must be true that f(ti, s
′) = 0. Therefore, by Claim

3, at time γ there is no optimal feasible solution x for (LP1) such that x − yγ + ∆γ ≥ ~0 and

(x− yγ +∆γ)ti,s′ > 0. We will obtain a contradiction by showing that such an x exists.

We show that, upon termination, there exists 0 < c ≤ 1, such that (i) y −∆+ c(y′ − y) is an

optimal feasible solution for (LP1), (ii) y −∆+ c(y′ − y)− yγ +∆γ ≥ ~0, and (iii) [y −∆+ c(y′ −

y)− yγ +∆γ ]ti,s′ > 0. This will complete the proof.

First we show that (i) holds for any 0< c≤ 1. It is equivalent to show that there exists a c such

that 0 < c ≤ 1 and that (1− c)(y −∆) + c(y′ −∆) is an optimal feasible solution for (LP1). By

Lemma 3, after termination, ~0 is feasible for (LP2). Therefore, by Claim 3, y −∆ is an optimal

feasible solution for (LP1). Consider (LP2) upon termination. Since y′ is feasible with respect to

[q +∆, q̄ +∆] and assigns at least OPT students (since it Pareto dominates y), ~0 is feasible for

(LP2) when y is replaced with y′. Hence, by a similar argument as in Claim 3, y′−∆ is an optimal

feasible solution for (LP1). This implies (i) because for any 0< c≤ 1, (1− c)(y−∆)+ c(y′−∆) is

a convex combination of optimal feasible solutions.

Next we show that (ii) holds. By Claim 2, y −∆≥ yγ −∆γ. If y
′ ≥ y, then (ii) holds. Suppose

this is not the case and let s ∈M and t∈ T be such that (y′−y)t,s < 0. It is sufficient to show that

for such s and t, (y−∆)t,s > (yγ −∆γ)t,s. Since y′ ≥ yγ and yt,s > y′
t,s, we have that yt,s > (yγ)t,s.

Moreover, observe that when a student of type t is assigned to school s (possibly partially), (y−∆)t,s

strictly increases by min(f(t, s),1). Therefore, (y−∆)t,s > (yγ−∆γ)t,s, which completes the proof.

Finally, we show that (iii) holds. By Claim 2, y−∆≥ yγ−∆γ . Recall that at time γ, f(ti, s
′) = 0.

Therefore, by Lemma 4, after time γ the algorithm does not assign any other student of type ti to

s′, implying that yti,s′ = (yγ)ti,s′ . Since every student j < i is assigned the same school under y and

y′ and i is assigned to s′ under y′, it must be true that y′
ti,s

′ > yti,s′ . This implies that (iii) holds

for any 0< c≤ 1. �

Remarks:

1. Algorithm 1 runs in polynomial time. To see this, note that in each assignment step, we solve

(LP2) at most |M | times. Also, by Claim 1, in each (j, s)-update either the assignment of

student j gets resolved or f(tj, s) becomes zero, in which case, by Lemma 4, it remains zero

forever. Therefore in each resolution step, for each school s ∈M and each student j ∈N , the

(j, s)-updates are done at most once.

2. When Algorithm 1 selects the order in which students are assigned uniformly at random, the

outcome is symmetric. That is, any two students with the same type and identical preferences

have the same probabilistic assignment.
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3. We have assumed that all students prefer every regular school to the outside option φ (and in

particular all regular schools are acceptable). The results and analysis carry through, however,

if the set of acceptable schools for each student is publicly known (which may be a reasonable

assumption in the military or refugee assignment problems). This assumption is necessary to

satisfy the lower bounds and allocative efficiency as well as to maintain strategyproofness.

Indeed, if students can submit a partial preference list (e.g., by truncating their preferences),

strategyproofness may fail to hold.

4. When the set of constraints are laminar and all lower- and upper-bound quotas are integers,

Algorithm 1 finds an allocation that is feasible with respect to all the constraints without

the need to violate any of the lower- and upper-bound quotas. We formalize this beginning

with defining laminar constraints. For every s ∈M , we say that Z(s) is laminar if for each

R,R′ ∈ Z(s), such that R∩R′ 6= ∅, either R⊆R′ or R′ ⊆R. We call an assignment problem

laminar if Z(s) is laminar for all s∈M .

Proposition 1. Given a laminar assignment problem, Algorithm 1 finds an integral assign-

ment that is feasible with respect to q.

