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For online resource allocation problems, we propose a new demand arrival model where the sequence of

arrivals contains both an adversarial component and a stochastic one. Our model requires no demand fore-

casting; however, due to the presence of the stochastic component, we can partially predict future demand

as the sequence of arrivals unfolds. Under the proposed model, we study the problem of the online allocation

of a single resource to two types of customers, and design online algorithms that outperform existing ones.

Our algorithms are adjustable to the relative size of the stochastic component, and our analysis reveals that

as the portion of the stochastic component grows, the loss due to making online decisions decreases. This

highlights the value of (even partial) predictability in online resource allocation. We impose no conditions on

how the resource capacity scales with the maximum number of customers. However, we show that using an

adaptive algorithm—which makes online decisions based on observed data—is particularly beneficial when

capacity scales linearly with the number of customers. Our work serves as a first step in bridging the long-

standing gap between the two well-studied approaches to the design and analysis of online algorithms based

on (1) adversarial models and (2) stochastic ones. Using novel algorithm design, we demonstrate that even

if the arrival sequence contains an adversarial component, we can take advantage of the limited information

that the data reveals to improve allocation decisions. We also study the classical secretary problem under

our proposed arrival model, and we show that randomizing over multiple stopping rules may increase the

probability of success.
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1. Introduction

E-commerce platforms host markets for perishable resources in various industry sectors ranging

from airlines to hotels to internet advertising. In these markets, demand realizes sequentially, and

the firms need to make online (irrevocable) decisions regarding how (and at what price) to allocate

resources to arriving demand without precise knowledge of future demand. The success of any online
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allocation algorithm depends crucially on a firm’s ability to predict future demand. If demand

can be predicted, then under some conditions on the amount of available resources, making online

decisions incurs little loss (as shown in Agrawal et al. (2014), among others). However, in many

markets, demand cannot be perfectly predicted due to unpredictable components such as traffic

spikes and strategy changes by competitors. The emergence of sharing-economy platforms such

as Airbnb, which can scale supply at negligible cost and on short notice (Zervas et al. 2016), has

significantly added to unpredictable variability in demand even for products that are not new (e.g.,

existing hotels).

In such cases firms can take a worst-case approach and assume that demand is controlled by

an imaginary adversary and thus is unpredictable. Such an approach, however, usually results in

online policies that are too conservative (as studied in Ball and Queyranne (2009) and others).

Instead, firms may wish to employ online policies based on models that assume the future demand

can partially be predicted, avoiding being too conservative while not being reliant on fully accurate

predictions. This paper aims to investigate to what extent the above goal is achievable. We propose a

new demand model, called partially predictable, that contains both adversarial (thus unpredictable)

and stochastic (predictable) components. We design novel algorithms to demonstrate that even

though demand is assumed to include an unpredictable component, firms can make use of the

limited information that the data reveals and improve upon the completely conservative approach.

We study a basic online allocation problem of a single resource with an arbitrary capacity to a

sequence of customers, each of which belongs to one of two types. Each customer demands one unit

of the resource. If the resource is allocated, the firm earns a type-dependent revenue. Type-1 and

-2 customers generate revenue of 1 and a < 1, respectively. Our demand model takes a parameter

0 < p < 1 and works as follows. An unknown number of customers of each type will be revealed

to the firm in unknown order. Both the number and the order of customers are assumed to be

controlled by an imaginary adversary. However, a fraction p of randomly chosen customers does

not follow this prescribed order and instead arrives at uniformly random times. This group of

customers represents the stochastic component of the demand that is mixed with the adversarial

element. Although we cannot identify which customers belong to the stochastic group, we can

still partially predict future demand, because this group is almost uniformly spread over the time

horizon. Therefore parameter p determines the level of predictability of demand.

From a practical point of view, our demand model requires no forecast for the number of cus-

tomers of each type prior to arrival; instead, it assumes a rather mild “regularity” in the arrival

pattern: a fraction p of customers of each type is spread throughout the time horizon. We moti-

vate this through a simple example. Suppose an airline launches a new flight route for which it

has no demand forecast. However, using historical data on customer booking behavior, the airline
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knows that there is heterogeneity in booking behavior of customers, namely, the time they request

a booking varies across customers of each type. Such heterogeneity results in the gradual arrival

of a portion of customers of each type. For example, CWT (2016) illustrates a significant dispar-

ity in the advanced booking behavior of business travelers based on their age, gender, and travel

frequency. Therefore, the airline can reasonably assume that demand from business travelers (who

correspond to type-1 in our model) is, to some degree, spread over the sale horizon.

From a theoretical point of view, our demand model aims to address the limitations of

the main two approaches that have been taken so far in the literature: (1) adversarial mod-

els and (2) stochastic ones.1 Under the adversarial modeling approach, the sequence of arrivals

is assumed to be completely unpredictable. The online algorithms developed for these models

aim to perform well in the worst-case scenario, often resulting in very conservative bounds (see

Ball and Queyranne (2009) for the single-resource revenue management problem and Mehta et al.

(2007) and Buchbinder and Naor (2009) for online allocation problems in internet advertising).

On the other hand, the stochastic modeling approach assumes that demand follows an unknown

distribution (Kleinberg 2005, Devanur and Hayes 2009, Agrawal et al. 2014).2 In this case we can

predict future demand after observing a small fraction of it. For example, after observing the first

10% of the demand, if we observe that 15% of customers are of type-1, we can predict that roughly

15% of the remaining customers are also of type-1. The limitation of such an approach is that

it cannot model variability across time. In some cases, real data does not confirm the stochastic

structure presumed in these models, as shown in Wang et al. (2006) and Shamsi et al. (2014). In

fact, as discussed in Mirrokni et al. (2012) and Esfandiari et al. (2015), large online markets (such

as internet advertising systems) often use modified versions of these algorithms to make them less

reliant on accurate demand prediction. Our model provides a middle ground between the aforemen-

tioned approaches by assuming that the arrival sequence contains both an adversarial component

and a stochastic one.

For the above problem, we design two online algorithms (a non-adaptive and an adaptive one3)

that perform well in the partially predictable model. We use the metric of competitive ratio,

which is commonly used to evaluate the performance of online algorithms. Competitive ratio is

the worst-case ratio between the revenue of the online scheme to that of a clairvoyant solution

(see Definition 1). The competitive ratio of our algorithms is parameterized by p, and for both

algorithms the ratio increases with p: as the relative size of the stochastic component grows, the

1 A few papers consider arrival models outside these two categories. We carefully review them and compare them
with our model in Section 2.

2 In fact these papers assume a more general model, the random order model, that we discuss in Section 2.

3 We call an algorithm “adaptive” if it makes decisions based on the sequence of arrivals it has observed so far.
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loss due to making online decisions decreases. We further show that using an adaptive algorithm is

particularly beneficial when the capacity scales linearly with the maximum number of customers.

Our algorithms are easily adjustable with respect to parameter p. Therefore, if a firm wishes to

use different levels of predictability for different products, then it can use the same algorithm with

different parameters p.

In designing of our algorithms, we keep track of the number of accepted customers of each

type, and we decide whether to accept an arriving type-2 customer by comparing the number of

already accepted type-2 customers with optimally designed dynamic thresholds.4 Our non-adaptive

algorithm strikes a balance between “smoothly” allocating the inventory over time (by not accepting

many type-2 customers toward the beginning) and not protecting too much inventory for potential

late-arriving type-1 customers (see Algorithm 1 and Theorem 1). Our adaptive algorithm frequently

recomputes upper bounds on the number of future customers of each type based on observed

data and uses these upper bounds to ensure that we protect enough inventory for future type-1

customers. We show that such an adaptive policy significantly improves the performance guarantee

when the initial inventory is large relative to the maximum number of customers (see Algorithm 2

and Theorem 2). Both algorithms could reject a type-2 customer early on but accept another type-2

customer later. This is consistent with practice. For example, in online airline booking systems,

lower fare classes can open up after being closed out previously (Cheapair 2016).

From a methodological standpoint, an analysis of the competitive ratio of our algorithms presents

many new technical challenges arising from the fact that our arrival model contains both an

adversarial and a stochastic component. Our analysis crucially relies on a concentration result that

we establish for our arrival model (see Lemma 1) as well as fairly intricate case analyses for both

algorithms. Further, to prove the lower bound on the competitive ratio of our adaptive algorithm,

we construct a novel factor-revealing nonlinear mathematical program (see MP1 and Section 5.2).

The two extreme cases of our model where all or none of the customers belong to the adversarial

group (i.e., p = 0 and p = 1) reduce to the adversarial and stochastic modeling approaches that

have been mainly studied in the literature thus far (for instance, Ball and Queyranne (2009) study

the former model and Agrawal et al. (2014) study the latter). Our algorithms recover the known

performance guarantees for these two extreme cases. For the regime in between (i.e., when 0<p<

1), we show that our algorithms achieve competitive ratios better than what can be achieved by

any of the algorithms designed for these extreme cases (or even any combination of them). This

highlights the need to design new algorithms when departing from traditional arrival models.

We also study the classic secretary problem under our partially predictable arrival model. The

secretary problem, a stopping time problem, corresponds to the setting in which we initially have

4 We always accept a type-1 customer if there is remaining inventory.
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one unit of inventory; each customer is of a different type, and we wish to maximize the probability

of allocating the inventory to the type generating the highest revenue. We show that, unlike the

classic setting (which corresponds to p = 1 in our model), the celebrated deterministic stopping

rule policy based on a deterministic observation period is no longer optimal. Due to the presence

of the adversarial component, randomizing over the length of the observation period may result in

improvement (see Algorithm 3, Theorem 3, and Proposition 3).

We conclude this section by highlighting our motivations and contributions. For many appli-

cations, demand arrival processes are inherently prone to contain unpredictable components that

even advanced information technologies cannot mitigate. An allocation policy whose design is based

on stochastic modeling cannot incorporate the presence of such unpredictable components. At the

same time, taking a worst-case adversarial approach usually leads to allocation polices that are

too conservative. We introduce the first arrival model that contains both adversarial (thus unpre-

dictable) and stochastic components. Through novel algorithm design, we show that (1) we can

take advantage of even limited available information (due to the presence of the stochastic compo-

nent) to improve a firm’s revenue when compared to algorithms that take a worst-case approach

and that (2) there is an unavoidable loss due to the presence of an adversarial component, which

emphasizes the value of stochastic information and predictability in online resource allocation.

The rest of the paper is organized as follows. In Section 2, we review the related literature and

highlight the differences between the current paper and previous work. In Section 3, we formally

introduce our demand arrival model and our performance metric, and prove a consequential con-

centration result for the arrival process. Sections 4 and 5 are dedicated to description and analysis

of our two algorithms. In Section 6, we present upper bounds on the performance of any online

algorithm, and we compare the performance of our algorithms with that of existing ones. Section 7

studies the secretary problem under our new arrival model. In Section 8, we conclude by outlining

several directions for future research. For the sake of brevity, we include proofs of only selected

results in the main text. Detailed proofs of the remaining statements are deferred to clearly marked

appendices.

2. Literature Review

Online allocation problems have broad applications in revenue management, internet advertising,

scheduling appointments (through web applications) in health care, just to name a few. Thus it

has been studied in various forms in operations research and management, as well as computer

science. As discussed in the introduction, the approach taken in modeling the arrival process is

the first consequential step in studying these problems. Therefore, in this literature review, we
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categorize related streams of research by modeling approach rather than by the particular problem

formulation and application.

First, we note that the single-leg revenue management (RM) problem and its generaliza-

tions have been extensively studied using frameworks other than online resource allocation prob-

lems and competitive analysis. Earlier papers assumed low-before-high models (where all low-

fare demand realizes before high-fare demand) with known demand distributions (Belobaba

1987, 1989, Brumelle and McGill 1993, Littlewood 2005) or assumed the arrival process is

known, and formulated the problem as a Markov decision problem (Lee and Hersh 1993,

Lautenbacher and Stidham Jr. 1999). We refer the reader to Talluri and Van Ryzin (2006) for a

comprehensive review of RM literature. Further, many recent papers in revenue management study

dynamic pricing when the underlying price-sensitive demand process is unknown. See, for exam-

ple, seminal work by Besbes and Zeevi (2009) and Araman and Caldentey (2009). For the sake of

brevity, we will not review these streams of work.

Adversarial models: Ball and Queyranne (2009) studied the single-leg revenue management

problem under an adversarial model and showed that in the two-fare case the optimal competitive

ratio is 1
2−a

where a< 1 is the ratio of two fares. As discussed in the introduction, our model reduces

to that of Ball and Queyranne (2009) for p= 0. In this special case, our non-adaptive algorithm

reduces to the threshold policy of Ball and Queyranne (2009) and recovers the same performance

guarantee. However, when 0< p< 1, we show that for a certain class of instances our algorithms

perform better than that of Ball and Queyranne (2009) (see Subsection 6.2), indicating the need

for new algorithms for our new arrival model.

Several papers studied the adwords problem under the adversarial model (Mehta et al.

2007, Buchbinder and Naor 2009). This problem concerns allocating ad impressions to budget-

constrained advertisers. As mentioned in Mehta et al. (2007), even though the optimal competitive

ratio under an adversarial model is 1−1/e, one would expect to do better when statistical informa-

tion is available. Later, Mirrokni et al. (2012) showed that it is impossible to design an algorithm

with a near-optimal competitive ratio under both adversarial and random arrival models. Such

an impossibility result affirms the need for new modeling approaches to serve as a middle ground

between these two models. Our paper takes a step in this direction.

Stationary stochastic models: A general form of these models is the random order model,

which assumes that the sequence of arrivals is a random permutation of an arbitrary sequence

(Kleinberg 2005, Devanur and Hayes 2009, Agrawal et al. 2014). In such a model, after observing

a small fraction of the input, one can predict pattern of future demand. This intuition is used

to develop primal- and dual-based online algorithms that achieve near-optimal revenue, under
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appropriate conditions on the relative amount of available resources to allocate. These algorithms

rely heavily on learning from observed data, either once (Devanur and Hayes 2009) or repeatedly

(Kleinberg 2005, Agrawal et al. 2014, Kesselheim et al. 2014). As discussed in the introduction,

arrival patterns could experience high variability across time, limiting the performance of these

algorithms in practice (Mirrokni et al. 2012, Esfandiari et al. 2015). We note that assuming i.i.d.

arrivals with known or unknown distributions also falls into this category of modeling approaches.

Several revenue management papers provided asymptotic analysis of linear programming-based

(LP-based) approaches for such settings; see Talluri and Ryzin (1998), Cooper (2002) and Jasin

(2015).

Our model reduces to a special case of the model of Agrawal et al. (2014) for p = 1, and like

their algorithm, ours also achieves near-optimal revenue when p= 1. However, when 0< p< 1, we

show, in Subsection 6.2, that for a certain class of instances our algorithms perform better than

that of Agrawal et al. (2014).

Nonstationary stochastic models:Motivated by advanced service reservation and scheduling,

Wang and Truong (2015) and Stein et al. (2016) studied online allocation problems where demand

arrival follows a known nonhomogeneous Poisson process. For such settings, they developed online

algorithms with constant competitive ratios. Further, Ciocan and Farias (2012) considered another

interesting setting where the (unknown) arrival process belongs to a broad class of stochastic

processes. They proved a constant factor guarantee for the case where arrival rates are uniform.

Our modeling strategy differs from both approaches by assuming that (1−p) fraction of the input is

adversarial. Even for the stochastic component, we assume no prior knowledge of the distribution.

However, we limit the adversary’s power by assuming that these two components are mixed. Also,

we note that the aforementioned papers studied more general allocation problems in settings like

network revenue management.

Other models: Several earlier papers also acknowledged and addressed the limitation of both

the adversarial and random order (or stochastic) models using various approaches. Mahdian et al.

(2007) and Mirrokni et al. (2012) considered allocation problems where the demand can either

be perfectly estimated or adversarial. They designed and analyzed algorithms that have good

performance guarantees in both worst-case and average-case scenarios. Unlike these works, our

demand model contains both stochastic and adversarial components at the same time, and we

design algorithms that take advantage of partial predictability.

Another approach to address unpredictable patterns in demand is to use robust stochastic opti-

mization (Ben-Tal and Nemirovski 2002, Bertsimas et al. 2004). These papers aim to optimize

allocations when the demand belongs to a class of distributions (or uncertainty set). This approach
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limits the adversary’s power by restricting the class of demand distributions. Here, we take a dif-

ferent approach. We do not limit the class of distribution that the adversary can choose from;

instead, we assume that a fraction p of the demand will not follow the adversary.

Lan et al. (2008) also took a robust approach, studying the single-leg multi-fare class revenue

management problem in a very interesting setting, where the only prior knowledge about demand

is the lower and upper bounds on the number of customers from each fare class. Lan et al. (2008)

used fixed upper and lower bounds to develop optimal static policies in the form of nested booking

limits, and also showed that dynamically adjusting these policies can improve the competitive ratio.

Unlike their work, we do not assume prior knowledge of lower and upper bounds on the number

of customers from each class. Instead, in our model, we learn the bounds as the sequence unfolds.

Shamsi et al. (2014) used a real data set from display advertising at AOL/Advertising.com to

show that arrival patterns do not satisfy the crucial property implied by assuming a random

order model for demand. In particular, they showed that the dual prices of the offline allocation

problem at different times can vary significantly. They used a risk minimization framework to devise

allocation rules that outperform existing algorithms when applied to AOL data. Even though the

results are practically promising, the paper provides no performance guarantee, nor does it offer

insights on how to model traffic in practice.

Further, Esfandiari et al. (2015) also considered a hybrid arrival model where the input comprises

known stochastic i.i.d. demand and an unknown number of arrivals that are chosen by an adversary

(which is motivated by traffic spikes). They do not assume any knowledge of the traffic spikes,

but the performance guarantee of their algorithm is parameterized by λ, roughly the fraction of

the revenue in the optimal solution that is obtained from the stochastic (predictable) part of the

demand. Parameter λ plays a similar role as parameter p in our model, in that it controls the

adversary’s power. However, the underlying arrival processes in these two models differ considerably

and cannot be directly compared. In particular, we do not assume any prior knowledge of the

stochastic component; instead we partially predict it. However, we do assume that the adversary

determines only the initial order of arrivals (i.e., before knowing which customer will eventually

follow its order).

Our work is also closely related to the literature on the secretary problem. In the original formu-

lation of the problem, n secretaries with unique values arrive in uniformly random order; the goal

is to maximize the probability of hiring the most valuable secretary. The optimal solution to this

problem is an observation-selection policy: observe the first n/e secretaries, then select the first one

whose value exceeds that of the best of the previously observed secretaries (Lindley 1961, Dynkin

1963, Freeman 1983, Ferguson 1989). Recently, Kesselheim et al. (2015) relaxed the assumption of

uniformly random order, and analyzed the performance of the above policy under certain classes
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of nonuniform distribution over permutations. Here, we study the secretary problem in our new

arrival model (i.e., only a p fraction of secretaries arrive in uniformly random order) and show that

a deterministic observation period is not optimal.

3. Model and Preliminaries

A firm is endowed with b (identical) units of a product to sell over n≥ 3 periods, where n≥ b. In

each period, at most one customer arrives demanding one unit of the product; customers belong to

two types depending on the revenue they generate. Type-1 and type-2 customers generate revenue

of 1 and 0< a< 1, respectively. Upon the arrival of a customer, the firm observes the type of the

customer and must make an irrevocable decision to accept this customer and allocate one unit,

or to reject this customer. If a firm accepts a type-1 (type-2) customer, it will earn $1 ($a). Our

goal is to devise online allocation algorithms that maximize the firm’s revenue. We evaluate the

performance of an algorithm by comparing it to the optimum offline solution (i.e., the clairvoyant

solution).

