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Abstract

The distributed computation of equilibria and optima has seen growing interest in a broad collection of
networked problems. We consider the computation of equilibria of convex stochastic Nash games character-
ized by a possibly nonconvex potential function. Since any stationary point of the potential function is a Nash
equilibrium, there is an equivalence between asynchronous best-response (BR) schemes applied on Nash game
and block-coordinate descent (BCD) schemes implemented on the potential function. We focus on two classes
of stochastic Nash games: (P1): A potential stochastic Nash game, in which each player solves a parameter-
ized stochastic convex program; and (P2): A misspecified generalization, where the player-specific stochastic
program is complicated by a parametric misspecification with the unknown parameter being the solution to a
stochastic convex optimization. In both settings, exact proximal BR solutions are generally unavailable in finite
time since they necessitate solving stochastic programs. Consequently, we design two asynchronous inexact
proximal BR schemes to solve problems (P1) and (P2), where in each iteration a single player is randomly cho-
sen to compute an inexact proximal BR solution (via stochastic approximation) with delayed rival information
while the other players keep their strategies invariant. In the misspecified regime (P2), each player possesses
an extra estimate of the misspecified parameter by using a projected stochastic gradient (SG) algorithm with
an increasing batch of sampled gradients. By imposing suitable conditions on the inexactness sequences, we
prove that the iterates produced by both schemes converge almost surely to a connected subset of the set of
Nash equilibria. When the player problems are strongly convex, an inexact pure BR scheme is shown to be
convergent. In effect, we provide what we believe is amongst the first randomized BCD schemes for stochastic
nonconvex (but block-wise convex) optimization with almost sure convergence properties. We further show that
the associated gap function converges to zero in mean. These statements can be extended to allow for accom-
modating weighted potential games and generalized potential games. Finally, we present preliminary numerics
based on applying the proposed schemes to congestion control and Nash-Cournot games.

1 Introduction

Nash games, rooted in the seminal work by [2], have seen wide applicability in a broad range of engineered
systems, such as power grids, communication networks, transportation networks and sensor networks. In the
N−player Nash game, each player maximizes a prescribed payoff over a player-specific strategy set, given the
rival strategies. Nash’s eponymous solution concept, Nash equilibrium (NE), requires that at an equilibrium, no
player can improve its payoff by unilaterally deviating from its equilibrium strategy. Potential games represent
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an important subclass of Nash games, formally introduced in [3], that arise naturally in the modeling of many
applications, ranging from congestion control [4], routing in communication networks [5], networked Cournot
competition [6, 7, 8, 9], and a host of other control-theoretic problems [10, 11]. We refer the interested reader
to the survey by [12] on potential games for additional references. An interesting extension is the class of near
potential games, a class of games that are close to potential games and for which some learning dynamics (for
instance, best-response, fictitious play, logit response) are discussed in [13]. Additional decomposition algorithms
are proposed in [14] to solve generalized potential games in which the player-specific strategy set depends on the
strategies selected by the other agents.
Motivation. While prior algorithmic efforts have considered deterministic Nash games (cf. [5, 6, 7]), there have
also been recent attempts to contend with stochastic generalizations via stochastic gradient-response schemes
(cf. [15, 16, 17, 9]). Yet, gradient-based schemes require access to rival strategies after every update, often unde-
sirable in certain applications such as cellular networks. To this end, we consider inexact proximal best-response
schemes applied to the stochastic Nash game (or equivalently inexact block coordinate-descent schemes applied
to the stochastic potential function) that require rival strategies after taking an inexact proximal BR step, generally
leading to lower communication complexity (measured by the amount of rival information). Further, in many
regimes, the payoff functions are defined by parameters that are unavailable, e.g., parameters of inverse-demand
functions. Accordingly, we allow for resolving parametric misspecification in player payoffs by equipping each
player with a simultaneous learning step.
Problems of interest. We consider two classes of N -player potential stochastic Nash games with players indexed
by i where i ∈ N , {1, 2, · · · , N}.

(P1): Potential Stochastic Nash Games. Suppose the ith player’s strategy is denoted by xi with a strategy
set Xi ⊂ Rni , implying that a feasible strategy xi satisfies xi ∈ Xi, and let n ,

∑
i∈N ni. Additionally, suppose

player i’s objective (or negative of the utility function) is denoted by fi(xi, x−i), which depends on its own strategy
xi and on the tuple of rival strategies x−i , {xj}j 6=i. Suppose X and X−i are defined as X ,

∏N
i=1Xi and

X−i ,
∏N
j 6=i=1Xj , respectively. Given rival strategies x−i, the ith player is faced by the following parameterized

stochastic optimization problem:

min
xi∈Xi

fi(xi, x−i) , Eξ [ψi(xi, x−i; ξ(ω))] , (1)

where ψi : X×Rd → R is a scalar-valued function and the random vector is ξ : Ω→ Rd defined on the probability
space (Ω,Fx,Px). Our interest lies in a subclass of Nash games, qualified as potential, characterized by a potential
function P : X → R such that for any i ∈ N and for any x−i ∈ X−i:

P (xi, x−i)− P (x′i, x−i) = fi(xi, x−i)− fi(x′i, x−i), ∀xi, x′i ∈ Xi. (2)

Then the Nash game, in which the ith player solves (1) given x−i, is called a potential stochastic Nash game. We
aim to compute an NE, denoted by x∗ = {x∗i }Ni=1 such that for any i ∈ N , the following holds:

fi(x
∗
i , x
∗
−i) ≤ fi(xi, x∗−i), ∀xi ∈ Xi. (3)

In other words, a feasible strategy tuple x∗ ∈ X is an Nash equilibrium if no player can improve its payoff by
unilaterally deviating from its equilibrium strategy x∗i .

(P2): Misspecified Potential Stochastic Nash Games. The frequently used assumption in game-theoretic
models is that each player has perfect knowledge of the payoff function and is able to correctly forecast the
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choices of the other players. However, as pointed out by [18] in the context of Cournot oligopolies that firms
are, in general, imperfectly aware of their environment. Therefore they may have an imperfect knowledge of the
payoff. For example, players may employ the misspecified estimates of the demand function or the production
capacity of their rivals. [18] introduced a learning process where firms update their conjectured demand functions
according to the observed data when the game is played repeatedly. Subsequently, this notion was formalized
in a series of papers for resolving parametric misspecification by [19, 20], [21], [22], amongst others. Recent
work has examined the development of coupled stochastic approximation (SA) schemes for resolving misspecified
stochastic optimization [23, 24], and stochastic Nash games [9]. In this work, we consider static stochastic Nash
games complicated by a parameteric misspecification θ∗, in which the ith player’s problem is represented as
follows:

min
xi∈Xi

fi(xi, x−i, θ
∗) , Eξ [ψi(xi, x−i, θ

∗; ξ(ω))] , (4)

where θ∗ ∈ Rm, ξ : Ω → Rd is defined on the probability space (Ω,Fx,Px), and ψi : X × Rm × Rd → R is a
scalar-valued function. For instance, in the context of Nash-Cournot games [20], θ∗ may represent the slope and
intercept of a linear inverse demand (or price) function; see the example of Nash-Cournot games with misspecified
parameters in Section 4.2. We consider the estimation of θ∗ through solving a suitably defined convex stochastic
program:

min
θ∈Θ

g(θ) := Eη [g(θ, η)] , (5)

where Θ ∈ Rm is a closed and convex set, η : Λ → Rp is defined on the probability space (Λ,Fθ,Pθ), and
g : Θ×Rp → R is a scalar-valued function. We still consider the class of potential games and assume there exists
a function P (·; ·) : X ×Θ→ R such that for any i ∈ N and every x−i ∈ X−i:

P (xi, x−i; θ
∗)− P (x′i, x−i; θ

∗) = fi(xi, x−i; θ
∗)− fi(x′i, x−i; θ∗), ∀xi, x′i ∈ Xi. (6)

Then we refer to the stochastic Nash game (4) with the misspecified parameter θ∗ being a solution to (5), as
a misspecified potential stochastic Nash game. In such an instance, the problem of interest is to compute the
correctly specified Nash equilibrium, defined as follows, holds for i ∈ N :

fi(x
∗
i , x
∗
−i, θ

∗) ≤ fi(xi, x∗−i, θ∗), ∀xi ∈ Xi. (7)

Prior Research. We now discuss some relevant prior research on stochastic Nash games, best-response schemes
for Nash games, coordinate-descent schemes for optimization problems, and distributed schemes for computing
Nash equilibria.

(i) Stochastic Nash games. Both (P1) and (P2) belong to the class of static stochastic Nash games, as opposed
to their dynamic variants, representing a set of Nash games in which the player objective functions are expectation-
valued. Tractable sufficiency conditions for existence of equilibria to such games were provided in [25] in regimes
where player objectives were convex and could be nonsmooth. SA schemes for a subclass of convex stochas-
tic Nash games were presented under Lipschitzian assumptions in [15] via an iterative regularization technique
while in [16, 17], Lipschitzian requirements were relaxed by utilizing a randomized smoothing approach. In both
instances, almost sure convergence to an NE is guaranteed under suitable monotonicity requirements on the vari-
ational map. Though gradient-based schemes exist for solving stochastic Nash games are characterized by ease
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of implementation and lower complexity in terms of each player step, such schemes are characterized by the fol-
lowing properties: (i) Players require rival strategies after every gradient step, necessitating a significant amount
of communication; (ii) Convergence theory is reliant on a relatively strong monotonicity assumption on the gra-
dient map; (iii) The schemes are synchronous. This motivates considering asynchronous best-response schemes,
generally characterized by lower communication requirements and do not require a strong monotonicity property.
Finally, [26] and [27] provide a characterization of rational behavior in a non-cooperative game, where a ratio-
nal player acts optimally given the decisions of her competitors; i.e. rational players will play a best-response
strategy. This represents a cornerstone of much of the discussion in the context of such techniques and further mo-
tivates the consideration of such schemes. However, we emphasize that schemes based on other strategies (such as
gradient-response, etc.) are also of importance based on the setting being examined and the underlying assump-
tions imposed. Succinctly, we aim to develop implementable asynchronous proximal best-response schemes, a
class of techniques that can cope with delays and requires far less communication.

(ii) Best-response (BR) and coordinate-descent schemes. In BR schemes, each player selects a BR strategy,
given current rival strategies [28, 29]. [30] shows that for a class of games, it is best for a player, given that the
others are repeatedly employing best-response, to also repeatedly employ a BR scheme. There have been efforts to
extend BR schemes to engineering applications [31], where the BR can be expressed in a closed form. Recently,
[32] have proposed several variants of the BR schemes to solve the two-stage noncooperative games with risk-
averse players. Proximal BR schemes appear to have been first discussed in [33], where it is shown that the set of
fixed points of the proximal BR map is equivalent to the set of Nash equilibria when the player-specific problem is
convex. Additionally, [14] propose several regularized Gauss-Seidel BR schemes for generalized potential games
and show that a limit point of the generated sequence is an NE when each player’s subproblem is convex. Recall
that stationary points of the potential function are NE of the original game when the player-specific problems are
convex. Thus, BCD methods may be employed for obtaining either stationary points of the potential function (if
nonconvex) or global minimizers (if convex), where the coordinates are partitioned into several blocks (each cor-
responding to a player in the associated Nash game) and at each iteration, a single block is chosen to update while
the other blocks remain unchanged. Its original format dates back to [34], where blocks were updated cyclically.
Convergence has been extensively studied for both convex and nonconvex regimes with either differentiable or
nondifferentiable objectives [35]. Notice that the asynchronous BCD schemes, where at each epoch a single block
is chosen, are, in essence, identical to asynchronous BR schemes. [36] considers a randomized BCD method that
performs a gradient update on a randomly selected block. Extensions to convex nonsmooth regimes have been
studied extensively [37] while in nonconvex regimes, [38, 39] provide convergence theory. [40] proposed an
accelerated gradient method to solve nonconvex and possibly stochastic optimization, while [41] designed a ran-
domized stochastic projected gradient algorithm to solve the constrained stochastic composite optimization. We
summarize much of the prior work in Table 1, where we observe that there is no available a.s. convergence theory
for (misspecified) potential stochastic Nash games (or nonconvex stochastic programs) via BR (or BCD) schemes.

