
Online Allocation and Pricing: Constant Regret via
Bellman Inequalities

Alberto Vera Siddhartha Banerjee Itai Gurvich
School of Operations Research and Information Engineering, Cornell University

aav39@cornell.edu sbanerjee@cornell.edu gurvich@cornell.edu

We develop a framework for designing simple and efficient policies for a family of online allocation and

pricing problems, that includes online packing, budget-constrained probing, dynamic pricing, and online

contextual bandits with knapsacks. In each case, we evaluate the performance of our policies in terms of their

regret (i.e., additive gap) relative to an offline controller that is endowed with more information than the

online controller. Our framework is based on Bellman Inequalities, which decompose the loss of an algorithm

into two distinct sources of error: (1) arising from computational tractability issues, and (2) arising from

estimation/prediction of random trajectories. Balancing these errors guides the choice of benchmarks, and

leads to policies that are both tractable and have strong performance guarantees. In particular, in all our

examples, we demonstrate constant-regret policies that only require re-solving an LP in each period, followed

by a simple greedy action-selection rule; thus, our policies are practical as well as provably near optimal.

Key words : Stochastic Optimization, Approximate Dynamic Programming, Online Resource Allocation,

Dynamic Pricing, Online Packing, Network Revenue Management.

1. Introduction

Online decision-making under uncertainty is widely studied across a variety of fields, including

operations research, control, and computer science. A canonical framework for such problems is

that of Markov decision processes (MDP), with associated use of stochastic dynamic programming

for designing policies. In complex settings, however, such approaches suffer from the known curse-

of-dimensionality; moreover, they also fail to provide insights into structural properties of the

problem: the performance of heuristics, dependence on distributional information, etc.

The above challenges have inspired an alternate approach to designing approximate policies for

MDPs based on the use of benchmarks – proxies for the value function that provide bounds for the

optimal policy, and guide the design of heuristics. The performance of any policy can be quantified

by its additive loss, or regret, relative to any such benchmark; this consequently also bounds the

additive optimality gap, i.e., performance against the optimal policy.

In this work, we develop new policies for online resource-allocation problems: settings where a

finite set of resources is dynamically allocated to arriving requests, with associated constraints

and rewards/costs. Our baseline problem is the online stochastic knapsack problem (henceforth

OnlineKnapsack): a controller has initial inventory B, and requests arrive sequentially over horizon

1

ar
X

iv
:1

90
6.

06
36

1v
2

 [
m

at
h.

O
C

]
 3

0
Ju

l 2
02

0

2

T . Each request has a random type corresponding to a resource requirement-reward pair. Requests

are generated from a known stochastic process, and are revealed upon arrival; the controller must

then decide whether to accept/reject each request, in order to maximize rewards while satisfying

budget constraints. We then consider three variants of this basic setting: (1) online probing, (2)

dynamic pricing, and (3) contextual bandits with knapsacks. These are widely-studied problems,

each of which augments the baseline OnlineKnapsack with additional constraints/controls. The

formal models for these settings are presented in Section 2

Instead of solving each problem in an ad-hoc manner, however, our policies are all derived from

a single underlying framework. In particular, our results can be summarized as follows:

Meta-theorem Given an online allocation problem, we identify an appropriate offline benchmark,

and give a simple online policy – based on solving a tractable optimization problem in each period

– that gets constant regret compared to the benchmark (and thus, compared to the optimal policy).

In more detail, our approach is based on adaptively constructing a benchmark that has additional

(but not necessarily full) information about future randomness. Next, in the spirit of online primal-

dual methods, we use our benchmark to construct a feasible online policy. The centerpiece of

our approach are the Bellman Inequalities, which characterize what benchmarks are feasible, and

also, decompose the regret of an online policy into two distinct terms. The first, which we call

the Bellman Loss, arises from computational considerations, specifically, from requiring that the

benchmark is tractable (instead of a dynamic program which may be intractable); The second,

which we call the Information Loss, accounts for unpredictability across sample paths. Our policies

trade off these two losses to get strong performance guarantees.

Our framework allows flexibility in choosing benchmarks. To understand why this is important,

consider two common benchmarks for dynamic pricing: a controller has inventory B, and posts

prices for T sequential customers, each of who has a random valuation. One common benchmark,

known as the offline or prophet benchmark, considers a controller with full information of all

randomness; it is easy to show that no online policy can get better than Ω(T) regret against this

benchmark.. An alternate benchmark, known as the ex ante or fluid benchmark, corresponds to

replacing all random quantities with their expectations; here again, no online policy can get better

than Ω(
√
T) regret (Vera and Banerjee 2020). Our approach however lets us identify benchmarks

which have O(1) regret for all our settings.

Prophet and fluid benchmarks are also widely used in adversarial models of online allocation,

leading to algorithms with worst-case guarantees. In contrast, we consider stochastic inputs, and

consequently get much stronger guarantees. In particular, all our guarantees are parametric and

depend explicitly on the distributions and problem primitives (i.e., constant parameters defining

the instance). All our policies, however, have regret that is independent of the horizon and budgets.

3

2. Preliminaries and Overview

2.1. Problem Settings and Results

We illustrate our framework by developing low-regret algorithms for the following problems:

Online Stochastic Knapsack. This serves as a baseline for our other problems. The controller

has an initial resource budget B, and items arrive sequentially over T periods. Each item has a

random type j which corresponds to a known resource requirement (or ‘weight’) wj and a random

reward Rj. In period t= T,T − 1, . . . ,1 (where t denotes the time-to-go), we assume the arriving

type is drawn from a finite set [n] from some known distribution p = (p1, . . . , pn). At the start of

each period, the controller observes the type of the arriving item, and must decide to accept or

reject the item. The expected reward from selecting a type-j item is rj =E[Rj].

Online Probing. As before an arriving type j has known expected reward rj, but unknown

realized reward Rj – now the controller has the additional option of probing each request to observe

the realization, and then accept/reject the item based on the revealed reward; the controller can

also choose to accept the item without probing. In addition to the resource budget B, the controller

has an additional probing budget Bp that limits the number of arrivals that can be probed. This

introduces a trade-off between depleting the resource budget B and probing budget Bp. We assume

here that Rj has finite support {rjk}k∈[m] of size m, and define qjk := P[Rj = rjk] for k ∈ [m]. Note

this reduces to OnlineKnapsack when either Bp ≥ T or Bp = 0.

Dynamic Pricing. The controller has an initial inventory B ∈Nd for d different resources. There

are n types of customers, where a customer of type j requests a specific subset Aj ∈ {0,1}d of

resources, and has private valuation Rt ∼ Fj. In each period t, the controller observes the cus-

tomer type j ∈ [n], and if sufficient resources are available, posts a price (fare) f from a finite

set {fj1, . . . , fjm}; the customer then purchases iff Rt > f . The vectors Aj and valuation functions

(Fj : j ∈ [n]) are known, but otherwise arbitrary. More generally, our technique handles probabilis-

tic customer-choice models, where a customer, when presented with a price menu over bundles,

picks a random bundle via some known distribution (which may depend on the menu).

Knapsack with Distribution Learning. We return to the OnlineKnapsack setting where items

of type j ∈ [n] have weight wj and random reward Rj; now however the controller is unaware of

the distribution of Rj, and must learn it from observations. In period t, the controller observes the

arrival-type j, and decides to accept/reject based on observed rewards up to time t. We consider

two feedback models: full feedback where the controller observes Rj regardless of whether the item is

accepted or rejected, and censored feedback where the controller only observes rewards of accepted

items; for the latter (which is sometimes referred to as online contextual bandits with knapsacks),

we assume the rewards Rj have sub-Gaussian tails (Boucheron et al. 2013, Section 2.3).

4

Benchmarks and guarantees. Our framework, rabbi (Re-solve and Act Based on the Bellman

Inequalities; see Section 3.2) is based on comparing two ‘controllers’: Offline, who acts optimally

given future information, and a non-anticipative controller Online who tries to follow Offline.

Both start in the same initial state ST . We denote voff as the expected total reward collected by

Offline acting optimally (i.e., according to a Bellman equation) given its information structure.

In contrast, Online uses a non-anticipative policy π that maps current states to actions, resulting

in a total expected reward von
π .

Let πR denote the online policy produced by our rabbi framework, and π denote any non-

anticipative policy. Then the expected regret of πR relative to the chosen offline benchmark is

E[Regret] := voff− von
πR
≥max

π
[von
π]− von

πR

The last inequality, which follows from the fact that von
π ≤ voff for any pair of benchmark and online

policies, emphasizes that the regret is a bound on the additive gap w.r.t. the best online policy.

For all the above problems, we use the rabbi framework to identify an appropriate benchmark,

with respect to which we get the following guarantees: First, for the OnlineKnapsack, we recover

a result proved in Arlotto and Gurvich (2019), Vera and Banerjee (2020)

Theorem 1 (Theorem 1 in Arlotto and Gurvich (2019)). For known reward distributions

with finite mean, an online policy based on the rabbi framework obtains regret that depends only

on the primitives (n,p,r,w), but is independent of the horizon length T and resource budget B.

The above builds intuition for using rabbi in more complex settings. In particular, the benchmark

used in Theorem 1 is the full-information prophet, which is too loose for obtaining constant regret in

the remaining settings (pricing, probing, and bandits; see Example 1). This is where our framework

helps in guiding the choice of the right benchmark. In particular, we obtain the following results:

Theorem 2 (Online Probing). For reward distributions with finite support of size m, an online-

probing policy based on the rabbi framework (Algorithm 2) obtains regret that depends only on

(n,m,q,p,r), but is independent of horizon length T , resource budget B and probing budget Bp.

Theorem 3 (Dynamic Pricing). For any reward distributions (Fj : j ∈ [n]) and prices f , a

pricing policy based on the rabbi framework (Algorithm 3) obtains regret that depends only on

(A, f ,F1, . . . ,Fn), but is independent of horizon length T and initial budget levels B ∈Nd.

The result for dynamic pricing also extends naturally to resource bundles and general customer-

choice models (see Section 5.5 and Theorem 6 therein).

For the bandit settings, we define a separation parameter δ = minj 6=j′ |E[Rj]/wj −E[Rj′]/wj′ |;
this is only for our bounds, and is not known to the algorithm.

5

Theorem 4 (Knapsack with Distribution Learning). Assuming the reward distributions are

sub-Gaussian, in the full feedback setting, a policy based on the rabbi framework (Algorithm 5)

obtains regret that depends only on the primitives (n,p,r,w, δ) and is independent of the horizon

length T and knapsack capacity B.

The last result can also be used as a black-box for the censored feedback setting to get an O(logT)

regret guarantee (see Corollary 1 in Section 6.3).

2.2. Overview of our Framework

We develop our framework in the full generality of MDPs in Section 3. To give an overview and

gain insight into the general version, we use OnlineKnapsack as a warm-up. A schema for the

framework is provided in Fig. 1.

In the OnlineKnapsack problem, at any time-to-go t, let Ztj ∈ N denote the (random) number

of type-j arrivals in the remaining t periods. Recall rewards of type-j arrivals have expected value

rj :=E[Rj]. Define Offline to be a controller that knows Zt for all t in advance. The total reward

collected by Offline can be written as an integer linear program

V (t, b|Zt) = max
xa∈Nn

{r′x : w′xa ≤ b,xa ≤Zt}= max
xa,xr∈Nn

{r′xa : w′xa ≤ b,xa + xr =Zt}. (1)

The function V (·|Zt) is thus Offline’s value function (see Fig. 1), where the notation |Zt empha-

sizes that V is conditioned on Zt. Moreover, for every j, the variables xa,j, xr,j represent action

summaries: the number of type-j arrivals accepted and rejected, respectively.

V (·|Zt) can also be represented via Bellman equations. Specifically, at time-to-go t, assuming

Offline has budget b and the arriving type is ξ, the value function obeys the Bellman equation

V (t, b|Zt) = max
{[
rξt +V (t− 1, b−wξt |Zt−1)

]
1{wξt≤b}, V (t− 1, b|Zt−1)

}
, ∀t, b, ξt.

Next consider the linear programming relaxation for V (t, b)

ϕ(t, b|Zt) := max
xa,xr≥0

{r′xa : w′xa ≤ b,xa + xr =Zt},

It is clear that ϕ is more tractable compared to V , and also, that it approximates V up to an

integrality gap. However, ϕ does not obey a Bellman equation. To circumvent this, we introduce

the notion of Bellman Inequalities, wherein we require that ϕ satisfies Bellman-like conditions for

‘most’ sample paths. Formally, for some random variables LB, we want ϕ to satisfy

ϕ(t, b|Zt)≤max
{

[rξt +ϕ(t− 1, b−wξt |Zt−1)]1{w
ξt
≤b},ϕ(t− 1, b|Zt−1)

}
+LB(t, b).

Note that, if E[LB(t, b)] is small, with expectation taken over Zt, then ϕ ‘almost’ satisfies the

Bellman equations. We henceforth refer to ϕ as a relaxed value for V and LB the Bellman Loss.

6

Offline Value Offline Controls

Online Policy

ϕ based on problem structure

ϕ̂ based on ϕControls based on ϕ̂

(I)

(II)(III)

Figure 1 The rabbi framework: We first define Offline’s value function by specifying access to future infor-

mation. Next, we identify a tractable relaxation ϕ for Offline’s value under this same information

structure (step I). Finally, we introduce a non-anticipative estimate ϕ̂ for ϕ, and use it to design online

controls (step II). The resulting online policy is evaluated against Offline’s value (step III).

Establishing that actions derived from ϕ are nearly optimal for Offline accomplishes step (I)

in Fig. 1. For step (II), we want to emulate Offline by estimating ϕ based on current information.

A natural estimate is obtained by taking expectations over future randomness, to get:

ϕ̂(t, b) := max
ya,yr≥0

{r′ya : w′ya ≤ b,ya + yr =E[Zt]}.

Note that ϕ̂ does not approximate V or ϕ up to a constant additive error Vera and Banerjee (2020);

however, ϕ̂ can be used as a predictor for the action taken by Offline. Specifically, at time t with

current budget b, rabbi first computes ϕ̂(t, b) and then interprets the solution y as a score for each

action (here, accept/reject). We show that taking the action with the highest score (i.e., action

argmaxu∈{a,r}{yξt,u}) guarantees that that Online and Offline play the same action with high

probability. Whenever Offline and Online play different actions, then we incur a loss, which we

refer to as the Information Loss, as it quantifies how having less information impacts Online’s

actions. This process of using ϕ̂ to derive actions is represented as step (III) in Fig. 1.

Towards a general framework. For all the problems in Section 2.1, our approach uses a similar

three-step process, wherein we choose an Offline benchmark, identify relaxed value ϕ via appro-

priate optimization problem, and get an online policy based on estimate ϕ̂. Consequently, we refer

to our framework as rabbi, which stands for Re-solve and Act Based on Bellman Inequalities.

Our work builds on constant-regret policies for multidimensional packing Vera and Banerjee

(2020), and more general online optimization problems (Banerjee and Freund 2020). The techniques

developed in these works, however, have two fundamental shortcomings that prevent them from

addressing the settings we consider:

• Use of full-information benchmarks: Existing works (Arlotto and Gurvich 2019, Vera and

Banerjee 2020, Banerjee and Freund 2020) use the full information benchmark, which is too loose

for our settings. Indeed, for probing/pricing/learning settings, no algorithm can have constant

regret compared to the full information benchmark (see Example 1).

7

• Explicit value-function characterizations: The optimization problem in Eq. (1) has a closed-

form solution, which was used explicitly by (Arlotto and Gurvich 2019, Vera and Banerjee 2020,

Banerjee and Freund 2020); this does not extend to more complex settings.

Our framework in this work resolves these shortcomings in a structured way, allowing us to get

provably near-optimal algorithms for several canonical resource allocation problems. Moreover, we

do so via a generalized notion of information-augmented benchmarks, and our decomposition of the

regret into the Information Loss (capturing randomness in inputs) and Bellman Loss (capturing

limited computational power). This flexibility helps greatly in the design of our algorithms.

