
e-companion to Azizan et al.: Pricing in Non-Convex Markets ec1

Proofs of Statements

EC.1. Supplement to Section 3.1

In this section, we formally prove the reduction of the optimization problem for the class of linear-

plus-uplift functions to (6), and then show Propositions 1 and 2.

EC.1.1. Reduction

Here we show that for the class of linear-plus-uplift price functions p(qi;λ,ui, q̂i) = λqi+ui1qi=q̂i , one

can assume q̂∗i = q∗i without loss of generality, and therefore the optimization problem (5) reduces

to (6) for this class. The optimization problem (5) for price function p(qi;λ,ui, q̂i) = λqi +ui1qi=q̂i ,

λ,u1, . . . , un ≥ 0, is as follows

p∗uplift = min
q1,...,qn
λ≥0

u1,...,un≥0
q̂1,...,q̂n

n∑
i=1

(λqi +ui1qi=q̂i) (EC.1a)

s.t.
n∑
i=1

qi = d (EC.1b)

λqi +ui1qi=q̂i − ci(qi)≥ 0, i= 1, . . . , n (EC.1c)

λqi +ui1qi=q̂i − ci(qi)≥max
q′i 6=qi

λq′i +ui1q′i=q̂i − ci(q
′
i), i= 1, . . . , n (EC.1d)

The following lemma shows that this optimization problem can be reduced to (6), and the optimal

uplifts of (6) are no larger than those of (EC.1).

Lemma EC.1. Given any solution (q∗, λ∗,u∗, q̂∗) to the optimization problem (EC.1),

(q∗, λ∗,u,q∗) is also a solution, where

ui =


u∗i , if q̂∗i = q∗i

0, o.w.

.

Proof of Lemma EC.1. Let us first show the feasibility of (q∗, λ∗,u,q∗). For any i such that

q̂∗i 6= q∗i , we have that

λ∗q∗i − ci(q∗i)≥ 0

ec2 e-companion to Azizan et al.: Pricing in Non-Convex Markets

λ∗q∗i − ci(q∗i)≥max
q′i 6=q

∗
i

λ∗q′i +u∗i1q′i=q̂∗i − ci(q
′
i)≥max

q′i 6=q
∗
i

λ∗q′i− ci(q′i),

which implies

λ∗q∗i +u∗i1q∗i =q∗i − ci(q
∗
i)≥ 0

λ∗q∗i +u∗i1q∗i =q∗i − ci(q
∗
i)≥max

q′i 6=q
∗
i

λ∗q′i +u∗i1q′i=q̂∗i − ci(q
′
i),

because u∗i = 0. Therefore (q∗, λ∗,u,q∗) is feasible.

The objective value of (q∗, λ∗,u,q∗) is

n∑
i=1

(λ∗q∗i +ui) =
∑

i:q̂∗i =q
∗
i

(λ∗q∗i +u∗i) +
∑

i:q̂∗i 6=q
∗
i

λ∗q∗i

=
n∑
i=1

(λ∗q∗i +u∗i1q∗i =q̂∗i),

which is the same as that of (q∗, λ∗,u∗, q̂∗), and is therefore optimal. �

Based on this lemma, the optimization problem (EC.1) can be reduced to (6).

EC.1.2. Closed-Form Solutions

Proof of Proposition 1. In the optimization problem (6), the order of variables in the minimiza-

tions does not matter, and further, for every fixed q1, . . . , qn and λ, the minimization over each ui

can be done separately. Therefore this program can be massaged into the following form

p∗uplift = min
q1,...,qn

(
min
λ≥0

n∑
i=1

gi(qi;λ)

)
(EC.2a)

s.t.
n∑
i=1

qi = d, (EC.2b)

where

gi(qi;λ) = min
ui≥0

λqi +ui (EC.3a)

s.t. λqi +ui− ci(qi)≥ 0, (EC.3b)

λqi +ui− ci(qi)≥max
q′i 6=qi

λq′i− ci(q′i). (EC.3c)

e-companion to Azizan et al.: Pricing in Non-Convex Markets ec3

for all i= 1, . . . , n. Constraints (EC.3b) and (EC.3c) can be expressed as

λqi +ui ≥ ci(qi),

λqi +ui ≥ ci(qi) + max
q′i 6=qi

λq′i− ci(q′i).