(iii) Distributed computation of Nash equilibria. Recently, there has been an interest in considering settings
where players compute their strategies in a distributed sense. [43] and [44] considered the networked aggrega-
tive games (where player payoffs are coupled via the aggregate strategy) with quadratic payoffs and proposed
decentralized schemes for NE computation. In this setting, the communication graph is, in essence, the pay-
off dependence network. However, as has been pointed out in [45], a player is inherently limited in that it can
communicate with (and be observed by) a few players in large-scale networked systems. Thus, in recent work,
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Problem Literature Applicability stochastic method rate a.s.
convergence

in mean
misspecification

Optimization

[38]
convex

X BSG
O (1/k) – –

×
nonconvex – – X

[40] nonconvex X gradient-based O(1/
√
k) – X ×

[]ghadimi2016mini nonconvex X gradient-based X – X ×

[39] nonconvex × gradient-based
(asynchronous)

–
cluster point

is an NE
– ×

This work
nonconvex

block-convex
X

RBCD-based
(asynchronous)

– X X
Section 2: ×
Section 3: X

Non-potential
Game

[]jiang2017distributed monotone X gradient-based O (1/k) X – X

[]koshal2013regularized
monotone,
Lipschitz

X gradient-based – X – ×

[]yousefian2013regularized
monotone,

non-Lipschitz
X gradient-based – X – ×

[]yousefian2016self
strongly monotone,

non-Lipschitz
X gradient-based O(1/k) X X ×

[]pang2017two
contractive
BR maps

X BR-based linear X – ×

[]lei2017synchronous
contractive
BR maps

X BR-based linear X X ×

Potential
Game

[]facchinei2011decomposition generalized × BR-based
(Gauss-Seidel)

–
cluster point

is an NE
– ×

This work
player-specific

convex
X

BR-based
(asynchronous)

– X X
Section 2: ×
Section 3: X

Table 1: A list of some recent research papers on Nash games and (non)convex optimization.
The 3rd column “Applicability” specifies the major conditions required by the problem studied in the literature. In column 4 “stochastic” (or column 9

“misspecification”), X means that the studied problem in the literature is stochastic (or with parametric misspecification), while × implies that the studied
problem is deterministic (or without parametric misspecification); In columns 6-8, Ximplies that the reference has studied the corresponding convergence

property, while dash – implies that the literature has not studied this property.

it is assumed that players form a (connected) communication network (which is not necessarily the same as the
players’ payoff dependence network) and exchange messages with the neighboring players to obtain estimates of
unobserved information. In such a setting, [46] developed consensus-based distributed algorithms for aggregative
games while [47] presented an asynchronous gossip-based algorithm. In a similar vein, [48] designed similar dis-
tributed algorithms for a class of generalized convex games while [49] considered similar settings under a strong
monotonicity requirement on the concatenated gradient map. [50] designed a linearized ADMM-like scheme while
continuous-time schemes were presented by [51] in which unobservable decisions are learnt via a consensus-based
approach. Finally, [52] have developed distributed counterparts of (inexact) best-response and gradient-response
for a range of stochastic Nash games.

Contributions: In [53] and [42], rate statements and iteration complexity bounds are provided for inexact
proximal BR schemes for stochastic Nash games under a contractive requirement on the proximal BR map. How-
ever, even asymptotic guarantees are unavailable without such an assumption. Motivated by this gap, we aim to
design convergent implementable asynchronous BR schemes such that at each epoch, a single player updates its
strategy while the other players keep their strategies invariant. In our settings, each player-specific subproblem
involves solving a stochastic program whose exact solution is generally unavailable in finite time, necessitating
inexact solutions. Accordingly, we propose two classes of asynchronous inexact proximal BR schemes to com-
pute NE of problems (P1) and (P2), and make the following contributions: (i). In Section II, we propose an
asynchronous inexact proximal BR scheme to solve (P1). In each iteration, a single agent is randomly chosen
to inexactly solve a stochastic optimization problem, given the delay-afflicted rival strategies via an SA scheme.
By imposing suitable conditions on (P1) and on the inexactness sequence, in a regime that allows for uniformly
bounded delays, we prove that the iterates converge a.s. to a connected subset of the set of Nash equilibria and
that the gap function converges in mean to zero. Extensions are provided to the generalized stochastic potential
games (with coupled strategy sets) and the weighted potential games. We further prove that asynchronous inexact
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pure BR schemes are convergent if player-specific problems are strongly convex. (ii). In Section III, we extend
the regime to contend with the misspecified stochastic Nash game (P2) where every player updates its equilibrium
strategy and its belief regarding the misspecified parameter (via variable sample-size SA schemes), given rival
strategies afflicted by delays. Asymptotic guarantees analogous to Section II are provided and we additionally
show that the belief regarding the misspecified parameter converges a.s. to its true counterpart. (iii) We provide
some preliminary numerics on congestion games and Nash-Cournot games in Section IV, and conclude the paper
in Section V.

Notations: When referring to a vector x, it is assumed to be a column vector while xT denotes its transpose.
Generally, ‖x‖ denotes the Euclidean vector norm, i.e., ‖x‖ =

√
xTx. For a nonempty closed convex setX ⊂ Rm,

we use ΠX [x] to denote the Euclidean projection of a vector x ∈ Rm on X , i.e., ΠX [x] = miny∈X ‖x − y‖. We
write a.s. as the abbreviation for “almost surely”. We use E[z] to denote the unconditional expectation of a random
variable z. For a real number x, the floor function bxc denotes the largest integer smaller than x. We use [A]i,j to
denote the (i, j)-th entry of the matrix A.

2 Asynchronous Inexact Proximal Best-Response Schemes

In Section 2.1, we propose an asynchronous inexact proximal BR scheme to compute an equilibrium of the stochas-
tic potential game (P1). Then in Section 2.2 we introduce some basic assumptions, based on which, we proceed
to prove the almost sure convergence and convergence in mean of the generated sequence to a Nash equilibrium
in Section 2.3. In Section 2.4, we discuss some possible extensions including the generalized potential games
allowing for coupled strategy sets, and weighted potential games. Finally, in Section 2.5, we show that in a delay-
free regime, the asynchronous inexact pure BR scheme (i.e. without the proximal term) is convergent when the
player-specific problem is strongly convex.

2.1 Algorithm Design

In standard potential games, a natural approach is an asynchronous BR method where in each iteration, one player
updates its strategy by solving problem (1), given its rival strategies, referred to as the best-response problem.
However, best-response schemes do not always lead to convergence to Nash equilibria. In fact, even in potential
games where the potential function is player-wise convex, such convergence does not follow; see [14] for a simple
counterexample. Accordingly, [14] propose a regularized BR scheme in which each player’s objective is modified
by adding a quadratic proximal term, and prove its convergence. Our research has been motivated by considering
stochastic generalizations which do not follow immediately. Yet another reason for using proximal BR schemes
may be drawn from the “momentum behavior” in economics, e.g. in the investment problems [54], the players
may want to optimize their objective while staying close to their previous values. We then define the player i’s
proximal best-response problem as follows for some µi > 0:

Ti(x) , argmin
yi∈Xi

[
E [ψi(yi, x−i; ξ(ω))] +

µi
2
‖yi − xi‖2

]
. (8)

Since Ti(x), the minimizer of a stochastic problem (8), is generally unavailable in finite time, we utilize Monte-
Carlo sampling schemes in obtaining inexact solutions [55].

We assume that each player i always knows its current strategy, while is not immediately aware of rival strate-
gies. Instead, its knowledge of each rival strategies may be afflicted by a rival-specific random delay, (see [56]).
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We now propose an asynchronous inexact proximal best-response scheme (Algrithm 1) to compute an NE of this
game. At time k, player i’s strategy xi(k) ∈ Rni is an estimate for its equilibrium strategy x∗i and player i has
access to delayed rival strategies yi(k) , (x1(k− di1(k)), · · · , xN (k− diN (k))), where dij(k) denotes the delay
associated with player j’s information, and dii(k) = 0. The scheme is defined as follows. At iteration k ≥ 0,

randomly pick a single i from N with probability P(ik = i) = pi > 0. If ik = i, then player i is chosen to
initiate an update by computing an inexact proximal BR solution to problem (8) characterized by (9). We impose
conditions on the inexactness sequence {εi(k)}k≥1 when we proceed to investigate the convergence properties.

Algorithm 1 Asynchronous inexact proximal best-response scheme

Let k := 0, xi,0 ∈ Xi for i ∈ N . Additionally 0 < pi < 1 for i ∈ N such that
∑N

i=1 pi = 1.

(S.1) Pick ik = i ∈ N with probability pi.

(S.2) If ik = i, then player i updates xi(k + 1) ∈ Xi as follows:

xi(k + 1) := Ti(y
i(k)) + εi(k + 1), (9)

where εi(k+ 1) denotes the inexactness employed by player i at time k+ 1. Otherwise, xj(k+ 1) := xj(k)

if j /∈ ik.

(S.3) If k > K, stop; Else, k := k + 1 and return to (S.1).

Remark 1 In fact, in practical game-theoretic problems, players take actions in an asynchronous manner since
there might not exist a global coordinator to ensure that players update simultaneously. The condition that P(ik =

i) = pi > 0 with
∑N

i=1 pi = 1 accommodates the Poisson model employed by [57] and [58] as a special case. For
i ∈ N , player i is activated according to a local Poisson clock, which ticks according to a Poisson process with
rate %i > 0. Suppose that there is a virtual global clock which ticks whenever any of the local Poisson clocks tick.
Assume that the local Poisson clocks are independent, then the global clock ticks according to a Poisson process
with rate

∑N
i=1 %i. Let Zk denote the time of the k-th tick of the global clock. Since the local Poisson clocks are

independent, with probability one, there is a single player whose Poisson clock ticks at time Zk with probability
P(ik = i) = %i∑N

i=1 %i
, pi. Further, the memoryless property of the Poisson process indicates that {ik}k≥0 is an

independent and identically distributed (i.i.d.) sequence.

2.2 Assumptions and Preliminary Results

For notational simplicity, let ξ denote ξ(ω) throughout the paper. We begin by imposing assumptions on Xi, fi,
ψi, and on the second moments of ψi.

Assumption 1 Let the following hold.
(a) For every i ∈ N , the feasible set Xi is closed, compact, and convex;
(b) For every i ∈ N , fi(xi, x−i) is convex and continuously differentiable in xi ∈ Xi for every x−i ∈ X−i. In
addition, there exists a Lipschitz constant Li > 0 such that the following holds:

‖∇xifi(x)−∇xifi(x′)‖ ≤ Li‖x− x′‖ ∀x, x′ ∈ X;
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(c) For every i ∈ N , all x−i ∈ X−i, and any ω ∈ Ω, ψi(xi, x−i; ξ(ω)) is differentiable in xi over an open set
containing Xi such that ∇xifi(xi, x−i) = Eξ[∇xiψi(xi, x−i; ξ)];
(d) For every i ∈ N and any x ∈ X , there exists a constant M > 0 such that Eξ[‖∇xiψi(xi, x−i; ξ)‖2] ≤M2.

It is seen that (c) and (d) pertain to the existence of a conditionally unbiased stochastic oracle and the boundedness
of the conditional second moment of the sampled gradient generated by this oracle. Next, we assume the existence
of a continuously differentiable potential function for the Nash game of interest.

Assumption 2 (Potential function) There exists a potential function P : X → R that is continuously differen-
tiable over an open set containing X such that for any i ∈ N and any x−i ∈ X−i, equation (2) holds.

We next make some assumptions on the delays as well as on the inexactness sequences {εi(k)} utilized in
Algorithm 1. We denote the σ-field of the entire information used by Algorithm 1 up to (and including) the update
of x(k) by F ′k, and the σ-field generated from F ′k and the delays at time k by Fk , σ

{
F ′k, dij(k), i, j ∈ N

}
. We

will formally define F ′k after introducing the SA scheme (10).

Assumption 3 (Delay and inexactness sequences) The following hold:
(a) ik is independent of Fk for all k ≥ 1;

(b) for any i ∈ N , the noise term {εi(k)} satisfies the following condition:

∞∑
k=1

E
[
‖εi(k + 1)‖2

∣∣Fk] <∞, a.s., and
∞∑
k=1

E
[
‖εi(k + 1)‖

∣∣Fk] <∞, a.s.;
(c) there exists a positive integer τ such that for any i, j ∈ N and any k ≥ 0, dij(k) ∈ {0, · · · , τ}.

By Assumption 1, it is clear that Ti(x) defined by (8) requires solving a strongly convex stochastic program.
Thus, an approximation of the solution to the problem (8) with x = yi(k), characterized by (9), can be computed
via the standard SA algorithm defined as follows for t = 1, . . . , ji(k):

zi,t+1(k) := ΠXi

[
zi,t(k)− γi,t

[
∇xiψi(zi,t(k), yi−i(k); ξi,t(k)) + µi(zi,t(k)− xi(k))

] ]
, (10)

where γi,t = 1
µi(t+1) and zi,t(k) denotes the estimate of the proximal BR solution Ti(yi(k)) at t-th inner step

of the SA scheme (10) with the intinal value zi,1(k) = xi(k). Set xi(k + 1) = zi,ji(k)(k). Define ξi(k) ,

(ξi,1(k), · · · , ξi,ji(k)(k)), and F ′k , σ{x(0), il, ξil(l), dil,j(l), 0 ≤ l ≤ k− 1, j ∈ N}. Then by Algorithm 1, x(k)

is adapted to F ′k and yi(k) is adapted to Fk. As a result, Ti(yi(k)) is adapted to Fk by (8). Analogous to Lemma
3 in [42], the following result holds for the SA scheme (10).

Lemma 1 Let Assumption 1 hold. Consider the asynchronous inexact proximal best-response scheme given by
Algorithm 1. Assume that the random variables {ξi,t(k)}1≤t≤ji(k) are i.i.d., and that for any i ∈ N the random
vector ξi(k) is independent of Fk. Then we have the following for any t : 1 ≤ t ≤ ji(k).