2.3. Related Work

Our approach has commonalities with two closely related approaches:

Prophet Inequalities and Ex-Ante Relaxations: A well-studied framework for obtaining

performance guarantees for heuristics policies is to compare against a full information agent, or

“prophet”. This line of work focuses on competitive-ratio bounds, see (Kleinberg and Weinberg

2012, Düetting et al. 2017, Correa et al. 2017) for overviews of the area. In particular, (Correa

et al. 2017) obtains a multiplicative guarantee for dynamic posted pricing with a single item under

worst case distribution. A related line of work considers the use of ex-ante LP relaxations Alaei

(2014), Buchbinder et al. (2014) for obtaining worst-case competitive guarantees in online packing

problems. In contrast, we obtain an additive guarantee for multiple items in a parametric setting.

MDP Dual Relaxations. A standard way to get bounds on MDPs is via information-relaxations,

which at a high level, create benchmarks by endowing Offline with additional information, while

forcing it to ‘pay a penalty’ for using this information. (Brown et al. 2010, Balseiro and Brown

2019) use this in a dual-fitting approach, to construct performance bounds for greedy algorithms in

different problems. In contrast, our framework is similar to a primal-dual approach: we adaptively

construct our relaxations, and derive controls directly from them. We compare the two approaches

in more detail in Appendix E.

Moreover, the different problems we apply rabbi each have a large body of prior work.

Online Packing. There is a long line of work on the baseline OnlineKnapsack and generalizations.

A notable work in this line is Jasin and Kumar (2012), who gives a policy with constant expected

regret when the problem instance is far from a set of certain non-degenerate instances. This ineffi-

ciency, though, is fundamental, since they use the ex ante (or fluid) benchmark, which has Ω(
√
T)

under non-degeneracy. More recently, (Bumpensanti and Wang 2020) partially extend the result

of (Arlotto and Gurvich 2019) for more general packing problems; however their policy only gives

8

constant regret under i.i.d. Poisson arrivals, and require the system to be scaled linearly (i.e., B

grows proportional to T). In contrast, (Arlotto and Gurvich 2019) (one dimension) and (Vera and

Banerjee 2020) (multiple dimensions) provide constant regret policies with no assumption on the

scaling. The approach in the latter is further generalized in Banerjee and Freund (2020) to handle

more complex problems including bin-packing and QOS constraints. See Vera and Banerjee (2020),

Banerjee and Freund (2020) for more discussion and references.

Probing. Approximation algorithms have been developed for offline probing problems, both under

budget constraints (Gupta and Nagarajan 2013) and probing costs (Weitzman 1979, Singla 2018).

Another line of work pursues tractable non-adaptive constant-factor competitive algorithms for this

problem (Gupta et al. 2016). In terms of online adaptive algorithms, Chugg and Maehara (2019)

introduces an algorithm with bounded competitive ratio in an adversarial setting.

Dynamic posted pricing. This is a canonical problem in operations management, with a vast

literature; see Talluri and Van Ryzin (2006) for an overview. Much of this literature focuses on

asymptotically optimal policies in regimes where the inventory B and/or horizon T grow large.

When B and T are scaled together by a factor k, there are known algorithms with regret that

scales as O(
√
k) or O(log(k)), depending on assumptions on the primitives (e.g., smoothness of the

demand with price) (Jasin 2014). There is also vast literature on pricing when the demand function

is not known and has to be learned (Chen et al. 2019). Finally, under adversarial arrivals, Babaioff

et al. (2015) provides a policy with O((B logT)2/3) regret under adversarial inputs, as opposed to

our O(1) guarantee under stochastic inputs.

Knapsack with learning. Multi-armed bandit problems have been widely studied, and we refer

to Bubeck et al. (2013, 2012) for an overview. Bandit problems with combinatorial constraints on

the arms are known as Bandits With Knapsacks (Badanidiyuru et al. 2018), and the generalization

where arms arrive online is known as Contextual Bandits With Knapsacks (Badanidiyuru et al.

2014, Agrawal and Devanur 2016). Results in this literature typically study worst-case distributions.

We, in contrast, pursue parametric regret bounds that explicitly depend on the (unknown) discrete

distribution. Closest to our work is Wu et al. (2015), who provide a UCB-based algorithm that

gets O(
√
T) regret (in contrast, we get O(logT) regret for the same setting).

3. Approximate Control Policies via the Bellman Inequalities

In this section, we describe our general framework. Before proceeding, we introduce some nota-

tion: We work an underlying probability space (Ω,Σ,P), and for any event B ⊆ Ω, we denote its

complement by Bc. We use boldface letters to indicate vector-valued variables (e.g. p,w, etc.),

and capital letters to denote matrices and/or random variables. For an optimization problem (P),

we use P to denote its optimal value. When using LP formulations with decision variables x, we

interchangeably use xij = x(i, j) to denote the (i, j)th component of x.

9

3.1. Offline Benchmarks and Bellman Inequalities

We consider an online decision-making problem with state space S and action space U , evolving

over periods t= T,T − 1, . . . ,1; here T denotes the horizon, and t is the time to-go. In any period

t, the controller first observes a random arrival ξt ∈ Ξ, following which it must choose an action

u ∈ U . For system-state s ∈ S at the beginning of period t, and random arrival ξ ∈ Ξ, an action

u ∈ U results in a reward R(s, ξ, u), and transition to the next state T (s, ξ, u). We assume both

reward and future state are random variables whose realizations are determined for every u given

ξ. This assumption is for ease of exposition only; our results can be extended to hold when rewards

or transitions are random given ξ.

The feasible actions for state s and input ξ correspond to the set {u∈ U :R(s, ξ, u)>−∞}. We

assume that this feasible set is non-empty for all s∈ S, ξ ∈Ξ, and also, that the maximum reward

is bounded, i.e., sups∈S,ξ∈Ξ,u∈UR(s, ξ, u)<∞.

The MDP described above induces a natural filtration F , with Ft = σ({ξτ : τ ≥ t}); a non-

anticipative policy is one which is adapted to Ft. We allow Offline to use a richer information

filtration G, where Gt ⊇Ft. Note that since t denotes the time-to-go, we have Gt−1 ⊇Gt. Henceforth,

to keep track of the information structure, we use the notation f(·|Gt) to clarify that a function f

is measurable with respect to the sigma-field Gt.
Given any filtration G, Offline is assumed to play the optimal policy adapted to G, hence

Offline’s value function is given by the following Bellman equation:

V (t, s|Gt) = max
u∈U
{R(s, ξt, u) +E[V (t− 1,T (s, ξt, u)|Gt−1)|Gt]}, (2)

with the boundary condition V (0, ·) = 0. We denote the expected value as voff := E[V (T,ST |GT)].

Note that voff is an upper bound on the performance of the optimal non-anticipative policy.

We present a specific class of filtration (generated by augmenting the canonical filtration) that

suffice for our applications (see Fig. 2 for an illustration of the definition).

Definition 1 (Canonical augmented filtration). Let GΘ := (Gθ : θ ∈Θ) be a set of random

variables. The canonical filtration w.r.t. GΘ is

Gt = σ({ξl : l≥ t}∪GΘ)⊇Ft.

The richest augmented filtration is the full information filtration, wherein Gt = F1 for all t, i.e.,

the canonical filtration with GΘ = (ξt : t ∈ [T]). As Gt gets coarser, the difference in performance

between Offline and Online decreases. Indeed, when G =F , then Eq. (2) reduces to the Bellman

equation for the value-function of an optimal non-anticipative policy:

V (t, s|Ft) = max
u∈U
{R(s, ξt, u) +E[V (t− 1,T (s, ξt, u)|Ft−1)]}, V (0, ·, ·) = 0,

where the expectation is taken with respect to the next period’s input ξt−1.

10

T T − 1 T − 2 T − 3 t+ 1 t t− 1 t− 2 2 1

b b b b b b

Gt

? ?

Figure 2 Illustration of Definition 1. In online probing (see Section 4), arrivals first reveal their public type,

then the controller chooses an action (accept/probe/reject), and then the private type (true reward) is

revealed. Squares (resp. circles) represent public (resp. private) information. The filtration G used by

rabbi comprises of all public types, i.e. GΘ = (ξθ : ξθ is a public type). At time t, Offline knows all

the information thus far (to the left and including t), plus the future squares.

Example 1 (Full Information is Too Loose). Consider a dynamic pricing instance with n=

d= 1, prices f = (1,2), and valuation distribution P[Rt = 1+ε] = p and P[Rt = 2+ε] = 1−p. When

B = T , the optimal policy always posts a price that maximizes (f ·P[Rt > f]). If p≥ 1/2, then the

optimal policy (DP) always posts price f = 1 and has expected reward T . On the other hand, full

information can post price Rt− ε at time t and extract full surplus voff =
∑

tE[Rt− ε] = T (2− p).
Thus the regret against full information must grow as Ω(T). This example is not pathological ; the

same behavior persists even in random instances (see Section 5.4).

We are now ready to introduce the notion of relaxed value ϕ and Bellman Inequalities. Intuitively,

ϕ is “almost” defined by a dynamic-programming recursion; quantitatively, whenever ϕ does not

satisfy the Bellman equation, we incur an additional loss LB, which we denote the Bellman loss.

Definition 2 (Bellman Inequalities). The family of r.v. {ϕ(t, s)}t,s satisfies the Bellman

Inequalities w.r.t. filtration G and r.v. {LB(t, s)}t,s if ϕ(t, ·) and LB(t, ·) are Gt-measurable for all

t and the following conditions hold:

1. Initial ordering: E[V (T,ST)|GT]≤ϕ(T,ST |GT).

2. Monotonicity: ∀s∈ S, t∈ [T],

ϕ(t, s|Gt)≤max
u∈U
{R(s, ξt, u) +E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt]}+LB(t, s). (3)

3. Terminal Condition: ϕ(0, s) = 0∀s∈ S
We refer to ϕ and LB as the relaxed value and Bellman loss pair with respect to G, and use |Gt to

remind the reader that we need the information contained in Gt to evaluate ϕ(t, s)

Given any ϕ, monotonicity holds trivially with LB =ϕ (but leads to poor performance guarantees).

On the other hand, ϕ (which may be intractable) is the only value function guaranteeing LB = 0.

The crux of our approach is to identify a good ϕ balances the loss and tractability.

A special case is when the Bellman Loss is 0 over sample paths in some chosen set:

Definition 3 (Exclusion Sets). A set B(t, s) is an exclusion set if we can write the Bellman

Loss as LB(t, s) = rϕ1B(t,s) for some constant rϕ > 0 and events B(t, s)⊆Ω.

11

If the Bellman Loss can be defined with exclusion sets, then from Definition 2 (monotonicity) we

obtain the condition ϕ(t, s|Gt) ≤ maxu∈U{R(s, ξt, u) + E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt]}, i.e., mono-

tonicity is satisfied for all realizations ω ∈Ω except for those in the exclusion set B(t, s).

To build intuition, we specify the Bellman Inequalities for our baseline OnlineKnapsack. For

this end, we first need the following lemma characterizing the sensitivity of LP solutions.

Lemma 1. Consider an LP (P [d]) : max{r′x :Mx = d,x≥ 0} , where M ∈ Rm×n is an arbitrary

constraint matrix. If x̄ solves (P [d]) and x̄j ≥ 1 for some j, then P [d] = rj +P [d−Mj].

Proof. By assumption, the optimal value of (P [d]) remains unchanged if we add the inequality

xj ≥ 1. Therefore we have P [d] = max{r′(x + ej) :M(x + ej) = d,x≥ 0}. �

Lemma 1 lets us divide P [d] in two summands: the immediate reward rj and the future reward

P [d−Mj]; this has the flavor of dynamic programming we need for defining the Bellman loss.

Example 2 (Bellman Loss For Baseline Setting). For the baseline OnlineKnapsack, dis-

cussed in Section 2.2, we chose the full information filtration Gt =F1 for all t so that ϕ(t, b|Gt) :=

maxx≥0{r′xa : w′xa ≤ b,xa + xr =Zt}. We define the exclusion sets as

B(t, b) = {ω ∈Ω :6 ∃x solving ϕ(t, b) s.t. x(a, ξt)≥ 1 or x(r, ξt)≥ 1}.

By Lemma 1, outside the exclusion sets B(t, b), monotonicity holds with zero Bellman Loss, i.e.,

ϕ(t, s|Gt)≤max
u∈U
{R(s, ξt, u) +E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt]} ∀ω /∈B(t, s).

Moreover, for our choice of ϕ, since the optimal solution sorts items by rj/wj, we have that the

maximum loss outside the exclusion set is bounded by rϕ ≤maxj,i{wirj/wj − ri}, which depends

only on the primitives. Thus, Definition 2 is satisfied with Bellman Loss LB(t, b) = rϕ1B(t,b) .

To generalize this, we need two definitions. First, we define the maximum Bellman loss as:

Definition 4 (Maximum Loss). For a given relaxation ϕ, the maximum loss is given by

rϕ := max
t,s,u:R(s,ξt,u)>−∞

{ϕ(t, s|Gt)− (R(s, ξt, u) +E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt])}

Next, note that the ‘optimal’ action in the RHS of Eq. (3) need not be unique, and indeed the

inequality can be satisfied by multiple actions. For given ϕ and LB, we define:

Definition 5 (Satisfying actions). Given a filtration G and relaxed value ϕ, we say that u is

a satisfying action for state s at time t if

ϕ(t, s|Gt)≤R(s, ξt, u) +E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt] +LB(t, s). (4)

12

At any time t and state s∈ S, any action in argmaxu∈U{R(s, ξt, u)+E[ϕ(t−1,T (s, ξt, u)|Gt−1)|Gt]}
is always a satisfying action (see monotonicity in Definition 2); moreover, to identify a satisfying

action, we must know Gt. We now have the following proposition.

Proposition 1. Consider a relaxation ϕ and Bellman loss LB that satisfy the Bellman inequalities

w.r.t. filtration G. Let (St, t ∈ [T]) denote the state trajectory under a policy that, at time t, takes

any satisfying action U t =U t(St|Gt). Then,

E
[
V (T,ST |GT)

]
−E

[
T∑
t=1

R(St, ξt,U t)

]
≤E

[
T∑
t=1

LB(t,St|Gt)
]
.

Proof. From the monotonicity condition in the Bellman inequalities (Definition 2), and the defi-

nition of a satisfying action (Definition 5), we have, for all time t, that

ϕ(t,St|Gt)≤E[R(St, ξt,U t) +ϕ(t− 1, St−1|Gt−1) +LB(t,St|Gt)|Gt].

Iterating the above inequality over t we get ϕ(T,ST |GT)≤∑T

t=1 E[R(St, ξt,U t) +LB(t,St|Gt)|Gt].
Finally, by the initial ordering condition we have E[V (T,ST)|GT]≤ϕ(T,ST |GT). �

Proposition 1 shows that a policy that always plays a satisfying action U t approximates the per-

formance of Offline up to an additive gap given by the total Bellman loss E
[∑T

t=1LB(t,St|Gt)
]
.

More importantly, it suggests that Online should try to track Offline by ‘guessing’ and playing

a satisfying action U t in each period. We next illustrate how Online can generate such guesses.

3.2. From Relaxations to Online Policies

Suppose we are given an augmented canonical filtration Gt = σ({ξl : l≥ t}∪GΘ), and assume that

the relaxed value ϕ can be represented as a function of the random variables {ξl : l ≥ t} ∪GΘ as

ϕ(t, s|Gt) = ϕ(t, s;ft(ξ
T , . . . , ξt,GΘ)). In particular, we henceforth focus on a special case where ϕ

is expressed as the solution of an optimization problem:

ϕ(t, s;ft(ξ
T , . . . , ξt,GΘ)) = max

x∈RU×Ξ
{ht(x;s, ft(ξ

T , . . . , ξt,GΘ)) : gt(x;s, ft(ξ
T , . . . , ξt,GΘ))≤ 0}. (5)

The decision variables give action summaries: for given state s and time t, xu,ξ represents the

number of times action u is taken for input ξ in remaining periods. We can also interpret xu,ξ as

a score for action u when input ξ is presented. Now to get a non-anticipative policy, a natural

‘projection’ of ϕ(t, s|Gt) on the filtration F is given via the following optimization problem

ϕ̂(t, s|Ft) =ϕ(t, s;E[ft(ξ
T , . . . , ξt,GΘ)|Ft]) = max

y∈RU×Ξ
{ht(y;s,E[ft|Ft]) : gt(y;s,E[ft|Ft])≤ 0}. (6)

The solution of this optimization problem gives action summaries (or scores) y; the main idea of

the RABBI algorithm is to play the action with the highest score.

