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Abstract

We study deterministic fluid approximations of parallel service systems operating under first come first
served policy (FCFS). The condition for complete resource pooling is identified in terms of the system
structure and the customer service times. The static planning linear programming approach (Harrison and
Lopez [22]) is used to obtain a maximum throughput compatibility tree and to show that FCFS using this
compatibility tree is throughput optimal. We investigate matching rates and show by Hotelling’s T 2-test
and simulation that they are dependent on the service time distribution.
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1 Introduction

Parallel service systems are widely used to model service and manufacturing systems. Such systems have
parallel servers S = {s1, . . . , sJ} of various skills, a stream of customers of various types C = {c1, . . . , cI}, and
a bipartite compatibility graph G where (sj , ci) ∈ G if server sj can serve customers of type ci; see Figure 1.
In this paper we focus on the behavior of such systems under the policy of first come first served (FCFS), and
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Figure 1: A parallel skilled based service system with 3 servers and 4 customer types

in particular, on deterministic fluid approximations for such systems uniformly scaled by time and space.
It is well known that the policy of FCFS for parallel service systems is not optimal, in that it may waste

resources and result in longer waiting times than under other policies. It is nevertheless very widely used,
because it is simple to implement, does not require any knowledge of system parameters, and is fair to
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customers. An important property of FCFS is as follows: Assume that arriving customers have complete
information of the system at their arrival, and can choose among the compatible servers which queue to join,
and each server uses FCFS for his queue. In that case, the policy of join the shortest work load (JSW) will
be the Nash equilibrium for customers that wish to minimize their waiting times. But this policy of JSW is
automatically achieved when customers queue up in a single queue and the servers are using FCFS. FCFS
can then serve as a benchmark, and comparison with other policies will provide an estimate of the “price
of anarchy”. In particular, performance under FCFS may help in designing the system, e.g., deciding on an
improved compatibility graph, and improved service rates.

Moreover, using FCFS has two purposes: under appropriate conditions it introduces resource pooling, i.e.,
all servers are busy at the same time and act like a combined server, and it gives the same service level to
customers of all different types, i.e., it achieves approximately global FCFS (as defined by Talreja and Whitt
[28]).

Our goal in this study is to determine conditions for complete resource pooling, i.e., conditions on the
system parameters such that under FCFS all the servers can act as a combined server providing global FCFS,
no matter what the arrival rate is, and to determine the maximal service capacity of the system in that case.
This maximal service capacity determines stability under any arrival rates, including time-varying arrival rates.
Alternatively, if complete resource pooling fails to hold, we wish to determine whether the servers decompose
uniquely to subsets that have complete resource pooling.

The literature on parallel service system is quite voluminous. An incomplete list would include an early
study [18]; applications to manufacturing and supply chain management [26, 31], applications to call centers
and internet service systems [16, 21, 27, 33], attempts to find optimal policies, mainly for small graph systems
[7, 8, 9, 17, 29, 34], heavy traffic and fluid approximations [22, 23], and many-server scaling [1, 19, 20]. In view
of [20, 22, 23], establishing fluid approximations is often the first step to solve the optimal dynamic control
problem for parallel service systems. Thus, it would be necessary to provide a unified framework of establishing
fluid approximations for such system with an arbitrary compatibility graph (topology).

On the other hand, to evaluate the utilization of each server and customer quality of service, one needs
to compute matching rates: the fraction of services by server sj to customers of type ci, out of all services
performed by the system. It is straightforward to see that the matching rates immediately determine resource
pooling and maximal service capacity. Adan and Weiss [5] discuss the special case when service rates depend
only on the server, arrivals are Poisson, and service is exponential, under the policy of FCFS-ALIS (assign
longest idle server) and derive a product-form stationary distribution for this system. From the stationary
distribution it is possible to calculate matching rates, which in heavy traffic are equal to those obtained for
the FCFS infinite bipartite matching model of [2, 4, 11]. The matching rates of the FCFS infinite bipartite
matching model reappear in the analysis of parallel service systems with many servers, as demonstrated
empirically in [1]. Motivated by Adan and Weiss [5], we want to see whether the matching rates can be
completely determined from the first moments of the customers interarrival and service times, in general, or
under specific assumptions on the topology of the system and the interarrival and service distributions.

Furthermore, as observed from some of the above literature, to understand the behavior of parallel service
systems one needs to characterize the dynamics of the positions of the J servers in the queue. The position
dynamics of the J servers can be used to determine whether resource pooling holds and to calculate the
maximal service capacity of the system. Adan and Weiss [4, 5] characterize the position dynamics of the
servers in the case of server dependent service rates, Poisson arrivals and exponential service times. The
natural question is whether we can determine the fluid trajectories of the positions of the J servers under
general assumptions on customer arrivals and service times.

Finally, by the work of Dai [12] for multiclass queueing networks, fluid approximations not only provide
an asymptotic analysis but also verify stability in the sense of positive Harris recurrence and existence of
stationary distributions. One would like to see whether fluid approximations can also be used to verify the
stability for parallel service systems. Foss and Chernova [15] consider parallel service systems under JSW (as
well as join shortest queue, JSQ). They derive conditions for stability when the service rates depend only
on the servers and not on the customer types, and also when the service rates depend only on the customer
type and not on the server. For the general case, when service rates depend both on the server and customer
type, they produce an example in which stability depends not only on service rates but also on the complete
distributions of the service times — this means that the fluid model is not informative enough to determine
stability. Thus it would be interesting to find conditions such that the system stability can be determined by
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the corresponding fluid approximations.
Mainly motivated by the above, in this paper we focus on the following questions

• Establish the deterministic fluid approximations;

• Explore stability conditions for parallel service systems using the fluid model approach;

• Obtain explicit fluid trajectories for the server-dependent (SD) and customer-dependent (CD) processing
rates cases;

• Find matching rates for parallel service systems with complete bipartite graphs, tree bipartite graphs,
or hybrids of those;

• Derive a bound on service capacity, and obtain an optimal tree graph for which FCFS achieves the bound
and is throughput optimal, by introducing and solving an LP static planning problem;

• Demonstrate by Hotelling’s T 2-test and simulation of the SD case that matching rates depend on the
service time distributions.

The rest of the paper is organized as follows. in Section 2 we describe our model, define stochastic processes
that describe its dynamics, and define matching rates and resource pooling. Section 3 is devoted to the fluid
model. We show that fluid limits exist, and derive some fluid model equations that every fluid limit needs to
satisfy. The discussion on the stability of parallel service systems and an example of Foss and Chernova [15]
are given in Section 4. In Section 5, we use the fluid model equations to obtain the explicit fluid trajectories
for the SD (server-dependent) processing rates case. The fluid model equations are also used to obtain the
explicit fluid trajectories for the CD (customer-dependent) processing rates case in Section 6. We obtain fluid
trajectories for parallel service systems with complete bipartite graphs, tree bipartite graphs, or hybrids of
those, by calculating matching rates in Section 7. We formulate an LP static planning problem (cf. [22]) to
find a bound on service capacity, and obtain an optimal tree graph for which FCFS achieves the bound and
is throughput optimal in Section 8. Finally in Section 9 we demonstrate by simulation of the SD case, that
matching rates depend on the service time distributions, but are very close to the values computed analytically
for exponential service times.

2 The stochastic system model

Given the servers {s1, . . . , sJ}, the customer types {c1, . . . , , cI} and the compatibility graph G, the prim-
itives of the stochastic system consist of a sequence of interarrival times, a sequence of customer types, and
one sequence of processing times for each compatibility link in the graph G. We assume all these sequences
are independent.

We let a(`) be the arrival time of the `th customer and u(`) = a(`) − a(` − 1) be the interarrival times,
where ` = 0,±1,±2, . . ., and a(0) ≤ 0 < a(1), and we let A(t) = max{` : a(`) ≤ t}. The distribution of u(`) is
F with mean 1/λ, so that A(t) is a renewal process with rate λ (all the fluid model results below continue to
hold if we assume only that the arrival process A(t) is stationary and A(t)/t→ λ a.s.). In particular, for s < t,
A(t) − A(s) counts the total number of arrivals in (s, t]. Customer types are i.i.d., type ci has probability
αci , i = 1, . . . , I, and we let ξ(`) be a unit vector of length I such that ξi(`) = 1 if customer ` is of type ci, for
` = 0,±1,±2, . . .. The counts of arrivals of customers of each type are then given by

Aci(t) =



A(t)∑
`=1

ξi(`), t ≥ 0,

−
0∑

`=A(t)+1

ξi(`), t < 0

(1)

We let vsj ,ci(0) be the remaining service time of server sj if he is serving a customer of type ci at time
0, and vsj ,ci(0) = 0 otherwise. We let vsj ,ci(k), k = 1, 2, . . . , be the processing time of the kth customer of
type ci that server sj is serving after time 0. The distribution of vsj ,ci(k), k = 1, 2, . . . , is Gsj ,ci with mean
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msj ,ci and rate µsj ,ci = 1/msj ,ci . We let Xsj ,ci(t) = max{k :
∑k
`=0 vsj ,ci(`) ≤ t} count the number of job

completions by server sj when processing customers of type ci for a total processing time t, so that Xsj ,ci(t) is
a renewal process of rate µsj ,ci (all the fluid model results continue to hold if we assume only that the service
completion process Xsj ,ci(t) is stationary and Xsj ,ci(t)/t→ µsj ,ci a.s.).

Service policy is FCFS, i.e., when a server becomes available he will next serve the compatible customer
that has been waiting for the longest time. To complete the service policy description, when a customer arrives
and there are several idle compatible servers, then the customer is assigned to the compatible server that has
been idle for the longest time, i.e., assign longest idle server, ALIS.