E[‖zi,t(k)− Ti(yik)‖2
∣∣Fk] ≤ Qi/(t+ 1) a.s.,

where Qi , 2M2

µ2i
+ 2D2

Xi
and DXi , sup{d(xi, x

′
i) : xi, x

′
i ∈ Xi}.
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Remark 2 (i) Let 1[ik=i] denote the indicator function of the event ik = i, defined as 1[ik=i] = 1 if ik = i,

and = 0, otherwise. Define Γi,0 , 1 and Γi(k) , 1 +
k−1∑
t=0

1{it=i} for all k ≥ 1. Then the computation of Γi(k)

merely uses player i’s local information and for every ω ∈ Ω, there exists a sufficiently large k̃(ω) that is possibly
contingent on the sample path ω such that for any i ∈ N :

Γi(k) ≥ kpi
2

+ 1 ∀k ≥ k̃(ω). (11)

The proof can be found in Lemma 7 of [46].
(ii) Set ji(k) ,

⌊
Γi(k)2(1+δ)

⌋
for some positive δ > 0 and xi(k + 1) = zi,ji(k)(k). Then by Lemma 1, we

have that E[‖xi(k + 1) − Ti(x(k))‖2
∣∣Fk] ≤ Qi

ji(k)+1 ≤
Qi

Γi(k)2(1+δ)
, αi(k)2. Thus,

⌊
Γi(k)2(1+δ)

⌋
steps of (10)

suffice for obtaining a solution to (9) with εi(k) satisfying E
[
‖εi(k + 1)‖2

∣∣Fk] ≤ αi(k)2 a.s.. Then by the
conditional Jensen’s inequality, E

[
‖εi(k + 1)‖

∣∣Fk] ≤ αi(k) a.s.. By invoking (11), we obtain that for all i ∈ N ,∑∞
k=1 α

2
i,k <∞ a.s., and

∑∞
k=1 αi,k <∞ a.s.. Then Assumption 3(b) holds. 2

The following result from Eqn. (18) in [59] establishes an equivalence between Nash equilibria of the stochastic
Nash game (1) and solutions to the variational inequality problem (12).

Lemma 2 Let Assumptions 1(a), 1(b), and 2 hold. Then x∗ is an NE of the potential game (1) if and only if x∗ is
a solution to the following problem:

∇xP (x∗)T (y − x∗) ≥ 0 ∀y ∈ X. (12)

Further, the set of Nash equilibria is nonempty and compact.

2.3 Convergence Analysis

We now establish the almost sure convergence and convergence in mean of the iterates produced by Alg. 1. Parts
of the proof are inspired by Theorem 4.1 in [39] and Theorem 4.3 in [14].

Theorem 1 (almost sure convergence to Nash equilibrium) Let {x(k)} be generated by Algorithm 1. Suppose
Assumptions 1, 2 and 3 hold. We further assume that for every i ∈ N , the parameter µi utilized in (8) satisfies
µi >

Li
2 +

√
2τLi
2 ( Li

Lave
+ Lave

Li
), where Lave ,

∑
i∈N Li/N. Then the following hold:

(a) (square summability): For any i ∈ N ,
∞∑
k=0

‖Ti(yi(k))− x(k)‖2 <∞ a.s..

(b) (cluster point is an NE): For almost all ω ∈ Ω, every limit point of x(k, ω) is a Nash equilibrium.
(c) (almost sure convergence to a connected subset of the set X∗ of Nash equilibria): There exists a connected
subset X∗c ⊂ X∗ such that d(x(k), X∗c ) −−−−→

k→∞
0 a.s..

Proof. By Assumption 1(b), we have the following bound:

fi
(
Ti(y

i(k)), x−i(k)
)
≤ fi(x(k)) +∇xifi(x(k))T

(
Ti(y

i(k))− xi(k)
)

+
Li
2

∥∥Ti(yi(k))− xi(k)
∥∥2
. (13)

9



Since Ti(yi(k)) is a global minimum of (8) and xi(k) ∈ Xi, by the optimality condition we have that

0 ≤
(
∇xifi(Ti(yi(k)), yi−i(k)) + µi(Ti(y

i(k))− xi(k))
)T (

xi(k)− Ti(yi(k))
)

= −
(
Ti(y

i(k))− xi(k)
)T ∇xifi (Ti(yi(k)), yi−i(k)

)
− µi‖Ti(yi(k))− xi(k)‖2

= −
(
Ti(y

i(k))− xi(k)
)T ∇xifi(xi(k), yi−i(k))− µi‖Ti(yi(k))− xi(k)‖2 (14)

−
(
∇xifi(Ti(yi(k)), yi−i(k))−∇xifi(xi(k), yi−i(k))

)T (
Ti(y

i(k))− xi(k)
)

≤ −∇Txifi(y
i(k))

(
Ti(y

i(k))− xi(k)
)
− µi‖Ti(yi(k))− xi(k)‖2,

where the last inequality follows by
(
∇xifi(xi, x−i)−∇xifi(x′i, x−i)

)T
(xi−x′i) ≥ 0 ∀xi, x′i ∈ Xi, ∀x−i ∈ X−i

from Assumption 1(b). Adding terms (13) and (14), we have the following inequality:

fi
(
Ti(y

i(k)), x−i(k)
)
≤ fi(x(k)) +

(
∇xifi(x(k))−∇xifi(yi(k))

)T (
Ti(y

i(k))− xi(k)
)

− (µi − Li/2) ‖Ti(yi(k))− xi(k)‖2.
(15)

By Assumption 1(b) and ab ≤ a2+b2

2 , we obtain the following sequences of inequalities for any Ci > 0:(
∇xifi(x(k))−∇xifi(yi(k))

)T (
Ti(y

i(k))− xi(k)
)
≤
∥∥∇xifi(x(k))−∇xifi(yi(k))

∥∥∥∥Ti(yi(k))− xi(k)
∥∥

≤ Li‖x(k)− yi(k)‖‖Ti(yi(k))− xi(k)‖ ≤ L2
i

2Ci
‖x(k)− yi(k)‖2 +

Ci
2
‖Ti(yi(k))− xi(k)‖2. (16)

Since yi(k) , (x1(k − di1(k)), · · · , xN (k − diN (k))) and dij(k) ∈ {0, 1, · · · , τ}, the following holds

‖x(k)− yi(k)‖2 =

N∑
j=1

‖xj(k)− xj(k − dij(k))‖2 =

N∑
j=1

∥∥∥ k∑
h=k−dij(k)+1

(xj(h)− xj(h− 1))
∥∥∥2

=
N∑
j=1

dij(k)2
∥∥∥ 1

dij(k)

k∑
h=k−dij(k)+1

(xj(h)− xj(h− 1))
∥∥∥2

≤
N∑
j=1

dij(k)2
( 1

dij(k)

k∑
h=k−dij(k)+1

‖xj(h)− xj(h− 1)‖2
)

(by Jensen′s inequality)

≤ τ
N∑
j=1

k∑
h=k−τ+1

‖xj(h)− xj(h− 1)‖2 = τ

k∑
h=k−τ+1

‖x(h)− x(h− 1)‖2 (17)

= τ

k∑
h=k−τ+1

(h− k + τ)‖x(h)− x(h− 1)‖2︸ ︷︷ ︸
,Vk

+τ2‖x(k + 1)− x(k)‖2

− τ
k+1∑

h=k−τ+2

(
h− (k + 1) + τ

)
‖x(h)− x(h− 1)‖2.

Suppose Ci =
√

2L2
i τ/Lave. Then by substituting (17) into (16), and by invoking (15), we obtain that

fi
(
Ti(y

i(k)), x−i(k)
)
≤ fi(x(k)) +

Lave

2
√

2

(
Vk − Vk+1 + τ‖x(k + 1)− x(k)‖2

)
−

(
µi −

Li +
√

2L2
i τ/Lave

2

)
‖Ti(yi(k))− xi(k)‖2.

(18)

10



By Algorithm 1, we have that at time instance k,

‖x(k + 1)− x(k)‖2 = ‖xik(k + 1)− xik(k)‖2 ≤ 2‖Tik(yik(k))− xik(k)‖2 + 2‖εik(k + 1)‖2. (19)

By employing Assumptions 1(c), 1(d), and the Jensen’s inequality, the following holds for any x ∈ X .

‖∇xifi(xi, x−i)‖ = ‖E[∇xiψi(xi, x−i; ξ)]‖ ≤ E[‖∇xiψi(xi, x−i; ξ)‖]

≤
√
E[‖∇xiψi(xi, x−i; ξ)‖2] ≤M.

(20)

Then by Algorithm 1 and by invoking Assumption 2, we may obtain the following bound:

P (x(k + 1))− P (x(k)) = P (xik(k + 1), x−ik(k))− P (xik(k), x−ik(k))

= fik(xik(k + 1), x−ik(k))− fik(xik(k), x−ik(k))

= fik
(
Tik(yik(k)), x−ik(k)

)
− fik(x(k)) + fik(xik(k + 1), x−ik(k))− fik

(
Tik(yik(k)), x−ik(k)

)
(21)

= fik
(
Tik(yik(k)), x−ik(k)

)
− fik(x(k)) + εik(k + 1)T∇xik fik(zik(k + 1), x−ik(k)) (by mean−value theorem)

≤ fik
(
Tik(yik(k)), x−ik(k)

)
− fik(x(k)) +M‖εik(k + 1)‖, (by Cauchy−Schwarz inequality and (20)),

where zik(k + 1) = ϑik,kxik(k + 1) + (1 − ϑik,k)Tik(yik(k)) for some ϑik,k ∈ (0, 1). Therefore, by combining
(18), (21), and (19), we have the following inequality:

P (x(k + 1)) ≤ P (x(k)) +
Lave

2
√

2
(Vk − Vk+1) +M‖εik(k + 1)‖+

Laveτ√
2
‖εik(k + 1)‖2

−
(
µik −

Lik +
√

2(L2
ik
/Lave + Lave)τ

2

)
‖Tik(yik(k))− xik(k)‖2

(22)

Therefore, by rearranging the terms of (22) and taking expectations conditioned on Fk, we obtain that

E
[
P (x(k + 1)) +

Lave

2
√

2
Vk+1

∣∣Fk] ≤ E
[
P (x(k)) +

Lave

2
√

2
Vk
∣∣Fk]+

Laveτ√
2

N∑
i=1

E
[
‖εi(k + 1)‖2

∣∣Fk]
+M

N∑
i=1

E
[
‖εi(k + 1)‖

∣∣Fk]− E
[(
µik −

Lik +
√

2(L2
ik
/Lave + Lave)τ

2

)
‖Tik(yik(k))− xik(k)‖2

∣∣Fk].
(23)

Since Ti(yi(k)) ∀i ∈ N is adapted to Fk, and ik is independent of Fk, by Corollary 7.1.2 in [60]1 and P(ik =

i) = pi, the last term on the right-hand side of (23) is equivalent to

Eik
[(
µik −

Lik +
√

2(L2
ik
/Lave + Lave)τ

2

)
‖Tik(yik(k))− xik(k)‖2

]
=

N∑
i=1

pi

(
µi −

Li +
√

2(L2
i /Lave + Lave)τ

2

)
‖Ti(yi(k))− xi(k)‖2.

(24)

1Let the random vectors X ∈ Rm and Y ∈ Rn on (Ω,F ,P) be independent of one another and let f be a Borel function on

Rm×n with |E[f(X,Y )]| ≤ ∞. If for any x ∈ Rm, g(x) =

E[f(x, Y )] if |E[f(x, Y )]| ≤ ∞

0 otherwise
, then g is a Borel function with

g(X) = E[f(X,Y )|σ(X)].
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Since x(k) and Vk are adapted to Fk, by (23) and (24), we have the following:

E
[
P (x(k + 1)) +

Lave

2
√

2
Vk+1

∣∣Fk] ≤ E
[
P (x(k)) +

Lave

2
√

2
Vk
∣∣Fk]+M

N∑
i=1

E
[
‖εi(k + 1)‖

∣∣Fk]
+
Laveτ√

2

N∑
i=1

[
‖εi(k + 1)‖2

∣∣Fk]− N∑
i=1

pi

(
µi −

Li +
√

2(L2
i /Lave + Lave)τ

2

)
‖Ti(yi(k))− xi(k)‖2.

(25)

(a) By using µi > Li
2 +

√
2(L2

i /Lave+Lave)τ
2 and Assumption 3(b), we may then invoke Theorem 1 in [61], and

conclude that for every i ∈ N ,
∞∑
k=0

‖Ti(yi(k))− xi(k)‖2 <∞, a.s..

(b) By result (a), we have the following for any i ∈ N :

lim
k→∞

‖Ti
(
yi(k)

)
− xi(k)‖ = 0, a.s. . (26)

Let x̄(ω) be a cluster point of sequence {x(k, ω)}. Then there exists a subsequence K(ω) such that

lim
k→∞,k∈K(ω)

x(k, ω) = x̄(ω). (27)

Then by (26) and (27), we have that

lim
k→∞,k∈K(ω)

Ti(y
i(k, ω)) = x̄i(ω), ∀i ∈ N . (28)

We intend to show that x̄(ω) is a Nash equilibrium. We proceed by contradication. Then there exists an i ∈ N
and a vector ȳi ∈ Xi such that fi(ȳi, x̄−i(ω)) < fi (x̄i(ω), x̄−i(ω)) . By definition, the directional derivative of
fi at point (x̄i(ω), x̄−i(ω)) with respect to xi along the vector qi = ȳi − x̄i(ω), denoted by f ′i(x̄i(ω), x̄−i(ω); qi),
satisfies the following:

f ′i(x̄i(ω), x̄−i(ω); qi) , inf
λ>0

fi(x̄i(ω) + λqi, x̄−i(ω))− fi(x̄i(ω), x̄−i(ω))

λ

≤ fi(x̄i(ω) + qi, x̄−i(ω))− fi(x̄i(ω), x̄−i(ω)) (by setting λ=1)

= fi(ȳi, x̄−i(ω))− fi(x̄i(ω), x̄−i(ω)) < 0.

