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We propose a game model for selfish routing of atomic agents, who compete for use of a network to travel

from their origins to a common destination as fast as possible. We follow a frequently used rule that the

latency an agent experiences on each edge is a constant transit time plus a variable waiting time in a queue. A

key feature that differentiates our model from related ones is an edge-based tie-breaking rule for prioritizing

agents in queueing when they reach an edge at the same time. We study both nonadaptive agents (each

choosing a one-off origin-destination path simultaneously at the very beginning) and adaptive ones (each

making an online decision at every nonterminal vertex they reach as to which next edge to take). On the one

hand, we constructively prove that a (pure) Nash equilibrium (NE) always exists for nonadaptive agents, and

show that every NE is weakly Pareto optimal and globally first-in-first-out. We present efficient algorithms

for finding an NE and best responses of nonadaptive agents. On the other hand, we are among the first

to consider adaptive atomic agents, for which we show that a subgame perfect equilibrium (SPE) always

exists, and that each NE outcome for nonadaptive agents is an SPE outcome for adaptive agents, but not

vice versa.

Key words : Selfish atomic routing; deterministic queuing; adaptive routing; subgame perfect equilibrium;

Nash equilibrium.

1. Introduction

Selfish routing is a fundamental model for network traffic, with diverse applications (Wardrop 1952,

Roughgarden and Tardos 2002, Roughgarden 2007). The problem is dynamic in essence. However,

most of the literature is based on latency functions, which are good approximations of static

flows, but not fully satisfactory due to the following weaknesses. First, a latency function is overly

symmetric in that agents choosing the same road segment impede each other in the same way,
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which is usually not the case, as earlier agents may delay the later ones but not vice versa. Second,

a latency function imposes the same delay upon all agents who travel along the road segment at

any time, even if their travel periods along the segment do not overlap, which is unreasonable, as

for example travel in peak hours takes more time than in off-peak hours. A well-recognized method

to overcome the above weaknesses is to apply the deterministic queuing (DQ) rule (Vickrey 1969,

Hendrickson and Kocur 1981, Koch and Skutella 2011, Cominetti et al. 2015, Scarsini et al. 2018).

However, the previous DQ-based atomic models of selfish routing usually suffer from the problems

of non-existence of a (pure strategy Nash) equilibrium or hardness in computing an equilibrium or

a best response, especially when there are multiple origins.

One of the key features that differentiate various DQ-based atomic models is how to break ties

when more agents than the capacity limit are trying to enter a road segment at the same time. In

this paper, by introducing an edge-priority tie-breaking rule, we propose a new DQ-based atomic

dynamic flow model, which we prove possesses several desirable properties and consequently leads

to a solution of the aforementioned problems.

1.1. Atomic dynamic flows

Instead of a latency function, two integer parameters are used in DQ to characterize each network

edge (road segment) e: its capacity ce and length te. The travel cost that an agent bears for using

edge e is a variable waiting time in the queue at edge e plus the fixed transit time te (i.e., the

travel speed is normalized to 1). Time is discretized. At each time step, a (possibly empty) queue

of completely ranked agents are waiting at the entrance of each edge. As many as possible up to ce

agents ranked highest in the queue start moving along different lanes of edge e, while the remaining

agents (if any) still wait in the queue for the next time steps. Once an agent starts moving along

edge e, he will reach e’s terminal te time units later. In reality, one traffic paradigm that exhibits

this atomic DQ feature is the expressway traffic. Imagine that an expressway road e consists of ce

lanes, and at the entrance of each lane, there is a toll booth collecting a toll from each car passing

it. For each booth, at most one car can pass through it each time and begin to travel along the

corresponding lane with a uniform speed (meaning the transit time of road e can be viewed as a

constant te). In this paper, based on this atomic DQ rule, we propose a model that is very similar

to the one in Scarsini et al. (2018) but has a crucial difference on the tie-breaking rules.

Network and inflows. We are given an acyclic directed network in which neighboring vertices

may be joined by one or more edges. Since we allow for multiple edges, we may assume that each

edge models a lane, and thus has a unit capacity. The network has one or more origins and a

single common destination. At each time point and each origin, a (possibly empty) set of selfish
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agents enter the network, trying to reach the destination as quickly as possible. Initially, the agents

who enter the network at the same time and from the same origin are associated with an original

ranking among them, which is temporarily valid only when they enter the network.

Edge-priority tie-breaking rule. The queue at each edge is updated according to two cri-

teria: (i) the local first-in-first-out (FIFO) principle — an agent who reaches the queue of an edge

earlier also leaves the queue earlier, and (ii) the pre-specified edge priorities — if two agents reach

the queue at the same time, their queue ranks are determined by the priorities of the preceding

edges from which they enter the edge: higher priority gives higher rank. Our edge-priority tie-

breaking is generalized from various real-world traffic regulation rules, such as right turning traffic

should give way to oncoming traffic and side-road traffic should give way to main-road traffic.

1.2. Nonadaptive agents versus adaptive agents

We consider two types of selfish agents, referred to as nonadaptive and adaptive, respectively.

Nonadaptive agents make their routing decisions only at the very beginning (i.e., time 0) as to

which origin-destination path to take, no matter what time they enter the network. On the other

hand, adaptive agents make routing decisions at every nonterminal vertex they reach as to which

next edge to take. In particular, their decisions at a vertex may depend on the choices of other

agents in the history.

In accordance, we investigate two submodels of the game, denoted as ΓN and ΓA, which are played

by nonadaptive and adaptive agents, respectively. In terms of game theory, ΓN is a normal-form

game (a.k.a. a static game), whose standard solution concept is Nash equilibrium (NE), and ΓA is an

extensive-form game (a.k.a. a dynamic game), whose standard solution concept is subgame perfect

equilibrium (SPE). (See Sections 4 and 5.1 for formal definitions of the equilibrium concepts.) The

following warmup example illustrates what equilibria of the two submodels may look like, as well

as their possible differences.

Example 1. In the network of Figure 1, every edge has a unit capacity and a unit length. Edge

e1 (resp. e2) has a higher priority than e3 (resp. e4). The game has only two agents, 1 and 2, who

enter the network via the common origin o at the same time 1, and make their ways to the common

destination d. Agent 1 has a higher original rank than agent 2.

• Game ΓN admits six NEs, where the two agents adopt edge-disjoint o-d paths, all bringing

them the same travel cost of 3.

• In game ΓA, agent 1 takes an adaptive strategy in the following sense. He initially chooses

edge ov, and then chooses e1 unless (at vertex v he finds that) agent 2 used edge ou2, in which

case he chooses edge e2. Agent 2 always follows the upper path ou1w1d. It can be checked
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Figure 1 An SPE of game ΓA may not induce an NE of game ΓN

that these choices yield a strategy profile that is an SPE of ΓA, where other off-equilibrium

behaviors of the two agents can be easily defined, incurring a travel cost 3 to agent 1, and 4

to agent 2.

Note that the induced path profile by the above SPE of ΓA, ovw1d for agent 1 and ou1w1d for

agent 2 (which have edge w1d in common), is not an NE of game ΓN.

1.3. Contributions

As in other models of atomic dynamic network flows, complicated and sometimes unpredictable

chain effects form a great obstacle in our analysis. For example, a Braess-like paradox that resembles

the one in Scarsini et al. (2018) (but with a different flavor) still exists in our model (see Example 4

in Section 4.2). Yet we are able to demonstrate that the proposed model admits the following

positive results.

NE existence. We prove by construction that an NE for ΓN is guaranteed to exist. It is well

recognized that guaranteeing the existence of an equilibrium in dynamic flow models (especially

those with multiple origins) is challenging, due to either inherent system instability or technical

difficulties (Hoefer et al. 2009, Werth et al. 2014), even for nonatomic models (Anshelevich and

Ukkusuri 2009, Koch and Skutella 2009, Meunier and Wagner 2010, Cominetti et al. 2015). To the

best of our knowledge, no previous model of atomic dynamic flows has been proved to guarantee

NE existence when multi-origin networks with local FIFO principle are considered.

SPE existence. Our work is among the first to consider adaptive agents and to establish

the existence of an SPE. Although the standard game-theoretical concept of SPE (Selten 1965)

is not new to the area of traffic flow games (c.f. Correa et al. 2019), no previous paper applies

it to “doubly dynamic” flow games in that not only flows evolve over time but also agents make

decisions over time at road segment intersections.

NE realization by SPE. We build a close connection between games ΓN and ΓA by showing

that, the NE outcome set of ΓN is a proper subset of the SPE outcome set of ΓA. On the one hand,

given any NE of ΓN, we can construct an SPE of ΓA whose realized path profile is exactly the

given NE. On the other hand, an SPE outcome of ΓA may not be an NE of ΓN (see Example 1).
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The proper inclusion reaffirms the intuition that ΓA is more flexible than ΓN (see also Example 7)

and builds a bridge between them. In particular, ΓN is more technique-friendly than ΓA; all results

established for NEs of ΓN automatically hold for a subset of SPEs of ΓA.

NE characterization. We provide a characterization of all NEs of ΓN. Given a path profile of

nonadaptive agents, let them be batched according to their arrival times at the common destination.

A path profile is called iteratively batch-dominant if there is no way for agents in a later batch (no

matter how they coordinate) to affect any agent in an earlier batch, provided all earlier agents

follow their routes in the path profile. We prove that a path profile is an NE of ΓN if and only if

it is iteratively batch-dominant. Applying this characterization, we show that each NE of ΓN (and

hence a significant proportion of SPEs of ΓA) possesses many desirable properties, including:

• Strong NE: each NE is a strong NE, and thus weakly Pareto efficient, i.e., there are no routing

choices that could make every agent strictly better off; and

• Global FIFO: if agent i enters the network earlier than agent j from the same origin, then i

exits the network no later than j.

Note that the above characterization and properties are satisfied by all NEs of game ΓN without

any additional constraints on agent behaviors or network topologies, whereas the literature usually

can establish the properties for only some special NEs or NEs on special networks (Harks et al.

2018, Scarsini et al. 2018). In particular, while the existence of a strong NE (which must be an NE

by definition) is known in the literature of atomic dynamic flow games (e.g., Werth et al. 2014),

we are the first to show the equivalence between NEs and strong NEs for a class of these games.

Computational results. We design algorithms that efficiently construct an NE of ΓN, a best

response of any agent to any strategy profile of ΓN, and an SPE of ΓA. Our algorithms exploit a

somewhat surprising fact that a greedy Dijkstra-like approach, which takes maximum advantage

of the edge priority rule, is able to identify a path that can circumvent the intricate chain effects.

Such computability is in sharp contrast with previous hardness results on related games of atomic

dynamic flows, e.g., NP-completeness for determining NE existence (Werth et al. 2014) and NP-

hardness for computing a best response (Hoefer et al. 2009, 2011, Ismaili 2017).

To summarize, this paper offers modelling, theoretical, technical as well as computational contri-

butions to the literature of atomic dynamic flow games. Given that there has been little consensus

on the characteristics of a canonical model for atomic dynamic flow games due to the inherent

intractability (c.f. Correa and Stier-Moses 2010), our model (or its variation) arguably may have

a potential to serve as a candidate for standard models in future studies.
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2. Related literature

Compared with the relatively mature theory of static flow games, the study for the dynamic flow

games, a.k.a. routing games over time, is still in its early stage. Vickrey (1969) and Yagar (1971)

initialize the investigation of dynamic flow games, where they focus on analyzing NEs for small-

sized concrete examples. Subsequent studies are extensive since the last two decades, encompass

various models to investigate equilibrium behaviors of selfish agents, and adopt a wide variety of

methodologies from mathematical programming, optimal control, variational inequalities, algorith-

mic game theory, and simulations (see Peeta and Ziliaskopoulos 2001, Koch and Skutella 2009,

Cominetti et al. 2017, and the references therein). Under dynamic queuing, little is known about

general equilibrium properties, until recent exciting progress on deriving equilibrium existence,

uniqueness, characterizations and constructions (Meunier and Wagner 2010, Koch and Skutella

2011, Cominetti et al. 2015, Scarsini et al. 2018). We discuss the study of equilibria for two major

subbranches of dynamic flow games, atomic models and nonatomic models, in the following two

subsections, respectively.

2.1. Atomic dynamic flow games

To the best of our knowledge, almost all of the related atomic models studied are of nonadaptive

agents, and their solution concepts are NEs. A recent important development on DQ-based games

of atomic dynamic flows is Scarsini et al. (2018), which is one of the most related references to our

studies in this paper. This study has several notable differences from our work. First, to break ties,

Scarsini et al. (2018) place priorities on agents rather than on edges, i.e., a fixed priority ordering

of all the agents is applied globally. Second, they only study nonadaptive agents in single-origin

single-destination networks. In fact, when agents are adaptive in their model, an SPE may not

exist. Third, they focus on seasonal inflows and how the transient phases impact the long-run

steady outcomes, whereas their notion of steady outcome does not apply in our model because the

inflows we consider are not restricted to be seasonal. Finally, they concentrate on a special kind of

NE named uniformly fastest route (UFR) equilibrium, for which they prove the existence on single-

origin single-destination networks. Scarsini et al. (2018) also obtain a variant of Braess’s paradox:

adding some initial queues in the network may decrease the worst average travel cost at an NE. The

paradox differs from ours in that it involves route changes (see Section 4.2). Under the model of

Scarsini et al. (2018), Ismaili (2017) shows many negative results when multiple origin-destination

pairs are involved, including non-existence of an NE, and the NP-hardness and inapproximability

of computing a best response, etc.

In Werth et al. (2014), more variants of atomic dynamic flow games are considered under a

discrete-time DQ model, where finitely many agents are ready to start from their origin(s) at
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the very beginning. Apart from the sum-type objective as considered in Scarsini et al. (2018)

and in this paper, Werth et al. (2014) also study the bottleneck-type objective, where each agent

tries to minimize his expense on the slowest edge of his chosen path. To break ties, the global

priorities placed on agents as in Scarsini et al. (2018) are discussed for both the sum-objective

and bottleneck-objective models, while the local priorities placed on edges as in this paper are

investigated only for the bottleneck-objective model. Werth et al. (2014) focus on computational

issues on NEs. On the positive side, a greedy algorithm is proposed to efficiently compute an NE

in the single-origin single-destination game with sum-type objective and agent priorities. On the

negative side, the multi-origin multi-destination game with bottleneck-type objective is shown to

suffer from intractabilities, such as non-existence of an NE under either agent or edge priorities,

the NP-completeness for determining NE existence and the co-NP-completeness for testing NE in

an acyclic directed network under edge priorities.

Among the earliest papers studying atomic dynamic routing games, Hoefer et al. (2009, 2011)

are concerned with computing NEs and best responses for a finite number of weighted agents (with

sum-type objectives) in a unit-capacitated directed network, where in a continuous-time setting the

transit speed of each agent is inversely proportional to his weight. When the local FIFO principle is

coupled with the global agent priorities for tie-breaking, the game turns out to be a generalization

of the sum-objective model of Werth et al. (2014), and for unweighted agents (i.e., those with a

uniform transit speed) in a single-origin network, the game admits a strong NE, which can be

computed efficiently. Somewhat surprisingly, computing best responses is NP-hard even in the case

of single-origin single-destination networks with unweighted agents. Harks et al. (2018) study an

atomic DQ-based dynamic flow game without the local FIFO principle. They analyze the impact

of global agent priority ordering on the efficiency of NEs, and show that an NE is polynomially

computable. Other related works include Koch (2012) and Kulkarni and Mirrokni (2015).

2.2. Nonatomic dynamic flow games

More previous works investigate nonatomic models, which are usually more tractable than their

atomic counterparts. In the nonatomic setting, every agent, aiming at earliest arrival at his desti-

nation, represents an infinitesimal amount of flow (a.k.a. fluid), for which neither tie-breaking rules

nor road lanes play a role. Different scholars generalize the Wardrop equilibrium (Wardrop 1952)

to dynamic versions from different perspectives. These solution concepts resemble more or less

NEs where each agent follows a dynamic shortest path (in various sense) that takes time-varying

delay into account. The solutions and other dynamic equilibrium concepts developed for nonatomic

dynamic flow games do not consider off-equilibrium situations — this is a key difference from SPE.
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Since the emergence of the purely existential results (Meunier and Wagner 2010), significant

efforts have been made to understand the structure and computational properties of dynamic

equilibria in nonatomic queuing networks. Koch and Skutella (2009, 2011) are the first to apply a

DQ rule with local FIFO principle to study nonatomic dynamic flow games. They investigate the

continuous-time single-origin single-destination case (called a temporal routing game) with uniform

inflow rates. They characterize the so-called Nash flows over time with the universal FIFO condition

that no flow overtakes another, and equivalently with an analogue to the Wardrop principle that

flow is only sent along dynamic shortest paths. Cominetti et al. (2015) prove by construction the

existence and uniqueness of the Nash flow over time of temporal routing games in a more general

setting with piecewise constant inflow rates. For the multi-origin multi-destination case, Cominetti

et al. (2015) prove in a nonconstructive way that a Nash flow over time exists when the inflow rates

belong to the space of p-integrable functions with 1< p<∞. Macko et al. (2013) show that Braess’s

paradox happens more frequently in the temporal routing model than in its static counterpart.

Anshelevich and Ukkusuri (2009) consider a dynamic routing game whose monotone increasing

edge-latency functions are more general than DQ models but still obey the local FIFO principle. For

the single-origin single-destination case, they show the existence, uniqueness and polynomial-time

computability of the Nash flow over time. For the multi-origin multi-destination case, examples are

presented to show that neither the existence nor the uniqueness can be guaranteed.

In the related works discussed above, as in our nonadaptive model, agents’ strategies are their

origin-destination paths. Sometimes these path-based models have alternative edge-based represen-

tations (c.f. the literature review in Long and Szeto (2019)). For other representations studied in

the literature, the interested reader is referred to Long et al. (2013). In the rest of this subsection,

we discuss more works that are closely related to agents’ adaptive behaviors, where their strategies

are richer than mere path selections.

Among these works, Graf and Harks (2019) is closest to our adaptive model in that agents also

make decisions over time. However, agents in their model are not completely rational as in our

model, but myopic in that whenever they face the choice of which next edge to take, they always

choose the one that is on a currently shortest path that is evaluated by current travel times and

queuing delays. Graf and Harks show that an equilibrium under these dynamic behaviors exists in

multi-origin multi-destination networks with measurable inflow rates.

Hamdouch et al. (2004) study a dynamic flow game on an edge-capacitated network. At the

very beginning of this game, for every nonterminal vertex of the network, all agents simultaneously

choose a time-dependent preference order, referred to as a list, of some of the outgoing edges. This

is a random model, and the probability that an agent moves along an edge depends on his chosen

list at the edge’s tail vertex, the residual edge capacities, and the number of his competitors as
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well as their lists. The strategies of an agent in their model, though also adaptive in some sense,

are not so adjustable as in our adaptive model and less demanding for the intelligence level of the

agent. Using a variational inequality approach explored by Marcotte et al. (2004), Hamdouch et al.

(2004) prove the existence of an NE, which is called a strategic equilibrium following Marcotte

et al. (2004), but they do not consider SPE as in our paper.

A large body of related literature considers both path choice and departure time as decision

variables, but none of these works applies SPE as a solution concept (the reader is referred to

Guo et al. (2018) for a literature review along this line of research). Besides the usual approach

of variational inequalities, the approach of differential equations also turns out to be successful in

studying these problems. Based on conservation laws (which are popular in differential equations)

where the flow speed function is density dependent or density and location dependent, Bressan and

Han (2013) and Han et al. (2013) prove that NEs exist in multi-origin multi-destination networks

under some constraints on functional properties and trip volumes.

The rest of this paper is organized as follows. In Section 3, we present a formal mathematical

model of our atomic dynamic flows. In Sections 4 and 5, we study its normal-form game setting

ΓN for nonadaptive agents and its extensive-form setting ΓA for adaptive agents, respectively. In

Section 6, we conclude our paper with some remarks on future research directions. All proofs and

further discussions are provided in the Electronic Companion.