The special case when service rates depend only on the servers, and when arrivals are Poisson and services
are exponentially distributed is tractable, and is analyzed in [5] (see also [32]). Under these assumptions
the system can be described by a countable state continuous time Markov chain, and most surprisingly, this
Markov chain has a product form stationary distribution. The following Figure 2 describes the state of the
Markov chain: The circles represent the customers in the system ordered from left to right by order of arrivals,
` busy servers are placed with the customers which they are currently serving, followed by J − ` idle servers
ordered by their idleness times, so that M1, . . . ,MJ is a permutation of the servers s1, . . . , sJ . The state at
time t is defined as X (t) = (M1, n1, . . . ,M`, n`,M`+1, . . . ,MJ), where nj counts the number of customers
queueing between servers Mj and Mj+1. All the customers between Mj and Mj+1 have been skipped by
servers Mj+1, . . . ,MJ and must therefore be of types in the set U(M1, . . . ,Mj) of customer types which are
unique customers of M1, . . . ,Mj , where U(M1, . . . ,Mj) is the set of customer types who are not compatible
with servers S \ {M1, . . . ,Mj} (see the definition at the end of this section). The dynamics are as follows:

C
S

   * *
M1 M2 MJMℓ Mℓ+1

U (M1) U (M1,M2 ) U (M1,…,M ℓ )

Figure 2: A state for the Markovian FCFS-ALIS parallel skill based system

Customers arrive from the right, scan the idle servers and join the end of the queue with the first compatible
idle server that they find, or without a server if none is available. When a server completes a service, a customer
leaves the system, and the server moves to the right, scanning the waiting customers until he finds the first
compatible customer, or if no such customer is available, he joins the end of the idle servers queue at its left
end. Under the assumption that service rates depend only on the server, Poisson arrivals and exponential
services, this is a discrete state continuous time Markov chain.

X (t) = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) in itself is not a Markov process for our general system, but if
we add the remaining time to the next arrival and the remaining times until service completion for all busy
servers, it becomes a Markov process in continuous time with an uncountable state space. In this paper we
consider the dynamics of this more general system, and study its fluid limits. To describe the dynamics we
use a more detailed representation of the system as illustrated in Figure 3, where the system has 3 servers,
3 customer types, and the compatibility graph includes G = {(s1, c1), (s2, c1), (s2, c2), (s3, c1), (s3, c3)}. On
the horizontal time axis the arrival times of customers are marked by a(`). On the vertical axis the types
of successive customers are listed. The list includes all the customers, past present and future, starting from
the oldest customer that was present at time 0. For each customer there is a horizontal line starting at his
arrival, and ending at his departure, which includes his waiting time and his service time. With each of the
J servers there is a path that describes his whole history, composed of horizontal intervals when he is serving
a customer, and vertical intervals that connect the end of service of a customer and the beginning of service
of the next customer that he is serving. A top path describes the counting process of the arrival stream A(t).
When a server is idle he will move together with A(t).

Our working hypothesis is that if we scale time and space uniformly by n and let n increase, we will get
fluid limits which will evolve along piecewise linear paths, so that the fluid limits of the picture in Figure
3 will look as in Figure 4. Here the horizontal and vertical steps of the paths of servers become increasing
straight lines. The top line records all cumulative fluid arrivals as a function of time, and the arriving fluid
is a mixture of the three customer types. Under the line of server s3 all the arrivals have already departed.
In the area between the lines of servers s2, s3 fluid of customers of types c3 are still waiting, but types c1, c2

4



1
1

1

3

1

2

2

2

11

3

3

3

1

3

3

2

1

2

3

1

11

2

2

33

22

time

customers

0
a(0)

a(1)
a(2)

a(3)
a(4)

a(5)
a(6)

a(7)
a(8)

a(9)
a(10)

a(-1)
a(-2)

a(-3)
a(-4)

a(-5)
a(-6)

t

Customer in service  
Arrival  
Service Start  
Departure  

Server Position at  0   

Server Position at  t   

Customer type  

Arrival time   a( )   

Customer in queue  
Key  

S  

C  

Bipartite Graph  
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Figure 4: Conjectured Fluid Dynamics under FCFS-ALIS

have already departed. In the area between the lines of server s1 and s2 only customer fluid of type c1 are
departed, and customers of types c2, c3 are still waiting. Finally, between the arrival line and the line of server
s1 fluid customers of all three types are still waiting. In this figure all three lines eventually meet; this is the
phenomena of complete resource pooling. Furthermore, in this instance the fluid limit is stable, as all fluid is
drained and the fluid system is empty from some time onwards.

Assuming that fluid limits move along such straight lines, we are interested in the following questions:
- When λ is large, do the lines of all the servers merge eventually? If so, we say that complete resource

pooling holds.
- If the lines do not merge, does this define a unique decomposition of the servers?
- For what values of λ do all the lines eventually merge with λt, the top line? In cases when they merge,

we say that the fluid model is stable.
Complete resource pooling implies under some minor conditions that queues between servers are stable, and
stability of the fluid model implies under some minor conditions that the stochastic system is stable.

We introduce some notation: We denote by C(sj) the customer types compatible with sj , referred to as
customers of sj , and by S(ci) the servers that are compatible with customers of type ci, referred to as the
servers of ci. For a subset C ⊆ C of customer types we let S(C) =

⋃
ci∈C S(ci) denote all the servers of

customer types in C. Also, for a subset S ⊆ S we let C(S) =
⋃
sj∈S C(sj) denote all the customer types that

can be served by some servers in S, and we let U(S) = C(S) denote the set of customer types which cannot
be served by any server outside S, that is, the unique customers of S. For a subset C ⊆ C of customer types
we let αC =

∑
ci∈C αci .

To describe the dynamics of the system we define the following quantities:

Psj (t) is the position of server sj at time t, where we let Psj (t) = ` if the server is serving at time t the `th
customer in the sequence of arrivals. If servers sj1 , . . . , sjk are idle at time t then their positions are
defined as A(t) + 1, . . . , A(t) + k, ordered by duration of idleness, with A(t) + k the longest idle.

Yj(t) is the current jth level, where we let Y1(t) < . . . < YJ(t) be the ordered set of the positions of the
servers at time t.

M1(t), . . . ,MJ(t) is the random permutation of the servers at time t, where we let PMj(t)(t) = Yj(t)
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Tsj ,ci(t) is the cumulative time over (0, t) that server sj has served customers of type ci.

In this paper we will mainly investigate the processes Yj(t),Mj(t), j = 1, . . . , J . These processes also define
the actual queue lengths. We let Qci,j(t) denote the number of customers of type ci which are waiting between
servers Mj(t) and Mj+1(t) at time t. These are given by:

Qci,j(t) =



Yj+1(t)−1∑
`=Yj(t)+1

ξi(`) I{ci ∈ U(M1(t), . . . ,Mj(t))}, j = 1, . . . , J − 1,

A(t)∑
`=YJ (t)+1

ξi(`), j = J.

(2)

where I{·} is the indicator function.
Let U(t) be the remaining time at time t until next arrival, Vsj ,ci(t) be the remaining processing time of

ci by sj if sj is processing a type ci customer at time t, and Vsj ,ci(t) = 0 otherwise. The initial state of the
system is given by A(0) = 0, Psj (0), U(0) = a(1), and Vsj ,ci(0) = vsj ,ci(0) (note that Psj (0) < 0). Both
Y (t) =

(
A(t), Psj (t), U(t), Vsj ,ci(t)

)
, and Z (t) =

(
Mj(t), Qci,j(t), U(t), Vsj ,ci(t)

)
are Markov processes. The

former is always transient, as A(t), Psj (t) are non-decreasing with t. The latter may be stable, and we say
that the queueing system is stable (ergodic) if Z (t) is positive Harris recurrent (ergodic).

3 Fluid limits and fluid model equations

To study the fluid limits of the system we consider a sequence of systems defined over the same probability
space, indexed by n = 1, 2, . . ., and study their fluid scaling. All the systems in the sequence share the same
stochastic sequences A(t), ξ(`), Xsj ,ci(t), but they differ in their initial conditions: We let Pnsj (0), j = 1, . . . , J
be the initial positions of the servers in the nth system. We denote quantities of the nth system which are not
common to all systems by the superscript n. We obtain the fluid scaling for the sequence of systems by scaling
time and space of the nth system by n. For any function zn(t) we define the fluid scaling as z̄n(t) = 1

nz
n(nt).

Consider sample paths ω ∈ Ω of the sequence of systems, and consider one of the processes, say zn(t, ω).
If z̄r(t, ω) = 1

r z
r(rt, ω) → z̄(t) uniformly on compacts (u.o.c.) when r → ∞, for some ω and for some

subsequence r of n = 1, 2, . . ., where z̄(t) is a deterministic function of t, then we say that z̄(t) is a fluid limit
of zn(·, ·).

To obtain the fluid dynamics of our system we need to assume that the following holds:

lim
n→∞

P̄nsj (0) = lim
n→∞

Pnsj (0)

n
= P̄sj (0) ≤ 0. (3)

lim
n→∞

Un(0)

n
= 0, lim

n→∞

V nsj ,ci(0)

n
= 0. (4)

and

lim
n→∞

1

n
A(nt, ω) = λt u.o.c., a.s.

lim
n→∞

1

n
Aci(nt, ω) = λαcit u.o.c., a.s. (5)

lim
n→∞

1

n
Xsj ,ci(nt, ω) = µsj ,cit u.o.c., a.s.

We assume throughout that (3) and (4) hold. Assumptions (5) hold for our system by the functional strong
law of large numbers, since we assume renewal arrivals, i.i.d. customer types, and renewal service times. We
exclude the set of measure zero where (5) fails to hold. Let Tnsj ,ci(t) be the cumulative service time of customer
type ci provided by server sj over time interval [0, t]. The following theorem proves the existence of fluid limits.