Before we prove the proposition, we explain how a laminar assignment problem can be

reduced to a max flow problem with integer lower and upper bound capacities on edges. This

will imply the existence of an integral and optimal solution of (LP1) that is feasible with

respect to q, which can also be found in polynomial time.

A few preparations are useful to illustrate this reduction. For every s ∈M \ {φ} and every

R ∈Z(s), let

X(R,s) = {R′ ∈Z(s)| R′ ⊂R and (∄R′′ ∈Z(s) :R′ ⊂R′′ ⊂R)}.

We now explain how to construct the graph that corresponds to the max flow problem.

For every s ∈M \ {φ} and every R ∈ Z(s), add a node uR,s. For every s and every R ∈ Z(s)

and every R′ ∈X(R,s), add a directed edge from uR′,s to uR,s, with lower and upper flow

constraints q
R′,s

and q̄R′,s respectively.

We add a source A and a sink B. From each node uR,s (not including the source or the

sink), with no outgoing edges, add an edge to B with lower and upper bound flow constraints

q
R,s

and q̄R,s respectively. We add |T | auxiliary nodes s1, s2, . . . , s|T | each of which represents

a type and add an edge from A to each st with capacity Ct.

Finally, for each type t and every school s ∈M \ {φ}, add an edge from st to uR,s with

infinite capacity for every R∈Z(s) such that t∈R and uR,s has no incoming edges.
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Now, observe that every feasible solution to the laminar assignment problem, i.e. (LP1)

corresponds to a feasible flow in the constructed graph with same objective value and vice

versa.

Proof of Proposition 1. Since the laminar assignment problem can be reduced to a max

flow problem with integral flow constraints on the edges, the polytope corresponding to the

set of optimal solutions for (LP1) has integral extreme points. We show that this also holds

for (LP2) at any point during the algorithm.

First we argue that this holds if no student is ever partially assigned. To see this, note that

after each student is assigned, all the lower- and upper-bound quotas change by an integral

amount. Therefore, similar to the above, one can reduce our problem into a max flow problem

with integral flow constraints on the edges which implies that the polytope corresponding to

the set of feasible solutions for (LP2) has integral extreme points.

It remains to show that Algorithm 1 never partially assigns any student. Suppose this is

not the case and let i be the first student that is partially assigned to some school si. Just

before assigning i, let P be the set of feasible solutions for (LP2). Observe that by the above

argument, all extreme points of P are integral. Since i was partially assigned to si, this implies

that

0<max
x∈P

xti,s
< 1.

This is a contradiction, because every point in P can be written as a convex combination of

extreme points.

This means that there must exist an integral point x′ ∈P with x′
ti,s

= 1. �

4. Generalized Probabilistic Serial Mechanism

In this section we generalize the probabilistic serial mechanism (PS) to allow for distributional

constraints. The PS mechanism was introduced by Bogomolnaia and Moulin (2001), who showed

that it satisfies several desirable properties such as ordinal efficiency, envy-freeness, and weak

strategyproofness.

Let us begin with a brief description of PS, also known as the eating algorithm. Treating each

school (including the outside option) as a divisible object, the algorithm asks the students to eat

from schools simultaneously and at the same rate until each consumes one unit. Every student

begins eating from her favorite school. Whenever a school s is fully consumed, students who were

eating from s then proceed to eat from their next preferred available school. The process concludes

when each student consumes one unit. The resulting fractional outcome is implemented using a

lottery over allocations defined by the Birkhoff-Von-Neumann Theorem (Schrijver (2003)).
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To define the properties of PS, we use the (student) assignment variables xi,s, which is interpreted

as the probability that student i is assigned to school s. For assignment x, we denote by xi =

(xi,s)s∈S the assignment for student i, which is the distributional outcome for student i.

Let x and y be assignments. We say that xi stochastically dominates yi with respect to

preference order ≻i, if for every s ∈M :

∑

s′:s′≻is

xi,s′ ≥
∑

s′:s′≻is

yi,s′ ,

in which case we write xisd(≻i)yi.

Given a preference profile (≻i)i∈N , we say that y is stochastically dominated by x if xisd(≻i)yi

for all i ∈ N and x 6= y. The assignment x is said to be ordinally efficient, if it is a feasible

solution (for (LP3)) and it is not stochastically dominated by any other feasible assignment.

The assignment x is within-type envy-free if for any two students i, j of the same type t and

every school s∈M :
∑

s′:s′≻is

xi,s′ ≥
∑

s′:s′≻is

xj,s′ .