Before proceeding with the model, we introduce a few notations and briefly discuss the structure

of the problem. We represent each customer by the value of revenue she generates if accepted, and

the sequence of arrival by ~v = (v1, v2, . . . , vn), where vi ∈ {0, a,1}; vi = 0 implies that no customer

arrives at period i. We denote the number of type-1 (type-2) customers in the entire sequence

as n1 (n2). Note that the optimum offline solution that we denote by OPT (~v) has the following

simple structure: accept all the type-1 customers, and if n1 < b, then accept min{n2, b−n1} type-2
customers. Therefore,

OPT (~v) =min{b,n1}+ amin{n2, (b−n1)
+}, (1)

where (x)+ ,max{x,0}, and we use the symbol “,” for definitions. At each period, a reasonable

online algorithm will accept an arriving type-1 customer if there is inventory left. Thus the main

challenge for an online algorithm is to decide whether to accept/reject an arriving type-2 customer

facing the following natural trade-off: accepting a type-2 customer may result in rejecting a potential

future type-1 customer due to limited inventory; on the other hand, rejecting a type-2 customer

may lead to having unused inventory at the end. Therefore, any good online algorithm needs to

strike a balance between accepting too few and too many type-2 customers. We denote by ALG(~v)

the revenue obtained by an online algorithm.

Next we introduce our partially predictable demand arrival model that works as follows. The

adversary determines an initial sequence which we denote by ~vI = (vI,1, vI,2, . . . , vI,n), where vI,j ∈
{0, a,1}, for 1≤ j ≤ n. However, a subset of customers will not follow this order. We call this subset

the stochastic group, which we denote by S. Each customer joins the stochastic group independently
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bc bc bc bcbc bc bc bc bc

bc bc bc bcb b b b

b b b bbbc bc bc bc

vI,1 = 1 vI,2 = 0 vI,3 = 1 vI,4 = a vI,5 = 1 vI,6 = a vI,7 = 1 vI,8 = 0

v1 = 1 v2 = 1 v3 = 1 v4 = a v5 = a v6 = 0 v7 = 1 v8 = 0

Figure 1 Illustration of the customer arrival model

and with the same probability p. Other customers are in the adversarial group denoted by A.
Customers in the stochastic group are permuted uniformly at random among themselves. Formally,

a permutation σS : S →S is chosen uniformly at random and determines the order of arrivals among

the stochastic group. In the resulting overall arriving sequence, the adversarial group follows the

adversarial sequence according to ~vI , and those in the stochastic group follow the random order

given by σS . Given ~vI , we denote the random customer arrival sequence by ~V = (V1, V2, . . . , Vn),

and the realization of it by ~v= (v1, v2, . . . , vn).

The example presented in Figure 1 illustrates the arrival process. The top row (gray nodes) shows

the initial sequence (~vI). The middle row shows which customers belong to the stochastic group

(the black nodes) and which belong to the adversarial group (the white ones). The bottom row

shows both the permutation σS and the actual arrival sequence. In this example, S = {2,5,6,8},
and σS(2) = 6, σS(5) = 2, σS(6) = 5, and σS(8) = 8.

Note that the extreme cases p = 0 and p = 1 correspond to the adversarial and random order

models that have been studied before (e.g., Ball and Queyranne (2009) and Agrawal et al. (2014),

respectively). Hereafter, we assume that 0 < p < 1. For a given p ∈ (0,1), at any time over the

horizon, we can use the number of past observed type-1 (type-2) customers to obtain bounds on

the number of customers of each type to be expected over the rest of the horizon. This idea is

formalized later in Subsection 3.2 along with further analysis of our model.

Having described the arrival process, we now define the competitive ratio of an online algorithm

under the proposed partially predictable model as follows:

Definition 1. An online algorithm is c-competitive in the proposed partially predictable model

if for any adversarial instance ~vI ,

E

[
ALG(~V )

]
≥ cOPT (~vI),

where the expectation is taken over which customers belong to the stochastic group (i.e., subset

S), the choice of the random permutation σS , and any possibly randomized decisions of the online

algorithm.
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Note that OPT (~V ) = OPT (~vI) and thus, in the above definition, E
[
ALG(~V )

]
≥ cOPT (~vI) is

equivalent to E

[
ALG(~V )

]
≥ cE

[
OPT (~V )

]
.

In Sections 4 and 5, we present two online algorithms that perform well in the proposed partially

predictable model for various ranges of b and n. Before introducing our online algorithms, in the

following subsections we introduce a series of notations used throughout the paper and state a

consequential concentration result that will allow us to partially predict future demand using past

observed data.

3.1. Notational Conventions

Throughout the paper, we use uppercase letters for random variables and lowercase ones for real-

izations. We have already used this convention in defining ~V vs. ~v. We normalize the time horizon

to 1, and represent time steps by λ= 1/n,2/n, . . . ,1. First, we introduce notations related to the

random customer arrival sequence ~V . At any time step λ, for j = 1,2, the number of type-j cus-

tomers to be observed by the online algorithms up to time λ is denoted by Oj(λ). Further, we

denote by OS
j (λ) the number of type-j customers in the stochastic group that arrive up to time

λ in ~V . Note that the online algorithm cannot distinguish between customers in the stochastic

group and customers in the adversarial group. Therefore, the online algorithm does not observe the

realizations of OS
j (λ). We denote realizations of Oj(λ) and OS

j (λ) by oj(λ) and oSj (λ), respectively.

Next, we introduce notations related to the initial adversarial sequence ~vI . As discussed earlier,

we denote the total number of type-j customers in ~vI by nj. In addition, given the sequence ~vI ,

we denote the total number of type-j customers among the first λn customers by ηj(λ). Note that

both nj and ηj(λ) are deterministic. Also, we define õj(λ), (1− p)ηj(λ)+ pλnj and õSj (λ), pλnj

which will serve as deterministic approximations for Oj(λ) and OS
j (λ), respectively (see Lemma 1

and the subsequent discussion for motivation of this definition).

Here we return to the example in Figure 1 and review the notations. Suppose λ = 5/8 and

p=0.5; in this example, looking at the bottom row that shows the sequence ~v, we have: o1(5/8)= 3,

oS1 (5/8)= 1, which are realizations of random variables O1(5/8) and OS
1 (5/8), respectively. Looking

at the top row that shows sequence ~vI , we have: n1 = 4, η1(5/8) = 3, õ1(5/8) = 0.5× 3+ 0.5× 4×
(5/8) = 2.75, and õS1 (5/8)= 0.5×4×(5/8)= 1.25 that are all deterministic quantities. Similarly, for

type-2 customers, o2(5/8)= 2, oS2 (5/8)= 1, n2 = 2, η2(5/8)= 1, õ2(5/8)= 0.5×1+0.5×2× (5/8)=

1.125, and õS2 (5/8)= 0.5× 2× (5/8)= 0.625.

For convenience of reference, in Table 1 we present a summary of the defined notations.

Finally, to avoid carrying cumbersome expressions in the statement of our results for second-order

quantities (e.g., bounds on approximation errors), we use the following approximation notations.



12

Table 1 Notations

~vI ~vI = (vI,1, vI,2, . . . , vI,n), initial customer sequence
S subset of customers in the stochastic group
A subset of customers in the adversarial group
~V ~V = (V1, V2, . . . , Vn), random customer arrival sequence

~v ~v= (v1, v2, . . . , vn), a realization of ~V (what online algorithm actually observes)

nj number of type-j, j = 1,2, customers in ~vI (which is the same as in ~V )
λ normalized time: λ= 1/n, . . . ,1

Oj(λ) random number of type-j customers arriving up to time λ
oj(λ) a realization of Oj(λ)
OS

j (λ) random number of type-j customers in S arriving up to time λ
oSj (λ) a realization of OS

j (λ)
ηj(λ) number of type-j, j = 1,2, customers among the first λn ones in ~vI
õj(λ) (1− p)ηj(λ)+ pλnj (a deterministic approximation of Oj(λ))
õSj (λ) pλnj (a deterministic approximation of OS

j (λ))

Definition 2. Suppose f, g : X → R are two functions defined on set X . We use the notation

f =O(g) if there exists a constant k such that f(x)<kg(x) for all x∈X .

Definition 3. Suppose f, g : N→ R are two functions defined on natural numbers. We use the

notation f = o(g) if limn→∞
f(n)

g(n)
= 0, and the notation f = ω(g) if limn→∞| f(n)g(n)

|=∞.

3.2. Estimating Future Demand

At time λ < 1, upon observing oj(λ), j = 1,2 (but not nj and ηj(λ)), we wish to estimate future

demand, or equivalently the total demand nj. To make such an estimation, we establish the fol-

lowing concentration result:

Lemma 1. Define constants α, 10+2
√
6, ǭ, 1/24, and k, 16. For any ǫ∈ [ 1

n
, ǭ], with probability

at least 1− ǫ, all the following statements hold:

• If n1≥ k
p2
logn, then for all λ∈ {0,1/n,2/n, . . . ,1},

|O1(λ)− õ1(λ)|<α
√

n1 logn, and (2a)

|O1(λ)+O2(λ)− (õ1(λ)+ õ2(λ))|<α
√

(n1 +n2) logn (2b)

• If n2≥ k
p2
logn, then for all λ∈ {0,1/n,2/n, . . . ,1},

|O2(λ)− õ2(λ)|<α
√

n2 logn, and (3a)
∣∣OS

2 (λ)− õS2 (λ)
∣∣<α

√
n2 logn. (3b)

The lemma is proved in Appendix EC.1. Given that there are two layers of randomization (selection

of subset S and the random permutation), proving the above concentration results requires a

fairly delicate analysis that builds upon several existing concentration bounds. Because proving
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concentration results is not the main focus of our work, we will not outline the proof in the

main text, and refer the interested reader to Appendix EC.1.5 Here we focus on the following two

questions: (i) what is our motivation for using deterministic approximations õj(λ) and õSj (λ)? and

(ii) how do such approximations help us to estimate nj?

To answer the first question, let us count the number of type-j customers in Oj(λ) that belong

to the stochastic and adversarial groups separately. We start with the stochastic group. Roughly,

a total of pnj type-j customers belong to the stochastic group, and a λ fraction of them arrive by

time λ, because these customers are spread almost uniformly over the entire time horizon. As a

result, there are approximately pnjλ type-j customers from S arriving up to time λ. Now we move

on to the adversarial group: there are a total of ηj(λ) of type-j customers in the first λn customers

in ~vI . Since with probability 1− p each of them will be in the adversarial group, the total number

of type-j customers from the adversarial group arriving up to time λ is approximately (1−p)ηj(λ).

Combining these two approximate counting arguments gives us:

Oj(λ)≈ (1− p)ηj(λ)+ pλnj = õj(λ). (4)

A similar argument shows thatOS
j (λ)≈ pλnj = õSj (λ). Lemma 1 confirms that these approximations

hold with high probability. Lemma 1 also it provides upper bounds on the corresponding approx-

imation errors. Further, we note that õj(λ) 6= E [Oj(λ)], as shown in Appendix EC.1.1. However,

the difference between the two is very small and vanishing in n. Given that õj(λ) provides a very

intuitive deterministic approximation for random variable Oj(λ) and admits a simple closed-form

expression, we use it instead of the E [Oj(λ)].

Now, let us answer the second posed question. There are simple relations between nj and ηj(λ)

such as nj ≥ ηj(λ) and ηj(λ) + (1− λ)n ≥ nj.
6 Combining these with our deterministic approxi-

mations leads us to compute upper bounds on the total number of customers as established in

Lemma 9.

Finally, based on Lemma 1, we partition the sample space of arriving sequences into two subsets,

E and its complement Ē , and define event E as follows:

Definition 4. Event E occurs if the realized arrival sequence ~v satisfies all the conditions of

Lemma 1, i.e.,

5 We present the values of the constants, defined in the statement of the lemma, only to clarify that they exist and
do not depend on n; however, they are not optimized.

6 The first inequality follows from definition. The second one also follows from definition and from the observation
that the number of type-j customers arriving between λ and 1 cannot be more than the number of remaining time
steps, i.e., (1−λ)n.
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• If n1 ≥ k
p2
logn, then for all λ∈ {0,1/n,2/n, . . . ,1},

|o1(λ)− õ1(λ)|<α
√

n1 logn and |o1(λ)+ o2(λ)− (õ1(λ)+ õ2(λ))|<α
√

(n1 +n2) logn,

• If n2 ≥ k
p2
logn, then for all λ∈ {0,1/n,2/n, . . . ,1},

|o2(λ)− õ2(λ)|<α
√

n2 logn and
∣∣oS2 (λ)− õS2 (λ)

∣∣<α
√

n2 logn.

Lemma 1 confirms that event E occurs with high probability. In all our analyses, we use the above

definition to focus on the event that the deterministic approximations (i.e., õj(λ)) are in fact “very

close” to the observed sequence. This greatly helps us simplify the analysis and its presentation.

4. A Non-Adaptive Algorithm

In this section, we present and analyze our first online algorithm for the resource allocation problem

and the demand model described in Section 3. First, in Section 4.1, we describe the algorithm.

Then, in Section 4.2, we present the analysis of its competitive ratio.

4.1. The Algorithm

Our first algorithm is a non-adaptive online algorithm that uses predetermined dynamic thresholds

to accept or reject customers. This algorithm combines some ideas from the primal algorithm

of Kesselheim et al. (2014) and the threshold algorithm of Ball and Queyranne (2009) to generate

maximal revenue from both the stochastic and adversarial components of the demand.

In particular, our non-adaptive algorithm makes use of the fact that customers from the stochas-

tic group are uniformly spread over the entire horizon. Therefore, at least a fraction p of the

inventory should be allocated at a roughly constant rate. To this end, we define an evolving thresh-

old that works as follows: at any time λ, accept a type-2 customer if the total number of accepted

customers by this rule does not exceed ⌊λpb⌋.
However, the arrival pattern of the other 1−p fraction can take any arbitrary form. In particular,

if the adversary puts many type-2 customers at the very beginning of the time horizon but none

toward the end, then we may reject too many type-2 customers early on. To prevent this loss, we

keep another quota for a type-2 customer rejected by the evolving threshold. We only reject that

customer if the number of such type-2 customers accepted so far exceeds the fixed threshold of

θ, 1−p
2−a

. When p=0, this is the same threshold as in Ball and Queyranne (2009).

The formal definition of our algorithm is presented in Algorithm 1. Note that q1, q2,e, and q2,f

respectively represent counters for the number of accepted type-1 customers, the number of type-2

customers accepted by the evolving threshold, and the number of type-2 customers accepted by

the fixed threshold.
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Algorithm 1 Online Non-adaptive Algorithm (ALG1)

1. Initialize q1, q2,e, q2,f ← 0, and define θ, 1−p
2−a

.

2. Repeat for time λ = 1/n,2/n, . . . ,1, accept customer i = λn arriving at time λ if there is

remaining inventory and one of the following conditions holds:

(a) vi = 1; update q1← q1 +1.

(b) Evolving threshold rule: vi = a and q1 + q2,e < ⌊λpb⌋; update q2,e← q2,e+1.

(c) Fixed threshold rule: vi = a and q2,f < ⌊θb⌋; update q2,f ← q2,f +1.

We prioritize the evolving threshold rule if both of the last two conditions are satisfied.

4.2. Competitive Analysis

In this subsection, we analyze the competitive ratio of Algorithm 1. Our main result is the following

theorem:

Theorem 1. For p ∈ (0,1), the competitive ratio of Algorithm 1 is at least p + 1−p
2−a
−

O

(
1

a(1−p)p

√
logn
b

)
in the partially predictable model.

Before proceeding to the proof of the above theorem, we make the following remarks:

Remark 1. Our competitive analysis of Algorithm 1 is tight (up to an O

(√
logn
b

)
term). In

particular, for the following instance, Algorithm 1 can attain only a p+ 1−p
2−a

fraction of the optimum

offline solution: Suppose b= n and all customers are of type-2. The revenue of the optimum offline

algorithm is ab. On the other hand, if we employ Algorithm 1, at the end we will have q1 = 0,

q2,e ≤ pb and q2,f ≤ θb. This results in a competitive ratio of at most p+ θ= p+ 1−p
2−a

.

Remark 2. In Subsection 6.1, we prove that no online algorithm can have a competitive ratio

larger than p+ 1−p
2−a

+ o(1) when b= o (
√
n). On the other hand, Theorem 1 indicates that Algo-

rithm 1 achieves a competitive ratio of p+ 1−p
2−a
−o(1) when b= ω(logn). Combining the two results

implies that for fixed a and p, Algorithm 1 achieves the best possible competitive ratio (up to an

o(1) term) in the regime where conditions b= ω(logn) and b= o(
√
n) hold simultaneously.

Remark 3. Note that even though p+ 1−p
2−a

is the convex combination of the competitive ratios

of Ball and Queyranne (2009) and of Agrawal et al. (2014), it cannot be achieved by simply ran-

domizing between these two algorithms. Suppose we flip a biased coin; with probability p, we follow

the algorithm of Agrawal et al. (2014) (or any other algorithms designed for a random order model

such as Kesselheim et al. (2014)) and with probability (1− p) we follow the fixed threshold algo-

rithm of Ball and Queyranne (2009). In Subsection 6.2 we show that for a certain class of instances,

such a randomized algorithm does not generate p+ 1−p
2−a

fraction of the optimum offline solution.
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Proof of Theorem 1: We start the proof by making the following observation: Theorem 1 is non-

trivial only if
√

logn
b

is small enough, such that the approximation term O(·) is negligible. Therefore,
without loss of generality, we can restrict attention to the case where

√
logn
b

is small. In particular,

recalling that we defined constant ǭ= 1/24 in Lemma 1, if 1
a(1−p)p

√
logn
b
≥ ǭ, then O

(
1

a(1−p)p

√
logn
b

)

becomes O(1) and Theorem 1 becomes trivial. Therefore, without loss of generality, we assume

1
a(1−p)p

√
logn
b

< ǭ, or equivalently,

b >
1

ǭ2
logn

a2(1− p)2p2
. (5)

We denote the random revenue generated by Algorithm 1 by ALG1(~V ). To analyze E
[
ALG1(~V )

]

we condition it on the event E . Thus we have:

E

[
ALG1(~V )

]

OPT (~vI)
≥

E

[
ALG1(~V )|E

]
P (E)

OPT (~vI)
.

Define ǫ , 1
a(1−p)p

√
logn
b

. For b that satisfies condition (5), and assuming that n ≥ 3, we have

1
n
≤ ǫ≤ ǭ. Therefore, we can apply Lemma 1 to get:

E

[
ALG1(~V )

]

OPT (~vI)
≥

E

[
ALG1(~V )|E

]
P (E)

OPT (~vI)
≥

E

[
ALG1(~V )|E

]

OPT (~vI)
(1− ǫ) .

This will allow us to focus on the realizations that belong to event E . In the main part of the

proof we show that, for any realization ~v belonging to event E ,

ALG1(~v)

OPT (~vI)
≥ p+

1− p

2− a
−O(ǫ).

Fixing a realization ~v that belongs to event E , we define q1(λ), q2,e(λ), and q2,f(λ) to be the

values of counters q1, q2,e, and q2,f right after the algorithm determines whether to accept the

customer arriving at time λ. Further, we define ∆, α
√
b logn (constant α is defined in Lemma 1).

To analyze the competitive ratio we analyze three cases separately.

Case (i): n1 ≥ k
p2
logn, and Algorithm 1 exhausts the inventory.

Note that when n1 ≥ k
p2

logn, we can apply the concentration result (2a) from Lemma 1. When

Algorithm 1 exhausts the inventory it is possible that the algorithm accepts too many type-2

customers, which results in rejecting type-1 customers and losing revenue. We control for this loss
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by establishing the following upper bound on the number of type-2 customers accepted by the

evolving threshold.7 In particular, we have the following lemma:

Lemma 2. Under event E, if n1≥ k
p2
logn, then

q2,e(1)≤ p(b−n1)
+ +∆.