Since fi is differentiable at x with respect to xi by Assumption 1(b), the following holds

0 > f ′i(x̄i(ω), x̄−i(ω); qi) = (ȳi − x̄i(ω))T ∇xifi(x̄i(ω), x̄−i(ω)). (29)

Recall that Ti(yik) is defined as a global minimum of a convex optimization problem (8). Since ȳi ∈ Xi, by the
optimality condition for a constrained convex programming, we obtain that

µi
(
ȳi − Ti(yi(k))

)T (
Ti(y

i(k))− xi(k)
)

+
(
ȳi − Ti(yi(k))

)T ∇xifi(Ti(yi(k)), x−i(k)) ≥ 0. (30)

Since∇xifi(x) is continuous in x by Assumption 1(b), by taking limits to k →∞, k ∈ K(ω), and using (26)-(28),
we obtain that (ȳi − x̄i(ω))T ∇xifi(x̄i(ω), x̄−i(ω)) ≥ 0, which contradicts (29). Thus, x̄(ω) is an NE, proving
(b).

(c) We first validate that lim
k→∞

d(x(k), X∗) = 0 a.s.. Assume false; then lim sup
k→∞

d(x(k, ω), X∗) > 0 with

some positive probability, i.e. for all ω ∈ Ω̂ ⊂ Ω where P(Ω̂) > 0. Then for ω ∈ Ω̂, by the boundedness of
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{x(k, ω)}k≥0 we can extract a convergent subsequence {x(k, ω)}k∈K(ω) such that lim
k∈K(ω),k→∞

d(x(k, ω), X∗) >

0. This contradicts result (b). Hence lim
k→∞

d(x(k), X∗) = 0 a.s..
We now proceed to show a.s. convergence to a connected subset ofX∗, denoted byX∗c , through a contradiction

argument. We assume the contrary thatX∗c is disconnected with some positive probability. Then there exist at least
two closed connected sets X∗c1 and X∗c2 such that X∗c = X∗c1 ∪ X

∗
c2 with d(X∗c1 , X

∗
c2) > 0. By hypothesis, the

sequence {x(k)} cannot converge to either X∗c1 or X∗c2 a.s., and x(k) visits X∗c1 , X
∗
c2 infinitely often. Define

ρ , 1
3d(X∗c1 , X

∗
c2). By d(x(k), X∗c ) −−−−→

k→∞
0, we know there exists k0 such that

x(k) ∈ B(X∗c1 , ρ) ∪B(X∗c2 , ρ) ∀k ≥ k0, (31)

where B(A, ρ) denotes the ρ-neighborhood of A. Define n0 and np,mp for p ≥ 1 as follows:

n0 , inf{k > k0, d(x(k), X∗c1) < ρ},mp , inf{k > np−1, d(x(k), X∗c2) < ρ},

and np , inf{k > mp, d(x(k), X∗c1) < ρ}, p ≥ 1.

Then {np} and {mp} are infinite sequences by the converse of result (c). By (31), we have x(np) ∈ B(X∗c1 , ρ) and
x(np−1) ∈ B(X∗c2 , ρ) for any p ≥ 1. Then by d(X∗c1 , X

∗
c2) = 3ρ, it follows that ‖x(np)−x(np−1)‖ > ρ ∀p ≥ 1

with some positive probability. Then we have the following:

E[‖x(np)− x(np − 1)‖] > 0, (32)

where the unconditional expectation is taken w.r.t. the information of ξ and random delays up to time np.Hereafter,
the unconditional expectation of a variable is taken w.r.t. to all historical random effects.

Also, by taking unconditional expectations on both sides of (25), we have the following:

E
[
P (x(k + 1)) +

Lave

2
√

2
Vk+1

]
≤ E

[
P (x(k)) +

Lave

2
√

2
Vk

]
+M

N∑
i=1

E [‖εi(k + 1)‖]

+
Laveτ√

2

N∑
i=1

E
[
‖εi(k + 1)‖2

]
−

N∑
i=1

pi

(
µi −

Li +
√

2(L2
i /Lave + Lave)τ

2

)
E[‖Ti(yi(k))− xi(k)‖2].

(33)

By using Assumption 3(b), we have that

∞∑
k=1

E[‖εi(k + 1)‖] = E
[ ∞∑
k=1

E
[
‖εi(k + 1)‖

∣∣Fk] ] <∞, and

∞∑
k=1

E[‖εi(k + 1)‖2] = E
[ ∞∑
k=1

E
[
‖εi(k + 1)‖2

∣∣Fk] <∞. (34)

Then from (33) it follows that

∞∑
k=0

N∑
i=1

pi

(
µi −

Li +
√

2(L2
i /Lave + Lave)τ

2

)
E[‖Ti(yi(k))− xi(k)‖2] ≤ E

[
P (x0) +

Lave

2
√

2
V0

]

− lim inf
k→∞

E
[
P (x(k)) +

Lave

2
√

2
Vk

]
+M

N∑
i=1

∞∑
k=0

E [‖εi(k + 1)‖] +
Laveτ√

2

N∑
i=1

∞∑
k=0

E
[
‖εi(k + 1)‖2

]
<∞,

13



where the second inequality holds by the boundedness of P (x(k))+Vk since P (·) is continuous andX is compact.
Hence by using µi > Li

2 +
√

2(L2
i /Lave+Lave)τ

2 and Jensen’s inequality, we have that

lim
k→∞

E
[
‖Ti(yi(k))− xi(k)‖

]
= 0 ∀i ∈ N . (35)

Note that ‖x(k + 1)− x(k)‖ ≤
∑N

i=1(‖εi(k + 1)‖+ ‖Ti(yi(k))− xi(k)‖). Then by (34),we have that

lim
k→∞

E[‖x(k + 1)− x(k)‖] = 0. (36)

This contradicts (32), and hence the converse assumption does not hold. Then result (c) is proved. 2

Theorem 1 shows that the estimates generated by Algorithm 1 converge almost surely to the set of Nash
equilibria. If the set of Nash equilibria contains isolated points, then for almost all ω ∈ Ω, x(k, ω) converges
to an NE. Further, if the potential game (1) admits a unique NE, then the iterates converge almost surely to the
NE. It is also worth emphasizing that while we use the term “best-response”, since µi has to be sufficiently large
for all i, this can be seen to be more akin to “better-response.” In what follows, we discuss the convergence in
mean of the iterates. Since the potential function is employed as a vehicle to analyze convergence of the iterates,
a natural approach would have to employ the value of the potential function. However, the iterates may converge
to stationary points which are not necessarily global minimizers and as a consequence, we need to select an
appropriate metric to capture stationarity.

Note from Lemma 2 that a stationary point of minx∈X P (x) is given by a solution to the variational inequality
problem VI(X,∇xP ) that requires an x ∈ X such that (y − x)T∇xP (x) ≥ 0 ∀y ∈ X. Suppose X∗ denotes the
set of solutions to VI(X,F ). A merit function for ascertaining the departure from solvability of the VI is a gap
function. It may be recalled from [62] that a function G(x) is called a gap function if it satisfies two properties:
(i) G(·) is sign restricted over the set X; (ii) G(x) = 0 if and only if x solves VI(X,F ). We consider a primal
gap function [62, Theorem 3.1] that has found a fair amount of applicability in the context of variational inequality
problems.

Definition 1 Let X ⊆ Rn be a nonempty, closed, and convex set. Let F : X → Rn and let G : X → R+ be
defined by G(x) , supy∈X F (x)T (x− y), ∀x ∈ X.

The following result shows the mean convergence in the sense that the limit of E[G(x(k))] is zero. This is analo-
gous to showing that expected sub-optimality tends to zero in the context of stochastic program.

Theorem 2 (Convergence in mean) Let {x(k)} be generated by Algorithm 1. Suppose Assumptions 1, 2 and 3
hold, and, in addition, that for every i ∈ N , the parameter µi utilized in (8) satisfies µi > Li

2 +
√

2(L2
i /Lave+Lave)τ

2 .
Then we have that lim

k→∞
E
[
G(x(k))

]
= 0.

Proof. By Assumption 2, we have the following for any i ∈ N and any ȳi ∈ Xi :

(xi(k)− ȳi)T ∇xiP (x(k)) = (xi(k)− ȳi)T ∇xifi(x(k))

=
(
xi(k)− Ti(yi(k))

)T ∇xifi(Ti(yi(k)), x−i(k)) +
(
Ti(y

i(k))− ȳi
)T ∇xifi(Ti(yi(k)), x−i(k))

− (xi(k)− ȳi)T
(
∇xifi(Ti(yi(k)), x−i(k))−∇xifi(x(k))

)
.
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Then we have the following sequence of inequalities for any i ∈ N and any ȳi ∈ Xi :

(xi(k)− ȳi)T ∇xiP (x(k)) ≤ µi
(
ȳi − Ti(yi(k))

)T (
Ti(y

i(k))− xi(k)
)

+
(
xi(k)− Ti(yi(k))

)T ∇xifi(Ti(yi(k)), x−i(k))

+ (ȳi − xi(k))T
(
∇xifi(Ti(yi(k)), x−i(k))−∇xifi(x(k))

)
(by (30))

≤ µi
∥∥ȳi − Ti(yi(k))

∥∥∥∥Ti(yi(k))− xi(k)
∥∥+

∥∥xi(k)− Ti(yi(k))
∥∥ ‖∇xifi(Ti(yi(k)), x−i(k))‖

+ ‖ȳi − xi(k)‖
∥∥∇xifi(Ti(yi(k)), x−i(k))−∇xifi(x(k))

∥∥ (by Cauchy−Schwarz inequality)

≤ (µiDXi +M + LiDXi)
∥∥Ti(yi(k))− xi(k)

∥∥ . (by Assumptions 1(a), 1(b) and (20)).

By summing these inequalities over i, it follows that

G(x(k)) = sup
ȳ∈X

(x(k)− ȳ)T∇P (x(k)) =
N∑
i=1

sup
ȳi∈Xi

(xi(k)− ȳi)T ∇xiP (x(k))

≤
N∑
i=1

(µiDXi +M + LiDXi)
∥∥Ti(yi(k))− xi(k)

∥∥ . (37)

Then, by taking expectations on both sides of (37), we obtain that

E [G(x(k))] ≤
N∑
i=1

(µiDXi +M + LiDXi)E
[∥∥Ti(yi(k))− xi(k)

∥∥] =⇒ lim
k→∞

E [G(x(k))] ≤ 0 (by (35)).

However, G(x(k)) ≥ 0 since x(k) ∈ X , implying the required result that lim
k→∞

E [G(x(k))] = 0. 2

We now define an alternative proximal gradient-response map as follows for µi > 0:

Tµii (x) , argmin
yi∈Xi

[
(yi − xi)T∇xifi(x) +

µi
2
‖yi − xi‖2

]
. (38)

Since each player’s subproblem is convex, definition (38) is equivalent to

Tµii (x) = ΠXi

[
xi −

1

µi
∇xifi(x)

]
. (39)

Corollary 1 (a.s., mean convergence under proximal gradient-response map) Consider Algorithm 1 with (9)
replaced by the following variable sample-size projected gradient-response scheme:

xi(k + 1) = ΠXi

[
xi(k)− 1

µi

( 1

Ni(k)

Ni(k)∑
t=1

∇xiψi(xi(k), yi−i(k); ξi,t(k))
)]
, (40)

where Ni(k) ,
⌊
Γi(k)2(1+δ)

⌋
for some positive δ > 0 with Γi(k) defined by (2), and ξi,1(k), · · · , ξi,Ni(k)(k)

are Ni(k) realizations of the random vector ξ. Let Assumptions 1, 2, 3(a), and 3(c) hold, and µi >
Li
2 +

√
2(L2

i /Lave+Lave)τ
2 for all i ∈ N . Additionally, suppose that for every i ∈ N , the random variables {ξi,t(k)}1≤t≤Ni(k)

are independent of Fk. Then the results of Theorem 1 and Theorem 2 still hold.

Proof. Define εi(k + 1) , xi(k + 1)− Tµii (yi(k)). Then by using (39), (40), and the nonexpansive property
of the projection operator we obtain that

‖εi(k + 1)‖ ≤ 1

µiNi(k)

Ni(k)∑
t=1

∥∥∇xiψi(yi(k); ξi,t(k))−∇xifi(yi(k))
∥∥ .

15



Thus, by Assumption 1(d), we obtain that

E
[
‖εi(k + 1)‖2

∣∣Fk] ≤ 1

µ2
iNi(k)

Eξ[‖∇xiψi(yi(k); ξ)−∇xifi(yi(k))‖2] ≤ M2

µ2
iNi(k)

,

and hence by the conditional Jensen’s inequality, E
[
‖εi(k + 1)‖

∣∣Fk] ≤ M

µi
√
Ni(k)

. By noting that Ni(k) ,⌊
Γi(k)2(1+δ)

⌋
and Remark 2(i), Assumption 3(b) holds. Since Tµii (yi(k)) is a global minimum of (38) and xi(k) ∈

Xi, by the optimality condition, it follows that

0 ≤ −∇Txifi(y
i(k))

(
Tµii (yi(k))− xi(k)

)
− µi‖Tµii (yi(k))− xi(k)‖2 (41)

which is indeed the last inequality in Equation (14). Then by inequality (41), similar to the proof of Theorem 1
and Theorem 2, we conclude the result. 2

2.4 Generalized Potential games and Weighted Potential Games

We now consider the generalized Nash setting where the strategy sets are coupled in Section 2.4.1, and in Section
2.4.2 we consider the weighted potential game, a generalization of standard potential games.