Finally, a mechanism isweakly strategyproof if for every student i and any preference profile of

all other students, reporting≻i results in an assignment xi for i, that is not stochastically dominated

with respect to ≻i by any other assignment x′
i for i that can be obtained by i misreporting her

preferences, unless xi = x′
i.

Our algorithm, which we call the generalized probabilistic serial (GPS), generalizes the PS algo-

rithm to the setting with distributional constraints. The outcome of the GPS is a fractional assign-

ment that does not violate any lower- or upper-bound quotas. We show that such a fractional

assignment can be implemented as a lottery over integral solutions that violate each quota by at

most |T |.

We begin with establishing the implementation of such a fractional solution as a distribution

over allocations and explain the details of the GPS algorithm in Section 4.2.

4.1. Implementing a fractional solution as a lottery over allocations

Recall the linear program (LP1) for optimizing allocative efficiency given the distributional con-

straints. This program can be rewritten using the (student) assignment variables xi,s, which can

be interpreted as the probability that student i is assigned to school s:

OPT= max
x∈RN×M

∑

i∈N

∑

s∈M\{φ}

xi,s (LP3)

s.t.
∑

i∈N :ti∈R

xi,s ≤ q̄R,s, ∀s∈M,R∈Z(s)
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∑

i∈N :ti∈R

xi,s ≥ q
R,s

, ∀s∈M,R∈Z(s)

∑

s∈M

xi,s = 1, ∀i∈N

xi,s ≥ 0, ∀i∈N,s ∈M.

We will show that every optimal solution for (LP3) can be written as a convex combination of

approximately feasible allocations.

Definition 1. An allocation x is approximately feasible if it assigns students in a way that

1. Each lower- and upper-bound quota is violated by at most |T |. That is

q
R,s
− |T | ≤

∑

t∈R

xt,s ≤ q̄R,s + |T | ∀s∈M,R∈Z(s).

2. At least ⌊OPT⌋ students are assigned to regular schools.

Lemma 6. Every optimal solution for (LP3) can be written as a convex combination of approxi-

mately feasible integral solutions.

Proof. Let x be an optimal solution for (LP3). Consider the following polyhedron with variables

y:

⌊

∑

i∈N :ti=t

xi,s

⌋

≤
∑

i∈N :ti=t

yi,s ≤
⌈

∑

i∈N :ti=t

xi,s

⌉

, ∀t∈ T, s ∈M \ {φ}

⌊

∑

i∈N

xi,φ

⌋

≤
∑

i∈N

yi,φ ≤
⌈

∑

i∈N

xi,φ

⌉

∑

s∈M

yi,s = 1, ∀i∈N

yi,s ≥ 0, ∀i∈N,s ∈M.

Note that x is a feasible solution for the above linear program, so the set of feasible solutions is

non-empty. Second, the above linear program corresponds to a generalized assignment problem

with integer lower- and upper-bound capacities and therefore the corner points of its corresponding

polytope are integral.

Finally, every corner point y of the above polytope is approximately feasible. The reason is that

for each upper-bound quota q̄R,s over s∈M \ {φ} and R ∈Z(s), we have

∑

i∈N :ti∈R

yi,s ≤
∑

t∈R

⌈

∑

i∈N :ti=t

xi,s

⌉

≤
∑

t∈R

(

∑

i∈N :ti=t

xi,s +1
)

≤
∑

i∈N :ti∈R

xi,s + |T | ≤ q̄R,s+ |T |.

A similar argument can be used for lower-bound quotas. Furthermore, the number of students

who are assigned to the outside option by y is:
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∑

i∈N

yi,φ ≤
⌈

∑

i∈N

xi,φ

⌉

.

Therefore at least ⌊OPT⌋ students are assigned to regular schools. �

We note that Lemma 6 could also be derived from (Akbarpour and Nikzad 2015). Also, as

remarked in the previous section, if the set of constraints are bi-hierarchical, one can implement

the assignment without violating any lower- or upper-bound quota.

4.2. A generalization of the probabilistic serial mechanism

The eating algorithm, PS, is very similar to Bogomolnaia and Moulin (2001) in that every student

eats from her favorite school as long the “partial” assignment is “extendable” to an optimal solution

for (LP3) and switches to her next favorite school when a constraint becomes tight.

Definition 2. A vector y is extendable if there exists x, a feasible solution for (LP3) that also

satisfies the following conditions:

(i) x dominates y, i.e., xi,s ≥ yi,s for all i∈N and s∈M \ {φ}, and

(ii) x is allocative efficient, i.e.,
∑

i∈N

∑

s∈M\{φ} xi,s =OPT.