Proof: We assume, without loss of generality, that n1 ≤ b. Otherwise, we construct a modified

adversarial instance, denoted by ~vI,M , as follows: keep an arbitrary subset of type-1 customers with

size b in ~vI (before the random permutation), and remove the remaining type-1 customers (e.g., set

their revenue to be 0). For the same realization of the stochastic group and random permutation,

we claim that at any time λ ∈ {1/n, . . . ,1}, the number of type-2 customers accepted through the

evolving threshold rule in the original instance is not larger than that in the modified one. This

holds because o1(λ,~v)≥ o1(λ,~vM ), where the second argument is added to o1(·, ·) to indicate the

corresponding instance. Note that because the algorithm accepts all type-1 customers, this implies

q1(λ,~v) ≥ q1(λ,~vM ), which proves our claim (i.e., q2,e(λ,~v) ≤ q2,e(λ,~vM )). Thus, without loss of

generality, we assume n1 ≤ b. Further, note that because of condition (5), we have n1(~vM) = b≥
k
p2
logn.8 Thus we are still in Case (i) for the modified instance.

If no type-2 customer is accepted by the evolving threshold, then q2,e(1) = 0 and the proof is

complete. Otherwise, let λ̄≤ 1 be the last time that a type-2 customer is accepted by the evolving

rule. Then we have

q2,e(1) =q2,e(λ̄)≤ λ̄pb− o1(λ̄) (Evolving threshold rule)

≤λ̄pb− (λ̄pn1 +(1− p)η1(λ̄)−∆)) ((2a))

≤p(b−n1)+∆. (η1(λ̄)≥ 0, n1 ≤ b, and λ̄≤ 1)

The reason for each inequality appears in the same line. We remark that in the second inequality,

we crucially use the concentration result of Lemma 1. �

Using Lemma 2, we prove, in Appendix EC.2, the following lemma that gives a lower bound on

the competitive ratio for Case (i):

Lemma 3. Under event E, if n1 ≥ k
p2
logn and q1(1)+q2,e(1)+q2,f(1) = b, then ALG1(~v)

OPT (~v)
≥ p+ 1−p

2−a
−

(1−a)∆

ab
.

7 Note that we already have an upper bound on the number of type-2 customers accepted by the fixed threshold:
q2,f (1)≤ θb.

8 This follows from Condition (5) and the fact that 1
a2(1−p)2

> 1 and by definition (given in Lemma 1) 1
ǭ2

≥ k which

imply 1
ǭ2

1
a2(1−p)2

≥ k.
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Case (ii): n1 ≥ k
p2

logn, and Algorithm 1 does not exhaust the inventory.

In this case, all type-1 customers are accepted. Therefore, the ratio between ALG1(~v) and

OPT (~v) can be expressed as:

ALG1(~v)

OPT (~v)
=

n1 + a [q2,e(1)+ q2,f(1)]

n1 + amin{n2, (b−n1)}
.

The only “mistake” that the algorithm may make is to reject too many type-2 customers. The

following lemma establishes a lower bound on the number of accepted type-2 customers:

Lemma 4. Under event E, if n1≥ k
p2
logn and q1(1)+q2,e(1)+q2,f(1)< b, then one of the following

conditions holds:

(a) q2,e(1)+ q2,f(1) = n2,

(b) q2,f(1) = ⌊θb⌋ and n1 > bp− 3∆, or

(c) q2,f(1) = ⌊θb⌋, n1 ≤ bp− 3∆, and q2,e(1)≥ (p(n1+n2)−n1− 5∆)
+
.

Proof: First note that q2,f(1) < ⌊θb⌋ means that Algorithm 1 never rejects a type-2 customer.

This implies that q2,e(1) + q2,f(1) = n2, i.e., condition (a) holds. Now suppose q2,f(1) = ⌊θb⌋. If
n1 > bp − 3∆, then condition (b) holds. The most interesting case is when q2,f(1) = ⌊θb⌋, and

n1 ≤ bp− 3∆. In the following, we show that in this case, condition (c) will hold.

In this case, without loss of generality, we can assume n1 + n2 ≤ b. Otherwise, we construct an

alternative adversarial instance, denoted by ~vI,A, as follows: keep an arbitrary subset of type-2

customers with size b−n1 in ~vI (before the random permutation), and remove the remaining type-2

customers (e.g., set their revenue to be 0). With the same realization of the stochastic group and

random permutation, we claim that:

q2,e(λ,~v)≥ q2,e(λ,~vA), λ∈ {0,1/n, . . . ,1}. (6)

To show (6), we use induction. The base case, corresponding to taking λ= 0, is trivial. Suppose

(6) holds for λ−1/n. We show it will hold for λ as well. At time λ, if q2,e(λ,~vA) = q2,e(λ−1/n,~vA),

then (6) holds because q2,e(λ,~v) ≥ q2,e(λ− 1/n,~v). Otherwise, q2,e(λ,~vA) = q2,e(λ− 1/n,~vA) + 1.

This implies that a type-2 customer arrives at time λ in ~vA, and thus also in ~v. If q2,e(λ,~v) =

q2,e(λ− 1/n,~v)+1, then (6) again holds. Otherwise, under customer arrival sequence ~v, we do not

accept the type-2 customer at time λ by the evolving threshold rule, which means that o1(λ,~v)+

q2,e(λ,~v) = ⌊λpb⌋. Because o1(λ,~vA)+ q2,e(λ,~vA)≤ ⌊λpb⌋, and o1(λ,~v) = o1(λ,~vA), we can conclude

that (6) holds in the last case as well. This concludes the induction. Thus, without loss of generality,

we assume n1 +n2 ≤ b.
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To prove that condition (c) holds when q2,f(1) = ⌊θb⌋ and n1 ≤ bp− 3∆, we make two impor-

tant observations: (i) In this case, the number of type-2 customers is large enough to apply the

concentration results of (3b). In particular, we have:

n2 ≥ θb≥ k logn

p2
(7)

where the last inequality holds because of (5), and definitions of θ = 1−p
2−a

and k (defined in

Lemma 1). (ii) The number of type-1 customers is so small that after a certain time the evolv-

ing threshold accepts a sufficient number of type-2 customers that ensures condition (c) holds. In

particular, define

λ̄,
1

n
⌈n(n1(1− p)+ 3∆)

p(b−n1)
⌉.

Note that λ̄≤ 1 when n1 ≤ bp− 3∆. For any λ≥ λ̄, we have:

o1(λ)+ oS2 (λ)− oS2 (λ̄)≤ λpn1 +(1− p)η1(λ)+∆+λpn2 +∆− (λ̄pn2−∆) ((2a), (3b))

≤ λpn1 +(1− p)n1+(λ− λ̄)pn2 +3∆ (η1(λ)≤ n1)

= λ̄pn1 +(1− p)n1+(λ− λ̄)p(n1 +n2)+ 3∆

≤ λ̄pn1 +(1− p)n1+(λ− λ̄)pb+3∆ (n1+n2 ≤ b)

≤ λpb. (definition of λ̄)

Note that because o1(λ)+ oS2 (λ)− oS2 (λ̄) is an integer, the above inequality also implies

o1(λ)+ oS2 (λ)− oS2 (λ̄)≤ ⌊λpb⌋ for all λ≥ λ̄. (8)

Further, the above inequality implies that for λ≥ λ̄, there is a gap between o1(λ) and the evolving

threshold ⌊λpb⌋, which in turn implies that the evolving threshold will accept type-2 customers.

Next, for λ≥ λ̄, we establish a lower bound on the number of type-2 customers that the evolving

threshold accepts. In particular, we show that

q2,e(λ)≥ oS2 (λ)− oS2 (λ̄) for all λ≥ λ̄. (9)

We show (9) by induction. The base case λ = λ̄ is trivial. Suppose (9) holds for λ− 1/n ≥ λ̄.

We show it will also hold for λ: If the arriving customer is not a type-2 customer belonging to

the stochastic group, then oS2 (λ) = oS2 (λ− 1/n); but q2,e(λ) ≥ q2,e(λ− 1/n), and thus (9) holds.

Otherwise, we have oS2 (λ) = oS2 (λ− 1/n) + 1. Now if this customer is accepted by the evolving

threshold rule, then both sides of (9) are increased by one, and thus inequality (9) still holds.

Otherwise, if the customer is not accepted, it implies we have reached the threshold. Therefore
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q2,e(λ) = ⌊λpb⌋− o1(λ). (10)

Now we utilize the gap between ⌊λpb⌋ and o1(λ) that we established above in (8). Combining

(10) and (8) proves that (9) holds in this case as well. This completes the induction, and thus the

proof of (9).

We complete the proof of the lemma by using (9) with λ= 1, to have the following lower bound:

q2,e(1)≥oS2 (1)− oS2 (λ̄) ((9))

≥pn2−∆− (λ̄pn2 +∆) ((3b))

≥pn2− (n1(1− p)+ 3∆)− 2∆ (b−n1≥ n2)

=p(n1 +n2)−n1− 5∆.

�

Using Lemma 4, we prove, in Appendix EC.2, the following lemma that gives a lower bound on

the competitive ratio for Case (ii):

Lemma 5. Under event E, if n1≥ k
p2
logn and q1(1)+ q2,e(1)+ q2,f(1)< b, then

ALG1(~v)

OPT (~v)
≥ p+

1− p

2− a
− 5∆

θb
.

Case (iii): n1 <
k
p2
logn.

The competitive ratio analysis for Case (iii) is fairly similar to that for Case (ii). It follows from

the next two lemmas. The proofs are deferred to Appendix EC.2.

Lemma 6. Under event E, if n1 <
k
p2
logn, then one of the following conditions holds:

(a) q1(1)+ q2,e(1)+ q2,f(1) = b,

(b) q1(1) = n1 and q2,e(1)+ q2,f(1) = n2, or

(c) q1(1) = n1, q2,f (1) = ⌊θb⌋ and q2,e(1)≥ pn2− k
p2

logn− 4∆.

Using Lemma 6, the following lemma (proven in Appendix EC.2) gives a lower bound on the

competitive ratio for Case(iii):

Lemma 7. Under event E, if n1 <
k
p2
logn, then

ALG1(~v)

OPT (~v)
=

n1 + a [q2,e(1)+ q2,f(1)]

n1 + amin{n2, (b−n1)}
≥min

{
p+

1− p

2− a
−

k
p2
logn

ab
, p+

1− p

2− a
−

k
p2
logn+4∆

θb

}
.
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Using Lemmas 3, 5, and 7, we have lower bounds on the competitive ratio of Algorithm 1

for all possible cases. We complete the proof of the theorem by the following lemma (proven in

Appendix EC.2) that ensures that the error terms in Lemmas 3, 5, and 7 are O(ǫ).

Lemma 8. The error terms in Lemmas 3, 5, and 7 are O(ǫ), i.e., we have: (a) (1−a)∆

ab
= O(ǫ),

(b) 5∆
θb

=O(ǫ), (c)
k
p2

logn

ab
=O(ǫ), and (d)

k
p2

logn+4∆

θb
=O(ǫ).

�

5. The Adaptive Algorithm

In the design of Algorithm 1, we used the observation that in the partially predictable model,

the demand has a stochastic component that is uniformly spread over the entire horizon. This

observation motivated us to define the evolving threshold rule. We remark that in Algorithm 1

neither the evolving threshold rule nor the fixed threshold rule adapts to the observed data, which

makes Algorithm 1 a non-adaptive algorithm. As noted in Remark 3, when the initial inventory b

is small compared to the horizon n, the competitive ratio of Algorithm 1, p+ 1−p
2−a

, is in fact the

best possible, and it can be achieved with our non-adaptive algorithm. Therefore, in this regime,

adapting to the data, i.e., setting thresholds based on the observed data, would not improve the

performance. More precisely, when b = o(
√
n) the inventory is so small compared to the time

horizon that there may not be enough time to effectively adapt to the observed data. The adversary

can mislead us to allocate all the inventory before we can observe a sufficient portion of the

data. However, as b becomes larger, we will have more chance to observe and adapt to the data

before allocating a significant part of the inventory. In this section, in fact, we design an adaptive

algorithm that achieves a better competitive ratio for large enough b (relative to n). In Section 5.1,

we first present the ideas behind our adaptive algorithm along with its formal description. Then,

in Section 5.2, we analyze the competitive ratio of our algorithm.

5.1. The Algorithm

In this section, we describe our adaptive algorithm, denoted by ALG2,c, which takes c ∈ [0,1] as

a parameter. For a certain range of c, we show that ALG2,c attains a competitive ratio of c (up

to an error term); however, if c becomes too large (for example if c = 1), then ALG2,c no longer

guarantees a c fraction of the optimum offline solution. We call this algorithm adaptive because

it makes decisions based on the sequence of arrivals it has observed so far. In particular, this

algorithm repeatedly computes upper bounds on the total number of type-1/-2 customers based

on the observed data and uses these upper bounds to decide whether to accept an arriving type-2

customer or not. Before proceeding with the algorithm, we first introduce two functions u1(λ) and
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u1,2(λ) that will prove useful in constructing the aforementioned upper bounds. In particular we

define:

u1(λ),

{
b if λ< δ (not enough data observed).

min
{

o1(λ)

λp
, o1(λ)+(1−λ)(1−p)n

1−p+λp

}
if λ≥ δ.

u1,2(λ),

{
b if λ< δ (not enough data observed).

min
{

o1(λ)+o2(λ)

λp
, o1(λ)+o2(λ)+(1−λ)(1−p)n

1−p+λp

}
if λ≥ δ,

where δ , (1−c)b

(1−a)n
. Note that u1(λ) and u1,2(λ) are functions of the observed data o1(λ) and o2(λ).

In the following lemma, we show how u1(λ) and u1,2(λ) provide upper bounds on n1 and n1 + n2

when the realized sequence, ~v, belongs to event E and the number of type-1 customers as well

as the initial inventory b is large enough (as specified in the lemma’s statement). Recall that we

defined ∆ to be α
√
b logn, where constant α itself is defined in Lemma 1.

Lemma 9. Under event E, suppose n1 ≥ k
p2

logn and b >
(

1
ǭ

n
√
logn

(1−c)2ap3/2

) 2
3

, where constants k and ǭ

are defined in Lemma 1. Then for all λ∈ {1/n,2/n, . . . ,1},

u1(λ)≥min

{
b,n1−

2∆

δp

}
, and (11a)

u1,2(λ)≥min

{
b,n1 +n2−

2∆

δp

}
. (11b)

Lemma 9 is proven in Appendix EC.3.

Having defined u1(λ) and u1,2(λ), now we describe how the adaptive algorithm determines

whether to accept an arriving type-2 customer when there is remaining inventory. In the following,

qj(λ), j = 1,2, represents the number of type-j customers accepted by the algorithm up to time λ

(for a particular realization ~v). Suppose the arriving customer at time λ is of type-2. If u1,2(λ)< b,

then we accept the customer, because (11b) implies that the total number of type-1 and type-2

customers will not exceed b (neglecting the error term), and thus we will have extra inventory at

the end. On the other hand, if u1,2(λ)≥ b, we may want to reject this customer to reserve inven-

tory for a future type-1 customer. The decision of whether to accept the customer is based on the

following two observations:

Observation 1 If u1(λ)≥ n1, then

OPT (~v)≤min{n1, b}+ a(b−n1)
+ = (1− a)min{n1, b}+ ab≤min{u1(λ), b}(1− a)+ ab.

Observation 2 If we accept the current type-2 customer, then the maximum revenue we can get

is (b− (q2 (λ− 1/n)+ 1))+ a (q2 (λ− 1/n)+ 1) .
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To have a competitive ratio of at least c, Observations 1 and 2 motivate us to accept the type-2

customer only if

(b− (q2 (λ− 1/n)+ 1))+ a (q2 (λ− 1/n)+ 1)

min{u1(λ), b}(1− a)+ ab
≥ c. (12)

After rearranging terms, we get the following threshold for accepting the type-2 customer:

q2(λ− 1/n)+ 1≤ 1− c

1− a
b+ c (b−u1(λ))

+
. (13)

Thus when u1,2(λ)≥ b, we use Condition (13) to accept/reject a type-2 customer. For notational

convenience, we define φ, 1−c
1−a

. We point out the right-hand side of (13) may not be an integer;

thus, in our algorithm, we use a slightly modified version of it, defined as follows:

q2(λ− 1/n)≤ ⌊1− c

1− a
b+ c (b−u1(λ))

+⌋. (14)

Note that by the definition of the threshold given in (14), we always accept the first ⌊φb⌋ type-2
customers. The formal definition of our algorithm is presented in Algorithm 2. In Algorithm 2, qj

represents the counter for the number of accepted customers of type-j so far.

Algorithm 2 Online Adaptive Algorithm (ALG2,c)

1. Initialize q1, q2← 0, and define φ, 1−c
1−a

, and δ , φb
n
.

2. Repeat for time λ= 1/n,2/n, . . . ,1:

(a) Calculate functions u1(λ) and u1,2(λ) (to construct upper bounds for n1 and n1 +n2):

u1(λ),

{
b if λ< δ (not enough data observed).

min
{

o1(λ)

λp
, o1(λ)+(1−λ)(1−p)n

1−p+λp

}
if λ≥ δ.

u1,2(λ),

{
b if λ< δ (not enough data observed).

min
{

o1(λ)+o2(λ)

λp
, o1(λ)+o2(λ)+(1−λ)(1−p)n

1−p+λp

}
if λ≥ δ.

(b) Accept customer i= λn arriving at time λ if there is remaining inventory and one of the

following conditions holds:

i. vi =1; update q1← q1 +1.

ii. vi = a and u1,2(λ)< b; update q2← q2 +1.

iii. vi = a and q2≤ ⌊φb+ c (b−u1(λ))
+⌋; update q2← q2 +1.

We prioritize the second condition if both the second and the third ones hold.

Before we analyze the algorithm, we highlight two key properties of threshold ⌊φb +

c (b−u1(λ))
+⌋: (i) The threshold is decreasing in u1(λ); the smaller u1(λ) is, the less inventory we

reserve for future type-1 customers. (ii) The threshold is decreasing in c as well (the right-hand side
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of (14) can be expressed as ⌊ 1
1−a

b− c( b
1−a
− (b−u1(λ))

+
)⌋). When c is too large, we may reject too

many type-2 customers, which in turn hurts the revenue in a certain class of instances. Said another

way, note that Inequality (14) only gives a “necessary” condition for achieving c-competitiveness.

We identify the sufficient condition for c-competitiveness by solving the factor-revealing mathemat-

ical program presented in (MP1). We will explain the construction of this program in the analysis

of the competitive ratio (in Section 5.2). On a high level, we construct the feasible region such that

it contains any valid instance that can violate the c-competitiveness; by minimizing over c, we find

the smallest value of c for which the feasible region is not empty.

Minimize
(l,n1,n2,η1,η2,c)

c (MP1)

subject to

c≥
a(n2− õ2 +

b
1−a

)+n1

amin{n1 +n2, b}+(1− a)n1 +
a2b
1−a

+ amin{ũ1, b}
(15a)

ũ1,2 ≥ b (15b)

l≤ 1 (15c) η1 + η2 ≤ ln (15d) η1 ≤ n1 (15e) η2 ≤ n2 (15f)

n1≤ b (15g) n1 +n2 ≤ n (15h) n1 +n2 ≤ η1 + η2 +(1− l)n (15i)

where õ1 , (1 − p)η1 + pn1l, õ2 , (1 − p)η2 + pn2l, ũ1 , min
{

õ1
lp
, õ1+(1−l)(1−p)n

(1−p+lp)

}
, and

ũ1,2 ,min
{

õ1+õ2
lp

, õ1+õ2+(1−l)(1−p)n

(1−p+lp)

}
.

Before we analyze Algorithm 2, we also evaluate the solution of (MP1). Denote the optimal objective

value of (MP1) by c∗. As will be stated in Theorem 2, ALG2,c∗ achieves a competitive ratio of

c∗ (minus an error term). First, we solve (MP1) numerically for the regime where b= κn (where

0<κ≤ 1 is a constant), and show that if b/n> 0.5, then Algorithm 2 achieves a better competitive

ratio than Algorithm 1.

In Figure 2, we fix a=0.5,0.7, and plot c∗ for p= 0.05,0.1, . . . ,0.95 for three cases of b/n= 0.9,

0.7, and 0.5. Figure 2 leads us to make the following observation: The competitive ratio of ALG2,c∗

is at least that of ALG1, and it is significantly larger when (i) p is small and (ii) b/n is large. This

observation highlights the power of adapting to the data, even though it contains an adversarial

component: Consider a=0.7, b= 0.7n and p= 0.2; this means that 80% of the demand belongs to

the adversarial group. Our adaptive algorithm guarantees 10% more revenue than the non-adaptive

algorithm does.