It follows that

gi(qi;λ) = λqi +u∗i = ci(qi) + max

{
0, max

q′i 6=qi
λq′i− ci(q′i)

}
.

which is, of course, a function of λ and qi. Therefore we have

min
λ≥0

n∑
i=1

gi(qi;λ) =
n∑
i=1

ci(qi)

and the minimizers λ∗ are all values λ for which max
q′i 6=qi

λq′i−ci(q′i)≤ 0, which are exactly the elements

of Λ = {λ≥ 0 | λq≤ ci(q), ∀q,∀i} (Figure 1 provides a pictorial description of these values). Finally

we have the last minimization, which is

min
q1,...,qn

n∑
i=1

ci(qi) (EC.4a)

s.t.
n∑
i=1

qi = d (EC.4b)

and therefore has q∗i = q0i ∀i as its optimizer. We also have u∗i = ci(q
∗
i)−λ∗q∗i , ∀i. �

Proof of Proposition 2. The steps of the proof are exactly the same as in the previous one,

except that the additional minimizer picks the λ with the smallest total uplift
∑n

i=1 ui(λ), which

corresponds to the largest element of Λ. �

EC.2. Supplement to Section 3.2

In this section, we prove Theorem 1, in two parts. First, we show that there exist finite sets Q,A′,B′

for which Algorithm 1 finds an ε-approximate solution, and we quantify the sizes of these sets as

a function of ε. In the second part, we analyze the running time of Algorithm 1.

ec4 e-companion to Azizan et al.: Pricing in Non-Convex Markets

EC.2.1. ε-Accuracy

Let us first state a simple but useful lemma.

Lemma EC.2 (δ-discretization). Given a set C ⊆ [L1,L1]× · · · × [Lk,Lk], for any δ > 0, there

exists a finite set C′ such that

∀z ∈ C, ∃z′ ∈ C′ s.t. ‖z− z′‖∞ ≤ δ,

and further C′ contains at most V/δk points, where V =
∏k

i=1(Li−Li) is a constant (the volume of

the box). C′ is said to be a δ-discretization of C.

Let Q, A′ and B′ denote some δ-discretizations of sets [0, d], A and B, respectively. In other words,

for every q ∈ [0, d], α∈A, and β ∈B, there exist q′ ∈Q, α′ ∈A′, and β′ ∈B′, such that |q− q′| ≤ δ,

‖α−α′‖∞ ≤ δ, and ‖β−β′‖∞ ≤ δ. We can combine all these inequalities as

‖(q,α,β)− (q′, α′, β′)‖∞ ≤ δ.

On the other hand, given that the cost function ci(.) for each i is Lipschitz on each continuous

piece of its domain, there exists a positive constant Ki such that |ci(q)− ci(q′)| ≤Ki|q− q′|, which

implies

|ci(q)− ci(q′)| ≤Kiδ. (EC.5)

Similarly, Lipschitz continuity of p(.; .) implies existence of a positive constant K such that

|p(q,α,β)− p(q′, α′, β′)| ≤K‖(q,α,β)− (q′, α′, β′)‖∞, which yields

|p(q,α,β)− p(q′, α′, β′)| ≤Kδ. (EC.6)

Using Eqs. (EC.5),(EC.6), we can see that for any solution q∗1 , . . . , q
∗
n, α

∗, β∗1 , . . . , β
∗
n to optimiza-

tion (5), there exists a point q1, . . . , qn, α,β1, . . . , βn with q1, . . . , qn ∈Q, α∈A′ and β ∈B′, for which

constraints (5c) and (5d) are violated at most by (K +Ki)δ and (2K + 2Ki)δ, respectively, and

e-companion to Azizan et al.: Pricing in Non-Convex Markets ec5

the objective is larger than p∗ at most by nKδ. As a result, this point will be an ε-approximate

solution if

(K +Ki)δ≤ ε ∀i, (EC.7)