Given any vector y, it is possible to check whether it is extendable by adding the linear constraints

corresponding to conditions (i) and (ii) to (LP3) and testing whether the set of feasible solutions

remains non-empty. Let E denote the set of extendable vectors.

Similar to PS, the GPS starts from an empty assignment and asks every student to eat from the

schools at a constant rate in their order of preference. The main difference, however, is that we

keep the assignment vector in E at all times. Whenever we reach a boundary at which we are about

to leave the set E , we prevent the corresponding students from consuming their current school and

ask them to move to their next most preferred available school. We then continue the process and

have all agents consume their current preferred and available school. We do this until the algorithm

terminates, i.e., every student has consumed one unit.

The above process can be implemented as follows. Consider any point during the running of

the algorithm and let xi,s denote how much of school s is consumed by student i at that time.

Also consider θ, which denotes the eating pattern of the students at this time, i.e., θi,s = 1 if i

is currently eating from s and 0 otherwise. Using a linear program, we can find the maximum c

such that x+ cθ is extendable. This will determine how long we can continue the current eating

pattern. Whenever we reach that point, a new constraint will be tight. At that point, we ask all

the students involved in that constraint to stop eating their current school and move to their next

option. We repeat this procedure until all students have consumed one unit in which point x is a

(fractional) optimal solution for (LP3).
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The running time of this process is polynomial, because every student switches at most |M |

times. Once a student reaches the outside option, she can continue consuming that option until

her total consumption reaches one unit.

Theorem 2. The (fractional) assignment produced by the generalized probabilistic serial (GPS)

algorithm is

(i) within-type envy-free,

(ii) ordinally efficient, and

(iii) implementable using a lottery over approximately feasible assignments.

Proof. The following claim will be needed:

Claim 4. Once a student of type t is prevented from eating from some school s, then no students

of type t will ever be able to eat from that school again.

Proof. Consider the first time the algorithm starts blocking students of type t from eating

school s. Let y denote the set of probability shares consumed by students up to that point such

that yi,s represents how much of school s is consumed by student i. Since the algorithm treats

all students of the same type the same way, at that point all the students of type t are blocked

from consuming s. By Definition 2, this means that there exists no vector y′ such that y′ ≥ y and

y′
i,s > yi,s for some student i with type t. Now, since after this point the vector y can only increase,

we can never have a vector y′ that satisfies this property, and so students of type t will always

remain blocked. �

To show within-type envy-freeness, we use proof by contradiction. Assume there exists a student

i that envies another student j of the same type. This implies that there exists some school s such

that:
∑

s′:s′≻is

xj,s′ >
∑

s′:s′≻is

xi,s′ .

Let A= {s′ ∈M |s′≻i s}. We know that while it is possible for student i to eat schools in A, she

doesn’t consume any schools in M \A. Also, by Claim 4, we know that once she is blocked from

eating some school in A, no other student of type t can ever consume from that school. Since all

the students consume schools at the same rate, this implies that
∑

s′:s′≻is
xj,s′ ≤

∑

s′:s′≻is
xi,s′ for

all j ∈N with type ti, which is a contradiction.

To show ordinal efficiency, we use proof by contradiction. Let x be the fractional assignment

obtained by the eating algorithm. Consider another feasible assignment y that stochastically dom-

inates x. Note that the values of all the entries of x have evolved over time, and were initialized

all to zero. Let x0 denote the value of x the last time x was such that x≤ y. At that time, there

must exist a student i who is eating a school s and (x0)i,s = yi,s. At that point, student i had the
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choice to eat any school s′ such that (x0)i,s′ <yi,s′ , but she preferred to keep eating school s. Since

xi,s >yi,s, yi cannot stochastically dominate xi with respect to ≻i, which is a contradiction.

Property (iii) is a direct implication of Lemma 6. �

We note that Katta and Sethuraman (2006) generalize Probabilistic Serial to weak preferences

without distributional constraints. Their mechanism resembles ours in the sense that it updates

“menus” by resolving flow problems.

To illustrate GPS, consider the example in Section 3.1. Each student first eats from her favorite

school (at rate 1). After half a unit of time, each student has consumed half of her favorite school,

and the vector of consumed probability shares is no longer extendable. All students then switch to

eat from their next favorite school. Again, after half a unit of time, each student has consumed half

of their second favorite school and now each student has consumed one unit. Finally, the fractional

assignment is implemented as a lottery over approximately feasible allocations.