In addition, we note that as the initial inventory b becomes larger (for a fixed time horizon n),

the adversary’s power naturally declines. Thus one would expect that a “smart” algorithm achieves
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Figure 2 Solution of (MP1), c∗, vs. p for a= 0.50 and 0.70

a higher competitive ratio. Our adaptive algorithm indeed attains a higher competitive ratio as

the initial inventory increases. In contrast, the competitive ratio of our non-adaptive algorithm

remains the same.

We conclude our study of (MP1) by establishing a lower bound on its optimum solution. The

following proposition states that c∗ is at least p+ 1−p
2−a

, which is the competitive ratio of Algorithm 1

(ignoring the error term).

Proposition 1. For any b≤ n, we have: c∗ ≥ p+ 1−p
2−a

. Further, if b= n, then c∗ = 1.

5.2. Competitive Analysis

In this section we analyze the competitive ratio of Algorithm 2 and prove the following theorem:

Theorem 2. For p ∈ (0,1), let c∗ be the optimal objective value of (MP1). For any c ≤ c∗ such

that c < 1, ALG2,c is c−O

(
1

(1−c)2ap3/2

√
n2 logn

b3

)
competitive in the partially predictable model.

The above theorem implies that if c∗ < 1, then ALG2,c∗ is c∗−O

(
1

(1−c∗)2ap3/2

√
n2 logn

b3

)
compet-

itive. However, the same does not hold when c∗ = 1. For this special case, we have the following

corollary of Theorem 2:

Corollary 1. When c∗ = 1, for c = 1− 3

√
1

ap3/2

√
n2 logn

b3
the competitive ratio of ALG2,c is 1−

O

(
3

√
1

ap3/2

√
n2 logn

b3

)
.

Remark 4. Theorem 2 combined with Proposition 1 shows that in the asymptotic regime (where n

and b both grow), if the scaling factor
√

n2 logn
b3

(which appears in the error term of the competitive

ratio) is vanishing (i.e., order of o(1)), then our adaptive algorithm outperforms our non-adaptive

one. For instance, the aforementioned condition holds if b= κn where 0<κ≤ 1 is a constant.
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Proof of Theorem 2: Similar to the proof of Theorem 1, we start by making the observation that

Theorem 2 is nontrivial only if
√

n2 logn
b3

is small enough such that the approximation term O(·) is
negligible. Therefore, without loss of generality, we can restrict attention to the case where

√
n2 logn

b3

is small. In particular, if 1

(1−c)2ap3/2

√
n2 logn

b3
≥ ǭ, then O

(
1

(1−c)2ap3/2

√
n2 logn

b3

)
becomes O(1) and

Theorem 2 becomes trivial (recall that constant ǭ= 1/24 is defined in Lemma 1). Therefore, without

loss of generality, we assume 1

(1−c)2ap3/2

√
n2 logn

b3
< ǭ, or equivalently,

b
3
2 >

1

ǭ

n
√
logn

(1− c)2ap3/2
. (16)

We remark that we impose the same condition on b in Lemma 9. We denote the random rev-

enue generated by Algorithm 2 by ALG2,c(~V ). Similar to the proof of Theorem 1, we define an

appropriate ǫ that allows us to focus on the realizations that belong to event E . In particular,

let ǫ = 1

(1−c)2ap3/2

√
n2 logn

b3
. For b that satisfies condition (16), and assuming that n ≥ 3, we have

1
n
≤ ǫ≤ ǭ. Therefore, we can apply Lemma 1 to get:

E

[
ALG2,c(~V )

]

OPT (~vI)
≥

E

[
ALG2,c(~V )|E

]
P (E)

OPT (~vI)
≥

E

[
ALG2,c(~V )|E

]

OPT (~vI)
(1− ǫ) .

In the main part of the proof, we show that for any realization ~v belonging to event E ,

ALG2,c(~v)

OPT (~vI)
≥ c−O(ǫ).

To analyze the competitive ratio we analyze three cases separately.

Case (i): n1 ≥ k
p2
logn, and Algorithm 2 exhausts the inventory.

When n1 ≥ k
p2
logn, we can apply (2a) from Lemma 1 and Lemma 9. Because Algorithm 2

exhausts the inventory, we know that n1 + n2 ≥ b. Now we have either (a) n1 +n2− 2∆
δp
≤ b or (b)

n1+n2− 2∆
δp

> b. If (a) happens, then (according to Lemma 9) we may have u1,2(λ)< b, which may

result in accepting a type-2 customer through the second condition that we should have rejected.

However, in this case, we also have a tight upper bound on the optimum offline solution. As shown

in the proof of Lemma 11—which analyzes the competitive ratio of the two cases (a) and (b)

separately—such a bound allows us to establish the desired lower bound on the competitive ratio.

Case (b) is the more interesting case, which accepts type-2 customers through the third condition

of Algorithm 2. It is possible that the algorithm accepts too many type-2 customers through

this condition, resulting in rejecting type-1 customers, and thus in revenue loss. In the following
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lemma, we control for this loss by establishing an upper bound on the number of accepted type-2

customers. The proof of the lemma, which uses similar ideas to those in Lemma 2, is deferred to

Appendix EC.3.

Lemma 10. Under event E, if n1 ≥ k
p2
logn, then one of the following conditions holds:

(a) n1 +n2− 2∆
δp
≤ b, or

(b) n1 +n2− 2∆
δp

> b and q2(1)≤ 1−c
1−a

b+ c (b−n1)
+
+ c 2∆

δp
+1.

Using Lemma 10 and the discussion before the lemma, in Appendix EC.3, we prove the following

lemma, which gives a lower bound on the competitive ratio for Case (i):

Lemma 11. Under event E, if n1 ≥ k
p2
logn and q1(1)+ q2(1) = b, then

ALG2,c(~v)

OPT (~v)
≥ c− 3∆

abδp
.

Case (ii): n1 ≥ k
p2

logn, and Algorithm 2 does not exhaust the inventory.

First note that in this case OPT (~v) = n1 + amin{b− n1, n2}. Also, in this case, we accept all

type-1 customers. Therefore, q1(1) = n1. To lower-bound the competitive ratio, we need to show

only that we do not reject too many type-2 customers, i.e., q2(1) is large enough. Note that if for

all λ∈ {1/n,2/n, . . . ,1}, condition (14) holds, then all type-2 customers are accepted, and we have

q2(1) = n2. This implies that ALG2,c(~v) =OPT (~v). The more interesting case is when there exists

at least one time step for which condition (14) is violated. Let l be the last time that we reject a

type-2 customer. This means that at time l, we have:

u1,2(l)≥ b, (17) q2(l)≥
1− c

1− a
b+ c (b−u1(l))

+
. (18)

This also provides the following lower bound on the number of accepted type-2 customers:

q2(1) = q2(l)+ [n2− o2(l)]≥
1− c

1− a
b+ c (b−u1(l))

+
+
[
n2− o2(λ̄)

]
. (19)

Therefore, when q1(1)+ q2(1)< b,

ALG2,c(~v)

OPT (~v)
≥

n1 + a
(

1−c
1−a

b+ c (b−u1(l))
+
+ [n2− o2(l)]

)

n1 + amin{b−n1, n2}
. (20)

For a fixed c, if for all possible instances the right-hand side of (20) is greater than c, then

ALG2,c would be c-competitive. However, if c is too large, then there will be instances for which the

right-hand side of (20) will be less than c. We identify a superset of these instances by all possible

combinations of (l, n1, n2, η1(l), η2(l)) that satisfy certain constraints to ensure they correspond to

valid instances. As a reminder, ηj(l) represents the number of type-j customers by time l in the
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initial sequence (determined by the adversary, i.e., ~vI). As we describe these constraints below,

it becomes clear that (1) any instance of the problem would satisfy all these constraints, and (2)

these constraints correspond to the feasible region of the mathematical program in (MP1).

We start with the straightforward constraints: for every instance, n1 + n2 ≤ n. Also, η1(l)≤ n1,

and η2(l)≤ n2. Further, in the initial customer sequence ~vI , at time l we cannot have more than

ln customers, thus η1(l) + η2(l) ≤ ln. Similarly after time l, we cannot have more than (1− l)n

customers, and therefore n1 + n2 − [η1(l)+ η2(l)]≤ (1− l)n. By definition of l, we have l ≤ 1. We

also add the condition n1 ≤ b, which is always true under the case when q1(1) + q2(1) < b. Note

that these are Constraints (15c)-(15i) in (MP1), where in (MP1), with a slight abuse of notation,

we simplify by substituting ηj for ηj(l).

For a moment, suppose oj(l) = õj(l). First, we remind the reader that õj(l) = (1− p)ηj(l)+ plnj

is the deterministic approximation of oj(l) that we introduced in Section 3, and also is redefined

in (MP1) (at the bottom). Further, note that this is just to explain the idea behind constructing

(MP1). Later in the proof, we address the difference between õj(l) and oj(l). In this case, we have:

ũ1,2(l),min

{
õ1(l)+ õ2(l)

lp
,
õ1(l)+ õ2(l)+ (1− l)(1− p)n

(1− p+ lp)

}
= u1,2(l)≥ b (21)

where the last inequality is the same as inequality (17). Further note that rejecting a customer at

time l implies that l≥ φb
n
= δ, and thus by definition u1,2(l) =min

{
o1(l)+o2(l)

lp
, o1(l)+o2(l)+(1−l)(1−p)n

1−p+lp

}
.9

Note that Inequality (21) is Constraint (15b), where in (MP1), again with a slight abuse of notation,

we simplify by substituting ũ1,2 for ũ1,2(l) and õj for õj(l).

Further, the most interesting constraint, Constraint (15a), comes from condition (20). By rear-

ranging terms, we can show that the right-hand side of (20) being smaller or equal to c is equivalent

to:

c≥
a(n2− o2(l)+

b
1−a

)+n1

amin{n1 +n2, b}+(1− a)n1 +
a2b
1−a

+ amin{u1(l), b}
(22)

which is Constraint (15a) after substituting o2(l) with õ2 and u1(l) with ũ1.

Overall, the above conditions define the feasible region of the math program (MP1). By mini-

mizing c, we find the threshold for making (MP1) infeasible: Let c∗ be the solution of (MP1); for

any c < c∗, (MP1) is infeasible, and the only constraint that (l, n1, n2, η1(l), η2(l), c) can violate is

(15a) (same as (22)). This implies that ALG2,c is c-competitive.

We now go back and address the issue that õj(l) and oj(l) are not equal. Due to the difference

between oj(l) and õj(l), (1) Constraint (15b) might be violated (even though (17) is satisfied)

9 Note that when l < δ Algorithm 2 never rejects a customer, because q2(l)≤ ln < δn= φb.
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and (2) violating Constraint (15a) does not imply violating (22). To address these issues, first

in Lemma 12, we give a slightly modified tuple that satisfies Constraints (15b)-(15i); then, in

Lemma 13, we prove that for any c≤ c∗, if Constraint (15a) is violated, then
ALG2,c(~v)

OPT (~v)
≥ c− 4∆n

φ2b2p
.

The proofs of both lemmas are deferred to Appendix EC.3, and they amount to applying the

concentration results of Lemma 1 and carefully analyzing the error terms. These two lemmas

complete the analysis of competitive ratio in Case (ii).

Lemma 12. Under event E, if n1 ≥ k
p2

logn and q1(1) + q2(1) < b, then the tuple

(l′, n′
1, n

′
2, η

′
1, η

′
2, c

′), (l, n1, n2 + ξ, η1(l), η2(l)+ ξ̄, c) satisfies Constraints (15b)-(15i), where

ξ ,

{
0 if n1 +n2 ≥ b,

min
{
n− (n1 +n2),

∆n
φbp

}
if n1 +n2 < b;

ξ̄ ,

{
0 if n1 +n2 ≥ b,

min{ξ, ln− (η1(l)+ η2(l))} if n1 +n2 < b,

and where ∆= α
√
b logn, φ= 1−c

1−a
, and l is the last time that we reject a type-2 customer.

Lemma 13. Under event E, if n1 ≥ k
p2
logn and q1(1)+ q2(1)< b, then

ALG2,c(~v)

OPT (~v)
≥ c− 4∆n

φ2b2p
.

Case (iii): n1 <
k
p2
logn.

The competitive ratio analysis for this case uses ideas similar to those in the previous two cases,

and it follows from the next two lemmas. The proofs are deferred to Appendix EC.3.

Lemma 14. Under event E, if n1 <
k
p2

logn, then one of the following three conditions holds:

(a) q1(1)+ q2(1) = b;

(b) q1(1) = n1 and q2(1) = n2; or

(c) q1(1) = n1 and q2(1)≥ cb.

Using Lemma 14, in the following lemma, we establish a lower bound on the competitive ratio

for Case (iii):

Lemma 15. Under event E, if n1 <
k
p2

logn, then
ALG2,c(~v)

OPT (~v)
≥ c.

Having Lemmas 11, 13, and 15, we have lower bounds on the competitive ratio of Algorithm 2

for all possible cases. We complete the proof of the theorem by the following lemma (proven in

Appendix EC.3) that ensures that the error terms in Lemmas 11 and 13 are O(ǫ).

Lemma 16. The error terms in Lemmas 11 and 13 are O(ǫ), i.e., (a) 3∆
abδp

=O (ǫ) and (b) 4∆n
φ2b2p

=

O (ǫ).

�
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Figure 3 Two problem instances between which online algorithms cannot distinguish at time b
n
, where b= 4 and

n= 8.

6. Discussion of the Model

In this section, we further study the performance of online algorithms in our demand model. First, in

Section 6.1, we present an upper bound on the competitive ratio achievable by any online algorithm

under our demand model when the initial inventory b is small—more precisely, b= o (
√
n). Next, in

Section 6.2, we highlight the need for our new online algorithms by presenting a problem instance

for which our algorithms outperform existing ones in our partially predictable model.

6.1. Upper Bounds

In this section, we present an upper bound on the competitive ratio of any online algorithm when

b = o(
√
n). We start with a warm-up example that illustrates a fundamental limit of any online

algorithm in the partially predictable model. Figure 3 shows two instances with n=8 . The bottom

row shows the sequence that the online algorithm will see; as a reminder, we represent the nodes

of the stochastic group as filled (even though the online algorithm cannot distinguish between the

two groups of customers). Suppose b= 4; in the instance presented on the left, the optimum offline

solution rejects all type-2 customers, and in the instance on the right, it accepts all of them. Now,

by time λ= b/n=4/8, online algorithms cannot distinguish between these two instances, and hence

cannot perform as well as the optimal offline algorithm on both of these instances. Similar to this

example, in the following proposition, we establish the upper bound by constructing two problem

instances that are “difficult” for online algorithms to distinguish between up to time b
n
, and show

that the trade-off between accepting too many or too few type-2 customers limits the competitive

ratio of any online algorithm.

Proposition 2. Under the partially predictable arrival model, and for any p ∈ (0,1), no online

algorithm, deterministic and randomized, can achieve a competitive ratio better than 1−p
2−a

+ p +

O
(

pb2

n

)
. Therefore, when b = o (

√
n), no online algorithm can achieve a competitive ratio better

than 1−p
2−a

+ p+ o (1).

The details of the proof are deferred to Appendix EC.4. As explained above, the main idea of the

proof is to construct two instances that are almost indistinguishable up to time b
n
to any online

algorithm. In the proof we show that the following two instances ~vI and ~wI serve our purpose:
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vI,j =





a, 1≤ j ≤ b,

0, b < j ≤ 2b,

0, j > 2b.

wI,j =





a, 1≤ j ≤ b,

1, b < j ≤ 2b,

0, j > 2b.

6.2. Comparison with Existing Algorithms

In this section, we show that, under our demand arrival model, there exists a class of instances

for which our algorithms achieve higher revenue than algorithms designed for either the worst-case

(Ball and Queyranne 2009) or the random-order model (Devanur and Hayes 2009, Agrawal et al.

2014), which respectively correspond to p= 0, and p= 1 in our model. To this end, we consider

instance ~vI where

vI,j =

{
a for 1≤ j ≤ b,

0 for j > b.

Algorithm Worst-Case Random-Order Algorithm 1 Algorithm 2
(Ball and Queyranne (2009)) (Idea of Agrawal et al. (2014)) (Non-Adaptive Algorithm) (Adaptive Algorithm)

Ratio 1
2−a

at most p+ b
n
(1− p) p+ 1−p

2−a
−O

(

1
a(1−p)p

√

logn
b

)

1

Table 2 Ratio between the expected revenue of different algorithms and the optimum offline solution.

Table 2 presents the ratio between the expected revenue of different online algorithms and that

of the optimum offline solution. In the following, we will explain how we compute these bounds.

Before that, we discuss the implications of this example. This instance class shows that, for any

p ∈ (0,1), when b = ω(
√
logn) and b = o(n) the ratio for both of our algorithms is better than

existing ones. Further, note that the ratio for Algorithm 1 is in fact its competitive ratio; thus the

same ratio holds for any other instance as well. This implies that the competitive ratio of our non-

adaptive algorithm is higher than those of Ball and Queyranne (2009) and Agrawal et al. (2014)

under the partially predictable model. Also note that for the same instance, randomizing between

the algorithm of Ball and Queyranne (2009) (with probability 1−p) and that of Agrawal et al.

(2014) (with probability p) leads to a ratio of 1−p
2−a

+p2+o(1), which is not the convex combination

of the competitive ratios of these two algorithms (as also pointed out in Remark 3).

Next, we calculate the ratios listed in Table 2. The offline solution is OPT (~vI) = ab. The algorithm

of Ball and Queyranne (2009), proposed for the adversarial model, has a fixed threshold of 1
2−a

b

for accepting type-2 customers, and hence accepts 1
2−a

b type-2 customers.

Next we compute the ratio for algorithms designed for the random-order model (e.g.,

Devanur and Hayes (2009), Agrawal et al. (2014), and Kesselheim et al. (2014)). We note that, for

the sake of brevity, we present an analysis based on the idea of these papers, which is allocating
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inventory at a roughly unform rate over the entire horizon. In particular, these algorithms accept

roughly λb customers at any time λ∈ [0,1]. As a result, for this instance, they accept at most b2/n

type-2 customers up to time λ= b/n. According to our model, in the arriving instance ~v, there are

approximately (1− b/n)bp type-2 customers arriving after time b/n. Therefore, these algorithms

can accept at most b2/n+ (1− b/n)bp type-2 customers, which corresponds to a ratio of at most

p+ b
n
(1− p). Note that p+ b

n
(1− p)< p+ 1−p

2−a
for any b < n

2−a
.

Our Algorithm 1 achieves a ratio of at least its competitive ratio as given in Theorem 1 and the

ratio is tight for this instance (up to an additive error term of O

(
1

a(1−p)p

√
logn
b

)
). For Algorithm 2,

let c∈ (0,1) be an arbitrary constant. We show that ALG2,c achieves the ratio of 1 because the third

condition in Algorithm 2, i.e., the dynamic threshold, is never violated. To see this we compute

the threshold as follows:

⌊φb+ c (b−u1(λ))
+⌋=

{
⌊φb⌋ λ< δ = φb

n

⌊φb+ cb⌋ λ≥ δ

where we use the fact that u1(λ) = b for λ < δ, and u1(λ) = 0 for λ ≥ δ. In both cases we have

⌊φb+ c (b−u1(λ))
+⌋>λ, which implies that the algorithm never rejects a type-2 customer because

o2(λ)≤ λ< ⌊φb+ c (b−u1(λ))
+⌋.

7. The Secretary Problem under Partially Predictable Demand

In this section, we study the online secretary problem under our new arrival model. In our setting,

the secretary problem corresponds to having one unit of inventory, i.e., b = 1, and n customers,

where vI,j ∈ R
+ for 1 ≤ j ≤ n, i.e., we relax the assumption that there are only two types. The

objective is to maximize the probability of selecting the highest-revenue customer in the asymptotic

regime, where n→∞.

