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Abstract
This paper considers the optimal adaptive allocation of measurement effort for identifying the best

among a finite set of options or designs. An experimenter sequentially chooses designs to measure and
observes noisy signals of their quality with the goal of confidently identifying the best design after a
small number of measurements. This paper proposes three simple and intuitive Bayesian algorithms for
adaptively allocating measurement effort, and formalizes a sense in which these seemingly naive rules are
the best possible. One proposal is top-two probability sampling, which computes the two designs with
the highest posterior probability of being optimal, and then randomizes to select among these two. One
is a variant of top-two sampling which considers not only the probability a design is optimal, but the
expected amount by which its quality exceeds that of other designs. The final algorithm is a modified
version of Thompson sampling that is tailored for identifying the best design.

We prove that these simple algorithms satisfy a sharp optimality property. In a frequentist setting
where the true quality of the designs is fixed, one hopes the posterior definitively identifies the optimal
design, in the sense that that the posterior probability assigned to the event that some other design is
optimal converges to zero as measurements are collected. We show that under the proposed algorithms
this convergence occurs at an exponential rate, and the corresponding exponent is the best possible
among all allocation rules. It should be highlighted that the proposed algorithms depend on a single
tuning parameter, which determines the probability used when randomizing among the top-two designs.
Attaining the optimal rate of posterior convergence requires either that this parameter is set optimally
or is tuned adaptively toward the optimal value. The paper goes further, characterizing the exponent
attained on any problem instance and for any value of the tunable parameter. This exponent is interpreted
as being optimal among a constrained class of allocation rules. Finally, considerable robustness to this
parameter is established through numerical experiments and theoretical results. When this parameter is
set to 1/2, the exponent attained is within a factor of 2 of best possible across all problem instances.

1 Introduction
This paper considers the optimal adaptive allocation of measurement effort in order to identify the best
among a finite set of options or designs. An experimenter sequentially chooses designs to measure and
observes independent noisy signals of their quality. The goal is to allocate measurement effort intelligently
so that the best design can be identified confidently after a small number of measurements. Just as the multi-
armed bandit problem crystallizes the tradeoff between exploration and exploitation in sequential decision-
making, this “pure–exploration” problem crystallizes the challenge of efficiently gathering information before
committing to a final decision. It serves as a fundamental abstraction of issues faced in many practical
settings. For example:

• Efficient A/B/C Testing: An e-commerce platform is considering a change to its website and would
like to identify the best performing candidate among many potential new designs. To do this, the
platform runs an experiment, displaying different designs to different users who visit the site. How
should the platform decide what percentage of traffic to allocate to each website design?

• Simulation Optimization: An engineer would like to identify the best performing aircraft design among
several proposals. She has access to a realistic simulator through which she can assess the quality of
the designs, but each simulation trial is very time consuming and produces only noisy output. How
should she allocate simulation effort among the designs?
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• Design of Clinical Trials: A medical research organization would like to find the most effective treat-
ment out of several promising candidates. They run a clinical trail in which they experiment with
the treatments. The results of the study may influence practice for many years to come, and so it
is worth reaching a definitive conclusion. At the same time, clinical trails are extremely expensive,
and careful experimentation can help to mitigate the associated costs.1 Multi-armed bandit models of
clinical trails date back to Thompson [1933], but bandit algorithms lack statistical power in detecting
the best treatment at the end of the trial [Villar et al., 2015]. Can we develop adaptive rules with
better performance?

We study Bayesian algorithms for adaptively allocating measurement effort. Each begins with a prior
distribution over the unknown quality of the designs. The experimenter learns as measurements are gathered,
and beliefs are updated to form a posterior distribution. This posterior distribution gives a principled
mechanism for reasoning about the uncertain quality of designs, and for assessing the probability any given
design is optimal. By formulating this problem as a Markov decision process whose state-space tracks
posterior beliefs about the true quality of each design, dynamic programming could in principle be used
to optimize many natural measures of performance. Unfortunately, computing or even storing an optimal
policy is usually infeasible due to the curse of dimensionality. Instead, this work proposes three simple and
intuitive rules for adaptively allocating measurement effort, and by characterizing fundamental limits on the
performance of any algorithm, formalizes a sense in which these seemingly naïve rules are the best possible.

The first algorithm we propose is called top–two probability sampling. It computes at each time-step
the two designs with the highest posterior probability of being optimal. It then randomly chooses among
them, selecting the design that appears most likely to be optimal with some fixed probability, and selecting
the second most likely otherwise. Beliefs are updated as observations are collected, so the top-two designs
change over time. The long run fraction of measurement effort allocated to each design depends on the
true quality of the designs, and the distribution of observation noise. Top–two value sampling proceeds in a
similar manner, but in selecting the top-two designs it considers not only the probability a design is optimal,
but the expected amount by which its quality exceeds that of other designs. The final algorithm we propose
is a top-two sampling version of the Thompson sampling algorithm for multi-armed bandits. Thompson
sampling has attracted a great deal of recent interest in both academia and industry [Scott, 2016, Tang
et al., 2013, Graepel et al., 2010, Chapelle and Li, 2011, Agrawal and Goyal, 2012, Kauffmann et al., 2012,
Gopalan et al., 2014, Russo and Van Roy, 2014], but it is designed to maximize the cumulative reward earned
while sampling. As a result, in the long run it allocates almost all effort to measuring the estimated-best
design, and requires a huge number of total measurements to certify that none of the alternative designs
offer better performance. We introduce a natural top-two variant of Thompson sampling that avoids this
issue and as a result offers vastly superior performance for the best-arm identification problem.

Remarkably, these simple heuristic algorithms satisfy a strong optimality property. Our analysis focuses
on frequentist consistency and rate convergence of the posterior distribution, and therefore takes place in a
setting where the true quality of the designs is fixed, but unknown to the experimenter. One hopes that as
measurements are collected the posterior distribution definitively identifies the true best design, in the sense
that the posterior probability assigned to the event that some other design is optimal converges to zero. We
show that under the proposed algorithms, this convergence occurs at an exponential rate, characterize the
exponent attained for each problem instance, and relate this to the best possible exponent among allocation
rules.

To make a precise statement, it is important to highlight that the top-two algorithms described above
depend on a tunable parameter; each method identifies the top-two designs and then flips a biased coin to
decide which of these to sample. The paper’s theoretical results offer a fairly complete characterization of
the asymptotic performance of these algorithms, and are summarized more precisely below.

1. Optimality with tuning: For any problem instance and any choice of tuning parameter, the proposed
top-two algorithms attain an exponential rate of posterior convergence. This exponent is carefully
characterized. If the tuning parameter is stet optimally, the exponent is optimal among all possible

1Interpreted the context of clinical trials, this paper’s results are stated in terms of the number of patients required to reach
a confided conclusion of the best treatment. However, we will see that optimal rules from this perspective also allocate fewer
patients to very poor treatments, potentially leading to more ethical trials [Berry, 2004].
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adaptive allocation rules. Moreover, it is possible to attain this rate of convergence by adaptively
adjusting the tuning parameter.

2. Robustness with an unbiased coin: Uniformly across problem instances, the exponent attained by
top–two sampling with an unbiased coin is within a factor of two of what could be attained by an optimal
allocation rule. This robustness is further validated through numerical experiments: across fourteen
problem instances top-two Thompson sampling with an unbiased coin offers similar performance to
a version of top-two Thompson sampling that is applied with the best tuning parameter for that
particular problem setting.

3. Optimality among a restricted class of allocation rules for any tuning parameter: To
simplify the discussion, imagine top–two sampling is applied with an unbiased coin. Then, as the
number of measurements tends to infinity, exactly half of measurement effort is allocated to the best
design. Now, consider any possible adaptive allocation rule, which, like top-two sampling, allocates
half of measurement effort to the true best design asymptotically. There is no problem instance for
which this alternative algorithm attains an exponential rate of posterior convergence exceeding that of
the proposed top-two sampling algorithms. An analogous result applies when a biased coin is used.

It is worth elaborating on the third result described above, as it is the main insight that prompted this paper.
We face the problem of adaptively allocating measurements among k competing designs. We can imagine
decomposing this problem into two parts: first the experimenter chooses which fraction of measurements
to dedicate to what is believed to be the best design, and second, given this choice, she chooses how to
adaptively allocate remaining measurements among the k − 1 competing designs. Roughly speaking, this
paper shows that the allocation among the remaining k − 1 designs is handled automatically and optimally
by very simple top-two sampling algorithms. This offers substantial new insight into the structure of best
arm identification problems and effectively reduces the problem to the choice of a single tuning parameter–
the bias of the coin used by the top-two sampling algorithms. The paper establishes a surprising degree of
robustness to this tuning parameter, and shows it is possible to attain a fully optimal exponent by setting it
adaptively. However, the proposed tuning method is complex, spoiling some of the elegance of the top-two
sampling algorithms. The search for simpler methods stands as an interesting open question.

1.1 Main Contributions
This paper makes both algorithmic and theoretical contributions. On the algorithmic side, we develop
three new adaptive measurement rules. The top-two Thompson sampling rule, in particular, could have an
immediate impact in application areas where Thompson sampling is already in use. For example, there are
various reports of Thompson sampling being used in A/B testing [Scott, 2016] and in clinical trials [Berry,
2004]. But practitioners in these domains typically hope to commit to a decision after definitive period of
experimentation, and top-two Thompson sampling can greatly reduce the number of measurements required
to do so. In addition, because of their simplicity, the proposed allocation rules can be easily adapted to treat
problems beyond the scope of this paper’s problem formulation. See Section 8 for examples.

The paper also makes several theoretical contributions. Most importantly, it is of broad scientific interest
to understand when very simple measurement strategies are the best possible. This paper provides sharp
links between these top-two sampling rules and the limits of performance under any adaptive algorithm. In
establishing these results, we exactly characterize the optimal rate of posterior convergence attainable by
an adaptive algorithm, and provide interpretable bounds on this rate when measurement distributions are
sub-Gaussian. The analysis also provides several intermediate results which may be of independent interest,
including establishing consistency and exponential rates of convergence for posterior distributions with non-
conjugate priors and under adaptive measurement rules. It should be highlighted, however, that the results
do require some strong regularity properties on the prior distribution, and in particular only apply to priors
defined over a compact set.

1.2 Related Literature
Sequential Bayesian Best-Arm Identification. There is a sophisticated literature on algorithms for
Bayesian multi-armed bandit problems. In discounted bandit problems with independent arms, Gittins in-
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dices characterize the Bayes optimal policy [Gittins and Jones, 1974, Gittins, 1979]. Moreover, a variety
of simpler Bayesian allocation rules have been developed, including Bayesian upper-confidence bound algo-
rithms [Kaufmann et al., 2012, Srinivas et al., 2012, Kaufmann, 2016], Thompson sampling [Agrawal and
Goyal, 2012, Korda et al., 2013, Gopalan et al., 2014, Johnson et al., 2015], information-directed sampling
[Russo and Van Roy, 2014], the knowledge gradient [Ryzhov et al., 2012], and optimistic Gittins indices
[Gutin and Farias, 2016]. These heuristic algorithms can be applied effectively to complicated learning
problems beyond the specialized settings in which the Gittins index theorem holds, have been shown to
have strong performance in simulation, and have theoretical performance guarantees. In several cases, they
are known to attain sharp asymptotic limits on the performance of any adaptive algorithm due to Lai and
Robbins [1985].

The pure-exploration problem studied in this paper is not nearly as well understood. Recent work has
cast this problem in a decision-theoretic framework [Chick and Gans, 2009]. However, because the conditions
required for the Gittins index theorem do not hold, computing an optimal policy via dynamic programming
is generally infeasible due to the curse of dimensionality. Papers in this area typically focus on problems
with Gaussian observations and priors. They formulate simpler problems that can be solved exactly – like
a problem where only a single measurement can be gathered [Gupta and Miescke, 1996, Frazier et al., 2008,
Chick et al., 2010] or a continuous-time problem with only two alternatives [Chick and Frazier, 2012] – and
then extend those solutions heuristically to build measurement and stopping rules in more general settings.

For problems with Gaussian priors and noise distributions, the expected-improvement (EI) algorithm
is a popular Bayesian approach to sequential information-gathering. Interesting recent work by Ryzhov
[2016] studies the long run distribution of measurement effort allocated by the expected-improvement and
shows this is related to the optimal computing budget allocation of Chen et al. [2000]. This contribution
is very similar in spirit to this paper, as it relates the long-run behavior of a simple Bayesian measurement
strategy to a notion of an approximately optimal allocation. Unfortunately, EI cannot match the performance
guarantees in this paper. In fact, under EI the posterior converges only at a polynomial rate, instead of the
exponential rate attained by the algorithms proposed here and by the OCBA. See appendix C for a more
precise discussion.

Classical Ranking and Selection. The problem of identifying the best system has been studied for
many decades under the names ranking and selection or ordinal optimization. A full review of this literature
is beyond the scope of this article. See Kim and Nelson [2006], Kim and Nelson [2007] or Hong et al.
[2015] for thorough reviews. Part of this literature focuses on a problem called subset-selection, where the
goal is not to identify the best-design, but to find a fairly small subset of designs that is guaranteed to
contain the best design. Beginning with Bechhofer [1954], many papers have focused on an indifference
zone formulation, where, for user-specified ε, δ > 0, the goal is to guarantee with probability at least 1 − δ
the algorithm returns the true arm mean as long as no suboptimal arm is within ε of optimal. Assuming
measurement noise is Gaussian with known variance σ2, one can guarantee this indifference-zone criterion by
gathering O

(
(σk/ε2) log(k/δ)

)
total measurements, divided equally among the k designs, and then returning

the design with highest empirical-mean. For the case of unknown variances, Rinott [1978] proposes a two
stage procedure, where the first stage is used to estimate the variance of each population, and the number
of samples collected from each design in the second stage is scaled by its estimated standard deviation. In
the machine learning literature, Even-Dar et al. [2002] studies the number of samples required by algorithms
delivering ε–PAC guarantees. Such algorithms are sometimes said to ensure a specified probability of good
selection in the terminology of the simulation optimization literature, a strictly stronger guarantee than an
indifference zone guarantee [Ni et al., 2017]. Even-Dar et al. [2002] show that when measurement noise
is uniformly bounded, an ε–PAC guarantee is satisfied by a sequential elimination strategy that uses only
O
(
(k/ε2) log(1/δ)

)
samples on average. Mannor and Tsitsiklis [2004] provide a matching lower bound.

Similar to minimax bounds, this shows the upper bound of Even-Dar et al. [2002] is tight, up to a constant
factor, for a certain worst case problem instance. Indifference zone formulations of ranking and selection
problems remains an area of active research. See for example Fan et al. [2016] and some of the references
therein.

Since Paulson [1964], many authors have sought to reduce the number of samples required on easier
problem instances by designing algorithms that sequentially eliminate arms once they are determined to
be suboptimal with high confidence. See the recent work of Frazier [2014] and the references therein.
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However, in a sense described below, Jennison et al. [1982] show formally that there are problems with
Gaussian observations where any sequential-elimination algorithm will require substantially more samples
than optimal adaptive allocation rules. See Section 8 for modified top-two sampling algorithms designed for
an indifference zone criterion.

The asymptotic complexity of best-arm identification. We described attainable rates of performance
on a worst-case problem instance characterized by Even-Dar et al. [2002] and Mannor and Tsitsiklis [2004]. A
great deal of work has sought “problem dependent” bounds, which reveal that the best-arm can be identified
more rapidly when the true problem instance is easier. This is the case, for example, when some arms are of
very low quality, and can be distinguished from the best using a small number of measurements. Asymptotic
measures of the complexity of best-arm identification appear to have been derived independently in statistics
[Chernoff, 1959, Jennison et al., 1982], simulation optimization [Glynn and Juneja, 2004], and, concurrently
with this paper, in the machine learning literature [Garivier and Kaufmann, 2016]. Each of these papers
studies a slightly different objective, but each captures a notion of the number of samples required to identify
the best-arm as a function of the problem instance – i.e. as a function the number of designs, each design’s
true quality, and the distribution of measurement noise.

Glynn and Juneja [2004] build on the optimal-computing-budget allocation (OCBA) of Chen et al. [2000]
to provide a rigorous large-deviations derivation of the optimal fixed allocation. In particular, assuming the
design with the highest empirical mean is returned, there is a fixed allocation under which the probability
of incorrect selection decays exponentially, and the exponent is optimal under all fixed-allocation rules. The
setting studied by this paper is often called the “fixed-budget” setting in the recent multi-armed bandit
literature. Unfortunately, it may be difficult to implement the allocation in Glynn and Juneja [2004] without
additional prior knowledge. Later work by Glynn and Juneja [2015] provides a substantial discussion of this
issue.

This paper was highly influenced by a classic paper by Chernoff [1959] on the sequential design of
experiments for binary hypothesis testing. Chernoff’s asymptotic derivations give great insight into best-
arm identification, which can be formulated as a multiple-hypothesis testing problem with sequentially chosen
experiments, but surprisingly this connection does not seem to be discussed in the literature. Chernoff looks
at a different scaling than Glynn and Juneja [2004]. Instead of taking the budget of available measurements
to infinity, he allows the algorithm to stop and declare the hypothesis true or false at any time, but takes
the cost of gathering measurements to zero while the cost of an incorrect terminal decision stays fixed.
He constructs rules that minimize expected total costs in this limit. Chernoff makes restrictive technical
assumptions, some of which have been removed in subsequent work [Albert, 1961, Kiefer and Sacks, 1963,
Keener, 1984, Nitinawarat et al., 2013, Naghshvar et al., 2013].

Jennison et al. [1982] study an indifference zone formulation of the problem of identifying the best-design.
Like Chernoff [1959], they allow the algorithm to stop and return an estimate of the best-arm at any time,
but rather than penalize incorrect decisions, they require that the probability correct selection (PCS) exceeds
1− δ > 0 for every problem instance. Intuitively, the expected number of samples required by an algorithm
satisfying this PCS constraint must tend to infinity as δ → 0. In the case of Gaussian measurement noise,
Jennison et al. [1982] characterize the optimal asymptotic scaling of expected number of samples in this
limit. The recent multi-armed bandit literature refers to this formulation as the “fixed-confidence” setting.