3. The flow model

All paths discussed in this paper are directed and simple. In our model of atomic dynamic flows,

we are given a finite acyclic directed multi-graph G= (V,E), with V being the vertex set and E

the edge set. There is a distinguished vertex d called the destination; for each vertex v ∈ V , there

is at least one path from v to d, called a v-d path.

Further to our unit-capacity assumption discussed in Section 1.1, which can be viewed as part of

our modeling related to edge priorities, we also assume unit edge-length throughout the paper for

the convenience of our exposition. The generality of this additional assumption will be discussed

in Section 6.

Unit Assumption. Each edge of the input network has a unit capacity and a unit length.

For each v ∈ V , a complete priority order ≺v is pre-specified over all edges incoming to v. We

denote by e1 ≺v e2 if edge e1 has a higher priority than edge e2. Time is discretized as 0,1,2, . . .,

and may be infinite. Initially, at time 0, there is a (possibly empty) initial ranked queue Q0
e of

agents at the tail part of each edge e ∈E. (NB: This initial setting is slightly more general than

usual empty networks.) At each integer time point r≥ 1 and each vertex v ∈ V , a (possibly empty)
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set ∆r,v of finitely many agents enter G from their common origin v. They are associated with

original ranks among them, which are temporarily valid only at time r. Henceforth, we assume

∆r,v is an ordered set with agents ordered by their original ranks. Throughout this paper, ∆ :=

(∪e∈EQ0
e)∪ (∪r≥1,v∈V ∆r,v) denotes the set of all agents.

For brevity, we consider w.l.o.g. every vertex as a possible origin: If vertex v is not an origin in

the usual sense, then all sets in {∆r,v : r≥ 1} are empty. Note that no agent in ∆r,d has impact on

the game, as he never touches any edge of the network. To ease our writing, we frequently write

v ∈ V instead of v ∈ V \{d}.

Each agent in ∆ goes through some path in G ending at destination d and leaves G from d. The

starting vertex of this path is called the starting vertex of this agent. Each agent, when reaching

a vertex v (6= d), immediately enters an edge e outgoing from v without any delay. We assume

that all agents (if any) in Q0
e enter e at time 0. At any integer time s≥ 0, all agents (if any) who

have entered e but not yet exited queue at the tail part of e, and only the unique head of the

queue (namely the one with the highest rank) leaves (recall the Unit Assumption). This queue

head spends one time unit in traversing e from its tail to its head and exits e at time s+ 1.

If both agents i and j go through edge e (with tail vertex ue), they are ranked for entering and

therefore exiting the queue at e according to the following ranking rules (R0)–(R4), exactly one of

which applies (by checking sequentially in the same order as their indices).

(R0) If i and j are both in the initial queue Q0
e, then their ranks agree with the ranks in Q0

e.

(R1) If i enters e earlier than j, then i has a higher rank.

(R2) If they enter e at the same time through two different edges incoming to ue, then ranks at

e are determined by the priority order ≺ue on the two edges, higher priority giving higher

rank.

(Note that if neither i nor j takes ue as his origin, then the queuing rules (R0)–(R2) are enough to

rank the agents. Otherwise, the following (R3) or (R4) will be needed.)

(R3) If only one of them, say i, takes ue as his origin, then i has a higher rank than j (who must

have entered e through an edge incoming to ue).

(R4) If they both take ue as their common origin, then their ranks on e are determined by their

original ranks.

The above flow regulations will be referred to as the edge-priority DQ rule. Following this rule, by

assuming different rationality levels of agents, we study in the following two sections two submodels,

denoted as ΓN and ΓA, for games of nonadaptive agents and adaptive ones, respectively. In both

games, each agent tries to arrive at the common destination d as early as possible. We shall slightly

abuse ΓN and ΓA to denote both game models and corresponding game instances.
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4. The game of nonadaptive agents

The first submodel ΓN assumes that agents are of a relatively low rationality level, or alternatively,

they do not have updated information about other agents. Specifically, the agents are nonadaptive

in that they each select a path from their own origins to the common destination d simultaneously

at the very beginning, i.e., time 0. As soon as the agents enter the network G at the time points

specified by the game input (Q0
e)e∈E and (∆r,v)r≥1,v∈V , they will always follow the chosen paths and

never deviate from them at any intermediary vertex. It is worth noting that agents in ∪r≥1,v∈V ∆r,v

make their decisions before they enter the network.

For each agent i ∈∆, let Pi denote his strategy set. If i ∈ Q0
e, then Pi is the set of paths in

G starting from edge e and ending at destination d. If i ∈∆r,v, then Pi is the set of v-d paths

in G. For any agent i ∈∆ and path profile p= (Pj)j∈∆ with Pj ∈Pj for all j ∈∆, we use tdi (p)

to denote the arrival time of i at destination d under p. We will use the terms “path profile” and

“routing” interchangeably. In terms of game theory, ΓN is a normal-form game, for which we apply

the standard solution concept of Nash equilibrium (NE).

Definition 1 (NE). A path profile p of ∆ is a Nash equilibrium (NE) of ΓN if no agent can gain

by uniliteral deviation, i.e., tdi (p)≤ tdi (P ′i ,p−i) for all i ∈∆ and P ′i ∈Pi, where p−i is the partial

path profile of p for agents in ∆\{i}.

4.1. NE existence

In this subsection, we constructively prove that every game ΓN admits an NE. Recall from game

theory that a dominant NE is a strategy profile where every agent uses a dominant strategy in

that it is always optimal for him regardless of how other agents act. Observe that the following

strategy profile that extends the idea of dominance is still an NE: the agents can be ordered such

that the strategy of the first agent is a dominant one; and for any k ≥ 2, subject to the condition

that the first k− 1 agents follow their respective strategies, the strategy of agent k is optimal for

him regardless of the choices of the remaining agents. To prove NE existence for game ΓN, we

refine this idea on usual type of dominance to be a more specific and stronger iterative dominance

defined as follows.

For any nonnegative integer k, we write [k] for the set of all positive integers no more than k.

Before providing a formal definition, we call a path profile p an iteratively dominant NE, or an

IDNE for short, if the agents can be reindexed (ordered) as 1,2, . . . such that small-index agents

dominate large-index agents in the following iterative sense:

• No matter what paths other agents in ∆\{1} choose, by following his path in p, agent 1

reaches every vertex of the path (including the destination d) at the earliest possible time

that an agent in ∆ can achieve among all path profiles.
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• Iteratively for every k= 2,3, . . ., assume that the first k−1 agents 1, . . . , k−1 fix their paths

as in p. No matter what paths other agents outside [k] choose, by following his path in p,

agent k reaches every vertex of the path (including the destination d) at the earliest possible

time that an agent outside [k− 1] can achieve among all path profiles where the first k− 1

agents follow the given paths in p.

For convenience, we call the above reindex of agent an iterative dominant order for p, and call

the paths in p the agents’ (associated) dominant paths. Formally, we have the following definition,

where for path profile p and agent subset S, the partial path profile of p for agents in S is written

as pS.

Definition 2 (IDNE). A path profile p of ∆ is an iteratively dominant NE (IDNE) of ΓN if the

agents can be reindexed as 1,2, . . . such that for any index k≥ 1, vertex v on agent k’s path in p,

and partial path profile q for agents in ∆\[k], the following sequential optimality holds:

tvk(p[k],q) = min{tvj (p[k−1],r) : j ∈∆\[k− 1],r is a partial path profile for ∆\[k− 1]}.

The goal of this subsection is to construct an IDNE of ΓN, which proves the following main

result.

Theorem 1. Every normal-form game ΓN admits an IDNE.

Before going into details, it is worth noting that Definition 2 directly implies that every IDNE

possesses the following properties, which are crucial for studying SPE in Section 5.2.

• No overtaking: If agents i and j enter G from the same origin, but i does so earlier than j,

and they both pass through some vertex v under the NE, then i reaches and leaves v no later

than j does. The property in the special case of v= d is known as Global FIFO.

• Earliest arrival: Given the other agents’ choices in the NE, each agent using his path in the

NE reaches each vertex on the path (not only the destination d) at an earliest time among

all of his possible choices.

• Sequential independence: For each k ≥ 1, if all the agents with iterative dominant orders at

most k fix their paths as in the NE, then their arrival times at all vertices along their paths

(including destination d) are independent of the choices of all the agents with indices larger

than k.

To better understand our construction of an IDNE, we first give an example to illustrate this

solution concept.

Example 2. Consider game ΓN with input network illustrated in Figure 2, where at vertices y1,

y2 and d, the right, left and upper edges have higher priorities, respectively (i.e., x1y1 ≺y1 o1y1,
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o2y2 ≺y2 x2y2, and y1d≺d y2d). At time 1, seven agents (represented by small rectangles beside the

corresponding origins) are about to enter the network from origins o1, o2, og, oh and oi. Agents 1–4

each have a unique path to choose, and agents g,h, i each have two choices — upper and lower

paths. An iterative dominant order of the agents is (1,2,3,4, g, h, i). The associated dominant paths

for the first four agents are their unique paths, and those for the last three agents are their upper

path ogv1x1y1d, lower path oho2y2d, and upper path oiu1o1y1d, respectively.

Figure 2 The existence of an IDNE for game ΓN with multiple origins

Obviously, the first four agents are as indexed. We next show that g is the fifth agent associated

with his upper path. Assuming agents 1–4 follow their trivial dominant routes, it is clear that the

earliest possible time an agent in {g,h, i} can reach the rth vertex of g’s upper path is time r

(r = 1, . . . ,5). Moreover, no matter what routes agents h and i take, by following his upper path,

agent g clearly reaches the first four vertices og, v1, x1, y1 on his path at the earliest possible times

1,2,3,4, and subsequently reaches d at time 5 as desired (this is because his coming edge at y1 has

a higher priority, implying that agents h and i cannot overtake him and make his arrival time at d

later than 5). Thus reindexing agent g as agent 5 does satisfy the condition for an IDNE. Now given

that agents 1–5 follow their dominant paths, no matter how agent i routes, by following his lower

path, agent h reaches oh, o2, y2, d on the path at times 1,2,4 and 5, each of which is the earliest

possible that agent h or i can achieve. Thus agent h associated with his lower path is qualified to

be agent 6 in the order. Finally, agent i is the last one in the order; by using his upper path, he

can reach all vertices oi, u1, o1, y1, d on the path at his earliest possible times 1,2,3,4,6, given the

dominant path choices of others.

From the above example, we see that there may be multiple IDNEs — neither the iterative

dominant order nor the dominant path profile is unique. Specifically, the order between agents 1

and 2 (as well as between agents 3 and 4 and between agents g and h) can be swapped, and in any

case agent i’s either path can be his dominant path.
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We briefly describe the idea of how to make full use of edge priorities (e.g., edge priority w.r.t.

the destination d in Example 2 that has been ignored in our previous discussion) to pin down a

special IDNE (a unique iterative dominant order combined with a unique dominant path profile),

which always exists and hence proves Theorem 1.

Suppose now the first k− 1 agents as well as their associated dominant paths have been deter-

mined. We are to identify the kth agent, whom we relabel as k, and his associated dominant path

Pk ∈Pk. Define the “ideal arrival time” at any vertex for each of the remaining agents as the

earliest time when this agent can reach the vertex, under the assumption that all other agents in

the network are the identified k− 1 ones, who follow their associated dominant paths previously

determined. This ideal arrival time is defined as infinity if the vertex is unreachable by this agent.

In the following, we will first choose a set C = C(k) of candidate pairs (j,Pj) with j ∈∆\[k− 1]

and Pj ∈Pj, and then prune C by backtracking the path Pj of one of the candidate pairs, starting

from d edge by edge, and eliminating unqualified candidates discovered during the process, until

only one candidate pair is left. The corresponding agent and path are thus identified as the kth

agent and his dominant path, respectively.

A more detailed pruning process goes as follows. Initially, pair (j,Pj) is a candidate in C if and

only if j is one of the remaining unidentified agents and Pj ∈Pj, i.e., Pj is a path from his starting

vertex to d. Let u= d and proceed with the following three steps in sequence:

(S1) A candidate (j,Pj) ∈C is retained in C if and only if the ideal arrival time of agent j at u

is the earliest among all candidate agents in the current C, and Pj is a path along which j

achieves this ideal arrival time at u;

(S2) A candidate (j,Pj) ∈C is retained in C if and only if the incoming edge to u on Pj has the

highest edge priority among all candidate paths in the current C;

(S3) If there are more than one candidate left in the current C, then the candidate paths in the

current C must share the same incoming edge e to u (whose tail vertex is denoted as ue) and

we backtrack along e: update u with ue and go back to step (S1).

It can be seen that either the above process is terminated at some step when only one candidate

is left in C, in which case we are done, or all agents corresponding to the current candidate pairs

are in the same initial queue or enter G simultaneously at the same origin (thus with the same

candidate path). In this case, we identify among all the candidates the one, (j,Pj), such that agent

j has the highest initial queue rank or original rank among all candidate agents in the current C.

It turns out that the path profile (Pk)k∈∆ constructed as above is indeed an IDNE. We call

it a special IDNE. As an illustration, the order (1,2, . . . ,7) of agents and their dominant paths

given in Example 2 constitute the special IDNE. For example, the order between agents 1 and

2 (resp. 3 and 4) is determined by the edge priorities w.r.t. d; the order between agents 2 and 3



Cao, Chen, Chen, Wang: Atomic Dynamic Flow Games
Operations Research 00(0), pp. 000–000, © 2020 INFORMS 15

(resp. 4 and g (= 5)) is determined by the arrival times at d; the order between g (= 5) and h (= 6)

is determined by backtracking from d to y1 and checking the edge priorities at y1. The precise

algorithmic description for the aforementioned process together with a formal proof of Theorem 1

is presented in Section EC.2 of the Electronic Companion.

We would like to remark that placing priorities on edges is crucial to the NE existence of the

game model ΓN with multiple origins. Example 3 below shows that, if priorities were placed on

agents (i.e., when two agents enter an edge at the same time, the agent with a higher priority will

be ranked higher in the queue), one could not guarantee the NE existence when there are more

than one origins, though an NE does exist in the single-origin single-destination case (Scarsini et al.

2018). A more detailed discussion about why this critical tie-breaking rule matters is provided in

Section EC.11 of the Electronic Companion.

Example 3. Consider an example modified from Figure 2, where global priorities are placed on

the agents in a way that i ranks higher than g and g higher than h. Agents i, g, h are our focus,

as the remaining four agents do not make substantial decisions, and are not affected by i, g, h. The

lowest ranked agent h reaches o1 (or o2) one time unit earlier than the highest ranked agent i if they

choose to pass the same vertex o1 (or o2); otherwise, they reach y1, y2 at the same time as agent

g reaches y1 or y2. It can be verified that h, i and g have a Rock-Paper-Scissors-like relationship,

and hence this game does not have any NE.

4.2. Braess-like paradoxes

A well-known phenomenon in selfish routing is the Braess’s paradox: building a new road may

make the network more congested. Recently, Scarsini et al. (2018) discovered a Braess-like paradox

under their model of atomic dynamic flows: removing an initial queue may reduce the system

performance. This paradox occurs in a single-origin single-destination extension-parallel network,

which has been known to be free of the classical Braess’s paradox based on latency functions. An

apparent cause is that removing an initial queue may bring about route changes of agents, leading

them to a less efficient NE (despite of the presence of a more efficient one). This type of paradox is

also present in our model as shown in Section EC.12 of the Electronic Companion by an adaptation

from the example of Scarsini et al. (2018).

The following example demonstrates a different paradoxical phenomenon in the sense that it

stems from unpredictable chain effects of agents’ interactions. In our example, no route changes

are involved.

Example 4. Consider an instance of game ΓN as depicted in Figure 3. There are a total of ten

agents (shown as small rectangles on edges), with agents 1, 2 and 3 being our focus. Figure 3 shows
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Figure 3 Removal of agent 1 from the system weakly harms other agents

the locations of agents at time 1. Edge e1 has a higher priority than e2. Suppose that agent 1

chooses the top path o1u1u2u3u4d, agent 2 chooses the middle path o1u1v2v3d, agent 3 follows the

bottom path o3v1v2v3v4d, and other seven agents follow their trivial paths. It can be checked that

all the three agents 1, 2, 3 reach destination d at time 6.

Now let us remove agent 1 from the game and suppose that all other agents keep their paths

as above. Removal of agent 1 makes agent 2 arrive at vertices u2, v3 and v4 one time unit earlier.

Since agent 2 has to spend one extra unit of waiting time at edge v3d, he reaches d still at time 6.

However, agent 2’s earlier arrival at vertex v2 delays agent 3, making him reach d at time 7. Note

that both path profiles in the above two scenarios are NEs of the corresponding games.

A macro-level explanation for the above counterintuitive example is that, when an agent disap-

pears, some agents may benefit temporarily in that they enter some edges earlier; however, they

have to spend more time waiting at some of these edges. As a result, their arrival times at the

destination are not affected at all, but their earlier entries into some edges may add everlasting

delays to some other agents who go through the same edges.

In studying NE properties, we need to frequently analyze what happens if one agent unilaterally

deviates by choosing a different path. As demonstrated in the above example, this is a quite tricky

issue in general. Agents may affect one another in unpredictable ways due to the intricate chains

of interactions. Despite this complication, we are able to show in the remainder of this section that

the NEs in our model possess many desirable properties.

4.3. NE characterization

In this subsection, we characterize all NEs for game ΓN. The characterization not only shows that

a general NE bears many similarities to the IDNEs discussed in Section 4.1, but also helps us

establish a close connection between a game of nonadaptive agents and that of adaptive agents

(see Section 5.3).



Cao, Chen, Chen, Wang: Atomic Dynamic Flow Games
Operations Research 00(0), pp. 000–000, © 2020 INFORMS 17

Batching agents according to their arrival times at the destination d is useful for our analysis on

the NEs. For any path profile q of ΓN, let τ(q,1)< τ(q,2)< τ(q,3)< · · · be the arrival times of all

agents at d under q. For each integer k≥ 1, let

∆(q, k) := {i∈∆ | tdi (q) = τ(q, k)}

denote the set of agents in ΓN who reach d under q at the kth earliest time τ(q, k); we often refer

to ∆(q, k) as the kth batch. We use

∆(q, [k]) :=∪j∈[k]∆(q, j)

to denote the set of agents reaching d no later than time τ(q, k), i.e., those in the first k batches.

For notational convenience, we set ∆(q, [0]) := ∅ to be the 0th batch, and let ∆(q, [∞]) := ∆ denote

the disjoint union of all batches.

It can be shown that the interactions between agents of different batches at an NE are hierarchal.

That is, every NE is iteratively batch-dominant in that there is no way for agents in a later batch

(no matter how they coordinate) to affect any agent in an earlier batch, provided all earlier agents

follow their routes in the NE. This iterative batch-dominance, formally defined below, actually

characterizes all NEs of game ΓN.

Definition 3 (Iterative batch-dominance). A path profile q = (Qh)h∈∆ of ΓN is iteratively

batch-dominant if, for any batch index k≥ 1, agent i∈Ω := ∆(q, [k]), vertex v ∈Qi, agent j ∈∆\Ω,

and partial path profile r−Ω for agents in ∆\Ω, the following inequalities hold:

tvi (q) = tvi (qΩ,r−Ω)≤ tvj (qΩ,r−Ω) and tdj (qΩ,r−Ω)≥ τ(q, k+ 1)> tdi (qΩ,r−Ω).

Theorem 2. A path profile is an NE for game ΓN if and only if it is iteratively batch-dominant.

Using Theorem 2, we can establish that all NEs are strong NEs (see definition below) and global

FIFO (see Theorem EC.6).

Definition 4 (Strong NE). A path profile p of ∆ is a strong NE of ΓN if no group of agents

can gain by deviation, i.e., there exists no group S ⊆∆ and partial path profile p′S of agents in S

such that tdi (p
′
S,p−S)< tdi (p) for all i∈ S, where p−S is the partial path profile (determined by p)

of agents not in S.

Theorem 3. All NEs of every game ΓN are strong NEs and global FIFO.