2.4.1 Generalized potential Nash games

We now extend the separable constraint to the shared constraint regime, a special case of coupled constraints. Sup-
pose there exists a nonempty closed set C ∈ Rn such that player i’s feasible setXi(x−i) = {xi ∈ Xi : (xi, x−i) ∈
C} depends on the rivals’ strategies x−i, where Xi ∈ Rni are nonempty closed sets such that

∏N
i=1Xi ∩ C is

nonempty. We say that a point x ∈ Rn is feasible if xi ∈ Xi(x−i) for any i ∈ N . The aim of player i is to choose
a strategy xi that solves the following parameterized stochastic program:

min
xi∈Xi(x−i)

fi(xi, x−i) , Eξ [ψi(xi, x−i; ξ(ω))] . (42)

Assume that there exists a continuous potential function P : C
⋂∏N

i=1Xi → R such that for any i ∈ N and any
x−i with Xi(x−i) being nonempty, we have the following equality:

P (xi, x−i)− P (x′i, x−i) = fi(xi, x−i)− fi(x′i, x−i), ∀xi, x′i ∈ Xi(x−i). (43)

Then the problem (42) is called a generalized potential stochastic game where the (generalized) NE x∗ is a feasible
point such that the following holds for any i:

fi(x
∗
i , x
∗
−i) ≤ fi(xi, x∗−i) ∀xi ∈ Xi(x

∗
−i).

Suppose that for any i ∈ N , (i) fi(x) is continuously differentiable on C, (ii) the feasible set Xi(x−i) is inner-
semicontinous relative to the set of points x−i for whichXi(x−i) is nonempty [14, A2], (iii)Xi(x−i) is convex for
all x−i for which Xi(x−i) is nonempty, and fi(·, x−i) is convex in xi ∈ Xi(x−i) for all x−i for which Xi(x−i) is
nonempty. Then computing the proximal best-response solution Ti(x) of (42) involves solving a strongly convex
stochastic program. Let Algorithm 1 with dij(k) = 0 ∀i, j ∈ N be applied to the generalized stochastic potential
game with feasible initial point x0, where it is required that xi(k + 1) ∈ Xi(x−i(k)), which can be guaranteed
by using the projected stochastic gradient scheme to obtain the approximate proximal BR solutions. Similar to
Lemma 4.1 in [14], we may show that x(k + 1) is feasible. We then conclude the following result, for which the
proof is similar to that of Theorems 1 and 2.
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Corollary 2 (Generalized potential stochastic Nash games) Let Algorithm 1 be applied to the stochastic gener-
alized Nash game (42) satisfying (43), where x0 is feasible, yi(k) = x(k), and it is required that xi(k + 1) ∈
Xi(x−i(k)). Then the results of Theorems 1 and 2 still hold under suitable conditions.

Nevertheless, we may be unable to manage the delayed regime since we cannot guarantee that the delay-
afflicted rival strategies, denoted by yi−i(k), allow for retaining feasibility; namely, for some i, k, the setXi(y

i
−i(k))

may be empty. Consequently, player i may be unable to find a feasible strategy, given rival strategies, and hence
Algorithm 1 is not well-defined in that step (S.2) cannot be implemented.

2.4.2 Weighted potential games

We now consider the weighted potential game, in which there exist positive numbers w1, · · · , wN such that, for
any i ∈ N and any x−i the following equality holds:

P (xi, x−i)− P (x′i, x−i) = wi
(
fi(xi, x−i)− fi(x′i, x−i)

)
∀xi, x′i ∈ Xi(x−i). (44)

Then by applying Algorithm 1, we obtain the following results.

Corollary 3 (Weighted potential stochastic Nash games) Let Algorithm 1 be applied to the stochastic Nash
game (1), in which the objective function satisfies (44). Suppose Assumptions 1, 2 and 3 hold. Let the parameter
µi used in (8) satisfy µi > Li

2 +
√

2τLi
2 (Lave

Li
wave
wi

+ Li
Lave

wi
wave

), where wave =
∑

i∈N wi/N . Then the results of
Theorem 1 and Theorem 2 hold.

Proof. By multiplying both sides of (15) with wi and rearranging the terms we obtain that

wi

(
fi
(
Ti(y

i(k)), x−i(k)
)
− fi(x(k))

)
≤ wi

(
∇xifi(x(k))−∇xifi(yi(k))

)T (
Ti(y

i(k))− xi(k)
)
− wi(µi − Li/2)‖Ti(yi(k))− xi(k)‖2. (45)

By substituting (16) and (17) into (45), the following holds for Ci =
√

2L2
iwiτ

Lavewave
:

wi

(
fi
(
Ti(y

i(k)), x−i(k)
)
− fi(x(k))

)
≤ wiL

2
i τ

2Ci
(Vk − Vk+1 + τ‖x(k + 1)− x(k)‖2)

− wi(µi − Li/2)‖Ti(yi(k))− xi(k)‖2 +
wiCi

2
‖Ti(yi(k))− xi(k)‖2.

(46)

Then by (44), similar to (21) we have that

P (x(k + 1))− P (x(k)) ≤ wik
(
fik
(
Tik(yik(k)), x−ik(k)

)
− fik(x(k)) +M‖εik(k + 1)‖

)
,

which incorporating with (19) and (46) yields the following inequality:

P (x(k + 1))− P (x(k)) ≤ Lavewave

2
√

2
(Vk − Vk+1) +

Lavewaveτ√
2

‖εik(k + 1)‖2 +Mwik‖εik(k + 1)‖

− wi
(

(µi − Li/2)− Lavewaveτ√
2wi

− L2
iwiτ√

2Lavewave

)
‖Tik(yik(k))− xik(k)‖2.

(47)

Since µi > Li
2 + τLi

2 (Lavewave
Liwi

+ Liwi
Lavewave

), by using (47), similar to the proof of Theorems 1 and 2, we obtain the
results. 2
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2.5 Asynchronous inexact best-response scheme without delays

We now show that the asynchronous inexact pure best-response scheme (i.e. without a proximal term) is also ap-
plicable when the player-specific problem is strongly convex and each player may obtain its rivals’ latest strategies
without delay. We define best-response map of player i as follows:

T̂i(x) , argmin
yi∈Xi

[fi(yi, x−i)] , (48)

based on which, analogous to Algorithm 1, we design an asynchronous inexact best-response scheme.
Algorithm 2 Asynchronous inexact best-response scheme

Let k := 0, xi,0 ∈ Xi for i ∈ N . Additionally 0 < pi < 1 for i ∈ N such that
∑N

i=1 pi = 1.

(S.1) Pick ik = i ∈ N with probability pi.

(S.2) If ik = i, then player i updates xi(k + 1) ∈ Xi as follows:

xi(k + 1) := T̂i(x(k)) + εi(k + 1),

where εi(k + 1) denotes the inexactness. Otherwise, xj(k + 1) := xj(k) if j /∈ ik.

(S.3) If k > K, stop; Else, k := k + 1 and return to (S.1).

Theorem 3 Let {x(k)} be generated by Algorithm 2. Suppose Assumptions 1, 2, and 3(b) hold. Assume that
for every i ∈ N ,

∑∞
k=1 E

[
‖εi(k + 1)‖

∣∣Fk] < ∞ a.s., and fi(xi, x−i) is µi-strongly convex in xi ∈ Xi for all
x−i ∈ X−i. Then for almost all ω ∈ Ω, every limit point of {x(k, ω)} is an NE.

Proof. Since T̂i(x(k)) is a global minimum of the problem (48), by xi(k) ∈ Xi and the optimality condition,
we obtain that

(
xi(k)− T̂i(x(k))

)T∇xifi(T̂i(x(k)), x−i(k)) ≥ 0. Then by the µi-strong convexity of fi(xi, x−i)
in xi ∈ Xi, we have that

fi(x(k)) ≥ fi
(
T̂i(x(k)), x−i(k)

)
+
(
xi(k)− T̂i(x(k))

)T
∇xifi

(
T̂i(x(k)), x−i(k)

)
+
µi
2

∥∥∥T̂i(x(k))− xi(k)
∥∥∥2

≥ fi
(
T̂i(x(k)), x−i(k)

)
+
µi
2

∥∥∥T̂i(x(k))− xi(k)
∥∥∥2
.

By rearranging the terms and using Assumption 1(b), we have the following:

fi

(
T̂i(x(k)), x−i(k)

)
≤ fi(x(k))− µi

2

∥∥∥T̂i(x(k))− xi(k)
∥∥∥2
.

Similar to (21), we can also show that

P (x(k + 1))− P (x(k)) = fik(xik(k + 1), x−ik(k))− fik(xik(k), x−ik(k))

≤ fik
(
T̂ik(x(k)), x−ik(k)

)
− fik(x(k)) +M‖εik(k + 1)‖

≤ −µik
2

∥∥∥T̂ik(x(k))− xik(k)
∥∥∥2

+M‖εik(k + 1)‖.

By taking expectations conditioned on Fk, similarly to (25), we conclude that

E
[
P (x(k + 1))

∣∣Fk] ≤ P (x(k)) +M

N∑
i=1

E
[
‖εi(k + 1)‖

∣∣Fk]− N∑
i=1

piµi
2

∥∥∥T̂i(x(k))− xi(k)
∥∥∥2
.
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Since
∑∞

k=1 E
[
‖εi(k + 1)‖

∣∣Fk] < ∞ a.s. for every i ∈ N , we then use Theorem 1 in [61], and conclude that
∞∑
k=0

∥∥T̂i(x(k)) − xi(k)
∥∥2

< ∞ a.s. for every i ∈ N . Thus, lim
k→∞

‖T̂i(x(k)) − xi(k)‖ = 0 a.s. for every i ∈ N .

The rest of the proof is the same as that of Theorem 1(b). 2

Remark 3 Theorem 3 shows that in delay-free regimes, asynchronous inexact pure BR schemes retain almost sure
convergence when player-specific problems are strongly convex. Consequently, in deterministic regimes, the exact
BR scheme is convergent when each player’s subproblem is strongly convex, complementing the findings from [14]
in that the best-response schemes can lead to convergence to Nash equilibria when the player-specific problem is
strongly convex rather than merely convex.

3 Misspecified Potential Stochastic Nash Games

In this section, we consider the misspecified stochastic Nash game (P2). A sequential approach for resolving such
a problem relies on first estimating θ∗ and subsequently estimating x∗ based on the belief regarding θ∗. As pointed
by [24, 9], this sequential approach is characterized by several shortcomings: (i) In any sequential approach, the
computation of θ∗ has to be completed in finite time; this is generally impossible since θ∗ is defined as a solution
to the stochastic program. (ii) If the learning of θ∗ is terminated prematurely, this leads to an erroneous estimate
θ̂. One then proceeds to compute a Nash equilibrium given θ̂, which results in an incorrect Nash equilibrium. As
a result, the two-stage sequential method, in stochastic regimes, cannot provide asymptotically accurate solutions
and at best provided approximate solutions. Motivated by these shortcomings, we propose a framework that com-
bines the asynchronous inexact proximal best-response scheme with joint learning for the misspecified parameter
θ∗. Under suitable conditions, we prove the almost sure convergence and the convergence in mean of the generated
strategy vector to the set of Nash equilibria. Additionally, we show that for every player, its belief regarding the
misspecified parameter converges almost surely to the true counterpart.

3.1 Algorithm Design and Assumptions

We impose the following conditions on the misspecified problem.

Assumption 4 (a) For every i ∈ N , Xi is a closed, compact, and convex set; fi(xi, x−i; θ) is convex and
continuously differentiable in xi over an open set containing Xi for every x−i ∈ X−i and every θ ∈ Θ.

(b) For every i ∈ N ,∇xifi(x; θ∗) is Lipschitz continuous in x with Lipschitz constant Lx, i.e.,

‖∇xifi(x; θ∗)−∇xifi(x′; θ∗)‖ ≤ Lx‖x− x′‖ ∀x, x′ ∈ X.

Further, there exists a constant Lθ∗ such that for any x ∈ X and every i ∈ N :

‖∇xifi(xi, x−i; θ)−∇xifi(xi, x−i; θ∗)‖ ≤ Lθ∗‖θ − θ∗‖ ∀θ ∈ Θ.

(c) g(θ) is strongly convex with convexity constant µg and is continuously differentiable in θ on an open set
containing Θ with the gradient function being Lg-Lipschitz continuous, where g(θ) is defined in (5).
(d) There exists a function P (·; ·) : X ×Θ→ R such that for every i ∈ N and any x−i ∈ X−i, (6) holds.