2(K +Ki)δ≤ ε ∀i, (EC.8)

nKδ≤ nε. (EC.9)

These constraints altogether enforce an upper bound on the value of δ as

δ≤Cε,

for some constant C. Therefore if we pick

δ=
d⌈
d
Cε

⌉ , (EC.10)

our algorithm is guaranteed to encounter an ε-approximate solution while enumerating the points,

and Q = {0, δ,2δ, . . . , d} is a valid δ-discretization for [0, d], which has Nq =

⌈
d

Cε

⌉
+ 1 = O

(
1

ε

)
points. The nice thing about this particular choice of δ is that now d can be written as a sum

of n elements in Q (because all the elements, including d, are multiples of δ), which allows us

to satisfy the Market Clearing condition exactly. Based on Lemma (EC.2), A′ and B′ contain

Nα =O

(
1

δl1

)
=O

(
1

εl1

)
and Nβ =O

(
1

δl2

)
=O

(
1

εl2

)
points.

Finally, if there are any discontinuities in the cost or price functions, we can simply add them

to our discrete sets Q, A′ and B′, and since there are at most a finite number of them, the sizes of

the sets remain in the same order, i.e., Nq =O

(
1

ε

)
, Nα =O

(
1

εl1

)
and Nβ =O

(
1

εl2

)
. Next, we

calculate the time complexity of Algorithm 1 running on these discrete sets.

EC.2.2. Run-Time Analysis

In this section, we show that Algorithm 1 has a time complexity of O
(
n(1

ε
)l1+l2+2

)
. For every fixed

α, we have the following computations

ec6 e-companion to Azizan et al.: Pricing in Non-Convex Markets

1. The leaves: We need to compute gi(q;α) for every i and every q ∈Q. Computing each gi(q;α)

(i.e. for fixed i, q,α) takes O(NβNq). The reason for that is we have to search over all βi ∈B′,

and for each one there are Nq + 1 constraints to check. More explicitly, we need to (a) check

O(NβNq) constraints, (b) compute Nβ objectives, and (c) find the minimum among those

Nβ values. All these steps together take O(NβNq), and repeating for every i and q makes it

O(nNβN
2
q).

2. The intermediate nodes: In each new level, there are at most half as many (+1) nodes as

in the previous level. For each node i in this level, we need to compute gi(q;α) for every

q ∈ Q. For every fixed q, there are O(Nq) possible pairs of (qj, qk) that add up to q, and

therefore we need to (a) sum O(Nq) pairs of objective values, and (b) find the minimum

among them, which take O(Nq). Hence, the computation for each node takes O(N 2
q). There

are O(n
2

+ n
4

+ · · ·+ 2) =O(n) intermediate nodes in total, and therefore the total complexity

of this part is O(nN 2
q).

3. The root: Finally at the root, we need to compute groot(d;α). There are Nq possible pairs of

(qj, qk) that add up to d. Therefore, we need to compute Nq sums, and find the minimum

among the resulting Nq values, which takes O(Nq).

Putting the pieces together, the computation for all values of α takes Nα ×(
O(nNβN

2
q) +O(nN 2

q) +O(Nq)
)
, which in turn is O(nNαNβN

2
q). Finally, finding the minimum

among the Nα values simply takes O(Nα).