Since each strong NE is also an NE, Theorem 3 actually establishes the equivalence between an

NE and a strong NE in our model. Note that the strong NE property implies that every NE of ΓN

is weakly Pareto optimal. Moreover, it follows from Theorem 2 that every NE of game ΓN has a

hierarchal structure that resembles the sequential structure of IDNEs. More specifically, we have

the following properties:
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• Every NE is hierarchically independent in that, for every k≥ 1, if agents in the first k batches

all follow their NE routes, then their arrival times at any vertex are independent of other

agents’ choices.

• Every NE is hierarchically optimal in that, for every k≥ 1, the arrival time of each agent in

the kth batch under the NE is the smallest among the arrival times of all agents outside the

first k− 1 batches under any routing in which agents in the first k− 1 batches follow their

NE routes.

Two other properties of the IDNEs, no overtaking and earliest arrival, do not hold in general for

the NEs of game ΓN (see Section EC.12 for examples). This is in contrast to nonatomic dynamic

flow games for which every NE must be no overtaking and earliest arrival (Koch and Skutella

2011). On the other hand, every NE of game ΓN is temporally overtaking in that, if agent i enters

the network G earlier than j from the same origin, but j overtakes i at some vertex v ∈ V \{d}
(i.e., j reaches v earlier than i), then they must reach the destination d at the same time. Omitted

proofs and more properties possessed by the NEs of game ΓN are presented in Section EC.7 of the

Electronic Companion.

4.4. Computations

In this subsection we show that a best response and an NE of game ΓN can be computed efficiently.

The computation works with a kind of “naive” greedy idea, which is validated using the notion of

preemption. Throughout this subsection, i denotes a fixed agent and q−i = (Qj)j∈∆\{i} a partial

path profile of all other agents. We consider the scenario where only agent i is allowed to change

his path and the others always follow q−i.

4.4.1. Preempt relations We say that agent i preempts agent j at vertex v if either (i) the

earliest time i reaches v is earlier than the earliest time j reaches v (among all path profiles in

which all agents but i adopt the same paths as in q−i), or (ii) their earliest times are the same

and additionally, either (ii.a) agent i can reach v via an edge that has a higher priority (w.r.t. v)

than an edge that j uses to reach v, or (ii.b) vertex v is agent i’s but not j’s starting vertex, or

(ii.c) vertex v is the starting vertex of both agents i and j, and i has a higher initial queue rank or

original rank than j. This notion of preemption (see Definition EC.1 in Section EC.4 for a formal

description) combines the optimization (minimization) on arrival times and the speciality on the

best available choice w.r.t. edge priorities.

The preempt relation, together with the following lemma, plays a critical role in designing our

algorithm for computing best responses.

Lemma 1. For any agent j ∈∆\{i} and vertex v ∈Qj, if there exist paths Pi, P
′
i ∈Pi such that

tvj (Pi,q−i) 6= tvj (P
′
i ,q−i), then i preempts j at v under q−i.
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The above lemma implies in particular that if agent i’s unilateral change from Pi to P ′i can affect

the arrival time of agent j at vertex v, making it earlier or later, then by using some path in Pi

(not necessarily Pi or P ′i ), agent i is able to reach v no later than j under (Pi,q−i) and under

(P ′i ,q−i). In contrast, this property does not necessarily hold in the model where ties are broken

using agent priorities (see Remark EC.1 in Section EC.4). Furthermore, we can show that if agent i

preempts j at vertex v ∈Qj, then i preempts j at all vertices on the subpath of Qj from v to d

(see Corollary EC.1 in Section EC.4).

Lemma 1 enables us to classify all agents but i into two categories, the “slow” ones S whom

agent i can preempt and the “fast” ones F whom agent i cannot preempt.

(C1) Agents of F are always no later than agent i at any vertex along their paths (regardless of

the choice of i). Hence the flows resulting from the travels of F agents can be viewed as an

exogenous environment for i.

(C2) In contrast, when agent i follows a special optimal path (denoted O∗i ), whose existence can

be deduced from Lemma 1, he reaches each vertex of a final segment of O∗i no later than

any agent of S under path profile (Pi,q−i) for any Pi ∈Pi, which results in that agent i is

“faster” than all agents of S in the final segment. To put it differently, no agent of S can

influence i in the final segment when he follows path O∗i , which attains the optimality w.r.t.

the exogenous environment of F agents and possesses the speciality w.r.t. edge priorities.

In summary, when agent i follows the special optimal path, the intricate chain effects are decou-

pled in the above sense and our analysis is greatly alleviated. We remark that Lemma 1 is also an

important tool for us to establish the NE characterization discussed in Section 4.3.

4.4.2. Computing best responses When we talk about algorithm efficiency, only the case

of finite agent set and finite network is concerned unless otherwise stated. Given a game ΓN with

agent set ∆, an agent i ∈∆, and a partial path profile q−i = (Qj)j∈∆\{i}, our algorithm computes

a special best response of i to q−i defined as follows.

Definition 5 (EE best-response). Given a partial path profile q−i, a path Q∗i ∈Pi of agent i

is called the edge-priority-oriented earliest-arrival best-response (EE best-response) if for each non-

starting vertex v of Q∗i ,

• Agent i’s arrival time at v when he goes along Q∗i is the earliest he can achieve;

• The incoming edge to v on Q∗i has the highest priority among the incoming edges to v on all

paths of Pi along each of which i reaches v at the earliest time.

By definition, agent i has a unique EE best-response to any given q−i. It can be seen that the

EE best-response is exactly the special optimal path Q∗i discussed in (C2) in Section 4.4.1. Our

algorithm for finding Q∗i resembles the classical Dijkstra algorithm for computing a shortest path.

However, its correctness proof is nontrivial.
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Definition 6. For each edge e∈E and time r≥ 0, let Qre denote its queue at time r produced by

routing q−i = (Qj)j∈∆\{i}. For any edge e′ (if any) incoming to the tail vertex of e, let Qre,e′ denote

the subset of agents in Qre who enter e at r from edges with priorities no higher than e′.

We slightly abuse notation Qre,e′ in the following two settings: (i) If i is in the initial queue Q0
e

with e= v1v2, we abuse Q0
e,êv1

to denote the set of agents in Q0
e who queue after i. (ii) If i∈∆v1,r

with some r≥ 1, then for any edge e ∈E with tail vertex v1, we abuse Qre,êv1 to denote the set of

agents in Qre who either enter e at time r from edges incoming to v1, or belong to ∆v1,r and have

original ranks lower than i.

Note that Q0
e = Q0

e\{i} for all e ∈E. Given v ∈ V , let τ v denote the earliest time when agent i

can reach v provided other agents follow q−i. Let Y := {v ∈ V |τ v <+∞} denote the set of vertices

in G that i can reach through some paths, i.e., i’s reachable vertices. In particular, if i is in the

initial queue Q0
e, the tail vertex of e belongs to Y . Since G is acyclic, one can find in polynomial

time a complete “acyclic” order on the vertices in Y such that for each edge with both end-vertices

in Y, its tail vertex has an order smaller than its head vertex. Let v1, v2, . . . , v|Y | be the vertices in

Y ranked by such an order. Then it must be the case that v|Y | = d, and v1 is i’s starting vertex,

i.e., either i ∈Q0
v1v2

or i enters G from v1 at some time r ≥ 1. For any vertex v ∈ Y \{v1}, let êv

denote the incoming edge to v with the highest priority (w.r.t. ≺v) that agent i can use to reach

v at time τ v, provided q−i is fixed. Now we are ready to describe our Dijkstra-like algorithm.

Algorithm 1 (Dijkstra-like algorithm for EE best-response)

1. Simulation of the dynamic process generated by q−i: for every time r ≥ 0 when the

network is nonempty, for every edge e and any edge e′ incoming to the tail vertex of e,

compute the queues Qre and Qre,e′ .

2. Initiation: If i∈Q0
v1v2

, then τ v1← 0; If i∈∆v1,r for some r≥ 1, then τ v1← r.

3. k← 2, E∗i ←∅

4. While k≤ |Y | Do

- τ vk← min
e=vhvk∈E:h<k

{
τ vh + |Qτvhe \Qτ

vh

e,êvh
|+ 1

}
.

- êvk← the edge in argmin
e=vhvk∈E:h<k

{
τ vh + |Qτvhe \Qτ

vh

e,êvh
|+ 1

}
that has the highest priority

- E∗i ←E∗i ∪{êvk}, k← k+ 1

End-While

5. Output: Return i’s EE best-response, i.e., the unique path from v1 to d that can be formed

by some edges in E∗i .

For k = 1,2, . . . , |Y |, in the kth iteration of the while-loop, the algorithm computes agent i’s

earliest arrival time τ vk at vertex vk in the same spirit as the Dijkstra algorithm. If agent i uses edge
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e= vhvk to travel from vh to vk, the fastest way is that he reaches vh at the earliest possible time

τ vh (which has been derived in a previous iteration), waits at e for |Qτvhe \Qτ
vh

e,êvh
| time units, and

then spends 1 unit of transit time going through e to vk. Thus τ vk is obtained by taking minimum

over all possible edges e incoming to vk, as stated in the first item of Step 4. The nontrivial part of

our algorithm is determining the queuing time to be |Qτvhe \Qτ
vh

e,êvh
|. Among the agents who queue

at edge e at time τ vh (i.e., those in Qτvhe ), the ones whom i can overtake at e are those in Qτvhe,êvh

and they are exactly the agents in Qτvhe who are preempted by i at vh.

Theorem 4. Given any partial path profile q−i, the EE best-response of agent i can be computed

by the Dijkstra-like algorithm efficiently.

The correctness proof of the algorithm can be found in Section EC.5. We discuss here the time

efficiency. To compute the queues in Step 1, we simulate the transit and queuing process in a way

that we only keep records for all nonempty queues during the process. Note that the queue state

varies only when an agent just reaches an edge or just leaves a queue. So the number of records

contributed by an agent is at most twice the number of edges on his path. It follows that all queues

stated in Step 1 can be found in polynomial time. On the other hand, the while-loop at Step 4 is

a standard dynamic program and its time complexity is O(|V |2). Therefore, the EE best-response

of each agent is polynomially computable if the agent set and network are finite. Otherwise, the

computational efficiency is achieved via ignoring agents who are sufficiently far from the destination

d or enter the network at time points sufficiently later (i.e., those who are doubtlessly not in F).

Example 5. Let us reconsider the game shown in Example 2. Now suppose agent h chooses his

upper path oho1y1d and agent g chooses his lower path ogv2x2y2d, while agents 1–4 just move

forward along their unique paths. We illustrate how to compute agent i’s EE best-response using

the Dijkstra-like algorithm. First, by simulating the flow produced by q−i, we have the critical

queue-size information in Table 1.

r= 1 r= 2 r= 3 r= 4 r= 5
|Qr

o1y1
| 2 2 1 0 0

|Qr
o2y2
| 2 1 0 0 0

|Qr
y1d
| 0 1 1 1 0

|Qr
y1d,o1y1

| 0 1 1 0 0
|Qr

y2d
| 0 1 1 1 0

|Qr
y2d,o2y2

| 0 1 1 1 0

Table 1 Critical queue-size information on q−i

It is apparent that (oi, u1, u2, o1, o2, y1, y2, d) is a complete acyclic order of agent i’s reachable

vertices. Using the above queue-size information, we can compute the earliest arrival time at
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each vertex for agent i as follows: τ oi = 1, τu1 = 2, τu2 = 2, τ o1 = 3, τ o2 = 3, τ y1 = 5, τ y2 = 4 and

τd = min
{
τ y1 +

∣∣Q5
y1d
\Q5

y1d,o1y1

∣∣+ 1, τ y2 +
∣∣Q4

y2d
\Q4

y2d,o2y2

∣∣+ 1
}

= min{5+0+1,4+(1−1)+1}= 5,

êd = y2d. Thus agent i’s EE best-response is his lower path oiu2o2y2d.

4.4.3. Computing the special IDNE In Section 4.1, we have constructed the special IDNE

for game ΓN. Now let us show that this construction can be executed efficiently. It suffices to show

that, when the partial path profile (P1, . . . , Pi−1) for agents 1, . . . , i− 1 has been computed, we can

efficiently find the next agent, whom we label as i, and his associated dominant path Pi.

It is worth noting that Pi is actually the EE best-response of i to (P1, . . . , Pi−1). Therefore, to

identify the agent i, we employ the Dijkstra-like algorithm to compute the EE best-response Pj of

each agent j ∈∆\[i− 1] to (P1, . . . , Pi−1) and their earliest arrival times at each vertex. (Note that

when we simulate the flow generated by (P1, . . . , Pi−1) for every agent j ∈∆\[i− 1], the subsets of

agents preempted by j are always empty, since no agent in ∆\[i− 1] can affect the agents in [i− 1]

according to the iterative dominance property, i.e., there is no intricate chain effects under this

circumstance.) Starting with a candidate set {(j,Pj) : j ∈∆\[i−1]}, we repeatedly implement steps

(S1)–(S3) in Section 4.1 to prune the set until only one candidate is left. This candidate consists

of the desired agent i and path Pi. Therefore, the total number of times we run the Dijkstra-like

algorithm is
∑|∆|

i=1(|∆| − (i− 1)) = (1 + |∆|)|∆|/2. As mentioned earlier, if infinitely many agents

are involved, our computation may ignore agents whose entry times to G are sufficiently late.

We remak that there is another natural algorithm to efficiently compute the special IDNE by

making the utmost of the above EE best-responses and the iterative dominance property. Given

an arbitrary initial path profile q(0) = (Q
(0)
i )i∈∆ with Q

(0)
i ∈Pi, define a sequence of path profiles

q(k) = (Q
(k)
i )i∈∆, k = 1,2, . . . , |∆|, where Q

(k)
i is agent i’s EE best-response to q

(k−1)
−i , i.e., at each

round k, every agent makes EE best-response to other agents’ strategies in the preceding round.

For our game ΓN, using this iterative approach of simultaneous EE best-responses, the path profiles

converge to the special IDNE quickly (in at most |∆| rounds). To see the convergence, note that

regardless of the initial paths of other agents, the EE best-response of agent 1 in the first round

must be exactly his path in the special IDNE, which will never change in subsequent rounds. Similar

observations are applicable to the EE best-response of agent 2 from the second round onwards,

and so on and so forth. Finally, in the |∆|th round, all agents choose the paths as in the special

IDNE, where everyone’s path is his EE best-response to others. We illustrate the algorithm using

a simple example as follows.

Example 6. Following Example 5, suppose (oiu2o2y2d, oho1y1d, ogv2x2y2d) is an initial partial path

profile for agents i, h and g, respectively, and the other four agents follow their unique paths. Table 2

lists the EE best-responses of agents i, h, g in each round and the convergence process. Note that
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Agent i Agent h Agent g
Round 0 oiu2o2y2d oho1y1d ogv2x2y2d
Round 1 oiu2o2y2d oho1y1d ogv1x1y1d
Round 2 oiu2o2y2d oho2y2d ogv1x1y1d
Round 3 oiu1o1y1d oho2y2d ogv1x1y1d
Round 4 oiu1o1y1d oho2y2d ogv1x1y1d

Table 2 The iterative process of simultaneous EE best-responses

(ogv1x1y1d,oho2y2d,oiu1o1y1d) is the partial path profile for agents g,h, i in the special IDNE

for this example.

Note that, in the above process, we do not need to identify the iterative dominant order of

the agents. It resembles a natural learning process in the real world, where agents update their

strategies in a distributed way from an arbitrary initial path profile. This kind of algorithms are

quite common in the study of day-to-day models, where convergence within a finite number of

steps is rare and even convergence may not be guaranteed (Guo et al. 2018).

5. The game of adaptive agents

Our second submodel ΓA of dynamic atomic flow game assumes that agents are of a relatively

high rationality level. Specifically, agents are adaptive in that they make routing decisions at every

nonterminal vertex they reach as to which next edge to take. Their decisions at a vertex may

depend on the choices of other agents in the history. The following example demonstrates that it is

natural to assume that agents use adaptive strategies, when they have updated information about

others, and they may gain by using more flexible adaptive strategies than simply choosing fixed

origin-destination paths at the very beginning.

Example 7. Consider the network in Figure 4, where e1 has a higher priority over e2, and e3 over

e4. Two agents 1 and 2 set off from their respective origins o1 and o2.

Figure 4 Nonadaptive vs. adaptive agents

While agent 1 does not care about what agent 2 selects (because e1 and e3 have higher priorities

over e2 and e4, respectively), agent 2 does care about what agent 1 selects, because he may be

blocked and delayed by agent 1 at w or w̃. But how could agent 2 be sure that agent 1 will select
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the upper (or lower) path? Suppose now agent 2 postpones his decision making on vertex v2 to the

time he reaches it, then he will select e4 if he observes that agent 1 has chosen the upper path and

e2 otherwise. In fact, this is exactly what adaptive agent 2 does in both SPEs of the game ΓA.

5.1. Game setting

For the extensive-form game ΓA, the notion of a strategy is much more complicated than for the

normal-form game ΓN. While a nonadaptive agent in ΓN has only one decision point, at which he

selects an origin-destination path, an adaptive agent in ΓA typically has multiple decision points.

On the other hand, while the choice of a nonadaptive agent is an origin-destination path, the

choice of an adaptive agent at each decision point is an edge. A strategy of an adaptive agent is a

“complete plan” that is responsive to all possible scenarios, i.e., a profile of decisions at all decision

points. We next present a rigorous definition of a strategy in the extensive-form game ΓA in terms

of “configurations” and “histories”.

Given time point r≥ 0, we use Qr
e to denote the queue at edge e at time r, which will be considered

as both a sequence of agents and the corresponding set. We call cr = (Qr
e)e∈E a configuration w.r.t.

time r if Qr
e ∩Qr

e′ = ∅ for different edges e and e′. In particular,

• Let c0 = (Q0
e)e∈E denote the unique initial configuration given by the input (see Section 3);

• Let ∆(cr) := (∪e∈EQr
e)∪ (∪v∈V ∆r+1,v) denote the set of agents involved in configuration cr

and inflows at time r+ 1;

• Let D(cr) := (∪e∈EQr
e)∪ (∪v∈V,s≥r+1∆s,v) denote the set of agents involved in configuration

cr and afterwards.

We say that configurations cr and cr+1 are consecutive if cr+1 is reachable from cr after one time

unit under the given inflows and the edge-priority DQ rule (recalling Section 3). A precise definition

of consecutiveness is provided in Section EC.8 of the Electronic Companion, using a notion of

action profiles.

Definition 7 (History/Decision point). For each time point r≥ 0, a sequence of consecutive

configurations hr = (c0, . . . , cr) starting from the initial configuration c0 is called a history at time r.

In particular, h0 = (c0) is called the initial history. The set of all histories at time r is denoted as

Hr. Each history hr corresponds to a decision point of all agents in ∆(cr).

Definition 8 (Strategy). A strategy of agent i ∈ ∆ is a mapping σi that maps each history

hr = (c0, . . . , cr) with i ∈ ∆(cr) to σi(hr) such that, based on cr and the edge-priority DQ rule,

either σi(hr) is the “next” edge along which i travels (i.e., i could stand at its tail part at time

r+ 1) or σi(hr) is a null element when under cr agent i will exit G at time r+ 1. The strategy set

of agent i is denoted as Σi. A vector σ= (σi)i∈∆ is called a strategy profile of ΓA.
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Note in the above definition that when an agent is not the head of a queue, the “next” edge he

“chooses” must be the same edge he is queuing at, i.e., he waits for at least one more time unit.

Remark 1. The number of decision points of an adaptive agent is generally much larger than

the number of vertices he passes. Taking Example 1 as an illustration, each agent has 4 decision

points before arriving at vertex w: 1 point at origin o, and 3 points at vertex v (corresponding to

the opponent choosing ou1, ou2 and ov, respectively). Suppose agent 2 has decided to choose edge

ou1 at origin o. Agent 2 still needs to specify in his strategy the choices at vertex v in 3 different

scenarios, even if he will never reach v when he follows the strategy. This is a remarkable difference

between a strategy in an extensive-form game and a strategy in daily languages.