13

RABBI (Re-solve and Act Based on Bellman Inequalities)

Input: Access to functions ft such that ϕ(t, s|Gt) =ϕ(t, s;ft(ξ
T , . . . , ξt,GΘ)).

Output: Sequence of decisions Û t for Online.

1: Set ST as the given initial state

2: for t= T, . . . ,1 do

3: Compute ϕ̂(t,St) =ϕ(t,St;E[ft(ξ
T , . . . , ξt,GΘ)|Ft]) with associated scores y = {yu,ξ}u∈U,ξ∈Ξ

4: Given input ξt, choose the action Û t with the highest score yu,ξt

5: Collect reward R(St, ξt, Û t); update state St−1←T (St, ξt, Û t)

Theorem 5. Let Offline be defined by an augmented filtration Gt as in Definition 1. Assume

the relaxation ϕ(t, s) satisfies the Bellman Inequalities with loss LB, and for all (t, a)∈ [T]×S, let

Q(t, s)⊆Ω denote the set of sample-paths where the action Û t taken by rabbi is not a satisfying

action. If (St, t∈ [T]) denotes the state trajectory under rabbi, then

E[Regret]≤E

[∑
t

(rϕ1Q(t,St) +1Q(t,St)cLB(t,St))

]
≤
∑
t

(rϕP[Q(t,St)] +E[LB(t,St)]) .

Remark 1 (Bellman and Information Loss). The bound in Theorem 5 has two distinct sum-

mands: The information loss
∑

t P[Q(t,St)] measures how often rabbi takes a non-satisfying action

due to randomness in sample paths; on the other hand, the Bellman loss
∑

tE[LB(t,St)]) quantifies

violations of the Bellman equations made under the pseudo value-function ϕ.

Compensated Coupling: The proof of Theorem 5 is based on the compensated coupling approach

introduced in (Vera and Banerjee 2020). The idea is to imagine‘simulating’ controllers Offline

and Online with identical random inputs (ξt : t ∈ [T]), with Online acting before Offline.

Moreover, suppose at some time t, both controllers are in the same state s. Recall that, for any

given state s at time t, an action u is satisfying if Offline’s value does not decrease when playing

u (Definition 5). If Online chooses to play a satisfying action, then we can make Offline play the

same action, and consequently both move to the same state. On the other hand, if Online chooses

an action that is not satisfying, then the two trajectories may separate; we can avoid this however

by ‘compensating’ Offline so that it ‘agrees’ to take the same action as Online. In particular,

its always sufficient to compensate Offline by the maximum loss rϕ to ensure its reward does not

decrease by following Online. As a consequence, the (compensated) Offline and Online take

the same actions, and thus their trajectories are coupled.

As an example, for OnlineKnapsack with budget B = 2, weights wj = 1∀ j, and horizon T =

5, consider a sample-path ω ∈ Ω with rewards (ξ5, ξ4, ξ3, ξ2, ξ1) = (5,7,2,7,2). The sample-path

comprises of three different types, and the sequence of actions (r,a,r,a,r) ((selecting the value 7

14

items) is optimal for Offline, with total reward of 14. Suppose Online, in period t = 5 wants

to accept the item with reward ξ5 = 5; then, Offline is “willing” to follow this action if given a

compensation of 2 (in addition to collected reward 5). Offline and Online then start the next

period t= 4 in the same state with budget 1, hence remain coupled.

Proof of Theorem 5. Denoting Offline’s state as S̄t, we have via Proposition 1 that ∀ t:

ϕ(t, S̄t|Gt)≤E[R(S̄t, ξt,U t) +ϕ(t− 1, S̄t−1|Gt−1) +LB(t, S̄t)|Gt].

Let us assume as the induction hypothesis that S̄t = St. This holds for t= T by definition. At any

time t and state St, if Û t is not a satisfying action for Offline, then we have from the definition

of the maximum loss (Definition 4) that:

rϕ ≥ϕ(t,St|Gt)−R(St, ξt, Û t) +E[ϕ(t− 1, St−1|Gt−1)|Gt]) a.s..

Now to make Offline take action Û t so as to have the same subsequent state as Online, it is

sufficient to compensate Offline with an additional reward of rϕ. Specifically, we have

ϕ(t,St|Gt)≤E[R(St, ξt, Û t) +ϕ(t− 1, St−1|Gt−1) + rϕ1Q(t,St) +1Q(t,St)cLB(t,St)|Gt].

Finally, as in Proposition 1, we can iterate over t to obtain

E[ϕ(T,ST |GT)]≤E

[∑
t

R(St, ξt, Û t) +
∑
t

(rϕ1Q(t,St) +1Q(t,St)cLB(t,St))

]
.

The first sum on the right-hand side corresponds exactly to Online’s total reward using the rabbi

policy. By the initial ordering property, E[V (T,ST)]≤E[ϕ(T,ST)], and we get the result. �

4. Online Probing

We now apply our framework to online probing. Here, each arrival type j has an independent

random reward Rj ∈ {rjk : k ∈ [m]} drawn with probabilities {qjk}; r and q are known. We assume

w.l.o.g that rj1 < rj2 < . . . < rjm and rjm > 0. For ease of exposition, we assume that all arrivals

have unit weights; our analysis however extends to general weights wj. The controller may accept

(a), reject (r) or probe (p) the arrival. Accepting type-j item without probing results in expected

reward of r̄j :=
∑

k∈[m] rjkqjk. Probing reveals the realized reward, after which it can be accepted

or rejected. The controller has a resource budget Bh ∈N and a probing budget Bp ∈N. When an

arrival is accepted (resp. probed), we reduce Bh (resp. Bp) by one.

Formally, we view each time period t∈ {T,T −1, . . . ,1} as comprising of a mini dynamic program

with two stages {t, t−1/2}, driven by external random inputs ξt ∈ [n] and ξt−1/2 ∈ [n]× [m]. In the

first stage t, the controller observes the arriving request ξt = j, and chooses an action in {a,p,r};

15

in the second stage t− 1/2, the reward rjk (or “sub-type” ξt−1/2 = (j, k)∈ [n]× [m]) is drawn with

probability qjk, and the available actions are {a,r} if the first-stage action is p, and ∅ otherwise.

We augment the state space with a variable � that captures the first stage decision (i.e., whether

we accept/reject without probing or probe). The state space S of the controlled process is thus

S = {(bh, bp,�) : bh, bp ∈N,� ∈ {a,p,r,∅}}, where bh, bp are the residual hiring and probing budgets.

In first stage of each period, we set �=∅, and only collect rewards in second stage in each period.

See Fig. 3 for an illustration.

bh, bp,∅

t t− 1/2 t− 1

bh− 1, bp,a

bh, bp− 1,p

bh, bp,r

bh− 1, bp,∅

bh−1, bp−1,∅

bh, bp, ,∅

bh, bp− 1,∅

0

0

0

Rj

Rj

0

0

Figure 3 Actions/transitions in online probing in periods t, t−1/2, and t−1, with inputs ξt = j and ξt−1/2 =Rj .

Numbers below the arrows represent the reward of a transition. At t, available actions are {a,p,r} (i.e.,

accept, probe, reject; from top to bottom); at t− 1/2, if we chose to probe in the first-stage (i.e., are in

the middle state), then available actions are {a,r}.

4.1. Offline Benchmark and Online Policy for Probing

We now apply the rabbi framework for online probing.

Offline Benchmark: We define Offline to be the controller that knows the public types of

all arrivals in advance (i.e., it knows Ztj , the number of type-j items that will arrive in the last

t periods), but does not know the realization of the rewards (sub-types). Formally, Offline is

endowed with the canonical filtration given by Θ = [T] and Gθ = ξθ (see Definition 1): with t steps

to go, Offline has the information filtration Gt = σ({ξt : t ∈ [T]} ∪ {ξτ : τ ≥ t}). Note that since

Offline does not know the actual rewards, it still needs to solve a dynamic program to decide

whether or not to probe an arrival.

16

Relaxed Value Function: Since solving for Offline’s optimal actions may be non-trivial, we

next construct a relaxed value function ϕ, using the following LP parametrized by (bh, bp,z) ∈
N2×Rn≥0,

(P [bh, bp,z]) maximize:
∑
j,k

rjkxjka +
∑
j

r̄jxja (7)

subject to:
∑
j,k

xjka +
∑
j

xja ≤ bh∑
j

xjp ≤ bp

xja +xjp +xjr = zj ∀ j ∈ [n]

xjka +xjkr = qjkxjp ∀ j ∈ [n], k ∈ [m]

x≥ 0

Intuitively, P [bh, bp,z] can be understood as follows: given current resource and probing budgets

b and future arrivals z, the decision variables x ∈ R3n+2nm
≥0 represent action summaries, where

xja, xjr, xjp are the total number of future type-j arrivals that are accepted without probing, rejected

without probing, and probed respectively, and xjka, xjkr are the number of probed future type-j

arrivals that are revealed to have reward rjk, and then accepted/rejected respectively. The first two

constraints implement the resource budget and probing budget; the third ensures the number of

type-j items accepted, probed or rejected equals arrivals of that type. Finally, the last constraint

guarantees that a qjk fraction of probed type-j items have sub-type k (i.e., reward rjk).

To construct relaxed value ϕ, recall that a state is of the form s= (bh, bp,�) with � ∈ {a,p,r,∅}.
For period t (i.e., first stage, �= ∅), we define ϕ(t, (bh, bp,∅)|Gt) := P [bh, bp,Z

t]. For t− 1/2 (i.e.,

second stage decisions), we modify ϕ to incorporate the action (a,p,r) taken in the first stage.

Overall, our relaxation is defined as follows

ϕ(t− 1/2, (bh, bp,�)|Gt) =


rξt−1/2 +P [(bh, bp),Z

t−1] �= a

max{rξt−1/2 +P [(bh− 1, bp),Z
t−1], P [(bh, bp),Z

t−1]} �= p

P [(bh, bp),Z
t−1] �= r

(8)

Value Function estimate and Online Policy: Finally we can use the relaxed value function φ

in Eq. (8) to construct an estimated value function ϕ̂ by replacing Zt with Eξt−1/2 [Zt]. Using this,

we get our online policy specified in Algorithm 2.

Remark 2 (Probing cost). Our approach can also handle a setting where the controller has no

probing budget, but instead incurs a penalty cj when probing a type-j arrival. The only change

to results and proofs is in the definition of P [b,Z], where we drop the constraint involving the

probing budget, and modify the objective to be max{∑j,k rjkxjka +
∑

j r̄jxja−
∑

j cjxjp}

17

Algorithm 2 Probing rabbi

Input: Access to solutions of (P [b,z])

Output: Sequence of decisions for Online.

1: Initialize budgets (BT
h ,B

T
p)← (Bh,Bp)

2: for period t= T, . . . ,1 do

3: Compute Xt, an optimal solution to (P [Bt,E[Zt]])

4: Observe the arrival, say it is of type j, then take action Û t ∈ argmaxu=a,p,r{Xt
j,u}.

5: If Û t = r or Û t = a: collect zero or random Rj, respectively.

6: If Û t = p: probe the arrival to observe Rj = rjk, then take action argmaxu=a,r{Xt
j,k,u}

7: Update budgets Bt−1 accordingly.

4.2. Regret Analysis for Online Probing

We now provide a brief outline of the proof of Theorem 2, which guarantees that Algorithm 2 has

a regret that is independent of T,Bh and Bp. Complete proofs are provided in Appendix B.

The main part of the proof involves showing that ϕ as defined in Eq. (8) obeys the Bellman

inequalities (Definition 2) with appropriately chosen Bellman loss. The first ingredient for this is

provided by the following lemma, which establishes initial ordering for our relaxed value ϕ.

Lemma 2. For any bh, bp ∈N, and arrivals Z, E[V (T, (bh, bp)|GT)]≤E[ϕ(T, (bh, bp,∅)|GT)].

This follows from a standard argument, where we argue that any offline policy induces action

summaries that satisfy the constraints defining ϕ. The proof is provided in Appendix B.

The bulk of the work is in establishing monotonicity, which we do via the following lemma.

Recall the definitions of exclusion sets, satisfying actions and maximum loss (Definitions 3 to 5).

Lemma 3. Let X̄ be a maximizer of (P [(bh, bp),Z
t]) for some period t, and suppose ξt = i. Then

we have the following implications for satisfying actions

(1) If X̄ia ≥ 1, then accepting at time t is a satisfying action.

(2) If X̄ir ≥ 1, then rejecting at time t is a satisfying action.

(3) If X̄ip ≥ 1, and ξt−1/2 = (i, k) is such that either X̄ika ≥ 1 or X̄ikr ≥ 1, then probing at time t,

followed by accepting (if X̄ika ≥ 1) or rejecting (if X̄ikr ≥ 1) at time t− 1/2 is a satisfying action.

Finally ϕ satisfies the Bellman Inequalities with Bellman Loss LB(t, (bh, bp)) = rϕ1B(t,bh,bp), where

B are exclusion sets defined as:

B(t, bh, bp) = {ω ∈Ω :6 ∃X̄ solution to (P [(bh, bp),Z
t]) s.t. (1) or (2) or (3) hold}.

18

The proof generalizes the argument in Example 2 for OnlineKnapsack. We provide a brief out-

line here, and defer the details to Appendix B. First, observe that the monotonicity condition

in Definition 2 translates to the following condition in the online probing setting.

ϕ(t, (bh, bp,∅)|Gt)≤ max
�∈{a,p,r}

{Eξt−1/2 [ϕ(t− 1/2, (s�,�)|Gt−1/2)|Gt]} ∀ω /∈B(t, bh, bp).

where the state s� = (bh−1, bp) if �= a, s� = (bh, bp−1) if �= p and s� = (bh, bp) if �= r. Moreover,

given ξt = i, we have from Eq. (8) that Eξt−1/2 [ϕ(t − 1/2, (s�,�))|Gt−1/2)|Gt] = P [(bh, bp),Z
t−1] if

� = r, and rξt−1/2 + P [(bh − 1, bp),Z
t−1] if � = a. Now for cases (1) and (2), the claim in the

lemma follows directly by invoking Lemma 1. Finally, case (3) (where X̄ip ≥ 1) also follows from

using Lemma 1, but in a somewhat more technical way; see Appendix B for details.

Using Lemmas 2 and 3, we can complete the regret analysis for Algorithm 2.

Proof of Theorem 2. By Theorem 5, we have that Regret ≤ rϕ
∑

t(1B(t,St) + 1Q(t,St)). To

bound this, we proceed in two steps: bounding the measure of the exclusion sets B, and the

“disagreement” sets Q. We conclude using the fact that rϕ ≤maxj,k rjk.

To bound the measure of the exclusion sets B, let X̄ be the solution to (P [b,Zt]), and note that

Lemma 3 guarantees that there is zero Bellman Loss if (1) max{X̄ja, X̄jr} ≥ 1, or (2) X̄jp ≥ 1 and

max{X̄jka, X̄jkr} ≥ 1. The exclusion set B(t,b) comprises sample paths where both (1) and (2) fail.