Theorem 1. Fluid limits for T̄nsj ,ci(t, ω), P̄nsj (t, ω), Ȳ nj (t, ω), Q̄nci,j(t) exist almost surely for every ω, and they
are almost surely Lipschitz continuous for every t > 0.
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Proof. Consider first Tnsj ,ci(t, ω). We have for all ω that Tnsj ,ci(t, ω)− Tnsj ,ci(s, ω) ≤ t− s for all s < t, and so

for all ω and every n also T̄nsj ,ci(t, ω) − T̄nsj ,ci(s, ω) ≤ t − s, so the sequence is equicontinuous and uniformly
bounded on every compact interval, for every ω. Fix ω. By Arzela-Ascoli theorem, for every compact interval
there exists a subsequence r of n such that T̄ rsj ,ci(t, ω) converges to some T̄sj ,ci(t) as r → ∞ uniformly on
the interval. It is then possible to choose a further subsequence that will converge uniformly on all compacts.
Furthermore, all T̄nsj ,ci(t, ω) are Lipschitz continuous for every ω, and hence so is every fluid limit T̄sj ,ci(t).

The main part of the proof is to show the existence of fluid limits for Pnsj (t, ω). The functions Pnsj (t, ω)
are non-decreasing in t, and Pnsj (0, ω) ≤ Pnsj (t, ω) ≤ A(t, ω) + J , and hence for any ε > 0 and large enough

n, P̄sj (0)− ε ≤ P̄nsj (t, ω) ≤ λt+ ε, so P̄nsj (t, ω) are non-decreasing and uniformly bounded at each t for all n.

Hence we can find a subsequence r such that P̄ rsj (t, ω)→ P̄sj (t) as r →∞ for all rational t, and we have that

P̄sj (t) is non-decreasing on all rationals, and we can then extend its definition to all real t. If we can show
that P̄sj (t) is continuous, then by Lemma 4.1 of Dai [12] we will have that P̄ rsj (t, ω) → P̄sj (t) uniformly on

compacts. We will show that P̄sj (t) is in fact Lipschitz continuous for t > 0.
We note that P̄sj (t) may be discontinuous at 0. Consider the limiting P̄ (0), Ȳ (0), M̄(0), and assume the

following: (i) Ȳk(0) = P̄sj (0) (ii) C(sj) ⊆ C
(
M̄k+1(0), . . . , M̄J(0)

)
(iii) Ȳk(0) < Ȳk+1(0). Denote vsj (0, ω) =

maxci∈C(sj) vsj ,ci(0, ω) > 0. Then we have that Pnsj
(
vnsj (0, ω)

)
> Y nk+1(0), and so we have:

lim
n→∞

P̄nsj (0, ω) = Ȳk(0) while P̄sj (0+) ≥ lim inf
n→∞

1

n
Pnsj
( 1

n
vnsj (0, ω)

)
≥ Ȳk+1(0) > Ȳk(0).

Consider now vnsj (0, ω) < t0 < t1. Let ci be the type of the customer that sj is serving at time t0, let
wsj (t0, ω) be elapsed time of this customer, and let t = t0−wsj (t0, ω) be the time at which the service of this
customer started. At time t, by FCFS, all customers of type ci in positions > Pnsj (t, ω) have not yet started
service. During the time period (t, t1), server sj is processing customers of type ci as well as customers of
types cl ∈ C(sj), cl 6= ci. Hence it may only process at most Xsj ,ci(T

n
sj ,ci(t1))−Xsj ,ci(T

n
sj ,ci(t)) customers of

type ci. During the time period (t, t1), other servers sk ∈ S(ci), sk 6= sj may also be processing customers of
type ci. Therefore the total number of customers of types ci that may be processed in the time period (t, t1)
cannot exceed

∑
k∈S(ci)

(Xsk,ci(T
n
sk,ci

(t1))−Xsk,ci(T
n
sk,ci

(t))).
We repeat the argument of the last paragraph for the scaled processes. Consider any 0 < t0 < t1 and n

large enough that vnsj (0) < nt0 almost surely by (4). Assume server sj is working on job type ci at time nt0,
with elapsed time wnsj (nt0, ω), and let nt = nt0 − wnsj (nt0, ω) be the time that processing of this job started.
Then:

1

n

(
Pnsj (nt1, ω)− Pnsj (nt0, ω)

)
=

1

n

(
Pnsj (nt1, ω)− Pnsj (nt, ω)

)

=

∑I
k=1

∑Pn
sj

(nt1,ω)

`=Pn
sj

(nt,ω) ξk(`)∑Pn
sj

(nt1,ω)

`=Pn
sj

(nt,ω) ξi(`)

1

n

Pn
sj

(nt1,ω)∑
`=Pn

sj
(nt,ω)

ξi(`)

≤

∑I
k=1

∑Pn
sj

(nt1,ω)

`=Pn
sj

(nt,ω) ξk(`)∑Pn
sj

(nt1,ω)

`=Pn
sj

(nt,ω) ξi(`)

1

n

∑
sk∈S(ci)

(
Xsk,ci(T

n
sk,ci

(nt1))−Xsk,ci(T
n
sk,ci

(nt))
)

Going to the limit, we take a subsequence r for which convergence of 1
rP

r
sj (rt, ω) holds. In the case that

limr→∞(P rsj (rt1, ω)− P rsj (rt0, ω)) <∞, we have P̄sj (t1)− P̄sj (t0) = 0. Otherwise we now consider the above
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inequality for all ci. We have that as r →∞:

P̄sj (t1)− P̄sj (t0) ≤ max
ci∈C

 lim
r→∞


∑I
k=1

∑P r
sj

(rt1,ω)

`=P r
sj

(rt,ω) ξk(`)∑P r
sj

(rt1,ω)

`=P r
sj

(rt,ω) ξi(`)


× lim
r→∞

1

r

∑
sk∈S(ci)

(
Xsk,ci(T

r
sk,ci

(rt1))−Xsk,ci(T
r
sk,ci

(rt))
)


= max
ci∈C

[ 1

αci

∑
sk∈S(ci)

µsk,ci

(
T̄sk,ci(t1)− T̄sk,ci(t)

)]
≤ max

ci∈C

[ 1

αci

∑
sk∈S(ci)

µsk,ci

](
t1 − t0 + lim

r→∞

wrsj (rt0, ω)

r

)
= max

ci∈C

[ 1

αci

∑
sk∈S(ci)

µsk,ci

]
(t1 − t0).

The last equality holds because max1≤`≤n V
n
sj ,ci(`)

/
n → 0 as n → ∞ for all sj , ci a.s. for all ω. We have

therefore that the fluid limits P̄sj (t) are Lipschitz continuous with constant maxci∈C

[
1
αci

∑
k∈S(ci)

µsk,ci

]
.

We can now use subsequences of subsequences to obtain that P̄ rsj (t, ω)→ P̄sj (t) u.o.c. for all sj as r →∞.

For this subsequence we then have that Ȳ rj (t, ω)→ Ȳj(t) which are the ordered values of P̄sj (t).
Finally, from (2) we obtain that for almost all ω there is some subsequence r such that as r →∞:

Q̄rci,j(t, ω)→

 αci(Ȳj+1(t)− Ȳj(t)), ci ∈ U(M1(t), . . . ,Mj(t)), j = 1, . . . , J − 1,

αci(λt− ȲJ(t)), ci ∈ C, j = J.
(6)

We now know that almost surely for all ω there exist subsequences which lead to fluid limits that are
Lipschitz continuous for all t > 0. We also assume that for these subsequences (3)-(5) hold by excluding a
set of measure zero. Since the fluid limits are Lipschitz continuous they are absolutely continuous and hence
possess derivatives almost everywhere, and are integrals of their derivatives. We shall call times t at which
derivatives of fluid limits exist regular times. We will use ż(t) to denote d

dtz(t) for all fluid limits, for all regular
t. We now wish to derive equations which all fluid limits must satisfy almost surely.

By definition, for every n, at every time t, P̄nsj (t, ω) for s1, . . . , sJ are all different, so that

Ȳ n1 (t, ω) =
1

n
PnMn

1 (nt,ω)(nt, ω) < · · · < Ȳ nJ (t, ω) =
1

n
PnMn

J (nt,ω)(nt, ω)

However, for the fluid limits we only have that Ȳ1(t) ≤ Ȳ2(t) ≤ · · · ≤ ȲJ(t). As a result the fluid limits no longer
define a unique permutation of the servers at time t, and instead we have an ordered partition of s1, . . . , sJ .
For concreteness we order P̄M̄1(t)(t), . . . , P̄M̄J (t)(t) so that P̄M̄j(t)(t) < P̄M̄j+1(t)(t) or P̄M̄j(t)(t) = P̄M̄j+1(t)(t)

and M̄j(t) < M̄j+1(t). We define the fluid ordered partition S̄(t) =
(
S̄1(t), . . . , S̄L(t)

)
as follows:(

S̄1(t), . . . , S̄L(t)
)

is a partition of S,
Mj ,Mj′ ∈ S̄`(t)⇒ P̄Mj

(t) = P̄Mj′ (t), (7)

Mj ∈ S̄`(t) and Mj′ ∈ S̄`+1(t)⇒ P̄Mj
(t) < P̄Mj′ (t).

Note that S̄(t), M̄(t) are limits at time nt when n→∞, but they are not scaled in space, since they are discrete

and finite. We introduce the notation ȲS(t), ˙̄YS(t) to denote the common value of P̄Mj
(t), ˙̄PMj

(t), Mj ∈ S.
We now have the following theorem on the dynamics of the fluid model. We use the convention that

µsj ,ci = ˙̄Tsj ,ci = 0 for (sj , ci) 6∈ G.
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Theorem 2. Consider a fluid limit in which servers at levels k, . . . , l move together for a while, i.e., Ȳk−1(τ) <
Ȳk(τ) = · · · = Ȳl(τ) < Ȳl+1(τ) (or if l = J , Ȳl(τ) < λτ), for some k ≤ l and for all s < τ < t. Let
S̄(τ) = (S′(τ), {Mk, . . . ,Ml}, S′′(τ)) for the same range of τ , where S′(τ) and S′′(τ) are the subsets of servers
preceding and succeeding Mk, . . . ,Ml (the sets S′(τ) and S′′(τ) may themselves consist of a further partition,
but this is irrelevant here). Then a.s. all fluid limits at s < τ < t must satisfy the following equations:∑

ci∈C(Mj)\C(Ml+1,...,MJ )

˙̄TMj ,ci(τ) = 1 j = k, . . . , l, (8)

˙̄Yk(τ) = · · · = ˙̄Yl(τ) =
1

αci

l∑
j=k

µMj ,ci
˙̄TMj ,ci(τ), ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ). (9)

Proof. Consider a fluid limit of all the processes obtained for some ω and subsequence r, for which the
assumptions of the theorem hold.