A strategy profile is an SPE if and only if each agent has no incentive to deviate from his strategy

at any decision point, assuming that other agents do not deviate. A more rigorous definition is given

in terms of “game tree” as follows. The game tree of ΓA is a tree with nodes corresponding to ΓA’s

histories (i.e., decision points of agents). At each game tree node (history) hr = (c0, c1, . . . , cr), agents

in ∆(cr) need to make their own decisions simultaneously, and the collection of these decisions

forms their action profile, which leads to a new node (history) hr+1 as a child (continuation) of hr.

For each history hr = (c0, c1, . . . , cr), the subtree of the game tree rooted at hr can be viewed as a

separate game (with agent set D(cr) starting from cr at time r), which is referred to as a subgame

of ΓA. A subtree is also called a subgame tree.

Given a strategy profile σ = (σi)i∈∆ of ΓA, the restriction of each strategy σi with i ∈ D(cr)

to a subgame tree rooted at hr = (c0, c1, . . . , cr) is also a strategy of agent i in the corresponding

subgame starting from hr. All these restricted strategies form a strategy profile for the subgame.

Under the routing induced by the strategy profile for the subgame, the time when agent i∈∆(cr)

exits G is denoted as ti(σ|hr).

Definition 9 (SPE). A strategy profile σ = (σi)i∈∆ is a subgame perfect equilibrium (SPE) of

ΓA if for any r ≥ 0 and any history hr ∈ Hr, ti(σ|hr)≤ ti(σ′i, σ−i|hr) holds for all i ∈∆(cr) and all

σ′i ∈Σi such that strategy profile (σ′i, σ−i) still leads to history hr, where σ−i is the partial strategy

profile of σ for agents in ∆\{i}.

5.2. SPE existence

The standard way to prove the existence of an SPE is by backward induction (and usually the

one-deviation property). However, in game ΓA, time horizon is typically infinite and more than one

agent may move at each time step, hence the usual approach does not work here in general. In this

subsection, we establish the SPE existence for ΓA using a constructive approach.

Theorem 5. Each extensive-form game ΓA admits an SPE.
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The basic idea for constructing an SPE of ΓA is to assemble the special IDNEs of various game

instances ΓN that are associated with configurations of ΓA. To be more specific, given a game

instance ΓA with input (G,∆), every configuration cr of the extensive-form game ΓA is associated

with a normal-form game instance under model ΓN, denoted as ΓN(cr), which starts at time r

on network G with initial queues cr = (Qr
e)e∈E, and is played by nonadaptive agents in D(cr) =

(∪e∈EQr
e)∪ (∪v∈V,s≥r+1∆s,v). Using the method in Section 4.1, we obtain the special IDNE of game

ΓN(cr). In our assembling, at every configuration cr, the action that each agent of ∆(cr) takes in

ΓA is determined by his path in the special IDNE of ΓN(cr): just choose the first edge of the path

when he is the head of the current queue or keep staying in the queue otherwise. It can be shown

that such a strategy profile is an SPE for ΓA. The proof (see Section EC.9) relies on the properties

of these NEs for all games ΓN(cr): the iterative dominance as well as the sequential independence

and optimality discussed in Section 4.1.

The realized paths of the SPE constructed above form a path profile that is exactly the special

IDNE we construct for game ΓN(c0). Hence, this special SPE possesses all the nice properties

discussed in Section 4.1, and also satisfies the following additional properties:

• Markovian: the action each agent takes at each decision point depends only on the current

configuration and its associated time r, not on earlier configurations in the history. (Note

that different histories, which correspond to different decision points of agents, may lead to

the same configuration w.r.t. the same time point.)

• Anonymous: the action each agent takes at each decision point does not depend on the

identities of other agents.

As a corollary of the efficient computation of NEs discussed in Section 4.4.3, we can efficiently

find the action profile at any history under this SPE of game ΓA assembled from special IDNEs.

Remark 2. If priorities were placed on agents, then an SPE may not exist even if the network

has only one single origin. This can be seen from Example 3, which can be considered as a part of

some more complex single-origin network game (we omit the construction of the whole game).

5.3. NE realization from an SPE

Each strategy profile σ of game ΓA induces a path profile, which is a strategy profile of the corre-

sponding game ΓN. Recall from Example 1 that an SPE of ΓA does not necessarily induce an NE

of ΓN. A natural question arises: are all NEs of ΓN inducible by SPEs of ΓA? The answer is yes,

as formally presented in the following theorem, whose technical proof, relegated to Section EC.10,

relies on both the hierarchical independence of general NEs (see Section 4.3) and the iterative

dominance of special NEs (see Section 4.1).
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Theorem 6. For every NE profile p of game ΓN, there exists an SPE σ of game ΓA such that the

path profile induced by the initial history h0 and σ is exactly p.

Combined with Example 1, the above theorem shows that the NE outcome set of ΓN is typically

a proper subset of the SPE outcome set of ΓA, reaffirming the intuition that model ΓA is more

flexible than ΓN. Since model ΓN is relatively easier to study, also natural and more frequently

analyzed in the literature, Theorem 6 can serve as a bridge between models ΓA and ΓN. Recall that

in general game theory, each SPE is also an NE. Our result does not contradict this well-known

result because strategies have different meanings in ΓN and ΓA.

In addition, Theorem 6 gives an alternative answer to the question of how an NE could be

possible. This question is quite challenging both in the general game theory and in the trans-

portation study. While there are standard (but not completely satisfactory) answers, including

pre-communication and rational expectation (Sheffi 1985), to defend the relevance of the NE notion,

we provide an alterative answer via allowing the adaptiveness of agents. We argue that, when

agents are able to make more flexible adaptive decisions than the usual rigid ones addressed in the

previous literature, NE outcomes have more chances to be realized (by SPE).

6. Concluding remarks

In this paper, we have proposed a new network game model of atomic dynamic flows for both

adaptive and nonadaptive agents. Our model is arguably promising thanks to its many desirable

properties, including the equilibrium existence, equivalence between NEs and strong NEs, global

FIFO, and computational efficiency for finding equilibria and best responses, which stand in stark

contrast with existing related negative results on atomic dynamic flow games. In particular, the

equivalence between NEs and strong NEs has rarely been seen in atomic routing games, even in a

static setting, where rather restrictive conditions are often needed to guarantee their equivalence

(Holzman and Law-Yone 1997).

We now briefly discuss the generality of the Unit Assumption. Our unit-capacity assumption

goes inevitably together with the lane priorities, which constitute part of the input network. Gluing

parallel lanes together, all the derived results without regard to computational complexity hold for

networks with arbitrary capacities. When the input size of lane priorities is polynomial in that of

the capacitated network, e.g., left lanes having higher priorities than the right ones, the running

times of our algorithms are polynomial in the network’s input size plus the number of agents. Our

unit-length assumption is merely for the sake of easy description. When an edge does not have

unit length, one can subdivide it into unit-length edges. An agent waits at the original edge if and

only if he does so at the resulting unit-length edge that has the same tail vertex as the original

edge, no queue being built up at any other resulting unit-length edges. Clearly, all our theoretical
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results (on equilibrium existence and properties) are still valid when the unit-length assumption is

dropped. Moreover, as our algorithms only record nonempty queues in simulating the transit and

queuing process (see the discussion following Theorem 4 in Section 4.4.2), the efficient computation

can also be guaranteed for networks with arbitrary edge lengths.

Our results may also help us better understand the connections and differences between DQ-

based games of atomic dynamic flows and those of nonatomic ones. It is known that NE flows,

earliest arrival flows and global FIFO flows are all identical in related nonatomic models (Koch

and Skutella 2011). In our atomic model, however, earliest arrival flows are NE flows, which are

in turn global FIFO flows, but neither of the other ways around is generally valid. In addition, no

overtaking is valid for nonatomic NE flows (Koch and Skutella 2011), which is not the case in our

atomic model.

Our results provide some managerial insights and policy implications. First, back to the real

world, the tie-breaking rule used in our model, which is based on edge priorities, plays a comple-

mentary role to the traffic-light system in coordinating the traffic. (A difference between our model,

as well as almost all known related ones, and the real world is that the cross conflicts mediated

by traffic lights are not considered.) Our theoretical results indicate that this kind of system pos-

sesses more nice properties, and is thus more reasonable than the system based on agent priorities.

Second, our Braess-like paradox (Example 4) indicates that, in certain extreme scenarios, fewer

vehicles may lead to a worse equilibrium. This raises, at least theoretically, a challenge to traffic

restriction policies practiced in many cities all over the world in various ways.

This paper is our first attempt to understand games of atomic dynamic flows, especially with the

introduction of agents’ flexibility of online decision making. Many interesting problems are widely

open. For example, is there an upper bound on the SPE (or NE) queue lengths for general single-

origin single-destination networks when the inflow rate is no more than the minimum capacity

of an origin-destination cut? Does a long-run steady state exist when the inflow is constant or

seasonal? How efficient is this steady state if it does exist? What if agents are allowed to choose

their departure times? The queue notion used in our model is also referred to as point-queue in the

traffic community, i.e., queues have no physical lengths. Spillback models (Daganzo 1998, Bressan

and Nguyen 2015, Sering and Koch 2019) that consider the physical lengths of queues are also

important future directions.

One drawback of our nonadaptive model is that agents make their decisions simultaneously at

the very beginning, which is before they enter the network. Investigating a more realistic model

which rests between the adaptive and nonadaptive models in that agents make their route-choice

decisions when they enter the network, as has been assumed in many nonatomic models, is also

meaningful. Exploring such issues will undoubtedly help us better understand games of atomic
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dynamic flows. As a positive step in this spirit of pursuit, we consider a hybrid model, suggested

by an anonymous reviewer, of agents who are between adaptive and nonadaptive, in the sense

that an agent contemplates at every nonterminal vertex switching paths with a given probability.

The SPE existence result for our model of adaptive agents is still valid for this hybrid model (see

Section EC.13 of the Electronic Companion for details).
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mung des dynamischen preisgleichgewichts. Zeitschrift für die gesamte Staatswissenschaft/Journal of

Institutional and Theoretical Economics, (H. 2):301–324.

Sering, L. and Koch, L. V. (2019). Nash Flows Over Time with Spillback, pages 935–945.

Sheffi, Y. (1985). Urban transportation networks, volume 6. Prentice-Hall, Englewood Cliffs, NJ.

Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review,

59(2):251–260.

Wardrop, J. G. (1952). Road paper: Some theoretical aspects of road traffic research. In ICE Proceedings:

Engineering Divisions, volume 1, pages 325–362. Thomas Telford.

Werth, T., Holzhauser, M., and Krumke, S. (2014). Atomic routing in a deterministic queuing model.

Operations Research Perspectives, 1(1):18–41.

Yagar, S. (1971). Dynamic traffic assignment by individual path minimization and queuing. Transportation

Research, 5(3):179–196.



e-companion to Cao, Chen, Chen, Wang: Atomic Dynamic Flow Games ec1

Electronic Companion

Throughout, for any directed multi-edge graph H with vertex set V̂ and edge set Ê, and any

vertex v ∈ V̂ , we use Ê+(v) and Ê−(v) to denote the set of outgoing edges from v and the set of

incoming edges to v in H, respectively. To avoid possible confusion in expressing parallel edges, for

each edge e∈ Ê with tail vertex u and head vertex v, we give u and v aliases ue and ve, respectively.

When we write e as uv, we always mean u= ue and v= ve.

For any strategy (path) profile p= (Pi)i∈∆ of game ΓN and any agent subset S of ∆, the partial

path profiles (Pi)i∈S and (Pi)i∈∆\S are abbreviated to pS and p−S, respectively. In particular, p∅

is viewed as an empty profile.

EC.1. A technical transformation

In our model ΓN, the superficial difference between the agents inside the initial queues and those

outside makes our presentation cumbersome. To avoid awkward descriptions and also indicate

more insights into agent interactions in model ΓN, we introduce a new model, denoted by Γ̄N,

which we show is equivalent to ΓN. The three seemly different characteristics of an agent in ΓN,

entry time, origin, and original rank, are unified to a single location feature in Γ̄N. Studying this

equivalent model not only significantly simplifies the five ranking criteria in edge-priority DQ rule

(see Section 3) and many technical definitions (such as “agent preemption” in Section 4.4.1), but

also substantially shortens our proofs (avoiding tedious case analyses to deal with different agent

characteristics).

In Γ̄N, all agents are located at the initial queues of the new input network Ḡ, which is either

a finite acyclic directed graph or some special infinite graph as illustrated in Figure EC.1: G is a

subgraph of Ḡ. Both games ΓN and Γ̄N have the same set of agents ∆ =Q0
uv ∪∆1,u∪∆2,u∪r≥1 ∆r,v,

and the same initial queue Q0
uv = {1,2,3} in G; The sets of sequentially arriving agents in ΓN,

i.e., ∆1,u = {4}, ∆2,u = {5,6} with agent 5 having a higher original rank than 6, ∆1,v = ∅, and

∆r,v = {r+ 5} for every r≥ 2, correspond to initial queues outside G in Γ̄N.

Figure EC.1 Game ΓN on G vs. game Γ̄N on Ḡ
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Recall that the input of a game instance ΓN consists of network G= (V,E) with initial queues

(Q0
e)e∈E and inflows of agents ∆r,v (r ≥ 1, v ∈ V ) along with original ranks among them. Corre-

sponding to this game instance, an instance of game Γ̄N is specified by the same set ∆̄ := ∆ =

(∪e∈EQ0
e)∪ (∪r≥1,v∈V ∆r,v) of nonadaptive agents, but with a modified network input Ḡ= (V̄ , Ē),

which is obtained from G by adding a (typically infinite) number of pendant paths and specifying

initial locations of the agents ∪r≥1,v∈V ∆r,v at the newly added pendant paths, as detailed below:

(T1) Network Ḡ: For each vertex v ∈ V , we add a number maxr≥1 |∆r,v| (which is possibly zero)

of paths P v
1 , P

v
2 , . . . directed to v, each intersecting G only at v. Outside G, all added paths

are mutually vertex-disjoint.

(T2) Priority preservation: For each v ∈ V , the decreasing priority ordering of the added incoming

edges to v agrees with the (subscript) ordering of added paths containing them: the unique

edge in P v
1 incoming to v has the highest priority, the one in P v

2 incoming to v has the second

highest priority, and so on. This ordering is followed by the given ordering of incoming edges

to v in G, which makes a complete priority order over all incoming edges to v in Ḡ.

(T3) Rank preservation: Agent i∈∆r,v in game ΓN with the hth highest original rank corresponds

to agent i∈ ∆̄ in game Γ̄N, who is the only agent queuing at time 0 on path P v
h at a distance

r from v, where distance is measured by the number of edges. Particularly, agent i in Γ̄N will

reach v at time r through the (added) incoming edge to v with the hth highest priority.

With the above transformation, it is easy to see that the agent set ∆̄ of game Γ̄N is simply the

disjoint union of its initial queues, which we still denote as Q0
e, over all e∈ Ē. The game Γ̄N starts

at time 0 with the input Ḡ and (Q0
e)e∈Ē. No entries of agents into the network Ḡ are involved

throughout the game and all agents are in Ḡ from the very beginning. Therefore, no original ranks

are needed to break ties. (Note that we have transformed the original ranks among ∆r,v to the

priorities of the added edges incoming to v.)

Due to the simpler form of the input for Γ̄N, the edge-priority DQ rule (see Section 3) when

applied to Γ̄N is simplified: we do not need rules (R3) and (R4) any more. Regarding any fixed edge

e (with tail vertex ue) and any pair of agents, the agent who enters e earlier has a higher queue

rank at e. Ties are broken via (R2) only: higher priority is given to the agent who enters e through

an incoming edge to ue that has a higher priority according to ≺ue . Another simplification resulted

from our transformation is that in Γ̄N all information about agent set is contained in the initial

queues (Q0
e)e∈Ē. The chronological order of entrances into G in ΓN is visualized by the lengths of

paths of Ḡ in Γ̄N, which makes the task of investigating agent interactions easier. For instance, in

the example illustrated in Figure EC.1, game Γ̄N provides a faster way for one to find that agent

7 will preempt agent 3 at vertex v.
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Each agent i∈ ∆̄ selects a path starting from his initial edge (the edge where he queues at time

0) and ending at the common destination vertex d. Such paths form his strategy set, which we

write as P̄i to distinguish it from Pi in game ΓN. We use oi to denote the tail vertex of initial

edge of agent i∈ ∆̄ in Ḡ. The following fact is obvious by our transformation from game ΓN on G

to game Γ̄N on Ḡ.

Lemma EC.1. Given game ΓN with input (G,∆), let game Γ̄N with input (Ḡ, ∆̄) be constructed

as in (T1)–(T3). Then the game ΓN is exactly the restriction of the game Γ̄N to G: the strategies

and movements of agents together with their arrival times at vertices along their paths in ΓN are

identical with those in the restriction of Γ̄N to G.

In view of agents’ trivial movements outside G in game Γ̄N, the above lemma enables us to turn

our attention to Γ̄N when studying ΓN. These two games are essentially identical. The notation

and definitions introduced for game model ΓN apply to game model Γ̄N, as the latter is simply a

special case of the former.

EC.2. Algorithm for finding an IDNE

In this section, we construct an IDNE for every game Γ̄N (see Definition 2). The result along with

Lemma EC.1 directly yields an IDNE for every game ΓN. Recall that, [0] = ∅, and for any positive

integer k, [k] denotes the set of all positive integers no more than k.

Algorithm. We are able to reindex the agents of ∆̄ as 1,2, . . . and find the associated path

profile p̄= (P̄1, P̄2, . . .) such that, each agent k ∈ ∆̄ is a dominator in ∆̄\[k−1] and P̄k is a dominant

path in the following sense: under the assumption that agents in [k − 1] all follow p̄[k−1], as long

as agent k takes P̄k, he will be among the first in ∆̄\[k − 1] to reach every vertex of the path.

Specifically, for any vertex v on P̄k, and partial path profile q−[k] for agents in ∆\[k], we have

tvk
(
p̄[k],q−[k]

)
= min

{
tvj (p̄[k−1],r−[k−1]) : j ∈∆\[k− 1],

and r−[k−1] is partial profile for ∆\[k− 1]
}
. (EC.1)

We call such a path profile iteratively dominant. As explained in Section 4.1, it is actually an NE,

i.e., IDNE, of game Γ̄N.

For completeness, we repeat the sketch of the algorithm in the context of Γ̄N. Our algorithm

runs roughly as follows. Initially, let agent subset [0] of ∆̄ and partial routing p̄[0] of agents in [0]

be empty. Then recursively, assuming agents in [k− 1] go along their paths as specified in p̄[k−1],

we enlarge [k− 1] with a new agent k ∈ ∆̄\[k− 1] and enlarge p̄[k−1] with a path P̄k ∈ P̄k in the

following way. For each agent j ∈ ∆̄\[k− 1] and vertex v ∈ V̄ , we define

τ vj = min{tvj (p̄[k−1],Rj) |Rj ∈ P̄j}
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as the “ideal arrival time” of agent j at vertex v, where tvj (p̄[k−1],Rj) is j’s arrival time at v assuming

that all agents in Ḡ are only those in [k− 1] ∪ {j} and they follow (p̄[k−1],Rj). We select the

candidates j and P̄j for agent k and his path P̄k step by step. Initially, let u denote the destination

vertex d. Let j ∈ ∆̄\[k− 1] and P̄j ∈ P̄j be such that

(S1) tuj (p̄[k−1], P̄j) equals mini∈∆̄\[k−1] τ
u
i , the earliest ideal arrival time at u among all agents in

∆̄\[k− 1];

(S2) If more than one candidate (j, P̄j) satisfy (S1), then the choice of (j, P̄j) from the candidates

is made such that the incoming edge to u on P̄j has the highest possible priority;

(S3) If still more than one candidate (j, P̄j) satisfy (S1) and (S2), then the paths P̄j involved must

share the same incoming edge e to u (whose tail vertex is denoted as ue), and at least one

such P̄j satisfies that tuej (p̄[k−1], P̄j) is the earliest ideal arrival time at vertex ue among all

agents in ∆̄\[k− 1]; we update u with ue and go back to (S1) for further selections from the

current candidates (i.e., those satisfying all (S1), (S2), (S3) checked), unless e is the initial

edge of all candidate agents j.