We define P (x) , P (x; θ∗) as the potential function of the problem (4).
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Assumption 5 (a) For any i ∈ N , all x−i ∈ X−i, any θ ∈ Θ and any ξ ∈ Rd, ψi(xi, x−i; θ; ξ) is differentiable
in xi over an open set containing Xi such that ∇xifi(xi, x−i; θ) = E[∇xiψi(xi, x−i; θ; ξ)]. (b) For any i ∈ N
and any x ∈ X , there exists a constant M1 > 0 such that E[‖∇xiψi(xi, x−i; θ; ξ)‖2] ≤ M2

1 . (c) For any η ∈ Rp,
g(θ, η) is differentiable in θ over an open set containing Θ such that ∇g(θ) = Eη[∇g(θ; η)].

If Ti(x, θ) is defined as follows:

Ti(x, θ) , argmin
yi∈Xi

[
fi(yi, x−i; θ) +

µ

2
‖yi − xi‖2

]
, µ > 0, (49)

then Ti(x, θ) is uniquely defined by invoking Assumption 4(a). Additionally, we may claim the Lipschitz continu-
ity of Ti(x, ·) based on the following Lemma, akin to the result proved by [63].

Lemma 3 Define Lt ,
µLθ∗
µ2+L2

x

(
1− Lx/

√
µ2 + L2

x

)−1. Then for any i ∈ N and any x ∈ X:

‖Ti(x, θ)− Ti(x, θ∗)‖ ≤ Lt‖θ − θ∗‖ ∀θ ∈ Θ. (50)

Proof. By the first-order optimality condition of (49), Ti(x, θ) is a fixed point of the map ΠXi

[
yi−α (∇xifi(yi, x−i; θ) + µ(yi − xi))

]
.

Then by using the nonexpansivity property of the projection operator, the triangle inequality, and Assumption 4(b),
we have that

‖Ti(x, θ)− Ti(x, θ∗)‖ =
∥∥∥ΠXi

[
Ti(x, θ)− α (∇xifi(Ti(x, θ), x−i; θ) + µ(Ti(x, θ)− xi))

]
−ΠXi

[
Ti(x, θ

∗)− α (∇xifi(Ti(x, θ∗), x−i; θ∗) + µ(Ti(x, θ
∗)− xi))

]∥∥∥
≤
∥∥∥(1− αµ) (Ti(x, θ)− Ti(x, θ∗))− α (∇xifi(Ti(x, θ), x−i; θ∗)−∇xifi(Ti(x, θ∗), x−i; θ∗))

− α (∇xifi(Ti(x, θ), x−i; θ)−∇xifi(Ti(x, θ), x−i; θ∗))
∥∥∥ ≤ αLθ∗‖θ − θ∗‖

+
∥∥∥(1− αµ) (Ti(x, θ)− Ti(x, θ∗))− α (∇xifi(Ti(x, θ), x−i; θ∗)−∇xifi(Ti(x, θ∗), x−i; θ∗))

∥∥∥.
(51)

By recalling that fi(xi, x−i; θ) is convex xi ∈ Xi for all x−i ∈ X−i, θ ∈ Θ, and ∇xifi(x; θ∗) is Lipschitz
continuous in x with Lipschitz constant Lx, we conclude that for α = µ

µ2+L2
x

,∥∥∥(1− αµ) (Ti(x, θ)− Ti(x, θ∗))− α (∇xifi(Ti(x, θ), x−i; θ∗)−∇xifi(Ti(x, θ∗), x−i; θ∗))
∥∥∥2

≤ ‖(1− αµ)(Ti(x, θ)− Ti(x, θ∗)‖2 + α2 ‖∇xifi(Ti(x, θ), x−i; θ∗)−∇xifi(Ti(x, θ∗), x−i; θ∗)‖
2

− 2α(1− αµ) (Ti(x, θ)− Ti(x, θ∗))T (∇xifi(Ti(x, θ), x−i; θ∗)−∇xifi(Ti(x, θ∗), x−i; θ∗))

≤ ((1− αµ)2 + α2L2
x) ‖Ti(x, θ)− Ti(x, θ∗)‖2 =

L2
x

µ2 + L2
x

‖Ti(x, θ)− Ti(x, θ∗)‖2 .

This incorporated with (51) implies that the following holds for α = µ
µ2+L2

x
:

(
1− Lx√

µ2 + L2
x

)
‖Ti(x, θ)− Ti(x, θ∗)‖ ≤

µLθ∗

µ2 + L2
x

‖θ − θ∗‖.

The result follows by the definition of Lt. 2

We propose an asynchronous inexact proximal BR scheme that is coupled with learning (Algrithm 3) to com-
pute an NE of the misspecified potential stochastic game. Player i at time k utilizes an estimate xi(k) of its
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equilibrium strategy x∗i , an estimate θi(k) of the unknown parameter θ∗, and has access to possibly delay-afflicted
rival strategies yi(k) , (x1(k− di1(k)), · · · , xN (k− diN (k))) with delays dij(k), j ∈ N . The scheme is defined
as follows: At major iteration k ≥ 0, he index i is selected randomly fromN with probability P(ik = i) = pi > 0.
If ik = i, then player i is chosen to initiate an update by computing an inexact proximal BR solution to the problem
(49) characterized by (52), and updating θi(k + 1) via the variable sample-size SA scheme (53) with Ni(k) sam-
pled gradients. We impose conditions on the inexactness sequence {εi(k)}k≥1 and further specify the selection of
Ni(k) in the convergence analysis.

Algorithm 3 Asynchronous inexact proximal best-response scheme with stochastic learning

Let k := 0, xi(0) ∈ Xi and θi(0) ∈ Θ for i ∈ N . Additionally 0 < pi < 1 for i ∈ N such that
∑N

i=1 pi = 1.

(S.1) Pick ik = i ∈ N with probability pi.

(S.2) If ik = i, then player i updates xi(k + 1) ∈ Xi and θi(k + 1) ∈ Θ as follows:

xi(k + 1) := Ti(y
i(k), θi(k)) + εi(k + 1), (52)

θi(k + 1) := ΠΘ

[
θi(k)− βi

Ni(k)

Ni(k)∑
p=1

∇g (θi(k), ηi,p(k))
]
, (53)

where εi(k + 1) denotes the inexactness,∇g (θi(k), ηi,p(k)) , p = 1, · · · , Ni(k) denotes the sampled gradi-
ent, and βi = 1

Lg
; Otherwise, xj(k + 1) := xj(k), θj,k+1 = θj(k) if j 6= ik.

(S.3) If k > K, stop; Else, k := k + 1 and return to (S.1).

We then list the following conditions concerning the delays, observation noise of the gradient function ∇g(θ)

as well as the inexactness sequence {εi(k)} utilized in Algorithm 3. We denote the σ-field of the entire information
used by Algorithm 3 up to (and including) the updates of xi(k), θi(k) for all i ∈ N byF ′k, and the σ-field generated
from F ′k and the delays at step k by Fk , σ

{
F ′k, dij(k), i, j ∈ N

}
. We will further define F ′k after introducing

the SA scheme (54).

Assumption 6 (a) {ik} is an i.i.d. sequence, where ik is independent of Fk for all k ≥ 1.

(b) For any i ∈ N , the noise term {εi(k)} satisfies the following condition:
∞∑
k=1

E
[
‖εi(k + 1)‖2

∣∣Fk] <∞, and
∞∑
k=1

E
[
‖εi(k + 1)‖

∣∣Fk] <∞ a.s..

(c) There exists a positive integer τ such that for any i, j ∈ N and any k ≥ 0, dij(k) ∈ {0, · · · , τ}.
(d) Define ei,p(k) , ∇g (θi(k), ηi,p(k)) − ∇g (θi(k)). There exists a constant M2 > 0 such that for any k ≥ 0

and p = 1, · · · , Ni(k), E
[
‖ei,p(k)‖2|Fk

]
≤M2

2 .

Analogous to the computation of the inexact best-response (9) in Algorithm 1, we still utilize SA to compute
(52). By (49) it is seen that the computation of Ti(x, θ) requires solving a strongly convex stochastic program.
Thus, an inexact solution to the problem (49), characterized by (52), can also be computed via the SA algorithm
defined as follows for t = 1, . . . , ji(k):

xi,t+1(k) := ΠXi

[
zi,t(k)− γi,t

[
∇xiψi(zi,t(k), yi−i,k; θi(k); ξi,t(k)) + µ(zi,t(k)− xi(k))

] ]
, (54)
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where γi,t = 1
µ(t+1) , and zi,t(k) denotes the estimate of the proximal BR solution Ti(yi(k), θi(k)) at t-th inner

step of the SA scheme (54) with the initial value zi,1(k) = xi(k). Set xi(k + 1) = zi,ji(k)(k). Define ξi(k) ,

(ξi,1(k), · · · , ξi,ji(k)(k)), and ηi(k) , (ηi,1(k), · · · , ηi,Ni(k)(k)), and F ′k , σ{x(0), il, ξil(l), ηil(l), dil,j(l), 0 ≤
l ≤ k − 1, j ∈ N}. Then by Algorithm 3, x(k) and θ(k) are adapted to F ′k, and hence yi(k) is adapted to Fk.
Thus, Ti(yi(k), θi(k)) is adapted to Fk by its definition (49). Then by Assumptions 4 and 5, we obtain the same
bound as that of Lemma 1. Consequently, Assumption 6(b) is satisfied by setting ji(k) =

⌊
Γi(k)2(1+δ)

⌋
, where

δ > 0 and Γi(k) is defined in Remark 2.

3.2 Convergence Analysis

We begin by proving a supporting Lemma, an extension of the analogous determinstic (error-free) result from [64],
which will be used in the convergence analysis of Algorithm 3.

Lemma 4 Suppose Assumption 4 (c) holds. Let θ, y ∈ Θ and suppose θ+ and cΘ(θ) are defined by .

θ+ := ΠΘ

(
θ − 1

Lg
(∇θg(θ) + u)

)
and cΘ(θ) , Lg(θ − θ+), (55)

respectively. Then the following holds.

g(θ+)− g(y) ≤ cΘ(θ)T (θ − y)− 1

2Lg
‖cΘ(θ)‖2 − uT (θ+ − y)− µg

2
‖θ − y‖2.

Proof. We begin by recalling the projection inequality(
θ+ −

(
θ − 1

Lg
(∇θg(θ) + u)

))T
(θ+ − y) ≤ 0.

Consequently, we have that

∇θg(θ)T (θ+ − y) ≤ cΘ(θ)T (θ+ − y)− uT (θ+ − y). (56)

Then by the µg-strong convexity and Lg-smoothness of g(·), we may now derive the following bound.

g(θ+)− g(y) = g(θ+)− g(θ) + g(θ)− g(y)

≤ ∇θg(θ)T (θ+ − θ) +
Lg
2
‖θ+ − θ‖2 +∇θg(θ)T (θ − y)− µg

2
‖θ − y‖2

= ∇θg(θ)T (θ+ − y) +
1

2Lg
‖cΘ(θ)‖2 − µg

2
‖θ − y‖2

(56)
≤ cΘ(θ)T (θ+ − y)− uT (θ+ − y) +

1

2Lg
‖cΘ(θ)‖2 − µg

2
‖θ − y‖2

= cΘ(θ)T (θ − y)− 1

2Lg
‖cΘ(θ)‖2 − uT (θ+ − y)− µg

2
‖θ − y‖2. 2

Theorem 4 (almost sure convergence for inexact BR with learning) Let {x(k)} and {θ(k)} be generated by
Algorithm 3. Suppose Assumptions 4, 5 and 6 hold. We further assume that µ used in (49) satisfies µ > Lx

2 +√
3Lxτ , and for every i ∈ N , Ni(k) =

⌊
Γi(k)2(1+δ)

⌋
for some δ > 0 with Γi(k) defined by (2). Then the

sequences {θi(k)} and {xi(k)} satisfy the following.
(a) For any i ∈ N ,

∑∞
k=1 ‖θi(k)− θ∗‖2 <∞ a.s., and

∑∞
k=1 ‖θi(k)− θ∗‖ <∞ a.s..
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(b) For any i ∈ N ,
∞∑
k=0

‖Ti(yi(k); θ∗)− xi(k)‖2 <∞ a.s..

(c) For almost all ω ∈ Ω, every limit point of x(k, ω) is a Nash equilibrium.
(d) There exists a connected subset X∗c ⊂ X∗ such that d(x(k), X∗c ) −−−−→

k→∞
0 a.s..

Proof. (a) For ik = i, by ei,p(k) defined in Assumption 6(d) we can rewrite (53) as follows:

θi(k + 1) = ΠΘ

[
θi(k)− 1

Lg
(∇g(θi(k)) + uk)

]
, (57)

where uk , 1
Ni(k)

∑Ni(k)
p=1 ei,p(k). From Lemma 4, by setting θ = θi(k), u = uk, and y = θ∗, we have that

θ+ = θi(k + 1), cΘ(θi(k)) = Lg(θi(k)− θi(k + 1)), implying the following inequality.

−cΘ(θk)
T (θi(k)− θ∗) ≤ − (g(θi(k + 1))− g(θ∗))︸ ︷︷ ︸

≥ 0

− 1

2Lg
‖cΘ(θi(k))‖2 − µg

2
‖θi(k)− θ∗‖2 − uTk (θi(k + 1)− θ∗)

≤ − 1

2Lg
‖cΘ(θi(k))‖2 − µg

2
‖θi(k)− θ∗‖2 − uTk (θi(k + 1)− θ∗). (58)

Since cΘ(θi(k)) = Lg(θi(k)− θi(k + 1)), we may bound ‖θi(k + 1)− θ∗‖2 as follows.