4.3. An impossibility result

Bogomolnaia and Moulin (2001) find that no mechanism is ordinally efficient, envy-free, and strat-

egyproof in the context of allocating indivisible objects to homogeneous agents. However, they show

that the PS mechanism is weakly strategyproof. We prove that with distributional constraints,

weak strategyproofness cannot hold when both within-type envy-freeness and ordinal efficiency

are required. (A similar impossibility for the allocation problem without distributional constraints

was established for the case in which preferences are not necessarily strict (Katta and Sethuraman

2006).)

Theorem 3. In the school choice problem with distributional constraints, no mechanism is ordi-

nally efficient, within-type envy-free, and weakly strategyproof.

Proof. Consider three schools s1, s2, s3 and two students i, j of type t. There are three additional

types t1, t2, t3 other than t and one student of each of those types. We have the following constraints

for s∈ {s1, s2}:

1≤ xt1,s +xt2,s ≤ 1,

1≤ xt2,s +xt3,s ≤ 1,

1≤ xt3,s +xt1,s ≤ 1,

0≤ xt,s +xt1,s ≤ 1,

where xt,s represents the number of students of type t assigned to school s. Note that in the above

inequalities, the values of xt1,s, xt2,s, and xt3,s are all uniquely determined to be 0.5. Therefore, in

each school s1 and s2, there is an upper bound of 0.5 for type t. School s3 imposes no constraints.
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Now suppose that i and j have the following preferences:

≻i: s1 ≻i s2 ≻i s3,

≻j: s2≻j s3≻j s1.

Assume j reports her true preferences and i misreports ≻′
i: s2 ≻

′
i s1 ≻

′
i s3. By ordinal efficiency,

both s1 and s2 should be filled up to 0.5 with students i and j. In addition, s1 should be filled with

student i. Due to within-type envy-freeness, i and j must each be assigned 0.25 of s2. Therefore i’s

assignment in schools s1, s2, s3 must be (0.5,0.25,0.25) and j’s assignment must be (0,0.25,0.75).

So when i and j both report truthfully, i must be assigned 0.5 of s1 and at least 0.25 of s2. This

implies that j is assigned at most 0.25 of s2. Denote the assignment of j in this case by xj.

Using this observation, we claim that j will benefit from misreporting her preferences. Assume

i reports her true preferences and j misreports ≻′
j: s2 ≻

′
j s1 ≻

′
j s3. Denote the assignment under

these reports by x′. By ordinal efficiency, s1 and s2 should be filled up to 0.5. Moreover, i and

j cannot both have positive assignment probabilities to s1 and s2 because they will benefit from

exchanging probability shares. In combination with within-type envy-freeness, this implies that

j’s assignment must be (0,0.5,0.5). This means that x′
j 6= xj and x′

j(sd)≻j
xj, contradicting weak

strategyproofness. �

5. Conclusion

We studied the assignment problem under distributional constraints and privately known prefer-

ences. There may be numerous Pareto-efficient assignments, which can vary significantly in the

number of assigned students. The mechanisms we introduced result in assignments that may vio-

late each lower- and upper-bound quota by at most the number of students’ types, but can assign

as many students as can be assigned via a fractional solution. While our generalization of the serial

dictatorship is strategyproof, we demonstrate that distributional constraints introduce a new bar-

rier to achieving weak strategyproofness in combination with within-type envy-freeness and ordinal

efficiency.
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Biró P, Fleiner T, Irving RW, Manlove DF (2010) The college admissions problem with lower and common

quotas. Theoretical Computer Science 411(34):3136–3153.

Bogomolnaia A, Moulin H (2001) A new solution to the random assignment problem. Journal of Economic

theory 100(2):295–328.
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Appendix A: Illustration of the Serial Dictatorship Algorithm with Dynamic Menus

In Section 3 we illustrated the performance of Algorithm 1 on a simple example. Here, we expand

on that by analyzing a more detailed example. Suppose there are two schools s1 and s2 and seven
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students i1, i2, . . . , i7 whose types are t1, t2, t3, t4, t5, t1, and t2 respectively. Students i2 and i4 prefer

s2 over s1 and the rest of the students prefer s1 over s2. We are given the following distributional

constraints:

1≤ xt1,s1 +xt2,s1 ≤ 1, 1≤ xt3,s2 +xt4,s2 ≤ 1,

1≤ xt2,s1 +xt3,s1 ≤ 1, 1≤ xt4,s2 +xt5,s2 ≤ 1,

1≤ xt3,s1 +xt1,s1 ≤ 1, 1≤ xt5,s2 +xt3,s2 ≤ 1,

0≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 2, 0≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 2.