The above process is repeated until either only one candidate pair (j, P̄j) is left or the edge e∈ Ē

in (S3) becomes the initial edge of all the remaining candidate agents. In the former case, we set

(k, P̄k) = (j, P̄j). In the latter case, all candidate paths must be identical, and we choose agent k to

be the head of queue Q0
e and set P̄k to be the identical candidate path. In either case, we enlarge

[k− 1] by k, augment p̄[k−1] with P̄k, obtaining a larger agent subset [k] and the associated path

profile p̄[k]. We then iterate the above procedure based on [k] and p̄[k]. A formal description of the

process is presented in Algorithm 2 on page ec5.

Proofs. Let the game instance Γ̄N on (Ḡ, ∆̄) be as specified in the input of Algorithm 2. To

facilitate our discussions, we introduce some new notations. Given any path P in Ḡ, a u-v subpath

of P is often written as P [u, v]; furthermore, we write P (u, v] = P [u, v]\{u}, P [u, v) = P [u, v]\{v}

and P (u, v) = P [u, v]\{u, v}.

Recall that oi denotes the tail vertex of the initial edge of agent i ∈ ∆̄. Let agents 1,2, . . . of ∆̄

be indexed and path profile p̄= (P̄k)k∈∆̄ be computed as in Algorithm 2. Recall that [0] = ∅ and

p̄[0] is the null profile. For any nonnegative integer k, any agent index j with j > k and any vertex

v ∈ V̄ , let

`vj JkK := min
{
tvj (p̄[k],Rj) |Rj ∈ P̄j

}
denote the value `vj computed for agent j in Step 3 at the (k+ 1)st iteration of Algorithm 2, i.e.,

the earliest time for agent j to reach vertex v, based only on the partial routing p̄[k] of agents in

[k]. In particular, by definition, tvj (p̄[j]) = `vj Jj− 1K for every agent j and every vertex v ∈ P̄j.
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Algorithm 2 (Iteratively Dominant NE)

Input: game instance Γ̄N: network Ḡ = (V̄ , Ē) with initial queues Q0
e, e ∈ Ē, where agent set

∆̄ =∪e∈ĒQ0
e.

Output: the special IDNE p̄= (P̄k)k∈∆̄ along with the corresponding agent indices 1, 2, . . .

1. Initiate p̄[0]←∅, k← 0.

2. k← k+ 1.

(NB: Start to search for a new dominator k and his associated dominant path P̄k.)

3. For each agent j ∈ ∆̄\[k− 1] and vertex v ∈ V̄ Do

- `vj ←min
{
tvj (p̄[k−1],Rj) |Rj ∈ P̄j

}
;

(NB: `vj is the earliest time for j to reach vertex v, assuming that all other agents in Ḡ are those in

[k− 1] and they go along their paths specified in p̄[k−1]. Note that `vj (<∞) is computable by the

Dijkstra-like algorithm in Theorem EC.4 with partial path profile p̄[k−1] and agent j in place of q−i

and i over there, whose output τ v is exactly `vj .)

- P̄v
j ←

{
Rj[oj, v] |Rj ∈ P̄j and tvj (p̄[k−1],Rj) = `vj

}
.

(NB: P̄v
j denotes the set of all paths starting with j’s initial edge and ending at v along which j

can reach v at time `vj , under the above assumption. If there is no such a path in Ḡ, then `vj =∞

and P̄v
j = ∅.)

End-For

4. C← ∆̄\[k− 1], P ←∅, w← d.

(NB: In the following while-loop, C is a set of candidates j for selecting k that will be pruned step by

step; P is a subpath of P̄j that will grow edge by edge starting from d; w is the latest vertex added to

P ; the value ` is strictly decreasing, which guarantees the termination of the while-loop.)

5. While ` := minj∈C `
w
j ≥ 1 Do

C←{j ∈C | `wj = `};

uw← the edge of the highest priority among all ending edges of paths in ∪
j∈C

P̄w
j ;

P ← P ∪{uw};

w← u;

End-While

(NB:at the end of the while-loop the starting edge of P is the common initial edge of all agents in C.)

6. Let k ∈C be the agent who, at the very beginning, stands first (among all agents in C) on

the starting edge of P .

(NB: The agent k selected is called the dominator of ∆̄\[k− 1].)

7. Let k be associated with P̄k← P, p̄[k]← (p̄[k−1], P̄k).

(NB: The algorithm outputs agent k and his associated dominant path P̄k.)

8. If k < |∆̄|, Then go to Step 2.
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Lemma EC.2. Let agent indices j, k and agent subset S satisfy j ∈ S ⊆ ∆̄\[k− 1]. Then for every

vertex v ∈ P̄k and every path profile q= (Qh)h∈∆̄ of game Γ̄N, it holds that

tvk(p̄[k],qS\{k}) = `vkJk− 1K≤ tvj (p̄[k−1],qS) (EC.2)

This lemma exhibits some invariance and dominance properties possessed by the agent order 1,

2, . . . and the path profile p̄ computed by Algorithm 2. Specifically, for every agent index k, as long

as all agents in [k] follow p̄[k], the following properties hold, no matter what paths other agents

outside [k] choose (even if some or all of them are missing):

• Invariant arrival times of agents in [k]: the arrival times at any vertex of their paths in p̄[k]

can never be affected. (This is what the equality in (EC.2) says.)

• Universal domination of agents in [k]: no agent j ≥ k+1 can overtake any agent i∈ [k] at any

vertex of his route P̄i, which is what the inequality in (EC.2) says. In particular, it follows

that if j queues before some agent, then this agent is outside [k].

• Invariant influence of agents in [k]: due to their arrival-time invariance, the agents in [k] who

queue at an edge at some time depends only on the time and the edge under consideration

(but not on the choices of agents outside [k]), which implies that the agents in [k] exert

invariant influence on the movements of other agents outside [k].

• Property of no speed-up for agents in ∆̄\[k]: due to the invariant influence of agents in [k],

no agent j ∈ ∆̄\[k] can be sped up by other agent(s) in ∆̄\[k]. More specifically, assuming

j follows a path Rj ∈ P̄j and agents in [k] follow p̄[k], the earliest arrival time of j at each

vertex of Rj is attained when no other agents are involved — involving some or all agents

from ∆̄\([k] ∪ {j}) in the routing cannot make j’s arrival time earlier at any vertex of Rj.

(Note that this seemingly quite natural property does not hold in general. See Example 4 for

more discussions.)

Proof of Lemma EC.2. Let e denote the incoming edge to d that has the highest priority w.r.t.

≺d. For convenience, we may assume w.l.o.g. that e is the initial edge of some agent. Otherwise,

we could add a dummy agent to Q0
e, which does not exert any influence on the original agents, nor

the output of Algorithm 2 with the dummy agent and his unique path e ignored. (Note that the

dummy agent would be the first output by the algorithm.)

We prove (EC.2) by induction on k. For the base case k = 1, under the above assumption,

agent 1 is the head of Q0
e and P̄1 = e. In any case, agent 1 reaches d at time 1, and (EC.2) is

trivial. Suppose now k ≥ 2 and (EC.2) is valid when k is smaller. This means that the invariant

arrival times, universal domination and hence the invariant influence (resp. no speed-up property),

as stated above, are true for agents in [k− 1] (resp. ∆̄\[k− 1]).
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We claim `vkJk− 1K≤ `vj Jk− 1K. Otherwise, there would be a path Rj ∈ P̄j with tvj (p̄[k−1],Rj) =

`vj Jk− 1K such that based on p̄[k−1], agent j would be able to use path Rj[oj, v]∪ P̄k[v, d] ∈ P̄j to

reach v earlier than k and subsequently reach all vertices of P̄k(v, d], including d, no later than k,

contradicting the choices of k and P̄k. The inequality part of (EC.2) thus follows from

`vkJk− 1K≤ `vj Jk− 1K≤ tvj (p̄[k−1],Qj)≤ tvj (p̄[k−1],qS),

where the second inequality is by definition and the third is due to the no speed-up property of

∆̄\[k− 1]: agent j cannot be sped up by agents in S\{j}.

Note that tvk(p̄[k−1], P̄k)≤ tvk(p̄[k−1], P̄k,qS\{k}), because k cannot be sped up by agents in S\{k}.

Thus, tvk(p̄[k]) = `vkJk− 1K implies

tvk(p̄[k],qS\{k})≥ `vkJk− 1K.

So it remains to show that tvk(p̄[k],qS\{k}) ≤ `vkJk − 1K, i.e., agents in S \{k} do not slow down

agent k. Suppose on the contrary that tvk(p̄[k],qS\{k})> `vkJk− 1K = tvk(p̄[k]) for some vertex v ∈ P̄k.

Let v be the first such vertex encountered when traveling along P̄k, indicating that

(1) twk (p̄[k],qS\{k}) = `wk Jk− 1K for every vertex w ∈ P̄k[ok, v) = P̄k[ok, v]\{v}.

In view of the invariant influence from agents in [k− 1] who follow p̄[k−1], there must exist some

agent i∈ S\{k} and an edge xy ∈ P̄k[ok, v] such that i slows down k on xy, or more precisely, under

(p̄[k],qS\{k}), agent i enters xy earlier than k, or enters xy at the same time as k and queues before

k at xy. Let xy be the first such edge encountered when traveling along P̄k[ok, v]. Observe that

x∈ P̄k[ok, v). By (1), we have

(2) under routing (p̄[k],qS\{k}), agent i reaches vertex x and enters edge xy at time txi (p̄[k],qS\{k})≤

txk(p̄[k],qS\{k}) = `xkJk− 1K.

Construct a path Ri :=Qi[oi, x]∪ P̄k[x,d]∈ P̄i for agent i. Note that

(3) txi (p̄[k−1],Ri) = txi (p̄[k−1],Qi)≤ txi (p̄[k],qS\{k}),

where the equality follows from the definition of Ri and the inequality is due to the no speed-up

property of ∆̄\[k−1]: agent i 6∈ [k] cannot be sped up by agents in (S∪{k})\{i}. In turn, we deduce

from (3) and (2) that txi (p̄[k−1],Ri)≤ `xkJk− 1K = txk(p̄[k−1], P̄k). Consequently,

(4) twi (p̄[k−1],Ri)≤ twk (p̄[k]) = `wk Jk− 1K for each vertex w ∈Ri[x,d] = P̄k[x,d].

By the definition of agent k from Algorithm 2, we derive from (4) that

twi (p̄[k−1],Ri) = `wk Jk− 1K for each vertex w ∈Ri[x,d] = P̄k[x,d].

Consider w= x in the above equation, we derive from (3) and (2) that

`xkJk− 1K = txi (p̄[k−1],Ri)≤ txi (p̄[k],qS\{k})≤ txk(p̄[k],qS\{k}) = `xkJk− 1K.
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The string of inequalities enforces that under (p̄[k],qS\{k}), agents i and k enter xy at the same

time, and therefore i queues before k at xy (recall that i slows down k on xy). So it must be the

case that

• either (if Ri and P̄k have different incoming edges to x) Ri has a higher priority incoming

edge into x than P̄k does,

• or (by the choice of edge xy, i.e., ok’s proximity to xy) {i, k} ⊆Q0
xy, and agent i queues before

agent k at their common initial edge xy.

However, the choice made at the kth iteration of Algorithm 2 excludes the possibilities of both

cases. This completes the proof. Q.E.D.

By Lemma EC.1, profile p̄ is an IDNE of Γ̄N if and only if the restriction of p̄ to G is an IDNE

of ΓN. The following establishes Theorem 1.

Theorem EC.2. Algorithm 2 finds an IDNE of game Γ̄N.

Proof. For any agent j ∈∆\ [k−1], partial path profiles q−[k] and r−[k−1] for ∆\[k] and ∆\[k−1],

it is instant from (EC.2) that tvk(p̄[k],q−[k]) = `vkJkK≤ tvj (p̄[k−1],r−[k−1]), which shows the validity of

(EC.1) and thus that p̄ is an IDNE of Γ̄N. Q.E.D.

EC.3. Generalized iterative dominance

As can be seen from the proof of Lemma EC.2, our induction hypothesis only involves the equation

part of (EC.2), which guarantees the critical invariant influence property. This leads us to the

following generalization of Algorithm 2 (see page ec9), which computes an iteratively dominant

partial path profile based on a fixed routing of some special agents.

The verbatim adaption of the proof of Lemma EC.2 gives the following generalization for iterative

dominance. It plays critical roles in proving the equilibrium properties presented in Sections 4.3

and 5.3.

Lemma EC.3. Regarding Algorithm 3, if j ∈ S ⊆ ∆̄\(U ∪ [i− 1]), then for every vertex v ∈ P̄i and

path profile q of game Γ̄N, it holds that

tvi (b, p̄[i],qS\[i]) = min
Ri∈P̄i

tvi (b, p̄[i−1],Ri)≤ tvj (b, p̄[i−1],qS).

EC.4. Agent preemptions

This section elaborates on the notion of preemption (introduced in Section 4.4.1) for game Γ̄N.

Recall that, under some routing, if an agent does not reach a vertex, then we regard his arrival

time at the vertex as infinity.
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Algorithm 3 (Iteratively Dominant Partial Path Profile with a Base)

Input: game instance Γ̄N: network Ḡ with agent set ∆̄, a partial path profile b = (Bh)h∈U for a

(possibly empty) finite subset U ⊆ ∆̄ that satisfies the following arrival-time invariance: for every

agent h ∈ U and every vertex v ∈ Bh, the arrival time tvh(b,qS) of h at v is an invariant against

changing partial path profile qS, i.e., it is the same over all path profiles q of Γ̄N and agent subsets

S ⊆ ∆̄\U .

Output: the special iteratively dominant partial path profile (routing) p̄= (P̄i)i∈∆̄\U for ∆̄\U along

with the corresponding agent indices 1, 2, . . . .

1. Initiate p̄[0]←∅, i← 0.

2. i← i+ 1

(NB: Start to search for a new dominator i and his associated dominant path P̄i.)

3. For each agent j ∈ ∆̄\(U ∪ [i− 1]) and vertex v ∈ V̄ Do

- `vj ←min{tvj (b, p̄[i−1],Rj) |Rj ∈ P̄j}

- P̄v
j ←{Rj[oj, v] |Rj ∈ P̄j and tvj (b, p̄[i−1],Rj) = `vj}

End-For

4. C← ∆̄\(U ∪ [i− 1]), P ←∅, w← d.

5. Run Steps 5 to 7 of Algorithm 2 to identify dominator i of ∆̄\(U ∪ [i−1]) and his associated

dominant path P̄i.

(NB: The algorithm returns agent i and his associated dominant path P̄i.)

6. Set p̄[i]← (p̄[i−1], P̄i).

7. If i < |∆̄| − |U |, Then go to Step 2.

Throughout this section, given game Γ̄N on network Ḡ= (V̄ , Ē) with agent set ∆̄, let i denote

a fixed agent in ∆̄, and q−i = (Qj)j∈∆̄\{i} denote a fixed partial path profile of all other agents.

We consider the scenario where only agent i is allowed to change his path. For each vertex v ∈ V̄ ,

define

τ v := min
Pi∈P̄i

{tvi (Pi,q−i)}

as the earliest time at which agent i can reach vertex v by unilaterally changing his path (if P̄i

contains no path through v, then we set τ v := +∞). Analogously, for each agent j ∈ ∆̄\{i} and

vertex v ∈Qj, define

τ vj := min
Pi∈P̄i

{tvj (Pi,q−i)}

as the earliest time at which agent j can reach vertex v when agent i unilaterally changes his path.

We emphasize that j keeps following his path Qj (specified by q−i) in the definition of τ vj .
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In the following, for any non-singleton path P in Ḡ and any non-starting vertex v of P , we

use ev(P ) to denote the incoming edge to v on P . By virtue of the technical transformation in

Section EC.1, the preempt relation defined for game ΓN in Section 4.4.1 translates to the following

simplified definition for preemptions in Γ̄N.

Definition EC.1 (Preemption). For every agent j ∈ ∆̄\{i} and vertex v ∈Qj\{oj}, we say that

agent i preempts agent j at vertex v under q−i if either τ v < τ vj , or τ v = τ vj and v 6= oi is on some

path Pi ∈ P̄i such that tvi (Pi,q−i) = τ v and ev(Pi)�v ev(Qj).

Define vertex subset

Ȳ := {v ∈ V̄ | τ v <∞}.

For each v ∈ Ȳ , let Ov
i ∈ P̄i denote the path achieving τ v = tvi (O

v
i ,q−i) such that the priority of

ev(O
v
i ) w.r.t. ≺v is as high as possible. It is clear that

If i preempts j at v, then either tvi (O
v
i ,q−i)< τ

v
j ,

or tvi (O
v
i ,q−i) = τ vj and ev(O

v
i )�v ev(Qj).

(EC.3)

For each vertex v ∈ V̄ , we denote Av ⊂ ∆̄ as the set of agents j other than i whose arrival times

at v can be affected by i (with his unilateral path change), i.e., there exist Pi, P
′
i ∈ P̄i such that

tvj (Pi,q−i)< t
v
j (P

′
i ,q−i).

Lemma EC.4. If Av 6= ∅, then v is on some path in P̄i, i.e., τ v <∞.

Proof. Suppose j ∈ Av and agent j’s arrival time at v can be influenced. Let ev(Qj) = uv be

the incoming edge to v on Qj. If Au = ∅ and uv is not contained in any path in P̄i, then no

matter which path agent i switches to, the arrival times at u of all agents in ∆̄\{i} and hence j’s

queuing time at edge uv remain the same as those under q, which shows a contradiction to j ∈Av.

Therefore, either uv and hence v are contained in some path in P̄i, in which case we are done, or

Au 6= ∅, to which we can apply backward induction (as Ḡ is acyclic) to derive a path P ∈ P̄i that

contains u, giving v ∈ P [oi, u]∪{uv}∪Qj[v, d]∈ P̄i, as desired. Q.E.D.

Lemma EC.5. For any agent j ∈ ∆̄\{i} and vertex v ∈ Qj, if there exist paths Pi, P
′
i ∈ P̄i such

that tvj (Pi,q−i) 6= tvj (P
′
i ,q−i), then v ∈Qj\{oj} and i preempts j at v under q−i.

Proof. Recall from the Unit Assumption that all edges of network Ḡ have a unit capacity and

a unit length. Apparently, if j ∈ Av, then it must be the case that v ∈Qj(oj, d]. The lemma can

be restated as: agent i preempts all agents of Av at vertex v. Notice from Lemma EC.4 that

{v |Av 6= ∅} ⊆ Ȳ . To prove the lemma, it suffices to prove that

For any vertex v ∈ Ȳ , agent i preempts every agent j ∈Av at vertex v. (EC.4)
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Since Ḡ is acyclic, there exists a complete order on the vertices in Ȳ which is acyclic in that for

each edge with both end-vertices in Ȳ , its tail vertex has an order smaller than its head vertex.

We will verify (EC.4) by induction on the order of the vertices in Ȳ .

Suppose that oia is the initial edge of agent i, which is contained in every path in P̄i. Therefore,

a ∈ Ȳ . Apparently, the order of vertex a is the smallest, and the base case where v = a is trivial

because of Aa = ∅. To proceed inductively, assume that (EC.4) is true for all vertices in Ȳ with

orders smaller than v.

Since the case Av = ∅ is trivial, we suppose now Av 6= ∅ and consider an arbitrary agent j ∈Av
with ev(Qj) = uv. In the following, we prove first that agent i preempts agent j at vertex u, then

show the preemption at vertex v.