Note that any feasible solution to (P [b,Zt]) satisfies xja + xjp + xjr = Ztj ∀j and xjka + xjkr =

qjkxjp ∀j, k. If Ztj ≥ 3, then one of the variables xja, xjp, xjr must be at least 1. On the other hand,

we need qjkxjp ≥ 2 to guarantee that one of xjka, xjkr is at least 1. Thus we have

P[B(t, b)|ξt−1/2 = (j, k)]≤ P
[
Ztj <

6

qjk

]
= P
[
Ztj −µj(t)<−µj(t)

(
1− 6

µj(t)qjk

)]
. (9)

Restricting µj(t)≥ 12/qjk to ensure the RHS of Eq. (9) is positive, we can use a standard Chernoff

bound (see (Boucheron et al. 2013)) to get P[B(t, b)|ξt−1/2 = (j, k)] ≤ e−2(pj/2)t + 1{t≤12/(pjqjk)}.
Finally, ∑

t

P[B(t,Bt)]≤
∑
t

∑
j

pje
−2(pj/2)t +

∑
t

∑
j,k

pjqjk1{t≤12/(pjqjk)} ≤
∑
j

2

pj
+ 12.

To bound the Information Loss
∑

t P[Q(t,St)], recall Q(t,St)⊆ Ω is the event where Û t is not

satisfying. Let X̄ be a solution to (P [b,Zt]), t a first stage, and let j = ξt. We now have two cases

depending on if Û t ∈ {a,r} or Û t = p. First, if Û t ∈ {a,r}, then according to Lemma 3, accepting or

rejecting is satisfying whenever max{X̄ja, X̄jr} ≥ 1. Since Xt(ξt, Û t) = max{Xt(ξt, u) : u= a,p,r}
and Xt

ja +Xt
jp +Xt

jr = µj(t), we have

P[X̄(j, Û t)< 1|Xt(j, Û t)≥ µj(t)/3]≤ P[||X̄ −Xt||∞ ≥ µj(t)/3].

19

On the other hand, if Û t = p, the error is bounded by

P
[
X̄jp < 1 or X̄ξt−1/2,u < 1

∣∣∣Xt
jp ≥

µj(t)

3
,Xt

ξt−1/2,u
≥
qξt−1/2µj(t)

6

]
≤ P
[
||X̄ −Xt||∞ ≥

qξt−1/2µj(t)

6

]
,

where u is the action with largest value between the variables Xt(ξt−1/2,a),Xt(ξt−1/2,r).

Thus, regardless of the action Û t, the probability of choosing a non-satisfying action is bounded

by P[||X̄−Xt||∞ ≥mink qjk ·µj(t)/6]. Moreover, standard LP sensitivity results (Mangasarian and

Shiau 1987, Theorem 2.4) imply that there exists κ depending on q, n,m alone, s.t. ||X̄ −Xt||∞ ≤
κ||Zt − µ(t)||1. Finally, the measure of sets Q where Online chooses a non-satisfying action is

bounded by ∑
t

P[Q(t,St)]≤
∑
t

P[||Zt−µ(t)||1 ≥min
k
qjk ·µj(t)/6κ]<∞.

The summability follows arguments presented in (Vera and Banerjee 2020), based on standard

concentration bounds. �

5. Dynamic Pricing

We now apply our framework to dynamic pricing. In the basic setting, we have d resources and

n customer types. Each customer type has a private reward for a set of resources. The controller

observes the customer type, and if the corresponding set of resources is available, posts a price.

The customer then purchases iff the requested set is available and the posted price below the

private reward. The resource consumption is encoded in a matrix A∈ {0,1}d×n. In Section 5.5, we

generalize to settings where rather than requesting a specific set of products, customers make a

choice between multiple substitute bundles of resources.

We consider the following formal model: at time t, type j ∈ [n] arrives with probability pj, is

seen by the controller, who then posts a price fjl from a set of available prices {fj1, . . . , fjm}. The

customer then draws a private reward Rt ∼ Fj, and a purchase occurs iff Rt > fjl. If the customer

buys, fjl is collected and the inventory decreases by Aj. On the other hand, if the customer does

not buy, the controller collects zero and the inventory remains unchanged.

5.1. Offline Benchmark and Online Policy for Dynamic Pricing

Offline Benchmark: Note that for each customer type j, there are ZTj arrivals, and hence ZTj

draws from the distribution Fj. We now define our benchmark by considering Offline to be a

controller that knows the realized histogram of these draws, i.e., for each j, Offline knows the

empirical distribution of the ZTj rewards. Moreover, at the end of each period t, Offline also

observes the realized valuation Rt whether or not there is a sale. Note that Offline does not know

the exact sequence of these rewards, and so is not a full information benchmark. For example, say

20

ZT1 = 15 and we reveal that 10 arrivals type-1 have private reward $1 and 5 arrivals type-1 have

private reward $2; now, upon observing a type-1 arrival, Offline concludes that the reward is

$2 with probability 5
15

. Now if the arrival had value $1, then, the next time Offline observes a

type-1, its belief is that the reward is $2 with probability 5
14

.

Formally for each j suppose the prices are ordered fj1 > fj2 > . . . > fjm. Denote ξt ∈ [n] to be the

type of the arrival at time t. To define Offline, we introduce a sequence of independent random

vectors {Y t : t= T,T − 1, . . . ,1} where Y t
jl := 1{ξt=j,Rt>fjl}; in other words, Y t

jl is the indicator of

whether a price fjl or lower is accepted by the type-j at time t. We define Qjl(t) := 1
Ztj

∑t

τ=1 Y
τ
jl to

be the fraction of type-j customers who accept price fjl in the last t periods. Observe that Qjl(t)

is a martingale with E[Qjl(t)] = F̄j(fjl) and Qjl(t) =
Zt+1
j

Ztj
Qjl(t+ 1)− 1

Ztj
Y t+1
jl .

Offline’s information is now given by the filtration Gt = σ({Q(τ),Zτ : τ ≥ t}), i.e., at every time

t, Offline knows the total demand Ztj and the empirical averages Qjl(t), but not the sequence

of rewards. This coincides with the canonical filtration (Definition 1) with variables (Qjl(T),ZTj :

j ∈ [n], l ∈ [m]). The filtration G is strictly coarser than the full information filtration, which would

correspond to revealing all the variables Y T , Y T−1, . . . , Y 1 instead of their empirical averages.

Relaxed Value Function: Consider the following LP, parameterized by (b,q,z).

(P [b,q,z]) maximize:
∑
j,l

fjlqjlxjl (10)

subject to:
∑
j,l

aijqjlxjl ≤ bi ∀ i∈ [d]∑
j,l

xjl +xjr = zj ∀ j ∈ [n]

x≥ 0

We define the relaxed value as ϕ(t,b|Gt) := P [b,Q(t),Zt], and the corresponding estimated value

as ϕ̂(t,b) := P [b,q, tp], where qjl = F̄j(fjl). The resulting rabbi policy is presented in Algorithm 3.

Algorithm 3 Pricing rabbi

Input: Access to solutions of (P [b,q,z])

Output: Sequence of decisions for Online.

1: Set BT ←B as the given initial budget and qjl← F̄j(fjl)

2: for t= T, ...,1 do

3: If the arrival is type j and Aj 6≤Bt: not enough resources, reject and go to t− 1

4: Compute Xt, an optimal solution to (P [Bt,q, tp])

5: Let l ∈ argmax{Xt
j,l : l= 1, . . . ,m,r}. If l= r, reject and go to t− 1. Else post price fjl

6: If Rt > fjl, collect fjl and Bt−1←Bt−Aj; else Bt−1←Bt

21

To get some intuition into the LP (P [b,q,z]), note that if qjl = F̄j(fjl), i.e., the probability that

price fjl is accepted by a type-j customer and zj is the number of type-j arrivals, then (P [b,q,z])

can be interpreted as follows: the variable xjl represents the number of times that price fjl is

offered, with
∑

j,l fjlqjlxjl the expected reward from the corresponding arrivals. Each time price

fjl is offered, aijqjl units of resource i are consumed in expectation, and hence
∑

j,l aijqjlxjl is the

total expected consumption of resource i. Finally, at most one price is offered per arrival, which is

captured by
∑

l xjl +xjr = zj, where xjr is the number of rejected type-j customers.

5.2. Bellman Inequalities and Bellman Loss

We first argue that our choice of ϕ satisfies the Bellman Inequalities.

Lemma 4. Let V (T,B|GT) be the value of Offline’s optimal policy, and ϕ(t,b|Gt) = P [b,Q(t),Zt]

be the relaxed value with optimal solution X.

1. E[V (T,B|GT)]≤E[ϕ(T,B|GT)], hence ϕ satisfies the initial ordering condition.

2. If the arriving type is j and maxl{Xjl} ≥ 1, then E[LB(t,b)]≤ 0.

3. If the arriving type is j and Xjl ≥ 1, then posting fjl is a satisfying action.

We omit the proof of the initial ordering in item (1), as it is similar to that of Lemma 2. Below we

present the main ingredients for obtaining the monotonicity property (items (2) and (3)); complete

details are deferred to Appendix C. For ease of exposition, when the controller rejects, he can

equivalently post fjr =∞ such that F̄j(fjr) = 0 with the convention 0×∞= 0.

We start by recalling the monotonicity condition (Definition 2). Denote Et[·] = E[·|Gt]. If the

inventory is b ≥ Aj, the random reward of posting price fjl at t is fjlY
t
jl and the random new

inventory is b−AjY t
jl, thus monotonicity corresponds to:

ϕ(t+ 1,b)≤ max
l∈[m]∪{r}

{Et+1[fjlY
t+1
jl +ϕ(t,b−AjY t+1

jl)]}+Et+1[LB(t+ 1,b)].

Because Q is a martingale, we have Et[Y t] =Q(t) and we can further simplify the condition to

ϕ(t+ 1,b)≤ max
l∈[m]∪{r}

{fjlQjl(t+ 1) +Et+1[ϕ(t,b−AjY t+1
jl)]}+Et+1[LB(t+ 1, b)]. (11)

Define LB(t+ 1, b, j, l) := ϕ(t+ 1,b)− fjlQjl(t+ 1)−Et+1[ϕ(t,b−AjY t+1
jl)], which corresponds

to the loss in Eq. (11) when we assume a specific price fjl is posted. Recall we define ϕ(t+ 1,b) =

P [b,Q(t+ 1),Zt+1]. Moreover, for an arrival of type j and any solution X of P [b,Q(t+ 1),Zt+1],

if Xjl ≥ 1, then using Lemma 1, we have P [b,Q(t + 1),Zt+1] = fjlQjl(t + 1) + P [b − AjQjl(t +

1),Q(t+ 1),Zt]. Thus, assuming Xjl ≥ 1, we can write the loss in the Bellman inequality as

LB(t+ 1,b, j, l) = P [b−AjQjl(t+ 1),Q(t+ 1),Zt]−Et+1[P [b−AjY t+1
jl ,Q(t),Zt]] (12)

22

tq1 tq2 tq3

b

x(b; q)

t x1 x2 x3

tq̃1 tq̃2 tq̃3

x̃1 x̃2

x̃3

Figure 4 Solution to the pricing LP in Eq. (10) for the case d= 1 and n= 1, which correspond to selling multiple

copies of an item to homogeneous customers. If b/t ∈ (ql, ql+1], the prices used by the LP are fl, fl+1

and the amount of time we offer each is piece-wise linear in the budget. For a perturbation q̃ of q, we

superpose the solutions with the different parameters. Our ‘guess’ is incorrect only when x̃l� 1 and

xl < 1, which necessitates a substantial perturbation of q.

Observe that LB(t,b, j, l) is characterized by a random LP that depends on Y t+1 (which is

unknown at time t+ 1), see Eq. (12). To complete item (2) of Lemma 4, it remains to prove that

LB(t,b, j, l) characterized in (12) satisfies Et[LB(t,b, j, l)] ≤ 0. This is proved in Appendix C by

arguing that the term in (12) is upper bounded by a zero-mean random variable.

We can then conclude that, for each l with Xjl ≥ 1, Et+1[LB(t+1, b, j, l)]≤ 0 so that ϕ(t+1,b)≤
Et+1[fjlQjl(t+ 1) +ϕ(t,b−AjY t+1

jl)], implying that posting price fjl is a satisfying action, which

is item (3) of Lemma 4.

5.3. Information Loss and Overall Performance Guarantee

Next we study the disagreement sets Q(t,Bt), and bound the information loss
∑

t P[Q(t,Bt)].

Proposition 2. Let X be a solution of (P [b,Q(t),Zt]). If Xjl ≥ 1, then posting fjl is a satisfying

action. Furthermore, the information loss is bounded by P[Q(t,Bt)] ≤ 1/t2 for all t ≥ c, where c

depends only on (f ,p,A,F1, . . . ,Fn).

We now give an outline of this proof; for details, refer Appendix C. Recall that rabbi chooses l

as the maximum entry of the solution to (P [b,E[Q(t)],E[Zt]), which is a perturbed version of the

object of interest, thus Online needs to guess l such that Xjl ≥ 1 without the knowledge of Q(t)

and Zt, creating an information loss.

To build intuition, consider the case where d= 1 and n= 1, i.e., selling multiple copies of an item

to homogeneous customers; since there is only one type, we drop the index j. Recall f1 > . . . > fm

and q1 < . . . < qm. It is easy to check that the solution of P [b,q, t] is as follows: (i) If b≤ tq1, then

x= (b/q1,0, . . . ,0); (ii) If b > tqm, then x= (0, . . . ,0, t); (iii) Otherwise, if b∈ (tql, tql+1], then xl′ = 0

for l′ 6= l, l + 1, and xl = (tql+1 − b)(ql+1 − ql), xl+1 = (b − tql)(ql+1 − ql). Figure 4 illustrates this

solution, and also shows that for rabbi’s guess to be incorrect, Q(t) and E[Q(t)] must deviate

considerably; the next lemma indicates is unlikely. This intuition carries over to higher dimensions.

23

Lemma 5. For any j ∈ [n], there is a constant cj depending on pj only such that, for any time t,

P
[
maxl|Qjl(t)−E[Qjl(t)]|>

√
log(t)

t

]
≤ cj

t2
.

Proof. From the DKW inequality (Massart 1990) for empirical measures, we have

P
[
sup
l

|Qjl(t)− F̄ (fjl)|>λ
∣∣∣Zt]≤ 2e−2λ2Ztj .

Also for Ztj ∼Bin(t, pj), E[e−θZ
t
j] = (1− p+ pe−θ)t. Setting λ=

√
log(t)/t, we get

P

[
sup
l

|Qjl(t)− F̄ (fjl)|>
√

log(t)

t

]
≤ 2(1− pj + pje

−θ)t where θ= 2 log(t)/t.

Using the inequality e−θ ≤ 1− θ+ θ2/2, an algebraic check confirms the desired inequality. �

Stability of Left-Hand Side Perturbations. As stated in Algorithm 3, Online takes actions

based on P [b,E[Q(t)],E[Zt]], while Offline uses P [b,Q(t),Zt]. Therefore, for fixed (t,b), we need

to compare solutions of P [b,q,z] to those of P [b,q + ∆q,z + ∆z], where ∆ is the perturbation.

Define q =E[Q(t)], z =E[Zt], ∆q =Q(t)−E[Q(t)], and ∆z =Zt−E[Zt].

Lemma 6 (Selection Program). Let Vt = P [b,q+∆q,z+∆z] and fix a component (j′, l′). Then

posting price fj′l′ is satisfying if PS[Vt,q + ∆q,z + ∆z]≥ 1, where

PS[Vt,q + ∆q,z + ∆z] := max

{
xj′l′ :

∑
j,l

fjl(qjl + ∆qjl)xjl ≥ Vt,x feasible for P [b,q + ∆q,z + ∆z]

}
.

In other words, Q(t, b, l) = {ω ∈Ω : PS[Vt[ω],Q(t),Zt]< 1}.

Proof. This problem selects, among all the solutions of P [b,q+ ∆q,z+ ∆z], one with the largest

component Xj′l′ . From Lemma 4 we know that, if Xj′l′ ≥ 1, then posting fj′l′ is satisfying. �

We have converted the condition “∃X solving P [v,q + ∆q,z + ∆z] with Xj′l′ ≥ 1” to an opti-

mization program. Let x̄ be the solution to the proxy P [b,q,z] and let vt be the objective value

(recall that Vt is the value of P [b,q + ∆q,z + ∆z]). Since the algorithm picks the price with the

largest component, assume x̄j′l′ = maxl x̄j′l� 1. In particular, PS[vt,q,z]� 1 for this fixed (j′, l′).