A large body of work in the recent machine learning literature has sought to characterize various notions
of the complexity of best-arm identification [Even-Dar et al., 2002, Mannor and Tsitsiklis, 2004, Audibert
and Bubeck, 2010, Gabillon et al., 2012, Karnin et al., 2013, Jamieson and Nowak, 2014]. However, upper
and lower bounds match only up to constant or logarithmic factors, and only for particular hard problem
instances. Substantial progress was presented by Kaufmann and Kalyanakrishnan [2013] and Kaufmann
et al. [2014], who seek to exactly characterize the asymptotic complexity of identifying the best arm in both
the fixed-budget and fixed-confidence settings. Still, the upper and lower bounds presented there do not
match. A short abstract of the current paper appeared in the 2016 Conference on Learning Theory. In the
same conference, independent work by Garivier and Kaufmann [2016] provided matching upper and lower
bounds on the complexity of identifying the best arm in the “fixed-confidence” setting. Like the present
paper, but unlike Jennison et al. [1982], these results apply whenever observation distributions are in the
exponential family and do not require an indifference zone.

The current paper looks at a different measure. We study a frequentist setting in which the true quality of
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each design is fixed, and characterize the rate of posterior convergence attainable for each problem instance.
We also describe, as a function of the problem instance, the long-run fraction of measurement effort allocated
to each design by any algorithm attaining this rate of convergence. These asymptotic limits turn out to be
closely related to some of the aforementioned results. In particular, the optimal exponent given in Subsection
6.4 mirrors the complexity measure of Chernoff [1959]. In the same subsection, this exponent is then simplified
into a form that mirrors one derived by Glynn and Juneja [2004], and, for Gaussian distributions, one derived
by Jennison et al. [1982].

Optimal Budget Allocations. While the complexity measure we derive is similar to past work, the
proposed algorithms differ substantially. The allocation rules proposed by Chernoff [1959], Jennison et al.
[1982] and Glynn and Juneja [2004] are essentially developed as a means of proving certain rates are at-
tainable asymptotically. To derive these policies, the authors begin with a thought experiment: assuming
the experimenter actually knew the true quality of every arm, what proportion of measurements should she
allocate to each arm in order to gather the most definitive evidence concerning the identity of the optimal
arm. One approach to constructing such rules in practice is to use some fraction of samples to estimate
the arm means and then apply the asymptotically optimal sampling proportions assuming these estimates
to be correct. Such an approach dates back to at least the work of Kiefer and Sacks [1963], which followed
Chernoff’s work on the sequential design of experiments.

Early authors made a point to highlight limitations of such an approach. Jennison et al. [1982] writes
their proposed procedures “typically...do not have good small sample size properties. A better procedure
would have several stages and a more sophisticated sampling rule.” In a 1975 review of the sequential
design of experiments, Chernoff [1975] notes that asymptotic approaches to the optimal sequential design
of experiments had been fairly successful in circumventing the need to compute Bayesian optimal designs
via dynamic programming, but “the approach is very coarse for moderate sample size problems.” He writes
that two-stage procedures of Kiefer and Sacks [1963], “sidestep the issue of how to experiment in the early
stages,” while constructing the optimal allocations based on point estimates “treats estimates of θ based on
a few observations with as much respect as that based on many observations.”

Closely related to these approaches is a large body of work on optimal computing budget allocations
(OCBA) [Chen et al., 2000]. Most of this literature studies problems with Gaussian observations. They
derive an approximation to the optimal sampling proportions presented in Chernoff [1959], Jennison et al.
[1982] and Glynn and Juneja [2004], which appears to simplify computation. This allocation is often stated
to be optimal as the number of arms grows large; more rigorous results to this effect are established in
interesting work by Pasupathy et al. [2015], who shows that the sampling ratios of the OCBA coincide with
those of Glynn and Juneja [2004] in the limit of a sequence of problem instances in which the number of arms
tends to infinity but all suboptimal arms’ means are bounded away from optimal by a fixed constant. Optimal
budget allocations have been extended in various directions, for example to address Bayesian expected loss
objectives [Chick and Inoue, 2001], the problem of identifying an optimum subject to stochastic constraints
[Hunter and Pasupathy, 2013], and the problem of identifying the top m alternatives [Chen et al., 2008]. See
Chen et al. [2015] for a more thorough review.

In this paper, we study simple adaptive allocation rules which, ostensibly, have no relation to the asymp-
totic calculations used to derive these optimal budget allocations. The main insight is that these simple
algorithms automatically adapt their measurement effort in such a way that their long run behavior is
deeply linked to the ratios suggested in the work of Chernoff [1959], Jennison et al. [1982], and Glynn and
Juneja [2004]. A major advantage of top-two sampling algorithms, however, is that asymptotic analysis is
used only to give insight into the algorithms, and any approximations have no impact on their practical
performance. A suite of experiments in Section 7 suggest the approach can substantially outperform the
optimal allocations derived from asymptotic theory.

2 Problem Formulation
Consider the problem of efficiently identifying the best among a finite set of designs based on noisy sequential
measurements of their quality. At each time n ∈ N, a decision-maker chooses to measure the design In ∈
{1, ..., k}, and observes a measurement Yn,In . The measurement Yn,i ∈ R associated with design i and
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time n is drawn from a fixed, unknown, probability distribution, and the vector Yn , (Yn,1, ..., Yn,k) is
drawn independently across time. The decision-maker chooses a policy, or adaptive allocation rule, which
is a (possibly randomized) rule for choosing a design In to measure as a function of past observations
I1, Y1,I1 , ...In−1, Yn−1,In−1 . The goal is to efficiently identify the design with highest mean.

We will restrict attention to problems where measurement distributions are in the canonical one dimen-
sional exponential family. The marginal distribution of the outcome Yn,i has density p(y|θ∗i ) with respect to
a base measure ν, where θ∗i ∈ R is an unknown parameter associated with design i. This density takes the
form

p(y|θ) = b(y) exp{θT (y)−A(θ)} θ ∈ R (1)
where b, T , and A are known functions, and A(θ) is assumed to be twice differentiable. We will assume
that T is a strictly increasing function so that µ(θ) ,

´
yp(y|θ)dν(y) is a strictly increasing function of θ.

Many common distributions can be written in this form, including Bernoulli, normal (with known variance),
Poisson, exponential, chi-squared, and Pareto (with known minimal value).

Throughout the paper, θ∗ , (θ∗1 , ..., θ∗k) will denote the unknown true parameter vector, and θ and θ′
will be used to denote possible alternative parameter vectors. Let I∗ = arg max1≤i≤k θ

∗
i denote the unknown

best design. We will assume throughout that θ∗i 6= θ∗j for i 6= j so that I∗ is unique, although this can be
relaxed by considering an indifference zone formulation where the goal is to identify an ε–optimal design, for
some specified tolerance level ε > 0.

Prior and Posterior Distributions. The policies studied in this paper make use of a prior distri-
bution Π1 over a set of possible parameters Θ that contains θ∗. Based on a sequence of observations
(I1, Y1,I1 , ..., In−1, Yn−1,In−1), beliefs are updated to attain a posterior distribution Πn. We assume Π1 has
density π1 with respect to Lebesgue measure. In this case, the posterior distribution Πn has corresponding
density

πn(θ) = π1(θ)Ln−1(θ)´
Θ π1(θ′)Ln−1(θ′)dθ′

n ≥ 2, (2)

where

Ln−1(θ) =
n−1∏
l=1

p(Yl,Il |θIl)

is the likelihood function. While this formulation enforces some technical restrictions to facilitate theoretical
analysis, it allows for very general prior distributions, and in particular allows for the quality of different
designs to be correlated under the priors.

Optimal Action Probabilities. Let

Θi ,

{
θ ∈ Θ

∣∣∣∣θi > max
j 6=i

θj

}
denote the set of parameters under which design i is optimal, and let

αn,i , Πn(Θi) =
ˆ

Θi

πn(θ)dθ (3)

denote the posterior probability assigned to the event that action i is optimal. Our analysis will focus on
Πn(Θc

I∗) = 1 − αI∗ , which is the posterior probability assigned to the event that an action other than I∗

is optimal. The next section will introduce policies under which Πn(Θc
I∗) → 0 as n → ∞, and the rate of

convergence is essentially optimal.

Further Notation. Before proceeding, we introduce some further notation. Let Fn denote the sigma
algebra generated by (I1, Y1,I1 , ...In, Yn,In). For all i ∈ {1, ..., k} and n ∈ N, define

ψn,i , P(In = i|Fn−1) Ψn,i ,
n∑
`=1

ψ`,i ψn,i , n−1Ψn,i.

Each of these measures the effort allocated to design i up to time n.
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3 Algorithms
This section proposes three algorithms for allocating measurement effort. Each depends on a tuning param-
eter β > 0, which will sometimes be set to a default value of 1/2. Each algorithm is based on the same high
level principle. At every time step, each algorithm computes an estimate Î ∈ {1, ..., k} of the optimal design,
and measures that with probability β. Otherwise, we consider a counterfactual: in the (possibly unlikely)
event that Î is not the best design, which alternative Ĵ 6= Î is most likely to be the best design? With
probability 1 − β, the algorithm measures the alternative Ĵ . The algorithms differ in how they compute Î
and Ĵ . The most computationally efficient is the modified version of Thompson sampling, under which Î
and and Ĵ are themselves randomly sampled from a probability distribution.

We will see that asymptotically all three algorithms allocate fraction β of measurement effort to mea-
suring the estimated-best design, and the remaining fraction to gathering evidence about alternatives. The
algorithms adjust how measurement effort is divided among these alternative designs as evidence is gathered,
allocating less effort to measuring clearly inferior designs and greater effort to measuring designs that are
more difficult to distinguish from the best.

3.1 Top-Two Probability Sampling (TTPS)
With probability β, the top-two probability sampling (TTPS) policy plays the action În = arg maxi αn,i
which, under the posterior, is most likely to be optimal. When the algorithm does not play În, it plays the
most likely alternative Ĵn = arg maxj 6=În αn,j , which is the action that is second most likely to be optimal
under the posterior. Put differently, the algorithm sets ψn,În = β, and ψn,Ĵn = 1− β.

3.2 Top-Two Value Sampling (TTVS)
We now propose a variant of top-two sampling that considers not only the probability a design is optimal,
but the expected amount by which its quality exceeds that of other designs. In particular, we will define
below a measure Vn,i of the value of design i under the posterior distribution at time n. Top-two value
sampling computes the top-two designs under this measure: În = arg maxi Vn,i and Ĵn = arg maxj 6=În Vn,j .
It then plays the top design În with probability β and the best alternative Ĵn otherwise. As observations
are gathered, beliefs are updated and so the top two designs change over time. The measure of value Vn,i is
defined below.

The definition of TTVS depends on a choice of (utility) function u : θ 7→ R, which encodes a measure of
the value of discovering a design with quality θi. Two natural choices of u are u(θ) = θ and u(θ) = µ(θ).
The paper’s theoretical results allow u to be a general function, but we assume that it is continuous and
strictly increasing. For a given choice of u, and any i ∈ {1, ..., k}, the function

vi(θ) = max
j
u(θj)−max

j 6=i
u(θj) =

{
0 if θ /∈ Θi

u(θi)−maxj 6=i u(θj) if θ ∈ Θi

provides a measure of the value of design i when the true parameter is θ. It captures the improvement in
decision quality due to design i’s inclusion in the choice set. Let

Vn,i =
ˆ

Θ

vi(θ)πn(θ)dθ =
ˆ

Θi

vi(θ)πn(θ)dθ (4)

denote the expected value of vi(θ) under the posterior distribution at time n. This can be viewed as the
option-value of design i: it is the expected additional value of having the option to choose design i when
it is revealed to be the best design. Note that the integral (4) defining Vn,i is a weighted version of the
integral defining αn,i. The paper will formalize a sense in which Vn,i and αn,i are asymptotically equivalent
as n → ∞, and as a result the asymptotic analysis of top-two value sampling essentially reduces to the
analysis of top-two probability sampling.

8



3.3 Thompson Sampling
Thompson sampling is an old and popular heuristic for multi-armed problems. The algorithm simply sam-
ples actions according to the posterior probability they are optimal. In particular, it selects action i with
probability ψn,i = αn,i, where αn,i denotes the probability action i is optimal under under a parameter
drawn from the posterior distribution.

Thompson sampling can have very poor asymptotic performance for the best arm identification problem.
Intuitively, this is because once it estimates that a particular arm is the best with reasonably high probability,
it selects that arm in almost all periods at the expense of refining its knowledge of other arms. If αn,i = .95,
then the algorithm will only select an action other than i roughly once every 20 periods, greatly extending
the time it takes until αn,i > .99. This insight can be made formal; our results imply that Thompson
sampling attains a only attains a polynomial, rather exponential, rate of posterior convergence. A similar
reasoning applies to other multi-armed bandit algorithms. The work of Bubeck et al. [2009] shows formally
that algorithms satisfying regret bounds of order log(n) are necessarily far from optimal for the problem of
identifying the best arm.

With this in mind, it is natural to consider a modification of Thompson sampling that simply restricts
the algorithm from sampling the same action too frequently. One version of this idea is proposed below.

3.4 Top-Two Thompson Sampling (TTTS)
This section proposes top-two Thompson sampling (TTTS), which modifies standard Thompson sampling
by adding a re-sampling step. As with TTPS and TTVS, this algorithm depends on a tuning parameter
β > 0 that will sometimes be set to a default value of 1/2.

As in Thompson sampling, at time n, the algorithm samples a design I ∼ αn. Design I is measured
with probability β, but, in order to prevent the algorithm from exclusively focusing on one action, with
probability 1 − β, an alternative design is measured. To generate this alternative, the algorithm continues
sampling designs J ∼ αn until the first time J 6= I. This can be viewed as a top-two sampling algorithm,
where the top-two are chosen by executing Thompson sampling until two distinct designs are drawn.

Under top-two Thompson sampling, the probability of measuring design i at time n is

ψn,i = αn,i

β + (1− β)
∑
j 6=i

αn,j
1− αn,j

 .

This expression simplifies as the algorithm definitively identifies the best design. As αn,I∗ → 1, ψn,I∗ → β,
and for each i 6= I∗,

ψn,i
1− ψn,I∗

∼ αn,i
1− αn,I∗

.

In this limit, the true best design is sampled with probability β. The probability i is sampled given I∗ is not
is equal to the posterior probability i is optimal given I∗ is not.

3.5 Computing and Sampling According to Optimal Action Probabilities
Here we provide some insight into how to efficiently implement the proposed top-two rules in important
problem classes. We begin with top-two Thompson sampling, which is often the easiest to implement. Note
that given an ability to sample from Πn, it is easy to sample from the posterior distribution over the optimal
designαn. In particular, if θ̂ ∼ Πn is drawn randomly from the posterior, then arg maxi θ̂i is a random sample
from αn. Either through the choice of conjugate prior distributions, or through the use of Markov chain
Monte Carlo, it is possible to efficiently sample from the posterior for many interesting models. Algorithm 1
shows how to directly sample an action according to TTTS by sampling from the posterior distribution. It
is worth highlighting that this algorithm does not require computing or approximating the distribution αn.

The optimal action probabilities αn,i and values Vn,i are defined by k-dimensional integrals, which may
be difficult to compute in general even if the posterior Πn has a closed form. Algorithm 2 shows how to
approximate αn,i and Vn,i using samples θ1 . . .θM , which enables efficient approximations to TTPS and
TTVS whenever posterior samples can be efficiently generated.
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Algorithm 1 Top-Two Thompson Sampling (β)

1: Sample θ̂ ∼ Πn and set I ← arg maxi θ̂i . Apply Thompson sampling
2: Sample B ∼ Bernoulli(β)
3: if B = 1 then . Occurs with probability β.
4: Play I
5: else
6: repeat
7: Sample θ̂ ∼ Πn and set J ← arg maxj θ̂j . Repeat Thompson sampling
8: until J 6= I
9: Play J
10: end if

Algorithm 2 SampleApprox(K,M, u,θ1, . . . ,θM )
1: Si ← {m|i = arg maxj θmj } ∀i ∈ {1, ..,K}
2: α̂i ← |Si|/m ∀i ∈ {1, ..K}
3: V̂i ←M−1∑

m∈Si

(
u(θmi )−maxj 6=i u(θmj )

)
∀i ∈ {1, ..,K}

4: return α̂, V̂

Thankfully, the computation of αn,i and Vn,i simplifies when the algorithm begins with an independent
prior over the qualities θ1, ...θk of the k designs. To understand this fact, suppose X1, ..., Xk ∈ R are
independently distributed and continuous random variables. Then

P(X1 = max
i
Xi) =

ˆ

x∈R

f1(x)
k∏
j=2

Fj(x)dx (5)

where f1 denotes the PDF of X1 and F2, ..., FK are the CDFs of X2, .., Xk. In particular, P(X1 = maxiXi)
can be computed by solving a 1-dimensional integral. Based on this insight, Appendix B provides an efficient
implementation of TTPS and TTVS for a problem with independent Beta priors and binary observations.
That implementation approximates integrals like (5) using quadrature with n points, and has the time and
space complexity that scale as O(kn).

4 A Numerical Experiment
Some of the paper’s main insights are reflected in a simple numerical experiment. Consider a problem where
observations are binary Yn,i ∈ {0, 1}, and the unknown vector θ∗ = (.1, .2, .3, .4, .5) defines the true success
probability of each design. Each algorithm begins with an independent uniform prior over the components
of θ∗. The experiment compares the performance of top-two probability sampling (TTPS), top-two value
sampling (TTVS)2, and top-two Thompson sampling (TTTS) with β = 1/2 against Thompson sampling
and a uniform allocation rule which allocates equal measurement effort (ψn,i = 1/5) to each design. The
uniform allocation is a natural point of comparison, since is the most commonly used strategy in practice.