If j ∈ Au, since u has a smaller order than v, then by induction hypothesis, agent i preempts

agent j at vertex u. If j 6∈ Au, then no matter how i changes his path, agent j’s arrival time

at u cannot be influenced by i. On the other hand, since j ∈ Av, there exist Pi, P
′
i ∈ P̄i such

that tvj (Pi,q−i)< tvj (P
′
i ,q−i). Then, combining j 6∈ Au and j ∈Av, we deduce that one of the two

following cases must happen:

(a) There exists agent h ∈ Au with uv ∈ Qh ∩ Qj such that tuh(P ′i ,q−i) < tuj (P ′i ,q−i), or

tuh(P ′i ,q−i) = tuj (P ′i ,q−i) and eu(Qh)≺u eu(Qj), i.e., j queues at uv under (P ′i ,q−i) for a longer

time than he does under (Pi,q−i) due to h’s presence (resp. absence) at uv at the time j

reaches u under (P ′i ,q−i) (resp. (Pi,q−i)).

(b) Edge uv ∈ P ′i ∩Qj and tui (P ′i ,q−i) < tuj (P ′i ,q−i), or tui (P ′i ,q−i) = tuj (P ′i ,q−i) and eu(P ′i ) ≺u
eu(Qj), i.e., the role of h in the above case is played by i here.

In case (a), by the induction hypothesis, i preempts all agents in Au and in particular h at vertex

u. Thus by (EC.3), we have τu = tui (Ou
i ,q−i) ≤ τuh ≤ tuh(P ′i ,q−i) ≤ tuj (P ′i ,q−i) and the inequalities

hold with equalities only if eu(Ou
i )≺u eu(Qh)≺u eu(Qj). Since j 6∈ Au, it follows that tuj (P ′i ,q−i) =

τuj , and further that agent i preempts agent j at vertex u.

In case (b), τu = tui (Ou
i ,q−i)≤ tui (P ′i ,q−i)≤ tuj (P ′i ,q−i) = τuj and the inequalities hold with equal-

ities only if eu(Ou
i )�u eu(P ′i )≺u eu(Qj), which shows that i preempts agent j at vertex u. Hence,

no matter whether j belongs to Au or not, agent i always preempts agent j at vertex u.

Next we prove i preempts j at vertex v. Suppose that path Ri ∈ P̄i satisfies τ vj = tvj (Ri,q−i).

Notice that Ŏi :=Ou
i [oi, u]∪Qj[u,d] ∈ P̄i. Under the path profile (Ŏi,q−i), consider first the case

where i moves along edge uv immediately after he reaches u, i.e., there is no queue before him

over there. In this case, tvi (Ŏi,q−i) = τu+1≤ τuj +1≤ tuj (Ri,q−i)+1≤ tvj (Ri,q−i) = τ vj . Combining

this with the facts that τ v ≤ tvi (Ŏi,q−i) and ev(Ŏi) = uv = ev(Qj), we can deduce that i preempts

j at v. Now we are left with the case where under (Ŏi,q−i) agent i spends at least one time unit

queuing at uv, i.e., there is a nonempty queue before him at the time he reaches u. Let B be the
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set of agents in this queue and those who pass through uv earlier than that queue. Let h ∈ B be

the last agent in that queue, i.e., he queues at uv right before i: tvi (Ŏi,q−i) = tvh(Ŏi,q−i) + 1. Since

tui (Ŏi,q−i) = τu (by the definition of Ŏi), it follows from Definition EC.1 that i cannot preempt

any agent in B at vertex u. Now as i preempts all agents in Au at u by the inductive hypothesis,

we see that B∩Au = ∅ and further that, no matter how i changes his path, every agent in B travels

along uv at the same time and his arrival time at v is not affected, which gives B ∩Av = ∅. Thus,

tvh(Ri,q−i) = τ vh = tvh(Ŏi,q−i). Recall that i preempts j at vertex u and uv ∈Qh∩Qj. Therefore, no

matter how i chooses his path, agent j will always arrive at vertex v at least one time unit later

than h. So, by the definition of path Ri, we have τ vj = tvj (Ri,q−i)≥ tvh(Ri,q−i)+1 = tvh(Ŏi,q−i)+1 =

tvi (Ŏi,q−i). This along with the facts that τ v ≤ tvi (Ŏi,q−i) and ev(Ŏi) = ev(Qj) implies that agent

i preempts agent j at vertex v, as desired. Q.E.D.

Note that what the last paragraph of the above proof does is to derive agent i’s preemption over

agent j at vertex v from his preemption at vertex u, where uv is an edge of Qj. This particularly

gives the following stronger result.

Corollary EC.1. Given i and q−i, if agent i preempts agent j ∈ ∆̄\{i} at vertex v ∈Qj, then i

preempts j at all vertices on the subpath Qj[v, d].

Remark EC.1. Edge priorities play an important role in defining the preemption and validating

Lemma EC.5 (equivalently, Lemma 1 in Section 4.4.1) and several results that follow from it. The

properties implied by Lemma 1 might be invalid if global priorities were placed on agents (as in

Scarsini et al. 2018). For example, consider a modification of the game presented in Example 3,

where the edge y2d is subdivided by a newly added vertex. Suppose that the path profile (Ph,q−h)

is such that agents g and i both choose their upper paths and agent h chooses his lower path.

Under this path profile, agent g reaches destination d at time 5, one time unit after agent i. Note

that agent h is able to affect g’s arrival time at vertex d (decrease it to 4) by switching to his upper

path P ′h. However, fixing q−h (i.e., the upper path choices of g and i), agent h is unable to reach d

at time 4 or earlier in any case.

EC.5. Computation of EE best-responses

By virtue of Lemma EC.5 established for agent preemptions, we prove in this section the correctness

of the Dijkstra-like algorithm presented in Section 4.4.2 for computing EE best-responses.

Given an arbitrarily fixed agent i ∈ ∆̄ and an arbitrarily fixed partial path profile q−i for other

agents in game Γ̄N, the EE best-response of agent i to q−i is defined as in Definition 5 with P̄i

in place of Pi. The agent sets Qre and Qre,e′ given in Definition 6 are now defined w.r.t. (Ḡ, ∆̄)

instead of (G,∆). We have denoted, for each vertex v ∈ V̄ , agent i’s earliest achievable arrival
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time at v as τ v := min{tvi (Pi,q−i) |Pi ∈ P̄i}. As in Section EC.4, there exists an acyclic complete

order on the vertices of Ȳ = {v ∈ V̄ | τ v <∞} such that for each edge of Ē with both end-vertices

in Ȳ , its tail vertex has an order smaller than its head vertex. Recalling the transformation in

Section EC.1, it is apparent that the vertices in Ȳ \V have smaller orders (if any) than those in

Ȳ ∩ V = Y = {v ∈ V | τ v <∞}, which is defined in Section 4.4.2. When Ȳ \V 6= ∅, there is only

one edge between Ȳ \V and Y , i.e., the one incoming to i’s origin vertex at G. So, it is clear

from Lemma EC.1 that the correctness of the Dijkstra-like algorithm for Γ̄N implies directly its

correctness for ΓN.

Since all agents are inside Ḡ at time 0, the initial setting of our dynamic program is now

simplified: If e = uv is the initial edge of agent i, then trivially τu = 0, and we initially use the

symbol Q0
e,êu

to denote the set of agents in Q0
e who queue after i. The following result shows the

correctness of the Dijkstra-like algorithm (Algorithm 1) for computing EE best-responses.

Theorem EC.4. Let E′ denote the set of edges on paths in P̄i. For any vertex v ∈ Ȳ that is not

i’s starting vertex, it holds that

τ v = min
u:uv∈E′

{
τu +

∣∣∣Qτuuv\Qτuuv,êu∣∣∣+ 1
}
, (EC.5)

where, when u is not i’s starting vertex, êu is the edge wu in argminwu∈E′
{
τw + 1 +

∣∣Qτwwu\Qτwwu,êw ∣∣}
that has the highest priority (w.r.t. ≺u).

Proof. We prove (EC.5) by induction on the order of those vertices in Ȳ . The base case where

v is the head of i’s initial edge is trivial. Let us consider the case where v is not the head of i’s

initial edge, and suppose (EC.5) is true for vertices u∈ Y with orders smaller than v.

We claim that, for every edge uv ∈ E′, no matter how i chooses his path, the arrival times

of agents in Qτuuv \ Qτ
u

uv,êu
at vertex u will never be influenced. Suppose the contrary. Then, by

Lemma EC.5, agent i preempts at least one agent j ∈ Qτuuv \ Qτ
u

uv,êu
at vertex u under q−i. Note

first from the definition of Qτuuv that τuj ≤ τu, where τuj is the earliest time j can reach u when i

changes his path. By Definition EC.1, it can only be the case that τuj = τu and i is able to arrive

at u at time τu via an edge e′ that has a priority no lower than the one taken by j. By induction

hypothesis, τu = minwu∈E′
{
τw + 1 +

∣∣Qτwwu\Qτwwu,êw ∣∣}; in turn the definition of êu implies that the

priority of êu is not lower than that of e′, and hence not lower than that of the edge taken by j.

However, this is impossible because j /∈ Qτuuv,êu . Hence the claim is valid. Therefore, regardless of

i’s choice, all agents in Qτuuv \Qτ
u

uv,êu
arrive at u no later than τu and those arriving at time τu (if

any) use incoming edges to u with priorities higher than edge êu. It follows from the definition of

τu = min{tui (Pi,q−i) |Pi ∈ P̄i}, induction hypothesis on u and definition of êu that i cannot move

along uv until all agents in Qτuuv \Qτ
u

uv,êu
exit uv.
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Consequently, if agent i uses edge uv ∈ E′ to reach v, his arrival time at v is at least τu +

|Qτuuv \ Qτ
u

uv,êu
| + 1. On the other hand, by the induction hypothesis, this value is obtainable by

reaching u at time τu via êu. It follows that the earliest time i can reach v via edge uv is exactly

τu + |Qτuuv \Qτ
u

uv,êu
|+ 1. Since i must use one edge uv ∈E′ to reach v, the correctness of (EC.5) is

established. Q.E.D.

The subgraph of Ḡ spanned by all edges êv, v ∈ Ȳ \{oi} defined in Theorem EC.4 contains a

unique oi-d path. By Definition 5, it is the EE best-response of agent i to q−i.

EC.6. Characterization of NEs

In this section, we first make some observations on agent interactions, then establish the iterative

batch-dominance characterization of all NEs of game Γ̄N and hence ΓN.

EC.6.1. Agent precedence

We investigate the precedence relations between agents under the same (partial) routing of Γ̄N.

These relations are much more direct and visible than the preemption relations (see Defini-

tion EC.1), which generally involve two different routings.

Given game Γ̄N on (Ḡ, ∆̄), every (partial) path profile qS = (Qi)i∈S of Γ̄N for agents in S ⊆ ∆̄ is

often considered as a routing for the game restricted to agents in S, where each agent i∈ S follows

Qi. For any agent i∈ S and vertex v ∈ Ḡ, we use tvi (qS) to denote agent i’s arrival time at v under

routing qS.

Definition EC.2 (Precedence). Given a (partial) path profile qS of game Γ̄N, and agents i, j ∈

S, we say that agent i strongly precedes agent j through vertex v under qS at time tvi (qS) if under

routing qS they both pass v and i reaches v earlier than j. We say that i precedes j through vertex

v under qS at time tvi (qS) if either i strongly precedes j through vertex v, or i and j reach v at

the same time but i comes from an edge (incoming to v) with a higher priority than the edge from

which agent j comes.

Observe from the above definition that if agent i precedes agent j through a vertex u and both i

and j choose to enter the same edge uv, then i strongly precedes j through vertex v. It is possible

that agent i strongly precedes agent j through some vertex and j strongly precedes i through

another vertex, even under NEs (see Example EC.2 in Section EC.12). We emphasize again that

while the notion of preemption (Definition EC.1) compares the arrival times of two agents at the

same vertex under possibly different path profiles, precedence compares two arrival times under

the same (partial) path profile. Unlike the Braess-like paradox presented in Example 4, as far as

precedence is concerned, the following lemma accords with the intuition that fewer agents lead to

faster travel.
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Lemma EC.6. Let S and T be agent subsets with ∅ 6= S ⊂ T ⊆ ∆̄, and qT be a partial path profile

for agents in T . If under qT some agent in T\S precedes an agent in S at some time τ , then there

exists agent i∈ T\S such that under qS∪{i} agent i precedes some agent in S no later than τ .

Proof. Suppose that under qT , agent i ∈ T \S precedes agent j ∈ S through some vertex v,

and further that tvi (qT ) is as small as possible. The minimality implies that tvi (qT )≤ τ , and under

qT no agent in T\(S ∪ {i}) precedes any agent in S before time tvi (qT ). So removing qT\(S∪{i})

(i.e., removing agents of T\(S ∪{i}) and their paths) from routing qT can only possibly reduce i’s

queuing time before the time when he reaches v, accelerating his arrival time at v, which implies

tvi (qS∪{i}) ≤ tvi (qT ) ≤ τ . Moreover, since under qT before time tvi (qS∪{i}) ≤ tvi (qT ), all agents of

T\(S ∪ {i}) run after or reach no common vertices with all agents of S, we see that removing

qT\(S∪{i}) does not change the routing status of agents in S before time tvi (qS∪{i}). Therefore, i

precedes j through v under qS∪{i} at time tvi (qS∪{i})≤ τ . Q.E.D.

EC.6.2. Characterization of iterative batch-dominance

Building on the lemmas (established in Sections EC.4 and EC.6.1) for agent preemption and

precedence, we prove the NE characterization in this subsection. The notation and definitions

presented in Section 4.3 apply directly to Γ̄N, with the only symbolic replacement of ∆ by ∆̄ to

indicate that we are in the setting of Γ̄N. For example, the kth batch of a routing q for Γ̄N is written

as ∆̄(q, k).

Lemma EC.7. Let p= (Ph)h∈∆̄ be an NE of game Γ̄N. For every k ≥ 1 and every agent j ∈ ∆̄ \
∆̄(p, [k]), agent j cannot preempt any agent i∈ ∆̄(p, [k]) at any vertex of path Pi under p−j.

Proof. Suppose on the contrary that agent j ∈ ∆̄\∆̄(p, [k]) preempts agent i∈ ∆̄(p, [k]) at some

vertex of Pi under p−j. Then from Corollary EC.1 (with i and j switching their roles over there),

we deduce that under p−j agent j also preempts agent i at vertex d. This means that there exists

a path P ∗j ∈ P̄j such that

tdj (P
∗
j ,p−j)≤ min

Rj∈P̄j

{tdi (Rj,p−j)} ≤ tdi (p)≤ τ(p, k).

However, tdj (p)> τ(p, k) due to j ∈ ∆̄\∆̄(p, [k]), indicating that j has an incentive to switch to P ∗j ,

which violates the fact that p is an NE. Q.E.D.

Given a partial path profile qS = (Qi)i∈S of Γ̄N on agent set S ⊆ ∆̄, for every agent j ∈ S and

vertex v ∈Qj, we consider (Qj[oj, v],qS\{j}) as the (incomplete) routing in which j follows Qj[oj, v]

and agents in S\{j} follow qS\{j} = (Qi)i∈S\{j}. It is clear that for every vertex u ∈Qj[oj, v], the

arrival time of agent j at u under (Qj[oj, v],qS\{j}), denoted as tuj (Qj[oj, v],qS\{j}), is the same as

that under qS, i.e., tuj (qS).
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Lemma EC.8. Let p= (Ph)h∈∆̄ be an NE of game Γ̄N. For any batch index k ≥ 1, agent i ∈Ω :=

∆̄(p, [k]), vertex v ∈ Pi, agent j ∈ ∆̄\Ω, and partial path profile q−Ω for agents in ∆̄\Ω, the following

hold:

tvi (p) = tvi (pΩ) = tvi (pΩ,q−Ω)≤ tvj (pΩ,q−Ω), (EC.6)

tdj (pΩ,q−Ω)≥ τ(p, k+ 1)> tdi (pΩ,q−Ω). (EC.7)

Proof. For each agent j ∈ ∆̄\Ω, define rj as the earliest time when j can precede (recall Defi-

nition EC.2) some agent of Ω under (partial) path profile (pΩ,Rj) among all paths Rj ∈ P̄j. If for

any Rj ∈ P̄j, under (pΩ,Rj) agent j can never precede any agent in Ω, we set rj :=∞. Define

r∗ := min{rj | j ∈ ∆̄\Ω}.

It follows from Lemma EC.6 that for any agent subset S ⊆ ∆̄\Ω and any partial path profile xS of

agents in S,

Under (pΩ,xS) no agent of S can precede any agent of Ω before time r∗. (EC.8)

Validity of (EC.6) is implied by r∗ =∞. Indeed, if r∗ =∞, then applying (EC.8) with S = ∆̄\Ω

and xS = q−Ω, Definition EC.2 directly gives the inequality in (EC.6). The equalities in (EC.6)

will also be valid, because as long as agents in Ω follow pΩ, they are not affected by the remaining

agents, none of whom can precede agents in Ω.

Suppose on the contrary that r∗ <∞. By the definition of r∗, there exist agent i ∈ Ω, agent

j∗ ∈ ∆̄\Ω, path Rj∗ ∈ P̄j∗ and vertex v ∈ Pi∩Rj∗ such that under (pΩ,Rj∗) agent j∗ precedes agent

i through vertex v at time

tvj (pΩ,Rj∗) = r∗.

Therefore, there exists vertex u ∈ Pi[oi, v] such that under (pΩ,Rj∗) agent i reaches u at time

tui (pΩ,Rj∗) = r∗. Moreover, applying (EC.8) with xS =Rj∗ and xS = q−Ω, respectively, we derive

tui (pΩ,Rj∗) = r∗ = tui (pΩ) and tui (pΩ) = r∗ = tui (pΩ,q−Ω).

The trivial relation tvi (pΩ,q−Ω) ≥ tui (pΩ,q−Ω) (as u ∈ Pi[oi, v]) and the precedence of j∗ over i

through v give the following:

tvi (pΩ,q−Ω)≥ r∗ for any partial path profile q−Ω of agents in ∆̄\Ω, and
ev(Rj∗)≺ ev(Pi) if u= v.

(EC.9)

Moreover, notice from (EC.8) that as long as agents in Ω follow pΩ, from time 0 till time r∗, the

arrival times of all agents in Ω at the corresponding vertices are invariant against route changes of

agents outside Ω. These invariant arrival times lead to invariant influence of agents in Ω on agents in
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∆̄\Ω till time r∗. Therefore, we may define j ∈ ∆̄\Ω, using an adaptation of Algorithm 3 with vertex

v (resp. Ω and pΩ) in place of destination d (resp. U and b) over there, as the “dominator” agent

of ∆̄\Ω (the first agent output by the adaptation) who is associated with an oj-v path Q̄ starting

with the initial edge of j. Recalling that tvj∗(pΩ,Rj∗) = r∗, the dominance of j gives tvj (pΩ, Q̄)≤ r∗.

In turn, the minimality of r∗ enforces tvj (pΩ, Q̄) = r∗, which along with the dominance of j implies

ev(Q̄)� ev(Rj∗). (EC.10)

Combining tvj (pΩ, Q̄) = r∗ and Ω’s invariant influence on ∆̄\Ω till time r∗, we deduce as in

Lemma EC.3 that, assuming pΩ, the “dominator” agent j is not preceded by any agent in ∆̄\(Ω∪

{j}) when he travels along Q̄, regardless of the choices of agents in ∆̄\(Ω ∪ {j}). In particular,

we have tvj (Q̄,p−j) = r∗. Define path Qj := Q̄∪Pi[v, d] ∈ P̄j. Then tvj (Qj,p−j) = r∗, and it follows

from (EC.9) and (EC.10) that under (Qj,p−j) agent j precedes agent i through vertex v at time

r∗. Thus j arrives at d no later than i under routing profile (Qj,p−j), i.e., tdj (Qj,p−j)≤ tdi (Qj,p−j),

because of Qj[v, d] = Pi[v, d]. (Note equation tdj (Qj,p−j) = tdi (Qj,p−j) holds only when v= d.)

Now we turn our attention from precedence (Definition EC.2) to preemption (Definition EC.1).