By the continuity of P̄sj (τ) the sets S′(τ), {M̄k(τ), . . . , M̄l(τ)}, S′′ are constant for all s < τ < t, and
S̄(τ) is well defined. If Ȳj(τ) < Ȳl+1(τ) ≤ λτ, s < τ < t, j = k, . . . , l then for r large enough Y rj (rτ, ω) <
Y rl+1(rτ, ω) < A(rτ, ω), τ ∈ (s, t), j = k, . . . , l, which implies that Mr

k , . . . ,M
r
l = Mk, . . . ,Ml are the same for

all r large enough, that all the servers Mk, . . . ,Ml are busy all the time between (rs, rt), and the types of
customers which Mj will be serving will be ci ∈ C(Mj)\C(Ml+1, . . . ,MJ). It follows that∑

ci∈C(Mj)\C(Ml+1,...,MJ )

1

r

(
T rMj ,ci(rt, ω)− T rMj ,ci(rs, ω)

)
= t− s

and (8) follows. For the same s, t and large enough r, we have:

Y rk (rs, ω) = min
k≤j≤l

P rMj
(rs, ω), Y rl (rs, ω) = max

k≤j≤l
P rMj

(rs, ω),

Y rk (rt, ω) = min
k≤j≤l

P rMj
(rt, ω), Y rl (rt, ω) = max

k≤j≤l
P rMj

(rt, ω).

Consider for ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ) the two counts:

Nr
1 (ω) =

Y r
k (rt,ω)−1∑

`=Y r
l (rs,ω)+1

ξi(`, ω), Nr
2 (ω) =

Y r
l (rt,ω)∑

`=Y r
k (rs,ω)

ξi(`, ω)

These count customers of type ci which are associated with the time interval (rs, rt): every customer of type
ci which appears in the first count has started service and finished service within the time period (rs, rt). The
second count includes all the customers of type ci which have departed in the time interval (rs, rt), including
some that started processing at an earlier time, and also those which have started service and not departed
yet.

Compare this to

Nr
3 (ω) =

l∑
j=k

(
XMj ,ci

(
T rMj ,ci(rt, ω), ω

)
−XMj ,ci

(
T rMj ,ci(rs, ω), ω

))
,

which counts all the service completions of jobs of type ci, served by one of the servers Mk, . . . ,Ml, during
the time interval (rs, rt) (recall that T rMj ,ci

(rt) − T rMj ,ci
(rs) is the total time that server Mj is processing

customers of type ci within the time interval (rs, rt)). We have that Nr
2 (ω) ≥ Nr

3 (ω) ≥ Nr
1 (ω).

However,

lim
r→∞

1

r
Nr

1 (ω) = lim
r→∞

1

r
Nr

2 (ω) = αci(Ȳk(t)− Ȳk(s)) = · · · = αci(Ȳl(t)− Ȳl(s)),

while

lim
r→∞

1

r
Nr

3 (ω) =

l∑
j=k

µMj ,ci

(
T̄Mj ,ci(t)− T̄Mj ,ci(s)

)
,

and (9) follows.
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Corollary 1. If Ȳj−1(t) < Ȳj(t) < Ȳj+1(t) then

˙̄Yj(t) =

 ∑
ci∈C(Mj)\C(Mj+1,...,MJ )

αcimMj ,ci

−1

(10)

Proof. From (9) we have that mMj ,ciαci
˙̄Yj(t) = ˙̄TMj ,ci(t), and summing over ci ∈ C(Mj)\C(Ml+1, . . . ,MJ)

and using (8) we obtain (10).

We refer to equations (8)–(10) as fluid model equations.

4 Stability

We are interested in verifying the following properties of fluid limits:

Definition 1. Denote |P̄ (0)| = −
∑J
j=1 P̄sj (0).

(i) We say that the fluid model is stable if starting from any fixed |P̄ (0)| = 1, there exists t0 such that for
almost surely every fluid limit λt− Ȳ1(t) = 0 for all t > t0.

(ii) We say that the fluid model has complete resource pooling if for all values of λ, starting from any fixed
|P̄ (0)|, there exists t0 such that for almost surely every fluid limit ȲJ(t)− Ȳ1(t) = 0 for all t > t0.

(iii) We say that the fluid model has complete weak resource pooling if for all values of λ, starting from

any fixed |P̄ (0)|, there exists t0 such that for almost surely every fluid limit ˙̄Y1(t) = · · · = ˙̄YJ(t)

Complete weak resource pooling is the situation in which in the limit, all servers move eventually at the
same rate, but not together. Graphically, this means that the straight lines denoting their limiting paths
become parallel, but may never merge.

Definition 2. We say that the fluid model of a system under some given policy is maximum throughput with
processing rate µ∗ if the fluid model for the given policy is stable for all λ < µ∗, and if the fluid model of the
system is unstable for all λ > µ∗ under every policy.

Complete resource pooling and stability of the fluid limits and fluid model have far-reaching consequences
for the stochastic system if some technical conditions are satisfied. In particular, in the following three
theorems we will make the technical assumption that in the state space of the Markov processes considered,
every bounded set of states is unifromly small. For definition of uniformly small sets of states in a Markov
process, see Bramson [10] or Meyn and Tweedie [25].

Theorem 3. Consider the Markov process Z (t) and define
∑J
j=1

∑I
i=1(Qci,j(t)+Vsj ,ci(t))+U(t) as its norm.

Assume that every bounded set of states is uniformly small. If the fluid model of the system is stable then the
process Z (t) is ergodic, i.e. it possesses a stationary distribution, and the distribution of its state at time t
converges to this stationary distribution as t→∞.

Proof. This follows immediately from the fundamental theorem of Dai [12] and its extension in the monograph
of Bramson [10].

Theorem 4. For the Markov process Z (t) define
∑J
j=1

∑I
i=1(Qci,j(t)+Vsj ,ci(t))+U(t) as norm, and assume

that every bounded set of states is uniformly small as in Theorem 3. Consider the process Z 0(t) obtained from
Z (t) by the exclusion of the components U(t), Qci,J(t). If complete resource pooling of the fluid model holds,
and if ȲJ(t) < λt, then there exists a measure ν0 on the state space of Z 0(·) such that as t→∞ the distribution
of Z 0(t) converges to ν0.

Proof. Consider the same system with infinite supply of work, i.e., there is always a queue of customers
waiting behind the most advanced server, of types ci ∈ C i.i.d. with probabilities αci . Then in this new system

Z 0(t) is a Markov process, and with the norm
∑I
i=1

(∑J−1
j=1 Qci,j(t) +

∑J
j=1 Vsj(t),ci(t)

)
every bounded set

of states is uniformly small. If complete resource pooling holds then the fluid model of the process Z 0(t) for
the unlimited supply of work system is stable. Hence, by the fundamental theorem of Dai [12], the process
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is ergodic, with some stationary measure ν0. Returning to the original system, and the process Z (t), we
have Z (t) =

(
Z 0(t), U(t), Qci,J(t)

)
where the process Z (t) is transient because by ȲJ(t) < λt we have

Qci,J(t) → ∞ as t → ∞ almost surely. However, the process Z (t) exactly satisfies the conditions of the
Lemma of Adan, Foss, Shneer and Weiss [3]. It follows that the distribution of Z 0(t) converges to ν0.

We discuss the meaning of this theorem. It says that under complete resource pooling if the arrival rate is
high the queue in front of all the servers will grow linearly but the servers will stay close together and move
at some joint average rate, so that the permutation of the servers and the queues of customers between them
will tend to a stationary distribution.

We consider now the case that there is no complete resource pooling. Consider a partition (S1, . . . , SL), let
S` = {Mk, . . . ,Ml} be the servers in positions k, . . . , l. We denote by Q` = (Qci,k, . . . , Qci,l−1, ci = 1, . . . , I)
the queues of customers between the servers of S`, and by v` = (vMk,ci , . . . , vMl,ci , i = 1, . . . , I) the remaining
processing times of the servers of S`.

Theorem 5. Assume that for all t > 0 there is a fixed partition (S1, . . . , SL) such that ȲS1
(t) < · · · ȲSL

(t) < λt

and ˙̄YS1
(t) < · · · ˙̄YSL

(t) < λ. Consider the processes Z `(t) =
(
Mj(t), Q`(t), v`(t) : Mj ∈ S`

)
. Then there

exist measures ν` on the state spaces of Z `(·) such that as t → ∞ the distribution of Z `(t) converges to ν`

for ` = 1, . . . , L.

Proof. Consider the subsystem of Mj ∈ S`, and ci ∈ C(S`)\C(S`+1 ∪ · · · ∪ SL). With infinite supply of jobs
of these types the system will be ergodic with stationary measure ν`. The Theorem again follows from the
Lemma of Adan, Foss and Weiss [3].

When there is no resource pooling and the arrival rate is high, the servers will split to subsets which move
together at some joint average rate, tending to a stationary distribution of the queues inside each subset, but
the queues separating these subsets of servers will grow without bound.