In the classical setting, the arrival sequence is assumed to be a uniformly random permutation

of n customers, which corresponds to the extreme case of p = 1 under our partially predictable

model. In this setting, it is well known that the best-possible online algorithm is the following

deterministic algorithm (Lindley 1961, Dynkin 1963, Ferguson 1989, Freeman 1983): Observe the

first ⌊γn⌋ customers, where γ = 1
e
; then accept the next one that has the highest revenue so far (if

any). The success probability of this algorithm approaches 1
e
≈ 0.37 as n→∞. We generalize the

classical setting by studying the problem under our demand model. First, we analyze the success

probability of a similar class of algorithms for any p∈ (0,1]. Next, we show that under our demand

model where p < 1—i.e., in the presence of an adversarial component—this class of algorithms is

not necessarily the best possible.

For any γ ∈ (0,1), we define the Observation-Selection Algorithm (OSAγ), which works similarly

to the classical algorithm described above. The formal definition of the algorithm is presented in

Algorithm 3.
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Algorithm 3 : Observation-Selection Algorithm (OSAγ, γ ∈ (0,1))
1. Initialize vmax← 0.

2. Observation period: Repeat for customer i= 1,2, . . . , ⌊γn⌋: reject customer i and update

vmax←max{vmax, vi}.
3. Selection period: Repeat for customer i= ⌊γn⌋+1, ⌊γn⌋+2 . . . , n:

• If vi ≥ vmax, then select customer i and stop the algorithm.

• Otherwise, reject customer i.

In Appendix EC.5, we analyze the success probability of Algorithm 3 and prove the following

theorem:

Theorem 3. Under the partially predictable model, in the limit n→∞, the success probability of

OSAγ approches γp log 1
γp+1−p

.

By optimizing over γ, we obtain the following corollary:

Corollary 2. Let γ∗ ∈ (0,1) be the unique solution to

log(γ∗p+1− p)+
γ∗p

γ∗p+1− p
=0;

then, OSAγ∗ achieves the highest success probability among OSAγ for all γ ∈ (0,1).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
γ∗ 0.4935 0.4863 0.4784 0.4696 0.4597 0.4482 0.4348 0.4184 0.3975 0.3679

OSAγ∗ 0.0026 0.0105 0.0244 0.0448 0.0724 0.1081 0.1533 0.2095 0.2796 0.3679
Table 3 The optimal length of the observation period, γ∗, and the success probability of OSAγ∗ vs. p.

Table 3 presents the optimal length of the observation period, γ∗, and the success probability of

OSAγ∗ for different values of p. We observe that as the size of the stochastic component increases,

i.e., as p increases, the length of the observation period decreases, whereas the success probability

increases.

Next, in the following proposition, we establish a lower bound on the success probability when

we randomize over the length of the observation period (γ); further, we present an example that

shows such randomization increases the success probability for p < 1. This illustrates the benefit

of employing randomized algorithms in the presence of an adversarial component in the arrival

sequence.



34

Proposition 3. Under the partially predictable model, for any 0< γ1 < γ2 < 1 and 0< q < 1, the

randomized algorithm that runs OSAγ1 with probability q and OSAγ2 with probability 1− q has an

asymptotic success probability of at least

qs1 +(1− q)s2 +min

{
(1− q)p(1− p)(1− γ2), q(1− p)

γ2− γ1
1− γ1

s1

}

where for i= 1,2, si denotes the success probability of OSAγi .

The proposition is proven in Appendix EC.5. Suppose p = 0.5; randomizing over γ1 = 0.427

and γ2 = 0.69 with q = 0.824 results in a success probability of at least 0.083 (utilizing the result

of Proposition 3). On the other hand, the success probability of the best possible deterministic

observation period OSAγ , given in Theorem 3 and Corollary 2, is 0.072.

8. Conclusion

Online resource allocation is a central problem in the operations of numerous online platforms

ranging from airline booking systems to hotel booking systems to internet advertising. Despite

advances in information technology, demand arrival processes are rarely perfectly predictable. The

presence of unpredictable patterns limits the performance of most allocation algorithms that rely

on fully accurate prediction of future demand based on observed data. At the same time, ignoring

available information and taking a completely worst-case approach usually leads to online allocation

policies that are too conservative. In this paper we take a middle ground approach and introduce the

first arrival model that contains both adversarial (thus unpredictable) and stochastic (predictable)

components. Our demand model requires no forecast of demand; however, the stochastic component

allows us to partially predict future demand as the sequence of arrivals unfolds. In our model, the

relative size of the stochastic component, p, represents the level of predictability of the demand.

Under our proposed demand model, we study the basic yet fundamental problem of allocating

a single resource with an arbitrary initial inventory to a sequence of customers that belong to two

types, with type-1 generating higher revenue. For this problem, we design a non-adaptive algorithm

as well as an adaptive one. We analyze the competitive ratios of our algorithms and show that they

outperform existing ones under our proposed demand model. The first implication of our analysis

is that, by employing our algorithms, we can take advantage of limited available information (due

to the presence of the stochastic component) to improve the revenue of the firm compared to a fully

conservative approach. Indeed, the competitive ratios of our algorithms are parameterized by p,

and for both algorithms the ratio increases with p (the relative size of the stochastic component),

which highlights the value of even partial predictability.

Further, we show that our adaptive algorithm—which repeatedly computes upper bounds on

the total number of customers of each type based on observed data, and makes online decisions
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based on those bounds—achieves a higher competitive ratio when the initial inventory b is suffi-

ciently large. This underlines the significance of adapting to the data, even though it contains an

adversarial component. Analyzing the adaptive algorithm, however, is considerably more challeng-

ing. We establish a lower bound on the competitive ratio by constructing a novel factor-revealing

mathematical program.

On the other hand, when b is small (more precisely, when b= o(
√
n)), we prove an upper bound

on the competitive ratio of any deterministic or randomized online algorithm that matches the

competitive ratio of our non-adaptive algorithm (up to an error term). This implies (1) our non-

adaptive algorithm is the best possible in this regime, and (2) when the initial inventory is small

relative to the time horizon, we may not be able to effectively adapt to observed data before allocat-

ing most of the inventory. We also have heuristic arguments—in which we do not characterize the

error terms—that indicate that (1) our adaptive algorithm achieves the best possible competitive

ratio in the regime where b= κn (where κ∈ (0,1] is a constant) and (2) underestimating parameter

p does not affect the competitive ratio of our adaptive algorithm, whereas (3) if we overestimate

p by (a small amount), its competitive ratio decreases only slightly. Because making the above

results rigorous will make the paper prohibitively long, these results are not included in the paper.

To illustrate the application of our model to other online allocation problems, we study the

secretary problem under our demand model. We analyze the celebrated policy of selecting the

highest revenue customer after an observation period with a deterministic length of γ under our

new model, and find the optimum value of γ (which is parameterized by p). We further show that,

in the presence of an adversarial component and unlike the classical setting, randomizing over

the length of the observation period may increase the probability of selecting the highest revenue

customer.

In this paper, we use a discrete time model and also assume that the arrival times of customers

from the stochastic group are randomly permuted among their predetermined positions. We believe

similar results can be obtained for a model where a total of n customers from the two groups (i.e.,

the stochastic and adversarial group) arrive according to independent Poisson processes with rates

p and 1− p. We leave the rigorous treatment of this alternative model for future research.

Studying other online allocation problems under our new demand model is a promising direction

for future research. Our consequential concentration result from Lemma 1 can be extended to any

finite number of types. Further, we believe that by combining our ideas for adaptively computing

bounds on the demand of each type with those of Lan et al. (2008), and utilizing the concentration

results, one can generalize our algorithms to a setting with any finite number of types. Such

extensions are, however, beyond the scope of this paper.
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Appendix

EC.1. Proof of Lemma 1

The proof of Lemma 1 is based on the following lemma:

Lemma EC.1. Define constants αEC.1 , 5+
√
6, ǭEC.1 , 1/24, and kEC.1 , 4. If ǫ′ ∈ (0, ǭEC.1]

and n1 >
kEC.1

p2
log
(

1
ǫ′

)
, for any λ∈ {1/n,2/n, . . . , n/n}, we have:

P

(
|O1(λ)− õ1(λ)| ≥αEC.1

√
n1 log

(
1

ǫ′

))
≤ ǫ′.

To prove Lemma EC.1, we use two existing concentration bounds for random variables obtained

from sampling with and without replacement. Before proceeding to the proof, we state these
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concentration bounds. Using the existing concentration bounds, Lemma EC.1 is proven through a

series of auxiliary corollaries (of the concentration results) and lemmas whose proofs are deferred

to Section EC.1.2.

First, we use a well-know variant of the classical Chernoff bound (Chernoff (1952)) regarding

the concentration of binomial random variables as given in McDiarmid (1998):

Theorem EC.1 (McDiarmid (1998)). Let 0< p< 1, let X1,X2, . . . ,Xn be independent binary

random variables, with P (Xk = 1) = p and P (Xk = 0) = 1− p for each k, and let Sn =
∑n

k=1Xk.

Then for any t≥ 0,

P (|Sn−np| ≥ nt)≤ 2e−2nt2.

When applying this theorem in our proof, we find it more insightful and convenient to use the

following form of the above concentration result:

Corollary EC.1. For any k ≥ 0, define constants αEC.1,k
, 1 and ǭEC.1,k

, k/2. For ǫ ∈
(0, ǭEC.1,k), under the same setting as in Theorem EC.1, we have:

P

(
|Sn−np| ≥αEC.1,k

√
n log

(
1

ǫ

))
≤ kǫ.

Second, we use a concentration result for random variables drawn from the hypergeometric

distribution given by Hush and Scovel (2005). Recall that hypergeometric distribution is similar

to binomial distribution when sampling without replacement is performed. It is defined precisely

within the following theorem.

Theorem EC.2 (Hush and Scovel (2005)). Let K ∼Hyper(n1, n,m) denote the hypergeomet-

ric random variable describing the process of counting how many defectives are selected when n1

items are randomly selected without replacement from a population of n items of which m are

defective. Let γ ≥ 2. Then,

P (K −E [K]> γ)< e−2αn1,n,m(γ2−1)

and

P (K −E [K]<−γ)< e−2αn1,n,m(γ2−1),

where

αn1,n,m =max

{
1

n1 +1
+

1

n−n1 +1
,

1

m+1
+

1

n−m+1

}
.

Similar to the concentration result for binomial distribution, we find it easier to use the following

form of the above concentration result:
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Corollary EC.2. For any k ≥ 0, define constants αEC.2,k
, 2 and ǭEC.2,k , k/2 , mEC.2,k

,

max

{(
log 1

ǭEC.2,k

)−1

,1

}
. For ǫ ∈ (0, ǭEC.2,k) and m≥mEC.2,k, under the same setting as in

Theorem EC.2, we have:

P

(
|K −E [K] | ≥αEC.2,k

√
m log

(
1

ǫ

))
≤ kǫ.

Proof Sketch of Lemma EC.1: Before proceeding to the proof of Lemma EC.1, we explain the

idea of the proof by going back to the example of Figure 1 from Section 3. Let us consider λ= 5/8.

In the following, we count the number of customers in the stochastic group and the adversarial

group in O1(λ) separately.

We begin by counting the number of type-1 customers in the stochastic group that arrive no

later than time 5/8 in ~V in Figure 1. Among the five customers arriving by time 5/8, two of them

are in the stochastic group: customers at positions 2 and 5. We aim to count the number of type-1

customers in these two positions. There are a total of four customers in the stochastic group (there

are four black nodes in the middle row). Note that only one of them is type-1 (vI,5 = 1). Now we

take two samples without replacement from the four customers to fill the two positions (2 and

5). Thus, given the realization of the stochastic group (the middle row), the number of type-1

customers in these two positions follows a hypergeometric distribution with parameters (2,4,1)

(which, as defined in Theorem EC.2, corresponds to taking two samples without replacement from

four customers among which one is type-1). In the particular realization of Figure 1, the type-1

customer in the stochastic group is placed in position 2.

Now we count the number of type-1 customers in the adversarial group that arrive no later than

time 5/8 in ~V in Figure 1. In the adversarial sequence ~vI , there are three type-1 customers (at

positions 1, 3, and 5). Any of these three customers will be in the adversarial group independent

of each other and with probability (1 − p), and hence the number of type-1 in the adversarial

group that arrive no later than time 5/8 in ~V follows the binomial distribution Bin(3,1− p). In

the particular realization of Figure 1, among the three type-1 customers arriving no later than

time 5/8 in ~vI , two of them are in the adversarial group: customers at position 1 and 3. Therefore,

the number of type-1 customers in the adversarial group that arrive no later than time 5/8 in the

particular realization ~v is two.

In the proof of Lemma EC.1, we use the method described in the above example to count the

number of customers in O1(λ). For counting the number of customers in the stochastic group in

O1(λ): (i) First we count the number of positions before time λ that belong to the stochastic group.

Call this number Z. (ii) Next we count the number of type-1 customers in the stochastic group. Call

the total number of customers in the stochastic group R and the number of type-1 customers in
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the stochastic group R1. (iii) We compute the number of type-1 customers in the stochastic group

that fill one of these Z positions. Call this number Z1. As mentioned above, this is equivalent to

taking Z samples without replacement from R customers among which R1 are type-1. The number

Z1 is the number of customers in the stochastic group in O1(λ). Counting the customers in the

adversarial group in O1(λ) is relatively simple. Call this number ζ1. Finally, we obtain O1(λ) with

the equation O1(λ) =Z1 + ζ1. In summary, the random variables have the following distributions:

• R∼Bin(n,p),

• R1 ∼Bin(n1, p),

• Z ∼Bin(λn,p),

• Z1 ∼Hyper(Z,R,R1)
10,

• ζ1 ∼Bin(η1(λ),1− p).

The proof of Lemma EC.1 includes establishing concentration results for Z1 and ζ1 through a

series of auxiliary lemmas; Lemmas EC.2, EC.3, and EC.4 are concerned with the former random

variable, and Lemma EC.5 is concerned with the latter one. The proof of these lemmas is deferred

to Section EC.1.2.

The first lemma focuses on analyzing R, R1, and Z. In particular, we use Corollary EC.1 along

with the union bound to show the following:

Lemma EC.2. Define constants ǭEC.2 , 1/24 and αEC.2 , 1. For ǫ∈ (0, ǭEC.2], with probability

at least 1− ǫ/4, all the following three events happen:

R ∈
(
np−αEC.2

√
n log

(
1

ǫ

)
, np+αEC.2

√
n log

(
1

ǫ

))
, (EC.1a)

R1 ∈
(
n1p−αEC.2

√
n1 log

(
1

ǫ

)
, n1p+αEC.2

√
n1 log

(
1

ǫ

))
, and (EC.1b)

Z ∈
(
λnp−αEC.2

√
λn log

(
1

ǫ

)
, λnp+αEC.2

√
λn log

(
1

ǫ

))
. (EC.1c)

We note that conditioned on R, R1, and Z, the expected value of Z1 is ZR1
R

. Thus we have:

E [Z1] =E [E [Z1|R,R1,Z]] =E

[
ZR1

R

]
. (EC.2)

The last expectation is a non-linear function of the three random variables R, R1, and Z. Instead

of computing the expectation directly, we use the concentration bounds of (EC.1a) - (EC.1c) to

show the following lemma:

10 Note that Z, R, and R1 are not necessarily independent.



e-companion to Hwang et al.: Online Resource Allocation under Partially Predictable Demand ec5

Lemma EC.3. Define constants αEC.3 , 4, kEC.3 , 4. Conditioned on the events (EC.1a)-

(EC.1c), and when n1 >
kEC.3

p2
log
(
1
ǫ

)
, we have:

ZR1

R
∈
(
λpn1−αEC.3

√
n1 log

(
1

ǫ

)
, λpn1 +αEC.3

√
n1 log

(
1

ǫ

))
. (EC.3)

Lemmas EC.2 and EC.3 together imply that, for ǫ∈ (0, ǭEC.2]:

P

(∣∣∣∣
R1Z

R
− pn1λ

∣∣∣∣≥ αEC.3

√
n1 log

(
1

ǫ

))
≤ ǫ

4
(EC.4)

Having (EC.2) and Lemma EC.3, we are ready to establish a concentration result for Z1. We

partition the sample space of (R,R1,Z) into two events as follows: the event where (EC.1a)-(EC.1c)

hold, denoted by E ; the complement event, denoted by Ec.11 Note that Lemma EC.2 implies that

P (Ec)≤ ǫ
4
. Using the law of total probability, we have: for any α̃ > 0,

P

(
|Z1−E [Z1|R,R1,Z]| ≥ α̃

√
n1 log

(
1

ǫ

))

= P (Ec)P
(
|Z1−E [Z1|R,R1,Z]| ≥ α̃

√
n1 log

(
1

ǫ

)∣∣∣ Ec
)

+P (E)P
(
|Z1−E [Z1|R,R1,Z]| ≥ α̃

√
n1 log

(
1

ǫ

)∣∣∣ E
)

≤ ǫ

4
· 1+1 ·P

(
|Z1−E [Z1|R,R1,Z]| ≥ α̃

√
n1 log

(
1

ǫ

)∣∣∣ E
)
. (EC.5)

Using Corollary EC.2 and the definition of events (EC.1a)-(EC.1c), we show the following lemma:

Lemma EC.4. Define constants ǭEC.4 , 1/24, αEC.4 ,
√
6, and kEC.4 , 4. For ǫ∈ (0, ǭEC.4],

if n1 >
kEC.4

p2
log
(
1
ǫ

)
, and (R,R1,Z)∈ E, we have:

P

(
|Z1−E [Z1|R,R1,Z]| ≥αEC.4

√
n1 log

(
1

ǫ

)∣∣∣ R,R1,Z

)
≤ ǫ

4
. (EC.6)

Putting Lemma EC.4 back to (EC.5) and setting α̃= αEC.4, we get:

P

(
|Z1−E [Z1|R,R1,Z]| ≥αEC.4

√
n1 log

(
1

ǫ

))
≤ ǫ

2
(EC.7)

Finally, we have the following lemma regarding ζ1:

11 We note that this event is only locally defined within this appendix, and it is not the same as the one defined in
Definition 4.
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Lemma EC.5. Define constants ǭEC.5 , 1/8 and αEC.5 , 1. For ǫ∈ (0, ǭEC.5], we have:

P

(
|ζ1− (1− p)η1(λ)| ≥αEC.5

√
n1 log

(
1

ǫ

))
≤ ǫ

4
(EC.8)

With the lemmas above, we are ready to prove Lemma EC.1:

Proof of Lemma EC.1: First, we note that we set the constants in Lemma EC.1

and Lemmas EC.2-EC.5 such that we get ǭEC.1 = min{ǭEC.2, ǭEC.4, ǭEC.5}, kEC.1 =

max{kEC.4, kEC.3} and αEC.1 = αEC.3 +αEC.4 +αEC.5. Now we can apply the union bound

on (EC.7), (EC.4), and (EC.8) and obtain: when 0 < ǫ′ ≤ ǭEC.1 and n1 >
kEC.1

p2
log
(

1
ǫ′

)
, with

probability at least 1− ǫ′,

|Z1−E [Z1|R,R1,Z]|<αEC.4

√
n1 log

(
1

ǫ′

)
,

∣∣∣∣
R1Z

R
− pn1λ

∣∣∣∣<αEC.3

√
n1 log

(
1

ǫ′

)
, and

|ζ1− (1− p)η1(λ)|<αEC.5

√
n1 log

(
1

ǫ′

)
.