If twi (Qj,p−j) 6= twi (p) for some vertex w ∈ Pi, then by Lemma EC.5 agent j preempts i at w under

p−j, which is a contradiction to Lemma EC.7. We are left with the case where twi (Qj,p−j) = twi (p)

holds for all vertices w ∈ Pi. It follows that tdj (Qj,p−j)≤ tdi (Qj,p−j) = tdi (p) = τ(p, k)< tdj (p), where

the last inequality follows from j 6∈ Ω. However, tdj (Qj,p−j)< tdj (p) contradicts the fact that p is

an NE. This proves the correctness of (EC.6).

Now let us prove (EC.7). Once the agents in Ω have chosen their paths as specified by pΩ, thanks

to (EC.6) about the invariant influence of Ω on ∆̄\Ω, we can apply Algorithm 3 with U := Ω and

b := pΩ, which provides us a dominator f ∈ ∆̄\Ω and his associated path P̄f ∈ P̄f such that (by

Lemma EC.3) tdf (p−f , P̄f ) = tdf (pΩ, P̄f ) ≤ tdf (p) and tdj (pΩ,q−Ω) ≥ tdf (pΩ, P̄f ) for any j ∈ ∆̄\Ω and

partial path profile q−Ω of ∆̄\Ω.

Since p is an NE of Γ̄N, we have tdf (p−f , P̄f )≥ tdf (p), and hence tdf (pΩ, P̄f ) = tdf (p)≥ τ(p, k+ 1),

where the last inequality is due to f 6∈Ω. On the other hand, tdf (pΩ, P̄f )≤min{tdh(p) |h∈ ∆̄\Ω}=

τ(p, k + 1), from which we deduce that tdj (pΩ,q−Ω) ≥ tdf (pΩ, P̄f ) = τ(p, k + 1), yielding the first

inequality in (EC.7). The second inequality in (EC.7) follows from tdi (pΩ,q−Ω)≤ τ(p, k), which is

guaranteed by the equalities in (EC.6). Q.E.D.

We are ready to prove Theorem 2 in the language of game Γ̄N (recalling Lemma EC.1).

Theorem EC.5. A path profile is an NE for Γ̄N if and only if it is iteratively batch-dominant.
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Proof. By Lemma EC.8, it suffices to prove the “if” part. Suppose q is an iteratively batch-

dominant path profile of Γ̄N as specified in Definition 3. Consider an arbitrary agent j ∈ ∆̄ and

suppose he belongs to the kth batch ∆̄(q, k), i.e., tdj (q) = τ(q, k). For any Rj ∈ P̄j, it follows from

Definition 3 that tdj (q−j,Rj)≥ τ(q, k) = tdj (q), which states that q is indeed an NE of Γ̄N. Q.E.D.

EC.7. More NE properties

In this section, we first verify that every NE of game Γ̄N (equivalently game ΓN) possesses the

properties that have been mentioned in Section 4.3. Then we discuss more NE properties implied

by the EE best-response and global FIFO.

Theorem EC.6. Let p be an NE of game Γ̄N. The following properties are satisfied.

(i) Hierarchical independence. If agents in a batch and those in earlier batches all follow their

equilibrium strategies as in p, then their arrival times at any vertex are independent of other

agents’ strategies.

(ii) Hierarchal optimality. The arrival time of each agent in the first batch ∆̄(p,1) is the smallest

among the arrival times of all agents under any routing of Γ̄N. In general, for all k ≥ 2, the

arrival time of each agent in the kth batch ∆̄(p, k) is the smallest among the arrival times of

all agents outside the first k− 1 batches (i.e., those in ∆̄ \ ∆̄(p, [k− 1])) under any routing of

Γ̄N in which agents in the first k− 1 batches ∆̄(p, [k− 1]) follow their routes specified by p.

(iii) General FIFO. Under p, if agent i precedes agent j through some vertex (see Definition EC.2),

then i reaches the destination d no later than j. (Apparently, the property of general FIFO

includes the global FIFO as a special case.)

(iv) Strong NE. Profile p is a strong NE of game Γ̄N, and thus it is weakly Pareto optimal.

Proof. (i) The hierarchical independence is simply an interpretation of tvi (p) = tvi (pΩ,q−Ω) with

Ω = ∆̄(p, [k]) for each k≥ 1 in Lemma EC.8.

(ii) For each k ≥ 1, let Ω := ∆̄(p, [k − 1]), and let r∗ denote the earliest time an agent in ∆̄\Ω
reaches d among all routings of Γ̄N in which agents in Ω take their routes as in pΩ. We need to

verify the hierarchical optimality that τ(p, k) = r∗. Clearly,

r∗ ≤ τ(p, k).

The equalities in (EC.6) (i.e., Ω’s invariant influences on ∆̄\Ω) enable us to apply Algorithm 3 and

Lemma EC.3, which provides us a dominator agent i∈ ∆̄\Ω, who is associated with a path P̄i ∈ P̄i,

provided the agents in Ω follow their routes as in pΩ. It follows from Lemma EC.3 that tdi (p−i, P̄i) =

min{tvi (pΩ,Ri) |Ri ∈ P̄i} ≤ r∗. On the other hand, since i cannot be better off by switching to

P̄i, we have tdi (p−i, P̄i) ≥ tdi (p) ≥ r∗. Therefore, tdi (p) = r∗, which along with r∗ ≤ τ(p, k) ≤ tdi (p)

enforces τ(p, k) = r∗ as desired.
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(iii) If under p= (Ph)h∈∆̄ agent i reaches d later than agent j, i.e., i 6∈ ∆̄(p, k) 3 j for some k,

then by Lemma EC.8 we claim that

For every v ∈ Pj and every Qi ∈ P̄i, it holds that tvj (p) = tvj (p−i,Qi)≤ tvi (Qi,p−i).

As i precedes j at some vertex u, it must be the case that tui (p) = tuj (p) and eu(Pi) ≺u eu(Pj).

As tdi (p) > tdj (p), we see that u 6= d and suppose that uw is the outgoing edge from u on Pj. If

uw ∈ Pi, then at time tui (p) agent i queues before agent j at edge uw, yielding twj (p)≥ twi (p) + 1,

a contradiction to the above claim. So we are left with the case of uw 6∈ Pi. Considering Qi :=

Pi[oi, u]∪Pj[u,d]∈ P̄i with w ∈Qi, we have twj (Qi,p−i) = twi (Qi,p−i) + 1 (because the capacity of

edge uw is 1, and i comes from the edge eu(Qi) = eu(Pi) with a higher priority than edge eu(Pj)),

which is a contradiction to the above claim. So we have proved the general FIFO property.

(iv) Suppose on the contrary that there exists a set S ⊆ ∆̄ of agents who can be strictly better

off through collectively deviating from an NE p of game Γ̄N. Let k be the smallest batch index

such that S ∩ ∆̄(p, k) 6= ∅. Due to the hierarchical optimality stated in (ii), all agents in ∆̄(p, k)

obtain their earliest arrival times since no agent in ∆̄(p, [k− 1]) deviates from p, a contradiction.

Q.E.D.

According to Theorem EC.4, in game Γ̄N every agent possesses a best response that is a path

for the earliest arrival. This implies the following NE property.

Corollary EC.2 (Weak earliest arrival). Any NE for a new game building on Γ̄N with the

additional restriction that all agents take earliest-arrival paths is still an NE of the game Γ̄N that

does not have this restriction.

For ease of exposition, in the next corollary, we restrict our attention to game ΓN on network

G = (V,E) with a single origin. Recalling the original ranks defined in Section 3, let agents in

∆ be indexed as 1,2, . . . according to their entry times into G and their original ranks (smaller

indices correspond to earlier entry times and higher ranks in the case of equal entry time). We

have the following straightforward corollary of the global FIFO property stated in Theorem 3 or

in Theorem EC.6(iii).

Corollary EC.3. If p is an NE of ΓN with a single origin o, then the following properties are

satisfied:

(i) Consecutive exiting. The indices of agents within the same batch under p are consecutive.

That is, if i, j ∈∆(p, k) with i < j, then h∈∆(p, k) for all i≤ h≤ j.

(ii) Temporal overtaking. If under p agent j strongly precedes agent i (< j) at some vertex v ∈

V \ {o}, i.e., j reaches v earlier than i, then under p they reach the destination d at the same

time.
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When focusing on agents originating from the same origin, the above two properties can be

extended to networks with multiple origins.

EC.8. Actions and consecutive configurations in game ΓA

Given configuration cr = (Qr
e)e∈E, the action set of agent i ∈ ∆(cr) = (∪e∈EQr

e) ∪ (∪v∈V ∆r+1,v),

denoted by E(i, cr), is defined as follows. If i∈∆r+1,v, then E(i, cr) =E+(v). Suppose i∈Qr
e, where

e= uv.

• If v= d and i queues first in Qr
e, then E(i, cr) := ∅, i.e., i simply exits G at time r+ 1 (from

d).

• If v 6= d and i queues first in Qr
e, then E(i, cr) := E+(v), i.e., agent i selects the next edge

that is available at v.

• Otherwise (i.e., i is not the head of Qr
e), agent i has to stay at e with E(i, cr) := {e}.

Given a configuration cr and an action profile a= (ai)i∈∆(cr) with ai ∈E(i, cr), the edge-priority

DQ rule leads to a new configuration cr+1 = (Qr+1
e )e∈E at time r+ 1, referred to as a consecutive

configuration of cr:

• As a set, Qr+1
e = {i∈∆(cr) |ai = e} consists of agents choosing e in action profile a.

• As a sequence, Qr+1
e is obtained from Qr

e by removing its head and making its tail followed

by agents in Qr+1
e \Qr

e whose positions are determined according to the priority order ≺u at

the tail vertex u of edge e= uv.

EC.9. Construction of a special SPE

This section is devoted to proving the SPE existence in game ΓA, which has been discussed in

Section 5.2. We call the normal-form game ΓN(cr) introduced in Section 5.2 the intermediary game

of ΓN starting from cr. For any time point r≥ 0, let Cr denote the set of all possible configurations

at time r; in particular C0 = {c0} consists of the unique initial configuration given by initial queues

in G at time 0.

Proof of Theorem 5. Given any history hr = (c0, . . . , cr) ∈ Hr for any time point r ≥ 0, recall

that D(cr) = ∆(cr)∪ (∪s≥r+2,v∈V ∆s,v) is the agent set of game ΓN(cr). According to Lemma EC.1,

let Γ̄N(cr) denote the game instance of model Γ̄N transformed from game ΓN(cr) using (T1)–(T3).

So the agent set of Γ̄N(cr) is D(cr), and the restriction of Γ̄N(cr) to G is ΓN(cr). Suppose that the

agents in D(cr) are named as 1r,2r, . . . such that agent ir is the ith agent added to D in Step 13 of

Algorithm 2 with input being the game instance Γ̄N(cr). For each agent ir ∈D(cr), let P̄ cr
ir

denote

the dominant path associated to ir in Algorithm 2.

Consider any agent ir ∈∆(cr) = (∪e∈EQr
e)∪ (∪v∈V ∆r+1,v). Note that at the beginning of Γ̄N(cr),

agent ir queues at the first edge of P̄ cr
ir

. If ir ∈ ∪e∈EQr
e, then P̄ cr

ir
is a path in G; otherwise, the
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first edge of P̄ cr
ir

is the only edge of P̄ cr
ir

that is outside G and ir is the only agent queuing, at the

beginning of Γ̄N(cr), at that edge (i.e., he will enter G at the next time point). A configuration in

Cr+1 will result from cr according to action profile acr defined as follows:

The action of ir =

 the first edge of P̄ cr
ir
, if i queues after another agent;

∅, if i will exit G from d at the next time point;
the second edge of P̄ cr

ir
, otherwise;

where the second condition is equivalent to i queuing first at the last edge of P̄ cr
ir

. Observe that in

any case the action defined above (if not ∅) is an edge of graph G. The set ∪r≥0∪cr∈Cr a
cr of action

profiles defines a strategy profile σ∗ = (σ∗i )i∈∆ of ΓA. We will prove that σ∗ is an SPE of game ΓA.

Let (cr, cr+1, . . .) be the list of configurations and (P ∗i )i∈D(cr) be the path profile induced by hr

and σ∗. It can be deduced from Lemma EC.2 and Algorithm 2 that

• For any s ≥ r + 1, agent sequence (1s,2s, . . .) is a subsequence of (1s−1,2s−1, . . .) such that

D(cs−1)\D(cs) consists of the first |D(cs−1)\D(cs)| agents of 1s−1,2s−1, . . .;

• For any s≥ r+ 1 and i∈∆(cs)\∪v∈V ∆s+1,v, P̄
cs
i is a subpath of P̄

cs−1
i (P̄ cs

i is either P̄
cs−1
i or

P̄
cs−1
i with its first vertex and edge removed).

Therefore, the path P ∗i formed by the actions of each agent i ∈D(cr) is exactly the restriction of

P̄ cr
i to G. According to Lemma EC.2 (the equation in (EC.2)), we have

tir(σ∗|hr) = r+ min
{
tdir(P̄ cr

1r , . . . , P̄
cr
(i−1)r

,Rir) |Rir ∈ P̄ir

}
for every i≥ 1.

Moreover, for any j ≥ 1 and any strategy profile σ′ of ΓA with σ′ir = σ∗ir for all i ∈ [j], considering

the path profile (P ′i )i∈D(cr) induced by hr and σ′, we can deduce from an inductive argument that

for each i= 1, . . . , j, P ′ir is exactly P ∗ir , i.e., the restriction of P̄ cr
ir

to G.

Now given any k ≥ 1 and any σ′kr ∈ Σkr , we consider strategy profile σ′ = (σ′kr , σ
∗
−kr) and the

path profile p′ = (P ′i )i∈D(cr) induced by hr and σ′. We have P ′ir = P ∗ir for all i∈ [k− 1], and

tkr(σ′kr , σ
∗
−kr |hr) = r+ tdkr(p′) = r+ tdkr(P ∗1r , . . . , P

∗
(k−1)r

,p′−{1r,...,(k−1)r}).

It follows from Lemma EC.2 (the inequality in (EC.2)) that

tkr(σ′kr , σ
∗
−kr |hr)≥ r+ min

{
tdkr(P̄ cr

1r , . . . , P̄
cr
(k−1)r

,Rkr) |Rkr ∈ P̄kr

}
= tkr(σ∗|hr).

The arbitrary choices of k and σ′kr imply that σ∗ is an SPE of game ΓA. Q.E.D.

1 That is, i queues first at the last edge of P̄ cr
ir

.
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EC.10. Realization of NEs from SPEs

In this section, we establish by construction that with the same input, each NE outcome of game

ΓN is a certain SPE outcome of game ΓA.

Recall from Section 5.2 that each configuration cr of the extensive-form game ΓA corresponds

to a normal-form game ΓN(cr) on network G= (V,E) with agent set D(cr), i.e., the intermediary

game of ΓN starting from cr at time r. For every agent i∈D(cr), let Pcr
i denote his strategy set in

ΓN(cr), i.e., the set of paths in G along which i could travel (during a time period no earlier than

r) given his position specified by cr and ∪s≥r+1,v∈V ∆s,v.

Given any path profile q= (Qi)i∈D(cr) of game ΓN(cr), agent j ∈D(cr) and vertex v ∈Qj, we use

tvj (q)cr to denote the time when j reaches v under q.

EC.10.1. Outline

Given any NE profile p of game ΓN, we construct, for every history hr = (c0, . . . , cr) of game ΓA, an

NE p(hr) of game ΓN(cr), i.e., the intermediary game of ΓN starting from cr with agent set D(cr).

In particular, we set p(h0) := p. Then, we construct an SPE of ΓA by assembling these NEs such

that starting from any history hr (r ≥ 0) the outcome of the SPE is exactly the NE p(hr). Note

that the reference of each NE constructed is a history instead of a configuration. Since different

histories may have the same ending configuration cr, we may construct multiple NEs for the same

intermediary game ΓN(cr).

Such an NE-based assembling is more complicated than the one discussed in Sections 5.2 and

EC.9, which aims at producing nothing more than an SPE. What is more complicated here is that

we are unable to design a Markovian SPE. In particular, the natural idea of constructing the NEs

p(hr), r ≥ 1, directly using Algorithm 2 does not work anymore. For example, an agent outside

the first batch under p may have an incentive to deviate at the game tree root of ΓA to another

child node for which the special IDNE computed by Algorithm 2 chooses different routes (with

unchanged arrival times) for agents in earlier batches, which creates room for the agent to minimize

his own arrival time.

EC.10.2. Inductive construction of history-based NEs

Our (inductive) construction of the NEs p(hr) is done iteratively on the game tree of ΓA starting

from the root h0 = (c0). Initially, the constructed NE p(h0) for h0 is simply the given NE p. For

each r ≥ 1, suppose inductively that for a history hr−1 = (c0, . . . , cr−1) ∈ Hr−1, the NE p(hr−1) of

game ΓN(cr−1), written for convenience as α= (Ai)i∈D(cr−1), has been constructed. We construct

in two steps the NE p(hr), denoted β = (Bi)i∈D(cr), for each child history hr = (c0, . . . , cr−1, cr) of

hr−1. In the first step, we identify a subset U of D(cr) and let Bi, for each i ∈ U , be the subpath
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of Ai that i has not visited until time r under α. In the second step, based on βU determined, we

find an iteratively dominant partial path profile βD(cr)\U for the remaining agents, who can by no

means affect the agents in U provided the latter follow βU .

The first step. Let (ai)i∈∆(cr−1) be the action profile at game tree node hr−1 determined by

α, i.e, no action in the profile deviates from α. More specifically,

- ai is the first edge of Ai if under α agent i does not move during time period [r− 1, r];

- ai is the second edge of Ai if under α agent i queues at the second edge of Ai at time r;

- ai is the null action φ if under α agent i exits G at time r.

Let (bi)i∈∆(cr−1) be the action profile that leads history hr−1 to its child history hr (or equivalently

leads cr−1 to cr).

Recall that ∆(α, [k]) denotes the first k batches of agents reaching d under routing α, where

k ≥ 0. Define k≥ 0 to be the maximum nonnegative integer k such that the action of each agent

of ∆(α, [k])∩∆(cr−1) under (ai)i∈∆(cr−1) is the same as that under (bi)i∈∆(cr−1), i.e., we set

k := sup{k |ai = bi for all i∈∆(α, [k])∩∆(cr−1)}. (EC.11)

It is possible that k= 0 with ∆(α, [0]) = ∅ or k=∞ with ∆(α, [∞]) = D(cr−1). Define

Ω := ∆(α, [k]) and U := Ω∩D(cr). (EC.12)

The set U consists of agents who under α are in the first k batches and will not exit G from d by

time r.

In the following construction of Bi for each i∈U , we let i “keep” his path under α, which yields

an invariance of arrival times as specified below in Lemma EC.9. For each agent i ∈ ∆(cr−1) =

(∪e∈EQr
e)∪ (∪v∈V ∆r+1,v), let ei denote the first edge of Ai.

Construction I: (Construction of βU with Invariant Arrival Times)

For each agent i∈U , set

Bi :=

{
Ai\{ei}, if ai = bi is the second edge of Ai (which implies i∈∪e∈EQr

e ⊆∆(cr−1));
Ai, otherwise.

(NB: The if-condition in the above construction is equivalent to stating that when configuration

cr−1 changes to configuration cr, from time r− 1 to time r, agent i ∈ U travels along the edge ei

in G whose tail vertex is not the destination d, i.e., at time r agent i queues at the second edge of

Ai. When the condition is satisfied, we set Bi to be Ai\{ei}, which is the path obtained from Ai

by deleting its starting vertex and first edge ei.)
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The NE paths Bi ∈ {Ai,Ai\{ei}} kept for agents i in U = ∆(α, [k])∩D(cr) particularly guarantee

invariant arrival times at any vertex for these agents regardless of other agents’ choices. To be

specific, with the hierarchical independence of α (as an NE of game ΓN(cr−1)) stated in Section 4.3

and Theorem EC.6(i), we see that, as long as the chosen paths of agents in Ω = ∆(α, [k]) remain as

in αΩ, no matter what paths the agents in D(cr−1)\Ω choose, the latter agents have no impact on

the arrival times of the former agents at any vertex. This along with Construction I above implies

the following lemma, which is the base of our construction of βD(cr)\U in the second step.