Figure 1 displays the average number of measurements required for the posterior to reach a given con-
fidence level. In particular, the experiment tracks the first time when maxi αn,i ≥ c for various confidence
levels c ∈ (0, 1). Figure 1 displays the average number of measurements required for each algorithm to reach
each fixed confidence level, where the average was taken over 100 trials in Panel (a) and 500 in Panel (b).
Even for this simple problem with five designs, the proposed algorithms can reach the same confidence level
using fewer than half the measurements required by a uniform allocation rule. While all the top-two rules
attain the same asymptotic rate of convergence, we can see that top-two probability sampling is slightly
outperformed in this experiment. Panel (a) compares Thompson sampling to Top-Two Thompson sampling.
TS appears to reach low confidence levels as rapidly as top-two TS, but as suggested in Subsection 3.3, is very

2TTVS is executed with the utility function u(θ) = θ
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slow to reach high levels of confidence. It requires over than 60% more measurements to reach confidence .95
and over 250% more measurements to reach confidence .99. TS requires an onerous number of measurements
to reach confidence .999, and so we omit this experiment.
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(b) Comparison with uniform allocation.

Figure 1: Number of measurements required to reach given confidence level.

Figure 2 provides insight into how the proposed algorithms differ from the uniform allocation. It displays
the distribution of measurements and posterior beliefs at the first time when a confidence level of .999
is reached. Again, all results are averaged across 500 trials. Panel (a) displays the average number of
measurements collected from each design. It is striking that although TTTS, TTPS, and TTVS seem quite
different, they all settle on essentially the same distribution of measurement effort. Because β = 1/2, roughly
one half of the measurements are collected from I∗ = 5. Moreover, fewer measurements are collected from
designs that are farther from optimal, and most of the remaining half of measurement effort is allocated to
design 4. Notice that using the same number of noisy samples it is much more difficult certify that θ∗4 < θ∗5
than that θ∗1 < θ∗5 , both because θ∗4 is closer to θ∗5 , and because observations from a Bernoulli distribution
with parameter .4 have higher variance than under a Bernoulli distribution with parameter .1.

Panel (b) investigates the posterior probability αn,i assigned to the event that design i is optimal. To
make the insights more transparent, these are plotted on log-scale, where the value log(1/αn,i) can roughly
be interpreted as the magnitude of evidence that alternative i is not optimal. By using an equal allocation of
measurement effort across the designs, the uniform sampling rule gathers an enormous amount of evidence
to rule out design 1, but an order of magnitude less evidence to rule out design 4. Instead of allocating
measurement effort equally across the alternatives, TTTS, TTPS, and TTVS appear to exactly adjust
measurement effort to gather equal evidence that each of the first four designs is not optimal.

Intuitively, in the long run each of the proposed algorithms will allocate measurement effort to design
5–the true best design–and to whichever other designs could most plausibly be optimal. If too much mea-
surement effort has been allocated to a particular design, then the posterior will indicate that it is clearly
suboptimal, and effort will be allocated elsewhere until a similar amount of evidence has been gathered about
other designs. In this way, measurement effort is automatically adjusted to the appropriate level.

5 Main Theoretical Results
Our main theoretical results concern the frequentist consistency and rate of convergence of the posterior
distribution. Recall that

Πn(Θc
I∗) =

∑
i 6=I∗

αn,i

11
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Figure 2: Distribution of measurements and posterior beliefs at termination.

captures the posterior mass assigned to the event that an action other than I∗ is optimal. One hopes that
Πn(Θc

I∗)→ 0 as the number of observations n tends to infinity, so that the posterior distribution converges
on the truth. We will show that under the TTTS, TTPS, and TTVS allocation rules, Πn(Θc

I∗) converges to
zero an exponential rate and that the exponent governing the rate of convergence is nearly the best possible.

To facilitate theoretical analysis, we will make three additional boundedness assumptions, which are
assumed throughout all formal proofs. This rules out some cases of interest, such the use of multivariate
Gaussian prior. However, we otherwise allow for quite general correlated priors, expressed in terms of
a density over a compact set. This stands in contrast, for example, to previous analyses of Thompson
sampling, which tpyically rely heavily on the use of independent conjugate priors. Assumption 1 is used only
in establishing certain asymptotic results concerning the rate of posterior concentration. Analogous results
are easily established for certain unbounded conjugate priors3, but the author still has not identified the
right technical conditions that generalize these results.

Assumption 1. The parameter space is a bounded open hyper-rectangle Θ = (θ, θ)k, the prior density is
uniformly bounded with

0 < inf
θ∈Θ

π1(θ) < sup
θ∈Θ

π1(θ) <∞,

and the log-partition function has bounded first derivative with supθ∈[θ,θ] |A
′(θ)| <∞.

The paper’s main results, as stated in the next theorem, characterize the rate of posterior convergence
under the proposed algorithms, formalize a sense in which this is the fastest possible rate, and bound the
impact of the tuning parameter β ∈ (0, 1). The statement depends on distribution-dependent constants
Γ∗β > 0 and Γ∗ > 0 that are presented here but will be more explicitly characterized in Section 6.

The first part of the theorem shows that there is an exponent Γ∗ > 0 such that Πn(Θc
I∗) cannot converge

to zero at a rate faster than e−nΓ∗ under any allocation rule, and shows that TTPS, TTVS and TTTS attain
this optimal rate of convergence when the tuning parameter β is set optimally. This optimal exponent is
shown to equal

Γ∗ = max
ψ

min
θ∈Θc

I∗

k∑
i=1

ψid(θ∗i ||θi),

where d(θi||θ′i) denotes the Kullback Leibler divergence between the observations distributions p(y|θi) and
p(y|θ′i). This can be viewed as the value of a game between two players. An experimenter first chooses a

3See for example Qin et al. [2017], which is a follow up to the current paper.
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probability distribution over arms ψ determining the frequency with which arms are measured. An adversary
then chooses the worst case configuration of arm means, selecting an alternative θ = (θ1, . . . , θk) that is hard
to distinguish from θ∗ under the measurement allocation ψ, but under which the arm I∗ is no longer optimal.

The remainder of the theorem investigates the role of the tuning parameter β ∈ (0, 1). Part 2 shows
that there is an exponent Γ∗β > 0 such that Πn(Θc

I∗)→ 0 at rate e−nΓ∗β under TTPS, TTVS, or TTTS with
parameter β, and this is shown to be optimal among a restricted class of allocation rules. In particular,
we observe that β controls the fraction of measurement effort allocated to the true best design I∗, in the
sense that ψn,I∗ → β as n → ∞ under each of the proposed algorithms. These algorithms attain the error
exponent

Γ∗β = max
ψ:ψI∗=β

min
θ∈Θc

I∗

k∑
i=1

ψid(θ∗i ||θi),

which is analogous to Γ∗ except that the experimenter is constrained to measure the true best arm with
fraction β of measurement effort. A lower bound shows this exponent is optimal among a constrained
class: precisely, on any sample path on which an adaptive algorithm allocates a faction β of overall effort to
measuring I∗, the posterior cannot converge at rate faster than e−nΓ∗β . In this sense, while a tuning parameter
controls the long-run measurement effort allocated to the true best design, TTPS, TTVS, and TTTS all
automatically adjust how remaining the measurement effort is allocated among the k−1 suboptimal designs
in an asymptotically optimal manner.

The final part of the theorem shows that the constrained exponent Γ∗β is close to the largest possible
exponent Γ∗ whenever β is close to the optimal value. The choice of β = 1/2 is particularly robust: Γ∗1/2 is
never more than a factor of 2 away from the optimal exponent.

Theorem 1. There exist constants {Γ∗β > 0 : β ∈ (0, 1)} such that Γ∗ = maxβ Γ∗β exists, β∗ = arg maxβ Γ∗β
is unique, and the following properties are satisfied with probability 1:

1. Under TTTS, TTPS, or TTVS with parameter β∗,

lim
n→∞

− 1
n

log Πn(Θc
I∗) = Γ∗.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗.

2. Under TTTS, TTPS, or TTVS with parameter β ∈ (0, 1),

lim
n→∞

− 1
n

log Πn(Θc
I∗) = Γ∗β and lim

n→∞
ψn,I∗ = β.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β on any sample path with lim

n→∞
ψn,I∗ = β.

3. Γ∗ ≤ 2Γ∗1
2
and

Γ∗

Γ∗β
≤ max

{
β∗

β
,

1− β∗

1− β

}
.

This theorem is established in a sequence of results in Section 6. The lower bounds in parts 1 and 2 are given
respectively in Propositions 6 and 7. Proposition 8 shows the top-two rules attain these optimal exponents.
Part 3 is stated as Lemma 3 in Section 6.
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5.1 An upper bound on the error exponent
Before proceeding, we will state an upper bound on the error exponent when β = 1/2 that is closely related to
complexity terms that have appeared in the literature on best–arm identification (e.g. Audibert and Bubeck
[2010]). This bound depends on the gaps between the means of the different observation distributions.

We say that a real valued random variable X is σ–sub–Gaussian if E [exp{λ(X −E[X])}] ≤ exp
{
λ2σ2

2

}
so that the moment generating function of X −E[X] is dominated by that of a zero mean Gaussian random
variable with variance σ2. Gaussian random variables are sub-Gaussian, as are uniformly bounded random
variables. The next result applies to both Bernoulli and Gaussian distributions, as each can be parameterized
with sufficient statistic T (y) = y.

Proposition 1. Suppose the exponential family distribution is parameterized with T (y) = y and that each
θ ∈ [θ, θ], if Y ∼ p(y|θ), then Y is sub-Gaussian with parameter σ. Then

Γ∗1
2
≥ 1

16σ2∑
i6=I∗ ∆−2

i

where for each i ∈ {1, ..., k},
∆i = E[Yn,I∗ ]−E[Yn,i]

is the difference between the mean under θ∗I∗ and the mean under θ∗i .

This shows that Πn(Θc
I∗) decays at asymptotic rate faster than exp{−nmini ∆2

i

16kσ2 }, so convergence is rapid
when there is a large gap between the means of different designs. In fact, Proposition 1 replaces the
dependence on (1/k) times the smallest gap ∆i with a dependence on

(∑k
i=2 ∆−2

i

)−1
, which captures the

average inverse gap. This rate is attained only by an intelligent adaptive algorithm which allocates more
measurement effort to designs that are nearly optimal and less to designs that are clearly suboptimal. In
fact, the next result shows that the asymptotic performance of uniform allocation rule depends only on the
smallest gap mini 6=I∗ ∆2

i , and therefore even if some designs could be quickly ruled out, the algorithm can’t
leverage this to attain a faster rate of convergence.

Proposition 2. If Yn,I∗ ∼ N (0, σ2) and Yn,i ∼ N (−∆i, σ
2) for each i 6= I∗,

lim
n→∞

− 1
n

log Πn(Θc
I∗) = −nmini ∆2

i

4kσ2

under a uniform allocation rule which sets ψn,i = 1/k for each i and n.

5.2 Consistent Tuning of β

Our previous results show that if the top-two sampling algorithms are applied with the optimal problem
dependent tuning parameter β∗ = arg maxβ Γ∗, then these algorithms attain the optimal rate of posterior
convergence e−Γ∗n. Unfortunately β∗ is is typically unknown, and so we also investigate robustness to the
choice of β, both in theory as in Theorem 1 above, and in simulation experiments presented in Section 7.
Still, a natural question is whether this tuning parameter can be adjusted in a dynamic fashion to converge
on β∗. We begin the study of such extensions in this subsection.

First, note that it is easy to extend the definition of each top to sampling algorithm so that they use an
adaptive sequence of tuning parameters (βn : n ∈ N). For example, top-two probability sampling identifies
În = arg maxi αn,i and Ĵn = arg maxj 6=În αn,j and then chooses among these with respective probabilities
ψn,În = βn and ψn,Ĵn = 1 − βn. The next lemma confirms that, if applied with such a sequence of tuning
parameters such that βn → β∗, the top-two sampling algorithms attain the optimal convergence rate e−nΓβ∗ .

Proposition 3. Suppose TTTS, TTVS, TTPS are applied with an adaptive sequence of tuning parameters
(βn : n ∈ N) where for each n, βn is Fn−1 measurable. Then, with probability 1, on any sample path on
which βn → β∗,

Πn(Θc
I∗)

.= e−nΓ∗ .
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The next lemma confirms that such consistent tuning is possible. The method for tuning β, presented
Algorithm 3, simply solves numerically for the optimal value of β assuming that the true values of the
parameters (θ1, . . . θk) are given by their respective posterior means.

Unfortunately, this tuning method is complex, spoiling some of elegance of the top-two sampling algo-
rithms. A significant open question is whether simpler methods for adapting β could be adopted.

Lemma 1. Under TTTS, TTPS, or TTVS with an adaptive sequence of tuning parameters (βn : n ∈ N)
adjusted according to Algorithm 3, βn → β∗ almost surely. Therefore Πn(Θc

I∗)
.= e−nΓ∗ .

Algorithm 3 Top-Two Sampling with β-Tuning

1: Input κ ≥ 2, β̂ ∈ (0, 1).
2: Set counter ` = 1
3: for n ∈ {1, 2, 3, 4, . . .} do
4: Sample In ∼ TopTwo(πn, β̂)
5: Measure In and observe Yn,In
6: Update play-count Sn+1,In ← Sn,In + 1
7: Update posterior πn+1(θ) ∝ πn(θ)p (Yn,In | θIn)
8: if mini Sn,i ≥ κ` then
9: `← `+ 1
10: Compute Posterior mean θ̂ ←

´
Θ θπn+1(θ)dθ

11: if arg maxi θ̂i is unique then
12: Estimate best arm Î ← arg maxi θ̂i
13: Estimate best allocation ψ̂ ← arg maxψ minθ∈Θc

Î
Dψ(θ̂||θ)

14: β̂ ← ψ̂Î
15: end if
16: end if
17: end for

6 Analysis
6.1 Asymptotic Notation.
To simplify the presentation, it is helpful to introduce additional asymptotic notation. We say two sequences
an and bn taking values in R are logarithmically equivalent, denoted by an

.= bn, if 1
n log(anbn )→ 0 as n→∞.

This notation means that an and bn are equal up to first order in the exponent. With this notation, Theorem 1
implies the top-two sampling rules with parameter β attain the convergence rate Πn(Θc

I∗)
.= e−nΓ∗β . This is an

equivalence relation, in the sense that if an
.= bn and bn

.= cn then an
.= cn. Note that an+bn

.= max{an, bn},
so that the sequence with the largest exponent dominates. In addition for any positive constant c, can

.= an,
so that constant multiples of sequences are equal up to first order in the exponent. When applied to sequences
of random variables, these relations are understood to apply almost surely.

It is natural to wonder whether the proposed algorithms asymptotically minimize expressions like
∑
i6=I∗(θ∗I∗−

θi)αn,i, which account for how far some designs are from optimal. We note in passing, that∑
i 6=I∗

ciαn,i
.= max
i 6=I∗

αn,i

for any positive costs ci > 0, and so any such performance measures are equal to first order in the exponent.
Similar observations have been used to justify the study of the probability of incorrect selection, rather than
notions of the expected cost of an incorrect decision [Glynn and Juneja, 2004, Audibert and Bubeck, 2010].

15



6.2 Posterior Consistency
The next proposition provides a consistency and anti-consistency result for the posterior distribution. The
first part says that if design i receives infinite measurement effort, the marginal posterior distribution of its
quality concentrates around the true value θ∗i . The second part says that when restricted to designs that are
not measured infinitely often, the posterior does not concentrate around any value. The posterior converges
to the truth as infinite evidence is collected, but nothing can be ruled out with certainty based on finite
evidence.

Proposition 4. With probability 1, for any i ∈ {1, .., k} if Ψn,i →∞, then, for all ε > 0

Πn({θ ∈ Θ|θi /∈ (θ∗i − ε, θ∗i + ε)})→ 0.

If I = {i ∈ {1, ..., k}| limn→∞Ψn,i <∞} is nonempty, then

inf
n∈N

Πn({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) > 0

for any collections of open intervals (θ′i, θ′′i ) ⊂ (θ, θ) ranging over i ∈ I.

This result is the key to establishing that αn,I∗ → 1 under each of the proposed algorithm. The next
subsection gives a more refined result that allows us to to characterize the rate of convergence.

6.3 Posterior Large Deviations
This section provides an asymptotic characterization of posterior probabilities Πn(Θ̃) for any open set Θ̃ ⊂ Θ
and under any adaptive measurement strategy. The characterization depends on the notion of Kullback-
Leibler divergence. For two parameters θ, θ′ ∈ R, the log-likelihood ratio, log (p(y|θ)/p(y|θ′)), provides a
measure of the amount of information y provides in favor of θ over θ′. The Kullback-Leibler divergence

d(θ||θ′) ,
ˆ

log
(
p(y|θ)
p(y|θ′)

)
p(y|θ)dν(y).

is the expected value of the log-likelihood under observations drawn p(y|θ). Then, if the design to measure
is chosen by sampling from a probability distribution ψ over {1, .., k},

Dψ(θ||θ′) ,
k∑
i=1

ψid(θi||θ′i)

is the average Kullback-Leibler divergence between θ and θ′ under ψ.
Under the algorithms we consider, the effort allocated to measuring design i, ψn,i , P(In = i|Fn−1),

changes over time as data is collected. Recall that ψn,i , n−1∑n
`=1 ψ`,i captures the fraction of overall effort

allocated to measuring design i over the first n periods. Under an adaptive allocation rule, ψn is function
of the history (I1, Y1,I1 , ...In−1, Yn−1,In−1) and is therefore a random variable. Given that measurement
effort has been allocation according to ψn, Dψn(θ∗||θ) quantifies the average information acquired that
distinguishes θ from the true parameter θ∗. The following proposition relates the posterior mass assigned
to Θ̃ to infθ∈Θ̃Dψn

(θ∗||θ), which captures the element in Θ̃ that is hardest to distinguish from θ∗ based on
samples from ψn.

Proposition 5. For any open set Θ̃ ⊂ Θ,

Πn(Θ̃) .= exp
{
−n inf

θ∈Θ̃
Dψn

(θ∗||θ)
}
.