We have O1(λ) =Z1 + ζ1, and thus, by using the triangular inequality (note that E [Z1|R,R1,Z] =

R1Z
R

),

|O1(λ)− õ1(λ)| ≤ |Z1−E [Z1|R,R1,Z]|+
∣∣∣∣
R1Z

R
− pn1λ

∣∣∣∣+ |ζ1− (1− p)η1(λ)| ,

which, according to the three inequalities above and the definition αEC.1 = αEC.3 + αEC.4 +

αEC.5, is smaller than αEC.1

√
n1 log

(
1
ǫ′

)
. �

With Lemma EC.1, we are ready to prove Lemma 1:

Proof of Lemma 1: The proof consists of two steps: First, we note that the concentration results

similar to Lemma EC.1 can be obtained for the other three random variables O1(λ)+O2(λ), O2(λ),

and OS
2 (λ). When applied to OS

2 (λ), the only modification is that we do not need to consider

Lemma EC.5 and (EC.8).

Second, we apply the union bound on the probability that at least one of the 4n events in (2a)-(3b)

is violated (note that λ takes n different non-zero values: when λ=0, |O1(λ)− õ1(λ)|= |0− 0|=0

and the same holds for the other three random variables), and choose the appropriate constants.

To prove this lemma, we first note that we set the constants in Lemmas 1 and EC.1 such that

we get α= 2αEC.1, ǭ= ǭEC.1, and k= 4kEC.1.
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Using Lemma EC.1 with ǫ′ = ǫ
4n
, the lemma holds because all of the following three statements

are true:

If ǫ≤ ǭ, then ǫ′ ≤ ǭEC.1. (EC.9a)

If n1 >
k

p2
logn, then n1 >

kEC.1
p2

log

(
1

ǫ′

)
. (EC.9b)

If |O1(λ)− õ1(λ)| ≥α
√

n1 logn, then |O1(λ)− õ1(λ)| ≥ αEC.1

√
n1 log

(
1

ǫ′

)
. (EC.9c)

Because ǫ′ < ǫ, and ǭ = ǭEC.1, (EC.9a) holds. Before proceeding to the other two conditions,

we first note that log
(

1
ǫ′

)
= log

(
4n
ǫ

)
≤ log

(
n3

ǫ

)
≤ log (n4) = 4 logn, where we use n ≥ 2 in the

first inequality and ǫ≥ 1
n
in the second inequality. Therefore, (EC.9b) and (EC.9c) hold because

k= 4kEC.1, and α= 2αEC.1. �

EC.1.1. Further Remak on Deterministic Approximations

Remark EC.1. In Lemma 1, we use the deterministic value õj(λ) rather than E [Oj(λ)] to estimate

Oj(λ) because õj(λ) is a very simple function of nj and ηj(λ). Here we provide an example to show

that õj(λ) and E [Oj(λ)] are not necessarily the same, which explains why we do not write the term

õj(λ) as E [Oj(λ)].

Let us consider an example where n= 2 and ~vI = (vI,1, vI,2) = (1,0) at λ=1/2. First we compute

E [O1(1/2)]. Because O1(1/2) consists of only one customer,

E [O1(1/2)] = P (V1 = 1) .

We can then use the law of total probability to express the probability as

P (V1 = 1)=P (V1 = 1|1 /∈ S)P (1 /∈ S)

+P (V1 = 1|1∈ S,2 /∈ S)P (1∈ S,2 /∈ S)

+P (V1 = 1|1,2∈ S)P (1,2∈ S) .

Following the definitions,

E [O1(1/2)] = P (V1 =1)= 1 · (1− p)+ 1 · p(1− p)+
1

2
· p2 = 1− p2

2
.

On the other hand,

õ1(1/2)= (1− p)η1(
1

2
)+ p

1

2
n1 = 1− p

2
.

Therefore, for all p∈ (0,1), E [O1(1/2)] 6= õ1(1/2).
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EC.1.2. Proof of Auxiliary Corollaries and Lemmas

Proof of Corollary EC.1: In order to apply Theorem EC.1, we define t such that 2e−2nt2 ≤ kǫ,

which corresponds to

t≥
√

1

2n
log

2

kǫ
.

By setting t to be
√

1
2n

log 2
kǫ
, what is remaining to prove is that we can find αEC.1,k

, ǭEC.1,k
such

that when 0< ǫ< ǭEC.1,k,

n

√
1

2n
log

2

kǫ
≤ αEC.1,k

√
n log

(
1

ǫ

)
.

This can be achieved by setting ǭEC.1,k = k/2 and αEC.1,k
= 1:

ǫ≤ k/2 ⇒ 2

kǫ
≤ 1

ǫ2
⇒ log

2

kǫ
≤ 2 log

1

ǫ
⇒ n

√
1

2n
log

2

kǫ
≤αEC.1,k

√
n log

(
1

ǫ

)
.

�

Proof of Corollary EC.2: According to Theorem EC.2, when γ ≥ 2,

P (|K −E [K]|>γ)< 2e−2αn1,n,m(γ2−1).

We first find an upper bound of the above right-hand-side probability when γ and m are large

enough. When m≥ 1,

αn1,n,m =max

{
1

n1 +1
+

1

n−n1 +1
,

1

m+1
+

1

n−m+1

}
≥ 1

m+1
≥ 1

2m
.

Further, when γ ≥ 2, we have: γ2− 1≥ γ2/2. Putting these two together,

2e−2αn1,n,m(γ2−1) ≤ 2e−
1
m

γ2

2 .

Therefore, if αEC.2,k

√
m log

(
1
ǫ

)
≥ 2 and m≥ 1,

P

(
|K −E [K] | ≥αEC.2,k

√
m log

(
1

ǫ

))
< 2 exp

(
− 1

m

α2

EC.2,k
m log

(
1
ǫ

)

2

)
= 2ǫ

α2

EC.2,k
/2
.

Thus, it is sufficient to have αEC.2,k

√
m log

(
1
ǫ

)
≥ 2, m≥ 1, and

2ǫ
α2

EC.2,k
/2 ≤ kǫ.

The last condition holds by setting αEC.2,k
= 2 and ǭEC.2,k = k/2 (ǫ≤ ǭEC.2,k

= k/2⇒ ǫ2 ≤ kǫ/2).

The first two conditions hold by defining mEC.2,k ,max

{(
log 1

ǭEC.2,k

)−1

,1

}
.

�
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Proof of Lemma EC.2: Let k = 1/12, Corollary EC.1 implies that there exist ǭEC.1,k
and

αEC.1,k
such that when 0< ǫ≤ ǭEC.1,k

,

1−P

(
R∈

(
np−αEC.1,k

√
n log

(
1

ǫ

)
, np+αEC.1,k

√
n log

(
1

ǫ

)))

= P

(
|R−np| ≥ αEC.1,k

√
n log

(
1

ǫ

))
≤ ǫ/12. (EC.10)

Defining ǭEC.2 , ǭEC.1,k
and αEC.2 , αEC.1,k

, repeating the same for R1 and Z, and applying

the union bound imply the statement. �

Proof of Lemma EC.3: First we define the constant αEC.3 , 3αEC.2 + 2α2

EC.2

√
1/kEC.3

where kEC.3 , 4α2

EC.2. The reason for definition of the constants becomes clear in the process

of the proof. We prove the lower bound first. Because 0 < Z
R
≤ 1, the ratio does not increase

by subtracting the same positive number from both the denominator and the numerator if the

denominator remains positive after the subtraction. In particular, we subtract αEC.2

√
n log

(
1
ǫ

)

from both the denominator and the numerator, Therefore,

Z

R
>

Z −αEC.2

√
n log

(
1
ǫ

)

R−αEC.2

√
n log

(
1
ǫ

) . (EC.11)

Note that R−αEC.2

√
n log

(
1
ǫ

)
> 0, because under event (EC.1a), we have:

R−αEC.2

√
n log

(
1

ǫ

)
≥ np− 2αEC.2

√
n log

(
1

ǫ

)
.

Therefore,

n>
4α2

EC.2
p2

log

(
1

ǫ

)
⇒R−αEC.2

√
n log

(
1

ǫ

)
> 0. (EC.12)

The first inequality in (EC.12) holds because n ≥ n1, and, by assumption in the lemma, n1 >
kEC.3

p2
log
(
1
ǫ

)
=

4α2

EC.2
p2

log
(
1
ǫ

)
where we use the fact that we defined kEC.3 = 4α2

EC.2.

Going back to (EC.11), under the events (EC.1a) and (EC.1c), we have:

Z

R
>

Z −αEC.2

√
n log

(
1
ǫ

)

R−αEC.2

√
n log

(
1
ǫ

)

>
λnp−αEC.2

√
λn log

(
1
ǫ

)
−αEC.2

√
n log

(
1
ǫ

)

np+αEC.2

√
n log

(
1
ǫ

)
−αEC.2

√
n log

(
1
ǫ

) ≥ λ−
2αEC.2

√
n log

(
1
ǫ

)

np
. (EC.13)
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Combining (EC.13) and with the lower-bound on R1 under event (EC.1b), we get:

ZR1

R
>


λ− 2αEC.2

p

√
log
(
1
ǫ

)

n



(
n1p−αEC.2

√
n1 log

(
1

ǫ

))

=λn1p− 2αEC.2n1

√
log
(
1
ǫ

)

n
−λαEC.2

√
n1 log

(
1

ǫ

)
+2

α2

EC.2
p

√
n1

n
log

(
1

ǫ

)
.

Because n1 ≤ n, we have n1

√
1
n
≤ √n1. By definition, αEC.3 ≥ 3αEC.2 ≥ (2 + λ)αEC.2, and

therefore, the right hand side of the above inequality is at least

λn1p−αEC.3

√
n1 log

(
1

ǫ

)
.

Hence we complete the proof for the lower bound part of Inequality (EC.3). When it comes to

the upper bound, we can use the same argument as the lower bound and obtain,

ZR1

R
<


λ+

2αEC.2
p

√
log
(
1
ǫ

)

n



(
n1p+αEC.2

√
n1 log

(
1

ǫ

))

=λn1p+2αEC.2n1

√
log
(
1
ǫ

)

n
+λαEC.2

√
n1 log

(
1

ǫ

)
+2

α2

EC.2
p

√
n1

n
log

(
1

ǫ

)

≤λn1p+2αEC.2

√
n1 log

(
1

ǫ

)
+αEC.2

√
n1 log

(
1

ǫ

)
+2

α2

EC.2
p

√
n1 log

(
1

ǫ

)√
log
(
1
ǫ

)

n

=λn1p+


3αEC.2 +2α2

EC.2
1

p

√
log
(
1
ǫ

)

n



√
n1 log

(
1

ǫ

)
, (EC.14)

where the inequality in the third line comes from the fact that
√

n1
n
≤ 1 and λ≤ 1. Combining the

definition αEC.3 = 3αEC.2 +2α2

EC.2

√
1/kEC.3 and (EC.14), it is sufficient to have

1

p

√
log
(
1
ǫ

)

n

upper bounded by the constant
√
1/kEC.3. By the assumption of this lemma, n1≥

kEC.3
p2

log
(
1
ǫ

)
,

and thus 1
p

√
log( 1

ǫ )
n1
≤
√

1/kEC.3. Further, because n ≥ n1, we have: 1
p

√
log( 1

ǫ )
n
≤ 1

p

√
log( 1

ǫ )
n1
≤

√
1/kEC.3. Thus we have:

3αEC.2 +2α2

EC.2
1

p

√
log
(
1
ǫ

)

n
≤ 3αEC.2 +2α2

EC.2

√
1/kEC.3 ≤αEC.3.

Putting this back in (EC.14) completes the proof of the lemma. �
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Proof of Lemma EC.4: Applying Corollary EC.2 with k=1/4, there exist positive real numbers

α′
EC.4 ,αEC.2,k

, ǭEC.2,k, and m,mEC.2,k such that when 0< ǫ≤ ǭEC.2,k and R1 ≥m,

P

(
|Z1−E [Z1|R,R1,Z]| ≥α′

EC.4

√
R1 log

(
1

ǫ

))
≤ ǫ

4
.

Now, we define ǭEC.4 , min{ǭEC.2,k
, ǭEC.2}, kEC.4 , max



4α2

EC.2,
2m

log

(

1
ǭEC.4

)



 and

αEC.4 ,α′
EC.4

√
3
2
.

First we check the condition R1 ≥m: Because n1 >
kEC.4

p2
log
(
1
ǫ

)
≥

4α2

EC.2
p2

log
(
1
ǫ

)
,

αEC.2

√
n1 log

(
1

ǫ

)
≤ n1p

2
. (EC.15)

Therefore, under event (EC.1b), we have:

R1 >n1p−α′
EC.4

√
n1 log

(
1

ǫ

)
≥ 1

2
n1p≥m,

where the first inequality follows the definition of event (EC.1b), second one uses Inequal-

ity (EC.15), and the last one uses kEC.4 ≥
2m

log( 1
ǭ )

(which gives n1 ≥
kEC.4

p2
log
(
1
ǫ

)
≥ 2m

p2
≥ 2m

p
).

Next we show that because we defined αEC.4 =α′
EC.4

√
3
2
, we have:

α′
EC.4

√
R1 log

(
1

ǫ

)
≤ αEC.4

√
n1 log

(
1

ǫ

)
. (EC.16)

This again follows by the definition of kEC.4 and event (EC.1b) and Inequality (EC.15):

R1 <n1p+α′
EC.4

√
n1 log

(
1

ǫ

)
≤ 3

2
n1p≤

3

2
n1.

Inequality (EC.16) implies that:

P

(
|Z1−E [Z1|R,R1,Z]| ≥αEC.4

√
n1 log

(
1

ǫ

))

≤ P

(
|Z1−E [Z1|R,R1,Z]| ≥ α′

EC.4

√
R1 log

(
1

ǫ

))
≤ ǫ

4
,

which completes the proof of the lemma. �

Proof of Lemma EC.5: Recall that ζ1 follows the binomial distribution Bin(η1(λ),1−p). Hence,

the lemma follows straightforwardly from Corollary EC.1. �
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EC.2. Missing proofs of Subsection 4.2

Proof of Lemma 3: The revenue of Algorithm 1 in this case is ALG1(~v) = b − (1 −
a) [q2,e(1)+ q2,f(1)] , which is decreasing in q2,e(1) + q2,f(1). Note that due to the fixed threshold

rule, we already have an upper bound on q2,f(1), i.e., q2,f(1)≤ θb. As a result, using Lemma 2,

ALG1(~v)≥ b− (1− a)(θb+ p(b−n1)
++∆). Note that OPT (~v)≤ b− (1− a) (b−n1)

+
, and thus

ALG1(~v)

OPT (~v)
≥b− (1− a)(θb+ p(b−n1)

+ +∆)

b− (1− a) (b−n1)
+

≥b− (1− a)(θb+(p+ θ)(b−n1)
+ +∆)

b− (1− a) (b−n1)
+ (θ≥ 0)

=p+
1− p

2− a
− (1− a)∆

OPT (~v)
. (1− (1− a)θ= p+(1− p)/(2− a))

The rest follows from the simple inequality OPT (~v)≥ ab due to q1(1)+ q2,e(1)+ q2,f(1) = b. �

Proof of Lemma 5: We consider three cases of Lemma 4 separately.

(a) q2,e(1)+ q2,f(1) = n2:

Algorithm 1 accepts all customers and hence achieves the optimal revenue, i.e., ALG1(~v)

OPT (~v)
=1.

(b) q2,f(1) = ⌊θb⌋ and n1 > bp− 3∆:

ALG1(~v)≥ n1 + aθb and OPT (~v)≤ ab+n1(1− a). Therefore,

ALG1(~v)

OPT (~v)
≥ n1 + aθb

ab+n1(1− a)
,

which is increasing in n1, so the ratio is minimized at n1 = bp− 3∆, which is a special case of

the last case, which we analyze next.

(c) q2,f(1) = ⌊θb⌋, n1 ≤ bp− 3∆, and q2,e(1)≥ (p(n1 +n2)−n1− 5∆)
+
: First, we remark that fol-

lowing the discussion in the proof of Lemma 4, we assume, without loss of generality, n1+n2 ≤ b.

Note that by construction, the alternative adversarial instance has the same optimum offline

solution, i.e., OPT (~v) =OPT (~vA).

ALG1(~v)≥n1 + a(p(n1 +n2)−n1− 5∆+ θb)

≥n1 + a(p(n1 +n2)−n1− 5∆+ θ(n1+n2)) (b≥ n1 +n2)

=n1(1− a+ pa+ θa)+n2(p+ θ)a− 5∆a

≥n1((1− a)(p+ θ)+ a(p+ θ))+n2(p+ θ)a− 5∆a (p+ θ≤ 1)

=(p+ θ)(n1+n2a)− 5∆a≥ (p+ θ)OPT (~v)− 5∆a

=

(
p+

1− p

2− a

)
OPT (~v)− 5∆a. (p+ θ= p+

1− p

2− a
)

Since OPT (~v)≥ q2,f(1)a= θba,

ALG1(~v)

OPT (~v)
≥ p+

1− p

2− a
− 5∆a

θba
= p+

1− p

2− a
− 5∆

θb
.
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�

Proof of Lemma 6: Clearly, either condition (a) holds or q1(1) = n1. Below we consider the cases

where q1(1) = n1. If q2,f(1)< ⌊θb⌋, then we do not reject any type-2 customer, and thus condition

(b) holds. The interesting case is when q2,f(1) = ⌊θb⌋. We prove that condition (c) will hold. First

note that in this case, we know n2≥ θb. As a result, (7) implies we can use the concentration result

of (3b).

Following the discussion in the proof of Lemma 4, we assume, without loss of generality, n1+n2 ≤
b. Further, if we find a time λ̂ for which we have:

o1(λ)+ oS2 (λ)− oS2 (λ̂)≤ ⌊λpb⌋ for all λ≥ λ̂, (EC.17)

then, using a similar induction to the one in Lemma 4, we can show:

q2,e(λ)≥ oS2 (λ)− oS2 (λ̂) for all λ≥ λ̂. (EC.18)

Here we find a sufficient condition on λ̂ for Condition (EC.17) to hold.

o1(λ)+ oS2 (λ)− oS2 (λ̂)<
k

p2
logn+λpn2 +∆− (λ̂pn2−∆) (o1(λ)≤ n1 <

k

p2
logn, (3b))

=
k

p2
logn+(λ− λ̂)pn2 +2∆

≤ k

p2
logn+(λ− λ̂)pb+2∆ (n1 +n2 ≤ b).

As a result, Condition (EC.17) holds if

k

p2
logn+(λ− λ̂)pb+2∆≤ λpb,

which can be achieved when

λ̂,

k
p2

logn+2∆

pb
.

If λ̂≤ 1, then

q2,e(1)≥oS2 (1)− oS2 (λ̂) (Inequality (EC.18))

≥pn2−∆− (λ̂pn2 +∆) ((7) and (3b))

≥pn2− (
k

p2
logn+2∆)− 2∆ (λ̂≤

k
p2

logn+2∆

pn2

)

=pn2−
k

p2
logn− 4∆.
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If λ̂ > 1, then

pn2−
k

p2
logn− 4∆=pn2− (

k

p2
logn+2∆)− 2∆

<pn2− pb− 2∆<p(n2− b)< 0 (λ̂ > 1, n2 ≤ b)

≤q2,e(1).

�

Proof of Lemma 7: Following the discussion in the proof of Lemma 4, we assume, without loss

of generality, n1 +n2 ≤ b. We consider three cases in Lemma 6 separately.

If case (a) in Lemma 6 happens, then ALG1(~v)+n1≥OPT (~v) and OPT (~v)≥ ab. As a result,

ALG1(~v)

OPT (~v)
≥ 1− n1

OPT (~v)
≥ 1−

k
p2
logn

ab
≥ p+

1− p

2− a
−

k
p2
logn

ab
.

If case (b) in Lemma 6 happens, then ALG1(~v) =OPT (~v), and we are done.

If case (c) happens, then

ALG1(~v)≥ n1 +

(
pn2−

k

p2
logn− 4∆+ θb

)
a.