In general, fluid model equations (8), (9) do not determine the paths of Ȳ , and do not provide us with a
way of verifying complete resource pooling or stability of the fluid model. This is not simply because we have
not found the right fluid model equations necessary for that calculation. The fact is that for general bipartite
graphs with service rates µsj ,ci that depend on both server and the customer type, under FCFS, first order and
second order moment information alone does not determine the fluid limits of the system. This was discovered
in the seminal paper of Foss and Chernova [15]. They consider a system with 3 servers, 3 customer types and
an almost complete bipartite compatibility graph as illustrated in Figure 5. Here αc1 = αc2 = αc3 = 1/3, and

FR
FRFL

FL FR
FL

c1 c2 c3

s2 s3s1

Figure 5: A symmetric system with an almost complete 3 server 3 customer types graph.

the service time distributions are vs1,c1 ∼ FR, vs1,c2 ∼ FL, vs2,c1 ∼ FL, vs2,c3 ∼ FR, vs3,c2 ∼ FR, vs3,c3 ∼ FL,
with means mL 6= mR, so that each server has two service time distributions, and each customer type has
two service time distributions. Foss and Chernova show that for some fixed λ,mL,mR it is possible to choose
FL, FR in such a way that the system under FCFS (they actually consider the equivalent JSW policy) is
positive Harris recurrent, but under a different choice of FL, FR it is transient.

In the rest of the paper we impose further assumptions on the service rates or on the shape of the bipartite
graph, under which we derive more detailed fluid model equations. With the aid of these we can verify
complete resource pooling and stability of the fluid limits, and find conditions under which they hold.
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5 Service rates depend only on server

We now consider the special case where service rates depend only on the server (SD), and not on the
customer type which he serves. We let msj and µsj = 1/msj be the mean service time and the service rate of
server sj . Define µ =

∑
sj∈S µsj and βsj = µsj/µ. Then µ is the total service capacity of the system, and βsj

is the fraction of service capacity provided by server sj . For a subset S of server types we use the notation
µS =

∑
sj∈S µsj , βS =

∑
sj∈S βsj . In that case we have immediately:

Corollary 2. Assume µsj ,ci = µsj , ci ∈ C(sj), j = 1, . . . , J . Under the conditions of Theorem 2 a.s. all fluid
limits at s < τ < t must satisfy:

˙̄Yj(τ) =
µ{Mk,...,Ml}

αC(Mk,...,Ml)\C(Ml+1,...,MJ )
, j = k, . . . , l. (11)

Proof. Substituting µMj ,ci = µMj into (9), and summing over ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ) we obtain:

˙̄Yl(τ)αC(Mk,...,Ml)\C(Ml+1,...,MJ ) =

l∑
j=k

µMj

∑
ci∈C(Mj)\C(Ml+1,...,MJ )

˙̄TMj ,ci(τ)

and using (8) the corollary follows.

This shows that in the SD special case, indeed all the fluid trajectories of Ȳj are along straight lines,
as in Figure 4. The following theorems and definition characterize the fluid limits of Ȳj completely. The
proofs of these theorems was given in Proposition B10 in [5]. We present a slightly simplified proof here for
completeness.

Condition for complete resource pooling in the SD case: For every subset of servers S 6= ∅,S and
every subset of customer types C 6= ∅, C, the following 3 equivalent conditions hold:

βS(C) > αC , αC(S) > βS , βS > αU(S). (12)

The following Lemma has often been used in proofs of fluid stability (see [14]), and is useful here:

Lemma 1. Let g(t) be an absolutely continuous nonnegative function on t ≥ 0 and let ġ(t) denote its derivative
whenever it exists.

(i) If g(t) = 0 and ġ(t) exists, then ġ(t) = 0.
(ii) Assume that for some ε > 0, whenever g(t) > 0 and ġ(t) exists, then ġ(t) < −ε. Then g(t) = 0 for

all t > δ where δ = g(0)/ε. Furthermore g(·) is nonincreasing and hence, once it reaches zero, it stays there
forever.

Theorem 6. (i) Assume that condition (12) holds, then complete resource pooling holds, that is, for any initial
conditions there exists t0 such that for every fluid limit Ȳ1(t) = · · · = ȲJ(t) = min(µt, λt) holds for t > t0.

(ii) Assume that condition (12) only holds with ≥ instead of >. Then complete weak resource pooling holds.
(iii) Assume that complete resource pooling condition (12) is strictly violated. Then it is not possible to

have Ȳ1(τ) = · · · = ȲJ(τ) < λτ for all τ in an interval s < τ < t.

Proof. (i) Assume that (12) holds, and that at time t the servers are split into the ordered partition S̄(t) =
(S̄1, . . . , S̄L), and each of these subsets of servers are moving together.

By Corollary 2,

˙̄Y1(t) = µ
βS̄1

αU(S̄1)

, ˙̄YJ(t) = min
(
λ, µ

βS̄L

αC(S̄L)

)
.

By (12),
βS̄1

αU(S̄1)
> 1 while

βS̄L

αC(S̄L)
< 1. Hence ˙̄Y1(t) > µ while ˙̄YJ(t) ≤ min(λ, µ), so that d

dt

(
ȲJ(t)− Ȳ1(t)

)
< 0.

By looking at the finite number of all different splits we can find ε > 0 such that d
dt

(
ȲJ(t) − Ȳ1(t)

)
< ε < 0.

(i) then follows from Lemma 1.
(ii) Assume first that for some S, βS = αU(S), in which case also βS = αC(S), and consider the case that

for all other subsets, (12) holds. Assume at time t a partition S̄(t) = (S1, . . . , SL) in which S1 is netiher S nor
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S. In that case by the argument of (i), ˙̄Y1(t) > ˙̄YJ(t). This shows that for some t0 we have for all t > t0 the
trajectories are given by the partition S̄(t) = {S, S}. The proof for any number of weak inequalities in (12)
follows by induction.

(iii) If resource pooling is strictly violated then there exists a subset of the servers, S = {M1, . . . ,ML},
such that βS < αU(S). Assume contrary to the statement of the proposition that there exists a fluid limit for

which Ȳ1(τ) = · · · = ȲJ(τ) < λτ for τ ∈ [t, t+ ∆], ∆ > 0. Denote the common value of Ȳj ,
˙̄Yj , j = 1, . . . , J by

ȲCommon,
˙̄YCommon. Consider customer types ci ∈ U(M1, . . . ,ML). By (8)-(9) we have:

˙̄YCommon(τ)αU(M1,...,ML) =

L∑
j=1

µMj

( ∑
ci∈U(M1,...,ML)

˙̄TMj ,ci(τ)
)
≤

L∑
j=1

µMj

Hence we obtain
˙̄YCommon(τ) ≤ µ βS

αU(S)
< µ.

On the other hand, if Ȳ1(τ) = · · · = ȲJ(τ) < λτ for τ ∈ [t, t+ ∆], ∆ > 0, then by summing (9) over all servers

and all customer types and using (8), we obtain ˙̄YCommon(τ) = µ. This contradiction proves (ii).

Definition 3. Consider a partition of the servers into subsets S′, S, S′′. We say that S satisfies complete
resource pooling condition (12) between S′ and S′′ (the order of S′ before S′′ is important here), if the sub-
system which consists of servers sj ∈ S, and the customer types ci ∈ C(S)\C(S′′), with β̃sj = βsj/βS,
α̃ci = αc1/αC(S)\C(S′′), satisfies (12).

We now have the following theorem, which enables us to trace the exact piecewise linear trajectories of the
fluid model of the system:

Theorem 7. Consider a fluid limit with Ȳk−1(t) < Ȳk(t) = · · · = Ȳl(t) < Ȳl+1(t) ≤ λt for some t and let
S̄(t) = (S′, {Mk, . . . ,Ml}, S′′) be the corresponding partition of the servers. Then

˙̄Yj(t) = µ
β{Mk,...,Ml}

αC(Mk,...,Ml)\C(S′′)
, j = k, . . . , l (13)

during t < τ < t+∆ for some ∆ > 0, if and only if {Mk, . . . ,Ml} satisfies complete resource pooling condition
of Definition 3 between S′ and S′′.

Proof. If Ȳk−1(t) < Ȳk(t) = · · · = Ȳl(t) < Ȳl+1(t) ≤ λt then by continuity, for some ∆: Ȳk−1(τ) < Ȳk(τ) ≤
· · · ≤ Ȳl(τ) ≤ Ȳl+1(τ) ≤ λτ for t < τ < t + ∆, and so going back to the originating ω and subsequence r for
large enough r, we will have Ȳ rk−1(rτ) < Ȳ rk (rτ) ≤ · · · ≤ Ȳ rl (rτ) ≤ Ȳ rl+1(rτ) ≤ λrτ for rt < rτ < rt + r∆.
In other words, servers Mk, . . . ,Ml will serve customer types ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ) as an
isolated FCFS-ALIS sub-system, in the time interval (rt, rt + r∆). The theorem then follows by applying
Theorem 6 to this subsystem.

Corollary 3. Under complete resource pooling, the fluid model is stable if and only if λ < µ

It is shown in [5] that if resource pooling does not hold then there exists a unique decomposition of the
system into subsystems (S(1), C(1)), . . . , (S(L), C(L)) with C(`) = U(S1 ∪ · · · ∪ S(`))\U(S1 ∪ · · · ∪ S(`−1)) and
service rates µ(`) = µβS(`) , and there are then values λ(1) < · · · < λ(L) so that system (S(`), C(`)) on its own
is stable for all λ < λ(`), and the combined system exhibits local stability. These results carry over to our
system.

In summary, for the SD case we get the complete traces of the fluid model of the system, including answers
to questions of stability, resource pooling, or decomposition, under FCFS policy. In fact the fluid models are
independent of the service time distributions, and depend only on first order moments. In particular, the
results are the same as those obtained for the system with Poisson arrivals and exponential service rates.

On the question of matching rates, the fluid model in not informative enough. While we can obtain
matching rates in the Poisson-exponential case as done in [4], we cannot calculate matching rates for general
service time distributions in the SD case. We return to this question in Section 9. Matching rates can be
calculated for some special bipartite graphs — we do that in Section 7.
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6 Service rates depend only on customer type

We now consider the special case where service rates depend only on the customer type (CD), regardless
of which of the compatible servers is serving. We let mci and µci = 1/mci be the mean service time and the
service rate for customer type ci. In that case the total service capacity of the system is |S| = J , for the J
servers, but capacity for each subset C of customer types is |S(C)|, the number of compatible servers.