To understand this result, consider a simpler setting where the algorithm measures design i in every
period, and consider some θ with θi 6= θ∗i . Then the log-ratio of posteriors densities

log
(
πn(θ)
πn(θ∗)

)
= log

(
π1(θ)
π1(θ∗)

)
+
n−1∑
`=1

log
(
p(Y`,i|θi)
p(Y`,i|θ∗i )

)
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can be written as the sum of the log-prior-ratio and the log-likelihood-ratio. The log-likelihood ratio is
negative drift random walk: it is the sum of n− 1 i.i.d terms, each of which has mean

E
[
log
(
p(Y1,i|θi)
p(Y1,i|θ∗i )

)]
= E

[
− log

(
p(Y1,i|θ∗i )
p(Y1,i|θi)

)]
= −d(θ∗i ||θi).

Therefore, by the law of large numbers, as n → ∞, n−1 log (πn(θ)/πn(θ∗)) → −d(θ∗i ||θi), or equivalently,
the ratio of the posterior densities decays exponentially as

πn(θ)
πn(θ∗)

.= exp{−nd(θ∗i ||θi}.

This calculation can be carried further to show that if the designs measured (I1, I2, I3, ...) are drawn inde-
pendently of the observations (Y1,Y2,Y3, ...) from a fixed probability distribution ψ, then

πn(θ)
πn(θ∗)

.= exp {−nDψ(θ∗||θ)} . (6)

Now, by a Laplace approximation, one might expect that the integral
´

Θ̃ πn(θ)dθ is extremely well approx-
imated by integrating around a vanishingly small ball around the point

θ̂ = arg min
θ∈Θ̃

Dψ(θ∗||θ).

These are the main ideas behind Proposition 5, but there are several additional technical challenges involved
in a rigorous proof. First, we need that a property like (6) holds when the allocation rule is adaptive to the
data. Next, convergence of the integral of the posterior density requires a form of uniform convergence in
(6). Finally, since ψn changes over time, the point arg min

θ∈Θ̃
Dψn

(θ∗||θ) changes over time and basic Laplace

approximations don’t directly apply.

6.4 Characterizing the Optimal Allocation
Throughout this paper, an experimenter wants to gather enough evidence to certify that I∗ is optimal, but
since she does not know θ∗, she does not know which measurements will provide the most information. To
characterize the optimal exponent Γ∗, however, it is useful to consider the easier problem of gathering the
most effective evidence when θ∗ is known. We can cast this as a game between two players:

• An experimenter, who knows the true parameter θ∗, chooses a (possibly adaptive) measurement rule.

• A referee observes the resulting sequence of observations (I1, Y1,I1 , ..., In−1, Yn−1,In−1) and computes
posterior beliefs (αn,1, .., αn,k) according to Bayes rule (2, 3).

• How can the experimenter gather the most compelling evidence? A rule which is optimal asymptotically
should maximize the rate at which αn,I∗ → 1 as n→∞.

In order to drive the posterior probability αn,I∗ to 1, the decision-maker must be able to rule out all
parameters in Θc

I∗ under which the optimal action is not I∗. Our analysis shows that the posterior probability
assigned to Θc

I∗ is dominated by the parameter that is hardest to distinguish from θ∗ under ψn. In particular,
by Proposition 5,

Πn(Θc
I∗)

.= exp
{
−n
(

min
θ∈Θc

I∗
Dψn

(θ∗||θ)
)}

as n→∞. Therefore, the solution to the max-min problem

max
ψ

min
θ∈Θc

I∗
Dψ(θ∗||θ) (7)

represents an asymptotically optimal allocation rule. As highlighted in the literature review, the max-min
problem (7) closely mirrors the main sample complexity term in Chernoff’s classic paper on the sequential
design of experiments (Chernoff [1959]).
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Simplifying the optimal exponent. Thankfully, the best-arm identification problem has additional
structure which allows us to simplify the optimization problem (7). Much of our analysis involves the
posterior probability assigned to the event some action i 6= I∗ is optimal. This can be difficult to evaluate,
since the set of parameter vectors under which i is optimal

Θi = {θ ∈ Θ|θi ≥ θ1, ...θi ≥ θk}

involves k separate constraints. Consider instead a simpler problem of comparing the parameter θ∗i against
θ∗I∗ . For each i 6= I∗ define the set

Θi , {θ ∈ Θ|θi ≥ θI∗} ⊃ Θi

under which the value at i exceeds that at I∗. Since, ignoring the boundary of the set, Θc
I∗ = ∪i6=I∗Θi,

max
i 6=I∗

Πn(Θi) ≤ Πn(Θc
I∗) ≤ kmax

i 6=I∗
Πn(Θi)

and therefore
Πn(Θc

I∗)
.= max
i 6=I∗

Πn(Θi). (8)

This yields an analogue of (7) that will simplify our subsequent analysis. Combining (8) with Proposition 5
shows the solution to the max-min problem

Γ∗ , max
ψ

min
i 6=I∗

min
θ∈Θi

Dψ(θ∗||θ) (9)

represents an asymptotically optimal allocation rule. Because the set Θi involves only a constraints on θi
and θI∗ , we can derive an expression the inner minimization problem over θ in terms of the measurement
effort allocated to i and I∗. Define

Ci(β, ψ) , min
x∈R

βd(θ∗I∗ ||x) + ψd(θ∗i ||x). (10)

The next lemma shows that the function Ci arises as the solution to the minimization problem over θ ∈ Θi in
(9). It also shows that the minimum in (10) is attained by a parameter θ under which the mean observation
is a weighted combination of the means under θ∗I∗ and θ∗i . Recall that, for an exponential family distribution
A′(θ) =

´
T (y)p(y|θ)dν(y) is the mean observation of the sufficient statistic T (y) under θ.

Lemma 2. For any i ∈ {1, .., k} and probability distribution ψ over {1, ..., k}

min
θ∈Θi

Dψ(θ∗||θ) = Ci(ψI∗ , ψi)

In addition, each Ci is a strictly increasing concave function satisfying

Ci(ψI∗ , ψi) = ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ),

where θ ∈ [θ∗i , θ∗I∗ ] is the unique solution to

A′(θ) = ψI∗A
′(θ∗I∗) + ψiA

′(θ∗i )
ψI∗ + ψi

.

Lemma 2 and equation (9) immediately imply

Γ∗ = max
ψ

min
i 6=I∗

Ci(ψI∗ , ψi). (11)

This result essentially shows that the earlier form of hte exponent, which is similar to a problem complexity
measure in Chernoff [1959], is equivalent to the large deviations exponent suggested in Glynn and Juneja
[2004]. The function Ci(β, ψ) captures the effectiveness with which one can certify θ∗I∗ ≥ θ∗i using an
allocation rule that measures actions I∗ and i with respective frequencies β and ψ. Naturally, it is an
increasing function of the measurement effort (β, ψ) allocated to designs I∗ and i. For given β and ψ,
Ci(β, ψ) ≥ Cj(β, ψ) when θ∗i ≤ θ∗j , reflecting that θ∗i is easier to distinguish from θ∗I∗ than θ∗j .
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Example 1. (Gaussian Observations) Suppose each outcome distribution p(y|θ∗i ) is Gaussian with unknown
mean θ∗i . Then direct calculation using Lemma 2 shows

Ci(β, ψi) =
(

βψi
β + ψi

)
(θ∗I∗ − θ∗i )2

2 .

To understand this formula, imagine we use a deterministic allocation rule that collects nβ and nψi obser-
vations from I∗ and i. Let XI∗ and Xi denote the respective sample means. The empirical difference is
normally distributed XI∗ −Xi ∼ N

(
∆, σ2/n

)
where ∆ = θ∗I∗ − θ∗i and σ2 = 1/β + 1/ψi = (β + ψi)/(βψi).

Standard Gaussian tail bounds imply that as n→∞, P(XI∗ −Xi < 0) .= exp(−n/2(σ∆)2), and so Ci(β, ψi)
appears to characterize the probability of error.

The next proposition formalizes the derivations in this section, and states that the solution to the above
maximization problem attains the optimal error exponent. Recall that ψn,i , P(In = i|Fn−1) denotes the
measurement effort assigned design i at time n.

Proposition 6. Let ψ∗ denote the optimal solution to the maximization problem (11). If ψn = ψ∗ for all
n, then

Πn(Θc
I∗)

.= exp{−nΓ∗}.
Moreover under any other adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗.

This shows that under the fixed allocation rule ψ∗ error decays as e−nΓ∗ , and that no faster rate of decay
is possible, even under an adaptive allocation.

An Optimal Constrained Allocation. Because the algorithms studied in this paper always allocate
β–fraction of their samples to measuring I∗ in the long run, they may not exactly attain the optimal error
exponent. To make rigorous claims about their performance, consider a modified version of the error exponent
(11) given by the constrained max-min problem

Γ∗β , max
ψ:ψI∗=β

min
i6=I∗

Ci(β, ψi). (12)

This optimization problem yields the optimal allocation subject to a constraint that β–fraction of the samples
are spent on I∗. The next subsection will show that TTTS, TTPS, and TTVS attain the error exponent
Γ∗β . The next proposition formalizes that the solution to this optimization problem represents an optimal
constrained allocation. In addition, it shows that the solution is the unique feasible allocation under which
Ci(β, ψi) is equal for all suboptimal designs i 6= I∗. To understand this result, consider the case where there
are three designs and θ∗1 > θ∗2 > θ∗3 . If ψ2 = ψ3, then C2(β, ψ2) < C3(β, ψ3), reflecting that it is more difficult
to certify that θ∗2 ≤ θ∗I∗ than θ∗3 ≤ θ∗I∗ . The next proposition shows it is optimal to decrease ψ2 and increase
ψ1, until the point when C2(β, ψ2) = C3(β, ψ3). Instead of allocating equal measurement effort to each
alternative, it is optimal to adjust measurement effort to gather equal evidence to rule out each suboptimal
alternative. The results in this proposition are closely related to those in Glynn and Juneja [2004], in which
large deviations rate functions take the place of the functions Ci.

Proposition 7. The solution to the optimization problem (12) is the unique allocation ψ∗ satisfying ψ∗I∗ = β
and

Ci(β, ψi) = Cj(β, ψj) ∀ i, j 6= I∗.

If ψn = ψ∗ for all n, then
Πn(Θc

I∗)
.= exp{−nΓ∗β}.

Moreover under any other adaptive allocation rule, if ψn,I∗ → β then

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β

almost surely.
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The following lemma relates the constrained exponent Γ∗β to Γ∗.

Lemma 3. For β∗ = arg maxβ Γ∗β and any β ∈ (0, 1),

Γ∗

Γ∗β
≤ max

{
β∗

β
,

1− β∗

1− β

}
.

Therefore Γ∗ ≤ 2Γ∗1/2.

6.5 Convergence of Top-Two Algorithms
Instead of attempting to directly solve the optimization problem (11), this paper focuses on simple and
intuitive sequential strategies. These algorithms have the potential to explore much more intelligently in early
stages, as they carefully measure and reason about uncertainty. While they ostensibly have no connection
to the derivations earlier in this section, we establish that remarkably all three automatically converge to
the unknown optimal allocation. This is shown formally in the next result.

We are now ready to establish the paper’s main claim, which shows that TTTS, TTPS, and TTVS each
attain the error exponent Γ∗β .

Proposition 8. Under the TTTS, TTPS, or TTVS algorithm with parameter β > 0, ψn → ψβ, where ψβ
is the unique allocation with ψβI∗ = β satisfying

Ci(β, ψβi ) = Cj(β, ψβj ) ∀i, j 6= I∗.

Therefore,
Πn(Θc

I∗)
.= e−nΓ∗β .

To understand this result, imagine that n is very large, and ψn,I∗ ≈ β. If the algorithm has allocated too
much measurement effort to a suboptimal action i, with ψn,i > ψβi + δ for a constant δ > 0, then it must
have allocated too little measurement effort to at least one other suboptimal design j 6= i. Since much less
evidence has been gathered about j than i, we expect αj,n >> αj,i. When this occurs, TTTS, TTPS and
TTVS essentially never sample action i until the average effort ψn,i allocated to design i dips back down
toward ψβi . This seems to suggest that the algorithm cannot allocate too much effort to any alternative, but
that in turn implies that it never allocates too little effort to measuring any alternative.

6.6 Asymptotics of the Value Measure
The proof for top-two value sampling relies on the following lemma, which shows that the posterior value of
any suboptimal design is logarithmically equivalent to its probability of being optimal.

Lemma 4. For any i 6= I∗, Vn,i
.= αn,i

Note that by this lemma,
Πn(Θc

I∗) =
∑
i 6=I∗

αn,i
.=
∑
i 6=I∗

Vn,i,

and so all of the asymptotic results in this could be reformulated as statements concerning the value assigned
to suboptimal alternatives under the posterior.

The lemma is not so surprising, as Vn,i =
´

Θi vi(θ)πn(θ)dθ differs from αn,i =
´

Θi πn(θ)dθ only because
of the function vi(θ). The πn(θ) term dominates this integral as n → ∞, since it tends to zero at an
exponential rate in n whereas vi(θ) is a fixed function of n.
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Table 1: Experiment Specifications

Noise Configuration k True Arm Means (θ∗1 , . . . θ∗k) Γ∗/Γ 1
2

1 Binary Slippage 5 (0.3, 0.3, 0.3, 0.3, 0.5) 1.12
2 Binary Slippage 10 (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.5) 1.26
3 Binary Slippage 15 (0.3, 0.3, 0.3, 0.3, . . . , 0.3, 0.3, 0.3, 0.3, 0.5) 1.34
4 Binary Ascending 5 (0.1, 0.2, 0.3, 0.4, 0.5) 1.01
5 Binary Ascending 10 (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) 1.01
6 Gaussian Ascending 5 (-0.5, -0.25, 0, 0.25, 0.5) 1.01
7 Gaussian Ascending 10 (-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.25, 0, 0.25, 0.5) 1.03
8 Gaussian Slippage 5 (0, 0, 0, 0, 0.5) 1.11
9 Gaussian Slippage 10 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5) 1.25
10 Gaussian Random 10 (-2.3, -1.1, -0.8, -0.6, -0.5, -0.2, 0.3, 0.9, 1.6, 1.7) 1.00
11 Gaussian Random 10 (-2.1, -1.8, -1.2, -1.1, -0.9, -0.8, -0.4, -0.1, 0.5, 1.6) 1.10
12 Gaussian Random 10 (-1.9, -0.6, -0.5, -0.4, -0.3, -0.1, -0. , 0.1, 0.4, 1.8) 1.19
13 Gaussian Random 10 (-1.6, -1.1, -1. , -0.6, -0.4, 0.1, 0.3, 0.5, 0.6, 0.7) 1.01
14 Gaussian Random 10 (-0.9, -0.6, -0.3, -0.3, -0.3, 0.1, 0.2, 0.4, 1.6, 2.4) 1.04

7 Further Simulation Experiments
This section presents further simulation results. The focus is not on competitive benchmarking across
the wide array of algorithms that have been proposed by researchers in statistics, operations research and
computer science. While this could be enormously valuable, carrying out such experiments in a fair manner
has proved challenging, as these algorithms are often derived under differing modeling assumptions and
differing problem objectives, as well as with numerous tuning parameters that muddle comparisons. We
instead aim here to focus on gaining clear insight into two questions. Namely:

1. How robust is the performance of the proposed top-two sampling algorithm to the choice of tuning
parameter? Precisely, across a range of problem instances, how does top-two sampling with the default
choice of β = 1/2 compare relative to an omniscient version of the algorithm, which uses the optimal
tuning parameter β∗ for that instance?

2. How do top-two sampling algorithms, which need to learn and adapt to the long run optimal sampling
proportions on each problem instance θ∗, perform relative to an omniscient policy that knows and
tracks the ideal sampling proportions ψ∗(θ∗) on each problem instance?

This section presents simulation results across 14 problem settings. To reduce computational burden, as well
as simplify the presentation of the results, the section focuses on top-two Thompson sampling and omits
the other two variants of top-two sampling. The results reveal strong performance of top-two Thompson
sampling with the ad-hoc choice of tuning parameter β = 1/2. Interesting, this method also consistently,
and often substantially, outperforms the oracle policy ψ∗(θ∗).

Each of the fourteen experiments investigates a different problem setting as described in Table 1 below.
The problems are divided between those with binary observations and those with standard Gaussian ob-
servation noise . For the binary experiments an independent uniform prior is used, while an independent
N(0, 1) prior is used for the second experiment. We consider several types of configurations for the arm
means. Experiments 10-14 present randomly drawn instances, where each θ∗i was sampled independently
for standard normal distribution. These were drawn using the numpy.random.normal function with seeds
1,2,3,4 and 5, respectively. In the configurations labeled “ascending”, the arm means increase from lowest to
highest with uniform separation between the arms. The slippage configuration was included specifically to
investigate cases where top-two sampling performs poorly. In such settings, an equal allocation across arms
attains an exponent that is quite competitive, as there are no very poor arms that can be easily ruled out
using fewer samples. In addition, the exponent Γ 1

2
attained by TTTS with β = 1/2 can be farther from the

optimal Γ∗ than under other problem instances. The ratio of exponents Γ∗/Γ 1
2
is displayed for each instance.
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Figure 3 displays the average number of measurements required for the posterior to reach a given con-
fidence level. In particular, the experiment tracks the frist time when maxi αn,i ≥ c for confidence levels
c = .9 and c = .99. All results are averaged over 400 trials.

The “Large deviations oracle,” labeled “LD oracle” in Figure 3, implements the optimal fixed allocation
ψ∗(θ∗) as prescribed by large deviations theory. At each time n, the algorithm constructs the target propor-
tions n · ψ∗(θ∗) and plays the arm that is most under-sampled relative to these proportions. For problems
with Gaussian noise, the optimal computing budget allocation (OCBA) of Chen et al. [2000] is a widely
used approximation to the fixed allocation ψ∗(θ∗). The algorithm labeled OCBA oracle implements the
true sampling proportions specified by Chen et al. [2000] for each problem instance. We also compare the
uniform, or equal allocation, TTTS with tuning parameter β = 1/2 and TTTS Oracle, which is TTTS with
the optimal problem dependent tuning parameter β∗.

