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Abstract

Temporal difference learning (TD) is a simple iterative algorithm used to estimate the value function cor-

responding to a given policy in a Markov decision process. Although TD is one of the most widely used

algorithms in reinforcement learning, its theoretical analysis has proved challenging and few guarantees on its

statistical efficiency are available. In this work, we provide a simple and explicit finite time analysis of tempo-

ral difference learning with linear function approximation. Except for a few key insights, our analysis mirrors

standard techniques for analyzing stochastic gradient descent algorithms, and therefore inherits the simplicity

and elegance of that literature. Final sections of the paper show how all of our main results extend to the study

of TD learning with eligibility traces, known as TD(λ), and to Q-learning applied in high-dimensional optimal

stopping problems.

Keywords: Reinforcement learning, temporal difference learning, finite time analysis, stochastic gradient

descent.

1 Introduction

Originally proposed by Sutton [1988], temporal difference learning (TD) is one of the most widely used

reinforcement learning algorithms and a foundational idea on which more complex methods are built. The

algorithm operates on a stream of data generated by applying some policy to a poorly understood Markov

decision process. The goal is to learn an approximate value function, which can then be used to track the

net present value of future rewards as a function of the system’s evolving state. TD maintains a parametric

approximation to the value function, making a simple incremental update to the estimated parameter vector

each time a state transition occurs.

While easy to implement, theoretical analysis of TD is subtle. Reinforcement learning researchers in

the 1990s gathered both limited convergence guarantees [Jaakkola et al., 1994] and examples of divergence

[Baird, 1995]. Many issues were then clarified in the work of Tsitsiklis and Van Roy [1997], which estab-

lishes precise conditions for the asymptotic convergence of TD with linear function approximation and gives

examples of divergent behavior when key conditions are violated. With guarantees of asymptotic convergence

in place, a natural next step is to understand the algorithm’s statistical efficiency. How much data is required

to guarantee a given level of accuracy? Can one give uniform bounds on this, or could data requirements

explode depending on the problem instance? Twenty years after the work of Tsitsiklis and Van Roy [1997],

such questions remain largely unsettled.

1.1 Contributions

This paper develops a simple and explicit non-asymptotic analysis of TD with linear function approximation.

The resulting guarantees provide assurances of robustness. They explicitly bound the worst-case dependence

on problem features like the discount factor, the conditioning of the feature covariance matrix, and the mixing

time of the underlying Markov chain. Our analysis reveals rigorous connections between TD and stochas-

tic gradient descent algorithms, provides a template for finite time analysis of incremental algorithms with

Markovian noise, and applies without modification to analyzing a class of high-dimensional optimal stopping

problems. We elaborate on these contributions below.
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• Links with gradient descent: Despite a cosmetic connection to stochastic gradient descent (SGD), in-

cremental updates of TD are not (stochastic) gradient steps with respect to any fixed loss function. It

is therefore difficult to show that it makes consistent, quantifiable, progress toward its asymptotic limit

point. Nevertheless, Section 6 shows that expected TD updates obey crucial properties mirroring those

of gradient descent on a particular quadratic loss function. In a model where the observations are cor-

rupted by i.i.d. noise, these gradient-like properties of TD allow us to give state-of-the-art convergence

bounds by essentially mirroring standard analyses of stochastic gradient descent (SGD). This approach

may be of broader interest as SGD analyses are commonly taught in machine learning courses and serve

as a launching point for a much broader literature on first-order optimization. Rigorous connections

with the optimization literature can facilitate research on principled improvements to TD.

• Non-asymptotic treatment with Markovian noise: TD is usually applied online to a single Markovian

data stream. However, to our knowledge, there has been no successful1 non-asymptotic analysis in the

setting with Markovian observation noise. Instead, many papers have studied such algorithms under the

simpler i.i.d noise model mentioned earlier [Sutton et al., 2009b,a, Liu et al., 2015, Touati et al., 2018,

Dalal et al., 2018b, Lakshminarayanan and Szepesvári, 2018]. One reason is that the dependent nature

of the data introduces a substantial technical challenge: the algorithm’s updates are not only noisy,

but can be severely biased. We use information theoretic techniques to control the magnitude of bias,

yielding bounds that are essentially scaled by a factor of the mixing time of the underlying Markov

process relative to those attained for i.i.d. model. Our analysis in this setting applies only to a variant

of TD that projects the iterates onto a norm ball. This projection step imposes a uniform bound on the

noise of gradient updates, which is needed for tractability. For similar reasons, projection operators are

widely used throughout the stochastic approximation literature [Kushner, 2010, Section 2].

• An extendable approach: Much of the paper focuses on analyzing the most basic temporal difference

learning algorithm, known as TD(0). We also extend this analysis to other algorithms. First, we es-

tablish convergence bounds for temporal difference learning with eligibility traces, known as TD(λ).

This is known to often outperform TD(0) [Sutton and Barto, 1998], but a finite time analysis is more

involved. Our analysis also applies without modification to Q-learning for a class of high-dimensional

optimal stopping problems. Such problems have been widely studied due to applications in the pricing

of financial derivatives [Tsitsiklis and Van Roy, 1999, Andersen and Broadie, 2004, Haugh and Kogan,

2004, Desai et al., 2012, Goldberg and Chen, 2018]. For our purposes, this example illustrates more

clearly the link between value prediction and decision-making. It also shows our techniques extend

seamlessly to analyzing an instance of non-linear stochastic approximation. To our knowledge, no

prior work has provided non-asymptotic guarantees for either TD(λ) or Q-learning with function ap-

proximation.

1.2 Related Literature

Non-asymptotic analysis of TD(0): There has been very little non-asymptotic analysis of TD(0). To our

knowledge, Korda and La [2015] provided the first finite time analysis. However, several serious errors in

their proofs were pointed out by Lakshminarayanan and Szepesvári [2017]. A very recent work by Dalal et al.

[2018a] studies TD(0) with linear function approximation in an i.i.d. observation model, which assumes se-

quential observations used by the algorithm are drawn independently from their steady-state distribution.

They focus on analysis with problem independent step-sizes of the form 1/T σ for a fixed σ ∈ (0, 1) and

establish that mean-squared error convergences at a rate2 of O(1/T σ). Unfortunately, while the analysis is

technically non-asymptotic, the constant factors in the bound display a complex dependence on the problem

instance and even scale exponentially with the eigenvalues of certain matrices. Dalal et al. [2018a] also give

a high-probability bound, a nice feature that we do not address in this work.

1This was previously attempted by Korda and La [2015], but critical errors were shown by Lakshminarayanan and Szepesvári [2017].
2In personal communication, the authors have told us their analysis also yields a O(1/T ) rate of convergence for problem dependent

step-sizes, though we have not been able to easily verify this.
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This paper was accepted at the 2018 Conference on Learning Theory (COLT) and published in the

proceedings as a two-page extended abstract. While the paper was under review, an interesting paper by

Lakshminarayanan and Szepesvári [2018] appeared. They study linear stochastic approximation algorithms

under i.i.d noise, including TD(0), with constant step-sizes and iterate averaging. This line of work dates

back to Györfi and Walk [1996], who show that the iterates of a constant step-size linear stochastic approxi-

mation algorithm form an ergodic Markov chain and, in the case of i.i.d. observation noise, their expectation

in steady-state is equal to the true solution of the linear system. By a central limit theorem for ergodic se-

quences, the average iterate converges to the true solution, with mean-squared error decaying at rate O(1/T ).
Bach and Moulines [2013] give a sophisticated non-asymptotic analysis of the least-mean-squares algorithm

with constant step-size and iterate-averaging. Lakshminarayanan and Szepesvári [2018] aim to understand

whether such guarantees extend to linear stochastic approximation algorithms more broadly. In the process,

their work provides O(1/T ) bounds for iterate-averaged TD(0) with constant step-size. A remarkable feature

of their approach is that the choice of step-size is independent of the conditioning of the features (although

the bounds themselves do degrade if features become ill-conditioned). It is worth noting that these results

rely critically on the assumption that noise is i.i.d. In fact, Györfi and Walk [1996] provide a very simple

example of failure under correlated noise. In this example, under a linear stochastic approximation algorithm

applied with any constant step-size, the averaged-iterate will converge to the wrong limit.

The recent works of Dalal et al. [2018a] and Lakshminarayanan and Szepesvári [2018] give bounds for

TD(0) only under i.i.d. observation noise. Therefore their results are most comparable to what is presented in

Section 7. For the i.i.d. noise model, the main argument in favor of our approach is that it allows for extremely

simple proofs, interpretable constant terms, and illuminating connections with SGD. Moreover, it is worth

emphasizing that our approach gracefully extends to more complex settings, including more realistic models

with Markovian noise, the analysis of TD with eligibility traces, and the analysis of Q-learning for optimal

stopping problems as shown in Sections 8, 9 and 10.

While not directly comparable to our results, we point the readers to the excellent work of Schapire and Warmuth

[1996]. To facilitate theoretical analysis, they consider a slightly modified version of the TD(λ). The authors

provide a finite time analysis for this algorithm in an adversarial model where the goal is to predict the dis-

counted sum of future rewards from each state. Performance is measured relative to the best fixed linear

predictor in hindsight. The analysis is creative, but results depend on a several unknown constants and on the

specific sequence of states and rewards on which the algorithm is applied. Schapire and Warmuth [1996] also

apply their techniques to study value function approximation in a Markov decision process. In that case, the

bounds are much weaker than what is established here. Their bound scales with the size of the state space–

which is enormous in most practical problems–and applies only to TD(1)–a somewhat degenerate special

case of TD(λ) in which it is equivalent to Monte Carlo policy evaluation [Sutton and Barto, 1998].

Asymptotic analysis of stochastic approximation: There is a well developed asymptotic theory of stochas-

tic approximation, a field that studies noisy recursive algorithms like TD [Kushner and Yin, 2003, Borkar,

2009, Benveniste et al., 2012]. Most asymptotic convergence proofs in reinforcement learning use a tech-

nique known as the ODE method [Borkar and Meyn, 2000]. Under some technical conditions and appropriate

decaying step-sizes, this method ensures the almost-sure convergence of stochastic approximation algorithms

to the invariant set of a certain ‘mean’ differential equation. The technique greatly simplifies asymptotic con-

vergence arguments, since it completely circumvents issues with noise in the system and issues of step-size

selection. But this also makes it a somewhat coarse tool, unable to generate insight into an algorithm’s sen-

sitivity to noise, ill-conditioning, or step-size choices. A more refined set of techniques begin to address

these issues. Under fairly broad conditions, a central limit theorem for stochastic approximation algorithms

characterizes their limiting variance. Such a central limit theorem has been specifically provided for TD by

Konda [2002] and Devraj and Meyn [2017].

Despite the availability of such asymptotic techniques, the modern literature on first-order stochastic

optimization focuses heavily on non-asymptotic analysis [Bottou et al., 2018, Bubeck, 2015, Jain and Kar,

2017]. One reason is that such asymptotic analysis necessarily focuses on a regime where step-sizes are

arbitrarily small relative to problem features and the iterates have already converged to a small neighborhood
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of the optimum. However, the use of a first-order method in the first place signals that a practitioner is mostly

interesting in cheaply reaching a reasonably accurate solution, rather than the rate of convergence in the

neighborhood of the optimum. In practice, it is common to use constant step-sizes, so iterates never truly

converge to the optimum. A non-asymptotic analysis requires grappling with the algorithm’s behavior in

practically relevant regimes where step-sizes are still relatively large and iterates are not yet close to the true

solution.

Analysis of related algorithms: A number of papers analyze algorithms related to and inspired by the

classic TD algorithm. First, among others, Antos et al. [2008], Lazaric et al. [2010], Ghavamzadeh et al.

[2010], Pires and Szepesvári [2012], Prashanth et al. [2013] and Tu and Recht [2018] analyze least-squares

temporal difference learning (LSTD). Yu and Bertsekas [2009] study the related least-squares policy iteration

algorithm. The asymptotic limit point of TD is a minimizer of a certain population loss, known as the

mean-squared projected Bellman error. LSTD solves a least-squares problem, essentially computing the

exact minimizer of this loss on the empirical data. It is easy to derive a central limit theorem for LSTD.

Finite time bounds follow from establishing uniform convergence rates of the empirical loss to the population

loss. Unfortunately, such techniques appear to be quite distinct from those needed to understand the online

TD algorithms studied in this paper. Online TD has seen much wider use due to significant computational

advantages [Sutton and Barto, 1998].

Gradient TD methods are another related class of algorithms. These were derived by Sutton et al. [2009b,a]

to address the issue that TD can diverge in so-called off-policy settings, where data is collected from a policy

different from the one for which we want to estimate the value function. Unlike the classic TD(0) algorithm,

gradient TD methods are designed to mimic gradient descent with respect to the mean squared projected

Bellman error. Sutton et al. [2009b,a] propose asymptotically convergent two-time scale stochastic approxi-

mation schemes based on this and more recently Dalal et al. [2018b] give a finite time analysis of two time

scale stochastic approximation algorithms, including several variants of gradient TD algorithms. A creative

paper by Liu et al. [2015] reformulates the original optimization as a primal-dual saddle point problem and

leverages convergence analysis form that literature to give a non-asymptotic analysis. This work was later

revisited by Touati et al. [2018], who established a faster rate of convergence. The works of Dalal et al.

[2018b], Liu et al. [2015] and Touati et al. [2018] all consider only i.i.d. observation noise. One interesting

open question is whether our techniques for treating the Markovian observation model will also apply to these

analyses. Finally, it is worth highlighting that, to the best of our knowledge, substantial new techniques are

needed to analyze the widely used TD(0), TD(λ) and the Q-learning algorithm studied in this paper. Unlike

gradient TD methods, they do not mimic noisy gradient steps with respect to any fixed objective3.

2 Problem formulation

Markov reward process. We consider the problem of evaluating the value function Vµ of a given policy µ
in a Markov decision process (MDP). We work in the on policy setting, where data is generated by applying

the policy µ in the MDP. Because the policy µ is applied automatically to select actions, such problems

are most naturally formulated as value function estimation in a Markov reward process (MRP). A MRP4

comprises of (S,P ,R, γ) [Sutton and Barto, 1998] where S is the set of states, P is the Markovian transition

kernel,R is a reward function, and γ < 1 is the discount factor. For a discrete state-space S, P(s′|s) specifies

the probability of transitioning from a state s to another state s′. The reward function R(s, s′) associates a

reward with each state transition. We denote by R(s) = ∑s′∈S P(s′|s)R(s, s′) the expected instantaneous

reward generated from an initial state s.

3This can be formally verified for TD(0) with linear function approximation. If the TD step were a gradient with respect to a fixed

objective, differentiating it should give the Hessian and hence a symmetric matrix. Instead, the matrix one attains is typically not a

symmetric one.
4We avoid µ from notation for simplicity.
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The value function associated with this MRP, Vµ, specifies the expected cumulative discounted future

reward as a function of the state of the system. In particular,

Vµ(s) = E

[ ∞∑

t=0

γtR(st) | s0 = s

]

,

where the expectation is over sequences of states generated according to the transition kernel P . This value

function obeys the Bellman equation TµVµ = Vµ, where the Bellman operator Tµ associates a value function

V : S → R with another value function TµV satisfying

(TµV )(s) = R(s) + γ
∑

s′∈S
P(s′|s)V (s′) ∀ s ∈ S.

We assume rewards are bounded uniformly such that

|R(s, s′)| ≤ rmax ∀ s, s′ ∈ S.

Under this assumption, value functions are assured to exist and are the unique solution to Bellman’s equation

[Bertsekas, 2012]. We also assume that the Markov reward process induced by following the policy µ is

ergodic with a unique stationary distribution π. For any two states s, s′: π(s′) = limt→∞ P(st = s′|s0 = s).
Following common references [Bertsekas, 2012, Dann et al., 2014, De Farias and Van Roy, 2003], we

will simplify the presentation by assuming the state space S is a finite set of size n = |S|. We elaborate on

this choice in the remark below.

Remark 1. Working with a finite state space allows for the use of compact matrix notation, which is the

convention in work on linear value function approximation. It also avoids measure theoretic notation for

conditional probability distributions. Our proofs extend in an obvious way to problems with countably infinite

state-spaces. For problems with general state-space, even the core results in dynamic programming hold only

under suitable technical conditions [Bertsekas and Shreve, 1978].

Value function approximation. Given a fixed policy µ, the problem is to efficiently estimate the corre-

sponding value function Vµ using only the observed rewards and state transitions. Unfortunately, due to

the curse of dimensionality, most modern applications have intractably large state spaces, rendering exact

value function learning hopeless. Instead, researchers resort to parametric approximations of the value func-

tion, for example by using a linear function approximator [Sutton and Barto, 1998] or a non-linear function

approximation such as a neural network [Mnih et al., 2015]. In this work, we consider a linear function

approximation architecture where the true value-to-go Vµ(s) is approximated as

Vµ(s) ≈ Vθ(s) = φ(s)⊤θ,

where φ(s) ∈ R
d is a fixed feature vector for state s and θ ∈ R

d is a parameter vector that is shared across

states. When the state space is the finite set S = {s1, . . . , sn}, Vθ ∈ R
n can be expressed compactly as

Vθ =






φ(s1)
⊤

...

φ(sn)
⊤




 θ =






φ1(s1) φk(s1) φd(s1)
...

...
...

φ1(sn) φk(sn) φd(sn)




 θ = Φθ,

where Φ ∈ R
n×d and θ ∈ R

d. We assume throughout that the d features vectors {φk}dk=1, forming the

columns of Φ are linearly independent.
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Norms in value function and parameter space. For a symmetric positive definite matrix A, define the

inner product 〈x, y〉A = x⊤Ay and the associated norm ‖x‖A=
√
x⊤Ax. If A is positive semi-definite

rather than positive definite then ‖·‖A is called a semi-norm. Let D = diag(π(s1), . . . , π(sn)) ∈ R
n×n

denote the diagonal matrix whose elements are given by the entries of the stationary distribution π(·). Then,

for two value functions V and V ′,

‖V − V ′‖D=

√
∑

s∈S
π(s) (V (s)− V ′(s))2,

measures the mean-square difference between the value predictions under V and V ′, in steady-state. This

suggests a natural norm on the space of parameter vectors. In particular, for any θ, θ′ ∈ R
d,

‖Vθ − Vθ′‖D=
√
∑

s∈S
π(s) (φ(s)⊤(θ − θ′))

2
= ‖θ − θ′‖Σ

where

Σ := Φ⊤DΦ =
∑

s∈S
π(s)φ(s)φ(s)⊤

is the steady-state feature covariance matrix.

Feature regularity. We assume that any entirely redundant or irrelevant features have been removed, so Σ
has full rank. Additionally, we also assume that ‖φ(s)‖22≤ 1 for all s ∈ S, which can be ensured through

feature normalization. This also ensures that Σ exists. Let ω > 0 be the minimum eigenvalue of Σ. From

our bound on the feature vectors, the maximum eigenvalue of Σ is less than 15 , so 1/ω bounds the con-

dition number of the feature covariance matrix. The following lemma is an immediate consequence of our

assumptions.

Lemma 1 (Norm equivalence). For all θ ∈ R
d,
√
ω‖θ‖2≤ ‖Vθ‖D≤ ‖θ‖2.

While we assume it has full rank, we will establish some finite time bounds that are independent of the

conditioning of the feature covariance matrix.

3 Temporal difference learning

We consider the classic temporal difference learning algorithm [Sutton, 1988]. The algorithm starts with an

initial parameter estimate θ0 and at every time step t, it observes one data tuple Ot = (st, rt = R(st, s′t), s′t)
consisting of the current state, the current reward and the next state reached by playing policy µ in the current

state. This tuple is used to define a loss function, which is taken to be the squared sample Bellman error.

It then proceeds to compute the next iterate θt+1 by taking a gradient step. Some of our bounds guarantee

accuracy of the average iterate, denoted by θ̄t = t−1
∑t−1

i=0 θi. The version of TD presented in Algorithm 1

also makes online updates to the averaged iterate.

We present in Algorithm 1 the simplest variant of TD, which is known as TD(0). It is also worth

highlighting that here we study online temporal difference learning, which makes incremental gradient-like

updates to the parameter estimate based on the most recent data observations only. Such algorithms are

widely used in practice, but harder to analyze than so-called batch TD methods like the LSTD algorithm of

Bradtke and Barto [1996].

At time t, TD takes a step in the direction of the negative gradient gt(θt) evaluated at the current parameter.

As a general function of θ and the tuple Ot = (st, rt, s
′
t), the negative gradient can be written as

gt(θ) =
(

rt + γφ(s′t)
⊤θ − φ(st)

⊤θ
)

φ(st). (1)

5Let λmax(A) = max‖x‖2=1 x
⊤Ax denote the maximum eigenvalue of a symmetric positive-semidefinite matrix. Since this is a

convex function, λmax(Σ) ≤
∑

s∈S π(s)λmax(φ(s)φ(s)⊤) ≤
∑

s∈S π(s) = 1.
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Algorithm 1: TD(0) with linear function approximation

Input : initial guess θ0, step-size sequence {αt}t∈N.

Initialize: θ̄0 ← θ0.

for t = 0, 1, . . . do

Observe tuple: Ot = (st, rt = R(st, s′t), s′t)
Define target: yt = R(st, s′t) + γVθt(s

′
t) /* sample Bellman operator */

Define loss function: 1
2 (yt − Vθ(st))

2 /* sample Bellman error squared */

Compute negative gradient: gt(θt) = − ∂
∂θ

1
2 (yt − Vθ(st))

2|θ=θt

Take a gradient step: θt+1 = θt + αtgt(θt) /* αt:step-size */

Update averaged iterate: θ̄t+1 ←
(

t
t+1

)

θ̄t +
(

1
t+1

)

θt+1 /* θ̄t+1 = 1
t+1

∑t
ℓ=0 θℓ */

end

The long-run dynamics of TD are closely linked to the expected negative gradient step when the tuple Ot =
(st, rt, s

′
t) follows its steady-state behavior:

ḡ(θ) :=
∑

s,s′∈S
π(s)P(s′|s)

(
R(s, s′) + γφ(s′)⊤θ − φ(s)⊤θ

)
φ(s) ∀ θ ∈ R

d.

This can be rewritten more compactly in several useful ways. One such way is,

ḡ(θ) = E [φr] + E
[
φ(γφ′ − φ)⊤

]
θ, (2)

where φ = φ(s) is the feature vector of a random initial state s ∼ π, φ′ = φ(s′) is the feature vec-

tor of a random next state drawn according to s′ ∼ P(· | s), and r = R(s, s′). In addition, since
∑

s′∈S P(s′|s)
(
R(s, s′) + γφ(s′)⊤θ

)
= (TµΦθ)(s), we can recognize that

ḡ(θ) = Φ⊤D(TµΦθ − Φθ). (3)

See Tsitsiklis and Van Roy [1997] for a derivation of this fact.

4 Asymptotic convergence of temporal difference learning

The main challenge in analyzing TD is that the gradient steps gt(θ) are not true stochastic gradients with re-

spect to any fixed objective. The gradient step taken at time t pulls the value prediction Vθt+1(st) closer to yt,
but yt itself depends on Vθt . So does this circular process converge? The key insight of Tsitsiklis and Van Roy

[1997] was to interpret this as a stochastic approximation scheme for solving a fixed point equation known as

the projected Bellman equation. Contraction properties together with general results from stochastic approx-

imation theory can then be used to show convergence.

Should TD converge at all, it should be to a stationary point. Because the feature covariance matrix Σ is

full rank there is a unique6 vector θ∗ with ḡ(θ∗) = 0. We briefly review results that offer insight into θ∗ and

proofs of the asymptotic convergence of TD.

Understanding the TD limit point. Tsitsiklis and Van Roy [1997] give an interesting characterization of

the limit point θ∗. They show it is the unique solution to the projected Bellman equation

Φθ = ΠDTµΦθ, (4)

6This follows formally as a consequence of Lemma 3 in this paper.
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where ΠD(·) is the projection operator onto the subspace {Φx | x ∈ R
d} spanned by these features in the

inner product 〈·, ·〉D . To see why this is the case, note that by using ḡ(θ∗) = 0 along with Equation (3),

0 = x⊤ḡ(θ∗) = 〈Φx , TµΦθ
∗ − Φθ∗〉D ∀ x ∈ R

d.

That is, the Bellman error at θ∗, given by (TµΦθ
∗ −Φθ∗), is orthogonal to the space spanned by the features

in the inner product 〈·, ·〉D. By definition, this means ΠD (TµΦθ
∗ − Φθ∗) = 0 and hence θ∗ must satisfy the

projected Bellman equation.

The following lemma shows the projected Bellman operator,ΠDTµ(·) is a contraction, and so in principle,

one could converge to the approximate value function Φθ∗ by repeatedly applying it. TD appears to serve a

simple stochastic approximation scheme for solving the projected-Bellman fixed point equation.

Lemma 2. [Tsitsiklis and Van Roy [1997]] ΠDTµ(·) is a contraction with respect to ‖·‖D with modulus γ,

that is,

‖ΠDTµVθ −ΠDTµVθ′‖D ≤ γ‖Vθ − Vθ′‖D ∀ θ, θ′ ∈ R
d.

Finally, the limit of convergence comes with some competitive guarantees. From Lemma 2, a short argument

shows

‖Vθ∗ − Vµ‖D ≤
1

√

1− γ2
‖ΠDVµ − Vµ‖D. (5)

See Chapter 6 of Bertsekas [2012] for a proof. The left hand side of Equation (5) measures the root-mean-

squared deviation between the value predictions of the limiting TD value function and the true value function.

On the right hand side, the projected value function ΠDVµ minimizes root-mean-squared prediction errors

among all value functions in the span of Φ. If Vµ actually falls within the span of the features, there is no

approximation error at all and TD converges to the true value function.

Asymptotic convergence via the ODE method. Like many analyses in reinforcement learning, the con-

vergence proof of Tsitsiklis and Van Roy [1997] appeals to a powerful technique from the stochastic approx-

imation literature known as the “ODE method”. Under appropriate conditions, and assuming a decaying

step-size sequence satisfying the Robbins-Monro conditions, this method establishes the asymptotic conver-

gence of the stochastic recursion θt+1 = θt + αtgt(θt) as a consequence of the global asymptotic stability

of the deterministic ODE: θ̇t = ḡ(θt). The critical step in the proof of Tsitsiklis and Van Roy [1997] is to

use the contraction properties of the Bellman operator to establish this ODE is globally asymptotically stable

with the equilibrium point θ∗.

The ODE method vastly simplifies convergence proofs. First, because the continuous dynamics can be

easier to analyze than discretized ones, and more importantly, because it avoids dealing with stochastic noise

in the problem. At the same time, by side-stepping these issues, the method offers little insight into the critical

effect of step-size sequences, problem conditioning, and mixing time issues on algorithm performance.

5 Outline of analysis

The remainder of the paper focuses on a finite time analysis of TD. Broadly, we establish two types of finite

time bounds. We first derive bounds that depend on the condition number of the feature covariance matrix. In

that case, we state explicit bounds on the expected distance E
[
‖θT − θ∗‖22

]
of the iterate from the TD fixed-

point, θ∗. These mirror what one might expect from the literature on stochastic optimization of strongly

convex functions: results showing that TD with constant step-sizes converges to within a radius of θ∗ at an

exponential rate, and O(1/T ) convergence rates with appropriate decaying step-sizes. Note that by Lemma

1, ‖VθT − Vθ∗‖2D≤ ‖θT − θ∗‖22, so bounds on the distance of the iterate to the TD fixed point also imply

bounds on the distance between value predictions.

These results establish fast rates of convergence, but only if the problem is well conditioned. The

choice of step-sizes is also very sensitive to problem conditioning. Work on robust stochastic approximation
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[Nemirovski et al., 2009] argues instead for the use of comparatively large step-sizes together with iterate

averaging. Following the spirit of this work, we also give explicit bounds on E
[
‖Vθ̄T − Vθ∗‖2D

]
, which mea-

sures the mean-squared gap between the predictions under the averaged-iterate θ̄T and under the TD limit

point θ∗. These yield slower O(1/
√
T ) convergence rates, but both the bounds and step-sizes are completely

independent of problem conditioning.

Our approach is to start by developing insights from simple, stylized settings, and then incrementally

extend the analysis to more complex settings. The analysis is outlined below.

Noiseless case: Drawing inspiration from the ODE method discussed above, we start by analyzing the Euler

discretization of the ODE θ̇t = ḡ(θt), which is the deterministic recursion θt+1 = θt + αḡ(θt). We

call this method “mean-path TD”. As motivation, the section first considers a fictitious gradient descent

algorithm designed to converge to the TD fixed point. We then develop striking analogues for mean-

path TD of the key properties underlying the convergence of gradient descent. Easy proofs then yield

two bounds mirroring those given for gradient descent.

Independent noise: Section 7 studies TD under an i.i.d. observation model, where the data-tuples used by

TD are drawn i.i.d. from the stationary distribution. The techniques used to analyze mean-path TD(0)

extend easily to this setting, and the resulting bounds mirror standard guarantees for stochastic gradient

descent.

Markov noise: In Section 8, we analyze TD in the more realistic setting where the data is collected from a

single sample path of an ergodic Markov chain. This setting introduces significant challenges due to

the highly dependent nature of the data. For tractability, we assume the Markov chain satisfies a certain

uniform bound on the rate at which it mixes, and study a variant of TD that uses a projection step to

ensure uniform boundedness of the iterates. In this case, our results essentially scale by a factor of the

mixing time relative to the i.i.d. case.

Extension to TD(λ): In Section 9, we extend the analysis under the Markov noise to TD with eligibility

traces, popularly known as TD(λ). Eligibility traces are known to often provide performance gains in

practice, but theoretical analysis is more complex. Such analysis offers some insight into the subtle

tradeoffs in the selection of the parameter λ ∈ [0, 1].

Approximate optimal stopping: A final section extends our results to a class of high dimensional optimal

stopping problems. We analyze Q-learning with linear function approximation. Building on observa-

tions of Tsitsiklis and Van Roy [1999], we show the key properties used in our analysis of TD continue

to hold for Q-learning in this setting. The convergence bounds shown in Sections 7 and 8 therefore

apply without any modification.

6 Analysis of mean-path TD

All practical applications of TD involve observation noise. However, a great deal of insight can be gained by

investigating a natural deterministic analogue of the algorithm. Here we study the recursion

θt+1 = θt + αḡ(θt) t ∈ N0 = {0, 1, 2, . . .},

which is the Euler discretization of the ODE described in Section 4. We will refer to this iterative algorithm

as mean-path TD. In this section, we develop key insights into the dynamics of mean-path TD that allow for

a remarkably simple finite time analysis of its convergence. Later sections of the paper show how these ideas

extend gracefully to analyses with observation noise.

The key to our approach is to develop properties of mean-path TD that closely mirror those of gradient

descent on a particular quadratic loss function. To this end, in the next subsection, we review a simple analysis

of gradient descent. In Subsection 6.2, we establish key properties of mean-path TD mirroring those used to

analyze this gradient descent algorithm. Finally, Subsection 6.3 gives convergence rates of mean-path TD,
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with proofs and rates mirroring those given for gradient descent except for a constant that depends on the

discount factor, γ.

6.1 Gradient descent on a value function loss

Consider the cost function

f(θ) =
1

2
‖Vθ∗ − Vθ‖2D=

1

2
‖θ∗ − θ‖2Σ,

which measures the mean-squared gap between the value predictions under θ and those under the stationary

point of TD, θ∗. Consider as well a hypothetical algorithm that performs gradient descent on f , iterating

θt+1 = θt − α∇f(θt) for all t ∈ N0. Of course, this algorithm is not implementable, as one does not know

the limit point θ∗ of TD. However, reviewing an analysis of such an algorithm will offer great insights into

our eventual analysis of TD.

To start, a standard decomposition characterizes the evolution of the error at iterate θt:

‖θ∗ − θt+1‖22= ‖θ∗ − θt‖22+2α∇f(θt)
⊤(θ∗ − θt) + α2‖∇f(θt)‖22.

To use this decomposition, we need two things. First, some understanding of ∇f(θt)
⊤(θ∗ − θt), capturing

whether the gradient points in the direction of (θ∗ − θt). And second, we need an upper bound on the norm

of the gradient ‖∇f(θt)‖22. In this case, ∇f(θ) = Σ(θ − θ∗), from which we conclude

∇f(θ)⊤(θ∗ − θ) = −‖θ∗ − θ‖2Σ= −‖Vθ∗ − Vθ‖2D. (6)

In addition, one can show7

‖∇f(θ)‖2≤ ‖Vθ∗ − Vθ‖D. (7)

Now, using (6) and (7), we have that for step-size α = 1,

‖θ∗ − θt+1‖22≤ ‖θ∗ − θt‖22−‖Vθ∗ − Vθt‖2D. (8)

The distance to θ∗ decreases in every step, and does so more rapidly if there is a large gap between the value

predictions under θ and θ∗. Combining this with Lemma 1 gives

‖θ∗ − θt+1‖22≤ (1− ω)‖θ∗ − θt‖22≤ . . . ≤ (1− ω)t+1‖θ∗ − θ0‖22. (9)

Recall that ω denotes the minimum eigenvalue of Σ. This shows that error converges at a fast geometric rate.

However the rate of convergence degrades if the minimum eigenvalue ω is close to zero. Such a convergence

rate is therefore only meaningful if the feature covariance matrix is well conditioned.

By working in the space of value functions and performing iterate averaging, one can also give a guarantee

that is independent of ω. Recall the notation θ̄T = T−1
∑T−1

t=0 θt for the averaged iterate. A simple proof

from (8) shows

‖Vθ∗ − Vθ̄T ‖
2
D≤

1

T

T−1∑

t=0

‖Vθ∗ − Vθt‖2D≤
‖θ∗ − θ0‖22

T
. (10)

6.2 Key properties of mean-path TD

This subsection establishes analogues for mean-path TD of the key properties (6) and (7) used to analyze gra-

dient descent. First, to characterize the gradient update, our analysis builds on Lemma 7 of Tsitsiklis and Van Roy

[1997], which uses the contraction properties of the projected Bellman operator to conclude

ḡ(θ)⊤(θ∗ − θ) > 0 ∀ θ 6= θ∗. (11)

7This can be seen from the fact that for any vector u with ‖u‖2≤ 1,

u⊤
∇f(θ) = 〈u , θ − θ∗〉Σ ≤ ‖u‖Σ‖θ∗ − θ‖Σ≤ ‖θ∗ − θ‖Σ= ‖Vθ∗ − Vθ‖D .
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That is, the expected update of TD always forms a positive angle with (θ∗ − θ). Though only Equation (11)

was stated in their lemma, Tsitsiklis and Van Roy [1997] actually reach a much stronger conclusion in their

proof itself. This result, given in Lemma 3 below, establishes that the expected updates of TD point in a

descent direction of ‖θ∗ − θ‖22, and do so more strongly when the gap between value functions under θ and

θ∗ is large. We will show that this more quantitative form of (11) allows for elegant finite time-bounds on the

performance of TD.

Note that this lemma mirrors the property in Equation (6), but with a smaller constant of (1 − γ). This

reflects that expected TD must converge to θ∗ by bootstrapping [Sutton, 1988] and may follow a less direct

path to θ∗ than the fictitious gradient descent method considered in the previous subsection. Recall that the

limit point θ∗ solves ḡ(θ∗) = 0.

Lemma 3. For any θ ∈ R
d,

(θ∗ − θ)⊤ḡ(θ) ≥ (1− γ)‖Vθ∗ − Vθ‖2D.

Proof. We use the notation described in Equation (2) of Section 3. Consider a stationary sequence of states

with random initial state s ∼ π and subsequent state s′, which, conditioned on s, is drawn from P(·|s).
Set φ = φ(s), φ′ = φ(s′) and r = R(s, s′). Define ξ = Vθ∗(s) − Vθ(s) = (θ∗ − θ)⊤φ and ξ′ =
Vθ∗(s′)− Vθ(s

′) = (θ∗ − θ)⊤φ′. By stationarity, ξ and ξ′ are two correlated random variables with the same

same marginal distribution. By definition, π, E[ξ2] = ‖Vθ∗ − Vθ‖2D since s is drawn from π.

Using the expression for ḡ(θ) in Equation (2),

ḡ(θ) = ḡ(θ)− ḡ(θ∗) = E[φ(γφ′ − φ)⊤(θ − θ∗)] = E[φ(ξ − γξ′)]. (12)

Therefore

(θ∗ − θ)⊤ḡ(θ) = E [ξ(ξ − γξ′)] = E[ξ2]− γE[ξ′ξ] ≥ (1 − γ)E[ξ2] = (1− γ)‖Vθ∗ − Vθ‖2D.

The inequality above uses Cauchy-Schwartz inequality together with the fact that ξ and ξ′ have the same

marginal distribution to conclude E[ξξ′] ≤
√

E[ξ2]
√

E[(ξ′)2] = E[ξ2].

Lemma 4 is the other key ingredient to our results. It upper bounds the norm of the expected negative

gradient, providing an analogue of Equation (7).

Lemma 4. ‖ḡ(θ)‖2≤ 2‖Vθ − Vθ∗‖D ∀ θ ∈ R
d.

Proof. Beginning from (12) in the Proof of Lemma 3, we have

‖ḡ(θ)‖2= ‖E[φ(ξ − γξ′)]‖2≤
√

E [‖φ‖22]
√

E [(ξ − γξ′)2] ≤
√

E[ξ2] + γ
√

E[(ξ′)2] = (1 + γ)
√

E[ξ2],

where the second inequality uses the assumption that ‖φ‖2≤ 1 and the final equality uses that ξ and ξ′ have

the same marginal distribution. We conclude by recalling that E[ξ2] = ‖Vθ∗ − Vθ‖2D and 1 + γ ≤ 2.

Lemmas 3 and 4 are quite powerful when used in conjunction. As in the analysis of gradient descent

reviewed in the previous subsection, our analysis starts with a recursion for the error term, ‖θt − θ∗‖2. See

Equation (13) in Theorem 1 below. Lemma 3 shows the first order term in this recursion reduces the error at

each time step, while using the two lemmas in conjunction shows the first order term dominates a constant

times the second order term. Precisely,

ḡ(θ)⊤(θ∗ − θ) ≥ (1− γ)‖Vθ∗ − Vθ‖2D ≥
(1− γ)

4
‖ḡ(θ)‖22.