Because n1 ≥
(
p+ 1−p

2−a

)
n1, pn2 + θb≥ (p+ θ)n2 =

(
p+ 1−p

2−a

)
n2 and OPT (~v) = n1 + an2 ≥ aθb, we

have

ALG1(~v)

OPT (~v)
≥ p+

1− p

2− a
−

a
(

k
p2
logn+4∆

)

OPT (~v)
≥ p+

1− p

2− a
−

k
p2
logn+4∆

θb
. (EC.19)

�

Proof of Lemma 8: It is easy to check (a) (1−a)∆

ab
= O

(
1

a(1−p)p

√
logn
b

)
and (b) 5∆

θb
=

O

(
1

a(1−p)p

√
logn
b

)
. To prove (c)

k
p2

logn

ab
=O

(
1

a(1−p)p

√
logn
b

)
, we first note that (5) and

ǭ≤ 1. (EC.20)

implies logn≤ a2p2b, and thus logn=
√
logn

√
logn≤ ap

√
b logn. As a result,

k
p2
logn

ab
≤

k
p

√
b logn

b
(logn≤ ap

√
b logn)

≤ k

a(1− p)p

√
logn

b
(0<p< 1 and a< 1)

=O

(
1

a(1− p)p

√
logn

b

)
.
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Similarly, to prove (d)
k
p2

logn+4∆

θb
=O

(
1

a(1−p)p

√
logn
b

)
, we first note that (5) and (EC.20) implies

logn≤ bp2, and thus logn=
√
logn

√
logn≤ p

√
b logn. As a result,

k
p2

logn+4∆

θb
≤

k
p

√
b logn+4α

√
b logn

θb
(logn≤ p

√
b logn and ∆= α

√
b logn)

≤k+4α

pa

√
logn

b
(p< 1 and θ > a)

≤(k+4α)

(
1

a(1− p)p

√
logn

b

)

=O

(
1

a(1− p)p

√
logn

b

)
.

�

EC.3. Missing proofs of Section 5

Before proceeding with the proofs, we state and prove an auxiliary lemma that establishes an upper

bound on n1 and n1 +n2 using the deterministic approximation functions õj(·).

Lemma EC.6. For λ∈ {1/n,2/n, . . . ,1}, we have:

n1 ≤min

{
õ1(λ)

λp
,
õ1(λ)+ (1−λ)(1− p)n

1− p+λp

}
, and (EC.21a)

n1 +n2 ≤min

{
õ1(λ)+ õ2(λ)

λp
,
õ1(λ)+ õ2(λ)+ (1−λ)(1− p)n

1− p+λp

}
. (EC.21b)

The proof essentially follows from the definition of the deterministic approximation functions.

Here we just prove (EC.21a). First note that η1(λ)≥ 0, thus:

õ1(λ) = (1− p)η1(λ)+ pλn1 ≥ pλn1 ⇒ n1≤
õ1(λ)

λp
.

Second note that n1− η1(λ)≤ (1−λ)n, therefore,

õ1(λ) = (1− p)η1(λ)+ pλn1≥ (1− p)(n1− (1−λ)n)+ pλn1 ⇒ n1 ≤
õ1(λ)+ (1−λ)(1− p)n

1− p+λp
.

Which completes the proof of (EC.21a). Proof of (EC.21b) follows similar steps. �

Proof of Lemma 9: Since Inequalities (11a) and (11b) are similar, we only present the proof of

Inequality (11a). When λ< δ, u1(λ), b, and thus (11a) trivially holds. The more interesting case

is when λ≥ δ. Without loss of generality, we assume n1 ≤ b+ 2∆
δp
. Otherwise, similar to the proof

of Lemma 2, we construct a modified adversarial instance with only b+ 2∆
δp

type-1 customers and

argue that, for the same realization of the stochastic group and random permutation, u1(λ) is lower

bounded by the one corresponding to the modified instance. Note that we can apply Inequality (2a)

to this modified instance, because b+ 2∆
δp
≥ k

p2
logn under the condition imposed on b.
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Note that δ= φb
n
= (1−c)b

(1−a)n
≥ (1−c)b

n
, Condition imposed on b, and

ǭ≤ 3

2α
(EC.22)

which holds by the definition of constants α and ǭ given in Lemma 1, give us

∆

δp
≤ 3

2
b. (EC.23)

Therefore, n1 ≤ b+ 2∆
δp
≤ 4b, and thus Inequality (2a) implies o1(λ)≥ õ1(λ)−α

√
n1 logn≥ õ1(λ)−

α
√
4b logn= õ1(λ)− 2∆. As a result,

u1(λ),min

{
o1(λ)

λp
,
o1(λ)+ (1−λ)(1− p)n

1− p+λp

}

≥min

{
õ1(λ)− 2∆

λp
,
õ1(λ)− 2∆+(1−λ)(1− p)n

1− p+λp

}
(o1(λ)≥ õ1(λ)− 2∆)

≥n1−max

{
2∆

λp
,

2∆

1− p+λp

}
= n1−

2∆

λp
(Lemma EC.6)

≥n1−
2∆

δp
. (λ≥ δ)

�

Proof of Proposition 1:

Case b < n: For proving this case, we can relax some of the constraints and only keep Con-

straints (15a), (15c), (15e), and (15f) and show that for every point in this superset of the feasibility

region, c≥ p+ 1−p
2−a

.

We first notice that, for fixed n1 and n2, the right hand side of Constraint (15a) is non-increasing

in each of ũ1 and õ2, and hence non-increasing in each of η1 and η2. By using Constraints (15e)

and (15f), we can obtain upper bounds õ1 ≤ (1− p+ lp)n1 and õ2 ≤ (1− p+ lp)n2 . With these

upper bounds and the fact ũ1 ≤ õ1
lp
, Constraint (15a) gives:

c≥
a(n2− (1− p+ pl)n2 +

b
1−a

)+n1

amin{n1 +n2, b}+(1− a)n1 +
a2b
1−a

+ amin
{

(1−p+pl)n1
lp

, b
} ,

which, after rearranging terms, leads to

c≥
an2p(1− l)+ ab

1−a
+n1

amin{n2, b−n1}+n1 +
a2b
1−a

+ amin
{(

1−p
lp

+1
)
n1, b

} . (EC.24)

We focus on lower bounding the right hand side of (EC.24). When n2 ≥ b−n1, the right hand side

of (EC.24) is non-decreasing in n2 because the denominator remains the same while the numerator
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is non-decreasing when n2 increases (due to Constraint (15c)). Therefore, for the sake of obtaining

a lower bound, we can assume, without loss of generality,

n2 ≤ b−n1. (EC.25)

With (EC.25), the right hand side of (EC.24) can be written as

f1(l),
an2p(1− l)+ ab

1−a
+n1

an2 +n1 +
a2b
1−a

+ ab
if l≤ (1− p)n1

p(b−n1)
, (EC.26a)

f2(l),
an2p(1− l)+ ab

1−a
+n1

an2 +n1 +
a2b
1−a

+ a
(

1−p
lp

+1
)
n1

if l >
(1− p)n1

p(b−n1)
. (EC.26b)

We prove

f1(l)≥ p+
1− p

2− a
, if l≤ (1− p)n1

p(b−n1)
(EC.27)

f2(l)≥ p+
1− p

2− a
, if l >

(1− p)n1

p(b−n1)
(EC.28)

separately. We start by the former: Because f1(l) is non-increasing in l, we only need to prove for

the case l= (1−p)n1
p(b−n1)

; f1(l) at l=
(1−p)n1
p(b−n1)

can be rearranged as

f1

(
(1− p)n1

p(b−n1)

)
=1−

an2

(
1− p+ (1−p)n1

p(b−n1)
p
)

an2 +n1 +
ab
1−a

,

which, for fixed n1 and n2, is non-decreasing in b. Therefore, according to (EC.25), we only need

to consider the case b= n1 + n2 (in the degenerated case n1 = n2 = 0, f1

(
(1−p)n1
p(b−n1)

)
is 1, which is

greater than p+ 1−p
2−a

, so we can assume, without loss of generality, n1 +n2 > 0), in which case, we

have:

f1

(
(1− p)n1

p(b−n1)

)
=1− a(1− p)(n1+n2)

an2 +n1 +
a(n1+n2)

1−a

≥ 1− a(1− p)(n1+n2)

an2 + an1 +
a(n1+n2)

1−a

= 1− 1− p

1+ 1
1−a

= p+
1− p

2− a
,

which completes the proof of (EC.27). Next we prove (EC.28). Due to Constraint (15c), i.e., l≤ 1,

case (EC.26b) only happens when (1−p)n1
p(b−n1)

< 1, or equivalently,

b >
n1

p
. (EC.29)

Proving (EC.28) is trickier because both the numerator and denominator decrease in l. To address

this issue, we first remark that by the definition of f2(l), inequality f2(l)≥ p+ 1−p
2−a

is equivalent to

an2p(1− l)+
ab

1− a
+n1 ≥

(
p+

1− p

2− a

)(
an2 +n1 +

a2b

1− a
+ a

(
1− p

lp
+1

)
n1

)
,
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which is in turn equivalent to

an2p+
ab

1− a
+n1 ≥

(
p+

1− p

2− a

)(
an2 +n1 +

a2b

1− a
+ a

(
1− p

lp
+1

)
n1

)
+ an2pl. (EC.30)

Now the left hand side of Inequality (EC.30) is not a function of l while the right hand side

of (EC.30) is a function of l of the form

xl+
y

l
+ z (EC.31)

where x, y, z are non-negative. Clearly, the second derivative of (EC.31) (with respect to l), 2y
l3
,

is non-negative for l ∈
[
(1−p)n1
p(b−n1)

,1
]
. As a result, (EC.31) is convex and is maximized at extreme

values of l, which in our case is at either l = (1−p)n1
p(b−n1)

or l = 1. Therefore, we only need to prove

Inequality (EC.30) at these extreme two values of l. The former case, l = (1−p)n1
p(b−n1)

, is covered in

(EC.27). Thus, we only need to prove (EC.30) for l= 1. When l= 1, (EC.30) can be rearranged

as

ab

1− a
+n1−

(
p+

1− p

2− a

)(
an2 +n1 +

a2b

1− a
+

an1

p

)
≥ 0. (EC.32)

Because the left hand side of Inequality (EC.32) is a decreasing function of n2, using (EC.25), we

only need to prove that the inequality holds when n2 = b−n1, which is equivalent to

ab

1− a
+n1−

(
p+

1− p

2− a

)(
a(b−n1)+n1 +

a2b

1− a
+

an1

p

)
≥ 0. (EC.33)

By separating terms associated with n1 and b, and using

1−
(
p+

1− p

2− a

)
=

(1− p)(1− a)

2− a
,

Inequality (EC.33) is equivalent to

a(1− p)

2− a
b+

(1− p)(1− a)

2− a
n1−

(
p+

1− p

2− a

)(
a(1− p)

p

)
n1 ≥ 0. (EC.34)

Using the lower bound on b given by (EC.29), i.e., b > n1
p

and then dividing (1−p)n1 on both sides

(in the degenerated case where (1− p)n1 = 0, both sides are 0 so we are done), Inequality (EC.34)

is implied by

a

(2− a)p
+

1− a

2− a
−
(
p+

1− p

2− a

)(
a

p

)
≥ 0,

which holds because after canceling the two terms involving 1/p, it is equivalent to

(1− a)2

2− a
≥ 0.
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Therefore, we proved Inequality (EC.32), and thus (EC.28). This completes the proof of proposition

for the case b < n.

Case b = n: For proving this case, we relax some of the constraints and only keep Con-

straints (15a), (15c), (15d) and (15h) and show that for every point in this superset of the feasibility

region, c≥ 1. According to Constraint (15a) and using amin{n1+n2, b}+(1−a)n1 = amin{n2, b−
n1}+n1, it suffices to prove

a(n2− õ2 +
b

1−a
)+n1

amin{n2, b−n1}+n1 +
a2b
1−a

+ aũ1

≥ 1. (EC.35)

or equivalently,

a(n2− õ2 +
b

1− a
)+n1≥ amin{n2, b−n1}+n1 +

a2b

1− a
+ aũ1. (EC.36)

Using min{n2, b− n1} ≤ n2, subtracting an2 + n1 on both sides of (EC.36), and dividing both

sides by a, Inequality (EC.36) is implied by

−õ2 +
b

1− a
≥ ab

1− a
+ ũ1.

Subtracting ab
1−a

on both sides and using ũ1 ≤ õ1+(1−l)(1−p)n

(1−p+lp)
, the above inequality is implied by

b− õ2 ≥
õ1 +(1− l)(1− p)n

(1− p+ lp)
.

Multiplying 1− p+ lp on both sides and using b= n (which is the assumption of this case), the

above inequality is equivalent to

ln− (1− p+ lp)õ2≥ õ1.

Due to Constraint (15c), 1− p+ lp≤ 1, and thus the inequality above is implied by

ln≥ õ2 + õ1,

or equivalently,

ln≥ (1− p)η2+ pn2l+(1− p)η1+ pn1l.

The above inequality follows straightforwardly from Constraints (15d) and (15h). This completes

our proof of (EC.36), and consequently that of the proposition in the case b= n. �
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Proof of Lemma 10: The only interesting case is case (b), i.e., when n1+n2 > b+ 2∆
δ
. If q2(1) = 0,

then we are done. Otherwise, let λ̄ be the last time we accept a type-2 customer. By Lemma 9,

u1,2(λ̄) ≥ min
{
b,n1 +n2− 2∆

δp

}
= b. Therefore, according to the definition of λ̄, Condition (14)

must be satisfied. Thus,

q2(1) =q2(λ̄)

≤ 1− c

1− a
b+ c

(
b−u1(λ̄)

)+
+1 (Condition (14))

≤ 1− c

1− a
b+ c

(
b−min

{
b,n1−

2∆

δp

})+

+1 (Lemma 9)

≤ 1− c

1− a
b+ c (b−n1)

+
+ c

2∆

δp
+1.

�

Proof of Lemma 11: We consider the two cases of Lemma 10 separately. For case (a), n1+n2 ≤
b+ 2∆

δp
, we note that

OPT (~v)≤n1 +n2a

≤
(
b+

2∆

δp
−n2

)
+n2a (n1+n2 ≤ b+

2∆

δp
)

≤ALG2,c(~v)+
2∆

δp
. (ALG2,c(~v)≥ (b−n2)+ an2)

Therefore,

ALG2,c(~v)

OPT (~v)
≥ ALG2,c(~v)

ALG2,c(~v)+
2∆
δp

≥
ALG2,c(~v)− 2∆

δp

ALG2,c(~v)
((ALG2,c(~v))

2≥ (ALG2,c(~v))
2−
(
2∆

δp

)2

)

=1−
2∆
δp

ALG2,c(~v)
≥ 1− 2∆

abδp
≥ c− 2∆

abδp
. (ALG2,c(~v)≥ ab)

For case (b), n1 +n2 > b+ 2∆
δp

and q2(1)≤ 1−c
1−a

b+ c (b−n1)
+
+ c 2∆

δp
+1, we have

ALG2,c(~v)

OPT (~v)
=
b− (1− a)q2(1)

OPT (~v)
(q1(1)+ q2(1) = b)

≥
b− (1− a)

(
1−c
1−a

b+ c (b−n1)
+
+ c 2∆

δp
+1
)

OPT (~v)
(q2(1)≤

1− c

1− a
b+ c (b−n1)

+
+ c

2∆

δp
+1)

=
c(b− (1− a)(b−n1)

+)

OPT (~v)
−

(1− a)c 2∆
δp

OPT (~v)
− 1− a

OPT (~v)

≥c−
(1− a)c 2∆

δp

OPT (~v)
− 1− a

OPT (~v)
(OPT (~v)≤ b− (1− a)(b−n1)

+)

≥c− 2(1− a)c∆

abδp
−1− a

ab
(OPT (~v)≥ ab)

≥c− 3∆

abδp
. (1− a< 1, c≤ 1, δ ≤ 1, p < 1)

�
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Proof of Lemma 12: Let us define õ′1, õ
′
2, ũ

′
1 and ũ′

1,2 to be the corresponding functions defined

for the modified tuple (l′, n′
1, n

′
2, η

′
1, η

′
2, c

′). It is easy to check that (l′, n′
1, n

′
2, η

′
1, η

′
2, c

′) satisfies

Constraints (15c)-(15i). The interesting part is to show that it satisfies Constraint (15b). When

n1 +n2 ≥ b, we can prove it directly from Lemma EC.6 (since ũ′
1,2 ≥ n′

1 +n′
2 = n1 +n2 ≥ b).

Next we focus on the case n1+n2 < b, and we prove ũ′
1,2 ≥ b by showing ũ′

1,2 ≥ u1,2(l); note that

we have u1,2(l)≥ b by Inequality (17).

Recall that we reject a customer at time l and that the threshold of rejecting a customer is at

least φb; thus we have ln≥ o2(l)≥ φb. This gives

l≥ φb

n
= δ (EC.37)

Note that by definition for l ≥ δ, we have u1,2(l) = min
{

o1(l)+o2(l)

lp
, o1(l)+o2(l)+(1−l)(1−p)n

1−p+lp

}
, which is

a non-decreasing function of o1(l) + o2(l). Thus, ũ
′
1,2 ≥ u1,2(l) is implied by õ′1 + õ′2 ≥ o1(l) + o2(l).

We prove this by breaking down into two cases based on the value of ξ: Case (1) ξ = n− (n1+n2):

we have n′
1 + n′

2 = n, i.e., there is no time period without a customer. Thus η′
1 + η′

2 = ln, and

õ′1 + õ′2 = ln≥ o1(l)+ o2(l). Case (2) ξ = ∆n
φbp

, we have

õ′1 + õ′2 =l′pn′
1 +(1− p)η′

1+ l′pn′
2 +(1− p)η′

2

≥lpn1 +(1− p)η1 + lp(n2 +
∆n

φbp
)+ (1− p)η2 (ξ=

∆n

φbp
, ξ̄ ≥ 0)

=õ1(l)+ õ2(l)+
∆n

φb
l≥ õ1(l)+ õ2(l)+∆ ((EC.37))

≥o1(l)+ o2(l) ((2b))

�

Proof of Lemma 13:We first show that, for all c≤ c∗, Constraint (15a) (same as (22)) is either vio-

lated or holds with equality. First, we note that, for all real number x, the tuple (l′, n′
1, n

′
2, η

′
1, η

′
2, x)

satisfies Constraints (15b)-(15i) because those constraints are not related to the last element in

the tuple. For all x < c∗, (l′, n′
1, n

′
2, η

′
1, η

′
2, x) is not in the feasible set of (MP1), and hence Con-

straint (15a) is violated. Taking the limit x→ c∗, Constraint (15a) is either violated or hold with

equality. This means, for ALG2,c (with any c≤ c∗),

c= c′≤
a(n′

2− õ′2 +
b

1−a
)+n′

1

amin{n′
1 +n′

2, b}+(1− a)n′
1 +

a2b
1−a

+ amin{ũ′
1, b}

. (EC.38)

After rearranging terms (EC.38) is equivalent to

n′
1 + a

(
1−c
1−a

b+ c (b− ũ′
1)

+
+ [n′

2− õ′2]
)

n′
1 + amin{b−n′

1, n
′
2}

≥ c. (n1≥
k

p2
logn) (EC.39)
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Repeating (20), recall that we have:

ALG2,c(~v)

OPT (~v)
≥

n1 + a
(

1−c
1−a

b+ c (b−u1(l))
+
+ [n2− o2(l)]

)

n1 + amin{b−n1, n2}
.