At a high level, there are two key findings from these experiments. In all cases, sample size comparisons
refer to the confidence level c = .99.

1. Top-two Thompson sampling with tuning parameter 1/2 generally offers similar performance to top-
two Thompson sampling with the optimal tuning parameter β∗. The most significant separation in
performance was on slippage configurations, where TTTS with optimal tuning parameter saved up to
15% of samples on average. On most other instances, using the optimal tuning parameter offered no
improvement.

2. The large deviations oracle and the OCBA oracle were consistently, and sometimes dramatically, out-
performed. Each one required least 19% more samples on average than TTTS(1/2) for all 14 experi-
ments. In their worst experiments, the LD oracle and OCBA oracle used respectively more than 200%
and 300% the average number of samples used by TTTS(1/2).

The second finding may be quite surprising to some readers. There is a quite a large literature that
aims to implement optimal large deviations allocations derived in Glynn and Juneja [2004], or a simpler
approximation to these in the Gaussian case known as the OCBA [Chen et al., 2000]. Such approaches
have also been extended to a number of related problem settings. A major challenge, however, is that
the allocations cannot be directly implemented as they require knowledge of the true problem instance
θ∗. Researchers typically implement an approach that solves for the optimal budget allocation under point
estimate θ̂ of θ∗, aiming to converge to the prescribed optimal sampling proportions as rapidly as possible.
Here, we instead compete against an oracle that knows and carefully follows the asymptotically optimal
sampling proportions for each problem instance. Even these oracle policies are significantly outperformed
by Top-two Thompson with the an ad-hoc choice of tuning parameter.

It is an open question to formalize the reasons for this empirical finding. It is worth offering some
possible intuition, however. First, the oracle allocations are based on a number of approximations, including
tail approximations to the posterior of each arm and certain union bounds or Bonferonni approximations. By
contrast, Thompson sampling uses exact samples from the posterior distribution, and may more accurately
reflect uncertainty in early stages. Second, even if the oracle allocations know the true-arm means, they do
not adapt in response to unusual observations. Thompson sampling, on the other hand is fully adaptive,
and can gather fewer samples from an arm if early samples provide strong evidence that arm is suboptimal.
Some of the benefits of adaptivity are suggested in .

8 Extensions and Open Problems
This paper studies efficient adaptive allocation of measurement effort for identifying the best among a finite
set of options or designs. We propose three simple Bayesian algorithms. Each is a variant of what we call top-
two sampling, which, at each time-step, measures one of the two designs that appear most promising given
current evidence. Surprisingly, these seemingly naive algorithms are shown to satisfy a strong asymptotic
optimality property.

Top two sampling appears to be a general design principle that can be extended to address a variety of
problems beyond to the scope of this paper. To spur research in this area, we briefly discuss a number of
extensions and open questions below.
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Figure 3: Average sample size required to reach confidence relative to “oracle” allocations.

Top-Two Sampling Via Constrained MAP Estimation. Here we present a version of top-two sam-
pling that uses MAP estimation. This can simplify computations, as MAP estimates can be computed
without solving for the normalizing constant of the posterior density πn(θ). Consider the following proce-
dure for selecting a design at time n:

1. Compute θ̂ ∈ arg maxθ∈Θ πn(θ) and set În = arg maxi θ̂i.

2. Compute θ̂′ ∈ arg maxθ∈Θc
În

πn(θ) and set Ĵn = arg maxi θ̂′i.

3. Play (În, Ĵn) with respective probabilities (β, 1− β).

The first step uses MAP estimation to make a prediction În of the best design, while the second uses
constrained MAP estimation to identify the alternative design that is most likely to be optimal when În is
not. Many of the asymptotic calculations in the previous section appear to extend to this algorithm, but
proving this formally is left as an open problem.

Indifference Zone Criterion. Suppose our goal is to confidently identify an ε–optimal arm, for a user
specified indifference parameter ε > 0. Much of the paper investigates the set of parameters Θi under which
arm i is optimal, and studies the rate at which Πn(ΘI∗) → 1. Now, let us instead consider the set of
parameters

Θε,i = {θ|θi ≥ max
j
θj − ε}

under which i is ε–optimal. It is easy to develop a variety of modified top-two sampling rules under which
maxi Πn(Θε,i) → 1 rapidly. For example, we can extend TTPS as follows: set În = arg maxi Πn(Θε,i).
Define Ĵn = arg maxj 6=În Πn(θ|θj = maxi θi & θj > θÎn + ε) to be the alternative design that is most likely
to be optimal and offer an ε–improvement over În. A top-two Thompson sampling approach might instead
continue sampling θ ∼ Πn until maxi θi > θÎn + ε and then set Jn = arg maxi θi.

Top m–arm identification. Suppose now that our goal is to identify the top m < k designs. Consider
choosing a design to measure at time n by the following steps:
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1. Sample θ ∼ Πn and compute the top m designs under θ.

2. Continue sampling θ′ ∼ Πn until the top m designs under θ′ differ from those under θ.

3. Identify the set of designs that are in the top m under θ or under θ′, but not under both. Choose a
design to measure by sampling one uniformly at random from this set.

This is the natural extension of top-two Thompson sampling to the top-m arm problem. In fact, when
m = 1, this is exactly TTTS with β = 1/2. I conjecture that like the case where m = 1, this algorithm
attains a rate of posterior convergence within a factor of 2 of optimal for general m. The optimal exponent
for this problem can be calculated by mirroring the steps in Subsection 6.4.

Extremely Correlated Designs. While our results apply in the case of correlated priors, the proposed
algorithms may be wasteful when there are a large number of designs whose qualities are extremely correlated.
As an example, consider an extension of our techniques to a pure-exploration variant of a linear bandit
problem. Here we associate each action i with a feature vector xi ∈ Rd and seek an action that maximizes
xTi θ. The vector θ ∈ Rd is unknown, but we begin with a prior θ ∼ N(0, I) and see noisy observations
of xTi θ whenever action i is selected. To apply top-two sampling to this problem, we should modify the
algorithm’s second step. For example, under top-two Thompson sampling, we usually begin drawing a
design according to î ∼ αn, and then continue drawing designs ĵ ∼ αn until î 6= ĵ. These are played with
respective probabilities (β, 1− β). But even if î 6= ĵ, their features may be nearly identical. A more natural
extension of top-two Thompson sampling would modify the second step, and continue sampling ĵ ∼ αn, until
a sufficiently different action is drawn – for example until the angle between xĵ and xî exceeds a threshold.

Tuning β. The most glaring gap in this work may be arbitrary choice of tuning parameter β. Optimal
asymptotic rates can be attained by adjusting this parameter over time by solving for an optimal allocation
as in (11). It is an open problem to instead develop simple algorithms that set β automatically through
value of information calculations, or avoid the need for such a parameter altogether.

Adaptive Stopping. This paper proposed only an allocation rule, which determines the sequence of
measurements to draw, but this can be coupled with a rule that determines when to stop sampling. One
natural stopping rule in a Bayesian framework is to stop when maxi αn,i > 1− δ for some δ > 0. Let τδ be a
random variable indicating the stopping time under constraint δ. Since 1−maxi αn,i

.= e−nΓ∗β under top-two
sampling, our results imply that for each sample path τδ ∼ Γ∗β log(1/δ) as δ → 0. It is natural to conjecture
that E[τδ] ∼ Γ∗β log(1/δ) as well. This closely mirrors optimal results in Chernoff [1959], Jennison et al. [1982]
and Kaufmann [2016]. Does this rule also yield a frequentist probability of incorrect selection that is O(δ)
as δ → 0? More generally, an open problem is to show that when combined with an appropriate stopping
rule, top-two sampling schemes nearly minimize the expected number of samples E[τδ] as in Jennison et al.
[1982] or Kaufmann [2016].
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A Outline
This technical appendix is organized as follows.

1. Section B describes a numerical algorithm that can be used to implement TTPS.

2. Section C provides a more precise discussion of related work by Ryzhov [2016].

3. The theoretical analysis begins in Section D. There we begin by noting some basic facts of exponential
family distributions, as well as some results relating martingales to their quadratic variation process.

4. Section E establishes results related to the concentration of the posterior distribution, including the
proofs of Prop. 4, Prop. 5, and Lemma 4.

5. Section F studies and simplifies the optimal exponents Γ∗ and Γ∗β , including the proofs of Lemma 2,
Prop. 7, Lemma 3, Prop. 1, and Prop. 2.

6. We conclude with Section G, which studies the top-two allocation rules and provides a proof of Prop. 8.

B An Implementation of TTPS
This section describes an implementation of the top-two probability sampling for a problem with a Beta
prior and binary observations. In this problem, measurements are binary with success probability given by
P(Yn,i = 1) = θ∗i . The algorithm begins with an independent prior, under which the ith component of θ
follows a Beta distribution with parameters (λ1

i , λ
2
i ). When λ2

i = λ2
i = 1, this specifies a uniform prior over

[0, 1]. This prior distribution can be easily updated to form a posterior distribution according to the update
rule given in line 19 of Algorithm 4.

This algorithm uses quadrature to approximate the integral defining αn,i. To understand this imple-
mentation, consider a random vector (X1, .., XK) whose components are independently distributed with
Xi ∼ Beta(λ1

i , λ
2
i ). Then, the probability component i is maximal can be computed according to

P(Xi = max
j
Xj) =

ˆ

x∈R

P(∩j 6=i{Xj ≤ x})P(Xi = dx)

=
ˆ

x∈R

∏
j 6=i

P(Xj ≤ x)

P(Xi = dx)

=
ˆ

x∈R

 K∏
j=1

P(Xj ≤ x)

 /P(Xi ≤ x)

P(Xi = dx).

Algorithm 4 takes as input a vector of x consisting ofM points in (0, 1) and approximates the above integral
using quadrature at these points. The algorithm computes and updates the posterior PDF and CDF of θi
in an M dimensional vectors fi and Fi. It also stores and updates a vector F =

∏K
i=1 Fi,m, where Fm is the

posterior probability all the designs have quality below xm. Using these quantities, the posterior probability
design i is optimal is approximated by a sum in line 8. Lines 11-15 select an action according to TTPS and
lines 18-21 update the stored statistics of the posterior using Bayes rule. The algorithm continues for N
time steps, and upon stopping returns the posterior parameters λ1 and λ2, which summarize all evidence
gathered throughout the measurement process. The algorithm has O(NKM) space and time complexity.
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It is worth noting that most operations in this algorithm can be implemented in a “vectorized” fashion in
languages like MATLAB, NumPy, and Julia.

Algorithm 4 BernoulliTTPS(β,K,M,N,λ1,λ2,x)
1: \\Initialize:
2: fi,m ← Beta.pdf(xm|λ1

i , λ
2
i ) ∀i,m

3: Fi,m ← Beta.cdf(xm|λ1
i , λ

2
i ) ∀i,m

4: Fm ←
∏
i Fi,m ∀m

5:
6: for n = 1 . . . N do
7: \\Compute Optimal Action Probabilities:
8: αi ←

∑
m fi,mFm/Fi,m ∀i

9:
10: \\Act and Observe:
11: J1 ← arg maxi αi
12: J2 ← arg maxi6=J1 αi
13: Sample B ∼ Bernoulli(β)
14: I ← BJ1 + (1−B)J2.
15: Play I and Observe Yn,I ∈ {0, 1}.
16:
17: \\Update Statistics:
18: (λ1

I , λ
2
I)← (λ1

I , λ
2
I) + (Yn,I , 1− Yn,I)

19: Fm ← (Fm/FI,m)× Beta.cdf(xm|λ1
I , λ

2
I) ∀m

20: FI,m ← Beta.cdf(xm|λ1
I , λ

2
I) ∀m

21: fI,m ← Beta.pdf(xm|λ1
I , λ

2
I) ∀m

22: end for
23: return V ,λ1,λ2

C Discussion of the Expected Improvement Algorithm
Here, we briefly discuss interesting recent results of Ryzhov [2016]. He studies a setting with an uncorrelated
Gaussian prior, and Gaussian observation noise Yn,i ∼ N(θi, σ2

i ). To simplify our discussion, let us restrict
attention to the case of common variance σ1 = ... = σk = σ. Ryzhov [2016] shows that under the the
expected-improvement algorithm, in the limit as n→∞∑

i 6=I∗
Ψn,i = O(logn) (13)

and
Ψn,i(θ∗I − θi)2 ∼ Ψn,j(θ∗I − θj)2 ∀i, j 6= I∗ (14)

Recall that Ψn,i =
∑n
`=1 ψn,i denotes the total measurement effort allocated to design i. The sampling ratios

(14) are the ratios suggested in the optimal computing budget allocation of Chen et al. [2000]. This work
therefore establishes an interesting link between EI and OCBA, which appear quite different on the surface.

Unfortunately, property (13) is not suggested by the OCBA, and implies that Πn(Θc
I∗) cannot tend to

zero at an exponential rate. To see this precisely, assume without loss of generality that I∗ = 1. Then
(13) implies ψn → ei ≡ (1, 0, 0, ..., 0). It is easy to show that minθ∈Θc1 Dei(θ∗||θ) = 0 and therefore, by
Proposition 5,

lim
n→∞

−n−1 log Πn(Θc
1) = 0.

It is also worth noting that the sampling ratios in (14) are not actually optimal for any finite number of
designs k. Specifying our calculations as in Example 1, one can show that under an optimal fixed allocation
(ψi, ..., ψk),

(θ∗I∗ − θ∗i )2

1/ψI∗ + 1/ψi
=

(θ∗I∗ − θ∗j )2

1/ψI∗ + 1/1/ψj
∀i, j 6= I∗.
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These calculations match those in Glynn and Juneja [2004] and Jennison et al. [1982]. As a result, there is
no problem with finite k for which the sampling ratios in (14) are optimal4 One can show, in fact, that any
optimal multi-armed bandit algorithm that attains the lower bound of Lai and Robbins [1985] also satisfies
equations (13) and (14). The main innovation in this paper is to show how to build on such bandit algorithms
to attain near-optimal rates for the best-arm identification problem.

Ryzhov [2016] also studies the knowledge gradient policy, which could offer improved performance as (13)
no longer holds, but shows that as n→∞

Ψn,i(θ∗I − θi) ∼ Ψn,j(θ∗I − θj) ∀i, j 6= I∗,

which could be very far from the optimal sampling proportions.

D Preliminaries
This section presents some basic results which will be used in the subsequent analysis. First, unless clearly
specified, all statements about random variables are meant to hold with probability 1. So for sequences
of random variables {Xn} and {Yn}, if we say that Xn → ∞ whenever Yn → ∞, this means that the set
{ω : Yn(ω)→∞, Xn(ω) 9∞} has measure zero.

Facts about the exponential family. The log partition functionA(θ) is strictly convex and differentiable,
with

A′(θ) =
ˆ
T (y)p(y|θ)dν(y) (15)

equal to the mean under θ. The Kullback-Leibler divergence is equal to

d(θ||θ′) = (θ − θ′)A′(θ)−A(θ) +A(θ′) (16)

and satisfies

θ′′ > θ′ ≥ θ =⇒ d(θ||θ′′) > d(θ||θ′) (17)
θ′′ < θ′ ≤ θ =⇒ d(θ||θ′′) < d(θ||θ′). (18)

Finally, since [θ, θ] is bounded, and we have assumed supθ∈[θ,θ] |A
′(θ)| <∞,

sup
θ∈[θ,θ]

|A(θ)| <∞ and sup
θ,θ′∈[θ,θ]

d(θ||θ′) <∞. (19)

This effectively guarantees no single observation can provide enough information to completely rule out a
parameter.

Some martingale convergence results. The next fact relates the behavior of a martingale Mn to its
quadratic variation 〈M〉n.

Fact 1. (Williams [1991], 12.13-12.14) Let {Mn} be a square-integrable martingale adapted to the filtration
{Hn} and let

〈M〉n =
n∑
`=1

E[(M` −M`−1)2 |H`−1]

denote the corresponding quadratic variation process. Then

Mn

〈M〉n
→∞

almost surely if 〈M〉n →∞ and limn→∞Mn exists and is finite almost surely if limn→∞〈M〉n <∞.
4There does exists a sequence of problem instances with K → ∞ on which the OCBA ratios converge to those of Glynn and

Juneja [2004]. See Pasupathy et al. [2015].
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The next lemma is crucial to our analysis. To draw the connection with our setting, imagine an adaptive-
randomized rule is used to determine when to draw samples from a population. Here Yn ∈ R denotes the
sample at time n, Xn ∈ {0, 1} indicates whether the sample was measured, and Zn ∈ [0, 1] determines the
probability of measurement conditioned on the past. This lemma provides a law of large numbers when
measurement effort

∑n
`=1 Z` tends to infinity, but shows that if measurement effort is finite then

∑∞
`=1X`Y`

is also finite; in this sense the observations collected from Yn are inconclusive when measurement effort is
finite.

Lemma 5. Let {Yn} be an i.i.d sequence of real-valued random variables with finite variance and let {Xn}
be a sequence of binary random variables. Suppose each sequence is adapted to the filtration {Hn}, and define
Zn = P(Xn = 1|Hn−1). If, conditioned on Hn−1, each Yn is independent of Xn, then with probability 1,

lim
n→∞

n∑
`=1

Z` =∞ =⇒ lim
n→∞

∑n
`=1X`Y`∑n
`=1 Z`

= E[Y1]

and

lim
n→∞

n∑
`=1

Z` <∞ =⇒ sup
n∈N

∣∣∣∣∣
n∑
`=1

X`Y`

∣∣∣∣∣ <∞.
Proof. Let µ = E[Y1] and σ2 = E[(Y1 − E[Y1])2] denote the mean and variance of each Yn. Define the
martingale

Mn =
n∑
`=1

(X`Y` − Z`µ)

with M0 = 0 and put Sn =
∑n
`=1 Z`. This martingale has quadratic variation

〈M〉n =
n∑
`=1

E[(M` −M`−1)2|H`−1]

=
n∑
`=1

E[(X`(Y` − µ) + (Y` − Z`)µ)2 |H`−1]

=
n∑
`=1

Z`σ
2 +

n∑
`=1

Z`(1− Z`)µ2

≤ (σ2 + µ2)Sn.