In that case we have immediately:

Corollary 4. Assume µsj ,ci = µci , for sj ∈ S(ci), i = 1, . . . , I. Under the conditions of Theorem 2 a.s. all
fluid limits at s < τ < t must satisfy:

˙̄Yj(τ) =
l − k + 1∑

ci∈C(Mk,...,Ml)\C(Ml+1,...,MJ ) αcimci

, j = k, . . . , l. (14)

Proof. Substituting µMj ,ci = µci into (9), we have:

˙̄Yj(τ)αcimci =

l∑
j=k

˙̄TMj ,ci(τ), ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ).

and summing over all ci ∈ C(Mk, . . . ,Ml)\C(Ml+1, . . . ,MJ) we get by (8) that

˙̄Yj(τ)
∑

ci∈C(Mk,...,Ml)\C(Ml+1,...,MJ )

αcimci = l − k + 1.

This shows that also in the special case of CD all the fluid trajectories of Ȳj are along straight lines, as in
Figure 4. The following definition and theorems characterize the fluid limits of Ȳj completely.

Condition for complete resource pooling in the CD case: For every subset of servers C 6= ∅, C:

|S(C)|
|S|

>

∑
ci∈C αcimci∑
ci∈C αcimci

. (15)

Theorem 8. (i) If condition (15) holds then complete resource pooling holds, i.e., for some t0 and for any λ,
Ȳ1(t) = · · · = ȲJ(t) for all t > t0.

(ii) If (15) holds only with ≥ replacing >, then complete weak resource pooling holds.
(iii) If (15) is strictly violated then complete resource pooling does not hold.

Proof. If Ȳ1(τ) = · · · = ȲJ(τ) for s < τ < t then by (14)

˙̄Yj(τ) =
|S|∑

ci∈C αcimci

(16)

Assume that ȲJ(t) > Ȳ1(t) and assume partition S1(t), . . . , SL(t). We show that if (15) holds then there

exists ε > 0 such that ˙̄Y1(t)− ˙̄YJ(t) ≥ ε, which by Lemma 1 proves that complete resource pooling holds.
Indeed, by Corollary 4 and (15):

˙̄YS1
=

|S1|∑
ci∈U(S1) αc1mci

>
|S|∑

ci∈C αcimci

,

On the other hand:
|S|∑

ci∈C αc1mci

=
|S\SL|+ |SL|∑

ci∈C\C(SL) αcimci +
∑
ci∈C(SL) αcimci

and C\C(SL) = C(S\SL), and hence |S\SL|∑
ci∈C\C(SL) αci

mci
> |S|∑

ci∈C αci
mci

which implies that:

˙̄YSL
=

|SL|∑
ci∈C(SL) αc1mci

<
|S|∑

ci∈C αcimci

,
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The proof of (ii) is similar to the proof of (ii) in Theorem 6.
If the condition (15) is strictly violated then clearly it is not possible to have Ȳ1(τ) = · · · = ȲJ(τ) for

s < τ < t. If it is only weakly violated, i.e., there exists C,S(C) such that |S(C)|
|S| =

∑
ci∈C αci

mci∑
ci∈C αci

mci
, then if

initially servers S(C) are behind all the others, they will never catch up with ȲJ .

All the trajectories of the fluid limits for the CD case can be determined by the following Corollary, which
mimics Theorem 7, and has the same proof.

Corollary 5. Consider a fluid limit with Ȳk−1(t) < Ȳk(t) = · · · = Ȳl(t) < Ȳl+1(t) ≤ λt for some k, l, and t,
and let S̄(t) = (S′, {Mk, . . . ,Ml}, S′′) be the corresponding partition of the servers. Then

˙̄Yj(t) =
l − k + 1∑

ci∈C(Mk,...,Ml)\C(S′′) αcimci

/
αC(Mk,...,Ml)\C(S′′)

(17)

during t < τ < t + ∆ for some ∆ > 0, if and only if the subsystem consisting of {Mk, . . . ,Ml} and
C(Mk, . . . ,Ml)\C(S′′) satisfies condition (15).

As in the SD case, we get a complete picture of the fluid model in the CD case. Similar to the SD case
however, the fluid model does not contain enough information to calculate the matching rates.

7 Systems with computable matching rates

For some types of compatibility graphs it is possible to calculate the matching rates of the fluid model, and
in those cases one can again show that the fluid levels are piecewise linear, and calculate their trajectories.
We consider two such special types of networks: networks with complete bipartite compatibility graph and
networks with tree compatibility graph, as well as their hybrid. The fluid models for these systems under
FCFS were considered by Talreja and Whitt [28], for the SD case. In our derivations here we allow service
rates to depend both on the server and on the customer type.

7.1 Network with complete bipartite compatibility graph

We now assume that every server can serve all types of customers, i.e., the compatibility graph is a complete
bipartite graph. If all the servers can serve all the customers, then servers will never skip customers, and in
effect the system will just behave like a GI/GI/J queueing system with non-identical servers.

When a server will complete service he will immediately overtake all the other servers and will start
serving the first waiting customer. Average service time for server sj , service rate for server sj , and total
service capacity of the system, are then:

µ =

J∑
j=1

µsj , µsj = msj
−1, msj =

∑
ci∈C(sj)

αcimsj ,ci , (18)

and we can calculate matching rates as follows:

rsj ,ci =
µsj
µ

αci∑
ck∈C(sj) αck

. (19)

Using the same arguments as for GI/GI/J we get:

Theorem 9. For the case of a complete bipartite compatibility graph, under FCFS-ALIS policy, there is
complete resource pooling always, and for every fluid model almost surely

Ȳ1(t) = · · · = ȲJ(t) = min
(
ȲJ(0) + µt, λt

)
, t > 0,

where µ is given in (18). The matching rates while ȲJ(t) < λt are given by rsj ,ci in (19).

Proof. Recall that ȲJ(0) ≤ 0 in our system description. The matching rates correspond to the fact that server
devotes a fraction αci/

∑
ck∈C(sj) αck of his services to type ci. The service rate of each server is given by (18)

as long as there is a queue, and so his fraction of all services is µsj/µ, and (19) follows.
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7.2 Network with tree bipartite compatibility graph

A tree graph is a connected graph with no loops. With K nodes it will have exactly K − 1 edges, and it
will always have at least two leaves (nodes that are connected by a single edge). Furthermore, any sub-graph
will be a tree, or a union of disconnected trees (a forest). We now assume that the bipartite graph G is a tree.
It has I + J nodes and therefore it has I + J − 1 compatible pairs (edges), and at least two leaves, each of
which can be either a server or customer type.

Let S1, . . . , SL be an ordered partition of s1, . . . , sJ . Denote by C` = C(S`)\C(S`+1 ∪ · · · ∪ SL). Consider
now a fluid limit Ȳ1(τ), . . . , ȲJ(τ), with permutation M̄1(τ), . . . , M̄J(τ), and assume that for all s < τ < t the
following holds:

M̄j(τ), M̄j′(τ) ∈ S` =⇒ P̄Mj (τ) = P̄Mj′ (τ),

M̄j(τ) ∈ S` and M̄j′(τ) ∈ S`+1 =⇒ P̄Mj (τ) < P̄Mj′ (τ) or P̄Mj (τ) = P̄Mj′ (τ) (20)

and the subgraphs of (S`, C`), (S`+1, C`+1) are not connected

We denote the common value of P̄Mj
(τ) for Mj ∈ S` by ȲS`

(τ). Clearly, by the continuity of the Ȳj(·), such
a partition is defined for every t and for some s < t. This partition is a refinement of the partitions discussed
in Sections 3, 5, where we further divide subset of servers that move together, so that each such subset will
have the property that each (S`, C`) is connected.

Theorem 10. Assume that the bipartite compatibility graph is a tree, and consider the partition (S1, . . . , SL)
as in (20) valid for s < τ < t. Then:

(i) Equations (8)-(9) have a unique solution, for every S` ∈ (S1, . . . , SL), and hence ˙̄TMj ,ci(τ), ˙̄Yj(τ) are
constant for s < τ < t. As a result, almost surely, the fluid limit has unique continuous piecewise linear
trajectories.

(ii) Consider the set of equations ∑
ci∈C(sj)

ηsj ,ci = 1 j = 1, . . . , J,

∑
sj∈S(ci)

µsj ,ci
αci

ηsj ,ci = µ, i = 1, . . . , I (21)

with the I + J − 1 unknowns ηsj ,ci , (sj , ci) ∈ G, and an additional unknown µ. The system will have complete
resource pooling if and only if (21) has a positive solution, and it will have complete weak resource pooling if
the solution is non-negative.

(iii) If complete resource pooling holds then µ is the pooled service rate, and the matching rates are given
by:

rsj ,ci =
µsj ,ciηsj ,ci

µ
. (22)

Proof. (i) The equations (8)-(9) for each S` are:∑
ci∈C`

˙̄TMj ,ci(τ) = 1, Mj ∈ S`,

˙̄YS`
=
∑
sj∈S`

µMj ,ci

αci

˙̄TMj ,ci(τ), ci ∈ C`.

with unknowns ˙̄YS`
and ˙̄TMj ,ci(τ) for each edge in the subgraph (S`, C`). Since the subgraph is a connected

tree, the number of unknowns is equal to the number of equations. The equations are independent, so the
solution is unique, for all t < τ < s. The solution must be non-negative, because the fluid limits exist. This
proves that the fluid limit ȲS`

moves along a linear trajectory in the interval (s, t).
We note that the equations can be solved in |S`|+ |C`| steps: Locate a leaf in the graph. If it is Mj , it has

a single customer type ci = C(Mj) ∩ C`, and ˙̄TMj ,ci(τ) = 1. If it is ci it has a single server Mj = S(ci) ∩ S`,
and then ˙̄TMj ,ci = ˙̄YS`

αcimMj ,ci . In either case one can eliminate the leaf node and one equation and continue
to solve for the remaining graph. Note that deleting a leaf from a tree leaves a connected tree.