‖θi(k + 1)− θ∗‖2 = ‖θk −
1

Lg
cΘ(θi(k))− θ∗‖2 = ‖θi(k)− θ∗‖2 +

1

L2
g

‖cΘ(θi(k))‖2 − 2

Lg
cΘ(θi(k))T (θi(k)− θ∗)

(58)
≤ ‖θi(k)− θ∗‖2 +

1

L2
g

‖cΘ(θi(k))‖2 − 2

Lg

(
1

2Lg
‖cΘ(θi(k))‖2 +

µg
2
‖θi(k)− θ∗‖2 + uTk (θi(k + 1)− θ∗)

)
=

(
1− µg

Lg

)
‖θi(k)− θ∗‖2 − 2

Lg
uTk (θi(k + 1)− θ∗)

=

(
1− µg

Lg

)
‖θi(k)− θ∗‖2 − 2

Lg
uTk (θi(k + 1)− θ̄i(k + 1))− 2

Lg
uTk (θ̄i(k + 1)− θ∗),

where θ̄i(k + 1) , ΠΘ

[
θi(k)− 1

Lg
∇θg(θi(k))

]
. By (57) and the non-expansivity of the Euclidean projector, one

may obtain that −uTk (θi(k + 1)− θ̄i(k + 1)) ≤ ‖uTk ‖
∥∥θi(k + 1)− θ̄i(k + 1)

∥∥ ≤ ‖uk‖2/Lg. Therefore,

‖θi(k + 1)− θ∗‖2 ≤
(

1− µg
Lg

)
‖θi(k)− θ∗‖2 +

2

L2
g

‖uk‖2 −
2

Lg
uTk (θ̄i(k + 1)− θ∗).

Taking expectations conditioned on Fk on both sides of the above equation, we obtain the next inequality since
θi(k) and θ̄i(k + 1) are adapted to Fk.

E[‖θi(k + 1)− θ∗‖2 | Fk] ≤
(

1− µg
Lg

)
‖θi(k)− θ∗‖2 +

2

L2
g

E[‖uk‖2 | Fk] ( by E[uk|Fk]=0)

≤
(

1− µg
Lg

)
E[‖θi(k)− θ∗‖2] +

2M2
2

L2
gNi(k)

, ( by Assumption 6(d)).

While for ik 6= i, E
[
‖θi(k + 1)− θ∗‖

∣∣Fk] = ‖θi(k)− θ∗‖2. Then by P(ik = i) = pi, we obtain that

E
[
‖θi(k + 1)− θ∗‖2

∣∣Fk] ≤ (1− piµg/Lg)‖θi(k)− θ∗‖2 +
2piM

2
2

L2
gNi(k)

. (59)
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By employing the conditional variant of Jensen’s inequality to (59), we may conclude the following.

E
[
‖θi(k + 1)− θ∗‖

∣∣Fk] ≤√1− piµg/Lg‖θi(k)− θ∗‖+

√
2piM2

Lg
√
Ni(k)

(by
√
a2+b2≤a+b for a,b≥0)

= ‖θi(k)− θ∗‖ −
(

1−
√

1− piµg/Lg
)
‖θi(k)− θ∗‖+

√
2piM2

Lg
√
Ni(k)

.

Thus, by using Theorem 1 in [61], and
∑∞

k=1 1/
√
Ni(k) <∞, a.s. by Remark 2, we obtain that

∑∞
k=1 ‖θi(k)−

θ∗‖ <∞ a.s., and hence
∑∞

k=1 ‖θi(k)− θ∗‖2 <∞ a.s..
(b) Note that ∇xifi(x; θ∗) is Lipschitz continuous in x ∈ X with Lipschitz constant Lx by Assumption 4(b).

Then similar to (18) we obtain the following inequality for any C > 0:

fi
(
Ti(y

i(k), θ∗), x−i(k); θ∗
)

+ Vk+1 ≤ fi(x(k); θ∗) + Vk +
L2
xτ

2

2C
‖x(k + 1)− x(k)‖2

−
(
µ− Lx + C

2

)
‖Ti(yi(k), θ∗)− xi(k)‖2,

(60)

where Vk ,
L2
xτ

2C

∑k
h=k−τ+1(h− k+ τ)‖x(h)− x(h− 1)‖2. By Assumptions 5(a), 5(b), and Jensen’s inequality,

the following holds for any x ∈ X:

‖∇xifi(xi, x−i; θ)‖ = ‖E[∇xiψi(xi, x−i; θ; ξ)]‖ ≤
√

E[‖∇xiψi(xi, x−i; θ; ξ)‖2] ≤M1.

Then by the mean-value theorem and Cauchy-Schwarz inequality, we have that

fi (xi(k + 1), x−i(k); θ∗)− fi
(
Ti(y

i(k), θ∗), x−i(k); θ∗
)

=
(
xi(k + 1)− Ti(yi(k), θ∗)

)T ∇xifi (zi(k + 1), x−i(k); θ∗) ≤M1‖xi(k + 1)− Ti(yi(k), θ∗)‖.
(61)

where zi(k + 1) = ϑi,kxi(k + 1) + (1 − ϑi,k)Ti(yi(k), θ∗) for some ϑi,k ∈ (0, 1). By the triangle inequality,
Lemma 3, and (52), we may conclude that

‖xi(k + 1)− Ti(yi(k), θ∗)‖ ≤ ‖Ti(yi(k), θi(k))− Ti(yi(k), θ∗)‖+ ‖εi(k + 1)‖

≤ Lt‖θi(k)− θ∗‖+ ‖εi(k + 1)‖. (62)

We then substitute (62) in (61) to obtain the following bound:

fi (xi(k + 1), x−i(k); θ∗)− fi
(
Ti(y

i(k), θ∗), x−i(k); θ∗
)
≤M1Lt‖θi(k)− θ∗‖+M1‖εi(k + 1)‖. (63)

Then by Algorithm 3, Assumption 4(d), (60) and (63), we may obtain the following bound:

P (x(k + 1))− P (x(k)) = fik(xik(k + 1), x−ik(k); θ∗)− fik(xik(k), x−ik(k); θ∗)

= fik (xik(k + 1), x−ik(k); θ∗)− fik
(
Tik(yik(k), θ∗), x−ik(k); θ∗

)
+ fik

(
Ti(y

ik(k), θ∗), x−ik(k); θ∗
)
− fik(x(k); θ∗)

≤M1Lt‖θik(k)− θ∗‖+M1‖εik(k + 1)‖+ Vk − Vk+1 (64)

−
(
µ− Lx + C

2

)
‖Ti(yi(k), θ∗)− xi(k)‖2 +

L2
xτ

2

2C
‖x(k + 1)− x(k)‖2.
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By the update rule in Algorithm 3 and (62), we have that

‖x(k + 1)− x(k)‖ = ‖xik(k + 1)− xik(k)‖ = ‖xik(k + 1)− Tik(yik(k), θ∗) + Tik(yik(k), θ∗)− xik(k)‖

≤ Lt‖θik(k)− θ∗‖+ ‖εik(k + 1)‖+ ‖Tik(yik(k), θ∗)− xik(k)‖,

which when combined with (64) and (a+ b+ c)2 ≤ 3(a2 + b2 + c2) yields the following inequality:

P (x(k + 1)) + Vk+1 ≤ P (x(k)) + Vk +M1Lt‖θik(k)− θ∗‖+M1‖εik(k + 1)‖+
3L2

xτ
2

2C
‖εik(k + 1)‖2

−
(
µ− Lx + C

2
− 3L2

xτ
2

2C

)
︸ ︷︷ ︸

,C̃

‖Tik(yik(k), θ∗)− xik(k)‖2 +
3L2

xL
2
t τ

2

2C
‖θik(k)− θ∗‖2

≤ P (x(k)) + Vk − C̃‖Tik(yik(k), θ∗)− xik(k)‖2 +M1Lt‖θik(k)− θ∗‖

+
3L2

xL
2
t τ

2

2C
‖θik(k)− θ∗‖2 +M1

N∑
i=1

‖εi(k + 1)‖+
3L2

xτ
2

2C

N∑
i=1

‖εi(k + 1)‖2.

(65)

Note that x(k), Vk, θi(k), Ti(y
i(k); θ∗) ∀i ∈ N are adapted to Fk, and ik is independent of Fk. Then by taking

expectations conditioned on Fk of (65), and using Corollary 7.1.2 in [60] and P(ik = i) = pi, it follows that

E
[
P (x(k + 1)) + Vk+1

∣∣Fk] ≤ P (x(k)) + Vk − C̃
N∑
i=1

pi‖Ti(yi(k), θ∗)− xi(k)‖2

+M1Lt

N∑
i=1

pi‖θi(k)− θ∗‖+
3L2

xL
2
t τ

2

2C

N∑
i=1

pi‖θi(k)− θ∗‖2

+M1

N∑
i=1

E
[
‖εi(k + 1)‖

∣∣Fk]+
3L2

xτ
2

2C

N∑
i=1

E
[
‖εi(k + 1)‖2

∣∣Fk] .
(66)

By setting C =
√

3Lxτ
2 we derive C

2 + 3L2
xτ

2

2C =
√

3Lxτ. Thus, by taking µ > Lx
2 +

√
3Lτ it follows that C̃ > 0.

Therefore, by using Theorem 1 of [61], Assumption 6(b) and result (a), we have that
∑∞

k=1

∑N
i=1 pi‖Ti(yi(k), θ∗)−

xi(k)‖2 <∞ a.s.. Then by pi ∈ (0, 1) we obtain (b).
(c) The proof is similar to that of Theorem 1(b).
(d) Since E

[
‖εi(k + 1)‖

∣∣Fk] , ‖θi(k) − θ∗‖, and ‖Ti(yi(k); θ∗) − xi(k)‖2 are nonnegative for k ≥ 1, by
Assumption 6(b), results (a) and (b) we have the following for any i ∈ N :

∞∑
k=1

E[‖εi(k + 1)‖] = E

[ ∞∑
k=1

E
[
‖εi(k + 1)‖

∣∣Fk]
]
<∞,

∞∑
k=1

E[‖θi(k)− θ∗‖] <∞, and
∞∑
k=1

E
[
‖Ti(yi(k); θ∗)− xi(k)‖2

]
<∞.

Thus, by the Jensen’s inequality we have the following for any i ∈ N :

lim
k→∞

E[‖εi(k + 1)‖] = 0, lim
k→∞

E[‖θi(k)− θ∗‖] = 0, and lim
k→∞

E
[
‖Ti(yi(k); θ∗)− xi(k)‖

]
= 0. (67)
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Then by the triangle inequality and (62), we obtain that

E[‖xi(k + 1)− xi(k)‖] ≤ E[‖xi(k + 1)− Ti(yi(k), θ∗)‖] + E[‖xi(k)− Ti(yi(k), θ∗)‖]

≤ LtE[‖θi(k)− θ∗‖] + E[‖εi(k + 1)‖] + E[‖xi(k)− Ti(yi(k), θ∗)‖]→ 0, as k →∞.

This implies that lim
k→∞

E[‖x(k + 1)− x(k)‖] = 0. The result follows by proceeding as in Theorem 1(c). 2

Remark 4 Note that in Algorithm 3, we have utilized a variable sample-size stochastic approximation framework
for updating each player’s estimate of {θi(k)}, where each player initiates its update from an independently
selected starting point. The proposed scheme is similar to that developed in [65] but we provide a distinct
proof, inspired by [64], through which the required summability requirements are proven. Related schemes under
differing assumptions with similar linear convergence rates have been studied over the last decade (cf. [66, 67]).
Accelerated variants of such schemes have also been studied in smooth [68] and nonsmooth [69] regimes. One
might go a step further and note that players can utilize any update rule as long as it produces a sequence of
iterates satisfying the requirement that for every i ∈ N ,

∑∞
k=1 ‖θi(k)− θ∗‖ <∞ a.s..

Theorem 4 shows that the estimates of the equilibrium strategy and the misspecified parameter generated
by Algorithm 3 converge almost surely to the set of Nash equilibria and to θ∗, respectively. Define the gap
function G(x; θ∗) , supy∈X ∇P (x; θ∗)T (x − y). The following result shows the convergence in mean of x(k),
characterized by the convergence of G(x(k)) to zero in the mean sense.

Theorem 5 (Convergence in mean of gap function.) Let {x(k)} and {θ(k)} be generated by Algorithm 3. Sup-
pose Assumptions 4, 5 and 6 hold, and, in addition, that µ > Lx

2 +
√

3Lxτ , βi ∈ (0, 2µg/L
2
g) and Ni(k) =⌈

Γi(k)2(1+δ)
⌉

for some δ > 0. Then lim
k→∞

E
[
G(x(k); θ∗)

]
= 0.

Proof. Similar to the proof of Theorem 2, we have the following bound:

E [G(x(k); θ∗)] ≤
N∑
i=1

(µDXi +M + LxDXi)E
[∥∥Ti(yi(k); θ∗)− xi(k)

∥∥] =⇒ lim
k→∞

E [G(x(k); θ∗)] ≤ 0 (by (67)).