We use the shorthand S∞ = limn→∞ Sn and 〈M〉∞ = limn→∞〈M〉n.
Suppose S∞ <∞ so 〈M〉∞ <∞. By Fact 1, limn→∞Mn exists and is finite almost surely, which implies

supn∈N |Mn| <∞. Since |
∑n
`=1X`Y`| ≤ |Mn|+ |µS∞|, this shows supn∈N |

∑n
`=1X`Y`| <∞ as desired.

Now, suppose S∞ =∞. If 〈M〉∞ <∞, then again by Fact 1, limn→∞Mn <∞ and it is immediate that
S−1
n Mn → 0. However, if 〈M〉∞ =∞ then

Mn

〈M〉n
→ 0,

which implies S−1
n Mn → 0 since Sn ≥ (σ2 + µ2)〈M〉n.

Taking Yn = 1 in the lemma above yields Levy’s extension of the Borel–Cantelli lemmas (Williams [1991],
12.15). Specialized to our setting, this result relates the long run measurement effort Ψn,i =

∑n
`=1 ψn,i to

the number of times alternative i is actually measured
∑n
`=1 1(In = i).

Corollary 1. For i ∈ {1, ..., k}, set Sn,i =
∑n
`=1 1(In = i). Then, with probability 1,

Ψn,i →∞ ⇐⇒ Sn,i →∞

and
Ψn,i →∞ =⇒ Sn,i

Ψn,i
→ 1.

Proof. Apply Lemma 5 with Yn = 1, Xn = 1(In = 1), and Hn = Fn. Then Zn = ψn,i by definition.
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E Posterior Concentration and anti-Concentration
E.1 Uniform Convergence of the Log-Likelihood
We study the log-likelihood

Λn(θ∗||θ) , log
(
Ln(θ∗)
Ln(θ)

)
=

n∑
`=1

log
(
p(Y`,I` |θ∗I`)
p(Y`,I` |θI`)

)
and the log-likelihood from observations of design i

Λn,i(θ∗i ||θi) ,
n∑
`=1

1(In = i) log
(
p(Yn,i|θ∗i )
p(Yn,i|θi)

)
.

A Doob-decomposition expresses Λn,i(θi) = An(θi) + Mn(θi) as the sum of an Fn−1 predictable process
An(θi) and a Martingale Mn(θi). Moreover, an easy calculation shows An(θi) = Ψn,id(θ∗i ||θi) and Mn(θi) =
Λn,i(θ∗i ||θi) − Ψn,id(θ∗i ||θi). Applying Lemma 5 shows Ψ−1

n,iMn(θi) → 0 if Ψn,i → ∞, which shows the log-
likelihood ratio tends to infinity at rate Ψn,id(θ∗i ||θi). The next lemma strengthens this, and provides a link
between these quantities that holds uniformly in θi.

Lemma 6. With probability 1, if Ψn,i →∞ then

sup
θi∈[θ,θ]

Ψ−1
n,i |Λn,i(θ

∗
i ||θi)−Ψn,id(θ∗i ||θi)| → 0,

and if limn→∞Ψn,i <∞ then

sup
θi∈[θ,θ]

sup
n∈N
|Λn,i(θi)|+ |Ψn,id(θ∗i ||θi)| <∞.

Proof. Define ξn , T (Yn,i)−E[T (Yn,i)] and Xn , 1(In = i). Note that E[ξn|Fn−1] = 0, E[Xn|Fn−1] = ψn,i,
and, conditioned on Fn−1, Xn is independent of ξn. Using the form of the exponential family density given
in equation (1), and the form of the KL-divergence given in equation (16), the log-likelihood ratio can be
written as

log
(
p(Yn,i|θ∗i )
p(Yn,i|θi)

)
= (θ∗i − θi)T (Yn,i)− (A(θ∗i )−A(θi))

= d(θ∗i ||θi) + (θ∗i − θi) (T (Yn,i)−E[T (Yn,i)])
= d(θ∗i ||θi) + (θ∗i − θi)ξn

Therefore,

Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi) =
n∑
`=1

X` log
(
p(Y`,i|θ∗i )
p(Y`,i|θi)

)
−

n∑
`=1

ψ`,id(θ∗i ||θi)

=
n∑
`=1

(X` − ψ`,i)d(θ∗i ||θi) +
n∑
`=1

X`ξ`(θ∗i − θi).

Here |θ∗i − θi| ≤ θ − θ ≡ C2 is bounded uniformly. Similarly, as shown in Appendix D, d(θ∗i ||θi) is bounded
uniformly in θi by

C1 ≡ max
θ′∈[θ,θ]

d(θ∗i ||θ′i) <∞.

This implies,

|Λn,i(θi)−Ψn,id(θ∗i ||θi)| ≤ C1

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)

∣∣∣∣∣+ C2

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ (20)

|Λn,i(θi)| ≤ C1Ψn,i + C1

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)

∣∣∣∣∣+ C2

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ . (21)
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Since E[ξ2
n] < ∞, the result then follows by applying Lemma 5 and Corollary 1. In particular, when

Ψn,i →∞,

lim
n→∞

Ψ−1
n,i

n∑
`=1

(X` − ψ`,i) = 0 and lim
n→∞

Ψ−1
n,i

n∑
`=1

X`ξ` = 0

When limn→∞Ψn,i <∞,

sup
n∈N

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)

∣∣∣∣∣ <∞ and sup
n∈N

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ <∞.
It is also immediate that d(θ∗i ||θi)Ψn,i ≤ C1Ψn,i 9∞, which by (21) implies the second part of the result.

A corollary of the previous lemma relates the log-likelihood ratio Λn(θ∗||θ) to the Kullback-Leibler
divergence Dψn

(θ∗||θ).

Corollary 2. With probability 1,

sup
θ∈Θ

|n−1Λn(θ∗||θ)−Dψn(θ∗||θ)| → 0

Proof.

∣∣∣n−1Λn(θ∗||θ)−Dψn
(θ∗||θ)

∣∣∣ =

∣∣∣∣∣n−1
k∑
i=1

(Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi))

∣∣∣∣∣
≤

k∑
i=1

n−1|Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi)|.

Lemma 6 implies
sup

θi∈[θ,θ]
n−1|Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi)| → 0,

which completes the proof.

E.2 Posterior Consistency: Proof of Prop. 4
Proposition 4. For any i ∈ {1, .., k} if Ψn,i →∞, then, for all ε > 0

Πn({θ ∈ Θ|θi /∈ (θ∗i − ε, θ∗i + ε)})→ 0,

with probability 1. If I = {i ∈ {1, ..., k}| limn→∞Ψn,i <∞} is nonempty, then

inf
n∈N

Πn({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) > 0

for any collections of open intervals (θ′i, θ′′i ) ⊂ (θ, θ) ranging over i ∈ I.

Because we don’t assume an independent prior across the designs, Π1 is not a product measure and
therefore neither is Πn. This makes it challenging to reason about the marginal posterior of each design,
which is required for Proposition 4. Thankfully, since the prior density is bounded, Πn behaves like a product
measure. Note that the likelihood function can be written as the product of k terms:

Ln(θ) =
k∏
i=1

Ln,i(θi)

where
Ln,i(θi) ,

∏
`≤n
I`=i

p(Y`,1|θi)
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with the convention that Ln,i(θi) = 1 when
∑n
`=1 1(I` = i) = 0. Therefore Ln(θ) forms the density of a

product measure. By normalizing, this induces a probability measure over Θ,

Ln(Θ̃) ,
´

Θ̃ Ln(θ)dθ´
Θ Ln(θ)dθ

Θ̃ ⊂ Θ,

which, as we argue in the next lemma, behaves like the posterior Πn.

Lemma 7. For any set Θ̃ ⊂ Θ,

C−1Ln(Θ̃) ≤ Πn+1(Θ̃) ≤ CLn(Θ̃),

where
C = supθ∈Θ π1(θ)

infθ∈Θ π1(θ) <∞

is independent of n and Θ̃.

Proof. This follows immediately by bounding π1(θ) from above and below in the relation

Πn+1(Θ̃) =
´

Θ̃ π1(θ)Ln(θ)dθ´
Θ π1(θ)Ln(θ)dθ

.

We can now prove Proposition 4.

Proof of Proposition 4. We begin with the first part of the result. For simplicity of notation, we focus on
the upper interval Θ̃ = {θ ∈ Θ : θi > θ∗i + ε}, but results follow identically for the lower interval. We want
to show Πn(Θ̃)→ 0, which occurs if and only if Ln(Θ̃)→ 0. Since Ln is a product measure,

Ln(Θ̃) =

´ θ
θ∗
i
+ε Ln,i(θ)dθ´ θ
θ
Ln,i(θ)dθ

=

´ θ
θ∗
i
+ε (Ln,i(θ)/Ln,i(θ∗i )) dθ
´ θ
θ

(Ln,i(θ)/Ln,i(θ∗i )) dθ
=

´ θ
θ∗
i
+ε exp{−Λn,i(θ∗i ||θ)}dθ´ θ
θ

exp{−Λn,i(θ∗i ||θ)}dθ
(22)

where Λn,i(θ∗i ||θi) = log(Ln,i(θ∗i )/Ln,i(θi). By Lemma 6, with probability 1 there is a sequence an → 0 such
that |Λn,i(θ∗i ||θ)−Ψn,id(θ∗i ||θ)| ≤ an for all θ. Then, for bn = ean/e−an → 1, one has

Ln(Θ̃) ≤
bn
´ θ
θ∗
i
+ε exp{−Ψn,id(θ∗i ||θ)}dθ´ θ

θ
exp{−Ψn,id(θ∗i ||θ)}dθ

≤
bn
´ θ
θ∗
i
+ε exp{−Ψn,id(θ∗i ||θ)}dθ´ θ∗

i
+ε/2

θ∗
i

exp{−Ψn,id(θ∗i ||θ)}dθ
.

The integral in the numerator is upper bounded by (θ− θ∗i − ε) exp{−Ψn,id(θ∗i ||θ∗i + ε) while the integral in
the denominator is lower bounded by (ε/2) exp{−Ψn,id(θ∗i ||θ∗i + ε/2)}. This shows

Ln(Θ̃) ≤ c0bn exp{−Ψn,i (d(θ∗i ||θ∗i + ε)− d(θ∗i ||θ∗i + ε/2))} → 0

where c0 = 2ε−1(θ − θ∗i − ε).
The second part of the claim follows from the lower bound in Lemma 7 of

Πn+1({θ ∈ Θ|θi ∈ (θ′, θ′′) ∀i ∈ I}) ≥ C−1Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) (23)
= C−1

∏
i∈I
Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}). (24)

As in (22),

Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}) =
´ θ′′
θ′

exp{−Λn,i(θ∗i ||θ)}dθ´ θ
θ

exp{−Λn,i(θ∗i ||θ)}dθ
.
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When limn→∞Ψn,i <∞, Lemma 6 shows that for each i ∈ I,

sup
θi∈[θ,θ]

sup
n∈N
|Λn,i(θ∗i ||θi)| <∞.

This implies
inf
n
Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}) > 0

and establishes the claim.

E.3 Large Deviations: Proof of Proposition 5
All statements in this section hold when observations are drawn under the parameter θ∗. Since θ∗ is fixed
throughout, we simplify notation and write

Wn(θ) , Dψn
(θ∗||θ).

Note that Wn(θ∗) = 0. As shown in the next lemma n−1 log (πn(θ)/πn(θ∗))−Wn(θ)→ 0 uniformly in θ.

Lemma 8. With probability 1,

sup
θ∈Θ

n−1
∣∣∣∣log

(
πn(θ∗)
πn(θ)

)
−Wn(θ)

∣∣∣∣→ 0.

Proof. We have

log
(
πn(θ∗)
πn(θ)

)
−Wn(θ) = log

(
π1(θ∗)
π1(θ)

)
+ (Λn−1(θ∗||θ)−Wn−1(θ)) + (Wn−1(θ)−Wn(θ)) .

Since infθ∈Θ π1(θ) > 0 and supθ∈Θ π1(θ) < ∞, n−1 log (π1(θ)/π1(θ∗)) → 0 uniformly in θ. By Corollary
2, n−1 (Λn−1(θ)−Wn−1(θ)) → 0 uniformly as well. Finally, by equation (19), n−1(Wn(θ) −Wn−1(θ)) ≤
n−1 maxi d(θ∗i ||θi)→ 0 uniformly in θ.

The remaining proof of Proposition 5 follows from a sequence of lemmas. The next observes a form of
uniform continuity of Wn that follows from the uniform bound on A′(θ) in Assumption 1.

Lemma 9. For all ε > 0, there exists δ > 0 such that for θ,θ′ ∈ Θ

‖θ − θ′‖∞ ≤ δ =⇒ sup
n∈N
|Wn(θ)−Wn(θ′)| ≤ ε.

Proof. We have that

|Wn(θ)−Wn(θ′)| ≤ max
1≤i≤k

|d(θ∗i ||θi)− d(θ∗i ||θ′i)|

= max
1≤i≤k

|(θ′i − θi)A′(θ∗i ) +A(θi)−A(θ′i)|

≤ 2Cδ

where C = supθ∈(θ,θ) |A
′(θ)| <∞.

Lemma 10. For any open set Θ̃ ⊂ Θ,
ˆ

θ∈Θ̃

πn(θ)
πn(θ∗)dθ

.=
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ.
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Proof. By Corollary 2, we can fix a sequence εn ≥ 0 with εn → 0 such that,

exp{−n(Wn(θ) + εn)} ≤ πn(θ)
πn(θ∗) ≤ exp{−n(Wn(θ)− εn)}.

Integrating over Θ̃ yields,

exp{−nεn}
ˆ

Θ̃

exp{−nWn(θ)}dθ ≤
ˆ

Θ̃

πn(θ)
πn(θ∗)dθ ≤ exp{nεn}

ˆ

Θ̃

exp{−nWn(θ)}dθ.

Taking the logarithm of each side implies

1
n

∣∣∣∣∣∣∣log
ˆ

Θ̃

πn(θ)
πn(θ∗)dθ − log

ˆ

Θ̃

exp{−nWn(θ)}dθ

∣∣∣∣∣∣∣ ≤ εn → 0.

Lemma 11. For any open set Θ̃ ⊂ Θ,
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ .= exp{−n inf
θ∈Θ̃

Wn(θ)}

Proof. Let θ̂n be a point in the closure of Θ̃, satisfying

Wn(θ̂n) = inf
θ∈Θ̃

Wn(θ).

Such a point always exists, since Wn is continuous, and the closure of Θ̃ is compact. Let

γn ,
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ.

Our goal is to show
1
n

log(γn) +Wn(θ̂n)→ 0.

We have
γn ≤ Vol(Θ̃) exp{−nWn(θ̂n)}

where for any Θ′ ⊂ Θ, Vol(Θ′) =
´

Θ̃ dθ ∈ (0,∞) denotes the volume of Θ. This shows

lim sup
n→∞

(
1
n

log(γn) +Wn(θ̂n)
)
≤ 0.

We now show the reverse. Fix an arbitrary ε > 0. By Lemma 9, there exists δ > 0 such that

|Wn(θ)−Wn(θ̂n)| ≤ ε ∀n ∈ N

for any θ ∈ Θ with
‖θ − θ̂n‖∞ ≤ δ.

Now, choose a finite δ–cover O of Θ̃ in the norm ‖ · ‖∞. Remove any set in O that does not intersect Θ̃.
Then, for each o ∈ O,

Vol(o ∩ Θ̃) > 0 =⇒ Cδ , min
o∈O

Vol(o ∩ Θ̃) > 0.

Choose on ∈ O with θ̂n ∈ closure(on). Then, for every θ ∈ on, Wn(θ) ≤Wn(θ̂n) + ε. This shows

γn ≥
ˆ

o

exp{−nWn(θ}dθ ≥ Cδ exp{−n(Wn(θ̂n)− ε)).
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Taking the logarithm of both sides implies

1
n

log(γn) +Wn(θ̂n) ≥ Cδ
n
− ε→ −ε.

Since ε was chosen arbitrarily, this shows

lim inf
n→∞

(
1
n

log(γn) +Wn(θ̂n)
)
≥ 0,

and completes the proof.

We now complete the proof of Proposition 5.

Proof of Proposition 5. We begin with a simple observation. For any sequences of real numbers {an}, {bn},
and {ãn}, {b̃n}, if an

.= ãn and bn
.= b̃n ∈ R, then an/bn

.= ãn/b̃n.
Therefore, we have

Πn(Θ̃) = Πn(Θ̃)
Πn(Θ) =

´
Θ̃ πn(θ)dθ´
Θ πn(θ)dθ

=
´

Θ̃ (πn(θ)/πn(θ∗))dθ´
Θ (πn(θ)/πn(θ∗))dθ

.=
exp{−n infθ∈Θ̃Wn(θ)}
exp{−n infθ∈ΘWn(θ)}

where the final equality follows from the previous two lemmas. Since Wn(θ) ≥ 0 and Wn(θ∗) = 0,
exp{−n infθ∈ΘWn(θ)} = 1.

E.4 Large Deviations of the Value Measure: Proof of Lemma 4
Lemma 4. For any i 6= I∗, Vn,i

.= αn,i.

Proof. First, since

Vn,i =
ˆ

Θi

vi(θ)πn(θ)dθ ≤ (u(θ)− u(θ))
ˆ

Θi

πn(θ)dθ = (u(θ)− u(θ))αn,i

it is immediate that
lim sup
n→∞

n−1(log Vn,i − logαn,i) ≤ 0. (25)

The other direction is more subtle. Define Θi,δ ⊂ Θi by

Θi,δ = {θ ∈ Θ : θi ≥ max
j 6=i

θj + δ}.

For any θ ∈ Θi,δ, vi(θ) ≥ Cδ where

Cδ ≡ min
θ∈[θ,θ]

u(θ + δ)− u(θ) > 0.

Because u(θ+δ)−u(θ) is continuous and is strictly positive for each θ, this minimum exists and the objective
value is strictly positive. Then

Vn,i ≥
ˆ

Θi,δ

vi(θ)πn(θ)dθ ≥ Cδ
ˆ

Θi,δ

πn(θ)dθ = CδΠn(Θi,δ) ∀δ > 0.

Combining this with Proposition 5 shows

lim inf
n→∞

1
n

(log Vn,i− logαn,i) ≥ lim inf
n→∞

1
n

(log Πn(Θi,δ)− log Πn(Θi)) = − min
θ∈Θi,δ

Dψn
(θ∗||θ)− min

θ∈Θi
Dψn

(θ∗||θ).
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The final term can be made arbitrarily small by taking δ → 0. Precisely, by Lemma 9, for any ε > 0, there
exists δ > 0 such that for all n ∈ N and θ,θ′ ∈ Θ satisfying ‖θ − θ′‖∞ ≤ δ ,

Dψn
(θ∗||θ) ≤ ε.

Therefore, for each ε > 0 one can choose δ > 0 such that

min
θ∈Θi,δ

Dψn
(θ∗||θ) ≤ min

θ∈Θi
Dψn

(θ∗||θ) + ε.

This shows lim inf n−1(log Vn,i − logαn,i) ≥ −ε for all ε > 0, and hence

lim inf
n→∞

n−1(log Vn,i − logαn,i) ≥ 0.

F Simplifying and Bounding the Error Exponent
F.1 Proof of Lemma 2
To begin, we restate the results of Lemma 2 in the order in which they will be proved. Recall, from Section
D that A(θ) is increasing and strictly convex, and, by (15), A′(θ) is the mean observation under θ.

Lemma 2. Define for each i 6= I∗,ψ ≥ 0,

Ci(β, ψ) , min
x∈R

βd(θ∗I∗ ||x) + ψd(θ∗i ||x). (26)

(a) For any i 6= I∗ and probability distribution ψ over {1, ..., k}

min
θ∈Θi

Dψ(θ∗||θ) = Ci(ψI∗ , ψi).

where Θi , {θ ∈ Θ|θi ≥ θI∗}.
(b) Each Ci is a concave function.
(c) The unique solution to the minimization problem (26) is θ ∈ R satisfying

A′(θ) = ψI∗A
′(θ∗I∗) + ψiA

′(θ∗i )
ψI∗ + ψi

.

Therefore,
Ci(ψI∗ , ψi) = ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ).

(d) Each Ci is a strictly increasing function.

Proof. (a)

min
θ∈Θi

Dψ(θ∗||θ) = min
θ∈Θ:θi≥θI∗

k∑
j=1

ψn,jd(θ∗j ||θj)

= min
θ≥θi≥θI∗≥θ

ψI∗d(θ∗I∗ ||θI∗) + ψid(θ∗i ||θi) +
∑

j /∈{i,I∗}

min
θj

ψn,jd(θ∗j ||θj)

= min
θ≥θi≥θI∗≥θ

ψI∗d(θ∗I∗ ||θI∗) + ψid(θ∗i ||θi)

where the last equality uses that the minimum occurs when θj = θ∗j for j /∈ {I∗, i}, and this is feasible
for any choice of (θi, θI∗). Then, by the monotonicity properties of KL-divergence (see Section D, equation
(17)), there is always a minimum with θi = θI∗ . Therefore this objective value is equal to

min
θ∈[θ,θ]

ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ) = min
x∈R

ψI∗d(θ∗I∗ ||x) + ψid(θ∗i ||x) = Ci(ψI∗ , ψi).
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(b) Ci is the minimum over a family of linear functions and therefore is concave (See Chapter 3.2 of Boyd
and Vandenberghe [2004]). In particular Ci(β, ψ) = minx∈R g((β, ψ);x) where g((β, ψ);x) = βd(θ∗I∗ ||x) +
ψd(θ∗i ||x) is linear in (β, ψ).

(c) Direct calculation using the formula for KL divergence in exponential families (see (16) in Section
D) shows

βd(θ∗I∗ ||x) + ψid(θ∗i ||x) = (β + ψi)A(x)− (βA′(θ∗I∗) + ψiA
′(θ∗i ))x+ f(β, θ∗I∗ , ψi, θ∗i )

where f(β, θ∗I∗ , ψi, θ∗i ) captures terms that are independent of x. Setting the derivative with respect to x to
zero yields the result since A(x) is strictly convex.

(d) We will show Ci is strictly increasing in the second argument. The proof that it is strictly increas-
ing in its first argument follows by symmetry. Set

f(ψi, x) = βd(θ∗I∗ ||x) + ψid(θ∗i ||x)

so that Ci(β, γi) = minx∈R f(ψi, x). Since KL divergences are non-negative, f(ψi, x) is weakly increasing
in ψi. To establish the claim, fix two nonnegative numbers ψ′ < ψ′′. Let x′ = arg minx f(ψ′, x) and
x′′ = arg minx f(ψ′′, x). By part (c), these are unique and x′ < x′′. Then

f(ψ′, x′) < f(ψ′, x′′) ≤ f(ψ′′, x′′)

where the first inequality uses that x′ 6= x′′ and x′ is a unique minimum and the second uses the f is
non-decreasing.

F.2 Proof of Proposition 7
We will begin by restating Proposition 7.

Proposition 7. The solution to the optimization problem (12) is the unique allocation ψ∗ satisfying ψ∗I∗ = β
and

Ci(β, ψi) = Cj(β, ψj) ∀ i, j 6= I∗. (27)
If ψn = ψ∗ for all n, then

Πn(Θc
I∗)

.= exp{−nΓ∗β}.

Moreover under any other adaptive allocation rule, if ψn,I∗ → β as n→∞ then

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β

almost surely.

Proof. By Lemma 2, each function Ci is continuous, and therefore mini 6=I∗ Ci(β, ψi) is continuous in (ψi : i 6=
I∗). Since continuous functions on a compact space attain their minimum, there exists an optimal solution
ψ∗ to (12), which satisfies

min
i 6=I∗

Ci(β, ψ∗i ) = max
ψ:ψI∗=β

min
i 6=I∗

Ci(β, ψi).

Suppose ψ∗ does not satisfy (27), so for some j 6= I∗,

Cj(β, ψ∗j ) > min
i 6=I∗

Ci(β, ψ∗i ).

This yields a contradiction. Consider a new vector ψε with ψεj = ψ∗j − ε and ψεi = ψ∗i + ε/(k − 2) for each
i /∈ {I∗, j}. For sufficiently small ε, one has

Cj(β, ψεj) > min
i 6=I∗

Ci(β, ψεi ) > min
i 6=I∗

Ci(β, ψ∗i )
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and so ψε attains a higher objective value. To show the solution to (27) must be unique, imagine ψ and ψ′
both satisfy (27) and ψI∗ = ψ′I∗ = β. If ψj > ψ′j for some j, then Cj(β, ψj) > Cj(β, ψ′j) since Cj is strictly
increasing. But by (27) this implies that Cj(β, ψj) > Cj(β, ψ′j) for every j 6= I∗, which implies ψj > ψ′j for
every j, and contradicts that that

∑
j 6=I∗ ψj =

∑
j 6=I∗ ψ

′
j = 1− β.

The remaining claims follow immediately from Propoosition 5 and Lemma 2, which together show that
under any adaptive allocation rule

Πn(Θc
I∗)

.= exp{−nmin
i6=I∗

Ci(ψn,I∗ , ψn,i)}.

This implies that if ψn = ψ∗ for all n, then Πn(Θc
I∗)

.= exp{−nΓ∗β}. Similarly, by the continuity of each Ci,
if ψn,I∗ → β, then

Πn(Θc
I∗)

.= exp{−nmin
i6=I∗

Ci(β, ψn,i)} ≥ exp{−nΓ∗β}

which establishes the final claim.

F.3 Proof of Lemma 3
Recall, the notation

Γ∗ = max
ψ

min
i6=I∗

Ci(ψI∗ , ψi) Γ∗β , max
ψ:ψI∗=β

min
i 6=I∗

Ci(β, ψi)

where
Ci(β, ψ) = min

x∈R
βd(θ∗I∗ ||x) + ψd(θ∗i∗ ||x).

Lemma 3. For β∗ = arg maxβ Γ∗β and any β ∈ (0, 1),

Γ∗

Γ∗β
≤ max

{
β∗

β
,

1− β∗

1− β

}
.

Therefore Γ∗ ≤ 2Γ∗1/2
Proof. Define for each non-negative vector ψ,

f(ψ) = min
i6=I∗

Ci(ψI∗ , ψi)

The optimal exponent Γ∗ is the maximum of f(ψ) over probability vectors ψ. Here, we instead define f for
all non-negative vectors, and proceed by varying the total budget of measurement effort available

∑k
i=1 ψi.

Because each Ci is non-decreasing (see Lemma 2), f is non-decreasing. Since the minimum over x in the
definition of Ci only depends on the relative size of the components of ψ, f is homogenous of degree 1. That
is f(cψ) = cf(ψ) for all c ≥ 1. For each c1, c2 > 0 define

g(c1, c2) = max{f(ψ) : ψI∗ = c1,
∑
i6=I∗

ψi ≤ c2,ψ ≥ 0}.

The function g inherits key properties of f ; it is also non-decreasing and homogenous of degree 1. We have

Γ∗β = max{f(ψ) : ψI∗ = β,

k∑
i=1

ψi = 1,ψ ≥ 0}

= max{f(ψ) : ψI∗ = β,
∑
i6=I∗

ψi ≤ 1− β,ψ ≥ 0}

= g(β, 1− β)

where the second equality uses that f is non-decreasing. Similarly, Γ∗ = g(β∗, 1− β∗). Setting

r := max
{
β∗

β
,

1− β∗

1− β

}
implies rβ ≥ β∗ and r(1− β) ≥ 1− β∗. Therefore

rΓ∗β = rg(β, 1− β) = g(rβ, r(1− β)) ≥ g(β∗, 1− β∗) = Γ∗.
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F.4 Sub-Gaussian Bound: Proof of Proposition 1
The proof of Proposition 1 relies on the following variational form of Kullback–Leibler divergence, which is
given in Theorem 5.2.1 of Robert Gray’s textbook Entropy and Information Theory Gray [2011].

Fact 2. Fix two probability measures P and Q defined on a common measureable space (Ω,F). Suppose that
P is absolutely continuous with respect to Q. Then

D (P||Q) = sup
X

{
EP[X]− log EQ[eX ]

}
,

where the supremum is taken over all random variables X such that the expectation of X under P is well
defined, and eX is integrable under Q.

When comparing two normal distributions N (θ, σ2) and N (θ′, σ2) with common variance, the KL-
divergence can be expressed as d(θ||θ′) = (θ − θ′)2/(2σ2). We follow Russo and Zou [2015] in deriving
the following corollary of Fact 2, which provides and analogous lower bound on the KL-divergences when
distributions are sub-Gaussian. Recall that, µ(θ) =

´
yp(y|θ)dν(y) denotes the mean observation under θ.

Corollary 3. Fix any θ, θ′ ∈ [θ, θ]. If when Y ∼ p(y|θ′), Y is sub-Gaussian with parameter σ, then,

d(θ||θ′) ≥ (µ(θ)− µ(θ′))2

2σ2

Proof. Consider two alternate probability distributions for a random variable Y , one where Y ∼ p(y|θ) and
one where Y ∼ p(y|θ′) We apply Fact 2 where X = λ(Y −Eθ′ [Y ]), P is the probability measure when Y ∼
p(y|θ) and Q is the measure when Y ∼ p(y|θ′). By the sub-Gaussian assumption log Eθ′ [exp{X}] ≤ λ2σ2/2.
Therefore, Fact 2 implies

d(θ||θ′) ≥ λ(Eθ[X])− λ2σ2

2 = λ(Eθ[Y ]−Eθ′ [Y ])− λ2σ2

2 .

The result follows by choosing λ = (Eθ[Y ]−Eθ′ [Y ])/σ2 which minimizes the right hand side.

We are now ready to prove Proposition 1. Recall that in an exponential family, A′(θ) =
´
T (y)p(y|θ)dν(y),

so if T (y) = y then A′(θ) = µ(θ).

Proof of Proposition 1. By Lemma 2,

Γ∗1/2 = max
ψ:ψI∗=1/2

min
i 6=I∗

Ci(1/2, ψi)

Let µI∗ = A′(θ∗I∗) and µi = A′(θ∗i ) denote the means of designs I∗ and i so ∆i = µI∗ − µi. By Lemma 2,

Ci(1/2, ψi) = (1/2)d(θ∗I∗ ||θ) + ψid(θ∗i ||θ).

where θ is the unique parameter with mean

A′(θ) = (1/2)µI∗ + ψiµi
1/2 + ψi

.

For ψi ≤ 1/2,
A′(θ) ≥ µI∗ + µi

2 = µi + ∆i/2.

Now, using Corollary 3 and the non-negativity of KL-divergence

Ci(1/2, ψi) ≥ ψid(θ∗i ||θ) ≥
ψi(µi − µi + ∆i/2)2

2σ2 = ψi∆2
i

8σ2 .
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Choosing ψI∗ = 1/2, and ψi ∝ ∆−2
i , so

ψi = 1
2

 k∑
j−2

∆−2
j

−1

∆−2
i

yields
min
i 6=I∗

Ci(1/2, ψi) ≥
1

16σ2∑k
2 ∆−2

j

.

F.5 Convergence of Uniform Allocation: Proof of Proposition 2
Proof. Without loss of generality, assume the problem is parameterized so that the mean of design i is θ∗i
By Proposition 6, we have

Πn(Θc
I∗)

.= exp{−nmin
i6=I∗

Ci(k−1, k−1)}

By Lemma 2,
Ci(k−1, k−1) = k−1d(θ∗I∗ ||θ) + k−1d(θ∗i ||θ)

where θ = (θ∗I∗ + θ∗i )/2. Therefore, using the formula for the KL-divergence of standard Gaussian random
variables

Ci(k−1, k−1) = (θ∗I∗ − θ)2

2σ2 + (θ∗i − θ)2

2σ2 = (θ∗I∗ − θ∗i )2

4σ2 = ∆2
i

4σ2 .

G Analysis of the Top-Two Allocation Rules: Proof of Proposition
8

Proposition 8. Under the TTTS, TTPS, or TTVS algorithm with parameter β > 0, ψn → ψβ, where ψβ
is the unique allocation with ψβI∗ = β satisfying

Ci(β, ψβi ) = Cj(β, ψβj ) ∀i, j 6= I∗. (28)

Therefore,
Πn(Θc

I∗)
.= e−nΓ∗β . (29)

Because each Ci is continuous, if ψn → ψβ then Ci(ψn,I∗ , ψn,i) → Ci(β, ψβi ) for all i 6= I∗. Equation
(29) then follows by invoking Proposition 7, which establishes the optimality of the allocation ψβ .

The remainder of this section establishes that ψn → ψβ almost surely the proposed top-two rules. The
proof is broken into a number of steps. In order to provide a nearly unified treatment of the three algorithms,
we begin with several results that hold for any allocation rule.

G.1 Results for a general allocation rule
As in other sections, all arguments here hold for any sample path (up to a set of measure zero). The first
result provides a sufficient condition under which ψn → ψβ . Roughly speaking, if ψn,j ≥ ψβj + δ, then too
much measurement effort has been allocated to design j relative to the optimal proportion ψβj . Algorithms
satisfying (30) allocate negligible measurement effort to such designs, and therefore the average measurement
effort they receive must decrease toward the optimal proportion.

Lemma 12 (Sufficient condition for optimality). Consider any adaptive allocation rule. If ψn,I∗ → β and∑
n∈N

ψn,j1(ψn,j ≥ ψ
β
j + δ) <∞ ∀ j 6= I∗, δ > 0, (30)

then ψn → ψβ.
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Proof. Fix a sample path for which ψn,I∗ → β, and (30) holds. Fix some j 6= I∗. We first show lim inf
n→∞

ψn,j ≤
ψ∗j . Suppose otherwise. Then, with positive probability, for some δ > 0, there exists N such that for all
n ≥ N , ψn,j ≥ ψ∗j + δ. But then,

∑
n∈N

ψn,j =
N∑
n=1

ψn,j +
∞∑

n=N+1
1(ψn,j ≥ ψ∗j + δ)ψn,j <∞.

But since ψn,j =
∑n
`=1 ψn,j/n this implies ψn,j → 0.

Now, we show lim sup
n→∞

ψn,j ≤ ψ∗j . Proceeding by contradiction again, suppose otherwise. Then, with
positive probability

lim sup
n→∞

ψn,j > ψβj & lim inf
n→∞

ψn,j ≤ ψ
β
j .

On any sample path where this occurs, for some δ > 0, there exists an infinite sequence of times N1 < N2 <
N3 < ... such that ψN`,j ≥ ψ

β
j + 2δ when ` is odd and ψN`,j ≤ ψ

β
j + δ when ` is even. This can only occur if,∑

n∈N
ψn,j1(ψn,j ≥ ψ∗j + δ) =∞,

which violates the hypothesis.
Together with the hypothesis that ψn,I∗ → β, this implies that for all i ∈ {1, ..., k}, lim sup

n→∞
ψn,i ≤ ψβi .

But since
∑
i ψn,i =

∑
i ψ

β
i , this implies ψn → ψβ .

The next lemma will be used to establish that (30) holds for each of the proposed algorithms. It shows
that if too much measurement effort has been allocated to some design i 6= I∗, in the sense that ψn,i > ψβi +δ
for a constant δ > 0, then αn,i is exponentially small compared maxj 6=I∗ αn,j .

Lemma 13 (Over-allocation implies negligible probability). Fix any δ > 0 and j 6= I∗. With probability 1,
under any allocation rule, if ψn,I∗ → β, there exists δ′ > 0 and a sequence εn with εn → 0 such that for any
n ∈ N,

ψn,j ≥ ψ
β
j + δ =⇒ αn,j

maxi 6=I∗ αn,i
≤ e−n(δ′+εn).

Proof. Since Πn(Θc
I∗) =

∑
i 6=I∗ αn,i, Πn(Θc

I∗)
.= maxi 6=I∗ αn,i. Then, by invoking Proposition (7), since

ψn,I∗ → β,

lim sup
n→∞

− 1
n

log
(

max
i6=I∗

αn,i

)
≤ Γ∗β .

Recall the definition Θi , {θ|θi ≥ θI∗}. Now, by Proposition 5 and Lemma 2,

αn,j = Πn(Θj) ≤ Πn(Θj)
.= exp{−nCj(ψn,I∗ , ψn,j)}

.= exp{−nCj(β, ψn,j)}.

Combining these equations implies that there exists a non-negative sequence εn → 0 with

αn,j
maxi 6=I∗ αn,i

≤
exp{−n(Cj(β, ψn,j)− εn/2)}

exp{−n(Γ∗β + εn/2)} = exp
{
−n
(
(Cj(β, ψn,j)− Γ∗β)− εn

)}
Since Cj(β, ψj) is strictly increasing in ψj (See lemma 2) and Cj(β, ψβj ) = Γ∗β , there exists some δ′ > 0 such
that

ψn,j ≥ ψ
β
j + δ =⇒ Cj(β, ψn,j)− Γ∗β > δ′.
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The next result builds on Proposition 4. It shows that the quality of any design which receives infinite
measurement effort is identified to arbitrary precision. On the other hand, for designs receiving finite
measurement effort, there is always nonzero probability under the posterior that one of them significantly
exceeds the highest quality that has been confidently identified. Therefore, αn,i and Vn,i remain bounded
away from 0 for designs that receive finite measurement effort. This result will be used to show that all
designs receive infinite measurement effort under the proposed top-two allocation rules, and as a result the
posterior converges on the truth asymptotically.

Lemma 14 (Implications of finite measurement). Let

I = {i ∈ {1, .., k} :
∞∑
n=1

ψn,i <∞}

denote the set of designs to which a finite amount of measurement effort is allocated. Then, for any i /∈ I

Πn ({θ : θi ∈ (θ∗i − ε, θ∗i + ε))→ 1, (31)

and if I is empty

Vn,i →

{
0 if i 6= I∗

vI∗(θ∗) > 0 if i = I∗
and αn,i →

{
0 if i 6= I∗

1 if i = I∗.

If I is nonempty, then for every i ∈ I,

lim inf
n→∞

αn,i > 0 and lim inf
n→∞

Vn,i > 0.

Proof. Equation (31) is implied by by Proposition 4. Now, set

Θi,ε = {θ ∈ Θ : θi ≥ max
j 6=i

θj + ε}

to be the set of parameters under which the quality of design i exceeds that of all others by at least ε. Let
ρ∗ = maxi/∈I θ∗i denote the quality of the best design among those that are sampled infinitely often, and
choose ε > 0 small enough that ρ∗ + 2ε < θ. For i ∈ I, we have

Πn(Θi,ε) ≥ Πn(A)−Πn (B)

for
A ≡ {θ|θi ≥ ρ∗ + 2ε & θj < ρ∗ ∀j ∈ I \ {i}}

defined to be parameters under which θi ≥ ρ∗ + 2ε but none of the other designs in I exceed ρ∗, and

B ≡ {θ : max
i/∈I

θi ≥ ρ∗ + ε}

defined to be the parameter vectors under which there is no design in Ic with quality exceeding ρ∗ + ε. By
(31),

Πn (B)→ 0,

but by the second part of Proposition 4, the set of parameters A cannot be completely ruled based on a
finite amount of measurement effort, and

inf
n∈N

Πn(A) > 0.

Together this shows
lim inf
n→∞

Πn(Θi,ε) > 0,

which implies the result.
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G.2 Results specific to the proposed algorithms
We now leverage the general results of the previous subsection to show ψ → ψβ under each proposed top-two
allocation rule. Proofs are provided separately for each of the three algorithms, but they follow a similar
structure. In the first step, we use Lemma 14 to argue that ψn,I∗ → β almost surely. The proof then uses
Lemma 13 to show (30) holds, which by Lemma 12 is sufficient to establish that ψn → ψβ .

G.2.1 Top-Two Thompson Sampling

Recall that under top-two Thompson sampling, for every i ∈ {1, ..., k},

ψn,i = αn,i

β + (1− β)
∑
j 6=i

αn,j
1− αn,j

 .

Proof for TTTS.
Step 1: Show ψn,I∗ → β. To begin, we show

∑
n∈N ψn,i = ∞ for each design i. Suppose otherwise. Let

I = {i ∈ {1, .., k} :
∑∞

1 ψn,i < ∞} be the set of designs to which finite measurement effort is allocated.
Under the TTTS sampling rule, ψn,i ≥ βαn,i. Therefore, by Lemma 14, if i ∈ I then lim inf

n→∞
αn,i > 0, which

implies
∑
n∈N ψn,i =∞, a contradiction.

Since
∑∞

1 ψn,i =∞ for all i, by applying Lemma 14 we conclude that αn,I∗ → 1. For TTTS, this implies
ψn,I∗ → β.

Step 2: Show (30) holds. By Lemma 12, it is enough to show that (30) holds under TTTS. Let În =
arg maxi αn,i, and Ĵn = arg maxi 6=În αn,i. Since αn,I∗ → 1, for each sample path there is a finite time τ <∞
such that for all n ≥ τ , În = I∗ and therefore Ĵn = arg maxi 6=I∗ αn,i. Under TTTS,

ψn,i ≤ βαn,i + (1− β) αn,i
αn,Jn

≤ αn,i
αn,Jn

,

where the first inequality follows since

∑
j 6=i

αn,j
1− αn,j

≤
∑
j 6=i αn,i

1− αn,În
≤
∑
j 6=i αn,j

αn,Ĵn
≤ 1
αn,Ĵn

.

For n ≥ τ , this means ψn,i ≤ αn,i/(maxj 6=I∗ αn,i) for any i 6= I∗. By Lemma 13, there is a constant δ′ > 0
and a sequence εn → 0 such that

ψn,i ≥ ψ
β
i + δ =⇒ αn,i

maxj 6=I∗ αn,j
≤ e−n(δ′−εn).

Therefore for all i 6= I∗ ∑
n≥τ

ψn,i1(ψn,i ≥ ψ
β
i + δ) ≤

∑
n≥τ

e−n(δ′−εn) <∞.

G.2.2 Top-Two Probability Sampling

Recall that top-two probability sampling sets ψn,În = β and ψn,Ĵn = 1 − β where În = arg maxi αn,i and
Ĵn = arg maxj 6=În αn,i are the two designs with the highest posterior probability of being optimal.

Proof for TTPS.
Step 1: Show ψn,I∗ → β. To begin, we show

∑
n∈N ψn,i = ∞ for each design i. Suppose otherwise. Let

I = {i ∈ {1, .., k} :
∑∞

1 ψn,i < ∞} be the set of designs to which finite measurement effort is allocated.
Proceeding by contradiction, suppose I is nonempty. By Lemma 14, there is a time τ and some probability
α′ > 0 such that αn,i > α′ for all n ≥ τ and i ∈ I. However, because of the assumption that θ∗i 6= θ∗j ,
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for i 6= j, I = arg maxi/∈I θ∗i is unique. By (31), the algorithm identifies arg maxi/∈I θ∗i with certainty, and
αn,i → 0 for every i /∈ I except for I. This means there is a time τ ′ > τ such that for n ≥ τ ′

αn,i > α′ if i ∈ I
αn,i ≤ α′ if i /∈ I and i 6= I.

When this occurs at least one of the two designs with highest probability αn,i of being optimal must be in
the set I, which implies designs in I receive infinite measurement effort, yielding a contradiction.

Since
∑∞

1 ψn,i =∞ for all i, Lemma 14 implies αn,I∗ → 1. Therefore, there is a finite time τ such that
În , arg maxi αn,i = I∗ for all n ≥ τ . By the definition of the algorithm ψn,În = β, and so ψn,I∗ = β for all
n ≥ τ . We conclude that ψn,I∗ → β.

Step 2: Show (30) holds. As argued above, for each sample path there is a finite time τ < ∞ such that for
all n ≥ τ , În = I∗ and therefore Ĵn = arg maxi 6=I∗ αn,i. By Lemma 13, one can choose τ ′ ≥ τ such that for
all n ≥ τ ′,

ψn,j ≥ ψ
β
j + δ =⇒ αn,j < max

i 6=I∗
αn,i

and therefore by definition Ĵn 6= j. This concludes the proof, as it shows that for each sample path there is a
finite time τ ′ after which TTPS never allocates any measurement effort to design j when ψn,j ≥ ψ

β
j + δ.

G.2.3 Top-Two Value Sampling

Recall that top-two value sampling sets ψn,În = β and ψn,Ĵn = 1 − β where În = arg maxi Vn,i and
Ĵn = arg maxj 6=În Vn,i are the two designs with the highest posterior value.

Proof for TTVS. Step 1: Show ψn,I∗ → β. The proof is essentially identical to that for TTPS.To begin,
we show

∑
n∈N ψn,i = ∞ for each design i. Suppose otherwise. Let I = {i ∈ {1, .., k} :

∑∞
1 ψn,i < ∞} be

the set of designs to which finite measurement effort is allocated. Proceeding by contradiction, suppose I
is nonempty. By Lemma 14, there is a time τ and some v > 0 such that Vn,i > v for all n ≥ τ and i ∈ I.
However, because of the assumption that θ∗i 6= θ∗j , for i 6= j, I = arg maxi/∈I θ∗i is unique5. By (31), the
algorithm identifies arg maxi/∈I θ∗i with certainty, and Vn,i → 0 for every i /∈ I except for I. Then there is a
time τ ′ > τ such that for n ≥ τ ′

Vn,i > v if i ∈ I
Vn,i ≤ v if i /∈ I and i 6= I∗.

When this occurs at least one of the two designs with highest value Vn,i must be in the set I, which implies
designs in I receive infinite measurement effort, yielding a contradiction.

Since
∑∞

1 ψn,i =∞ for all i, Lemma 14 implies Vn,I∗ → vI∗(θ∗) > 0 and Vn,i → 0 for all i 6= I∗. There-
fore, there is a finite time τ such that arg maxi Vn,i = I∗ for all τ ≥ n. By the definition of the algorithm
arg maxi Vn,i is sampled with probability β, and so ψn,I∗ = β for all n ≥ τ . We conclude that ψn,I∗ → β.

Step 2: Show (30) holds. Again, the proof is essentially identical to that for TTPS. As argued above, for each
sample path there is a finite time τ <∞ such that for all n ≥ τ , În = I∗ and therefore Ĵn = arg maxi 6=I∗ Vn,i.
By Lemma 4, Vn,i

.= αn,i. Combining this with Lemma 13 shows one can choose τ ′ ≥ τ such that for all
n ≥ τ ′,

ψn,j ≥ ψ
β
j + δ =⇒ Vn,j < max

i 6=I∗
Vn,i

and therefore by definition Ĵn 6= j. This concludes the proof, as it shows that for each sample path
there is a finite time τ ′ after which TTVS never allocates any measurement effort to design j 6= I∗ when
ψn,j ≥ ψ

β
j + δ.

5If the arg-max is not unique, then one could show that Vn,i → 0 for all i /∈ I, and that therefore there is a finite time after
both of the top-two designs are always in the set I, yielding a contradiction
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H Results on Adaptive Tuning
Proposition 3. Suppose TTTS, TTVS, TTPS are applied with an adaptive sequence of tuning parameters
(βn : n ∈ N) where for each n, βn is Fn−1 measurable. Then, with probability 1, on any sample path on
which βn → β∗,

Πn(Θc
I∗)

.= e−nΓ∗ .

Proof. Step 1: Show
∑
n∈N ψn,i = ∞ for each design i. The proof follows identically to the case of fixed

β. For example, consider the case of TTTS and, proceeding by contradiction, suppose
∑
n∈N ψn,i < ∞ on

some sample path. Under TTTS, ψn,i ≥ βnαn,i. Therefore, by Lemma 14, if i ∈ I then lim inf
n→∞

αn,i > 0, so
lim infn∈N ψn,i > 0. This implies

∑
n∈N ψn,i =∞, a contradiction. Proofs for TTPS and TTVS also follows

as before, and are omitted

Step 2: Show that ψn,I∗ → β∗

It is sufficient to show that ψn,I∗ − βn → 0. This would imply 1
n

∑n
`=1 (ψ`,I∗ − β`) → 0, which since

βn → β∗, implies 1
n

∑n
`=1 ψ`,I∗ → β∗ as desired.

Now, since
∑
n∈N ψn,i =∞ for all arms i, αn,I∗ → 1 Lemma 14 implies

Vn,i →

{
0 if i 6= I∗

vI∗(θ∗) > 0 if i = I∗
and αn,i →

{
0 if i 6= I∗

1 if i = I∗.

For top-two probability sampling, this implies there exists a time after which arg maxi αn,i = I∗ and hence
ψn,I∗ = βn for all n sufficiently large. For top-two value sampling, the same result applies, since there exists
a time after which arg maxi Vn,i = I∗. For top-two Thompson sampling,

ψn,i = αn,i

βn + (1− βn)
∑
j 6=i

αn,j
1− αn,j

 .

from which we conclude ψn,I∗ − βn → 0 as αn,I∗ → 1.

Step 3: Show sufficient condition for optimality in (30). By Lemma 12, it is enough to show∑
n∈N

ψn,j1(ψn,j ≥ ψ
β∗

j + δ) <∞ ∀ j 6= I∗, δ > 0,

For each proposed algorithm, a proof of the corresponding result was given in Step 2 of Subsection G.2, but
for the case of arbitrary β ∈ (0, 1). Since ψn,I∗ → β∗, for each of proposed algorithm the proof of this follows
line by line as before, but replacing β with β∗ everywhere it occurs.

Lemma 1. Under TTTS, TTPS, or TTVS with an adaptive sequence of tuning parameters (βn : n ∈ N)
adjusted according to Algorithm 3, βn → β∗ almost surely. Therefore Πn(Θc

I∗)
.= e−nΓ∗ .

Proof. First, let us define some notation. Let θ̂n =
´
θ∈Θ θπn(θ)dθ denote the posterior mean at time n.

Recall that βn denotes the tuning parameter used by the top-two algorithm at time n and this is updated
only at certain time periods. Define

`n = max{` ∈ N : min
i∈{1,...k}

Sn,i ≥ κ`} =
⌊
logκ

(
min
i
Sn,i

)⌋
denote the number of time periods in which an update to β̂n has been attempted. Now, the proof proceeds
in two steps.

Step 1: Show
∑
n∈N ψn,i = ∞ for all i ∈ {1, . . . , k} almost surely Suppose otherwise. Then by Corollary 1,

1, we know that there is some arm i ∈ {1, . . . k} with limn→∞ Sn,i <∞. This in tern implies supn∈N `n <∞,
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so on this sample path there exists a time N with βn = βN for all n ≥ N . Let us consider the sample
path from time N onwards. We have concluded that there is an infinite period of times {N1, N2, . . .} over
which (1) Top-two sampling is applied with a constant parameter βn = βN with initial beliefs πN over the
hyper-rectangle Θ = (θ, θ)k and (2) there exists an arm i with

∑∞
n=N ψn,i <∞. We know by Proposition 8

that the set of such sample paths has measure zero.

Step 2: Show that therefore βn → β∗ We first show the consistency of the posterior mean θ̂n =
´
θ∈Θ dπn(θ).

Since
∑
n∈N ψn,i =∞ for all i, Proposition 4 implies that for any open set Θ̃ containing θ∗, Πn

(
Θ̃
)
→ 1. Since

Θ is compact, this implies θ̂n → θ∗ almost surely. Now, because the function f(ψ;θ) := minθ′∈Θc
Î
Dψ(θ||θ′)

is continuous in both arguments, the correspondence θ 7→ arg maxψ f(ψ,θ) is upper hemi-continuous at
any θ. Since ψ∗(θ∗) = arg maxψ f(ψ,θ∗) is unique, we know ψ∗(θ) is continuous in a neighborhood of θ∗.
This implies ψ∗(θ̂n)→ ψ∗(θ∗). Since the parameter βn is updated an infinite number of times, this implies
βn → β∗.

48


	1 Introduction
	1.1 Main Contributions
	1.2 Related Literature

	2 Problem Formulation
	3 Algorithms
	3.1 Top-Two Probability Sampling (TTPS)
	3.2 Top-Two Value Sampling (TTVS)
	3.3 Thompson Sampling
	3.4 Top-Two Thompson Sampling (TTTS)
	3.5 Computing and Sampling According to Optimal Action Probabilities

	4 A Numerical Experiment
	5 Main Theoretical Results
	5.1 An upper bound on the error exponent
	5.2 Consistent Tuning of 

	6 Analysis
	6.1 Asymptotic Notation.
	6.2 Posterior Consistency
	6.3 Posterior Large Deviations
	6.4 Characterizing the Optimal Allocation
	6.5 Convergence of Top-Two Algorithms
	6.6 Asymptotics of the Value Measure

	7 Further Simulation Experiments
	8 Extensions and Open Problems
	A Outline
	B An Implementation of TTPS
	C Discussion of the Expected Improvement Algorithm
	D Preliminaries
	E Posterior Concentration and anti-Concentration
	E.1 Uniform Convergence of the Log-Likelihood
	E.2 Posterior Consistency: Proof of Prop. ??
	E.3 Large Deviations: Proof of Proposition ??
	E.4 Large Deviations of the Value Measure: Proof of Lemma ??

	F Simplifying and Bounding the Error Exponent
	F.1 Proof of Lemma ??
	F.2 Proof of Proposition ??
	F.3 Proof of Lemma ??
	F.4 Sub-Gaussian Bound: Proof of Proposition ??
	F.5 Convergence of Uniform Allocation: Proof of Proposition ??

	G Analysis of the Top-Two Allocation Rules: Proof of Proposition ??
	G.1 Results for a general allocation rule
	G.2 Results specific to the proposed algorithms
	G.2.1 Top-Two Thompson Sampling
	G.2.2 Top-Two Probability Sampling
	G.2.3 Top-Two Value Sampling


	H Results on Adaptive Tuning