For notational convenience, for all i ∈D(cr−1)\∆(cr−1) (i.e., agents who enter G at times later

than r), we set ei to be the null element φ.

Lemma EC.9 (Invariant Arrival Times). For any agent i∈U , any vertex v ∈Bi ⊆Ai, and any

partial path profile qD(cr)\U = (Qj)j∈D(cr)\U in game ΓN(cr), where Qj ∈Pcr
j for every j ∈D(cr)\U ,

it holds that

tvi (α)cr−1
= tvi (αΩ, ({ej}∪Qj)j∈D(cr)\U)cr−1

= tvi ((Bj)j∈U ,qD(cr)\U)cr .

Before proving the lemma, we make some observations. For any agent j ∈D(cr) and any path

Qj ∈Pcr
j , it is clear that {ej} ∪Qj ∈P

cr−1
j . Observe that either D(cr−1) = D(cr), or D(cr−1)\

D(cr) 6= ∅ and each agent in D(cr−1)\D(cr) exits G at time r, giving D(cr−1)\D(cr) = ∆(α,1)⊆
∆(α, [k]). In any case we have

D(cr−1)\D(cr)⊆Ω = ∆(α, [k]) and D(cr)\U = D(cr)\Ω = D(cr−1)\Ω.

Therefore, (αΩ, ({ej}∪Qj)j∈D(cr)\U) in Lemma EC.9 is simply (αΩ, ({ej}∪Qj)j∈D(cr−1)\Ω), a strat-

egy profile of game ΓN(cr−1), in which the agents, including i, of the first k batches (defined w.r.t.

α) follow their paths as in α.

Proof of Lemma EC.9. The first equality of the conclusion follows from the hierarchical inde-

pendence in Theorem EC.6(i). The second equality is straightforward from Construction I and the

fact that each agent in Ω\U = Ω\D(cr)⊆D(cr−1)\D(cr) (if any) exits G at time r, and he only has

the null action under cr−1, which has no effect on other agents. Q.E.D.

The second step. Based on the partial path profile βU constructed (i.e., inherited from αU)

in the first step, we call Algorithm 3 to find an iteratively dominant path profile (Bi)i∈D(cr)\U for

the remaining agents.

Recalling Lemma EC.1, let Γ̄N(cr) be the game on Ḡ whose restriction to G is the game ΓN(cr).

The partial path profile (Bi)i∈U constructed in Construction I naturally extends to a partial path

profile (B̄i)i∈U of Γ̄N(cr), where the restriction of each B̄i to G is Bi.

Construction II: (Construction of Iteratively Dominant βD(cr)\U)
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1. Run Algorithm 3 with input Γ̄N(cr) and b= (B̄i)i∈U , which outputs (P̄i)i∈D(cr)\Ω.

2. For each agent i∈D(cr)\U , set Bi to be the restriction of P̄i to G.

For easy expression of the null actions Bj of agents in j ∈D(cr−1)\D(cr) = ∆(cr−1)\∆(cr), we

reserve symbol φ for the profile (Bj)j∈D(cr−1)\D(cr) of the null actions.

Lemma EC.10. Profile β is an NE of game ΓN(cr).

Proof. We need to prove that tdi (β)cr ≤ tdi (B′i,βD(cr)\{i})cr for every agent i ∈D(cr) and every

path B′i ∈Pcr
i .

Case 1: i∈U ⊆Ω. Suppose i∈∆(α, k) for some k≤ k. Then for any path profile q= (Qj)j∈D(cr)

of ΓN(cr), with f := ∆(α, [k− 1])⊂Ω, we have

tdi (β)cr = tdi (α)cr−1
≤ tdi (αf, ({ej}∪Qj)j∈D(cr)\f,φD(cr−1)\D(cr)\f)cr−1

= tdi (βD(cr)∩f,qD(cr)\f)cr ,

where the first equality is by Lemma EC.9, the inequality is from hierarchical optimality in The-

orem EC.6(ii), and the last equality is due to Construction I. In particular, when taking Qi =B′i

(noting i /∈ f) and Qj = Bj for every j ∈ D(cr)\f\{i}, we obtain tdi (β)cr ≤ tdi (B′i,βD(cr)\{i})cr as

desired.

Case 2: i∈D(cr)\U = D(cr)\Ω. By Construction II, we deduce from Lemma EC.3 that the path

Bi is i’s best response to other agents’ choices, giving tdi (β)cr ≤ tdi (B′i,βD(cr)\{i})cr . Q.E.D.

With Lemma EC.10, we complete our inductive constructions of history-based NEs p(hr) for all

histories hr of game ΓA.

EC.10.3. Assembling an SPE from NEs

The partial hierarchical independence and iterative dominance guaranteed by Constructions I and

II enable us to accomplish our task of assembling all the NEs p(hr), hr ∈Hr, r≥ 0, constructed in

Section EC.10.2 into an SPE of ΓA.

Let σ = (σi)i∈∆ be a strategy profile of ΓA defined as follows: at each history hr = (c0, . . . , cr),

agents in D(cr) take actions as specified by the NE p(hr) constructed in Section EC.10.2 for hr,

where p(c0) is the given NE p of game ΓN.

Theorem EC.7. The strategy profile σ is an SPE of game ΓA such that the path profile induced

by the initial history h0 and σ is exactly p.

Proof. Similar to the proof of Theorem 5 (see Section EC.9), it can be deduced from Construc-

tions I and II (and Lemma EC.3) that, for each history hr, the path profile induced by hr and σ is

exactly p(hr).
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To see that σ is an SPE of ΓA, we fix an arbitrary r≥ 0 and an arbitrary history hr = (c0, . . . , cr)∈

Hr. Let β = (Bi)i∈D(cr) denote the NE p(hr) of ΓN(cr) we have constructed for hr. In the case

of r = 0, we set β := p. Moreover, we consider any i ∈ D(cr), any σ′i ∈ Σi, and the path profile

q= (Qj)j∈D(cr) induced by hr and σ′ := (σ′i, σ−i). We need to verify that ti(σ|hr)≤ ti(σ′|hr).

If r = 0, then we suppose that i ∈ ∆(p, k) and write f = ∆(p, [k − 1]). By the hierarchical

independence of p (Theorem EC.6(i)), no action change of agent i can alter the batch index of

any agent in f. Therefore, using an inductive argument, we deduce from Construction I that at

each history node hs = (c0, . . . , cs) on the path (in the game tree of ΓA) induced by σ′, all agents

of D(cs) ∩f belong to the set Ω defined w.r.t. p(hs) (cf. (EC.12), where Ω is defined w.r.t. α).

It follows that Qj = Pj =Bj for all j ∈f. In turn, p’s hierarchical optimality (Theorem EC.6(ii))

states that ti(σ|h0) = tdi (p)≤ tdi (pf,q∆\f)c0 = tdi (q)c0 = ti(σ
′|h0).

So we assume now r≥ 1. Then hr is a child history of some (unique) history hr−1 = (c0, . . . , cr−1)∈

Hr−1. Let α denote the NE p(hr−1) of ΓN(cr−1), and let k and Ω = ∆(α, [k]) be defined as in

(EC.11) and (EC.12).

If i∈∆(α, k)⊆Ω for some k≤ k, then Construction I implies that Qj =Bj for all j ∈D(cr)∩f,

where f := ∆(α, [k − 1]). As in Case 1 of the proof of Lemma EC.10, we deduce that ti(σ|hr) =

tdi (β)cr ≤ tdi (βD(cr)∩f,qD(cr)\f)cr = tdi (q)cr = ti(σ
′|hr).

It remains to consider the case of i∈D(cr) \Ω = D(cr)\U . Assume w.l.o.g. that i is exactly the

ith agent in the ordering 1,2, . . . of agents in D(cr) \Ω associated with the iteratively dominant

path profile constructed in Construction II. Again Construction I guarantees qU = βU . It follows

from Lemma EC.3 (i.e., the iterative dominance) that q[i−1] = β[i−1], and ti(σ|hr) = tdi (β)cr ≤

tdi (βU ,β[i−1],qD(cr)\U\[i−1])cr = tdi (q)cr = ti(σ
′|hr), which completes the proof. Q.E.D.

EC.11. NE existence: edge priorities vs. agent priorities

We have proved that our game ΓN admits an NE, where edge priorities play a crucial role. In

contrast, as Example 3 shows, an NE may not exist in the multi-origin case under the model of

Scarsini et al. (2018), where priorities are placed on agents. On the other hand, in the case of

single origin, their model does guarantee the NE existence. In this section, we explain why the NE

existence result on single-origin networks extends to the multi-origin case in our model, but not in

the model of Scarsini et al. (2018).

The critical reason lies in whether we are able to order all agents in some way such that former

agents in this order have absolute advantages over latter ones, using their heterogeneities, such

as initial priorities, entering times, and different origins, etc. This is possible in the single-origin

case of Scarsini et al. (2018), because a proper combination of the agents’ entry times into the

network and their initial priorities works. In this combination, entry times play a dominant role
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over initial priorities and hence the two factors are actually combined in a lexicographical way.

To be more specific, since there is a single origin, agents entering the network earlier are always

ordered before later ones; for agents entering the network at the same time, priorities associated

with them can be used to break ties. Along with the local FIFO principle, we have seen that this

ordering, a lexicographical combination of entry times and initial priorities, is decisive in that as

long as an agent has some advantage over another at the origin, he will have advantages at all

subsequent vertices. This idea is the essence of almost all related NE existence results in atomic

dynamic routing games.

As Example 3 demonstrates, the above idea does not extend to the multi-origin case for the

model of Scarsini et al. (2018), because Rock-Paper-Scissor relationships may occur. When agents

enter the network from different origins, the same two factors, entry times and agent priorities,

are still important. But they cannot be reconciled so well as in the single-origin case. The power

of entry times is significantly weakened: when two agents come into the network from different

origins, their entry times might not so important, while the locations of their entry points matter.

However, the original locations and agent priorities cannot work together in a lexicographical way

to determine a decisive ordering: sometimes original locations are more powerful and some other

times agent priorities are more powerful, and this may lead to cyclic phenomenon as demonstrated

in Example 3, making the existence of an NE impossible. To be more specific, we have shown in

Example 3 that the first prioritized agent g may be blocked by the last prioritized agent i in every

possible path for him (due to i’s original location advantage); the last prioritized agent i may be

blocked by the second prioritized agent h (due to h’s priority over i), and the second prioritized

agent h may be blocked by the first prioritized agent g (due to g’s priority over h). The three

agents form a Rock-Paper-Scissor cycle, destroying the existence of NE.

One advantage of our model is that we introduce edge priorities, which may be viewed as a

tool of space, to help us untangle the complicated relationships among all agents. (Note that this

kind of space information is ignored in the model of Scarsini et al. (2018).) We have seen that

the combination of time and space plays a decisive role in the routing from a new perspective: as

long as an agent is able to reach the destination earlier than another, he is able to do so for any

intermediary vertex. To be more specific, the location of an agent’s origin and fixed edge priorities

of the network under our model can induce a space advantage for the agent, while the entry time

of an agent can be viewed as his time advantage. The agents can be linearly ordered according to

a kind of “combination” of their space and time advantages so that an agent with a higher order

can find a path from his origin to the destination such that he dominates all agents with lower

orders all the way along the path. Intuitively, the agent priorities (though consistent with the time

advantages) in the model of Scarsini et al. (2018) may not reconcile with the space advantages,
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while the edge priories in our model, which define parts of space advantages, make possible the

reconciliation with time and space advantages.

EC.12. Supplementary examples

In this section, we present several supplementary examples under our game model ΓN, which demon-

strate a Braess-like paradox (involving route changes due to routing environment improvement or

deterioration), absence of the earliest arrival, and presence of overtaking. (Recall from Section 4.1

that IDNEs are earliest arrival and no overtaking.)

A paradox involving route changes. We illustrate the counter-intuitive phenomenon that the

route changes resulting from removing initial queues (or removing agents or shortening path

lengths) in a series-parallel network may slow the system performance. This kind of paradox was

discovered by Scarsini et al. (2018) under their model. Example 3 presented in Scarsini et al. (2018)

is an extension-parallel network adjusted from the one in Macko et al. (2013) for showing a classical

Braess’s paradox in nonatomic dynamic flow games. Our example below is a direct adaptation of

the example in Scarsini et al. (2018).

Example EC.1. Consider a game instance ΓN on the series-parallel network illustrated in Fig-

ure EC.2, where o is the single origin, d is the single destination, e1 has a higher priority than

e2, and at e3 there is an initial queue of three agents. At each time point r ≥ 1, three agents of

∆r,o = {1r,2r,3r} enter the network from origin o. Regarding the original ranks, 1r’s rank is higher

than 2r’s, and 2r’s is higher than 3r’s. The agents in ∪r≥1∆r,o may choose one of the five o-d paths

R1 := ou1u2d, R2 := ou1u2u3d, R3 := ovu2d, R4 := ovu2u3d and R5 := ow1w2w3d.

(E1) It is easy to verify that, with the presence of the initial queue at e3, every NE of the game

ΓN incurs a travel cost 4 to each agent outside the initial queue. For example, that agents 1r,2r,3r

(for all r≥ 1) follow R1,R4,R5 respectively gives an NE.

(E2) Removal of the initial queue (i.e., the three agents) at e3 may lead the system to a less

efficient NE. While agent 11 still follows R1, which incurs him the smallest travel cost 3, agent 21

(resp. 31) may change his route to R1 (resp. R4) along which he pays the smallest possible travel

cost 4 (given the choice of 11). Building on the best choices R1,R1,R3 of agents 11,21,31, it is

routine to verify that for every r= 2,3, . . ., the sequential route changes of agents 1r,2r,3r to paths

R3,R5,R2 incur them sequentially smallest possible costs 4, 4, 5. These paths indeed form an NE.
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Figure EC.2 Removal of an initial queue may slow down the system performance

It is worth noting that the role of the initial queue in the above example can be played by some

agents who enter the network earlier or by decreasing the length of a certain u2-d path.

An NE that is not earliest arrival. The NE specified in (E2) of Example EC.1 is not earliest

arrival, since, given other agents’ choices, the earliest time agent 21 could reach vertex u2 is 3, one

time unit earlier than his arrival time at u2 under the NE.

An NE that is temporally overtaking. The following example shows that an NE of game ΓN is

not necessarily no-overtaking.

Example EC.2. Consider a game ΓN on the single-origin single-destination network in Fig-

ure EC.3, where at edge wx (resp. wy) there is an initial queue of three agents. In addition to

the six agents, there are two agents, 1 and 2, entering the network from origin o at times 1 and 2,

respectively. If agents 1 and 2 go through paths ouvwxd and owyd, respectively, then they both

reach destination d at the earliest possible time 6, yielding an NE of the game. Under this NE,

agent 2 overtakes agent 1 at vertex w.

Figure EC.3 A temporal overtaking NE

EC.13. The hybrid game model

In this section, we consider “hybrid” agents, whose behaviors lie between adaptive and nonadaptive.

An agent used without specification is meant a hybrid agent in this section. The corresponding

game model is referred to as hybrid.
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EC.13.1. Model description

For every agent i and every vertex v that is neither i’s origin nor the destination d, we are given

a probability θi,v that agent i contemplates switching to other paths at v. Let θ denote the vector

of these probabilities. We use Γ](θ) to denote the hybrid game with parameter vector θ.

While adaptive agents make routing decisions at every nonterminal vertex they reach as to which

edge to take next, hybrid agents make decisions at every nonterminal vertex as to which path to

take in the future if they are given the chances (by Nature) to reconsider their plans, and just

follow their previous plans otherwise. Intuitively, each agent always holds a plan (a path from his

current edge to the destination) and may update it with a new one when chances are given. A

precise definition of a strategy is presented as follows.

Definition EC.3 (Strategy). A strategy of agent i∈∆ is a mapping σ]i that maps each history

hr = (c0, . . . , cr) till time r with i ∈∆(cr) to σ]i (hr) such that, based on cr and the edge-priority

DQ rule, either σ]i (hr) is a path from the current edge where i stays to the destination d, or σ]i (hr)

is a null element when under cr agent i will exit G at time r+ 1.

The strategy set of agent i is denoted as Σ]
i. A vector σ] = (σ]i )i∈∆ is called a strategy profile of

the hybrid game Γ](θ). Note that this game is typically a stochastic model. We use E[ti(σ
]|hr)]

to denote the expected arrival time of agent i at the destination under strategy profile σ] starting

from history hr.

Definition EC.4 (SPE in the hybrid game). A strategy profile σ] = (σi)i∈∆ is a subgame per-

fect equilibrium (SPE) of Γ](θ) if for any time r ≥ 0 and any history hr ∈ Hr, E[ti(σ
]|hr)] ≤

E[ti(σ
]
i

′
, σ]−i|hr)] holds for all i∈∆(cr) and all σ]i

′
∈Σ]

i such that (σ]i
′
, σ]−i) still leads to history hr,

where σ]−i is the partial strategy profile of σ] for agents in ∆\{i}.

EC.13.2. Results

As intuitively expected, we have the following observation.

Lemma EC.11. For the hybrid model Γ](θ), the case θ= 0 corresponds to the nonadaptive model

ΓN and the case θ= 1 corresponds to the adaptive model ΓA.

Proof. In fact, when θ= 0, all the plans at the non-origin vertices will never be used and hence

a strategy for a hybrid agent reduces to a strategy of a nonadaptive agent. On the other hand,

when θ= 1, all the plans at the non-origin vertices will always be given the chances to realize and

hence only the immediate next edges are meaningful for the plans and the set of these immediate

next edges is equivalent to a strategy of the adaptive agent. Q.E.D.
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Suppose that we are given an SPE σ for game ΓA that is constructed from an NE p of game ΓN,

as discussed in Sections 5.3 and EC.10. We construct a strategy profile σ] for the hybrid model

Γ](θ) as follows. For each history hr = (c0, . . . , cr), if all players carry out their strategies in σ, then

for each player i, a path from his current edge to the destination will be determined. We set σ]i (hr)

as this path. This defines a strategy profile σ] for the hybrid model Γ](θ).

Theorem EC.8. The strategy profile σ] constructed above is an SPE for the hybrid game Γ](θ).

Proof. By definition, it suffices to prove that, for any time r ≥ 0 and any history hr ∈ Hr,

E[ti(σ
]|hr)]≤E[ti(σ

]
i

′
, σ]−i|hr)] holds for all i∈∆(cr) and all σ]i

′
∈Σ]

i such that (σ]i
′
, σ]−i) still leads

to history hr, where σ]−i is the partial strategy profile of σ] for agents in ∆\{i}.

Consider the subgame starting from history hr. At the starting time r, all agents i at their initial

positions in the subgame hold σ]i (hr) their initial plans. Then all agents i act during time [r, r+ 1]

according to σ]i (hr), which leads to a history hr+1. By our construction presented in Section EC.10,

agent i’s new plan σ]i (hr+1) at time r + 1 is consistent with his old plan σ]i (hr) at time r, i.e.,

he does not switch his path even if he is given the chance to do so. Inductively, we see that the

realized path profiles of the two strategy profiles σ] (in game Γ](θ)) and σ (in game ΓA) are the

same. Therefore, the arrival time ti(σ
]|hr) of i at the destination is also deterministic, and equals

ti(σ|hr).

Suppose that i is in the kth batch in the routings determined by σ] and hr. Consider the single-

deviation of agent i. By the construction of the SPE σ, all agents in the first k−1 batches will keep

their plans unchanged in the histories following hr. In other words, regardless of the chances given

by Nature, all agents in the first k− 1 batches will always follow their paths in the corresponding

NE p(hr) of game ΓN(cr) (see Section EC.10). Recalling the hierarchically optimality property for

any NE of game ΓN(cr), we see that ti(σ
]|hr) = ti(σ|hr), the exit time of agent i, is the smallest

among all the exit times of all agents outside the first k− 1 batches under any routing in which

agents in the first k− 1 batches follow their NE routes (see Sections 4.3 and EC.7). This proves

that i cannot be better off by a unilateral deviation in game Γ](θ) and hence the constructed σ] is

an SPE. Q.E.D.