We want to show that PS[Vt,q+∆q,z+∆z]≥ 1 for that particular (j′, l′). To that end, we need to

bound the difference between PS[Vt,q+ ∆q,z+ ∆z] and PS[vt,q,z]. This difference depends on (i)

vt−Vt, (ii) ∆, and (iii) the dual variables of (PS[Vt,q + ∆q,z + ∆z]). Observe that the quantities

(i)-(iii) are random. We state the result below; the proof is provided in Appendix C.

Lemma 7. There is a constant c that depends only on (f ,p,A,F1, . . . ,Fn) such that, for all t≥ c,
with probability 1− c/t2, PS[Vt,Q(t),Zt]−PS[vt,E[Q(t)],E[Zt]]≥−c

√
t log(t) .

24

Lemma 7 leads to the bound in Proposition 2. Indeed, since the LP in Eq. (10) has the constraint∑
l∈[m]∪{r} x̄jl = tpj, the maximum entry is guaranteed to have a value of at least tpj/(m + 1).

Therefore, by definition of the selection program, PS[vt,E[Q(t)],E[Zt]]≥ tpj/(m+1). We know that

posting fjl′ is satisfying whenever PS[Vt,Q(t),Zt]≥ 1 (see Lemma 6), hence posting the maximum

entry is satisfying provided that tpj/(m+ 1)− c
√
t log(t)≥ 1, which holds for all t large enough.

5.4. Numerical Simulations

We test our algorithm on two systems, henceforth the “small system” and the “large system”. For

each system, we consider a sequence of instances with increasing horizons and initial inventories.

The small system corresponds to the one-dimensional problem (n = 1 and d = 1); in this case

we can solve the DP for small enough horizons and directly compute the optimality gap. The

large system corresponds to a multi-dimensional problem with n= 20, d= 25 and m= 3. The DP

solution is intractable for the large system, yet we can compute the offline benchmark and compare

our algorithm against it. The optimality gap, recall, is bounded by the offline vs. rabbi gap.

For the small system, the k-th instance has budget B = 6k and horizon T = 20k. For each

scaling k, we run 100,000 simulations. We consider the following primitives: prices are (1,2,3) and

the private reward Rt has an atomic distribution on (1,2,3) with probabilities (0.3,0.4,0.3). The

instance is chosen such that it is dual degenerate for (10) which is supposedly the more difficult

case Jasin (2014). For large system, the parameters were generated randomly and are reported in

Appendix F, the k-th instance has horizon T = 100k and budgets Bi = 10k for all i∈ [25].

For the small system we consider k small enough (short horizon) so that we can compute the

optimal policy; this computation becomes intractable already for moderate values of k (rabbi

however scales gracefully with k as it only requires re-solving an LP in each period). In Fig. 5

0 50 100 150 200 250 300 350

Scaling

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

A
dd

it
iv

e
G

ap
A

ga
in

st
O

pt
im

al
(D

P
)

RABBI
Offline

0 50 100 150 200 250 300 350

Scaling

0

5

10

15

20

R
eg

re
t

ag
ai

ns
t

O
ffl

in
e

RABBI
Static

Figure 5 Regret in the ‘small system’ (n= 1 and d= 1), with horizon T = 20k and initial budget B = 6k, under

scaling k= 1,10,20, . . . ,340. Dotted lines represent 90% CI. (LEFT) additive gaps against the optimal

policy, i.e., V DP −V rabbi and V DP −V Offline (RIGHT) Regret of two policies against Offline.

25

0 200 400 600 800 1000

Scaling

20

30

40

50

60

70

80

90

100
R

eg
re

t
A

ga
in

st
O

ffl
in

e

0 200 400 600 800 1000

Scaling

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
pp

ro
xi

m
at

io
n

Fa
ct

or

RABBI/Offline
Offline/Full Information

Figure 6 Performance in the ‘large system’ (n= 20 and d= 25) with horizon T = 100k and initial budgets Bi =

10k for i∈ [25], under scaling k= 1,2, . . . ,1000. (LEFT) Regret against Offline, i.e., V Offline−V rabbi;

dotted lines represent 90% CI. (RIGHT) Approximation factors V rabbi/V Offline of rabbi compared to

Offline, and V Offline/V Full-Info of Offline against the full-information benchmark; this shows that

the full-information benchmark is indeed too loose, as it is Ω(T) away from the DP.

(LEFT) we display the gap between the optimal solution and both the rabbi and Offline’s value.

We make two observations: (i) the Offline benchmark outperforms the optimal (as it should),

but by a rather small margin, and (ii) rabbi has a constant regret (i.e., independent of k) relative

to Offline, and hence constant optimality gap. In contrast, a full information benchmark would

outperform the optimal by too much to be useful.

In Fig. 5 (RIGHT), we compare rabbi to the optimal static pricing policy which has regret

Ω(
√
k) (Gallego and Van Ryzin 1997). In particular, if D(f) denotes the demand at fare f , we

choose the static price to be the one that maximizes the revenue function f ·D(f) = f · T · F̄ (f)

subject to the constraint D(f)≤B. The solution is the better of two prices: (i) the market clearing

price, i.e., that satisfies D(f) = B or (ii) the monopoly price which maximizes fD(f). We note

though that when a continuum of prices are allowed, (Jasin 2014) propose an algorithm (that,

like rabbi, is based on resolving an optimization problem in each period) which achieves a regret

that is logarithmic in k under certain non-degeneracy assumptions on the optimization problem

and differentiability assumptions on the valuation distribution. In contrast, our constant regret

guarantees hold under a finite price menu.

In Figure 6 we display the results for the large system. Here, since the DP is intractable, we

use the offline benchmark. The resulting regret is negligible relative to the total value as captured

by the approximation-factor on the right-hand side of the figure. We also present the competitive

ratio of Offline against the full-information benchmark (this upper bounds the competitive ratio

of any non-anticipatory policy) and observe that is bounded away from 1, hence showing that the

full-information benchmark is Ω(T) away from the DP in our randomly generated instance, which

confirms the need for our refined benchmark.

26

5.5. Posted Pricing With Customer Choice

We now consider settings where customers, rather than requesting a specific product, make a choice

between multiple substitutes. As a concrete example, consider a hardware store selling washers and

dryers; the store can set a separate price for a washer, a dryer, and also for buying a washer-and-

dryer bundle (i.e., one of each). An incoming customer sees the prices and chooses to buy each of the

three options (or nothing at all) with some probability depending on the price menu. See (Talluri

and Van Ryzin 2006, Chapter 7) for details on such customer-choice models. For exposition, we

focus here on a single-customer-type, with arbitrary (but known) customer-choice model.

As before, the controller chooses a price to post for each product and selling one unit of product

j ∈ [n] depletes resources according to Aj ∈ {0,1}d. There is a discrete set of “assortment menus”,

denoted by A. An assortment α∈A is associated with a vector of prices (f1α, . . . , fnα), one price per

product. Setting fjα =∞ corresponds to not offering product j. Note that if each product’s price is

restricted to take one of m distinct values, then there are at most |A| ≤mn different assortments.

The actual number of relevant assortments might, however, be much smaller than this.

An arriving customer, when offered assortment α, chooses to buy product j with a probability

pj(α), with
∑n

j=0 pj(α) = 1 (where we use j = 0 for the no-purchase option). These probabilities

might be derived, for example, from a standard family such as the multinomial-logit model, nested

logit model, etc.; our results do not need any specific structure on the choice probabilities (although

assuming more structure may lead to better regret scaling with respect to the number of price

menus and more efficient ways of solving the resulting LP relaxation).

The process unfolds as follows: (i) at time t the controller posts an assortment α ∈A; (ii) with

probability pj(α), the arriving customer buys one unit of product j (with product 0 corresponding

to no-purchase). Now given the choice probabilities, we can simulate the choice model as follows:

we assume w.l.o.g. that the customer arriving at time t is endowed with an i.i.d random variable

ξt ∼Uniform(0,1), and assert that the customer buys product j if ξt ∈ [
∑j−1

j′=0 pj′(α),
∑j

j′=0 pj′(α)].

Note that the order of products here is arbitrary.

Applying rabbi to this setting gives the following result.

Theorem 6 (Dynamic Pricing with Customer Choice). For any choice model with proba-

bilities and prices (pj(α), fjα : j ∈ [n], α∈A), rabbi obtains a regret that depends only on (A,p, f),

but is independent of the horizon length T and initial budget levels B ∈Nd.

Algorithm and Analysis: The following LP extends Eq. (10) to incorporate consumer choice.

(P [b,q,z]) maximize:
∑
α∈A

xα
∑
j∈[n]

fjαqjα (13)

27

subject to:
∑
α∈A

∑
j∈[n]

aijqjαxα ≤ bi ∀ i∈ [d]∑
α∈A

xα = t

x≥ 0

Here qjα stands for the fraction of customers that would buy product j if presented with the

price assortment α. rabbi re-solves, in each period, this LP with the expected fraction qjα = pj(α).

In contrast, Offline knows Qjα(t), the realized fraction of customers that, given assortment α,

would buy product j (formally, Offline is equipped with the canonical augmented filtration with

variables (Qjα(T) : j ∈ [n], α∈A)), and solves Eq. (13) with qjα =Qjα(t), where :

Qjα(t) :=
1

t

t∑
τ=1

Y t
jα where Y t

jα := 1{∑j−1

j′=0
pj′ (α)≤ξt≤

∑j

j′=0
pj′ (α)

}.
With the (re)defined key ingredients—namely the LP in Eq. (13) and Offline’s information

structure—it is evident that that the analysis of this expanded model is identical to that of the

basic (no-choice) pricing setting with obvious changes. For example, if assortment α is posted at

time t, the random collected reward is
∑

j Y
t
jαfjα and the random inventory at t−1 is b−∑jAjY

t
jα.

In turn, the Bellman loss in Eq. (12) takes on the form

LB(t+ 1,b, α) = P [b−
∑
j

AjQjα(t+ 1),Q(t+ 1), t]−Et+1[P [b−
∑
j

AjY
t+1
jα ,Q(t), t]] (14)

Now we have a sum over products j, but the analysis goes through via linearity of expectations.

Numerical Simulations: We demonstrate our algorithm for the following simple choice-model

with two resources (R1,R2), and three products ({R1},{R2},{R1,R2}) (for example, a hardware

store selling washers (R1), dryers (R2) or washer-and-dryer combos {R1,R2}). The controller has

initial inventories of each resource, and can choose among one of 7 price assortments: high and low

prices with/without discounts for buying the bundle, and price menus assuming stock-out of either

or both resource. The price menus and choice probabilities are detailed in Table 1. We run rabbi

for this instance while scaling the horizon and initial inventory; see Fig. 7.

Products High High-discount Low Low-discount Only R2 Only R1 Stock-out

fjα

{R1} 5 5 3 3 ∞ 5 Out
{R2} 5 5 3 3 5 ∞ ∞
{R1,R2} 10 9 6 5 ∞ ∞ ∞

pj(α)
{R1} 0.2 0.2 0.3 0.3 0 0.2 0
{R2} 0.2 0.2 0.3 0.3 0.2 0 0
{R1,R2} 0.1 0.15 0.2 0.25 0 0 0

Table 1 Example with seven assortments: We consider high/low prices with and without bundling discount (i.e.,

buying {R1,R2} is cheaper than buying each individually). The other assortments can be used if items sell out.

28

0 200 400 600 800 1000

Scaling

−5

0

5

10

15

20

25

30

R
eg

re
t

A
g
a
in

st
O

ffl
in

e

0 200 400 600 800 1000

Scaling

0.90

0.92

0.94

0.96

0.98

1.00

A
p
p
ro

x
im

a
ti

o
n

F
a
ct

o
r

Figure 7 Performance of pricing-rabbi with customer choice (see Table 1). We set the horizon as T = 10k and

the inventory as (R1,R2) = (3k,2k), and vary scaling parameter k= 1, . . . ,1000. (LEFT) Regret against

Offline, with 90% confidence intervals. (RIGHT) Approximation ratio of rabbi against DP.

6. Online Knapsack With Distribution Learning

Finally we consider the distribution-agnostic online knapsack setting. We study first the full feed-

back setting and in Section 6.3 extend to censored feedback. As in the baseline OnlineKnapsack,

at each time t, the arrival is of type j ∈ [n] with known probability pj. Type j has a known weight

wj and random reward Rj, drawn from a distribution Fj with rj :=E[Rj]. Critically, we assume rj

and Fj are unknown to Online.

The reward Rj is revealed only after the decision of accept/reject has been made. At the end of

each period, we observe the realization of both accepted and rejected items. In contrast, Offline

has access to the distribution Fj, but not to the realizations. We assume that, before the process

starts, we are given one sample of each type, and with t periods to go, define Rt
j to be the empirical

average of the observed rewards for type-j arrivals.

As in probing, we divide each period t ∈ {T,T − 1, . . . ,1} into two stages, t and t− 1/2. In the

first stage (i.e., period t) the input reveals the type j ∈ [n], and in second stages (i.e., period t−1/2)

the reward is revealed. The random inputs are given by ξt ∈ [n] and ξt−1/2 ∈R. The state space is

S =R≥0×{∅,a,r}, where the first component is the remaining knapsack capacity. At a first stage,

given a state of the form s= (b,∅), we choose action � ∈ {a,r}, reducing the capacity if �= a. At

the second stage, the state is of the form s= (b,�) with � ∈ {a,r}, and we collect the reward only

if �= a. Formally, the rewards are R((b,a), ξt−1/2,∅) = ξt−1/2 and R((b,r), ξt−1/2,∅) = 0.

6.1. Offline Benchmark and Online Policy for Distribution-Agnostic Online Knapsack

To define Offline, ϕ and ϕ̂, consider the following LP parametrized by (b,y,z)∈R≥0×Rn×Rn≥0

(P [b,y,z]) maximize:
∑
j

yjxj (15)

29

subject to:
∑
j

wjxja ≤ b

xja +xjr = zj ∀ j ∈ [n]

x≥ 0

Note that if the average rewards r were known, then setting y = r we get the LP relaxation of

Eq. (1) for the baseline OnlineKnapsack. Moreover, for any r, the optimal LP solution sorts types

by their “bang for the buck” ratios rj/wj, and accepts them greedily. In particular, the solution

only requires knowing the ranking induced by r.

Offline Benchmark and Relaxed Value Function: In this setting, we define Offline as the

controller that knows the number of arrivals ZTj for each j, and also, knows the ranking of the types

(i.e., knows rj/wj ∀ j ∈ [n]).

Formally, Offline is defined via the filtration Gt = σ({ξt : t ∈ [T]} ∪ {ξτ : τ ≥ t}). This is a

canonical filtration (see Definition 1) with variables (Gθ : θ ∈Θ) = (ξt : t ∈ [T]). Observe that the

future rewards, corresponding to times t− 1/2, are not revealed. Moreover, the relaxed value is

defined as ϕ(t, s|Gt) = P [b,r,Zt] for first stages and

ϕ(t− 1/2, s|Gt) =

{
P [b,r,Zt−1] �= r

ξt−1/2 +P [b,r,Zt−1] �= a.
(16)

Remark 3 (MDP relaxations for distribution-agnostic settings). We note here that

the underlying problem in this setting does not directly admit an MDP, as the distribution of

rewards is unknown. However, once we reveal the arrivals to Offline, the relaxation does admit a

well-defined MDP. By benchmarking against Offline, we bypass the need to explicitly formulate

an Online control problem with distribution learning in this setting.

Value Function estimate and Online Policy: Recall we define Rt
j to be the empirical average

of the observed rewards for type-j with t periods to go. We define the estimated value as ϕ̂ =

P [Bt,Rt,E[Zt]], resulting in the corresponding online policy given in Algorithm 4.

6.2. Regret Analysis for Distribution-Agnostic Online Knapsack

As in the earlier sections, we first demonstrate that ϕ satisfies the Bellman inequalities

Lemma 8. The relaxation ϕ defined in (16) satisfies the Bellman Inequalities with exclusion sets

B(t, b) = {ω ∈Ω :6 ∃X solving (P [b,r,Zt]) s.t. Xξt,a ≥ 1 or Xξt,r ≥ 1}.

Proof. The initial ordering in Definition 2 follows from an argument identical to that of Lemma 2.

The monotonicity property follows from Proposition 3. �

30

Algorithm 4 Learning rabbi

Input: Access to solutions of (P [b,y,z])

Output: Sequence of decisions for Online.

1: Set BT ←B as the given initial state and RT as the single sample of each j.

2: for t∈ {T,T − 1, . . . ,1} do

3: Compute Xt, an optimal solution to (P [Bt,Rt,E[Zt]]).

4: Observe the arrival type (context), say ξt = j, and take any action Û t ∈ argmaxu=a,r{Xt
ju}

5: If Û t = a, collect random reward Rj and reduce the budget Bt−1←Bt−wj. Else, Bt−1←Bt.

6: Update empirical averages Rt−1 based on Rt and the observation Rj.

To complete the proof of Theorem 4, we need to characterize the information loss under Algo-

rithm 4. The relaxation relies on the knowledge of r (the true expectation) and Zt. The natural

estimators are the empirical averages Rt and expectation µ(t) = E[Zt], respectively. Specifically,

we use maximizers Xt of (P [b,Rt, µ(t)]) to “guess” those of (P [b,r,Zt]).

The overall regret bound is rϕ(Regret1 +Regret2), where Regret1 and Regret2 are two specific

sources of error. When the estimators Rt of r are accurate enough, the error is Regret1 and is

attributed to the incorrect “guess” of a satisfying action, i.e., Regret1 is an algorithmic regret. The

second term, Regret2, is the error that arises from insufficient accuracy of Rt, i.e., Regret2 is the

learning regret. The maximum loss satisfies rϕ ≤maxj,i{wirj/wj − ri} and we can show that

Regret1 ≤ 2
∑
j

(wmax/wj)
2

pj
and Regret2 ≤ 16

∑
j

1

pj(wjδ)2
.

In sum, the regret is bounded by (maxj,i{wirj/wj − ri}) · (2
∑

j

(wmax/wj)
2

pj
+ 16

∑
j

1
pj(wjδ)

2).

Remark 4 (non-i.i.d arrival processes). We used the i.i.d. arrival structure to bound two

quantities in the proof of Theorem 4: (1) P[||Zt−E[Zt]|| ≥ cE[Zt]] and (2) E[e−cN
t
j], where, recall,

N t
j is the number of type-j observations. The result holds for other arrival processes that admit

these tail bounds.

6.3. Censored Feedback

We consider now the case where only accepted arrivals reveal their reward. We retain the assump-

tion of Theorem 4 that there is a separation δ > 0: |r̄j − r̄j′ | ≥ δ for all j 6= j′, where r̄j =E[Rj]/wj.

In the absence of full feedback, we will introduce a unified approach to obtaining the optimal

regret (up to constant factors), that takes the learning method is a plug-in. The learning algorithm

will decide between explore or exploit actions. Examples of learning algorithms, that also give

bounds that are explicit in t, include modifications of UCB (Wu et al. 2015), ε-Greedy or simply

to set apart some time for exploration (see Corollary 1 below).

31

Recall that σ : [n]→ [n] is the ordering of [n] w.r.t. the ratios r̄j = rj/wj and σ̂t : [n]→ [n] is the

ordering w.r.t. ratios R̄t
j =Rt

j/wj. The discrepancy P[σ 6= σ̂t] depends on the plug-in learning algo-

rithm (henceforth Bandits). Bandits receives as inputs the current state St (remaining capacity),

time, and the natural filtration Ft. The output of Bandits is an action in {explore,exploit}. If

the action is explore, we accept the current arrival in order to gather information, otherwise we

call our algorithm to decide, as summarized in Algorithm 5. Note that Ft has information only on

the observed rewards, i.e., accepted items.

Algorithm 5 Bandits rabbi

Input: Access to Bandits and Algorithm 4.

Output: Sequence of decisions for Online.

1: Set ST as the given initial state

2: for t= T, . . . ,1 do

3: Observe input ξt and let U ←Bandits(T, t,St,Ft).
4: If U = explore, accept the arrival

5: If U = exploit, take the action given by Algorithm 4

6: Update state St−1← St−wξt if accept or St−1← St if reject.

Theorem 7. Let Regret1 be the regret of Algorithm 4, as given in Theorem 4. Define the indicators

exploret,exploitt which denote the output of Bandits at time t. The regret of Algorithm 5 is at

most rϕM , where

M = Regret1 +E

[∑
t

exploret

]
+E

[∑
t

P[σ 6= σ̂t]exploitt

]
.

The expected regret of Algorithm 5 is thus bounded by the regret of Algorithm 4 in the full

feedback setting, plus a quantity controlled by Bandits. In the periods where Bandits says

explore (which, in particular, implies accepting the item), the decision might be the wrong one

(i.e., different than Offline’s). We upper bound this by the number of exploration periods. This is

the second term in M . The decision might also be wrong if Bandits says exploit (in which case

we call Algorithm 4), but the (learned) ranking at time t, σ̂t, is different than σt. This is the last

term in M . Finally, even if the learned ranking is correct, exploit can lead to the wrong “guess”

by Algorithm 4 because the arrival process is uncertain. This is the first term in M .

Corollary 1 uses a naive Bandits which explores until obtaining Ω(logT) samples and achieves

the optimal (i.e., logarithmic) regret scaling. The constants may be improved by changing the

Bandits module we use; any such algorithm has the guarantee given by Theorem 7. With the naive

Bandits, the bound follows from a generalization of coupon collector (Shank and Yang 2013).

32

Corollary 1. If we first obtain 8
(wjδ)

2 logT samples of every type j, then we can obtain O(logT)

regret, which is optimal up to constant factors.

7. Concluding Remarks

We developed a framework that provides rigorous support to the use of simple optimization prob-

lems as a basis for online re-solving algorithms. The framework is based on using a carefully chosen

offline benchmark, that guides the online algorithm. The regret bounds then follow from our use

of Bellman Inequalities and a useful distinction between Bellman Loss and Information Loss.

As is often the case in approximate dynamic programming, the identification of a function ϕ

satisfying the Bellman Inequalities requires some ad-hoc creativity but, as our example illustrate,

is often rather intuitive. In Appendix A we provide sufficient conditions, applicable to cases where

ϕ has a natural linear representation, to verify the Bellman inequalities. These conditions are

intuitive and likely to hold for a variety of resource allocation problems. Importantly, once such

a function is identified, our rabbi framework provides a way of obtaining online policies from ϕ,

and corresponding regret bounds.

We illustrate our framework on three settings. First we consider online probing, which serves as

an instance of a larger family of two-stage decision problems, wherein there is an inherent trade-off

between getting refined information, and the cost of obtaining it. Next we consider dynamic pricing,

which is a well-studied problem, and is representative of settings where rewards and transitions are

random. Finally, our study of online contextual bandits with knapsacks showcases a separation of

the underlying combinatorial problem from the parameter estimation problem.

It is our hope that this structured framework will be useful in developing online algorithms for

other problems, whether these are extensions of those we studied here or completely different.

Acknowledgments

SB and AV gratefully acknowledge support from the ARL under grant W911NF-17-1-0094, and the NSF

under grants CNS-1955997, DMS-1839346 and ECCS-1847393; IG’s work was supported by the DoD under

grant W911NF-20-C-0008.

References

Agrawal S, Devanur N (2016) Linear contextual bandits with knapsacks. Advances in Neural Information

Processing Systems, 3450–3458.

Alaei S (2014) Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM

Journal on Computing 43(2):930–972.

Arlotto A, Gurvich I (2019) Uniformly bounded regret in the multisecretary problem. Stochastic Systems

9(3):231–260.

33

Babaioff M, Dughmi S, Kleinberg R, Slivkins A (2015) Dynamic pricing with limited supply. ACM Trans-

actions on Economics and Computation (TEAC) 3(1):4.

Badanidiyuru A, Kleinberg R, Slivkins A (2018) Bandits with knapsacks. Journal of the ACM (JACM)

65(3):13.

Badanidiyuru A, Langford J, Slivkins A (2014) Resourceful contextual bandits. Conference on Learning

Theory, 1109–1134.

Balseiro SR, Brown DB (2019) Approximations to stochastic dynamic programs via information relaxation

duality. Operations Research 67(2):577–597.

Banerjee S, Freund D (2020) Uniform loss algorithms for online stochastic decision-making with applications

to bin packing. ACM SIGMETRICS.

Boucheron S, Lugosi G, Massart P (2013) Concentration inequalities: A nonasymptotic theory of indepen-

dence (Oxford university press).

Brown D, Smith J, Sun P (2010) Information Relaxations and Duality in Stochastic Dynamic Programs.

Operations Research 58(4):785–801.

Bubeck S, Cesa-Bianchi N, et al. (2012) Regret analysis of stochastic and nonstochastic multi-armed bandit

problems. Foundations and Trends R© in Machine Learning .

Bubeck S, Perchet V, Rigollet P (2013) Bounded regret in stochastic multi-armed bandits. Conference on

Learning Theory, 122–134.

Buchbinder N, Jain K, Singh M (2014) Secretary problems via linear programming. Mathematics of Opera-

tions Research 39(1):190–206.

Bumpensanti P, Wang H (2020) A re-solving heuristic for dynamic resource allocation with uniformly

bounded revenue loss. Management Science .

Chen Q, Jasin S, Duenyas I (2019) Nonparametric self-adjusting control for joint learning and optimization

of multiproduct pricing with finite resource capacity. Mathematics of Operations Research .

Chugg B, Maehara T (2019) Submodular stochastic probing with prices. International Conference on Control,

Decision and Information Technologies (CoDIT), 60–66 (IEEE).

Correa J, Foncea P, Hoeksma R, Oosterwijk T, Vredeveld T (2017) Posted price mechanisms for a random

stream of customers. ACM EC, 169–186.

Dubhashi D, Panconesi A (2009) Concentration of measure for the analysis of randomized algorithms (Cam-

bridge University Press).

Düetting P, Feldman M, Kesselheim T, Lucier B (2017) Prophet inequalities made easy: Stochastic opti-

mization by pricing non-stochastic inputs. IEEE FOCS.

Gallego G, Van Ryzin G (1997) A multiproduct dynamic pricing problem and its applications to network

yield management. Operations research 45(1):24–41.

34

Gupta A, Nagarajan V (2013) A stochastic probing problem with applications. International Conference on

Integer Programming and Combinatorial Optimization.

Gupta A, Nagarajan V, Singla S (2016) Algorithms and adaptivity gaps for stochastic probing. ACM-SIAM

SODA .

Jasin S (2014) Reoptimization and self-adjusting price control for network revenue management. Operations

Research 62(5):1168–1178.

Jasin S, Kumar S (2012) A re-solving heuristic with bounded revenue loss for network revenue management

with customer choice. Mathematics of Operations Research 37(2):313–345.

Kleinberg R, Weinberg SM (2012) Matroid prophet inequalities. ACM STOC.

Mangasarian O, Shiau T (1987) Lipschitz Continuity of Solutions of Linear Inequalities, Programs and

Complementarity Problems. SIAM Journal on Control and Optimization 25(3):583–595.

Massart P (1990) The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of Probability

1269–1283.

Shank N, Yang H (2013) Coupon Collector Problem for Non-Uniform Coupons and Random Quotas. The

Electronic Journal of Combinatorics 20(2):33.

Singla S (2018) The price of information in combinatorial optimization. ACM-SIAM SODA.

Talluri KT, Van Ryzin GJ (2006) The theory and practice of revenue management, volume 68 (Springer

Science & Business Media).

Vera A, Banerjee S (2020) The Bayesian Prophet: A Low-Regret Framework for Online Decision Making.

Management Science .

Weitzman ML (1979) Optimal search for the best alternative. Econometrica: Journal of the Econometric

Society 641–654.

Wu H, Srikant R, Liu X, Jiang C (2015) Algorithms with logarithmic or sublinear regret for constrained

contextual bandits. Advances in Neural Information Processing Systems, 433–441.

35

Appendix A: A Sufficient Condition for Bellman Inequalities

In this section, we construct ϕ based on a general optimization program and provide a sufficient

condition to guarantee monotonicity. This serves to underscore some of the key elements in a

problem’s structure that allows one to construct low regret online policies. This guideline does

not apply to all the examples we study here: in particular, it applies to the baseline and learning

variants, but not to probing or pricing.

We study a particular case of canonical filtrations (see Definition 1), where the random variables

Gθ that we reveal are the inputs ξθ for some fixed times Θ (see Fig. 2 for an illustration).

Recall that we reveal some inputs to Offline, but not necessarily all of them; we call concealed

inputs those not revealed to Offline. Informally speaking, we will show that ϕ satisfies the

Bellman Inequalities if (i) Offline’s relaxed value ϕ can be computed with a linear program and

(ii) the concealed inputs are in the objective function only (not in the constraints). Requirements

(i) and (ii) are appealing because they are verifiable directly from the problem structure without

any computation.

Recall that, with t periods to go, Offline knows the randomness {ξT , . . . , ξt, ξΘ}, where we

denote ξΘ = (ξθ : θ ∈Θ). In other words, we reveal {ξT , . . . , ξt, ξΘ}, while the inputs {ξl : l < t, l /∈Θ}
are concealed.

Suppose the relaxation is an LP with decision variables x (see Eq. (5)):

ϕ(t, s|Gt) = max
x∈RΞ×[T]×U

{E[h(x; ξ1, . . . , ξT)|Gt] : g(x;s, ξT , . . . , ξt, ξΘ)≥ 0}, (17)

where U ,Ξ are the control and input spaces. For input ξ, control u, and time t, we interpret xξ,t,u

as a variable indicating if Offline uses u at time t when presented input ξ.

Proposition 3. Let h, g be linear functions and let ϕ be given by (17). Assume further that the

following holds for all s, t, u

(i) h captures rewards: E[h(eξt,t,u; ξ1, . . . , ξT)|Gt] ≤ R(s, ξt, u) for actions u that are feasible in

state s.

(ii) g captures transitions: g(eξt,t,u;s, ξT , . . . , ξt, ξΘ)≤ g(0;T (s, ξt, u), ξT , . . . , ξt−1, ξΘ).

Then, ϕ satisfies monotonicity with exclusion sets

B(t, s) = {ω ∈Ω :6 ∃X[ω] solving ϕ(t, s|Gt) s.t. Xξt,t,u ≥ 1 for some u∈ U}.

It is natural to say that h captures the reward if the incremental effect of taking the action u

given input ξt is equal to the immediate reward E[h(eξt,t,u; ξ1, . . . , ξT)|Gt] =R(s, ξt, u). It is similarly

natural to say that g captures transitions if it is stable under the one-step transition, namely, that

g(eξt,t,u;s, ξT , . . . , ξt, ξΘ) = g(0;T (s, ξt, u), ξT , . . . , ξt−1, ξΘ); in other words, this means that taking

36

the action u at time t, has the same effect as taking no action at the state T (s, ξt, u). This should

hold in any reasonable resource consumption problem, e.g., consuming 1 with B units of budget

remaining is the same as not consuming anything with B − 1 units. In the result below we make

the weaker assumption that these relationships hold as inequalities.

The baseline and learning variants are useful illustrations of Proposition 3.

Example 3 (Baseline). Let G be the full information filtration (Θ = [T]). In Section 2.2 we intro-

duced a linear relaxation for Offline. We start by writing a relaxation in the form of Proposition 3

and show how it subsequently simplifies to the final form in Section 2.2.

Recall that a,r denote the actions accept and reject. A natural “expanded” linear program is

max

{∑
j

t∑
l=1

xj,l,arj :
∑
j,l

wjxj,l,a ≤ s,0≤ xj,l,a ≤ 1{ξl=j}

}
.

Defining the auxiliary variables xj :=
∑

l xj,l,a, this is equivalent to ϕ(t, s|G) = max{r′x : w′x ≤
s,0≤ x≤ Zt}, where, recall Ztj =

∑t

l=1 1{ξl=j} counts the number of type-j arrivals in the last t

periods.

This ϕ also has the form of Proposition 3, with the functions h and g given by (note that the

action r has zero objective coefficient)

h(x; ξ1, . . . , ξt) :=
∑
j

xjarj and g(x;s, ξT , . . . , ξ1) :=

(
s−∑j xja
Zt−x

)
.

Conditions (i) and (ii) can be easily verified now. The objective h is a linear function of the decision

vector x and the constraint function g aggregates ξ into the sums Zt.

In the learning setting, Offline is presented with a public type j and must decide whether

to accept or reject before seeing the private type, which is a reward Rj drawn from an unknown

distribution.

Example 4 (Learning). Let us model the problem with 2T time periods, where at even times

the public type is revealed and at odd times the private (reward). In this model, the input ξt is an

index j ∈ [n] at even times and it is a reward R ∈R at odd times. Also let us model the random

rewards by drawing i.i.d. copies {Rjt}t of Rj.

Let us endow Offline with the information of all even times, i.e., Offline knows all the future

arriving public types. Specifically, we set Θ = {t∈ [T] : t is even} (see Fig. 2 for a representation of

G). The realizations {Rjt}j,t, drawn at times t /∈Θ, are concealed. The expanded linear program is

max

{∑
j

t∑
l=1

xj,l,aE[Rj] :
∑
j,l

wjxj,l,a ≤ s,0≤ xj,l,a ≤ 1{ξl=j}

}
.

37

As before, we can simplify this LP by aggregating variables, see Section 6 for the details. Here we

prefer to study the expanded LP because it exemplifies the conditions in Proposition 3.

The objective function is h(x; ξ1, . . . , ξt) =
∑

j,l xj,l,aRj,l, When we take expectations E[·|Gt] we

arrive at the expression
∑

j,l xj,l,aE[Rj]. The constraint function g is given by the feasibility region

of the LP. Conditions (i) and (ii) of Proposition 3 hold with equality.

Proof of Proposition 3. Let u∈ U be such that Xξt,t,u ≥ 1. Denote θt := {l ∈ [T] : l≥ t}∪Θ,

so all the inputs (ξl : l ∈Θt) are revealed at time t (the rest are concealed). By Lemma 1,

ϕ(t, s|Gt) =E[h(eξt,t,u; ξ1, . . . , ξT)|Gt] + max
x
{E[h(x; ξ1, . . . , ξT)|Gt] : g(x + eξt,t,u;s, (ξl : l ∈Θt))≥ 0}.

Using (i) and (ii) yields

ϕ(t, s|Gt)≤R(s, ξt, u) + max
x
{E[h(x; ξ1, . . . , ξT)|Gt] : g(x;T (s, ξt, u), (ξl : l ∈Θt−1))≥ 0}. (18)

Since Gt is coarser than Gt−1, we know that E[E[·|Gt−1]|Gt] = E[·|Gt]. Using Eq. (18) and applying

Jensen’s Inequality (recall that the maximum of linear functions is a convex function) we obtain

ϕ(t, s|Gt)≤R(s, ξt, u) +E
[
max

x
{E[h(x; ξ1, . . . , ξT)|Gt−1] : g(x;T (s, ξt, u), (ξl : l ∈Θt−1))≥ 0}

∣∣∣Gt].
This corresponds to the required inequality in Definition 2. �

The sufficient conditions in Proposition 3 are not necessary; they are not satisfied in the probing

setting (Section 4) or in the pricing setting (Section 5). Nevertheless, we are still able to show

monotonicity and draw the desired regret bounds.

Appendix B: Additional Details from Section 4 (Online Probing)

We first state and prove an auxiliary lemma which we need for our proofs.

Lemma 9. Consider the standard-form LP (P [d]) : max{r′x :Mx = d,x≥ 0}, where M ∈Rm×n is

an arbitrary constraint matrix and d ∈Rm. The function d 7→ P [d] is concave and therefore, if X

is a random right-hand side, then E[P [X]]≤ P [E[X]].

Proof. The dual problem is (D[d]) : min{d′y :M ′y≥ r}. The function d 7→D[d] is a minimum of

linear functions, therefore concave. �

B.1. Bellman Inequalities and Loss

We first establish the initial ordering property.

Proof of Lemma 2. Consider a policy for Offline determining when to probe, accept or

reject. Recall such a policy is a mapping π : [T]×S →U s.t. π(t, s) is Gt-measurable for all t, s.

38

The policy, once fixed, induces a random trajectory determined by the realization of the probed

rewards. Denote the random number of times where a type j was probed as Xjp, accepted (rejected)

without probing as Xja (Xjr), and accepted (rejected) after probe outcome is (j, k) as Xjka (Xjkr).

Then, we can write E[V (T, (bh, bp)|GT)] = E[
∑

j r̄jXja +
∑

j,k rjkXjka|GT], where we use the fact

that, conditional on accepting without probing, the expected reward is r̄j. Thus we have

E[V (t, (bh, bp)|GT)] =
∑
j

r̄jE[Xja|GT] +
∑
j,k

rjkE[Xjka|GT].

We now claim that E[X] yields a feasible solution to (P [T, (bh, bp),Z]). Indeed, with the excep-

tion of the constraint xjka + xjkr = qjkxjp, the random variables satisfy a.s. all the constraints

of (P [T, (bh, bp),Z]). Furthermore, since Offline’s policy is adapted to G, we obtain E[Xjka +

Xjkr|Xjp,GT] = qjkXjp, thus the expected values satisfy the desired constraint. To summarize,

V (T, (bh, bp)|GT) equals the value of the feasible solution given by the expectations. �

Next we establish the monotonicity condition in Definition 2.

Proof of Lemma 3. Observe that the monotonicity condition in Definition 2 translates to the

following condition in the online probing setting.

ϕ(t, (bh, bp,∅)|Gt)≤ max
�∈{a,p,r}

{Eξt−1/2 [ϕ(t− 1/2, (s�,�)|Gt−1/2)|Gt]} ∀ω /∈B(t, s).

where the state s� = (bh− 1, bp) if �= a, s� = (bh, bp− 1) if �= p and s� = (bh, bp) if �= r.

First, given ξt = i, we have from Eq. (8) that Eξt−1/2 [ϕ(t − 1/2, (s�,�))|Gt−1/2)|Gt] =

P [(bh, bp),Z
t−1] if �= r, and rξt−1/2 +P [(bh − 1, bp),Z

t−1] if �= a. Now for cases (1) and (2), the

claim in the lemma follows directly by invoking Lemma 1.

For case (3) we need to introduce some notation. Let qj ∈ Rn×m be a vector with value qjk in

components (j, k), k ∈ [m], and zero otherwise (i.e. in components (j′, k) with j′ 6= j). Similarly, let

1(j,k) ∈Rn×m have value 1 in the single component (j, k) and zero otherwise. We also rewrite the

LP in Eq. (7) with an extra ‘budget vector’ w such that P [(bh, bp),z] = P̄ [(bh, bp),z,0].

(P̄ [(bh, bp),z,w]) maximize:
∑
j,k

rjkxjka +
∑
j

r̄jxja

subject to:
∑
j,k

xjka +
∑
j

xja ≤ bh∑
j

xjp ≤ bp

xja +xjp +xjr = zj ∀ j ∈ [n]

xjka +xjkr− qjkxjp =wjk ∀ j ∈ [n], k ∈ [m]

x≥ 0

39

Now if X̄ip ≥ 1 and ξt−1/2 = (i, k) is such that either X̄ika ≥ 1 or X̄ikr ≥ 1, then by Lemma 1, we

have the following decomposition (depending on the random ξt−1/2)

P̄ [(bh, bp),Z
t,0] = rξt−1/21{X̄ika≥1}+ P̄ [(bh−1{X̄ika≥1}, bp− 1),Zt−1,qξt −1ξt−1/2], ∀ω /∈B(t, bh, bp)

where the vectors q,1 are evaluated in random components; since by assumption X̄ip ≥ 1 under the

optimal solution, the optimal value in the optimization problem is the same as the reward obtained

“now” (rξt−1/2) and the residual value after discounting bp by one. Taking expectations E[·|Gt] and

using Lemma 9 we have

P [(bh, bp),Z
t] =E[rξt−1/21{X̄ika≥1}+ P̄ [(bh−1{X̄ika≥1}, bp− 1),Zt−1,qξt −1ξt−1/2]|Gt]

≤E[rξt−1/21{X̄ika≥1}+ P̄ [(bh−1{X̄ika≥1}, bp− 1),Zt−1,0]|Gt]

≤E[max{rξt−1/2 +P [(bh− 1, bp− 1),Zt−1], P [(bh, bp− 1),Zt−1]}|Gt].

The last inequality, following from substituting 1{X̄ika≥1} ∈ {0,1}, gives the desired result. �

Appendix C: Additional Details from Section 5 (Dynamic Pricing)

C.1. Proof of Lemma 4

Throughout this subsection, we fix some indexes j′, l′. To complete the proof of the proposition, it

remains to establish that, whenever Xj′l′ ≥ 1, then E[LB(t+ 1,b, j′, l′)|Gt]≤ 0, where

LB(t+ 1,b, j′, l′) = P [b−Aj′Qj′l′(t+ 1),Q(t+ 1),Zt]−Et+1[P [b−Aj′Yj′l′ ,Q(t),Zt]].

The Correction LP. Let us fix (t,b,q,z) and denote x̄ the solution of P [b−Aj′qj′l′ ,q,z]. To

bound the loss, we must bound the right-hand side of (12), which captures the perturbation of

budgets from b−Aj′qj′l′ to b−Aj′Yj′l′ and the perturbation of fractions from q to q + ∆, where

∆ is a zero-mean random vector.

Let us re-formulate P [b−Aj′Yj′l′ ,q + ∆,z] based on how much we need to correct x̄:

(P [b−Aj′Yj′l′ ,q + ∆,z]) maxy

∑
j,l fjl(qjl + ∆jl)(x̄jl− yjl)

s.t.
∑

j,l aij(qjl + ∆jl)(x̄jl− yjl) ≤ bi− aij′Yj′l′ ∀i∑
l(x̄jl− yjl) ≤ zj ∀j

x̄−y ≥ 0.

The new formulation uses decision variables y, which may be negative, and correspond to how

much we movement there is from the initial solution x̄ to the new one.

40

Let us denote the resource-slack variables of P [b − Aj′qj′l′ ,q,z] by (si ≥ 0 : i ∈ [d]), i.e.,∑
j,l aijqjlx̄jl + si = bi− aij′qj′l′ . Similarly, let us denote the demand-slack variables by (uj ≥ 0 : j ∈

[n]), i.e.,
∑

l x̄jl +uj = zj. Using the slack variables, the problem simplifies to

P [b−Aj′Yj′l′ ,q + ∆,z] =
∑

j,l fjl(qjl + ∆jl)x̄jl−miny

∑
j,l fjl(qjl + ∆jl)yjl

s.t.
∑

j,l aij(qjl + ∆jl)yjl ≥ βi ∀i∑
l yjl ≥−uj ∀j
y ≤ x̄,

(19)

where we defined βi := aij′(Yj′l′ − qj′l′)− si +
∑

j,l aij∆jlx̄jl.

Observe that, since E[∆] = 0, the first term outside the minimization, namely
∑

j,l fjl(qjl +

∆jl)x̄jl, equals
∑

j,l fjlqjlx̄jl = P [b−Aj′qj′l′ ,q,z] in expectation. The following result readily proves

Lemma 4.

Lemma 10 (Correction LP). If we denote q = Q(t + 1), then the Bellman Loss is bounded

by E[LB(t+ 1,b, j′, l′)] ≤ E[PC [Yj′l′ ,q,∆]], where (PC [Yj′l′ ,q,∆]) is the minimization problem in

Eq. (19). Furthermore, E[LB(t+ 1,b, j′, l′)]≤ 0.

Proof. Recall that βi = aij′(Yj′l′ − qj′l′)− si +
∑

j,l aij∆jlx̄jl and observe that E[βi]≤ 0 for all i.

We will find some deterministic values ci such that the objective value of PC [Yj′l′ ,q,∆] is upper

bounded by
∑

i ciβi, which proves the result.

We argue the upper bound on (PC [Yj′l′ ,q,∆]) by bounding the optimal dual solution. The dual

of PC [Yj′l′ ,q,∆] is

max
µ,λ,θ≥0

{
β′µ−u′λ−

∑
j,l

x̄jlθjl : (qjl + ∆jl)A
′
jµ+λj − θjl ≤ fjl(qjl + ∆jl) ∀j, l

}

This problem is the dual of a feasible and finite problem (see Eq. (19)), hence it has an optimal

finite solution and we can bound µi ≤ ci for some deterministic values ci. The objective value of

this maximization problem is upper bounded by β′c, which proves the result. �

C.2. Proof of Lemma 7

Recall that we wish to establish the following: if ϕ̂ (used by Online) has a solution with xjl′ =

maxl xjl >> 1, then posting price fjl is a satisfying action. To establish this, it remains to bound

the difference between the LP PS[vt,q,z] and its “perturbed” version PS[Vt,q + ∆q,z + ∆z]. To

that end, we first establish a bound on vt−Vt; see item (i) in the discussion following Lemma 6.

Lemma 11. For fixed b, denote Vt = P [b,Q(t),Zt] and vt = P [b,E[Q(t)],E[Zt]]. If t≥ c, then, with

probability at least 1− c/t2, we have vt−Vt ≥−c
√
t log(t). The constant c is independent of b and

depends on (f ,F1, . . . ,Fn) only.

41

Proof. Set q =Q(t), z = Zt, ∆q = E[Q(t)]−Q(t), and ∆z = E[Zt]−Zt. Take x̄ to be a solution

of Vt and use a correction program analogous to Eq. (19) to conclude

vt = Vt +
∑

j,l fjl∆qjlx̄jl−miny

∑
j,l fjl(qjl + ∆qjl)yjl

s.t.
∑

j,l aij(qjl + ∆qjl)yjl ≥ βi ∀i∑
l yjl + tpj ≥

∑
l x̄jl ∀j

y ≤ x̄,

(20)

where βi =−si +
∑

j,l aij∆qjlx̄jl. We will argue an upper bound on the minimization problem by

exhibiting a feasible solution.

Set g(t) :=
√
log(t)/t and consider the solution yjl = x̄jl

g(t)

qjl+∆qjl
. First recall that, by Lemma 5,

|∆qjl| ≤ g(t) with high probability. The objective value of this solution is
∑

j,l fjlx̄jlg(t), hence from

Eq. (20) we get vt ≥ Vt− 2
∑

j,l fjlg(t)x̄jl. From here, using the fact that x̄ solves an LP with the

constraint
∑

l xjl ≤Ztj for all j and that Ztj ≤ t a.s., we conclude the result by using that x̄jl ≤ t.
We are left to check that our solution y is feasible for the LP in Eq. (20). The first set of

constraints is satisfied because g(t)≥∆qjl. The second set of constraints is satisfied since
∑

l x̄jl ≤
Ztj and Ztj ≤ tpj +

√
t log(t) w.h.p. Finally, the constraints y≤ x̄ are satisfied since g(t)≤ qjl+ ∆qjl

for all t large enough. �

Proof of Lemma 7. Let us denote θ= (v,q,z) and θ+ ∆θ= (v+ ∆v,q + ∆q,z + ∆z). Recall

that b and t are fixed throughout. The selection program for a fixed component (j′, l′) is given by

(PS[θ]) max xj′l′
s.t.

∑
j,l fjlqjlxjl ≥ v∑
j,l aijqjlxjl ≤ bi ∀i∑

l xjl ≤ zj ∀j
x ≥ 0.

If X̄ is the solution to P [b,Q(t),Zt] (used by Offline) and x̄ is the solution to

P [b,E[Q(t)],E[Zt]] (used by Online), we want to prove X̄j′l′ ≥ x̄j′l′− c
√
t log(t). Equivalently, our

aim is to prove the following:

PS[θ+ ∆θ]≥ PS[θ]− c
√
t log(t) w.p. 1− c/t2.

We argue via Lagrangian relaxation. The Lagrangian of the selection problem with parameters

θ+ ∆ is given by

L(x, λ;θ+ ∆θ) = xj′l′ +λ0

(∑
j,l

fjl(qjl + ∆qjl)xjl− v−∆v

)
+
∑
i

λi

(
bi−

∑
j,l

aij(qjl + ∆qjl)xjl

)

+
∑
j

λj

(
zj + ∆zj −

∑
l

xjl

)

=L(x, λ;θ) +λ0

(∑
j,l

fjl∆qjlxjl−∆v

)
−
∑
i

λi
∑
j,l

aij∆qjlxjl +
∑
j

λj∆zj

42

Define D := {x : x≥ 0, ||x||∞ ≤ t}. Observe that both PS[θ] and PS[θ+ ∆θ] have solutions x∈D.

From Lemma 5 and Lemma 11 we have the following with probability 1− c/t2:

|∆qjlxjl| ≤
√
t log(t) ∀x∈D, ∆v≤

√
t log(t), ∆zj ≥

√
t log(t).

Let λ? be the optimal dual variables of PS[θ+∆θ]. We claim that there is a constant c such that

||λ?||∞ ≤ c. Assuming this claim, from the previous equation we get

L(x, λ;θ+ ∆θ)≥L(x, λ;θ)− c
√
t log(t) ∀x∈D.

Using Strong Duality for the problem PS[θ+ ∆θ] we have

PS[θ+ ∆θ] = max
x≥0

L(x, λ?;θ+ ∆θ)

= max
x∈D

L(x, λ?;θ+ ∆θ)

≥max
x∈D

L(x, λ?;θ)− c
√
t log(t)

≥ PS[θ]− c
√
t log(t).

In the last step we used weak duality. Finally, to bound ||λ?||∞ ≤ c we observe that the dual feasible

region is defined by λ≥ 0 and the following set of inequalities, where δ is the Kronecker delta:

−fjlqjlλ0 + qjl
∑
i

aijλi +λj ≥ δj′l′ ∀j, l.

These inequalities are independent of (t,b), hence we can bound uniformly the extreme points. �

Appendix D: Additional Details from Section 6 (Distribution-Agnostic Knapsack)

Proof of Theorem 4. To apply Theorem 5, we first bound the measure of the exclusion sets

B and the “disagreement” sets Q. Recall that B(t, b) is given in Lemma 8 and Q(t, b) is the event

where Û t is not a satisfying action.

Let σ : [n]→ [n] be an ordering of [n] w.r.t. the ratios r̄j :=
rj
wj

such that σj = 1 if j has the

highest ratio. Similarly, let σ̂t : [n]→ [n] be the ordering w.r.t. ratios R̄t
j :=Rt

j/wj.

Call Et the event B(t,Bt)∪Q(t,Bt), then

P[Et] = P[Et, σ= σ̂t] +P[Et, σ 6= σ̂t]≤ P[Et, σ= σ̂t] +P[σ 6= σ̂t].

Let N t
j be the number of type-j samples observed by the beginning of period t. By definition,

since we are given a sample of each type before the process starts, we have N t
j =ZTj −Ztj +1. Since

the reward distribution is sub-Gaussian, it satisfies the Chernoff bound (Boucheron et al. 2013)

P[Rt
j − rj ≥ x|N t

j],P[Rt
j − rj ≤ x|N t

j]≤ e−N
t
jx

2/2 ∀x∈R, (21)

43

A union bound relying on Eq. (21) gives that

P[σ 6= σ̂t|Ft]≤ P[∃j s.t. |r̄j − R̄t
j| ≥ δ/2|Ft]≤ 2

∑
j

e−N
t
j (wjδ)

2/8.

The variable N t
j , recall, is the number of type-j samples observed by the beginning of period t,

hence N t
j −1 is a Bin(T − t, pj) random variable. It a known fact that, given θ > 0, E[e−θBin(p,m)] =

(1− p+ pe−θ)m, thus

P[σ 6= σ̂t] =E[P[σ 6= σ̂t|Ft]]≤ 2
∑
j

e−(wjδ)
2/8(1− pj + pje

−(wjδ)
2/8)T−t.

Upper bounding by a geometric sum yields

Regret2 :=
∑
t

P[σ 6= σ̂t]≤ 2
∑
j

1

pj(e
(wjδ)

2/8− 1)
≤ 2

∑
j

8

pj(wjδ)2
. (22)

We are left to bound P[Et, σ = σ̂t]. Let us assume w.l.o.g. that the indexes are ordered so that

r̄1 ≥ r̄2 ≥ . . . ≥ r̄n. The optimal solution of (P [Bt,r,Zt]), i.e., Offline’s problem, is to sort the

items and accept starting from j = 1, without exceeding the capacity Bt or the number of arrivals

Ztj . Mathematically, the optimal solution X?t to (P [Bt,r,Zt]) is

X?t
1a = min

{
Zt1,

Bt

w1

}
, X?t

ja = min

{
Ztj ,

Bt−∑i<j wiX
?t
ia

wj

}
j = 2, . . . , n.

For the proxy (P [Bt,Rt, µ(t)]), the optimal solution has the same structure with Ztj replaced

everywhere by µj(t).

Let ξt = j and U be any action in argmax{Xt
j,u : u = a,r}. We study first the case U = a. If

X?t
j,a ≥ 1 then U = a would be, by Lemma 8, a satisfying action. If it is not a satisfying action it must

then be that X?t
j,a < 1 and since the algorithm chooses to accept it must be also that Xt

j,a ≥ µj(t)/2.

Thus we obtain the following two conditions

X?t
j,a < 1⇒

∑
i<j

wiZ
t
i ≥ b and Xt

j,a ≥ µj(t)/2⇒
∑
i<j

wiµi(t) +wjµj(t)/2≤ b.

In the case U = r, X?t
j,r < 1 and Xt

j,r ≥ µj(t)/2 imply∑
i≤j

wiZ
t
i ≤ b and

∑
i<j

wiµi(t) +wjµj(t)/2≥ b.

In conclusion,

P[Et, σ= σ̂t]≤max

{
P

[∑
i≤j

wi(Z
t
i −µi(t))≥

wjµj(t)

2

]
,P

[∑
i≤j

wi(Z
t
i −µi(t))≤−

wjµj(t)

2

]}
.

These probabilities are bounded symmetrically using the method of averaged bounded differ-

ences (Dubhashi and Panconesi 2009, Theorem 5.3). Indeed, using the natural linear function

44

f(ξ1, . . . , ξt) =
∑

iwi
∑t

l=1 1{ξl=i}, the differences are bounded by |E[f |Fl] − E[f |Fl−1]| ≤ wmax,

hence

Regret1 :=
∑
t

P[Et, σ= σ̂t]≤
∑
t

∑
j

pj exp

(
−2(wjµj(t)/2)2

tw2
max

)
≤ 2

∑
j

(wmax/wj)
2

pj
.

Together with Eq. (22), we have the desired bound. �

Appendix E: Connections to Information Relaxations

Our work is related to the information-relaxation framework developed in (Brown et al. 2010,

Balseiro and Brown 2019). The information-relaxation framework is a fairly general way to endow

Offline with additional information, but at the same time forcing him to pay a penalty for using

this information. The dual problem (with the penalties) is an upper bound on the performance of

the best online policy.

The main distinctions with our approach are:

1. Information Relaxation requires to identify Offline’s filtration and penalties to build a proxy

for Offline’s value function. This proxy can then be used to assess the performance of specific

online policies.

The proxy that is developed—as the true Offline value in our framework—may be difficult

to compute. To overcome this difficulty, (Balseiro and Brown 2019) proposes an approximation

through which penalties can be computed and hence an upper bound can be obtained.

2. Our framework requires, as well, identifying a suitable information structure (a filtration) and

a relaxation ϕ. Because we allow for a Bellman Loss, we can develop ϕ ϕ̂ that are computationally

tractable. In most cases, a linear program. The framework explicitly then provides a mechanism,

the rabbi algorithm, to derive a good online policy.

There is also an explicit mathematical connection. To state it, we first present a weaker version

of our Bellman Inequalities, called thus because it is easier to find an object ϕ under this definition.

Recall that, for a given non-anticipatory policy π, we denote von
π the expected value. Observe that

the distinction with Definition 2 is in the initial ordering condition; we now require φ to upper

bound the online value instead of the best offline.

Definition 6 (Weak Bellman Inequalities). The sequence of r.v. {ϕ(t, s)}t∈T,s∈S satisfies

the Weak Bellman Inequalities w.r.t. filtration G and events B(t, s)⊆Ω if ϕ(t, s) is Gt-measurable

for all t, s and the following holds:

1. Initial ordering: maxπ v
on
π ≤E[ϕ(T,ST |GT)], where ST is the initial state.

2. Monotonicity: ∀s∈ S, t∈ [T], ω /∈B(t, s),

ϕ(t, s|Gt)≤max
u∈U
{R(s, ξt, u) +E[ϕ(t− 1,T (s, ξt, u)|Gt−1)|Gt]}. (23)

45

In Proposition 2.1 in (Balseiro and Brown 2019) it is shown that if ϕ is some function that

satisfies the Bellman equation for Offline with the penalized immediate rewards function, then,

in particular, it satisfies the initial ordering above. Since such ϕ satisfies, by construction, the

Bellman inequality the following is an immediate corollary.

Proposition 4 (Proposition 2.1 in (Balseiro and Brown 2019)). Given feasible penalties

zt, the penalized value function satisfies Definition 2 with exclusion sets B(t, s) =∅.

Our framework is a structured approach for building a computationally tractable ϕ, and deriving

an online policy is bounded regret, without pre-computing penalties.

46

Appendix F: Parameter for the Pricing Instance

T
y
p

e
j

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Resource i

1
1

0
0

1
0

1
0

0
0

0
1

0
1

1
0

1
1

0
0

1
2

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
1

0
1

0
0

3
0

1
0

1
0

1
1

1
0

0
1

1
1

1
1

0
1

1
1

1
4

1
0

1
1

1
0

0
1

0
0

0
0

1
0

1
1

0
0

1
1

5
1

1
1

1
0

0
0

1
1

0
0

0
0

0
0

1
1

1
0

0
6

0
1

0
0

1
0

0
0

1
1

0
0

0
0

1
0

0
0

0
1

7
0

0
0

1
1

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
8

0
1

0
0

0
0

1
1

1
1

1
0

0
0

1
1

1
0

0
1

9
1

0
0

1
0

0
1

1
0

1
1

1
0

1
1

0
0

0
0

0
1
0

1
0

0
0

0
0

0
0

0
0

1
0

1
1

0
1

0
0

1
0

1
1

1
0

1
1

0
0

0
1

0
0

1
1

1
1

0
0

1
0

1
1

1
2

1
0

1
0

1
1

0
0

1
1

0
1

1
0

1
0

1
0

0
0

1
3

1
1

1
0

0
0

1
1

1
0

1
1

0
1

1
1

0
0

0
0

1
4

1
0

1
0

0
0

1
0

0
1

1
1

0
0

1
0

1
0

0
1

1
5

1
1

0
1

1
0

1
0

0
1

0
1

1
1

0
0

1
1

1
0

1
6

0
1

0
1

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
7

1
0

1
1

1
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

1
8

0
1

1
1

1
1

0
0

0
0

1
1

0
1

1
1

1
0

1
0

1
9

0
1

1
1

1
1

1
1

0
0

1
0

0
1

1
0

0
0

1
0

2
0

0
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

0
1

1
1

2
1

0
1

0
1

0
0

1
0

1
1

0
1

1
1

1
1

0
0

1
0

2
2

1
1

1
0

1
1

1
0

0
1

0
0

0
1

0
0

1
1

1
0

2
3

0
0

0
0

1
1

0
0

1
1

1
0

1
0

1
1

1
0

0
0

2
4

0
1

1
1

0
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

2
5

0
0

0
1

0
0

0
0

1
0

1
0

1
1

1
1

0
1

1
0

p
j

0
.0

9
4

0
.0

4
7

0
.0

1
1

0
.0

4
7

0
.0

8
2

0
.0

1
1

0
.0

1
1

0
.0

5
8

0
.1

0
5

0
.0

7
0
.0

9
4

0
.0

1
1

0
.0

1
1

0
.0

5
8

0
.0

2
3

0
.0

7
0
.0

5
8

0
.0

5
8

0
.0

7
0
.0

1
1

f
j
1

1
8

4
5

1
3

4
3

2
0

1
5

1
7

1
6

2
0

1
2

1
6

1
3

8
5

1
0

1
3

2
0

1
6

f
j
2

4
2

3
6

3
2

1
6

1
4

1
4

2
2

4
2

3
4

4
2

7
6

3
f
j
3

1
1

2
2

2
1

1
7

6
1

1
1

1
1

1
3

1
1

2
2

q
j
1

0
.1

0
8

0
.1

1
6

0
.0

2
5

0
.0

6
2

0
.1

6
2

0
.0

6
9

0
.3

0
5

0
.1

6
9

0
.0

1
6

0
.1

2
9

0
.1

9
7

0
.4

9
6

0
.0

0
9

0
.1

1
4

0
.0

2
3

0
.1

7
1

0
.0

5
6

0
.1

0
4

0
.2

0
2

0
.2

2
q
j
2

0
.3

2
9

0
.2

1
0
.4

9
5

0
.2

3
3

0
.2

2
9

0
.2

2
3

0
.4

5
8

0
.3

3
0
.1

9
1

0
.2

1
5

0
.5

7
9

0
.9

6
6

0
.0

4
6

0
.1

5
4

0
.1

0
5

0
.6

4
8

0
.2

9
1

0
.1

3
7

0
.6

1
8

0
.2

7
q
j
3

0
.4

0
8

0
.3

3
5

0
.5

8
5

0
.6

1
9

0
.3

9
6

0
.2

8
1

0
.7

6
4

0
.4

4
0
.4

5
2

0
.5

6
3

0
.6

2
0
.9

9
3

0
.2

6
9

0
.6

8
2

0
.2

6
0
.8

5
2

0
.7

2
3

0
.9

9
3

0
.8

0
2

0
.5

8
8

	1 Introduction
	2 Preliminaries and Overview
	2.1 Problem Settings and Results
	2.2 Overview of our Framework
	2.3 Related Work
	3 Approximate Control Policies via the Bellman Inequalities
	3.1 Offline Benchmarks and Bellman Inequalities
	3.2 From Relaxations to Online Policies
	4 Online Probing
	4.1 Offline Benchmark and Online Policy for Probing
	4.2 Regret Analysis for Online Probing

	5 Dynamic Pricing
	5.1 Offline Benchmark and Online Policy for Dynamic Pricing
	5.2 Bellman Inequalities and Bellman Loss
	5.3 Information Loss and Overall Performance Guarantee
	5.4 Numerical Simulations
	5.5 Posted Pricing With Customer Choice

	6 Online Knapsack With Distribution Learning
	6.1 Offline Benchmark and Online Policy for Distribution-Agnostic Online Knapsack
	6.2 Regret Analysis for Distribution-Agnostic Online Knapsack
	6.3 Censored Feedback

	7 Concluding Remarks
	A A Sufficient Condition for Bellman Inequalities
	B Additional Details from Online Probing (Online Probing)
	B.1 Bellman Inequalities and Loss
	C Additional Details from Dynamic Pricing (Dynamic Pricing)
	C.1 Proof of
	C.2 Proof of
	D Additional Details from Learning Section (Distribution-Agnostic Knapsack)
	E Connections to Information Relaxations
	F Parameter for the Pricing Instance