This leads immediately to conclusions like Equation (14), from which finite time convergence bounds follow.

It is also worth pointing out that as TD(0) is an instance of linear stochastic approximation, these two

lemmas can be interpreted as statements about the eigenvalues of the matrix driving its behavior8.

8Recall from Section 3 that ḡ(θ) is an affine function. That is, it can be written as Aθ− b for some A ∈ R
d×d and b ∈ R

d. Lemma

3 shows that A � −(1−γ)Σ, i.e. that A+(1−γ)Σ is negative definite. It is easy to show that ‖ḡ(θ)‖2
2
= (θ−θ∗)⊤(A⊤A)(θ−θ∗),

so Lemma 4 shows that A⊤A � Σ. Taking this perspective, the important part of these lemmas is that they allows us to understand TD

in terms of feature covariance matrix Σ and the discount factor γ rather than the more mysterious matrix A.
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6.3 Finite time analysis of mean-path TD

We now combine the insights of the previous subsection to establish convergence rates for mean-path TD.

These mirror the bounds for gradient descent given in Equations (9) and (10), except for an additional de-

pendence on the discount factor. The first result bounds the distance between the value function under an

averaged iterate and under the TD stationary point. This gives a comparatively slow O(1/T ) convergence

rate, but does not depend at all on the conditioning of the feature covariance matrix. When this matrix is well

conditioned, so the minimum eigenvalue ω of Σ is not too small, the geometric convergence rate given in the

second part of the theorem dominates. Note that by Lemma 1, bounds on ‖θt − θ∗‖2 always imply bounds

on ‖Vθt − Vθ∗‖D.

Theorem 1. Consider a sequence of parameters (θ0, θ1, . . .) obeying the recursion

θt+1 = θt + αḡ(θt) t ∈ N0 = {0, 1, 2, . . .},

where α = (1− γ)/4. Then,

‖Vθ∗ − Vθ̄T ‖
2
D ≤

4‖θ∗ − θ0‖22
T (1− γ)2

and

‖θ∗ − θT ‖22 ≤ exp

{

−
(
(1− γ)2ω

4

)

T

}

‖θ∗ − θ0‖22.

Proof. With probability 1, for every t ∈ N0, we have

‖θ∗ − θt+1‖22= ‖θ∗ − θt‖22−2α(θ∗ − θt)
⊤ḡ(θt) + α2‖ḡ(θt)‖22. (13)

Applying Lemmas 3 and 4 and using a constant step-size of α = (1− γ)/4, we get

‖θ∗ − θt+1‖22 ≤ ‖θ∗ − θt‖22−
(
2α(1− γ)− 4α2

)
‖Vθ∗ − Vθt‖2D

= ‖θ∗ − θt‖22−
(
(1− γ)2

4

)

‖Vθ∗ − Vθt‖2D. (14)

Then,
(
(1− γ)2

4

) T−1∑

t=0

‖Vθ∗ − Vθt‖2D≤
T−1∑

t=0

(
‖θ∗ − θt‖22−‖θ∗ − θt+1‖22

)
≤ ‖θ∗ − θ0‖22.

Applying Jensen’s inequality gives the first result:

‖Vθ∗ − Vθ̄T ‖
2
D≤

1

T

T−1∑

t=0

‖Vθ∗ − Vθt‖2D≤
4‖θ∗ − θ0‖22
(1− γ)2T

.

Now, returning to (14), and applying Lemma 1 implies

‖θ∗ − θt+1‖22≤ ‖θ∗ − θt‖22−
(
(1 − γ)2

4

)

ω‖θ∗ − θt‖22 =

(

1− ω(1− γ)2

4

)

‖θ∗ − θt‖22

≤ exp

{

−ω(1− γ)2

4

}

‖θ∗ − θt‖22,

where the final inequality uses that
(

1− ω(1−γ)2

4

)

≤ e
−ω(1−γ)2

4 . Repeating this inductively gives the desired

result.
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7 Analysis for the i.i.d. observation model

This section studies TD under an i.i.d. observation model, and establishes three explicit guarantees that mirror

standard finite time bounds available for SGD. Specifically, we study a model where the random tuples

observed by the TD algorithm are sampled i.i.d. from the stationary distribution of the Markov reward process.

This means that for all states s and s′,

P [(st, rt, s
′
t) = (s,R(s, s′), s′)] = π(s)P(s′|s), (15)

and the tuples {(st, rt, s′t)}t∈N are drawn independently across time. Note that the probabilities in Equation

(15) correspond to a setting where the first state st is drawn from the stationary distribution, and then s′t is

drawn from P(·|st). This model is widely used for analyzing RL algorithms. See for example Sutton et al.

[2009b], Sutton et al. [2009a], Korda and La [2015], and Dalal et al. [2018a].

Theorem 2 follows from a unified analysis that combines the techniques of the previous section with

typical arguments used in the SGD literature. All bounds depend on σ2 = E[‖gt(θ∗)‖22] = E[‖gt(θ∗) −
ḡ(θ∗)‖22], which roughly captures the variance of TD updates at the stationary point θ∗. The bound in part (a)

follows the spirit of work on so-called robust stochastic approximation [Nemirovski et al., 2009]. It applies

to TD with iterate averaging and relatively large step-sizes. The result is a simple bound on the mean-squared

gap between the value predictions under the averaged iterate and the TD fixed point. The main strength of

this result is that the step-sizes and the bound do not depend at all on the condition number of the feature

covariance matrix. Note that the requirement that
√
T ≥ 8/(1− γ) is not critical; one can carry out analysis

using the step-size α0 = min{(1− γ)/8,
√
T}, but the bounds we attain only become meaningful in the case

where T is sufficiently large, so we chose to simplify the exposition.

Parts (b) and (c) provide faster convergence rates in the case where the feature covariance matrix is well

conditioned. Part (b) studies TD applied with a constant step-size, which is common in practice. In this

case, the iterate θt will never converge to the TD fixed point, but our results show the expected distance to θ∗

converges at an exponential rate below some level that depends on the choice of step-size. This is sometimes

referred to as the rate at which the initial point θ0 is “forgotten”. Bounds like this justify the common practice

of starting with large step-sizes, and sometimes dividing the step-sizes in half once it appears error is no-

longer decreasing. Part (c) attains an O(1/T ) convergence rate for a carefully chosen decaying step-size

sequence. This step-size sequence requires knowledge of the minimum eigenvalue of the feature covariance

matrix Σ, which plays a role similar to a strong convexity parameter in the optimization literature. In practice,

this would need to be estimated, possibly by constructing a sample average approximation to the feature

covariance matrix. The proof of part (c) closely follows an inductive argument presented in Bottou et al.

[2018]. Recall that θ̄T = T−1
∑T−1

t=0 θt denotes the averaged iterate.

Theorem 2. Suppose TD is applied under the i.i.d. observation model and set σ2 = E
[
‖gt(θ∗)‖22

]
.

(a) For any T ≥ (8/(1− γ))2 and a constant step-size sequence α0 = · · · = αT = 1√
T

,

E
[
‖Vθ∗ − Vθ̄T ‖2D

]
≤ ‖θ

∗ − θ0‖22+2σ2

√
T (1− γ)

.

(b) For any constant step-size sequence α0 = · · · = αT ≤ ω(1− γ)/8,

E
[
‖θ∗ − θT ‖22

]
≤
(

e−α0(1−γ)ωT
)

‖θ∗ − θ0‖22 +α0

(
2σ2

(1 − γ)ω

)

.

(c) For a decaying step-size sequence αt =
β

λ+t with β = 2
(1−γ)ω and λ = 16

(1−γ)2ω ,

E
[
‖θ∗ − θT ‖22

]
≤ ν

λ+ T
where ν = max

{
8σ2

(1− γ)2ω2
,
16‖θ∗ − θ0‖22
(1− γ)2ω

}

.
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Our proof is able to directly leverage Lemma 3, but the analysis requires the following extension of

Lemma 4 which gives an upper bound to the expected norm of the stochastic gradient.

Lemma 5. For any fixed θ ∈ R
d, E

[
‖gt(θ)‖22

]
≤ 2σ2 + 8‖Vθ − Vθ∗‖2D where σ2 = E

[
‖gt(θ∗)‖22

]
.

Proof. For brevity of notation, set φ = φ(st) and φ′ = φ(s′t). Define ξ = (θ∗ − θ)⊤φ and ξ′ = (θ∗ − θ)⊤φ′.
By stationarity, ξ and ξ′ have the same marginal distribution and E[ξ2] = ‖Vθ∗ − Vθ‖2D, following the same

argument as in Lemma 3. Using the formula for gt(θ) in Equation (1), we have

E
[
‖gt(θ)‖22

]
≤ E

[

(‖gt(θ∗)‖2+‖gt(θ)− gt(θ
∗)‖2)2

]

≤ 2E
[
‖gt(θ∗)‖22

]
+ 2E

[
‖gt(θ) − gt(θ

∗)‖22
]

= 2σ2 + 2E

[∥
∥
∥φ (φ− γφ′)

⊤
(θ∗ − θ)

∥
∥
∥

2

2

]

= 2σ2 + 2E
[

‖φ(ξ − γξ′)‖22
]

≤ 2σ2 + 2E
[
|ξ − γξ′|2

]

≤ 2σ2 + 4
(
E
[
|ξ|2
]
+ γ2

E
[
|ξ′|2

])

≤ 2σ2 + 8‖Vθ∗ − Vθ‖2D,

where we used the assumption that ‖φ‖22≤ 1. The second inequality uses the basic algebraic identity (x +
y)2 ≤ 2max{x, y}2 ≤ 2x2 + 2y2, along with the monotonicity of expectation operators.

Using this we give a proof of Theorem 2 below. Let us remark here on a consequence of the i.i.d noise

model that considerably simplifies the proof. Until now, we have often developed properties of the TD updates

gt(θ) applied to an arbitrary, but fixed, vector θ ∈ R
d. For example, we have given an expression for ḡ(θ) :=

E[gt(θ)], where this expectation integrates over the random tuple Ot = (st, rt, s
′
t) influencing the TD update.

In the i.i.d noise model, the current iterate, θt, is independent of the tuple Ot, and so E[gt(θt)|θt] = ḡ(θt). In

a similar manner, after conditioning on θt, we can seamlessly apply Lemmas 3 and 5, as is done in inequality

(16) of the proof below.

Proof. The TD algorithm updates the parameters as: θt+1 = θt + αtgt(θt). Thus, for each t ∈ N0, we have,

‖θ∗ − θt+1‖22 = ‖θ∗ − θt‖22−2αtgt(θt)
⊤(θ∗ − θt) + α2

t‖gt(θt)‖22.
Under the hypotheses of (a), (b) and (c), we have that αt ≤ (1 − γ)/8. Taking expectations and applying

Lemma 3 and Lemma 5 implies,

E
[
‖θ∗ − θt+1‖22

]
= E

[
‖θ∗ − θt‖22

]
− 2αtE

[
gt(θt)

⊤(θ∗ − θt)
]
+ α2

tE
[
‖gt(θt)‖22

]

= E
[
‖θ∗ − θt‖22

]
− 2αtE

[
E
[
gt(θt)

⊤(θ∗ − θt) | θt
]]

+ α2
tE
[
E
[
‖gt(θt)‖22 | θt

]]

≤ E
[
‖θ∗ − θt‖22

]
−
(
2αt(1− γ)− 8α2

t

)
E
[
‖Vθ∗ − Vθt‖2D

]
+ 2α2

tσ
2 (16)

≤ E
[
‖θ∗ − θt‖22

]
− αt(1− γ)E

[
‖Vθ∗ − Vθt‖2D

]
+ 2α2

tσ
2. (17)

The inequality (16) follows from Lemmas 3 and 5. The application of these lemmas uses that the random

tuple Ot = (st, rt, s
′
t) influencing gt(·) is independent of the iterate, θt.

Part (a). Consider a constant step-size of αT = · · · = α0 = 1/
√
T . Starting with Equation (17) and

summing over t gives

E

[
T−1∑

t=0

‖Vθ∗ − Vθt‖2D

]

≤ ‖θ
∗ − θ0‖22

α0(1− γ)
+

2α0Tσ
2

(1 − γ)
=

√
T‖θ∗ − θ0‖22
(1− γ)

+
2
√
Tσ2

(1− γ)
.

We find

E
[
‖Vθ∗ − Vθ̄T ‖

2
D

]
≤ 1

T
E

[
T−1∑

t=0

‖Vθ∗ − Vθt‖2D

]

≤ ‖θ
∗ − θ0‖22+2σ2

√
T (1− γ)

.
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Part (b). Consider a constant step-size of α0 ≤ ω(1− γ)/8. Applying Lemma 1 to Equation (17) implies

E
[
‖θ∗ − θt+1‖22

]
≤ (1− α0(1− γ)ω)E

[
‖θ∗ − θt‖22

]
+ 2α2

0σ
2. (18)

Iterating this inequality establishes that for any T ∈ N0,

E
[
‖θ∗ − θT ‖22

]
≤ (1− α0(1− γ)ω)

T
E
[
‖θ∗ − θ0‖22

]
+ 2α2

0σ
2

∞∑

t=0

(1− α0(1− γ)ω)
t
.

The result follows by solving the geometric series and using that (1− α0(1− γ)ω) ≤ e−α0(1−γ)ω.

Part (c). Note that by the definitions of ν, λ and β, we have

ν = max{2β2σ2 , λ‖θ∗ − θ0‖22}.

We then have ‖θ∗ − θ0‖22 ≤ ν
λ by the definition of ν. Proceeding by induction, suppose E

[
‖θ∗ − θt‖22

]
≤

ν
λ+t . Then,

E
[
‖θ∗ − θt+1‖22

]
≤ (1− αt(1− γ)ω)E

[
‖θ∗ − θt‖22

]
+ 2α2

tσ
2

≤
(

1− (1− γ)ωβ

t̂

)
ν

t̂
+

2β2σ2

t̂2
[where t̂ ≡ λ+ t]

=

(
t̂− (1− γ)ωβ

t̂2

)

ν +
2β2σ2

t̂2

=

(
t̂− 1

t̂2

)

ν +
2β2σ2 − ((1− γ)ωβ − 1) ν

t̂2

=

(
t̂− 1

t̂2

)

ν +
2β2σ2 − ν

t̂2
[using β =

2

(1− γ)ω
]

≤ ν

t̂+ 1
,

where the final inequality uses that 2β2σ2 − ν ≤ 0, which holds by the definition of ν and the fact that

t̂2 ≥ (t̂− 1)(t̂+ 1).

8 Analysis for the Markov chain observation model: Projected TD

algorithm

In Section 7, we developed a method for analyzing TD under an i.i.d. sampling model in which tuples are

drawn independently from the stationary distribution of the underlying MDP. But a more realistic setting is

one in which the observed tuples used by TD are gathered from a single trajectory of the Markov chain.

In particular, if for a given sample path the Markov chain visits states (s0, s1, . . . st, . . .), then these are

processed into tuples Ot = (st, rt = R(st, st+1), st+1) that are fed into the TD algorithm. Mathematical

analysis is difficult since the tuples used by the algorithm can be highly correlated with each other. We outline

the main challenges below.

Challenges in the Markov chain noise model. In the i.i.d. observation setting, our analysis relied heavily

on a Martingale property of the noise sequence. This no longer holds in the Markov chain model due to

strong dependencies between the noisy observations. To understand this, recall the expression of the negative

gradient,

gt(θ) =
(

rt + γφ(st+1)
⊤θ − φ(st)

⊤θ
)

φ(st). (19)
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To make the statistical dependencies more transparent, we can overload notation to write this as g(θ,Ot) ≡
gt(θ), where Ot = (st, rt, st+1). Assuming the sequence of states is stationary, we have defined the function

ḡ : Rd → R
d by ḡ(θ) = E[g(θ,Ot)], where, since θ is non-random, this expectation integrates over the

marginal distribution of the tuple Ot. However, E[g(θt, Ot) | θt = θ] 6= ḡ(θ) because θt is a function of

past tuples {O1, . . . , Ot−1}, potentially introducing strong dependencies between θt and Ot. Similarly, in

general E[g(θt, Ot)− ḡ(θt)] 6= 0, indicating bias in the algorithm’s gradient evaluation. A related challenge

arises in trying to control the norm of the gradient step, E[‖gt(θt)‖22]. Lemma 5 does not yield a bound due

to coupling between the iterate θt and the observation Ot.

Our analysis uses an information-theoretic technique to control for this coupling and explicitly account for

the gradient basis. This technique may be of broader use in analyzing reinforcement learning and stochastic

approximation algorithms. However, our analysis also requires some strong regularity conditions, as outlined

below.

Projected TD algorithm. Our technique for controlling the gradient bias relies critically on a condition

that, when step-sizes are small, the iterates (θt)t∈N0 do not change too rapidly. This is the case as long as

norms of the gradient steps do not explode. For tractability, we modify the TD algorithm itself by adding a

projection step that ensures gradient norms are uniformly bounded across time. In particular, starting with an

initial guess of θ0 such that ‖θ0‖2 ≤ R, we consider the Projected TD algorithm, which iterates

θt+1 = Π2,R (θt + αtgt(θt)) ∀ t ∈ N0, (20)

where

Π2,R(θ) = argmin
θ′:‖θ′‖2≤R

‖θ − θ′‖2

is the projection operator onto a norm ball of radius R <∞. The subscript 2 on the operator indicates that the

projection is with respect the unweighted Euclidean norm. This should not be confused with the projection

operator ΠD used earlier, which projects onto the subspace of approximate value functions with respect to a

weighted norm.

One may wonder whether this projection step is practical. We note that, from a computational perspective,

it only involves rescaling of the iterates, as Π2,R(θ) = Rθ/‖θ‖ if ‖θ‖2> R and is simply θ otherwise. In

addition, Subsection 8.2 suggests that by using aprori bounds on the value function, it should be possible to

estimate a projection radius containing the TD fixed point. However, at this stage, we view this mainly as a

tool that enables clean finite time analysis, rather than a practical algorithmic proposal.

It is worth mentioning that projection steps have a long history in the stochastic approximation literature,

and many of the standard analyses for stochastic gradient descent rely on projections steps to control the norm

of the gradient [Kushner, 2010, Lacoste-Julien et al., 2012, Bubeck, 2015, Nemirovski et al., 2009].

Structural assumptions on the Markov reward process. To control the statistical bias in the gradient

updates–which is the main challenge under the Markov observation model–we assume that the Markov chain

mixes at a uniform geometric rate, as stated below.

Assumption 1. There are constants m > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st ∈ ·|s0 = s), π) ≤ mρt ∀ t ∈ N0,

where dTV(P,Q) denotes the total-variation distance between probability measures P and Q. In addition,

the initial distribution of s0 is the steady-state distribution π, so (s0, s1, . . .) is a stationary sequence.

This uniform mixing assumption always holds for irreducible and aperiodic Markov chains [Levin and Peres,

2017]. We emphasize that the assumption that the chain begins in steady-state is not essential: given the uni-

form mixing assumption, we can always apply our analysis after the Markov chain has approximately reached
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its steady-state. However, adding this assumption allows us to simplify many mathematical expressions. An-

other useful quantity for our analysis is the mixing time which we define as

τmix(ǫ) = min{t ∈ N0 | mρt ≤ ǫ}. (21)

For interpreting the bounds, note that from Assumption 1,

τmix(ǫ) ∼ log(1/ǫ)

log(1/ρ)
as ǫ→ 0.