17



(ii) Clearly if there is no positive solution to (21) then there can be no complete resource pooling (i.e., it
is impossible to have Ȳ1(τ) = · · · = ȲJ(τ) for any interval of τ ’s). If the solution is non-negative with some
0 values for some edges, this implies that some disconnected subtrees move at the same rate, but may have
different initial positions. So the system has complete weak resource pooling. Assume that (21) has a positive
solution. We need to show that for some t0 all the trajectories Ȳj(t) meet for t > t0. Assume that at time t,

Ȳ1(t) < ȲJ(t). We will show that ˙̄YJ(t)− ˙̄Y1(t) < 0, which by Lemma 1 will complete the proof.
By continuity we have for an interval t − δ < τ < t + δ in which the partition is S = (S1, . . . , SL), where

S1 = (M1, . . . ,Mk) and SL = (Ml, . . . ,MJ) and ȲS1(τ) < ȲSL
(τ). We will show that ˙̄YS1(τ) > ˙̄YSL

(τ).

Denote by µ(S1), η
(S1)
Mj ,ci

and µ(SL), η
(SL)
Mj ,ci

the non-negative solutions of (8)-(9) for S1 and for SL, and by

µ(0), η
(0)
sj ,ci the positive solution of (21).

We note that the solution of (8)-(9) for the tree graphs (S`, C`), ` = 1, . . . , L, as well as for the complete
tree graph (S, C) are in fact the unique optimal solutions of the corresponding linear programs (LP):

max µ

s.t.


∑
ci∈C`

ηMj ,ci ≤ 1, Mj ∈ S`,∑
Mj∈S`

µMj ,ciηMj ,ci ≥ µαci , ci ∈ C`,
ηMj ,ci ≥ 0.

The fact that they are unique optimal solutions is explained in the following Section 8.

Consider then the LP (23) for (S1, C1), and substitute the values of µ(0), η
(0)
Mj ,ci

. We then have that:∑
Mj∈S1

µMj ,ciη
(0)
Mj ,ci

= µ(0)αci , ci ∈ C1,

because S(C1) = S1, since C1 includes customers that were skipped by all the other servers. At the same
time: ∑

ci∈C`)

η
(0)
Mj ,ci

< 1, for at least one Mj ∈ S1,

because the graph of (S, C) is connected, and therefore there exists a link from some server Mj ∈ S1 to a

customer type ci 6∈ C1, and by assumption η
(0)
Mj ,ci

> 0. Hence this is a feasible but not optimal solution, which

proves that µ(S1) > µ(0).
On the other hand, consider the LP (23) for (SL, CL). Because CL = C ∩ C(SL), it has all the constraints

as the LP for (S, C), with the additional constraints that ηMj ,ci = 0 whenever Mj 6∈ SL. Hence the LP for
(SL, CL) is more constrained than that for S, C, and further more, in the optimal solution of S, C all the

η
(0)
Mj ,ci

> 0. This implies that µ(SL) < µ(0).

But, µ(S1) = ˙̄YS1 = ˙̄Y1, µ
(SL) = ˙̄YSL

= ˙̄YJ , and we have shown that if Ȳ1(t) < ȲJ(t) then ˙̄Y1(t)− ˙̄YJ(t) > 0,
as required.

(iii) In the optimal solution of (21) the values of ηsj ,ci are the fractions of time allocated by server sj
to customers of type ci, and therefore the rate at which customers of type ci are processed by server sj is
µsj ,ciηsj ,ci . The total processing rate is then the sum of all these µ =

∑
sj ,ci∈G µsj ,ciηsj ,ci , which is indeed the

solution of (21). The matching rates are therefore given by (22).

Remark 1. A system is a hybrid of the systems studied in Sections 7.1-7.2, if its bipartite compatibility graph
consists of several complete graphs which are connected by a tree graph. For these hybrid systems one can
again calculate the matching rates, and obtain a complete description of the fluid model trajectories.

8 Maximal throughput under FCFS

We consider a static planning problem similar to Harrison and Lopez [22]:

maxµ

s.t.


∑
ci∈C(sj) ηsj ,ci ≤ 1, sj ∈ S,∑
sj∈S(ci)

µsj ,ciηsj ,ci ≥ αciµ, ci ∈ C,
ηsj ,ci ≥ 0, (sj , ci) ∈ G

(23)
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with the decision variables ηsj ,ci , (sj , ci) ∈ G and µ. Here ηsj ,ci is the fraction of time that server sj allocates
to customers of type ci, and µ is the rate at which the total stream of arrivals is served. The first J constraints
(the server constraints) say that the sum of allocations for each server cannot exceed 1. The next I constraints
(the customer constraints) say that the allocations ηsj ,ci , are sufficient to serve the fraction customers of type
ci, to keep up with the total service rate µ. In terms of our system, ηsj ,ci can be thought of as long term

average of ˙̄Tsj ,ci , and µ can be thought of as long term average of ˙̄Y1, the rate of progress of Ȳ1.
The following Theorem is a simple consequence of Theorem 1 in the paper of Dai and Lin [13]

Theorem 11 (Dai-Lin [13]). Let µ∗ be the optimal value of the LP (23). Then under any policy, the fluid
model is unstable if λ > µ∗, so any policy that achieves fluid stability for all λ < µ∗ is throughput optimal.

Proof. Consider the departure processes of customers of type ci. Denote its fluid limits by D̄ci(t), and let the

fluid allocation rates be ˙̄Tsj ,ci(t). Under any policy,
∑
ci∈C(sj)

˙̄Tsj ,ci(t) ≤ 1 needs to hold for all t > 0 for all

servers. Also, for any fluid limit, under any policy ˙̄Dci(t) =
∑
µsj ,ci

˙̄Tsj ,ci(t). It follows that the fluid model

can only be stable if for every ci,
˙̄Dci(t) =

∑
µsj ,ci

˙̄Tsj ,ci(t) ≥ λαci . Hence µ∗ is an upper bound on λ for
which the fluid model can be stable.

We note that (23) is an optimization problem for a network with gains (cf. [6]). We now proceed to discuss
the solution of the problem (23) through a number of observations.

(i) The problem is feasible, since 0 for all decision variables is a solution.

(ii) The problem is bounded, since µ is bounded by a positive linear combination of the ηsj ,ci , and each
ηsj ,ci ≤ 1.

(iii) The optimal value is µ∗ > 0, since the problem is feasible if we take ηsj ,ci = 1
I J .

(iv) The server constraints are satisfied as equalities in the optimal solution, since µ can only increase with
every ηsj ,ci .

We rewrite the LP and its dual, DP, in a slightly different form, including slack variables:

LP


maxµ

s.t.


∑
ci∈C(sj) ηsj ,ci = 1, sj ∈ S,

µ−
∑
sj∈S(ci)

µsj,ci

αci
ηsj ,ci + θci = 0, ci ∈ C,

ηsj ,ci , θci ≥ 0, (sj , ci) ∈ G.

DP


min

∑
sj∈S ysj

s.t.


∑
ci∈C zci = 1,

ysj −
µsj,ci

αci
zci − xsj ,ci = 0, (sj , ci) ∈ G,

zci , xsj ,ci ≥ 0, (sj , ci) ∈ G.

We observe that:

(v) In the optimal solution there is at least one ηsj ,ci > 0 for each server sj , and at least one ηsj ,ci > 0
for each customer type ci, since the server constraints are satisfied as equalities, and in the customer
constraints µ > 0.

(vi) Every basic optimal solution has no less than min{I, J} and no more than I + J − 1 positive ηsj ,ci , by
(v) and since there are I + J constraints and µ > 0.

(vii) Since the primal is feasible and bounded, both the primal and the dual possess optimal solutions.

(viii) In an optimal solution ysj ≥ 0, since it needs to be ≥ than non-negative quantities.

The most important property of the solutions is the following results, which must be known and hidden
in the literature on network flows with gains, but we could not find a good explicit reference and we provide
a proof here.
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Lemma 2. The positive arcs in a basic solution of the LP (23) cannot contain a cycle.

Proof. Assume that a basic solution of LP (23) contains the columns of a cycle of arcs of G, which for
simplicity we assume are labeled as (s1, c1), (s1, c2), (s2, c2), (s2, c3), . . . , (sL−1, cL), (sL, cL), (sL, c1). We will

get a contradiction. Denote aj,i =
µsj,ci

αci
, for these arcs. Consider the complementary slack dual solution. It

will have xsi,ci = 0 for all the 2L arcs in the cycle. That implies that ysj = aj,izci for all these arcs. This
implies that

a1,1a2,2···aL,L

a1,2a2,2···aL,1
= 1. Consider now the square matrix formed by 2L columns corresponding to these

arcs, and the 2L non-zero rows of these columns. Its determinant is a1,1a2,2 · · · aL,L − a1,2a2,2 · · · aL,1 = 0.
Hence this cannot be a basis.

In an optimal solution of the LP (23) we refer to the arcs with positive values of ηsj ,ci as the solution
graph.

Theorem 12. Consider an optimal basic solution of the LP (23).
(i) Assume all the slacks θci = 0, the optimal solution graph is a tree, and all the I + J − 1 basic variables

ηsj ,ci > 0. Then erasing all the non-basic arcs and using FCFS for the remaining graph will achieve complete
resource pooling and be throughput optimal with processing rate µ∗.

(ii) Assume all the slacks θci = 0, the optimal solution graph is a tree, but some of the I + J − 1 basic
variables are = 0. Then erasing all the non-basic arcs, and all the basic arcs with ηsj ,ci = 0, and using FCFS
for the remaining graph will achieve complete weak resource pooling and be throughput optimal with processing
rate µ∗.

(iii) If for some ci, θci > 0, let C1 = {ci : θci = 0} and let S1 = S(C1), and assume that the subgraph
S1, C1 is connected. Then in the solution graph S1, C1 are not connected to the remaining nodes. Furthermore:
formulate the LP (23) for the subsystem S1, C1 with the corresponding arcs of G. Then for this smaller problem
either (i) or (ii) holds, and under FCFS complete resource pooling holds, the processing rate is µ1 = µ∗ and
this policy is throughput optimal for C1.