We want to compare the right hand side of (20) with the left hand side of (EC.39). First, we

compare (b− ũ′
1)

+
with (b−u1(l))

+
and show

(b− ũ′
1)

+ ≤ (b−u1(l))
+
+ ξ. (EC.40)

Recall that we do not exhaust the inventory, and thus n1 < b. Further ∆= α
√
b logn, thus we have:

∆≥ α
√
n1 logn. According to (2a), õ′1 = õ1(l)≥ o1(l)−∆. Combining this and using an argument

similar to the proof of Lemma 9,

ũ′
1 ,min

{
õ′1
l′p

,
õ′1 +(1− l′)(1− p)n

1− p+ l′p

}

=min

{
õ1(l)

lp
,
õ1(l)+ (1− l)(1− p)n

1− p+ lp

}

≥min

{
o1(l)−∆

lp
,
o1(l)−∆+(1− l)(1− p)n

1− p+ lp

}
(õ′1 ≥ o1(l)−∆)

≥u1(l)−max

{
∆

lp
,

∆

1− p+ lp

}
= u1(l)−

∆

lp

≥u1(l)−
∆n

φbp
. ((EC.37))

Note that by the definition of ξ, the above inequality implies Inequality (EC.40). Next, we

compare õ′2 with o2(l) and we show that

õ′2 ≥ o2(l)− 2∆. (EC.41)

In order to prove (EC.41), we first show that we can assume, without loss of generality, φb < n2≤
b+ 2∆

δp
. To see this, we note that when q1(1)+ q2(1)< b, q1(1) = n1. Therefore, the only “mistakes”

that the algorithm may make is to reject too many type-2 customers. When n2 ≤ φb, we never

reject a type-2 customer and so q2(1) = n2 and ALG2,c(~v) =OPT (~v). For proving the upper bound

on n2, i.e., n2 ≤ b+ 2∆
δp
, we first note that, clearly, if n2 > b+ 2∆

δp
, decreasing n2 to b+ 2∆

δp
(while

fixing n1) does not modify the optimal revenue OPT (~v). Using Lemma 9, we know that, when

n2 ≥ b+ 2∆
δp
, u1,2(l)≥min

{
b,n1 +n2− 2∆

δp

}
=b. Therefore, we accept a type-2 customer arriving at

time l only if the number of type-2 customer accepted so far does not reach the dynamic threshold

(i.e., the third rule in Algorithm 2) that depends only on o1(l) but not on o2(l). Given all the

above, similar to the proof of Lemma 4, we can construct an alternative adversarial instance where
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we reduce the number of type-2 customers to b+ 2∆
δp
, and show that, for the same realization of

the stochastic group and random permutation, the number of accepted type-2 customers in the

alternative instance serves as a lower bound on its counterpart in the original instance.

Next we show that condition n2 ≥ k logn
p2

is satisfied which implies we can apply concentration

result (3a) from Lemma 1. Because n2 >φb, it suffices to show:

φb≥ k

p2
logn. (EC.42)

Inequality (16) and

ǭ≤ 1√
k

(EC.43)

which holds by the definition of constants k and ǭ given in Lemma 1, implies

√
b=

b
3
2

b
≥ b

3
2

n
>

1

ǭ

√
logn

(1− c)2a2p3/2
≥
√
k

√
logn

p
√
1− c

.

This, together with φ= 1−c
1−a
≥ 1− c, proves (EC.42). Thus, we can apply (3a). Further note that

(EC.23) implies that n2 ≤ b+ 2∆
δp
≤ 4b. Finally note that by definition ξ ≥ 0, ξ′ ≥ 0. Putting all

these together, we have:

õ′2 ≥ õ2(l)≥ o2(l)−α
√

n2 logn≥ o2(l)−α
√

4b logn= o2(l)− 2∆.

This proves (EC.41). Having proved (EC.40) and (EC.41), at last, we complete the proof as

follows:

c≤
n′
1 + a

(
1−c
1−a

b+ c (b− ũ′
1)

+
+ [n′

2− õ′2]
)

n′
1 + amin{b−n′

1, n
′
2}

((EC.39))

≤
n1 + a

(
1−c
1−a

b+ c
[
(b−u1(l))

+
+ ∆n

φbp

]
+ [n2 + ξ− o2(l)+ 2∆]

)

n1 + amin{b−n1, n2}
((EC.40), (EC.41), n′

2 = n2 + ξ ≥ n2)

≤ALG2,c(~v)

OPT (~v)
+

a
(
c∆n
φbp

+ ξ+2∆
)

OPT (~v)
((20))

≤ALG2,c(~v)

OPT (~v)
+

4a∆n

aφ2b2p
=

ALG2,c(~v)

OPT (~v)
+

4∆n

φ2b2p
(n2 >φb,∆≤ ∆n

φbp
, ξ ≤ ∆n

φbp
,OPT ≥ aφb).

�

Proof of Lemma 14: Note that if we are not in case (a), i.e., q1(1)+ q2(1)< b, then q1(1) = n1.

Now either q2(1) = n2, i.e., we are in case (b), or q2(1) < n2. Therefore, what is remaining is to

show that if q1(1)+ q2(1)< b and q2(1)<n2, then q2(1)≥ cb , i.e., we are in case (c).
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Let λ̄ be the last time that a customer is rejected. Then, similar to earlier discussion, Inequal-

ity (EC.37) is satisfied. Therefore,

u1(λ̄) =min

{
o1(λ̄)

λ̄p
,
o1(λ̄)+ (1− λ̄)(1− p)n

1− p+ λ̄p

}
(λ̄≥ δ)

≤o1(λ̄)

λ̄p

≤n1n

φbp
((EC.37) and o1(λ̄)≤ n1)

<
n k

p2
logn

φbp
=

kn logn

φbp3
. (n1 <

k

p2
logn)

As a result, we have:

q2(1)≥φb+ c(b−u1(λ̄))
+ > (φ+ c)b− c

kn logn

φbp3
,

In order to complete the proof, it suffices to show that

q2(1)> (φ+ c)b− c
kn logn

φbp3
≥ cb, (EC.44)

The last inequality in (EC.44) holds if b2 ≥ ckn logn
φ2p3

. Thus in the following, we show b2 ≥ ckn logn
φ2p3

:

Using φ= 1−c
1−a
≥ 1− c, Inequality (16), and

ǭ≤ 1
4
√
k
, (EC.45)

which holds by the definitions of constants k and ǭ given in Lemma 1, we have

b2 =

(
b
3
2

)2

b
≥

(
b
3
2

)2

n
>

1

ǭ4
n logn

(1− c)4a2p3
≥ c

kn logn

φ2p3
.

This proves b2 ≥ ckn logn
φ2p3

, and thus q2(1)≥ cb. This completes the proof of the lemma. �

Proof of Lemma 15:We consider each case of Lemma 14 separately. For case (a), q1(1)+q2(1) = b,

since n1 <
k
p2

logn, it is easy to see that

ALG2,c(~v)

OPT (~v)
≥ ab

ab+ k
p2
logn

≥
ab− k

p2
logn

ab
= 1− k logn

abp2
,

which is at least c if b≥ k logn
a(1−c)p2

. Inequality (16) and (EC.43) imply

√
b=

b
3
2

b
≥ b

3
2

n
>

1

ǭ

√
logn

(1− c)2a2p3/2
≥
√
k

√
logn

p
√

a(1− c)
,

and thus b≥ k logn
a(1−c)p2

; therefore we have:
ALG2,c(~v)

OPT (~v)
≥ c.

In cases (b) and (c), q2(1)≥min{n2, cb}; thus we have

ALG2,c(~v)≥ n1 + c(min{n2, b})a≥ c(n1 +min{n2, b}a)≥ cOPT (~v).

�

Proof of Lemma 16: Both follow from definition. �

Proof of Corollary 1: Theorem 2 with c= 1− 3

√
1

ap3/2

√
n2 logn

b3
proves the corollary. �
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EC.4. Missing proofs of Section 6

Proof of Proposition 2: We prove that the competitive ratio of any online algorithm is at most

p+ 1−p
2−a

+ 3
(

pb2

n

)
. Note that when pb2

n
> 1/2, p+ 1−p

2−a
+ 3

(
pb2

n

)
is greater than 1 and hence the

upper bound trivially holds. Thus in the following, we assume, without loss of generality, pb2

n
≤ 1/2.

We consider two adversarial instances ~vI and ~wI defined as

vI,j =





a, 1≤ j ≤ b,

0, b < j ≤ 2b,

0, j > 2b.

wI,j =





a, 1≤ j ≤ b,

1, b < j ≤ 2b,

0, j > 2b.

Let U denote the event in which in the arrival sequence, none of the first b arrivals belongs to

positions [b+1,2b] in the initial customer sequence, i.e., for all i ∈ [b], we have: i /∈ S or σ−1
S (i) /∈

[b+ 1,2b], where we use the following definition: For x, y ∈ N and x < y, [x, y] , {x,x+ 1, . . . , y}.
Further, we define [y], [1, y]. Note that under event U , no online algorithms can distinguish whether

the initial sequence is ~vI or ~wI up to time b/n. We first compute the probability of event U as

follows:

P (U) = P
(
for all i∈ [b] : i /∈ S or σ−1

S (i) /∈ [b+1,2b]
)

≥ 1−
∑

i∈[b]

P
(
i∈ S and σ−1

S (i)∈ [b+1,2b]
)

(Union bound)

≥ 1− pb2

n
, (EC.46)

where the last inequality holds because of the following inequality (which we prove next): For all

i 6= j,

P
(
i∈ S and σ−1

S (i) = j
)
≤ p

n
. (EC.47)

To prove (EC.47), we first note for any i, we have p = P (i∈ S) =∑n

j=1 P
(
i∈ S and σ−1

S (i) = j
)
.

Second, denoting R the random variable corresponding to the size of the stochastic group, we have

P
(
σ−1
S (i) = i|i ∈ S,R

)
= 1

R
≥ 1

n
, and thus P

(
σ−1
S (i) = i|i ∈ S

)
≥ 1

n
. Therefore,

∑

j 6=i

P
(
i∈ S and σ−1

S (i) = j
)
= p−P

(
i∈ S and σ−1

S (i) = i
)

=p−P
(
σ−1
S (i) = i|i ∈ S

)
P (i∈ S)≤ p− p

n
=

(n− 1)p

n
.

By symmetry, for each j 6= i, P
(
i ∈ S and σ−1

S (i) = j
)
≤ p

n
, which proves (EC.47). This completes

our proof of inequality (EC.46).

Under the event U , in both problem instances, the revenue of each customer accepted up to time

b/n is a. Conditioned on event U , we denote q2 the expected number of accepted type-2 customers
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up to time b/n under either problem instances—recall that under event U , up to time b/n, the

online algorithm cannot distinguish the two.

We now proceed to find an upper bound on the expected revenue of any online algorithm under

the two problem instances. We start by ~wI :

E

[
ALG( ~W )

]
≤ E

[
ALG( ~W )

∣∣∣U
]
P (U)+OPT (~wI) (1−P (U))

≤ q2a+(b− q2)+
pb2

n
OPT (~wI).

Next, we proceed to establish an upper bound on the expected revenue under ~vI , by proving

an upper bound on the number of type-2 customers that arrive after time b/n conditioned on the

event U :

E [|{i≥ b+1 |Vi = a}| |U ] =
n∑

i=b+1

P (Vi = a | U)

≤
∑n

i=b+1 P
(
i∈ S and σ−1

S (i)∈ [b]
)

P (U)

≤ (n− b)b p
n

1− pb2

n

(Inequalities (EC.46), (EC.47))

≤ pb

1− pb2

n

≤ pb

(
1+2

(
pb2

n

))
,

where we use pb2

n
≤ 1/2 in the last inequality. Note that E

[
ALG(~V )

∣∣∣U
]
≤ q2a +

aE [|{i≥ b+1 |Vi = a}| |U ]. As a result,

E

[
ALG(~V )

]
≤E

[
ALG(~V )

∣∣∣U
]
P (U)+OPT (~vI) (1−P (U))

≤ q2a+

(
1+2

(
pb2

n

))
pba+

(
pb2

n

)
OPT (~vI)

≤ q2a+ pba+3

(
pb2

n

)
OPT (~vI). (OPT (~vI) = ba≥ pba)

Thus, the competitive ratio is at most

min




E

[
ALG(~V )

]

OPT (~vI)
,
E

[
ALG( ~W )

]

OPT (~wI)



≤min

{
q2
b
+ p+3

(
pb2

n

)
,
q2
b
a+

(
1− q2

b
+

pb2

n

)}

≤min
{q2
b
+ p,

q2
b
a+

(
1− q2

b

)}
+3

(
pb2

n

)

≤ p+
1− p

2− a
+3

(
pb2

n

)
,

where the last inequality holds because function g(q2),min
{

q2
b
+ p, q2

b
a+

(
1− q2

b

)}
—defined on

q2 ∈ [0, b]—achieves its maximum at q∗2 =
1−p
2−a

b, and g(q∗2)≤ p+ 1−p
2−a

. �
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EC.5. Missing proofs of Section 7

Proof of Theorem 3: For each integer k≥ 2, we denote Fk the event satisfying all the following

conditions:

1. All of the k highest-revenue customers are in the stochastic group.

2. The kth-highest-revenue customer arrives in the observation period and the k− 1 customers

with the highest revenue do not.

3. The highest-revenue customer arrives first among the k−1 customers with the highest revenue.

Clearly, for any k ≥ 2, Fk is a success event and those events are mutually exclusive for different

values of k. Furthermore, we note that, conditioned on being in the stochastic group, the probability

that a customer arrives before time γ approaches γ as n→∞. This can be done by using a

concentration result for random permutations similar to the one used in the proof of (3b) . Further,

for two customers l and l̃, conditioned on being in the stochastic group, the events that customer

l arrives before time γ and customer l̃ arrives after time γ are asymptotically independent. Thus,

we can write the probability of event Fk as:

P (Fk) = pkγ(1− γ)k−1 1

k− 1
+ o(1),

where o(1) represents a small (positive or negative) real number approaching zero as n→∞. As a

result, for any fixed m, we have

P (success)≥
n∑

k=2

P (Fk)≥
m∑

k=2

P (Fk)

≥
m∑

k=2

(
pkγ(1− γ)k−1 1

k− 1
− |o(1)|

)

≥
m∑

k=2

(
pkγ(1− γ)k−1 1

k− 1

)
−m|o(1)|,

which approaches
∑m

k=2

(
pkγ(1− γ)k−1 1

k−1

)
, for fixed m, as n→∞. Since the above inequality

holds for all m, we have

P (success)≥ lim
n→∞

n∑

k=2

P (Fk)≥ lim
m→∞

m∑

k=2

pkγ(1− γ)k−1 1

k− 1
= γp log

1

γp+1− p
. (EC.48)

Next, we show that the lower bound given in (EC.48) is tight by presenting an instance for which

OSAγ achieves a success probability of at most γp log 1
γp+1−p

. Consider the following adversarial

instance. The highest-revenue customer is the first customer in ~vI (As a reminder, the subscript I

indicates that this is the initial sequence determined by the adversary.) For each k= 2,3, . . . , (1−
γ)n+ 1, the kth-highest-revenue customer is the (γn+ k − 1)th customer in ~vI . Other customers

arbitrarily fill other positions in ~vI .
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For each positive integer 1 ≤ l ≤ (1− γ)n, we denote Hl the event where all of the l highest-

revenue customers are in the stochastic group but the (l+1)th-highest is not. Similarly, we denote

H(1−γ)n+1 the event where all of the ((1− γ)n+1) highest-revenue customers are in the stochastic

group; finally, we denote H0 the event where the highest-revenue customer is in the adversarial

group. Clearly, {Hl}(1−γ)n+1
l=0 is a partition of the sample space. In addition, for all l, P (Hl)≤ pl.

Conditioned on H0, the highest-revenue customer arrives during the observation period, and thus

the algorithm has a success probability of 0. Conditioned on H1, the algorithm either accepts the

customer with the second-highest value or does not accept any customer (if the highest-revenue

customer arrives before γ), and hence again it has a success probability of 0. Further, for any

2≤ l≤ (1−γ)n, conditioned onHl, to have a success, either one of the events F2,F3, . . .F l occurs or

the highest-revenue customer arrives between time (γn+1) and (γn+ l−1); note that conditioned

on Hl, the latter has a probability of l−1
n
. As a result, the total success probability is at most

(1−γ)n∑

l=2

P (Hl)

[
P

(
l⋃

m=2

Fm|Hl

)
+

l− 1

n

]
+P

(
H(1−γ)n+1

)

≤
(1−γ)n∑

l=2

l∑

m=2

P (Fm ∩Hl)+

(1−γ)n∑

l=2

pl
l− 1

n
+ p(1−γ)n+1 (P (Hl)≤ pl)

≤
∞∑

m=2

P (Fm)+
∞∑

l=2

pl
l− 1

n
+ p(1−γ)n+1

=
∞∑

l=2

P (F l)+
p2

(1− p)2n
+ p(1−γ)n+1,

which converges to
∑∞

l=2 P (F l) as n approaches infinity. �

Proof of Proposition 3: The key in the proof of the proposition is that when the position of

the second-highest-revenue customer in ~vI is before γ2n, OSAγ2 has a success probability greater

than s2; otherwise, OSAγ1 has a success probability greater than s1. To formalize this idea, we

introduce two lemmas.

Lemma EC.7. If the second-highest-revenue customer is among the first γ2n customers in ~vI , then

OSAγ2 has a success probability of at least s2 + p(1− p)(1− γ2), when n→∞.

Proof: Note that the events {Fk}∞k=2 defined in the proof of Theorem 3 collectively give an asymp-

totic success probability of s2. We identify another disjoint event which also results in a success.

In particular, we define event F̄ that satisfies the following conditions:

1. The highest-revenue customer is in the stochastic group and arrives after time γ2.

2. The second-highest-revenue customer is in the adversarial group.

Note that F̄ is a success event that is disjoint from {Fk}∞k=2. Therefore, F̄ gives an additional

success probability of p(1− p)(1− γ2)+ o(1). �
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Lemma EC.8. If the second-highest-revenue customer is not among the first γ2n customers in ~vI ,

then OSAγ1 has a success probability of at least s1 +(1− p) γ2−γ1
1−γ1

s1, when n→∞.

Proof: Similar to the previous lemma, we first note that the events {Fk}∞k=2 introduced in the

proof of Theorem 3 collectively give an asymptotic success probability of s1. We identify another

set of disjoint events that also results in success. In particular, for each positive integer k ≥ 2, we

define the event F̂k that satisfies all of the following conditions:

1. Among the k highest-revenue customers, all except the second highest-revenue customer are

in the stochastic group and arrive after time γ1.

2. The second-highest-revenue customer is in the adversarial group.

3. The (k+1)th-highest-revenue customer is in the stochastic group and arrives before time γ1.

4. The highest-revenue customer arrives no later than γ2 and arrives first among the k highest-

revenue customers (except for the second-highest-revenue customer).

Clearly, for any k ≥ 2, F̂k is a success event. In addition, those events are mutually exclusive for

different values of k. Furthermore, {F̂k}∞k=2 does not overlap {Fk}k≥2. Note that the probability

that the highest-revenue customer arrives between time γ1 and γ2, and it arrives first among the k

highest-revenue customers (except for the second-highest-revenue customer) is at least γ2−γ1
k−1

+o(1).

Therefore, P
(
F̂k

)
≥ pk(1− p)γ1(1− γ1)

k−2(γ2− γ1)
1

k−1
+o(1). As a result, the asymptotic success

probability is at least

s1 +

∞∑

k=2

P

(
F̂k

)
≥s1 +

∞∑

k=2

pk(1− p)γ1(1− γ1)
k−2(γ2− γ1)

1

k− 1

=s1 +(1− p)
γ2− γ1
1− γ1

s1.

�

With Lemmas EC.7 and EC.8, we complete the proof of the proposition as follows: Recall that

for any position of the second-highest-revenue customer in ~vI , OSAγ1 has a success probability of

at least s1 and OSAγ2 has a success probability of at least s2. As a result, using Lemma EC.7,

if the second-highest-revenue customer is among the first γ2n customers in ~vI , then we have a

success probability of at least qs1 + (1− q)(s2 + p(1− p)(1− γ2)). Similarly, using Lemma EC.8,

if the second-highest-revenue customer is not among the first γ2n customers in ~vI , then we have

a success probability of at least q(s1 + (1− p) γ2−γ1
1−γ1

s1) + (1− q)s2. As a result, for any adversarial

problem instance ~vI , the asymptotic success probability is at least

min

{
qs1 +(1− q)(s2+ p(1− p)(1− γ2)), q(s1+(1− p)

γ2− γ1
1− γ1

s1)+ (1− q)s2

}

=qs1 +(1− q)s2+min

{
(1− q)p(1− p)(1− γ2), q(1− p)

γ2− γ1
1− γ1

s1

}
,

which completes the proof. �
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