We can therefore evaluate the mixing time at very small thresholds like ǫ = 1/T while only contributing a

logarithmic factor to the bounds.

A bound on the norm of the gradient: Before proceeding, we also state a bound on the euclidean norm of

the gradient under TD(0) that follows from the uniform bound on rewards, along with feature normalization9

and boundedness of the iterates through the projection step. Under projected TD(0) with projection radius

R, this lemma implies that ‖gt(θt)‖2≤ (rmax + 2R). This gradient bound plays an important role in our

convergence bounds.

Lemma 6. For all θ ∈ R
d, ‖gt(θ)‖2 ≤ rmax + 2‖θ‖2 with probability 1.

Proof. Using the expression of gt(θ) in Equation (19), we have

‖gt(θ)‖2≤ |rt + (γφ(s′t)− φ(st))
⊤θ| ‖φ(st)‖ ≤ rmax + ‖γφ(s′t)− φ(st)‖2‖θ‖2

≤ rmax + 2‖θ‖.

8.1 Finite time bounds

Following Section 7, we state several finite time bounds on the performance of the Projected TD algorithm.

As before, in the spirit of robust stochastic approximation [Nemirovski et al., 2009], the bound in part (a)

gives a comparatively slow convergence rate of Õ(1/
√
T ), but where the bound and step-size sequence are

independent of the conditioning of the feature covariance matrix Σ. The bound in part (c) gives a faster

convergence rate in terms of the number of samples T , but the bound and as well as the step-size sequence

depend on the minimum eigenvalueω of Σ. Part (b) confirms that for sufficiently small step-sizes, the iterates

converge at an exponential rate to within some radius of the TD fixed-point, θ∗.

It is also instructive to compare the bounds for the Markov model vis-a-vis the i.i.d. model. One can see

that in the case of part(b) for the Markov chain setting, aO
(
G2τmix(α0)

)
term controls the limiting error due

to gradient noise. This scaling by the mixing time is intuitive, reflecting that roughly every cycle of τmix(·)
observations provides as much information as a single independent sample from the stationary distribution.

We can also imagine specializing the results to the case of Projected TD under the i.i.d. model, thereby

eliminating all terms depending on the mixing time. We would attain bounds that mirror those in Theorem

2, except that the gradient noise term σ2 there would be replaced by G2. This is a consequence using G as a

uniform upper bound on the gradient norm in the proof, which is possible because of the projection step.

Theorem 3. Suppose the Projected TD algorithm is applied with parameter R ≥ ‖θ∗‖2 under the Markov

chain observation model with Assumption 1. Set G = (rmax + 2R). Then the following claims hold.

(a) With a constant step-size sequence α0 = · · · = αT = 1/
√
T ,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤
‖θ∗ − θ0‖22 +G2

(

9 + 12τmix(1/
√
T )
)

2
√
T (1− γ)

.

9Recall that we assumed ‖φ(s)‖
2
≤ 1 for all s ∈ S and |R(s, s′)| ≤ rmax for all s, s′ ∈ S
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(b) With a constant step-size sequence α0 = · · · = αT < 1/(2ω(1− γ)),

E

[

‖θ∗ − θT ‖22
]

≤
(

e−2α0(1−γ)ωT
)

‖θ∗ − θ0‖22 + α0

(

G2
(
9 + 12τmix(α0)

)

2(1− γ)ω

)

.

(c) With a decaying step-size sequence αt = 1/(ω(t+ 1)(1− γ)) for all t ∈ N0,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ G2
(
9 + 24τmix(αT )

)

T (1− γ)2ω
(1 + logT ) ,

Remark 1: The proof of part (c) also implies an Õ(1/T ) convergence rate for the iterate θT itself; similar

to the O(1/T ) convergence shown for the i.i.d. case, in part (c) of Theorem 2.

Remark 2: It is likely possible to eliminate the logT term in the numerator of part (c) to get aO(1/T ) con-

vergence rate. One approach is to use a different weighting of the iterates when averaging, as in Lacoste-Julien et al.

[2012]. For brevity and simplicity, we do not pursue this direction.

8.2 Choice of the projection radius

We briefly comment on the choice of the projection radius, R. Note that Theorem 3 assumes that ‖θ∗‖2 ≤ R,

so the TD limit point lies within the projected ball. How do we choose such an R when θ∗ is unknown? It

turns out we can use Lemma 2, which relates the value function at the limit of convergence Vθ∗ to the true

value function, to give a conservative upper bound. This is shown in the proof of the following lemma.

Lemma 7. ‖θ∗‖Σ≤ 2rmax

(1−γ)3/2
and hence ‖θ∗‖2≤ 2rmax√

ω(1−γ)3/2
.

Proof. Because rewards are uniformly bounded, |Vµ(s)|≤ rmax/(1−γ) for all s ∈ S. Recall that Vµ denotes

the true value function of the Markov reward process. This implies that

‖Vµ‖D ≤ ‖Vµ‖∞ ≤
rmax

(1− γ)
.

Lemma 2 along with simple matrix inequalities enable a simple upper bound on ‖θ∗‖2. We have

‖Vθ∗ − Vµ‖D ≤ 1
√

1− γ2
‖Vµ −ΠDVµ‖D ≤

1
√

1− γ2
‖Vµ‖D ≤

1√
1− γ

‖Vµ‖D,

where the penultimate inequality holds by the Pythagorean theorem. By the reverse triangle inequality we

have
∣
∣‖Vθ∗‖D − ‖Vµ‖D

∣
∣ ≤ ‖Vθ∗ − Vµ‖D . Thus,

‖Vθ∗‖D ≤ ‖Vθ∗ − Vµ‖D + ‖Vµ‖D ≤
2√
1− γ

‖Vµ‖D ≤
2√
1− γ

rmax

(1− γ)
.

Recall from Section 2 we have, ‖Vθ∗‖D= ‖θ∗‖Σ which establishes first part of the claim. The second claim

uses that ‖θ∗‖Σ≥ ω‖θ∗‖2 which follows by Lemma 1.

It is important to remark here that this bound is problem dependent as it depends on the minimum eigen-

value ω of the steady-state feature covariance matrix Σ. We believe that estimating ω online would make the

projection step practical to implement.
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8.3 Analysis

We now present the key analysis used to establish Theorem 3. Throughout, we assume the conditions of the

theorem hold: we consider the Markov chain observation model with Assumption 1 and study the Projected

TD algorithm applied with parameter R ≥ ‖θ∗‖2 and some step-size sequence (α0, · · · , αT ).
We fix some notation throughout the scope of this subsection. Define the set ΘR = {θ ∈ R

d : ‖θ‖2≤ R},
so θt ∈ ΘR for each t because of the algorithm’s projection step. Set G = (rmax +2R), so ‖gt(θ)‖2≤ G for

all θ ∈ ΘR by Lemma 6. Finally, we set

ζt(θ) ≡ (gt(θ) − ḡ(θ))
⊤
(θ − θ∗) ∀ θ ∈ ΘR,

which can be thought of as the error in the evaluation of gradient-update under parameter θ at time t.
Referring back to the analysis of the i.i.d. observation model, one can see that an error decomposition

given in Equation (17) is the crucial component of the proof. The main objective in this section is to establish

two key lemmas that yield a similar decomposition in the Markov chain observation model. The result can

be stated cleanly in the case of a constant step-size. If α0 = · · · = αT = α, we show

E
[
‖θ∗ − θt+1‖22

]
≤ E

[
‖θ∗ − θt‖22

]
− 2α(1− γ)E

[
‖Vθ∗ − Vθt‖2D

]
+ E[αζt(θt)] + α2G2

≤ E
[
‖θ∗ − θt‖22

]
− 2α(1− γ)E

[
‖Vθ∗ − Vθt‖2D

]
+ α2

(
5 + 6τmix(α)

)
G2. (22)

The first inequality follows from Lemma 8. The second follows from Lemma 11, which in the case of a

constant step-size α shows E[αζt(θt)] ≤ G2(4 + 6τmix(α))α2. Notice that bias in the gradient enters into

the analysis as if by scaling the magnitude of the noise in gradient evaluations by a factor of the mixing time.

From this decomposition, parts (a) and (b) of Theorem 3 follow by essentially copying the proof of Theorem

2. Similar, but messier, inequalities hold for any decaying step-size sequence, which allows us to establish

part (c).

8.3.1 Error decomposition under Projected TD

The next lemma establishes a recursion for the error under projected TD(0) that hold for each sample path.

Lemma 8. With probability 1, for every t ∈ N0,

‖θ∗ − θt+1‖22≤ ‖θ∗ − θt‖22−2αt(1− γ)‖Vθ∗ − Vθt‖2D+2αtζt(θt) + α2
tG

2.

Proof. From the projected TD(0) recursion in Equation (20), for any t ∈ N0,

‖θ∗ − θt+1‖22 = ‖θ∗ −Π2,R(θt + αtgt(θt))‖22
= ‖Π2,R(θ

∗)−Π2,R(θt + αtgt(θt))‖2
≤ ‖θ∗ − θt − αtgt(θt)‖22
= ‖θ∗ − θt‖22−2αtgt(θt)

⊤(θ∗ − θt) + α2
t ‖gt(θt)‖22

≤ ‖θ∗ − θt‖22−2αtgt(θt)
⊤(θ∗ − θt) + α2

tG
2.

= ‖θ∗ − θt‖22−2αtḡ(θt)
⊤(θ∗ − θt) + 2αtζt(θt) + α2

tG
2.

≤ ‖θ∗ − θt‖22−2αt(1− γ)‖Vθ∗ − Vθt‖2D+2αtζt(θt) + α2
tG

2.

The first inequality used that orthogonal projection operators onto a convex set are non-expansive10, the

second used Lemma 6 together with the fact that ‖θt‖2≤ R due to projection, and the third used Lemma

3.

By taking expectation of both sides, this inequality could be used to produce bounds in the same manner

as in the previous section, except that in general E[ζt(θt)] 6= 0 due to bias in the gradient evaluations.

10Let PC(x) = argminx′∈C‖x
′−x‖ denote the projection operator onto a closed, non-empty, convex set C ⊂ Rd. Then ‖PC(x)−

PC(y)‖≤ ‖x− y‖ for all vectors x and y.
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8.3.2 Information–theoretic techniques for controlling the gradient bias

The uniform mixing condition in Assumption 1 can be used in conjunction with some information theoretic

inequalities to control the magitude of the gradient bias. This section presents a general lemma, which is the

key to this analysis. We start by reviewing some important properties of information-measures.

Information theory background. The total-variation distance between two probability measures is a spe-

cial case of the more general f -divergence defined as

df (P ||Q) =

∫

f

(
dP

dQ

)

dQ,

where f is a convex function such that f(1) = 0. By choosing f(x) = |x− 1|/2, one recovers the total-

variation distance. A choice of f(x) = x log(x) yields the Kullback-Leibler divergence. This yields a gener-

alization of the mutual information between two random variables X and Y . The f -information between X
and Y is the f -divergence between their joint distribution and the product of their marginals:

If (X,Y ) = df (P(X = ·, Y = ·) , P(X = ·)⊗ P(Y = ·)).

This measure satisfies several nice properties. By definition it is symmetric, so If (X,Y ) = If (Y,X). It can

be expressed in terms of the expected divergence between conditional distributions:

If (X,Y ) =
∑

x

P(X = x)df (P(Y = ·|X = x),P(Y = ·)). (23)

Finally, it satisfies the following data-processing inequality. If X → Y → Z forms a Markov chain, then

If (X,Z) ≤ If (X,Y ).

Here, we use the notation X → Y → Z , which is standard in information theory and the study of graphical

models, to indicate that the random variables Z and X are independent conditioned on Y . Note that by

symmetry we also have If (X,Z) ≤ If (Y, Z). To use these results in conjunction with Assumption 1, we

can specialize to total-variation distance (dTV) and total-variation mutual information (ITV) using f(x) =
|x− 1|/2. The total-variation is especially useful for our purposes because of the following variational

representation.

dTV(P,Q) = sup
v:‖v‖∞≤ 1

2

∣
∣
∣
∣

∫

vdP −
∫

vdQ

∣
∣
∣
∣
. (24)

In particular, if P and Q are close in total-variation distance, then the expected value of any bounded function

under P will be close to that under Q.

Information theoretic control of coupling. With this background in place, we are ready to establish a

general lemma, which is central to our analysis. We use ‖f‖∞= supx∈X |f(x)| to denote the supremum

norm of a function f : X → R.

Lemma 9 (Control of couping). Consider two random variables X and Y such that

X → st → st+τ → Y

for some fixed t ∈ {0, 1, 2, . . .} and τ > 0. Assume the Markov chain mixes uniformly, as stated in Assump-

tion 1. Let X ′ and Y ′ denote independent copies drawn from the marginal distributions of X and Y , so

P(X ′ = ·, Y ′ = ·) = P(X = ·)⊗ P(Y = ·). Then, for any bounded function v,

|E [v(X,Y )]− E [v(X ′, Y ′)]| ≤ 2‖v‖∞(mρτ ).
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Proof. Let P = P(X ∈ ·, Y ∈ ·) denote the joint distribution of X and Y and Q = P(X ∈ ·) ⊗ P(Y ∈ ·)
denote the product of the marginal distributions. Let h = v

2‖v‖∞

, which is the function v rescaled to take

values in [−1/2, 1/2]. Then, by Equation (24)

E[h(X,Y )]− E[h(X ′, Y ′)] =

∫

hdP −
∫

hdQ ≤ dTV(P,Q) = ITV(X,Y ),

where the last equality uses the definition of the total-variation mutual information, ITV . Then,

ITV(X,Y ) ≤ ITV(st, st+τ ) =
∑

s∈S
P(st = s)dTV (P(st+τ = · | st = s)) , P(st+τ = ·))

≤ sup
s∈S

dTV (P(st+τ = · | st = s) , π)

≤ mρτ ,

where the three steps follow, respectively, from the data-processing inequality, the property in Equation (23),

the stationarity of the Markov chain, and the the uniform mixing condition in Assumption 1. Combining

these steps gives

|E [v(X,Y )]− E [v(X ′, Y ′)]| ≤ 2‖v‖∞ ITV(X,Y ) ≤ 2‖v‖∞mρτ .

8.3.3 Bounding the gradient bias.

We are now ready to bound the expected gradient error E[ζt(θt)]. First, we establish some basic regularity

properties of the function ζt(·).

Lemma 10 (Gradient error is bounded and Lipschitz). With probability 1,

|ζt(θ)|≤ 2G2 for all θ ∈ ΘR

and

|ζt(θ)− ζt(θ
′)| ≤ 6G

∥
∥
∥(θ − θ

′

)
∥
∥
∥
2

for all θ, θ′ ∈ ΘR.

Proof. The result follows from a straightforward application of the bounds ‖gt(θ)‖2≤ G and ‖θ‖2≤ R ≤
G/2, which hold for each θ ∈ ΘR. A full derivation is given in Appendix A.3.

We now use Lemmas 9 and 10 to establish a bound on the expected gradient error.

Lemma 11 (Bound on gradient bias). Consider a non-increasing step-size sequence, α0 ≥ α1 . . . ≥ αT . Fix

any t < T , and set t∗ ≡ max{0, t− τmix(αT )}. Then,

E [ζt(θt)] ≤ G2
(
4 + 6τmix(αT )

)
αt∗ .

The following bound also holds:

E [ζt(θt)] ≤ 6G2
t−1∑

i=0

αi.

Proof. We break the proof down into three steps.

Step 1: Relate ζt(θt) and ζt(θt−τ ).

Note that for any i ∈ N0,

‖θi+1 − θi‖2 = ‖Π2,R (θi + αigi(θi))−Π2,R(θi)‖2 ≤ ‖θi + αigi(θi)− θi‖2 = αi‖gi(θi)‖2 ≤ αiG.
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Therefore,

‖θt − θt−τ‖2 ≤
t−1∑

i=t−τ

‖θi+1 − θi‖2 ≤ G

t−1∑

i=t−τ

αi.

Applying Lemma 10, we conclude

ζt(θt) ≤ ζt(θt−τ ) + 6G2
t−1∑

i=t−τ

αi for all τ ∈ {0, · · · , t}. (25)

Step 2: Bound E[ζt(θt−τ )] using Lemma 9.

Recall that the gradient gt(θ) depends implicitly on the observed tuple Ot = (st,R(st, st+1), st+1). Let us

overload notation to make this statistical dependency more transparent. Put

g(θ,Ot) := gt(θ) =
(

rt + γφ(st+1)
⊤θ − φ(st)

⊤θ
)

φ(st) θ ∈ ΘR

and

ζ(θ,Ot) := ζt(θ) = (g(θ,Ot)− ḡ(θ))⊤ (θ − θ∗) θ ∈ ΘR.

We have defined ḡ : ΘR → R
d as ḡ(θ) = E[g(θ,Ot)] for all θ ∈ ΘR, where this expectation integrates over

the marginal distribution of Ot. Then, by definition, for any fixed (non-random) θ ∈ ΘR,

E[ζ(θ,Ot)] = (E[g(θ,Ot)]− ḡ(θ))
⊤
(θ − θ∗) = 0.

Since θ0 ∈ ΘR is non-random, it follows immediately that

E[ζ(θ0, Ot)] = 0. (26)

We use Lemma 10 to bound E[ζt(θt−τ , Ot)]. First, consider random variables θ′t−τ and O′
t drawn indepen-

dently from the marginal distributions of θt−τ and Ot, so P(θ′t−τ = ·, O′
t = ·) = P(θt−τ = ·)⊗ P(Ot = ·).

Then E[ζ(θ′t−τ , O
′
t)] = E[E[ζ(θ′t−τ , O

′
t) | θ′t−τ ]] = 0. Since |ζ(θ,Ot)|≤ 2G2 for all θ ∈ ΘR by Lemma 11

and θt−τ → st−τ → st → Ot forms a Markov chain, applying Lemma 10 gives

E[ζ(θt−τ , Ot)] ≤ 2(2G2)(mρτ ) = 4G2mρτ . (27)

Step 3: Combine terms.

The second claim follows immediately from Equation (25) together with Equation (26). We focus on estab-

lishing the first claim. Taking the expectation of Equation (25) implies

E[ζt(θt)] ≤ E[ζt(θt−τ )] + 6G2ταt−τ ∀τ ∈ {0, · · · , t}.

For t ≤ τmix(αT ), choosing τ = t gives

E[ζt(θt)] ≤ E[ζt(θ0)]
︸ ︷︷ ︸

=0

+6G2tα0 ≤ 6G2τmix(αT )α0.