However, G(x(k); θ∗) ≥ 0 since x(k) ∈ X , implying that lim
k→∞

E [G(x(k); θ∗)] = 0. 2

Remark 5 (i) Algorithm 3 may also be extended to the generalized and weighted potential games with misspec-
ified parameters since Algorithm 1 is applicable to the generalized and weighted potential games as shown in
Section 2.4.
(ii) The recent work by [9] also considered the misspecified convex stochastic Nash games. This work was distinct
in both its motivation and contributions.

• [9] consider monotone Nash games while we consider stochastic potential games. Note that instances of
one do not necesarily lie within the other.

• The update of equilibrium strategies in [9] utilizes projected gradient response while here we take inexact
proximal best-response steps.

• The update for the misspecified parameter in [9] is based on a projected SG algorithm with a single sampled
gradient per step and with a decreasing step-size; here, we utilize an increasing sample-size projected SG
scheme with a constant step-size.
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4 Preliminary numerics

In this section, we empirically validate the performance of Algorithm 1 and Algorithm 3 on the problem of con-
gestion control and misspecified stochastic Nash-Cournot games, respectively.

4.1 Congestion Control

We consider a congestion control problem on a connected network characterized by a set of nodes V = {1, · · · , V }
and a set of links L = {1, · · · , L} connecting the nodes. There are N users in the network, where each player i
aims at sending a flow rate xi ∈ Ci = {xi ∈ R : 0 ≤ xi ≤ xi,max} from the source node si to the destination node
di through a path Li in the network. The upper bound xi,max on user i’s flow rate might represent a player-specific
physical limitation. The payoff function of player i takes as the difference of a player-specific pricing function and
a utility function Ui associated to the flow xi parameterized by uncertainty ξi, ζi:

ψi(xi, x−i; ξi, ζi) =
∑
l∈Li

Pl

 ∑
j:l∈Lj

xj

− Ui (xi, ξi, ζi) .

The first term can be interpreted as the price that player i pays for the network resources with Pl depending on the
aggregated flows on the link l. Suppose that Pl, l ∈ L is convex and Ui, i ∈ N is concave on [0, xi,max]. Typical
examples for the pricing and utility functions are given by the following:

Pl =
al

bl −
∑

j:l∈Lj xj
and Ui = ξi log(1 + xi + ζi),

where ξi, ζi are random variables. Suppose each link l ∈ L in the network has a positive capacity cl. Let us
introduce a routing matrix A ∈ RL×N , where [A]l,i = 1 if l ∈ Li, and [A]l,i = 0, otherwise. The capacity
constraints of all links can be expressed in the vector form as Ax ≤ c with c = col{cl}Ll=1. For a fixed feasible
x−i, we derive the bound of the user i’s flow rate xi denoted by

0 ≤ Xi(x−i) ≤ min
l∈Li
{cl −

∑
j 6=i

Al,jxj}.

The ith user aims at solving the following problem:

min
xi∈Ci∩Xi(x−i)

fi(xi, x−i) , E [ψi(xi, x−i; ξi, ζi)] .

Thus, the resulting problem is a generalized potential game with the coupled constraint X = {x ∈ Rn : Ax ≤ c}
and the potential function defined as follows:

P (x) =
∑
l∈L

al
bl −

∑
j:l∈Lj xj

−
∑
i∈N

E [Ui (xi, ξi, ζi)] .

Further, it is shown in Theorem 3.1 of [70] that the congestion control problem has a unique inner NE under
appropriately chosen parameters.

We conducted numerical simulations for a network of V = 8 nodes and L = 12 links shown in Figure
1. The parameters al, bl of the utility function Pl and the capacity constraint cl associated to link l ∈ L are
given in Figure 1 as well. There are N = 8 users sending flows through the network depicted in Figure 1.
The link paths of user i ∈ N as well as local parameters ζi, ξi, xi,max, pi are given in Table 2, where U [τ1, τ2]
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denotes the uniform distribution over the interval [τ1, τ2]. For any k ≥ 0, i, j ∈ N , the communication delays
dij(k) are independently generated from a uniform distribution on the set {0, 1, · · · , τ} with τ = 4. We carry
out simulations for Algorithm 1, where the inexact solution (9) satisfying Assumption 3 are computed via the SA
scheme (SAi,k) with ji,k = bΓ3

i,kc and µ = 1. The estimates of each users equilibrium flow rates are shown
in Figure 2, which demonstrates the almost sure convergence of the iterates generated by Algorithm 1. Figure 3
displays the trajectory of the mean gap function E[G(xk)] calculated by averaging across 50 sample paths, which
demonstrates convergence in mean of the estimates generated by Algorithm 1.

1

2

3

4

5

6

7

8

L1 L2

L3

L4
L5

L6

L7

L8

L9

L11

L12L10

Parameters
Links l

1 2 3 4 5 6 7 8 9 10 11 12

al 5 4 3 5 4 3 5 4 3 5 4 3
bl 6 10 8 6 9 5 6 5 6 6 8 9
cl 5 8 6 5 8 4 5 4 4 5 7 8

Figure 1: A network with 8 nodes and 12 links.

User i Link path ξi ζi xi,max pi

1 L1, L2, L12 U [10, 12] U [0, 1] 3 1/8
2 L3, L4, L5 U [10, 12] U [0, 1] 4 1/8
3 L10, L11, L12 U [10, 12] U [0, 1] 4 1/8
4 L6, L9, L12 U [10, 12] U [0, 1] 3 1/8
5 L5, L8 U [10, 12] U [0, 1] 5 1/8
6 L1, L2, L7 U [10, 12] U [0, 1] 3 1/8
7 L3, L10, L11 U [10, 12] U(0, 1) 4 1/8
8 L6 U [10, 12] U [0, 1] 3 1/8

Table 2: Link paths and local parameters of all users

Figure 2: Flow rates of players (a single sample path) Figure 3: Trajectory of E[G(xk)]
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4.2 Nash-Cournot Games with Misspecified Parameters

We apply Algorithm 3 to the networked Nash-Cournot game [8, 7]. Suppose there are N firms, regarded as the set
of playersN = {1, . . . , N}, competing over Lmarkets denoted by L = {1, · · · , L}. Firm i ∈ N sells its products
xi = (xi,1, · · · , xi,ni) ∈ Rni to each connected market with ni denoting the number of markets connected to firm
i. We use matrix Ai ∈ RL×ni to specify the participation of firm i in the markets, where [Ai]j,p = 1 if firm i

delivers its production xi,p to market j, and [Ai]j,p = 0, otherwise. The production cost function of firm i is given
by ci(xi; ξi) = (ci + ξi)

Txi for some positive parameter ci ∈ Rni and random disturbance ξi with mean zero.
Denote by A = [A1, · · · , AN ], by Ax =

∑N
i=1Aixi ∈ RL and by Sj = [Ax]j the aggregated products of all

connected firms delivered to market j, where [Ax]j denotes the j-th entry of the vector Ax. Furthermore, the price
of products sold in market j ∈ L is assumed to follow a linear function corrupted by noise:

pj(Sj ; ζj) = a∗j + ζj − b∗jSj ,

where a∗j > 0, b∗j > 0 are the pricing parameters, and the random disturbance ζj is zero-mean. Then firm i ∈ N
has a stochastic payoff function defined as follows:

ψi(x; θ∗; ξi, ζi) = ci(xi; ξi)−
∑
j∈L

pj(Sj ; ζj)[Aixi]j = (ci + ξi)
Txi −

(
a∗ + ζ −B∗AX

)T
Aixi,

where a∗ = col{a∗1, · · · , a∗L}, ζ = col{ζ1, · · · , ζL}, B∗ = diag{b∗1, · · · , b∗L}, and θ∗ = (a∗, B∗) is unknown to
all companies. Suppose firm i ∈ N has finite production capacity Xi = {xi ∈ Rni : 0 ≤ xi ≤ capi}. In this
networked Cournot competition, firm i minimizes cTi xi − (Aixi)

Ta∗ + (Aixi)
TB∗

∑N
i=1Aixi over Xi. If P (x)

is defined as

P (x) ,
N∑
i=1

cTi xi −

(
N∑
i=1

Aixi

)T
a∗ +

(
col {Aixi}Ni=1

)T
χ
(
col {Aixi}Ni=1

)
,

where χ = 1
2(IN + JN )⊗B∗. Then for any i ∈ N and for any x−i ∈ X−i, equation (6) holds for all xi, x′i ∈ Xi.

Thus, the Nash-Cournot game admits a potential function P (x). By definition of fi(xi, x−i; θ∗),∇xifi(xi, x−i; θ∗)
depends on a∗j , b

∗
j , j ∈ L if firm i sells its products to market j. Each firm i can observe the historic data about

the aggregated sales Sj in market j and the price of products pj = a∗j + ζj − b∗jSj if the market j is connected to
firm i. As such, firm i is able to learn the pricing parameters a∗j , b

∗
j of the connected market j through solving the

following problem:

min
aj≥0,bj≥0

E[(aj − bjSj − pj)2] (68)

In the numerical investigation, there are V = 13 firms to sell their products to L = 7 markets with the network
shown in Figure 4. Suppose each component of capi and the cost pricing parameter ci of the firm i ∈ N satisfy
uniform distributions specified by U [5, 8] and U [2, 4]. The pricing parameters a∗j , b

∗
j of market j ∈ L are drawn

from uniform distributions U [4, 6] and U [0.2, 0.4], respectively. Suppose the random variables ξi, i ∈ N and
ζj , j ∈ L are drawn from uniform distributions U [−c∗i /8, c∗i /8] and U [−a∗j/8, a∗j/8], respectively. Suppose the
historic aggregated sales Sj in market j ∈ L satisfies the uniform distribution U [0, 5]. For any k ≥ 0, i, j ∈ N ,
the communication delays dij(k) are independently generated from a uniform distribution on the set {0, 1, · · · , τ}
with τ = 4. We carry out simulations for Algorithm 3, where the inexact solution (52) satisfying Assumption 6 is
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Figure 4: Networked Nash-Cournot: An edge from Ci to Mj implies firm Ci sells its products to market Mj .

(a) Learning a∗ (b) Learning b∗ (c) Learning x∗

Figure 5: The estimates of a∗, b∗ and x∗ (a single sample path)

computed via the SA scheme (54) with Ni,k = ji,k = bΓ3
i,kc, pi = 1/N ∀i ∈ N , β = 0.1 and µ = 5. The scaled

errors of learning schemes for the unknown parameters a∗, b∗ and the Nash equilibrium x∗ are provided in Figs. 5,
where aik and bik denotes the estimates of a∗ and b∗ given by firm i at time k. The figure demonstrates the almost
sure convergence of Algorithm 3.

Comparison with the asynchronous SG method: Suppose there are no communication delays among the
players, i.e., τ = 0. Set pi = 1/N ∀i ∈ N , β = 0.1 and µ = 5. Let Ni,k = bΓ3

i,kc steps of the SA scheme (54) be
taken at major iteration k to obtain an inexact solution to (8), where Γi,k is defined in Lemma 1. Set ji,k = bΓ3

i,kc
in equation (52). We then carry out simulations for both Algorithm 3 and the asynchronous SG algorithm, which
indeed is Algorithm 3 with equations (52) and (53) replaced by

xi,k+1 = ΠXi [xi,k − γi,k∇xiψi(xk, θi,k; ξi,k)] ,

θi,k+1 = ΠΘ [θi,k − βγi,k∇g (θi,k, ηi,k)] ,

where γi,k = 1
Γ0.6
i,k

. We compare the two methods for the estimates of the equilibrium strategy x∗ in terms of (i)
the total number of the gradients steps (iteration complexity), and (ii) the communication overhead for achieving
the same accuracy. Let K(ε) denotes the smallest total number of SG steps the players have carried out to make
E
[
‖xk−x∗‖
1+‖x∗‖

]
< ε. The empirically observed relationship between ε andK(ε) for both methods are shown in Figure

6(a), where the empirical errors are calculated by averaging across 50 trajectories. From the figure, it is seen that
the iteration complexity are of the same orders while the constant of SG is superior to that of Algorithm 3. Since SG
requires the rivals’ newest information to carry out a single gradient step, the resulting communication overhead

30



(a) Iteration Complexity (b) Communication Overhead

Figure 6: Comparison of Stochastic Gradient Algorithm and Inexact BR Algorithm 3

is proportional to the total number of gradient steps. In contrast, Algorithm 3 carries out multiple gradient steps
without requiring the most recent rivals’ information. Further, the communication overhead of the two methods
are shown in Figure 6(b). From the results in Figure 6, upon termination, Algorithm 3 requires approximately
about 10 times more gradient steps than the standard SG method while characterized by approximately 500 times
less communication overhead.

5 Concluding Remarks

This paper develops an asynchronous inexact proximal best-response scheme (combined with joint learning) to
compute the Nash equilibrium of a stochastic potential Nash game (possibly corrupted by misspecification). When
player-specific problems are convex, we show that the estimates generated by the proposed schemes converge
almost surely to a connected subset of the NE set with uniformly bounded delays. Since the game is characterized
by a possibly nonconvex potential function, the schemes can be viewed as randomized block coordinate descent
schemes for a stochastic nonconvex optimization problem which is block-wise convex. We show that the gap
function converges to zero in mean for both schemes as well. Furthermore, we prove almost sure convergence
of the asynchronous inexact BR scheme in the delay-free regime when the player-specific problems are strongly
convex. Finally, we apply the developed methods to the congestion control problem and the Nash-Cournot game,
and demonstrate the simulation results.
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