(iv) In the case of (iii), formulating the LP (23) for the subgraph of S\S1, C\C1, the optimal solution will
have µ2 > µ1. Continuing in this way one obtains a unique decomposition of the the system to subgraphs
(S1, C1), . . . , (SL, CL) each of which has an optimal tree solution, such that under FCFS it will have com-
plete resource pooling, moving at rates µL > · · · > µ1, and these rates are maximal throughput for (S`, C`)
conditional on retaining the solutions of (S1, C1), . . . , (S`−1, C`−1).

Proof. (i) If in an optimal basic solution all the slacks θci = 0 then the solution will have µ > 0 and I + J − 1
basic variables ηsj ,ci which by Lemma 2 have no loops and hence the solution graph is a tree. We assume
that all the arcs in the tree have ηsj ,ci > 0. If we use only the arcs of the tree, we have a system with a
tree bipartite graph, and by Section 7.2, this system under FCFS will have complete resource pooling and
processing capacity µ∗. By Theorem 11 this will be throughput optimal.

(ii) If some of the arcs of the solution tree have ηsj ,ci = 0, then by Theorem 10 the system with only the
arcs of the solution graph under FCFS will have complete weak resource pooling, with processing capacity µ∗.
By Theorem 11 this will be throughput optimal

(iii) Consider ci ∈ C1, and assume that for some sj ∈ S(ci) and ck 6∈ C1, the optimal solution has ηsj ,ck > 0.
it is then possible to reduce ηsj ,ck > 0 and increase ηsj ,ci for all ci ∈ C1, without violating the feasibility of
the solution. But this modified solution can only increase the objective value. This proves that in the solution
graph S1, C1 is not connected to any other parts of the system. Hence, solving the reduced problem for S1, C1

the optimal solution will have θci = 0, ci ∈ C1, the solution graph will be a tree, and the optimal value for
the reduced problem will be µ1 = µ∗.

(iv) Clearly if for some ci, θci > 0 then there must exist (C1, S1) with a connected subgraph such that the
conditions of (c) hold and µ1 equal to the optimal µ∗ the value for the whole system. This then is maximum
throughput for C1. If we remove this C1 and its servers, we can continue to decompose the remaining graph.

The results of Theorem 12 are for a particular basic solution. If there are several basic solutions, one might
ask whether when using all the arcs of a non-basic solution and FCFS policy, there will be complete resource
pooling and maximum throughput. We do not currently know the answer in general. For the special case of
customer dependent service (CD) the answer is positive: As shown in Section 6, using the full bipartite graph
we get complete resource pooling and maximum throughput under condition (15).
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9 Exploration of the server dependent case under general service
distributions

We have shown in Section 5 that the fluid model for the server-dependent case with general renewal arrivals
and service times is the same as the fluid model for the Poisson exponential case. In particular, the necessary
and sufficient condition for complete resource pooling is insensitive to the service time distribution. However,
our fluid model analysis does not provide enough information to calculate the matching rates rij for this more
general case. It is tempting to conjecture that if the system is overloaded, the matching rates will be the same
as for the Poisson exponential case, and thus will be given by the matching rates calculated for the FCFS
infinite bipartite matching model of [4].

This, however, is not the case. A simulation study reveals that in general, the matching rates in an
overloaded, server-dependent system are sensitive to the service time distribution. The matching rates of
such a system under non-exponential service time distribution are very close to those under the exponential
distribution, yet they are different, in a statistically significant manner.

We considered three topologies for the system, labeled 1–3, shown in Figure 6. The topologies were
parameterized by the customer type probabilities α and service rates µ as shown in Table 1. For each
topology, we used three service time distributions: Pareto (denoted by the subscript ‘p’), and two versions
of the uniform distribution (‘u1’ and ‘u2’). In the Pareto case, we used a distribution having the density
f(x) = 3γ(γx + 1)−4, x ≥ 0. This Pareto distribution has only first and second finite moments, and is
parameterized by a scale parameter γ, so that its mean is 1/2γ. Thus, to achieve a service rate µj , we set
γ = µj/2. The two uniform distributions are U(0, 2/µj) and U(.9/µj , 1.1/µj).

1 2 3

C

S

1 2 3 1 2 3 4C

S 1 2 3 4

C

S 1 2 3 4 5 6

1 2 3 4 5 6

)2()1(

(3)

Figure 6: Topologies of the systems for the simulation study.

system α µ exponential Pareto Uniform 1 Uniform 2

1 (.2, .6, .2) (.4, .2, .4) .285 .299 .535 .074
2 (.1, .4, .4, .1) (.4, .3, .2, .1) .528 * .0078 *
3 (.1, .2, .2, .1, .2, .2) (.05, .1, .15, .2, .2, .3) .636 * * *

Table 1: System parameters for the simulation study, and resulting p-values of the Hotelling’s T 2 test. Asterisks
denote p-value < 10−15.

In each simulation replication, the system was initialized with all servers simultaneously starting service
of successive customers, each customer being randomly chosen from the server’s compatibility set. To let the
system approach steady state, it was first run for 100,000 service completions as a warmup period. After
warmup, the system was run for additional 1,000,000 service completions, and the fraction of services of
customer type ci by server sj was recorded. This procedure was repeated 100 times, and each element of the
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final estimated matrix r̂ is therefore a mean of 100 simulated fractions. The simulation was carried out using
the R programming language (www.r-project.org).

For each model, the matrix r was analytically computed as described in [4], and the estimated matrices
r̂p, r̂u1 , and r̂u2 were computed by simulation. The resulting matrices are shown below. The entries of
the estimated matrices are invariably very close to the theoretical r values, yet when comparing them using
Hotelling’s T 2 test (see below), it turns out in most cases that they are different in a statistically significant
manner; see the last three columns of Table 1. Interestingly, the matching rates in system 1 appear to be
insensitive to the service time distribution. As a control for the veracity of our simulation, we simulated
the system also under exponential service time distribution, and as expected, did not get any significant test
results; see column 4 of Table 1.

Hotelling’s T 2 test is the multivariate generalization of the ubiquitous Student’s t test. In each simulation
replication, the non-zero entries of the empirical matching rate matrix r̂ (those corresponding to service
compatibility) may be thought of as a realization of a random vector. The entries of this vector, however,
are dependent, as they must sum to 1. The null hypothesis of the test is that the mean of this vector is
the corresponding vector derived from the theoretical matching rate matrix r. The test’s statistics T 2 is a
scaled sum of the squared deviations of the observed vectors from the hypothesized mean vector; under the
null hypothesis, it possesses asymptotically an F distribution. To make the empirical covariance matrix of
the observed (simulated) vectors invertible, the last entry of each vector was omitted. For more details on
Hotelling’s T 2 test, see [24].

System 1

r =

0 .1 .1
.3 0 .3
.1 .1 0

 , r̂p =

 0 .09996 .10006
.29987 0 .30013
.1 .09997 0



r̂u1
=

 0 .1 .09996
.30002 0 .30003
.10001 .09998 0

 , r̂u2
=

 0 .10002 .10009
.29999 0 .29991
.10002 .09998 0



System 2

r =


.06443 0 0 .03557
.3356 .06443 0 0

0 .2356 .1644 0
0 0 .03557 .06443

 , r̂p =


.06477 0 0 .03524
.33519 .0648 0 0

0 .23523 .16478 0
0 0 .03531 .06468



r̂u1
=


.06447 0 0 .03553
.33549 .06447 0 0

0 .23556 .16447 0
0 0 .03554 .06446

 , r̂u2
=


.06465 0 0 .03537
.33535 .06461 0 0

0 .2354 .16465 0
0 0 .03535 .06463


System 3
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r =


.004584 .009497 0 0 0 .08592
.03825 .06356 .09819 0 0 0

0 .02694 .04084 .1322 0 0
0 0 .01097 .02815 .06087 0
0 0 0 .03963 .06184 .09854

.007164 0 0 0 .07729 .1155



r̂p =


.00462 .01039 0 0 0 .08499
.03853 .06318 .0983 0 0 0

0 .02638 .04062 .13298 0 0
0 0 .01098 .02787 .0612 0
0 0 0 .03923 .06149 .09927

.00681 0 0 0 .07741 .11575



r̂u1
=


.00465 .00894 0 0 0 .08645
.03781 .06386 .09834 0 0 0

0 .02718 .04078 .132 0 0
0 0 .0109 .02819 .06092 0
0 0 0 .03979 .06198 .09823

.00754 0 0 0 .07713 .11531



r̂u2
=


.00476 .00864 0 0 0 .08661
.0374 .06409 .09857 0 0 0

0 .02727 .04055 .13213 0 0
0 0 .01088 .02802 .0611 0
0 0 0 .03985 .06206 .09811

.00784 0 0 0 .07684 .11529


A similar phenomenon occurs with the steady-state distribution of the server span YJ(t)− Y1(t), which is

the distance between the leftmost and rightmost servers along the stream of customers (note that the minimal
value of the server span is J − 1). Figure 7 shows the distribution of the server span for the three systems
under the same four service time distributions, as estimated from simulation. Clearly, the distribution in each
system is sensitive to the service time distribution.

From [2], the steady-state distribution of the server permutations in the exponential case is given by

πR(S1, . . . , SJ) = Bs
J−1∏
`=1

(β{S1,...,S`} − αU{S1,...,S`})
−1,

where Bs is a normalizing factor. This distribution was estimated by simulation also for the non-exponential
cases, and the results for systems 1 and 2 are shown in Tables 2 and 3 (the results for system 3 are omitted
due to the size of the table — 6! = 720 rows). The deviations of the estimated values from the theoretical
ones are small, but statistically significant: when using again Hotelling’s T 2 test, the p-values in all 6 cases
(2 systems × 3 distributions) was < 10−15. In contrast, the p-values for systems 1 and 2 under simulated
exponential service times were 0.372 and 0.443, respectively. Thus, the steady-state distribution of the server
permutations is also sensitive to the service time distribution.
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