For t > τmix(αT ), choosing τ = τ0 ≡ τmix(αT ) gives

E[ζt(θt)] ≤ 4G2mρτ0 + 6G2τ0αt−τ0 ≤ 4G2αT + 6G2τ0αt−τ ≤ G2 (4 + 6τ0)αt−τ0 .

where the second inequality used that mρτ0 ≤ αT by the definition of the mixing time τ0 ≡ τmix(αT ) and

the second inequality uses that step-sizes are non-increasing.
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8.3.4 Completing the proof of Theorem 3

Combining Lemmas 8 and 10 gives the error decomposition in Equation 22 for the case of a constant step-

size. As noted at the beginning of this subsection, from this decomposition, parts (a) and (b) of Theorem 3 can

be established by essentially copying the proof of Theorem 2. For completeness, this is included in Appendix

A. For part (c), we closely follow analysis of SGD with decaying step-sizes presented in Lacoste-Julien et al.

[2012]. However, some headache is introduced because Lemma 11 includes terms of the form αt−τmix(αT )

instead of the typical αt terms present in analyses of SGD. A complete proof of part (c) is given in Appendix

A as well.

9 Extension to TD with eligibility traces

This section extends our analysis to provide finite time guarantees for temporal difference learning with el-

igibility traces. We study a class of algorithms, denoted by TD(λ) and parameterized by λ ∈ [0, 1], that

contains as a special case the TD(0) algorithm studied in previous sections11. For λ > 0, the algorithm

maintains an eligibility trace vector, which is a geometric weighted average of the negative gradients at all

previously visited states, and makes parameter updates in the direction of the eligibility vector rather than

the negative gradient. Eligibility traces sometimes provide substantial performance improvements in prac-

tice [Sutton and Barto, 1998]. Unfortunately, they also introduce subtle dependency issues that complicate

theoretical analysis; to our knowledge, this section provides the first non-asymptotic analysis TD(λ).

Our analysis focuses on the Markov chain observation model studied in the previous section and we

mirror the technical assumptions used there. In particular, we assume that the Markov chain is stationary and

mixes at a uniform geometric rate (Assumption 1). As before, for tractability, we study a projected variant of

TD(λ).

9.1 Projected TD(λ) algorithm

TD(λ) makes a simple, but highly consequential, modification to TD(0). Pseudo-code for the algorithm is pre-

sented below in Algorithm 2. As with TD(0), at each time-step t it observes a tuple (st, rt = R(st, st+1), st+1)
and computes the TD error δt(θt) = rt + γVθt(st+1) − Vθt(st). However, while TD(0) makes an update

θt+1 = θt + αtδt(θt)φ(st) in the direction of the feature vector at the current state, TD(λ) makes the update

θt+1 = θt + αtδt(θt)z0:t. The vector z0:t =
∑t

k=0(γλ)
kφ(st−k) is called the eligibility trace which is up-

dated incrementally as shown below in Algorithm 2. As the name suggests, the components of z0:t roughly

capture the extent to which each feature is eligible for receiving credit or blame for an observed TD error

[Sutton and Barto, 1998, Seijen and Sutton, 2014].

Algorithm 2: Projected TD(λ) with linear function approximation

Input : radius R, initial guess {θ0 : ‖θ0‖2 ≤ R}, and step-size sequence {αt}t∈N

Initialize: θ̄0 ← θ0, z−1 = 0, λ ∈ [0, 1].
for t = 0, 1, . . . do

Observe tuple: Ot = (st, rt, st+1)
Get TD error: δt(θt) = rt + γVθt(st+1)− Vθt(st) /* sample Bellman error */

Update eligibility trace: z0:t = (γλ)z0:t−1 + φ(st) /* Geometric weighting */

Compute update direction: xt(θt, z0:t) = δt(θt)z0:t
Take a projected update step: θt+1 = Π2,R(θt + αtxt(θt, z0:t)) /* αt:step-size */

Update averaged iterate: θ̄t+1 ←
(

t
t+1

)

θ̄t +
(

1
t+1

)

θt+1 /* θ̄t+1 = 1
t+1

∑t+1
ℓ=1 θℓ */

end

11TD(0) corresponds to λ = 0.
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Some new notation in Algorithm 2 should be highlighted. We use xt(θ, z0:t) = δt(θ)z0:t to denote the

update to the parameter vector θ at time t. This plays a role analogous to the negative gradient gt(θ) in TD(0).

9.2 Limiting behavior of TD(λ)

We now review results on the asymptotic convergence of TD(λ) due to Tsitsiklis and Van Roy [1997]. This

provides the foundation of our finite time analysis and also offers insight into how the algorithm differs from

TD(0).

Before giving any results, let us note that just as the true value function Vµ(·) is the unique solution

to Bellman’s fixed point equation Vµ = TµVµ, it is also the unique solution to a k-step Bellman equation

Vµ = T
(k)
µ Vµ. This can be written equivalently as

Vµ(s) = E

[
k∑

t=0

γtR(st) + γk+1V (sk+1) | s0 = s

]

∀s ∈ S,

where the expectation is over states sampled when policy µ is applied to the MDP. The asymptotic properties

of TD(λ) are closely tied to a geometrically weighted version of the k-step Bellman equations described

above. Define the averaged Bellman operator

(T (λ)
µ V )(s) = (1 − λ)

∞∑

k=0

λk
E

[
k∑

t=0

γtR(st) + γk+1V (sk+1) | s0 = s

]

. (28)

One interesting interpretation of this equation is as a k-step Bellman equation, but where the horizon k itself

is a random geometrically distributed random variable.

Tsitsiklis and Van Roy [1997] showed that under appropriate technical conditions, the approximate value

function Vθt = Φθt estimated by TD(λ) converges almost surely to the unique solution, θ∗ of the projected

fixed point equation

Φθ = ΠDT (λ)
µ Φθ.

TD(λ) is then interpreted as a stochastic approximation scheme for solving this fixed point equation. The

existence and uniqueness of such a fixed point Φθ∗ is implied by the following lemma, which shows that

ΠDT λ(·) is a contraction operator with respect to the steady-state weighted norm ‖·‖D.

Lemma 12. [Tsitsiklis and Van Roy [1997]] ΠDT
(λ)
µ (·) is a contraction with respect to ‖·‖D with modulus

κ =
γ(1− λ)

1− γλ
≤ γ < 1.

As with TD(0), the limiting value function under TD(λ) comes with some competitive guarantees. A

short argument using Lemma 12 shows

‖Vθ∗ − Vµ‖D ≤
1√

1− κ2
‖ΠDVµ − Vµ‖D. (29)

See for example Chapter 6 of Bertsekas [2012] for a proof. It is important to note the distinction between the

convergence guarantee results for TD(λ) and TD(0) in terms of the contraction factors. The contraction factor

κ is always less than γ, the contraction factor under TD(0). In addition, as λ → 1, κ → 0 implying that the

limit point of TD(λ) for large enough λ will be arbitrarily close to ΠDVµ, which minimizes the mean-square

error in value predictions among all value functions representable by the features. This calculation suggests

a choice of λ = 1 will offer the best performance. However, the rate of convergence also depends on λ, and

may degrade as λ grows. Disentangling such issues requires also a careful study of the statistical efficiency

of TD(λ), which we undertake in the following subsection.

24



9.3 Finite time bounds for Projected TD(λ)

Following Section 8, we establish three finite time bounds on the performance of the Projected TD(λ) algo-

rithm. The first bound in part (a) does not depend on any special regularity of the problem instance but gives

a comparatively slow convergence rate of Õ(1/
√
T ). It applies with the robust (problem independent) and

aggressive step-size of 1/
√
T . Part (b) illustrates the exponential rate of convergence to within some radius

of the TD(λ) fixed-point for sufficiently small step-sizes. Part (c) attains an improved dependence on T of

Õ(1/T ), but the step-size sequence requires knowledge of the minimum eigenvalue ω of Σ.

Compared to the results for TD(0), our bounds depend on a slightly different definition of the mixing time

that takes into account the geometric weighting in the eligibility trace term. Define

τmix
λ (ǫ) = max{τMC(ǫ), τAlgo(ǫ)}, (30)

where we denote τMC(ǫ) = min{t ∈ N0 | mρt ≤ ǫ} and τAlgo(ǫ) = min{t ∈ N0 | (γλ)t ≤ ǫ}. As we show

next, this definition of mixing time enables compact bounds for convergence rates of TD(λ).

Theorem 4. Suppose the Projected TD(λ) algorithm is applied with parameter R ≥ ‖θ∗‖2 under the Markov

chain observation model with Assumption 1. Set B = (rmax+2R)
(1−γλ) . Then the following claims hold.

(a) With a constant step-size αt = α0 = 1/
√
T ,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤
‖θ∗ − θ0‖22 +B2

(

13 + 28τmix
λ (1/

√
T )
)

2
√
T (1 − κ)

.

(b) With a constant step-size αt = α0 < 1/(2ω(1− κ)) and T > 2τmix
λ (α0) ,

E

[

‖θ∗ − θT ‖22
]

≤
(

e−2α0(1−κ)ωT
)

‖θ∗ − θ0‖22 + α0

(

B2
(
13 + 24τmix

λ (α0)
)

2(1− κ)ω

)

.

(c) With a decaying step-size αt = 1/(ω(t+ 1)(1− κ)),

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ B2
(
13 + 52τmix

λ (αT )
)

T (1− κ)2ω
(1 + logT ) .

Remark 2. As was the case for TD(0), the proof of part (c) also implies a Õ(1/T ) convergence rate for the

iterate θT itself. Again, a different weighting of the iterates as shown in Lacoste-Julien et al. [2012] might

enable us to eliminate the log T term in the numerator of part (c) to give a O(1/T ) convergence rate. For

brevity, we do not pursue this direction.

We now compare the bounds for TD(λ) with that of TD(0) ignoring the constant terms. First, let us look

at the results for the constant step-size αt = 1/
√
T in part (a) of Theorems 3 and 4. Approximately, for the

TD(λ) case, we have the term B2
√
T (1−κ)

vis-a-vis the term G2
√
T (1−γ)

for the TD(0) case. A simple argument

below clarifies the relationship between these two.

B2

√
T (1− κ)

=
(rmax + 2R)2√

T (1− κ)(1 − γλ)2
=

G2

√
T (1− κ)(1 − γλ)2

≥ G2

√
T (1− κ)(1 − γλ)

=
G2

√
T (1− γ)

.

As we will see later, B is an upper bound to the norm of xt(θt, z0:t), the update direction for TD(λ). Cor-

respondingly, from Section 8, we know that G is the upper bound on gradient norm, gt(θt) for TD(0). In-

tuitively, for TD(λ), the bound B is larger (due to the presence of the eligibility trace term) and more so as

λ→ 1. This dominates any benefit (in terms of statistical efficiency) from a smaller contraction factor, κ.
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However, for decaying step-sizes of αt = 1/(ω(t + 1)(1 − κ)), the bounds are qualitatively the same.

This follows as the terms that dominate part (c) of Theorems 3 and 4 are equal:

B2

T (1− κ)2
=

(rmax + 2R)2

T (1− κ)2(1 − γλ)2
=

G2

T (1− κ)2(1− γλ)2
=

G2

T (1− γ)2
.

In conclusion, for constant step-sizes–which is often how TD algorithms as used in practice–our bounds

establish a faster convergence rate for TD(0) than for TD(λ). Or equivalently, according to our bounds, more

data is required to guarantee TD(λ) is close to its limit point. In this context, however, the trade-off we

remarked on in Section 9.2 is noteworthy as the fixed point for TD(λ) comes with a better error guarantee.

10 Extension: Q-learning for high dimensional Optimal Stopping

So far, this paper has dealt with the problem of approximating the value function of a fixed policy in a

computationally and statistically efficient manner. The Q-learning algorithm is one natural extension of

temporal-difference learning to control problems, where the goal is to learn an effective policy from data.

Although it is widely applied in reinforcement learning, in general Q-learning is unstable and its iterates

may oscillate forever. An important exception to this was discovered by Tsitsiklis and Van Roy [1999], who

showed that Q-learning converges asymptotically for optimal stopping problems. In this section, we show

how the techniques developed in Sections 7 and 8 can be applied in an identical manner to give finite time

bounds for Q-learning with linear function approximation applied to optimal-stopping problems with high

dimensional state spaces. To avoid repetition, we only state key properties satisfied by Q-learning in this

setting which establish exactly the same convergence bounds as shown in Theorems 2 and 3.

10.1 Problem formulation

The optimal stopping problem is that of determining the time to terminate a process to maximize cumulative

expected rewards accrued. Problems of this nature arise naturally in many settings, most notably in the pricing

of financial derivatives [Andersen and Broadie, 2004, Haugh and Kogan, 2004, Desai et al., 2012]. We first

give a brief formulation for a class of optimal stopping problems. A more detailed exposition can be found

in Tsitsiklis and Van Roy [1999], or Chapter 5 of the thesis work of Van Roy [1998].

Consider a discrete-time Markov chain {st}t≥0 with finite state space S and unique stationary distribu-

tion distribution π. At each time t, the decision-maker observes the state st and decides whether to stop or

continue. Let γ ∈ [0, 1) denote the discount factor and let u(·) and U(·) denote the reward functions associ-

ated with continuation and termination decisions respectively. Let the stopping time τ denote the (random)

time at which the decision-maker stops. The expected total discounted reward from initial state s associated

with the stopping time τ is

E

[
τ−1∑

t=0

γtu(st) + γτU(sτ )

∣
∣
∣
∣
s0 = s

]

, (31)

where U(sτ ) is defined to be zero for τ = ∞. We seek an optimal stopping policy, which determines when

to stop as a function of the observed states so as to maximize (31).

For any Markov decision process, the optimal state-action value function Q∗ : S × A → R specifies

the expected value to go from choosing an action a ∈ A in a state s ∈ S and following the optimal policy

in subsequent states. In optimal stopping problems, there are only two possible actions at every time step:

whether to terminate or to continue. The value of stopping in state s is just U(s), which allows us to simplify

notation by only representing the continuation value.

For the remainder of this section, we let Q∗ : S → R denote the continuation-value function. It can be

shown that Q∗ is the unique solution to the Bellman equation Q∗ = FQ∗, where the Bellman operator is

given by

FQ(s) = u(s) + γ
∑

s′∈S
P (s′|s)max {U(s′), Q(s′)}.
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Given the optimal continuation values Q∗(·), the optimal stopping time is simply

τ∗ = min {t |U(st) ≥ Q∗(st)}. (32)

10.2 Q-Learning for high dimensional Optimal Stopping

In principle, one could generate the optimal stopping time using Equation (32) by applying exact dynamic

programming algorithms to compute the optimal Q-function. However, such methods are only implementable

for small state spaces. To scale to high dimensional state spaces, we consider a feature-based approximation

of the optimal continuation value function, Q∗. We focus on linear function approximation, where Q∗(s) is

approximated as

Q∗(s) ≈ Qθ(s) = φ(s)⊤θ,

where φ(s) ∈ R
d is a fixed feature vector for state s and θ ∈ R

d is a parameter vector that is shared across

states. As shown in Section 2, for a finite state space, S = {s1, . . . , sn}, Qθ ∈ R
n can be expressed

compactly as Qθ = Φθ, where Φ ∈ R
n×d and θ ∈ R

d . We also assume that the d features vectors {φk}dk=1,

forming the columns of Φ are linearly independent.

We consider the Q-learning approximation scheme in Algorithm 3. The algorithm starts with an initial

parameter estimate of θ0 and observes a data tuple Ot = (st, u(st), s
′
t). This is used to compute the target

yt = u(st)+ γmax {U(s′t), Qθt(s
′
t)}, which is a sampled version of the F (·) operator applied to the current

Q–function. The next iterate, θt+1, is computed by taking a gradient step with respect to a loss function

measuring the distance between yt and predicted value-to-go. An important feature of this method is that

problem data is generated by the exploratory policy that chooses to continue at all time-steps.

Algorithm 3: Q-Learning for Optimal Stopping problems.

Input : initial guess θ0, step-size sequence {αt}t∈N and radius R.

Initialize: θ̄0 ← θ0.

for t = 0, 1, . . . do

Observe tuple: Ot = (st, u(st), s
′
t)

Define target: yt = u(st) + γmax{U(s′t), Qθt(s
′
t)} /* sample Bellman operator */

Define loss function: 1
2 (yt −Qθ(st))

2 /* sample Bellman error */

Compute negative gradient: gt(θt) = − ∂
∂θ

1
2 (yt −Qθ(st))

2|θ=θt

Take a gradient step: θt+1 = θt + αtgt(θt) /* αt:step-size */

Update averaged iterate: θ̄t+1 ←
(

t
t+1

)

θ̄t +
(

1
t+1

)

θt+1 /* θ̄t+1 = 1
t+1

∑t+1
ℓ=1 θℓ */

end

10.3 Asymptotic guarantees

Similar to the asymptotic results for TD algorithms, Tsitsiklis and Van Roy [1999] show that the variant of

Q-learning detailed above in Algorithm 3 converges to the unique solution, θ∗, of the projected Bellman

equation,

Φθ = ΠDFΦθ.

This results crucially relies on the fact that the projected Bellman operator ΠDF (·) is a contraction with

respect to ‖·‖D with modulus γ. The analogous result for our study of TD(0) was stated in Lemma 2.

Tsitsiklis and Van Roy [1999] also give error bounds for the limit of convergence with respect to Q∗, the

optimal Q-function. In particular, it can be shown that

‖Φθ∗ −Q∗‖D ≤
1

√

1− γ2
‖ΠDQ∗ −Q∗‖D
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where the left hand side measures the error between the estimated and the optimal Q-function which is upper

bounded by the representational power of the linear approximation architecture, as given on the right hand

side. In particular, if Q∗ can be represented as a linear combination of the feature vectors then there is no

approximation error and the algorithm converges to the optimal Q-function. Finally, one can ask whether the

stopping times suggested by this approximate continuation value function, Φθ∗, are effective. Let µ̃ be the

policy that stops at the first time t when

U(st) ≥ (Φθ∗)(st).

Then, for an initial state s0 drawn from the stationary distribution π,

E [V ∗(s0)]− E [Vµ̃(s0)] ≤
2

(1− γ)
√

1− γ2
‖ΠDQ∗ −Q∗‖D,

where V ∗ and Vµ̃ denote the value functions corresponding, respectively, to the optimal stopping policy the

approximate stopping policy µ. Again, this error guarantee depends on the choice of feature representation.

10.4 Finite time analysis

In this section, we show how our results in Sections 7, 8 for TD(0) and its projected counterpart can be

extended, without any modification, to give convergence bounds for the Q-function approximation algorithm

described above. To this effect, we highlight that key lemmas that enable our analysis in Sections 7 and

8 also hold in this setting. The contraction property of the F (·) operator will be crucial to our arguments

here. Convergence rates for an i.i.d. noise model, mirroring those established for TD(0) in Theorem 2, can be

shown for Algorithm 3. Results for the Markov chain sampling model, mirroring those established for TD(0)

in Theorem 3, can be shown for a projected variant of Algorithm 3.

First, we give mathematical expressions for the negative gradient. As a general function of θ and tuple

Ot = (st, u(st), s
′
t), the negative gradient can be written as

gt(θ) =
(

u(st) + γmax {U(s′t), φ(s
′
t)

⊤θ} − φ(st)
⊤θ
)

φ(st). (33)

The negative expected gradient, when the tuple (st, u(st), s
′
t) follows its steady-state behavior, can be written

as

ḡ(θ) =
∑

s,s′∈S
π(s)P(s′|s)

(
u(s) + γmax {U(s′), φ(s′)⊤θ} − φ(s)⊤θ

)
φ(s).

Additionally, using
∑

s′∈S P(s′|s)
(
u(s) + γmax {U(s′), φ(s′)⊤θ}

)
= (FΦθ) (s), it is easy to show

ḡ(θ) = Φ⊤D(FΦθ − Φθ).

Note the close similarity of this expression with its counterparts for TD learning (see Section 3 and Appendix

B); the only difference is that the appropriate Bellman operator(s) for TD learning, Tµ(·), has been replaced

with the appropriate Bellman operator F (·) for this optimal stopping problem.

10.4.1 Analysis with i.i.d. noise

In this section, we show how to analyze the Q-learning algorithm under an i.i.d. observation model, where

the random tuples observed by the algorithm are sampled i.i.d. from the stationary distribution of the Markov

process. All our ideas follow the presentation in Section 7, a careful understanding of which reveals that

Lemmas 3 and 5 form the backbone of our results. Recall that Lemma 3 establishes how, at any iterate θ, TD

updates point in the descent direction of ‖θ∗ − θ‖22. Lemma 5 bounds the expected norm of the stochastic

gradient, thus giving a control over system noise.

In Lemmas 13 and 14, given below, we show how exactly the same results also hold for the Q-function

approximation algorithm under the i.i.d. sampling model. With these two key lemmas, convergence bounds

shown in Theorem 2 follows by repeating the analysis in Section 7.
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Lemma 13. [Tsitsiklis and Van Roy [1999]] Let Vθ∗ be the unique fixed point of ΠDF (·), i.e. Vθ∗ =
ΠDFVθ∗ . Then, for any θ ∈ R

d,

(θ∗ − θ)⊤ḡ(θ) ≥ (1− γ)‖Vθ∗ − Vθ‖2D.

Proof. This property is a consequence of the fact that ΠDF (·) is a contraction with respect to ‖·‖D with

modulus γ. It was established by Tsitsiklis and Van Roy [1999] in the process of proving their Lemma 8. For

completeness, we provide a standalone proof in Appendix C.

Lemma 14. We use notation and proof strategy mirroring the proof of Lemma 5. For any fixed θ ∈ R
d,

E‖gt(θ)‖22≤ 2σ2 + 8‖Vθ − Vθ∗‖2D where σ2 = E
[
‖gt(θ∗)‖22

]
.

Proof. For brevity of notation, set φ = φ(st), φ
′ = φ(s′t) and U ′ = U(s′). Define ξ = (θ∗ − θ)⊤φ and

ξ′ = (θ∗ − θ)⊤φ′. By stationarity ξ and ξ′ have the same marginal distribution and E[ξ2] = ‖Vθ∗ − Vθ‖2D.

Using the formula for gt(θ) in Equation (33), we have

E
[
‖gt(θ)‖22

]
≤ 2E

[
‖gt(θ∗)‖22

]
+ 2E

[
‖gt(θ) − gt(θ

∗)‖22
]

= 2σ2 + 2E

[∥
∥
∥φ
(

φ⊤(θ∗ − θ)− γ
[

max
(

U ′, φ′⊤θ∗
)

−max
(

U ′, φ′⊤θ
)])∥

∥
∥

2

2

]

≤ 2σ2 + 2E

[∥
∥
∥φ
(∣
∣φ⊤(θ∗ − θ)

∣
∣+ γ

∣
∣
∣max

(

U ′, φ′⊤θ∗
)

−max
(

U ′, φ′⊤θ
)∣
∣
∣

)∥
∥
∥

2

2

]

≤ 2σ2 + 2E

[∥
∥
∥φ
(∣
∣φ⊤(θ∗ − θ)

∣
∣+ γ

∣
∣
∣φ′⊤(θ∗ − θ)

∣
∣
∣

)∥
∥
∥

2

2

]

(34)

≤ 2σ2 + 2E[|ξ + γξ′|2]
≤ 2σ2 + 4

(
E
[
|ξ|2
]
+ γ2

E
[
|ξ′|2

])

= 2σ2 + 4(1 = γ2)‖Vθ − Vθ∗‖2D≤ 2σ2 + 8‖Vθ − Vθ∗‖2D,

where we used the assumption that features are normalized so that ‖φ‖22≤ 1 almost surely. Additionally,

in going to Equation (34), we used that |max (c1, c3)−max (c2, c3)| ≤ |c1 − c2| for any scalars c1, c2 and

c3.

10.4.2 Analysis under the Markov chain model

Analogous to Section 8, we analyze a projected variant of Algorithm 3 under the Markov chain sampling

model. Let ΘR = {θ ∈ R
d : ‖θ‖2≤ R}. Starting with an initial guess of θ0 ∈ ΘR, the algorithm updates

to the next iterate by taking a gradient step followed by projection onto ΘR, so iterates satisfy the stochastic

recursion θt+1 = Π2,R(θt + αtgt(θt)). We make the similar structural assumptions to those in Section 8.

In particular, assume the feature vectors and the continuation, termination rewards to be uniformly bounded,

with ‖φ(s)‖2 ≤ 1 and max{|u(s)|, |U(s)|} ≤ rmax for all s ∈ S. We assume rmax ≤ R, which can always

be ensured by rescaling rewards or the projection radius.

We first show a uniform bound on the gradient norm.

Lemma 15. Define G = (rmax + 2R). With probability 1, ‖gt(θ)‖2 ≤ G for all θ ∈ ΘR.

Proof. We start with the mathematical expression for the stochastic gradient,

gt(θ) =
(

u(st) + γmax {U(s′t), φ(s
′
t)

⊤θ} − φ(st)
⊤θ
)

φ(st).

As rmax ≤ R, we have: max {U(s′t), φ(s
′
t)

⊤θ} ≤ max {U(s′t), ‖φ(s′t)‖2‖θ‖2} ≤ R. Then,

‖gt(θ)‖22 =
(
u(st) + γmax {U(s′t), φ(s

′
t)

⊤θ} − φ(st)
⊤θ
)2 ‖φ(st)‖2

≤
(
rmax + γR− φ(st)

⊤θ
)2

≤ (rmax + γR+ ‖φ(st)‖2‖θ‖2)
2 ≤ (rmax + 2R)

2
= G2.
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We used here that the basis vectors are normalized, ‖φ(st)‖2 ≤ 1 for all t.

If we assume the Markov process (s0, s1, . . .) satisfies Assumption 1, then Lemma 15 paves the way to

show exactly the same convergence bounds as given in Theorem 3. For this, we refer the readers to Section

8 and Appendix A, where we show all the key lemmas and a detailed proof of Theorem 3. One can mirror

the same proof, using Lemmas 13 and 15 in place of Lemmas 3 and 11, which apply to TD(0). In particular,

note that we can use Lemma 15 along with some basic algebraic inequalities to show the gradient bias, ζt(θ),
to be Lipschitz and bounded. This, along with the information-theoretic arguments of Lemma 9 enables the

exact same upper bound on the gradient bias as shown in Lemma 11. Combining these with standard proof

techniques for SGD [Lacoste-Julien et al., 2012, Nemirovski et al., 2009] shows the convergence bounds for

Q-learning.

11 Conclusions

In this paper we provide a simple finite time analysis of a foundational and widely used algorithm known

as temporal difference learning. Although asymptotic convergence guarantees for the TD method were pre-

viously known, characterizing its data efficiency stands as an important open problem. Our work makes a

substantial advance in this direction by providing a number of explicit finite time bounds for TD, includ-

ing in the much more complicated case where data is generated from a single trajectory of a Markov chain.

Our analysis inherits the simplicity of and elegance enjoyed by SGD analysis and can gracefully extend to

different variants of TD, for example TD learning with eligibility traces (TD(λ)) and Q-function approxima-

tion for optimal stopping problems. Owing to the close connection with SGD, we believe that optimization

researchers can further build on our techniques to develop principled improvements to TD.

There are a number of research directions one can take to extend our work. First, we use a projection step

for analysis under the Markov chain model, a choice we borrowed from the optimization literature to simplify

our analysis. It will be interesting to find alternative ways to add regularity to the TD algorithm and establish

similar convergence results; we think analysis without the projection step is possible if one can show that

the iterates remain bounded under additional regularity conditions. Second, the Õ(1/T ) convergence rate

we showed used step-sizes which crucially depends on the minimum eigenvalue ω of the feature covariance

matrix, which would need to be estimated from samples. While such results are common in optimization for

strongly convex functions, very recently Lakshminarayanan and Szepesvári [2018] showed TD(0) with iterate

averaging and universal constant step-sizes can attain an Õ(1/T ) convergence rate in the i.i.d. sampling

model. Extending our analysis for problem independent, robust step-size choices is a research direction

worth pursuing.
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A Analysis of Projected TD(0) under the Markov chain sampling model

In this section, we complete the proof of Theorem 3. The first subsection restates the theorem, as well as the

two key lemmas from Section 8 that underly the proof. The second subsection contains a proof of Theorem

3. Finally, Subsection A.3 contains the proof of a technical result, Lemma 10, which was omitted from the

main text but we need for the proof.

A.1 Restatement of the theorem and key lemmas from the main text

Theorem 3. Suppose the Projected TD algorithm is applied with parameter R ≥ ‖θ∗‖2 under the Markov

chain observation model with Assumption 1. Set G = (rmax + 2R). Then the following claims hold.

(a) With a constant step-size sequence α0 = · · · = αT = 1/
√
T ,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤
‖θ∗ − θ0‖22 +G2

(

9 + 12τmix(1/
√
T )
)

2
√
T (1− γ)

.

(b) With a constant step-size sequence α0 = · · · = αT < 1/(2ω(1− γ)),

E

[

‖θ∗ − θT ‖22
]

≤
(

e−2α0(1−γ)ωT
)

‖θ∗ − θ0‖22 + α0

(

G2
(
9 + 12τmix(α0)

)

2(1− γ)ω

)

.

(c) With a decaying step-size sequence αt = 1/(ω(t+ 1)(1− γ)) for all t ∈ N0,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ G2
(
9 + 24τmix(αT )

)

T (1− γ)2ω
(1 + logT ) ,

The key to our proof is the following lemmas, which were establish in Section 8. Recall the definition of

the gradient error ζt(θ) ≡ (gt(θ) − ḡ(θ))
⊤
(θ − θ∗).

Lemma 8. With probability 1, for every t ∈ N0,

‖θ∗ − θt+1‖22≤ ‖θ∗ − θt‖22−2αt(1− γ)‖Vθ∗ − Vθt‖2D+2αtζt(θt) + α2
tG

2.

Lemma 11 (Bound on gradient bias). Consider a non-increasing step-size sequence, α0 ≥ α1 . . . ≥ αT . Fix

any t < T , and set t∗ ≡ max{0, t− τmix(αT )}. Then,

E [ζt(θt)] ≤ G2
(
4 + 6τmix(αT )

)
αt∗ .

The following bound also holds:

E [ζt(θt)] ≤ 6G2
t−1∑

i=0

αi.

A.2 Proof of Theorem 3.

We now complete the proof of Theorem 3. The proof directly uses Lemma 8 and Lemma 11.

Proof. From Lemma 8, we have

E

[

‖θ∗ − θt+1‖22
]

≤ E

[

‖θ∗ − θt‖22
]

− 2αt(1− γ)E
[

‖Vθ∗ − Vθt‖2D
]

+ 2αtE [ζt(θt)] + α2
tG

2. (35)
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Proof of part (a): We first show the analysis for a constant step-size and iterate averaging. Considering

αt = α0 = 1/
√
T in Equation (35), rearranging terms and summing from t = 0 to t = T − 1, we get

2α0(1− γ)

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤
T−1∑

t=0

(

E

[

‖θ∗ − θt‖22
]

− E

[

‖θ∗ − θt+1‖22
])

+G2 + 2α0

T−1∑

t=0

E [ζt(θt)] .

Using Lemma 11 (in which αt∗ = α0 in this case) and simplifying, we find

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤ ‖θ∗ − θ0‖22 +G2

2α0(1− γ)
+

T · 2G2(2 + 3τmix(1/
√
T ))α0

(1− γ)

=

√
T
(

‖θ∗ − θ0‖22 +G2
)

2(1− γ)
+

√
T · 2G2(2 + 3τmix(1/

√
T ))

(1− γ)
.

This gives us our desired result,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ 1

T

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤
‖θ∗ − θ0‖22 +G2

(

9 + 12τmix(1/
√
T )
)

2
√
T (1− γ)

.

Proof of part (b): The proof is analogous to part (b) of Theorem 2. Consider a constant step-size of

α0 < 1/(2ω(1 − γ)). Starting with Equation (35) and applying Lemma 1, which showed ‖Vθ∗ − Vθ‖2D ≥
ω‖θ∗ − θ‖22 for all θ, we get

E

[

‖θ∗ − θt+1‖22
]

≤ (1− 2α0(1− γ)ω)E
[

‖θ∗ − θt‖22
]

+ α2
0G

2 + 2α0E [ζt(θt)]

≤ (1− 2α0(1− γ)ω)E
[

‖θ∗ − θt‖22
]

+ α2
0G

2
(
9 + 12τmix(α0)

)
,

where we used Lemma 11 to go to the second inequality. Iterating over this inequality gives us our final

result. For any T ∈ N0,

E

[

‖θ∗ − θT ‖22
]

≤ (1− 2α0(1− γ)ω)
T ‖θ∗ − θ0‖22 + α2

0G
2
(
9 + 12τmix(α0)

)
∞∑

t=0

(1− 2α0(1− γ)ω)
t

≤
(

e−2α0(1−γ)ωT
)

‖θ∗ − θ0‖22 +
α0G

2
(
9 + 12τmix(α0)

)

2(1− γ)ω
.

The second inequality above follows by solving the geometric series and then using the fact that (1− 2α0(1 − γ)ω) ≤
e−2α0(1−γ)ω.

Proof of part (c): We now show the analysis for a linearly decaying step-size using Equation (35) as our

starting point. We again use Lemma 1, which showed ‖Vθ∗ − Vθ‖2D ≥ ω‖θ∗ − θ‖22 for all θ, to get,

E

[

‖Vθ∗ − Vθt‖2D
]

≤ 1

(1− γ)αt

(

(1− (1− γ)ωαt)E
[

‖θ∗ − θt‖22
]

− E

[

‖θ∗ − θt+1‖22
]

+ α2
tG

2
)

+

2

(1− γ)
E [ζt(θt)] .

Consider a decaying step-size αt =
1

ω(t+1)(1−γ) , simplify and sum from t = 0 to T − 1 to get

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤ −ωTE
[

‖θ∗ − θT ‖22
]

︸ ︷︷ ︸

<0

+
G2

ω(1− γ)2

T−1∑

t=0

1

t+ 1
+

2

(1− γ)

T−1∑

t=0

E [ζt(θt)] .

(36)
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To simplify notation, for the remainder of the proof put τ = τmix(αT ). We can decompose the sum of

gradient errors as

T−1∑

t=0

E [ζt(θt)] =

τ∑

t=0

E [ζt(θt)] +

T−1∑

t=τ+1

E [ζt(θt)] . (37)

We will upper bound each term. In each case we use that, since αt =
1

ω(t+1)(1−γ) ,

T−1∑

t=0

αt =
1

ω(1− γ)

T−1∑

t=0

1

(t+ 1)
≤ 1 + logT

ω(1− γ)
.

Combining this with Lemma 11 gives,

τ∑

t=0

E [ζt(θt)] ≤
τ∑

t=0

(

6G2
t−1∑

i=0

αi

)

≤ τ

(

6G2
T−1∑

i=0

αi

)

≤ 6G2τ

ω(1− γ)
(1 + logT ).

Similarly, using Lemma 11, we have

T−1∑

t=τ+1

E [ζt(θt)] ≤ 2G2 (2 + 3τ)

T−1∑

t=τ+1

αt−τ ≤ 2G2 (2 + 3τ)

T−1∑

t=1

αt ≤
2G2 (2 + 3τ)

ω(1− γ)
(1 + logT ) .

Combining the two parts, we get

T−1∑

t=0

E [ζt(θt)] ≤
4G2 (1 + 3τ)

ω(1− γ)
(1 + logT ).

Using this in conjunction with Equation (36) we give final result.

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ 1

T

T−1∑

t=0

E

[

‖Vθt − Vθ∗‖2D
]

≤ G2

ωT (1− γ)2
(1 + logT ) +

2

T (1− γ)

T−1∑

t=0

E [ζt(θt)] .

Simplifying and substituting τ = τmix(αT ), we get

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ G2

ωT (1− γ)2
(1 + logT ) +

8G2
(
1 + 3τmix(αT )

)

ωT (1− γ)2
(1 + logT )

≤ G2
(
9 + 24τmix(αT )

)

ωT (1− γ)2
(1 + logT ) .

Additionally, Equation (36) also gives us a convergence rate of O(log T/T ) for the iterate θT itself:

E

[

‖θ∗ − θT ‖22
]

≤ G2
(
9 + 24τmix(αT )

)

ω2T (1− γ)2
(1 + logT ) .

A.3 Proof of Lemma 10

Lemma 10 (Gradient error is bounded and Lipschitz). With probability 1,

|ζt(θ)|≤ 2G2 for all θ ∈ ΘR

and

|ζt(θ)− ζt(θ
′)| ≤ 6G

∥
∥
∥(θ − θ

′

)
∥
∥
∥
2

for all θ, θ′ ∈ ΘR.
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Proof. The first claim follows from a simple argument using Lemma 6.

|ζt(θ)| =
∣
∣
∣(gt(θ)− ḡ(θ))

⊤
(θ − θ∗)

∣
∣
∣ ≤ (‖gt(θ)‖2 + ‖ḡ(θ)‖2) (‖θ‖2 + ‖θ∗‖2) ≤ 4GR ≤ 2G2,

where the first inequality follows from the triangle inequality and the Cauchy-Schwartz inequality, and the

final inequality uses that R ≤ G/2 by definition of G = rmax + 2R.

To establish the second claim, consider the following inequality for any vectors (a1, b1, a2, b2):

∣
∣a⊤1 b1 − a⊤2 b2

∣
∣ =

∣
∣a⊤1 (b1 − b2) + b⊤2 (a1 − a2)

∣
∣ ≤ ‖a1‖‖b1 − b2‖+ ‖b2‖‖a1 − a2‖.

This follows as a direct application of Cauchy-Schwartz. It implies that for any θ, θ′ ∈ ΘR,

|ζt(θ) − ζt(θ
′)| =

∣
∣
∣(gt(θ)− ḡ(θ))

⊤
(θ − θ∗)− (gt(θ

′)− ḡ(θ′))
⊤
(θ′ − θ∗)

∣
∣
∣

≤ ‖gt(θ) − ḡ(θ)‖2‖θ − θ′‖2 + ‖θ′ − θ∗‖2‖(gt(θ) − ḡ(θ)) − (gt(θ
′)− ḡ(θ′))‖2

≤ 2G‖θ − θ′‖2 + 2R (‖gt(θ)− gt(θ
′)‖2 + ‖ḡ(θ)− ḡ(θ′)‖2)

≤ 2G‖θ − θ′‖2 + 8R‖θ − θ′‖2
≤ 6G‖θ − θ′‖2.

where we used that R ≤ G/2 by the definition of G. We also used that both gt(·) and ḡ(·) are 2-Lipschitz

functions which is easy to see. Starting with gt(θ) = (rt + γφ(s′t)
⊤θ − φ(st)

⊤θ)φ(st), consider

‖gt(θ) − gt(θ
′)‖2 =

∥
∥
∥φ(st) (γφ(s

′
t)− φ(st))

⊤
(θ − θ′)

∥
∥
∥
2

≤ ‖φ(st)‖2‖(γφ(s′t)− φ(st))‖2‖(θ − θ′)‖2
≤ 2‖(θ − θ′)‖2.

Similarly, following Equation (2), we have ‖ḡ(θ)− ḡ(θ′)‖2 =
∥
∥
∥E [φ (γφ′ − φ)]

⊤
(θ − θ′)

∥
∥
∥
2
, where φ =

φ(s) is the feature vector of a random initial state s ∼ π, φ′ = φ(s′) is the feature vector of a random next

state drawn according to s′ ∼ P(· | s). Therefore,

‖ḡ(θ) − ḡ(θ′)‖2 ≤
∥
∥
∥φ (γφ′ − φ)

⊤
(θ − θ′)

∥
∥
∥ ≤ 2‖(θ − θ′)‖2.
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B Analysis of Projected TD(λ) under Markov chain observation model

In this section, we give a detailed proof of the convergence bounds presented in Theorem 4. Subsection B.1

details our proof strategy along with key lemmas which come together in Subsection B.2 to establish the

results. We begin by providing mathematical expressions for TD(λ) updates.

Stationary distribution of TD(λ) updates: Recall that the projected TD(λ) update at time t is given by:

θt+1 = Π2,R (θt + αtxt(θt, z0:t))

where Π2,R(·) denotes the projection operator onto a norm ball of radius R < ∞ and xt(θt, z0:t) is the

update direction. Let us now give explicit mathematical expressions for xt(θ, z0:t) and its steady-state mean

x̄(θ). Note that these are analogous to the expressions for the negative gradient gt(θ) and its steady-state

expectation ḡ(θ) for TD(0). At time t, as a general function of (non-random) θ and the tupleOt = (st, rt, s
′
t)

along with the eligibility trace term z0:t, we have

xt(θ, z0:t) =
(
rt + γφ(s′t)

⊤θ − φ(st)
⊤θ
)
z0:t = δt(θ)z0:t ∀ θ ∈ R

d.

The asymptotic convergence of TD(λ) is closely related to the expected value of xt(θ, z0:t) under the steady-

state behavior of (Ot, z0:t),
x̄(θ) = lim

t→∞
E [δt(θ)z0:t] .

Rather than take this limit, it will be helpful in our analysis to think of an equivalent backward view by con-

structing a stationary process with mean x̄(θ). Consider a stationary sequence of states (. . . , s−1, s0, s1, . . .)
and set z−∞:t =

∑∞
k=0(γλ)

kφ(st−k). Then the sequence (x0(θ, z−∞:0), x1(θ, z−∞:1), . . .) is stationary,

and we have

x̄(θ) = E [δt(θ)z−∞:t] . (38)

It should be emphasized that x̄(θ) and the states (. . . , s−2, s−1) are introduced only for the purposes of our

analysis and are never used by the algorithm itself. However, this turns out to be quite useful as it is easy to

show (Van Roy, 1998) that

x̄(θ) = Φ⊤D
(

T (λ)
µ Φθ − Φθ

)

, (39)

where Φ is the feature matrix and (T
(λ)
µ Φθ − Φθ) denotes the Bellman error defined with respect to the

Bellman operatorT
(λ)
µ (·), corresponding to a policyµ. Careful readers will notice the stark similarity between

Equation (39) and Equation (3). Exploiting the property that ΠDT λ
µ (·) is also a contraction operator, one can

easily show a result equivalent to Lemma 3, thus quantifying the progress we make by taking steps in the

direction of x̄(θ). The rest of our proof essentially shows how to control for the observation noise, i.e. the

fact that we use xt(θ, z0:t) rather than x̄(θ) to make updates. To remind the readers of the results, we first

restate Theorem 4 below.

Theorem 4. Suppose the Projected TD(λ) algorithm is applied with parameter R ≥ ‖θ∗‖2 under the Markov

chain observation model with Assumption 1. Set B = (rmax+2R)
(1−γλ) . Then the following claims hold.

(a) With a constant step-size αt = α0 = 1/
√
T ,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤
‖θ∗ − θ0‖22 +B2

(

13 + 28τmix
λ (1/

√
T )
)

2
√
T (1 − κ)

.
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(b) With a constant step-size αt = α0 < 1/(2ω(1− κ)) and T > 2τmix
λ (α0) ,

E

[

‖θ∗ − θT ‖22
]

≤
(

e−2α0(1−κ)ωT
)

‖θ∗ − θ0‖22 + α0

(

B2
(
13 + 24τmix

λ (α0)
)

2(1− κ)ω

)

.

(c) With a decaying step-size αt = 1/(ω(t+ 1)(1− κ)),

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ B2
(
13 + 52τmix

λ (αT )
)

T (1− κ)2ω
(1 + logT ) .

B.1 Proof strategy and key lemmas

We now describe our proof strategy and give key lemmas used to establish Theorem 4. Throughout, we

consider the Markov chain observation model with Assumption 1 and study the Projected TD (λ) algorithm

applied with parameter R ≥ ‖θ∗‖2 and step-size sequence (α0, . . . , αT ). To simplify our exposition, we

introduce some notation below.

Notation: We specify the notation used throughout this section. Define the set ΘR = {θ ∈ R
d : ‖θ‖2≤

R}, so θt ∈ ΘR for each t because of the algorithm’s projection step. Next, we generically define zl:t =
∑t−l

k=0(γλ)
kφ(st−k) for any lower limit l ≤ t. Thus, zl:t denotes the eligibility trace as a function of the

states (sl, . . . , st). Next, we define ζt(θ, zl:t) as a general function of θ and zl:t,

ζt(θ, zl:t) = (δt(θ)zl:t − x̄(θ))⊤ (θ − θ∗). (40)

Here, the subscript t in ζt encodes the dependence on the tuple Ot = (st, rt, s
′
t) which is used to compute

the Bellman error, δt(·) at time t. Finally, we set B := (rmax + 2R)/(1 − γλ) which implies B > R/2, a

fact we use many times in our proofs to simplify constant terms. As a reminder, note that our bounds depend

on the mixing time, which we defined in Section 9 as

τmix
λ (ǫ) = max{τMC(ǫ), τAlgo(ǫ)},

where τMC(ǫ) = min{t ∈ N0 | mρt ≤ ǫ} and τAlgo(ǫ) = min{t ∈ N0 | (γλ)t ≤ ǫ}.

Proof outline: The analysis for TD(λ) can be broadly divided into three parts and closely mimics the steps

used to prove TD(0) results.

1. As a first step, we do an error decomposition, similar to the result shown in Lemma 8. This is enabled

by two key lemmas, which are analogues of Lemma 3 and Lemma 6 for Projected TD(0). The first

one spells out a clear relationship of how the updates following x̄(θ) point in the descent direction

of ‖θ∗ − θ‖22 while the second one upper bounds the norm of the update direction, xt(θ, z0:t), by the

constant B (as defined above).

2. The error decomposition that we obtain from Step 1 can be stated as:

E[‖θ∗ − θt+1‖22] ≤ E[‖θ∗ − θt‖22]− 2αt(1− κ)E[‖Vθ∗ − Vθt‖2D] + 2αtE[ζt(θt, z0:t)] + α2
tB

2.

In the second step, we establish an upper bound on the bias term, E [ζt(θt, z0:t)], which is the main

challenge in our proof. Recall that the dependent nature of the state transitions may result in strong

coupling between the tuples Ot−1 and Ot under the Markov chain observation model. Therefore, this

bias in update direction can potentially be non-zero. Presence of the eligibility trace term, z0:t, which

is a function of the entire history of states, (s0, . . . , st), further complicates the analysis by introducing

subtle dependencies.
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To control for this, we use information-theoretic techniques shown in Lemma 9 which exploit the

geometric ergodicity of the MDP, along with the geometric weighting of state features in the eligibility

trace term. Our result essentially shows that the bias scales the noise in update direction by a factor of

the mixing time. Mathematically, for a constant step-size α, we show that E [αζt(θt, z0:t)] ≈ B2(6 +
12τmix

λ (α))α2. We show a similar result for decaying step-sizes as well.

3. In the final step, we combine the error decomposition from Step 1 and the bound on the bias from

Step 2, to establish finite time bounds on the performance of Projected TD(λ) for different step-size

choices. We closely mimic the analysis of Nemirovski et al. (2009) for a constant, aggressive step-size

of (1/
√
T ) and the proof ideas of Lacoste-Julien et al. (2012) for decaying step-sizes.

B.1.1 Error decomposition under Projected TD(λ)

We first prove Lemmas 16 and 17 which enable the error decomposition shown in Lemma 18.

Lemma 16. [Tsitsiklis and Van Roy (1997)] Let Vθ∗ be the unique fixed point of ΠDT
(λ)
µ (·) i.e. Vθ∗ =

ΠT
(λ)
µ Vθ∗ . For any θ ∈ R

d,

(θ∗ − θ)⊤x̄(θ) ≥ (1− κ)‖Vθ∗ − Vθ‖2D.

Proof. We use the definition of x̄(θ) = 〈Φ⊤, T
(λ)
µ Φθ − Φθ〉D as shown in Equation (39) along with the

fact that ΠDT
(λ)
µ (·) is a contraction with respect to ‖·‖D with modulus κ. See Appendix C for a complete

proof.

Lemma 17. For all θ ∈ ΘR, ‖xt(θ, z0:t)‖2 ≤ B with probability 1. Additionally, ‖x̄(θ)‖2 ≤ B.

Proof. See Subsection B.3 for a complete proof.

The above two lemmas can be easily combined to establish a recursion for the error under projected

TD(λ) that holds for each sample path.

Lemma 18. With probability 1, for every t ∈ N0,

‖θ∗ − θt+1‖22 ≤ ‖θ∗ − θt‖22 − 2αt(1− κ)‖Vθ∗ − Vθt‖2D + 2αtζt(θt, z0:t) + α2
tB

2.

Proof. The Projected TD(λ) algorithm updates the parameter as: θt+1 = Π2,R[θt+αtxt(θt, z0:t)] ∀ t ∈ N0.

This implies,

‖θ∗ − θt+1‖22 = ‖θ∗ −Π2,R(θt + αtxt(θ, z0:t))‖22
= ‖Π2,R(θ

∗)−Π2,R(θt + αtxt(θt, z0:t))‖22
≤ ‖θ∗ − θt − αtxt(θt, z0:t)‖22
= ‖θ∗ − θt‖22 − 2αtxt(θt, z0:t)

⊤(θ∗ − θt) + α2
t ‖xt(θt, z0:t)‖22

≤ ‖θ∗ − θt‖22 − 2αtxt(θt, z0:t)
⊤(θ∗ − θt) + α2

tB
2

= ‖θ∗ − θt‖22−2αtx̄(θt)
⊤(θ∗ − θt) + 2αtζt(θt, z0:t) + α2

tG
2.

≤ ‖θ∗ − θt‖22 − 2αt(1− κ)‖Vθ∗ − Vθ‖2D + 2αtζt(θt, z0:t) + α2
tB

2.

The first inequality used that orthogonal projection operators onto a convex set are non-expansive, the second

used Lemma 17 together with the fact ‖θt‖2≤ R due to projection, and the third used Lemma 16. Note that

we used ζt(θt, z0:t) to simplify the notation for the error in the update direction. Recall the definition of the

error function from Equation (40) which implies,

ζt(θt, z0:t) = (δt(θt)z0:t − x̄(θt))
⊤(θt − θ∗) = (xt(θt, z0:t)− x̄(θt))

⊤(θt − θ∗).
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B.1.2 Upper bound on the bias in update direction.

We give an upper bound on the expected error in the update direction, E[ζt(θt, z0:t)], which as explained

above, is the key challenge for our analysis. For this, we first establish some basic regularity properties of the

error function ζt(·, ·) in Lemma 19 below. In particular, part (a) shows boundedness, part (b) shows that it is

Lipschitz in the first argument and part (c) bounds the error due to truncation of the eligibility trace. Recall

that zl:t denotes the eligibility trace as a function of the states (sl, . . . , st).

Lemma 19. Consider any l ≤ t and any θ, θ′ ∈ ΘR. With probability 1,

(a) |ζt(θ, zl:t)| ≤ 2B2.

(b) |ζt(θ, zl:t)− ζt(θ
′, zl:t)| ≤ 6B

∥
∥
∥(θ − θ

′

)
∥
∥
∥
2
.

(c) The following two bounds also hold,

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤ B2(γλ)τ for all τ ≤ t,

|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤ B2(γλ)t.

Proof. We essentially use the uniform bound on xt(θ, z0:t) and x̄(θ) as stated in Lemma 17 to show this

result. See Subsection B.3 for a detailed proof.

Lemma 19 can be combined with Lemma 9 to give an upper bound on the bias term, E [ζt(θt, z0:t)], as

shown below.

Lemma 20. Consider a non-increasing step-size sequence, α0 ≥ α1 . . . ≥ αT . Then the following hold.

(a) For 2τmix
λ (αT ) < t ≤ T ,

E [ζt(θt, z0:t)] ≤ 6B2(1 + 2τmix
λ (αT ))αt−2τmix

λ (αT ).

(b) For 0 ≤ t ≤ 2τmix
λ (αT ),

E [ζt(θt, z0:t)] ≤ 6B2
(
1 + 2τmix

λ (αT )
)
α0 +B2(γλ)t.

(c) For all t ∈ N0,

E [ζt(θt, z0:t)] ≤ 6B2
t−1∑

i=0

αi +B2(γλ)t

Proof. We proceed in two cases below. Throughout the proof, results from Lemma 19 are applied using the

fact that θt ∈ ΘR, because of the algorithm’s projection step.

Case (a): Let t > 2τ and consider the following decomposition for all τ ∈ {0, 1, . . . , t/2}. We show an

upper bound on each of the three terms separately.

E [ζt(θt, z0:t)] ≤ |E [ζt(θt, z0:t)]− E[ζt(θt−2τ , z0:t)]|+ |E[ζt(θt−2τ , z0:t)]− E[ζt(θt−2τ , zt−τ :t)]|+ |E[ζt(θt−2τ , zt−τ :t)]|.

Step 1: Use regularity properties of the error function to bound first two terms.

We relate ζt(θt, z0:t) and ζt(θt−τ , z0:t) using the Lipschitz property shown in part (b) of Lemma 19 to get,

|ζt(θt, z0:t)− ζt(θt−2τ , z0:t)| = 6B‖θt − θt−2τ‖2 ≤ 6B2
t−1∑

i=t−2τ

αi. (41)
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Taking expectations on both sides gives us the desired bound on the first term. The last inequality used the

norm bound on update direction as shown in Lemma 17 to simplify,

‖θt − θt−2τ‖2 ≤
t−1∑

i=t−2τ

‖Π2,R (θi+1 + αixi(θi, z0:i))− θi‖2 ≤
t−1∑

i=t−2τ

αi‖xi(θi, z0:i)‖2 ≤ B

t−1∑

i=t−2τ

αi.

Similarly, by part (c) of Lemma 19, we have a bound on the second term.

|E[ζt(θt−2τ , z0:t)]− E[ζt(θt−2τ , zt−τ :t)]| ≤ B2(γλ)τ . (42)

Step 2: Use information-theoretic arguments to upper bound E[ζt(θt−2τ , zt−τ :t)].

We will essentially use Lemma 9 to upper bound E[ζt(θt−2τ , zt−τ :t)]. We first introduce some notation to

highlight subtle dependency issues. Note that ζt(θt−2τ , zt−τ :t) is a function of (θt−2τ , st−τ , . . . , st−1, Ot).
To simplify, let Yt−τ :t = (st−τ , . . . , st−1, Ot). Define,

f(θt−2τ , Yt−τ :t) := ζt(θt−2τ , zt−τ :t).

Consider random variables θ′t−2τ and Y ′
t−τ :t drawn independently from the marginal distributions of θt−2τ

and Yt−τ :t, so P(θ′t−2τ = ·, Y ′
t−τ :t = ·) = P(θt−τ = ·) ⊗ P(Yt−τ :t = ·). By Lemma 19 we have that

|f(θ, Yt−τ :t)| ≤ 2B2 for all θ ∈ ΘR with probability 1. As

θt−2τ → st−2τ → st−τ → st → Ot

form a Markov chain, a direct application of Lemma 9 gives us:

∣
∣E[f(θt−2τ , Yt−τ :t)]− E[f(θ′t−2τ , Y

′
t−τ :t)]

∣
∣ ≤ 4B2mρτ . (43)

We also have the following bound for all fixed θ ∈ ΘR. Using x̄(θ) = E[δt(θ)z−∞:t], we get

E[f(θ, Yt−τ :t)] = (E[δt(θ)zt−τ :t]− x̄(θ))⊤ (θ − θ∗) ≤
∣
∣
∣(δt(θ)z−∞:t−τ )

⊤ (θ − θ∗)
∣
∣
∣ ≤ B2(γλ)τ

Combining the above with Equation (43), we get

|E[ζt(θt−2τ , zt−τ :t)]| = |E[f(θt−2τ , Yt−τ :t)]|
≤

∣
∣E[f(θt−2τ , Yt−τ :t)]− E[f(θ′t−2τ , Y

′
t−τ :t)]

∣
∣ +
∣
∣E[f(θ′t−2τ , Y

′
t−τ :t)]

∣
∣

≤ 4B2mρτ +
∣
∣E[E[f(θ′t−2τ , Y

′
t−τ :t)|θ′t−2τ ]]

∣
∣

≤ 4B2mρτ +B2(γλ)τ . (44)

Step 3. Combine terms to show part (a) of our claim.

Taking τ = τmix
λ (αT ) and combining Equations (41), (42) and (44) establishes the first claim.

E [ζt(θt, z0:t)] ≤ 6B2
t−1∑

i=t−2τ

αi + 4B2mρτ + 2B2(γλ)τ ≤ 12B2τmix
λ (αT )αt−2τmix

λ (αT ) + 6B2αT

≤ 6B2(1 + 2τmix(αT ))αt−2τmix
λ (αT ).

Here we used that letting τ = τmix
λ (αT ) implies: max{mρτ , (γλ)τ} ≤ αT . Two additional facts which we

also use follow from a non-increasing step-size sequence,
∑t−1

i=t−2τ αi ≤ 2ταt−2τ and αT ≤ αt−2τ .
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Case (b): Consider the following decomposition for all t ∈ N0,

E [ζt(θt, z0:t)] ≤ |E [ζt(θt, z0:t)]− E[ζt(θ0, z0:t)]|+ |E[ζt(θ0, z0:t)]− E[ζt(θ0, z−∞:t)]|+ |E[ζt(θ0, z−∞:t)]|.
Step 1: Use regularity properties of the error function to upper bound the first two terms.

Using parts (b), (c) of Lemma 19 and following the arguments shown in Step 1, 2 of case (a) above, we get

|E [ζt(θt, z0:t)]− E[ζt(θ0, z0:t)]|+ |E[ζt(θ0, z0:t)]− E[ζt(θ0, z−∞:t)]| ≤ 6B2
t−1∑

i=0

αi +B2(γλ)t. (45)

Step 2: Characterizing E[ζt(θ, z−∞:t)] for any fixed (non-random) θ.

Recall the definition of x̄(θ) from Equation (38). For any fixed (non-random)θ, we have x̄(θ) = E[δt(θ)z−∞:t].
Therefore,

E[ζt(θ0, z−∞:t)] = (E[δt(θ0)z−∞:t]− x̄(θ0))
⊤ (θ0 − θ∗) = 0. (46)

Step 3. Combine terms to show parts (b), (c) of our claim.

Combining Equations (45) and (46) establishes part (c) which states,

E [ζt(θt, z0:t)] ≤ 6B2
t−1∑

i=0

αi +B2(γλ)t ∀ t ∈ N0.

We establish part (b) by using that the step-size sequence is non-increasing which implies:
∑t−1

i=0 αi ≤ tα0.

For all t ≤ 2τmix
λ (αT ), we have the following loose upper bound.

E [ζt(θt, z0:t)] ≤ 6B2tα0 +B2(γλ)t ≤ 6B2
(
1 + 2τmix

λ (αT ))
)
α0 +B2(γλ)t.

B.2 Proof of Theorem 4

In this subsection, we establish convergence bounds for Projected TD(λ) as stated in Theorem 4 using Lem-

mas 18 and 20. From Lemma 18 we have,

E

[

‖θ∗ − θt+1‖22
]

≤ E

[

‖θ∗ − θt‖22
]

− 2αt(1 − κ)E
[

‖Vθ∗ − Vθt‖2D
]

+ 2αtE [ζt(θt, z0:t)] + α2
tB

2. (47)

Equation (47) will be used as a starting point for analyzing different step-size choices.

Proof of part (a): Fix a constant step-size of α0 = . . . = αt = 1/
√
T in Equation (47), rearrange terms

and sum from t = 0 to t = T − 1, we get

2α0(1− κ)

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤
T−1∑

t=0

(

E

[

‖θ∗ − θt‖22
]

− E

[

‖θ∗ − θt+1‖22
])

+B2 + 2α0

T−1∑

t=0

E [ζt(θt, z0:t)] .

Using Lemma 20 where αt−2τmix
λ (αT ) = α0 along with the fact that (γλ) < 1, we simplify to get

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤ ‖θ∗ − θ0‖22 +B2

2α0(1− κ)
+

T · 6B2(1 + 2τmix
λ (1/

√
T ))α0

(1 − κ)
+

1

(1− κ)

2τmix
λ (1/

√
T )

∑

t=0

B2(γλ)t

≤

√
T
(

‖θ∗ − θ0‖22 +B2
)

2(1− κ)
+

√
T · 6B2(1 + 2τmix

λ (1/
√
T ))

(1− κ)
+

2B2τmix
λ (1/

√
T )

(1 − κ)
.

Adding these terms, we conclude

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ 1

T

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤
‖θ∗ − θ0‖22 +B2

(

13 + 28τmix
λ (1/

√
T )
)

2
√
T (1− κ)

.
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Proof of part (b): For a constant step-size of α0 < 1/(2ω(1 − κ)), we show that the expected distance

between the iterate θT and the TD(λ) limit point, θ∗ converges at an exponential rate below some level that

depends on the choice of step-size and λ. Starting with Equation (47) and applying Lemma 1 which shows

that ‖Vθ∗ − Vθ‖2D ≥ w‖θ∗ − θ‖22 for any θ, we have that for all t > 2τmix
λ (α0),

E

[

‖θ∗ − θt+1‖22
]

≤ (1− 2α0(1− κ)ω)E
[

‖θ∗ − θt‖22
]

+ α2
0B

2 + 2α0E [ζt(θt, z0:t)]

≤ (1− 2α0(1− κ)ω)E
[

‖θ∗ − θt‖22
]

+ α2
0B

2
(
13 + 24τmix

λ (α0)
)
,

where we used part (a) of Lemma 20 for the second inequality. Iterating over it gives us our final result. For

any T > 2τmix
λ (α0),

E

[

‖θ∗ − θT ‖22
]

≤ (1− 2α0(1− κ)ω)
T ‖θ∗ − θ0‖22 +B2

(

α2
0

(
13 + 24τmix

λ (α0)
) )

∞∑

t=0

(1− 2α0(1 − κ)ω)
t

≤
(

e−2α0(1−κ)ωT
)

‖θ∗ − θ0‖22 +
B2
(

α0

(
13 + 24τmix

λ (α0)
) )

2(1− κ)ω
.

The second inequality follows by solving the geometric series and using that (1− 2α0(1 − κ)ω) ≤ e−2α0(1−κ)ω.

Proof of part (c): Consider a decaying step-size of αt = 1/(ω(t+1)(1−κ)). We start with Equation (47)

and use Lemma 1 which showed E

[

‖Vθ∗ − Vθ‖2D
]

≥ wE
[

‖θ∗ − θ‖22
]

for all θ to get,

E

[

‖Vθ∗ − Vθt‖2D
]

≤ 1

(1− κ)αt

(

(1− (1− κ)ωαt)E
[

‖θ∗ − θt‖22
]

− E

[

‖θ∗ − θt+1‖22
]

+ α2
tB

2
)

+

2

(1− κ)
E [ζt(θt, z0:t)] .

Substituting αt =
1

ω(t+1)(1−κ) , simplify and sum from t = 0 to T − 1 to get,

T−1∑

t=0

E

[

‖Vθ∗ − Vθt‖2D
]

≤ −ωTE
[

‖θ∗ − θT ‖22
]

+
B2

ω(1− κ)2

T−1∑

t=0

1

t+ 1
+

2

(1− κ)

T−1∑

t=0

E [ζt(θt, z0:t)]

≤ −ωTE
[

‖θ∗ − θT ‖22
]

︸ ︷︷ ︸
<0

+
B2(1 + logT )

ω(1− κ)2
+

2

(1− κ)

T−1∑

t=0

E [ζt(θt, z0:t)] , (48)

where we used that
∑T−1

t=0
1

t+1 ≤ (1 + log T ). To simplify notation, we put τ = τmix
λ (αT ) for the remainder

of the proof. We use Lemma 20 to upper bound the total bias,
∑T−1

t=0 E [ζt(θt, z0:t)] which can be decomposed

as:

T−1∑

t=0

E [ζt(θt, z0:t)] =
2τ∑

t=0

E [ζt(θt, z0:t)] +
T−1∑

t=2τ+1

E [ζt(θt, z0:t)] . (49)

First, note that for a decaying step-size αt =
1

ω(t+1)(1−γ) we have

T−1∑

t=0

αt =
1

ω(1− γ)

T−1∑

t=0

1

(t+ 1)
≤ 1 + logT

ω(1− γ)
.
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We will combine this with Lemma 20 to upper bound each term separately. First,

2τ∑

t=0

E [ζt(θt, z0:t)] ≤
2τ∑

t=0

(

6B2
t−1∑

i=0

αi

)

+

2τ∑

t=0

B2(γλ)t

≤ 6B2

ω(1− κ)

2τ∑

t=0

T−1∑

i=0

1

(i+ 1)
+ 2B2τ ≤ 14B2τ

ω(1− κ)
(1 + logT ),

where we used the fact that ω, κ, (γλ) < 1. Similarly,

T−1∑

t=2τ+1

E [ζt(θt, z0:t)] ≤ 6B2(1 + 2τ)

T−1∑

t=2τ+1

αt−2τ ≤ 6B2(1 + 2τ)

T−1∑

t=0

αt ≤
6B2(1 + 2τ)

ω(1− κ)
(1 + logT ) .

Combining the two parts, we get

T−1∑

t=0

E [ζt(θt, z0:t)] ≤
B2(6 + 26τ)

ω(1− κ)
(1 + logT ).

Using this in conjunction with Equation (48) we get our final result,

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ 1

T

T−1∑

t=0

E

[

‖Vθt − Vθ∗‖2D
]

≤ B2

ωT (1− κ)2
(1 + logT ) +

2

T (1− κ)

T−1∑

t=0

E [ζt(θt, z0:t)] .

Simplifying and putting back τ = τmix
λ (αT ), we get

E

[∥
∥Vθ∗ − Vθ̄T

∥
∥
2

D

]

≤ B2

ωT (1− κ)2
(1 + logT ) +

2B2
(
6 + 26τmix

λ (αT )
)

ωT (1− κ)2
(1 + logT )

≤ B2
(
13 + 52τmix(αT )

)

ωT (1− κ)2
(1 + logT ).

Additionally, Equation (48) implies a convergence rate of O(logT/T ) for the iterate θT itself:

E

[

‖θ∗ − θT ‖22
]

≤ B2
(
13 + 52τmix

λ (αT )
)

ω2T (1− κ)2
(1 + logT ) .

B.3 Proof of supporting lemmas.

In this subsection, we provide standalone proofs of Lemma 17 and 19 used above.

Lemma 17. For all θ ∈ ΘR, ‖xt(θ, z0:t)‖2 ≤ B with probability 1. Additionally, ‖x̄(θ)‖2 ≤ B.

Proof. We start with the mathematical expression for xt(θ, z0:t).

xt(θ, z0:t) = δt(θ)z0:t ⇒ ‖xt(θ, z0:t)‖2 = |δt(θ)|‖z0:t‖2.

We give an upper bound on both |δt(θ)| and ‖z0:t‖2. Starting with the definition of δt(θ) and using that

‖φ(st)‖2 ≤ 1 ∀ t along with ‖θ‖2 ≤ R, we get

|δt(θ)| =
∣
∣rt + γφ(s′t)

⊤θ − φ(st)
⊤θ
∣
∣ ≤ rmax + ‖φ(s′t)‖2‖θ‖2 + ‖φ(st)‖2‖θ‖2 ≤ (rmax + 2R) .

Next,

‖z0:t‖22 =

∥
∥
∥
∥
∥

t∑

k=0

(γλ)kφ(st−k)

∥
∥
∥
∥
∥

2

2

≤
(

t∑

k=0

(γλ)k

)2

≤
( ∞∑

k=0

(γλ)k

)2

=
1

(1− γλ)2
.
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Combining these two implies the first part of our claim.

‖xt(θ, z0:t)‖2 = |δt(θ)|‖z0:t‖2 ≤
(rmax + 2R)

(1− γλ)
= B.

Note that can easily show an upper bound ‖δt(θ)zl:t‖2 ≤ B for any pair (θ, zl:t) with l ≤ t. Consider,

‖zl:t‖22 ≤ ‖z−∞:t‖22 ≤
( ∞∑

k=0

(γλ)k

)2

=
1

(1− γλ)2

⇒ ‖δt(θ)zl:t‖2 = |δt(θ)|‖zl:t‖2 ≤
(rmax + 2R)

(1− γλ)
= B.

Taking l → −∞ implies that ‖δt(θ)z−∞:t‖2 ≤ B. As x̄(θ) = E [δt(θ)z−∞:t], we also have a uniform norm

bound on the expected updates, ‖x̄(θ)‖2 ≤ B, as claimed.

Lemma 19. Consider any l ≤ t and any θ, θ′ ∈ ΘR. With probability 1,

(a) |ζt(θ, zl:t)| ≤ 2B2.

(b) |ζt(θ, zl:t)− ζt(θ
′, zl:t)| ≤ 6B

∥
∥
∥(θ − θ

′

)
∥
∥
∥
2
.

(c) The following two bounds also hold,

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤ B2(γλ)τ for all τ ≤ t,

|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤ B2(γλ)t.

Proof. Throughout, we use the assumption that basis vectors are normalized i.e. ‖φ(st)‖2 ≤ 1 ∀ t.

Part (a): We show a uniform norm bound on ζt(θ, zl:t) ∀ θ ∈ ΘR. First consider the following:

‖δt(θ)zl:t‖2 = |δt(θ)|‖zl:t‖2 ≤
∣
∣rt + γφ(s′t)

⊤θ − φ(st)
⊤θ
∣
∣

∥
∥
∥
∥
∥

t−l∑

k=0

(γλ)kφ(st−k)

∥
∥
∥
∥
∥
2

≤ |rt + ‖φ(s′t)‖2‖θ‖2 + ‖φ(st)‖2‖θ‖2|
∥
∥
∥
∥
∥

∞∑

k=0

(γλ)kφ(st−k)

∥
∥
∥
∥
∥
2

≤ (rmax + 2R)

(1− γλ)
= B.

Using this along with the fact that ‖θ − θ∗‖2 ≤ 2R ≤ B and ‖x̄(θ)‖2 ≤ B for all θ ∈ ΘR, we get

|ζt(θ, zl:t)| =
∣
∣
∣(δt(θ)zl:t − x̄(θ))⊤ (θ − θ∗)

∣
∣
∣ ≤ ‖δt(θ)zl:t − x̄(θ)‖2‖(θ − θ∗)‖2
≤ (‖δt(θ)zl:t‖2 + ‖x̄(θ)‖2) ‖(θ − θ∗)‖2
≤ 2B‖(θ − θ∗)‖2 ≤ 2B2.

Part (b): To show that ζt(·, zl:t) is L-Lipschitz, consider the following inequality for any four vectors

(a1, b1, a2, b2), which follows as a direct application of Cauchy-Schwartz.

∣
∣a⊤1 b1 − a⊤2 b2

∣
∣ =

∣
∣a⊤1 (b1 − b2) + b⊤2 (a1 − a2)

∣
∣ ≤ ‖a1‖2‖b1 − b2‖2 + ‖b2‖2‖a1 − a2‖2.
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This implies,

|ζt(θ, zl:t)− ζt(θ
′, zl:t)| =

∣
∣
∣(δt(θ)zl:t − x̄(θ))⊤ (θ − θ∗)− (δt(θ

′)zl:t − x̄(θ′))
⊤
(θ′ − θ∗)

∣
∣
∣

≤ ‖δt(θ)zl:t − x̄(θ)‖2‖θ − θ′‖2 + ‖θ′ − θ∗‖2‖(δt(θ)zl:t − x̄(θ))− (δt(θ
′)zl:t − x̄(θ′))‖2

≤ 2B‖θ − θ′‖2 + 2R
[

‖zl:t (δt(θ)− δt(θ
′))‖2 + ‖x̄(θ)− x̄(θ′)‖2

]

≤ 2B‖θ − θ′‖2 +
8R

(1− γλ)
‖θ − θ′‖2

≤ 6B‖θ − θ′‖2,

where the last inequality follows as R
1−γλ ≤ B/2 by definition. In the penultimate inequality, we used that

‖zl:t (δt(θ)− δt(θ
′))‖2 ≤ 2

(1−γλ)‖θ − θ′‖2 which is easy to prove. Consider,

‖zl:t (δt(θ)− δt(θ
′))‖2 ≤ ‖zl:t‖2|(δt(θ)− δt(θ

′))|

≤
∥
∥
∥
∥
∥

∞∑

k=0

(γλ)kφ(st−k)

∥
∥
∥
∥
∥
2

|(δt(θ) − δt(θ
′))|

≤ 1

(1 − γλ)

∣
∣
∣(γφ(s′t)− φ(st))

⊤
(θ − θ′)

∣
∣
∣

≤ (‖φ(s′t)‖2 + ‖φ(st)‖2)
(1− γλ)

‖θ − θ′‖2 ≤
2

(1 − γλ)
‖θ − θ′‖2.

As x̄(θ) = E [δt(θ)z−∞:t], this also implies that ‖x̄(θ)− x̄(θ′)‖2 ≤ 2
(1−γλ)‖θ − θ′‖2 which completes the

proof.

Part (c): To show that |ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤ B2(γλ)τ for all θ ∈ ΘR and τ ≤ t, we use that

‖θ − θ∗‖2 ≤ 2R ≤ B.

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)| =
∣
∣
∣(δt(θ)z0:t − δt(θ)zt−τ :t)

⊤ (θ − θ∗)
∣
∣
∣

≤ |δt(θ)|‖z0:t − zt−τ :t‖2‖θ − θ∗‖2

≤
∣
∣rt + γφ(s′t)

⊤θ − φ(st)
⊤θ
∣
∣

∥
∥
∥
∥
∥

∞∑

k=τ

(γλ)kφ(st−k)

∥
∥
∥
∥
∥
2

B

≤ |rt + 2‖θ‖2| ·
(γλ)τ

(1 − γλ)
· B

≤ B
(rmax + 2R)

(1− γλ)
(γλ)τ = B2(γλ)τ .

Similarly,

|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤
∣
∣δt(θ)(z0:t − z−∞:t)

⊤(θ − θ∗)
∣
∣

≤ |δt(θ)|‖z0:t − z−∞:t‖2‖θ − θ∗‖2

≤
∣
∣
(
rt + γφ(s′t)

⊤θ − φ(st)
⊤θ
)∣
∣

∥
∥
∥
∥
∥

∞∑

k=t

(γλ)kφ(st−k)

∥
∥
∥
∥
∥
2

B

≤ B
(rmax + 2R)

(1 − γλ)
(γλ)t ≤ B2(γλ)t.
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C Proofs of Lemmas 13 and 16

In this section, we give a combined proof of Lemmas 13 and 16 which quantify the progress of the expected

updates towards the limit point θ∗ for TD(λ) and the Q-function approximation algorithm. These lemmas can

be stated more generally as shown below, instead of using the Bellman operators F (·) and T (λ)(·).

Lemma 21. Let ΠDH(·) be a contraction with respect to ‖·‖D with modulus γ and let Vθ∗ be the unique

fixed point of ΠDH(·), i.e. Vθ∗ = ΠDHVθ∗ . Define ḡ(θ) = Φ⊤D (HΦθ − Φθ) for all θ ∈ R
d to be the

expected update. Then,

(θ∗ − θ)⊤ḡ(θ) ≥ (1− γ)‖Vθ∗ − Vθ‖2D.

Proof. We have

(θ∗ − θ)⊤ḡ(θ) = (θ∗ − θ)⊤Φ⊤D (HΦθ − Φθ)

= 〈Φ(θ∗ − θ), (HΦθ − Φθ)〉D
= 〈ΠDΦ(θ∗ − θ), (HΦθ − Φθ)〉D (50)

= 〈Φ(θ∗ − θ),ΠD (HΦθ − Φθ)〉D (51)

= 〈Φ(θ∗ − θ),ΠDHΦθ − Φθ〉D
= 〈Φ(θ∗ − θ),ΠDHΦθ − Φθ∗ +Φθ∗ − Φθ〉D
= ‖Φ(θ∗ − θ)‖2D−〈Φ(θ∗ − θ),Φθ∗ −ΠDHΦθ〉D
≥ ‖Φ(θ∗ − θ)‖2D−‖Φ(θ∗ − θ)‖D·‖ΠDHΦθ − Φθ∗‖D
≥ ‖Φ(θ∗ − θ)‖2D−γ · ‖Φ(θ∗ − θ)‖2D (52)

= (1 − γ) · ‖Φ(θ∗ − θ)‖2D = (1− γ) · ‖Vθ∗ − Vθ‖2D,

where in going to Equation (50), we used that ∀ x ∈ Span(Φ), we have ΠD x = x. In Equation (51), we

used that the projection matrix ΠD is symmetric. In going to Equation (52), we used that that ΠDH(·) is a

contraction operator with modulus γ with Φθ∗ as its fixed point, which implies that ‖ΠDHΦθ − Φθ∗‖D =
‖ΠDHΦθ −ΠDHΦθ∗‖D ≤ γ‖Φθ − Φθ∗‖D .
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