Observe that given these quotas, in any feasible solution, each of types t1, t2, and t3 will be

assigned to school s1 with probability 0.5 and each of types t3, t4, and t5 will be assigned to school s2

with probability 0.5 as well. Assume the order of students to be i1, i2, . . . , i7. In the first assignment

step, i1 is partially assigned to s1 (with 0.5), and is added to the set of partially assigned students.

In the first resolution step, no school is critical for type t1.

In the second round, i2 is completely assigned to s2. This time, in the resolution step, s2 is

critical for type t1 and f(t1, s2) = 0.5. Therefore, s2 is used to resolve the assignment of i1 to s1 by

applying the (i1, s2)-updates. After this procedure, the constraints of schools s1 and s2 are updated

as follows:

1.5≤ xt1,s1 +xt2,s1 ≤ 1.5, 1≤ xt3,s2 +xt4,s2 ≤ 1,

1≤ xt2,s1 +xt3,s1 ≤ 1, 1≤ xt4,s2 +xt5,s2 ≤ 1,

1.5≤ xt3,s1 +xt1,s1 ≤ 1.5, 1≤ xt5,s2 +xt3,s2 ≤ 1,

0.5≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 2.5, −0.5≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 1.5.

In the next assignment step, since f(t3, s1) = 0.5, i3 is partially assigned to s1. In the following

resolution step, s2 is used to resolve her assignment and after the (i3, s2)-updates the constraints

are updated to:

1.5≤ xt1,s1 +xt2,s1 ≤ 1.5, 0.5≤ xt3,s2 +xt4,s2 ≤ 0.5,

1.5≤ xt2,s1 +xt3,s1 ≤ 1.5, 1≤ xt4,s2 +xt5,s2 ≤ 1,

2≤ xt3,s1 +xt1,s1 ≤ 2, 0.5≤ xt5,s2 +xt3,s2 ≤ 0.5,

1≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 3, −1≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 1.
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Next, we have f(t4, s2) = 0.5, and therefore i4 is partially assigned to s2. In the resolution step

s1 is used to resolve this partial assignment. After the (i4, s1)-updates the constraints are:

1.5≤ xt1,s1 +xt2,s1 ≤ 1.5, 1≤ xt3,s2 +xt4,s2 ≤ 1,

1.5≤ xt2,s1 +xt3,s1 ≤ 1.5, 1.5≤ xt4,s2 +xt5,s2 ≤ 1.5,

2≤ xt3,s1 +xt1,s1 ≤ 2, 0.5≤ xt5,s2 +xt3,s2 ≤ 0.5,

1≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 3, −1≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 1.

In the next assignment step, we have f(t5, s1) = 0.5 and i5 is partially assigned to s1. In the

resolution step, s2 is used to resolve this assignment. After the (i5, s2) updates, the constraints are:

1.5≤ xt1,s1 +xt2,s1 ≤ 1.5, 1≤ xt3,s2 +xt4,s2 ≤ 1,

1.5≤ xt2,s1 +xt3,s1 ≤ 1.5, 1≤ xt4,s2 +xt5,s2 ≤ 1,

2≤ xt3,s1 +xt1,s1 ≤ 2, 0≤ xt5,s2 +xt3,s2 ≤ 0,

1≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 3, −1≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 1.

Next, we have f(t1, s1) = 0, and f(t1, s2) = 0 and therefore i6 is assigned to the outside option.

Finally, when i7 is about to get assigned, we have f(t2, s1) = 0.5 and therefore i7 is partially assigned

to s1. In the following resolution step, we use the outside option, i.e. φ to resolve this partial

assignment. After the (i7, φ)-updates, the constraints are:

2≤ xt1,s1 +xt2,s1 ≤ 2, 1≤ xt3,s2 +xt4,s2 ≤ 1,

2≤ xt2,s1 +xt3,s1 ≤ 2, 1≤ xt4,s2 +xt5,s2 ≤ 1,

2≤ xt3,s1 +xt1,s1 ≤ 2, 0≤ xt5,s2 +xt3,s2 ≤ 0,

1.5≤ xt1,s1 +xt2,s1 +xt3,s1 ≤ 3.5, −1≤ xt1,s2 +xt2,s2 +xt3,s2 ≤ 1.
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