The backward procedure, which finds the quantities qi and the parameters βi, takes just O(n),

since it is just a substitution for every node. As a result, the total running time is O(nNαNβN
2
q),

which based on the first part (Section EC.2.1) is O
(
n(1

ε
)l1+l2+2

)
. �

EC.2.3. Remark on the ε-Approximation

As mentioned at the end of Section 3.2, if one requires the total payment in Definition 1 to be at

most ε (rather than nε) away from the optimal p∗, the running time of our algorithm will still be

polynomial in both n and 1/ε, i.e., O
(
n3(1

ε
)l1+l2+2

)
. To see that, notice in this case (EC.7) and

e-companion to Azizan et al.: Pricing in Non-Convex Markets ec7

(EC.8) remain the same, and (EC.9) changes to nKδ≤ ε. Therefore, the upper bound enforced by

the constraints will be δ≤ Cε
n
, for some constant C. In this case, our choice of δ would be δ= d

d dnCεe
,

and hence Nq =O
(n
ε

)
. Nα and Nβ remain the same as before. The running time is O(nNαNβN

2
q),

as computed previously, which in this case would be O
(
n3(1

ε
)l1+l2+2

)
.

EC.3. Supplement to Section 4

In this section, we first show the transformation of the problem on a tree to one on a binary tree,

and then prove Theorem 2.

EC.3.1. Transformation into Binary Tree

Lemma EC.3. Given any tree with n nodes (suppliers), there exists a binary tree with additional

nodes which has the same solution (q∗i , . . . , q
∗
n, α

∗, β1, . . . , βn) for those nodes as the original network.

The binary tree has O(n) nodes.

Take any node i that has ki > 2 children. For any two children introduce a dummy parent

node. For any two dummy parent nodes introduce a new level of dummy parent nodes. Continue

this process until there are 2 or less nodes in the uppermost layer, and then connect them to node

i (See Fig. EC.1). The capacities of the lines immediately connected to the children are the same

as those in the original graph. The capacities of the new lines are infinite.

The total number of introduced dummy nodes by this procedure is

O(
ki
2

+
ki
4

+ · · ·+ 2) =O(ki).

Since there are 1+k1 +k2 + · · ·+kn = n nodes in total in the original tree, the number of introduced

additional nodes is O(k1+ · · ·+kn) =O(n). Therefore the total number of nodes in the new (binary)

tree is O(n). �

EC.3.2. Proof of Theorem 2

Most of the proof is similar to the one presented in Section EC.2. For this reason, we only highlight

the main points. The proof consists of ε-accuracy and run-time, as before.

ec8 e-companion to Azizan et al.: Pricing in Non-Convex Markets

Figure EC.1 The transformation of an arbitrary-degree tree to a binary tree

EC.3.2.1. ε-Accuracy

Let Q1, . . . ,Qn,F1, . . . ,Fn,A′,B′ denote some δ-discretizations of sets [0, d1 + fch1(1) + fch2(1) −

f1], . . . , [0, dn + fch1(n) + fch2(n) − fn], [f1, f1], . . . , [fn, fn], A, B, respectively. Note that if any line

capacities are infinite, the intervals can be replaced by [0,
∑n

i=1 di] instead. Similar as in Sec-

tion EC.2, the constraints enforce an upper bound on the value of δ as δ ≤Cε, for some constant

C. Based on Lemma (EC.2), the sizes of the sets will be Nqi = O

(
1

ε

)
∀i, Nfi = O

(
1

ε

)
∀i,

Nα =O

(
1

εl1

)
and Nβ =O

(
1

εl2

)
EC.3.2.2. Run-Time Analysis

For every fixed α, the run-time of the required computations is as follows.

1. The time complexity of computing gi(qi;α) for each node i and each fixed value of qi is

O(NβNqi). Therefore, computing it for all nodes and all values takes O(nNβN
2
q).

2. Computing hi(fi;α) for each node i and each fixed value of fi takes O(N 2
f), because there

are O(Nf)×O(Nf) pairs of values for (fch1(i), fch2(i)) (qi is automatically determined as the

closest point in Qi to di +fch1(i) +fch2(i)−fi). Therefore, its overall computation for all nodes

and all values takes O(nN 3
f).

As a result, the overall computation takes Nα×
(
O
(
nNβN

2
q

)
+O

(
nN 3

f

))
, which is O

(
n(1

ε
)l1+l2+2

)
+

O
(
n(1

ε
)l1+3

)
, or equivalently O

(
n(1

ε
)l1+max{l2,1}+2

)
. �

