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Abstract

This paper addresses time consistency of risk averse optimal stopping in stochastic
optimization. It is demonstrated that time consistent optimal stopping entails a specific
structure of the functionals describing the transition between consecutive stages. The
stopping risk measures capture this structural behavior and they allow natural dynamic
equations for risk averse decision making over time. Consequently, associated optimal
policies satisfy Bellman’s principle of optimality, which characterizes optimal policies for
optimization by stating that a decision maker should not reconsider previous decisions
retrospectively. We also discuss numerical approaches to solving such problems.

Keywords: Stochastic programming, coherent risk measures, time consistency, dynamic
equations, optimal stopping time, Snell envelope.

1 Introduction
Optimal Stopping (OS) is a classical topic of research in statistics and operations research
going back to the pioneering work of Wald (1947, 1949) on sequential analysis. For a thorough
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discussion of theoretical foundations of OS we can refer to Shiryaev (1978), for example.
The classical formulation of OS assumes availability of the probability distribution of the
considered data process. Of course in real life applications the ‘true distribution’ is never
known exactly and in itself can be viewed as uncertain. This motivates to formulate a
considered optimization problem in terms of a chosen family of probability distributions.
In stochastic optimization this is going back to the pioneering paper of Scarf (1958), and
is often referred to as the distributionally robust approach to stochastic programming. In
a certain sense the distributional robustness can be considered as a dual counterpart of
the modern approach to risk measures, cf. Artzner et al. (1999). Recently distributionally
robust (risk averse) formulations of OS were considered in several publications, e.g., Föllmer
and Schied (2004, Section 6.5), Cheridito et al. (2006), Bayraktar et al. (2010), Krätschmer
and Schoenmakers (2010), Belomestny and Krätschmer (2016), Belomestny and Krätschmer
(2017), Goldenshluger and Zeevi (2017).

However, a straightforward extension of risk neutral stochastic programs to their distribu-
tionally robust (risk averse) counterparts involves a delicate issue of time consistency. That
is, decisions (optimal policies) designed at the initial time, before observing any realization
of the random data process, should not be reconsidered from a perspective of later stages.
This is closely related to Bellman’s principle of optimality and to eventual writing of the
corresponding dynamic programming equations which is crucial for an efficient numerical
solution of such problems. The question of time (in)consistency has been realized very early in
economics and management science. Weller (1978) (cf. also Hammond (1989)) discusses time
consistency in combination with expected utilities. Quoting Weller (1978, p. 263): “I prove
that under certain assumptions, consistency is equivalent to maximizing expected utility on
the set of feasible plans, with a restricted set of utility functions and a tree of subjective
probability distributions which satisfy the Bayesian updating rule.” This problem setting
puts risk measures in relation to stochastic optimization. In this context, however, it is to
mention that Haviv (1996) gives a Markov decision process with constraints, so that the
optimal solution does not satisfy Bellman’s principle.

More recently the discussion of consistency properties of risk measures has become popular
in financial mathematics. Pioneers include Wang (1999) and Jobert and Rogers (2008), who
introduce a concept of dynamic consistency of risk measures themselves. Other authors (e.g.,
Weber (2006), Cheridito and Kupper (2011), Ruszczyński (2010)) take a similar approach
by discussing axioms of risk measures. These publications try to identify properties of risk
measures themselves, which are relevant in a general, time consistent framework. Time
consistency also respects increasing information, which can be investigated as essential feature
of conditional risk measures (cf. Kovacevic and Pflug (2009)). Kupper and Schachermayer
(2009) show that time consistent and law invariant risk measures have a very specific, entropy
like representation which depends on not more than a single parameter.

Optimal stopping together with (risk neutral) policy optimization was considered in
Hordijk (1974), but was not developed further. It turns out that optimal stopping problems
lead to dynamic equations in the classical (risk neutral) setting. In this paper we extend this
in several directions. We combine stopping times and risk measures by introducing stopping
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risk measures and demonstrate how optimal stopping times combine with optimizing over
policies (decision rules). The appropriate nested risk measures corresponding to the problem
structure entail transition functionals at each stage. Their specific structure is employed to
specify dynamic equations and generalized risk martingales. We associated dynamic equations
corresponding to optimal stopping and investigate their specific structure. Optimal policies
derived from optimal stopping problems are naturally time consistent.

We also develop a concept of time consistency in the distributionally robust (risk averse)
setting which is naturally amenable to Bellman’s principle of optimality and to formulation
of the dynamic programming equations. These equations are similar to dynamic equations in
Föllmer and Schied (2004, Theorem 6.52) but do not require the restrictive assumption of
stability used there (see Remark 5.2 below). Finally we discuss computational approaches to
solving such problems and give numerical examples.

Outline. The paper is organized as follows. In Section 2 we formulate the classical (risk
neutral) OS problem in discrete time. Time and dynamic consistency of a general class
of multistage optimization problems is discussed in Section 3. In Section 4 the respective
dynamic programming equations, based on decomposability of the nested formulation, are
derived. Time consistent formulations of the distributionally robust (risk averse) OS problems
are presented in Section 5. Finally Section 6 is devoted to computational methods and
numerical examples.

2 Optimal stopping time
We will use the following framework. Let (Ω,F , P ) be a probability space and F :=
(F0, . . . ,FT ) be a filtration (a sequence of increasing sigma algebras, F0 ⊂ · · · ⊂ FT )
with1 F0 = {∅, Ω} and FT = F . Let Z0 ⊂ · · · ⊂ ZT be a sequence of linear spaces of
functions Z : Ω→ R. We assume that Zt := Lp(Ω,Ft, P ) for some p ∈ [1,∞], although more
general settings are possible. We denote by Zt an element of the space Zt. Note that an
element Zt ∈ Zt actually is a class of Ft-measurable functions which can be different from
each other on a set of P -measure zero. Since F0 is trivial, the space Z0 consists of constant
functions and will be identified with R. Since elements of Zt are Ft-measurable, a process
Zt ∈ Zt, t = 0, . . . , T , is adapted to the filtration F. We use the notation Zt,u := Zt×· · ·×Zu,
0 ≤ t < u ≤ T, in particular Z0,T = Z0 × · · · × ZT . For elements Zt,u = (Zt, . . . , Zu) and
Z ′t,u = (Z ′t, . . . , Z ′u) of Zt,u we write Zt,u � Z ′t,u to denote that Zτ (ω) ≤ Z ′τ (ω) for almost
every (a.e.), or in other words almost surely (a.s.), (with respect to the reference probability
measure P ) ω ∈ Ω, and write Zt,u ≺ Z ′t,u to denote that Zt,u � Z ′t,u and Zt,u 6= Z ′t,u. By E|F
or E[ · |F ] we denote the conditional expectation with respect to sigma field F . By 1A we
denote the indicator function of set A.

Recall that a stopping time, adapted to the filtration F, is a random variable τ : Ω →
{0, . . . , T} such that {ω ∈ Ω: τ(ω) = t} ∈ Ft for t = 0, . . . , T . We denote by T the set of

1The sigma algebra consisting of only two sets, the empty set and the whole space Ω, is called trivial.
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stopping times (adapted to the filtration F). For a process Zt ∈ Zt, t = 0, . . . , T , the (risk
neutral) optimal stopping time problem can be written as

min/ max
τ∈T

E[Zτ ]. (2.1)

By ‘min/ max’ we mean that either the minimization or maximization procedure is applied.
Of course, the minimization procedure can be changed to the corresponding maximization
simply by changing Zτ to −Zτ . Later we will consider combinations of stoping times and
policy optimizations where it will be essential whether a maximization or minimization
procedure is considered.

We will extend the above stopping time problem in two directions. First, we combine
this with cost optimization. Consider objective functions f0 : Rn0 → R, ft : Rnt × Ω → R,
and feasibility constraints defined by X0 ⊂ Rn0 and multifunctions Xt : Rnt−1 × Ω ⇒ Rnt ,
t = 1, . . . , T . It is assumed that ft(xt−1, ·) and Xt(xt−1, ·) are Ft-measurable. A sequence
π = {x0,x1(·), . . . ,xT (·)} of mappings xt : Ω→ Rnt , t = 0, . . . , T , adapted to the filtration2

F is called a policy or a decision rule. Since F0 is trivial, the first decision x0 is deterministic.
A policy π = {x0,x1, . . . ,xT} is feasible if it satisfies the feasibility constraints, i.e., x0 ∈ X0
and xt(ω) ∈ Xt(xt−1(ω), ω), t = 1, . . . , T , for a.e. ω ∈ Ω. We denote by Π the set of
feasible policies such that

(
f0(x0), f1(x1(·), ·), . . . , fT (xT (·), ·)

)
∈ Z0,T . We then consider the

following problems
min/ max

π∈Π
min/ max

τ∈T
E[fτ (xτ , ω)]. (2.2)

The min-min, i.e., minimization with respect to π ∈ Π and τ ∈ T, problem (2.2) is a natural
formulation aimed at the simultaneous minimization with respect to the decision rules and
stopping time. Similarly the max-max formulation is aimed at the simultaneous maximization
of π ∈ Π and τ ∈ T. The max-min (min-max) formulation (2.2) could be interpreted as a
certain type of compromise, we will discuss this later.

Second, we consider risk averse counterparts of risk neutral problems of the form (2.1)–(2.2).
It is tempting to extend the risk neutral formulations simply by replacing the corresponding
expectation operator by an appropriate risk measure (such approach was adopted in some
recent publications, e.g., Föllmer and Schied (2004, Section 6.5), Belomestny and Krätschmer
(2017), Goldenshluger and Zeevi (2017)). However, this has a delicate issue with time
consistency considerations. We will discuss time consistency concepts from a somewhat
general point of view in the following Sections 3 and 4 and will come back to discussion of
optimal stopping time in Section 5.

Let us finish this section with the following observations. We have that Ω is the union of
the disjoint sets

Ωτ
t := {ω : τ(ω) = t}, t = 0, . . . , T, (2.3)

2We use bold notation xt for (measurable) mappings in order to distinguish it from deterministic vector
xt ∈ Rnt . Also by writing xt(·) we emphasize that this is a function of ω ∈ Ω, i.e., is a random variable,
rather than a deterministic vector. It is said that the sequence (x0,x1, . . . ,xT ) is adapted to the filtration if
xt(·) is Ft-measurable for every t = 1, . . . , T .
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and hence 1Ω = ∑T
t=0 1{τ=t}. Note that 1{τ=s} are Ft measurable for 0 ≤ s ≤ t ≤ T and

hence 1{τ≤t} and 1{τ>t} = 1Ω−1{τ≤t} are also Ft measurable for t = 0, . . . , T . Moreover
1{τ=t} Zτ = 1{τ=t} Zt and thus for (Z0, . . . , ZT ) ∈ Z0,T it follows that

Zτ = ∑T
t=0 1{τ=t} Zτ = ∑T

t=0 1{τ=t} Zt. (2.4)

By replacing Zt in (2.4) with Z ′t := Z0 + · · ·+ Zt we obtain

Z0 + · · ·+ Zτ = Z ′τ =
T∑
t=0

1{τ=t} Z
′
t =

T∑
t=0

t∑
i=0

1{τ=t} Zi

=
T∑
t=0

T∑
i=t

1{τ=i} Zt =
T∑
t=0

1{τ≥t} Zt. (2.5)

The problem maxτ∈T E [∑τ
i=1 Zi] can be considered in the framework of problem (2.1) simply

by replacing Zτ with Z ′τ = Z0 + · · ·+ Zτ , and similarly for problems (2.2). Finally note that
since F0 = {∅, Ω} is trivial, we have that {ω : τ(ω) = 0} is either Ω or ∅, and hence either
1{τ=0} Z0 = Z0 or 1{τ=0} Z0 = 0, and probability of the event {τ = 0} is either 0 or 1.

Because random variables are defined only up to P -almost sure equivalence, it is in general
not meaningful to speak of an ‘ω by ω’ infimum inf{X(ω) : X ∈ X}. The essential infimum
substitutes for this concept. We use the following concept of essential infimum, cf. Karatzas
and Shreve (1998, Appendix A).

Definition 2.1 (Essential infimum). Let X be a nonempty family of random variables defined
on (Ω,F , P ). The essential infimum of X , denoted by ess inf X , is a random variable X∗
satisfying: (i) if X ∈ X , then X ≥ X∗ a.s., and (ii) if Y is a random variable satisfying
X ≥ Y a.s. for all X ∈ X , then X∗ ≥ Y a.s. The essential supremum is defined in the similar
way.

3 Time consistency
In this section we discuss time consistency of multistage optimization problems from a general
point of view. Consider a functional R : Z0,T → R and the optimization problem

min
π∈Π
R
[
f0(x0), f1(x1(·), ·), . . . , fT (xT (·), ·)

]
, (3.1)

where Π is the set of feasible policies as defined in Section 2. We refer to R as a preference
functional and to (3.1) as the reference problem.

The principle of optimality, going back to Bellman (1957), postulates that an optimal
policy computed at the initial stage of the decision process, before any realization of the
uncertainty data became available, remains optimal at the later stages. This formulation is
quite vague since it is not clearly specified what optimality at the later stages does mean. In
some situations this comes naturally and implicitly assumed. However, in more complex cases
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this could lead to a confusion and misunderstandings. Therefore, in order to proceed, we
consider a class of preference relations between possible realizations of random data defined
by a family of mappings

Rt,u : Zt,u → Zt, 0 ≤ t < u ≤ T.

We refer to each Rt,u as a preference mapping and to the family R = {Rt,u}0≤t<u≤T as a
preference system. Since Z0 is identified with R, we view R0,T (Z0, . . . , ZT ) as a real number
for any (Z0, . . . , ZT ) ∈ Z0,T . We assume that R0,T coincides with the preference functional
R of the reference problem (3.1), i.e., R = R0,T .
Remark 3.1. The considered preference system does not necessarily represents a risk averse
approach. As we will discuss later, indeed in some settings it can be interpreted as conservative,
and hence as risk averse, while in other cases it can be viewed as somewhat optimistic (see,
in particular, Remark 5.3 below).

Definition 3.2 (Time consistent policies). We say that an optimal policy π̄ = {x̄0, . . . , x̄T},
solving the reference problem (3.1), is time consistent with respect to the preference system R,
if at stages t = 1, . . . , T − 1, the policy {x̄t, . . . , x̄T} is optimal for

ess inf Rt,T

[
ft(xt(·), ·), . . . , fT (xT (·), ·)

]
,

s.t. xu(·) ∈ Xu(xu−1(·), ·) a.s., u = t, . . . , T,
(3.2)

given xt−1 = x̄t−1.

Remark 3.3. At stage t = 1, . . . , T , we already observed a realization of x̄t−1 of the policy π̄.
The next decision xt should satisfy the feasibility constraint xt(·) ∈ Xt(x̄t−1(·), ·), and so
on at the later stages. In that sense the optimization in (3.2) is performed over policies
(xt, . . . ,xT ), satisfying the respective feasibility constraints, given x̄t−1. For definition of the
concept of essential infimum, used in (3.2), see Definition 2.1.

It could be noted that we allow for the preference mapping Rt,T , t = 1, . . . , T − 1, to
depend on realizations of the data process up to time t, i.e., we have that Rt,T (Zt, . . . , ZT ) is
Ft-measurable. However, we do not allow Rt,T to depend on the decisions. Definition 3.2
formalizes the meaning of optimality of a solution of the reference problem at the later stages
of the decision process. Clearly this framework depends on a choice of the preference system
R = {Rt,u}1≤t<u≤T . This suggests the following basic questions: (i) what would be a ‘natural’
choice of mappings Rt,u, (ii) what properties of mappings Rt,u are sufficient/ necessary to
ensure that every (at least one) optimal solution of the reference problem is time consistent,
(iii) how time consistency is related to dynamic programming equations. As we shall see
the last question is closely related to decomposability of Rt,T in terms of one-step mappings
Rt,t+1.

The minimal property that is required for the preference mappings is monotonicity.3

3In some publications the monotonicity property is understood in the reverse sense, i.e., Zt,u � Z ′t,u
implies that R(Zt,u)�R(Z ′t,u). In this paper we consider the monotonicity only in the sense of Definition 3.4.
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Definition 3.4 (Monotonicity). We say that preference mapping Rt,u is monotone if for
any Zt,u, Z

′
t,u ∈ Zt,u such that Zt,u � Z ′t,u it follows that R(Zt,u) � R(Z ′t,u). We say that

preference mapping Rt,u is strictly monotone if for any Zt,u, Z ′t,u ∈ Zt,u such that Zt,u ≺ Z ′t,u
it follows that R(Zt,u) ≺ R(Z ′t,u). The preference system R = {Rt,u}0≤t<u≤T is said to
be monotone (strictly monotone) if every preference mapping Rt,u is monotone (strictly
monotone).

3.1 Additive case
The above framework (3.1)–(3.2) is very general. The common case considered in the recent
literature on risk averse stochastic optimization is when the reference problem is a function
of the total cost. That is, when each Rt,u is representable as a function of Zt + · · ·+ Zu, i.e.,

Rt,u(Zt, . . . , Zu) := ρt,T (Zt + · · ·+ Zu), 0 ≤ t < u ≤ T, (3.3)

for some4 ρt,T : ZT → Zt, t = 0, . . . , T . We will refer to such framework as the additive case.
We will also consider examples of natural and important preference systems which cannot be
considered in the additive framework (3.3).

Consider the following properties of the mapping ρt,T :

(i) ρt,T (λZ + (1− λ)Z ′) � λρt,T (Z) + (1− λ)ρt,T (Z ′), Z, Z ′ ∈ ZT , λ ∈ [0, 1],
(ii) ρt,T (Z + Z ′) � ρt,T (Z) + ρt,T (Z ′), Z, Z ′ ∈ ZT ,

(iii) ρt,T (Z + Z ′)� ρt,T (Z) + ρt,T (Z ′), Z, Z ′ ∈ ZT ,
(iv) ρt,T (λZ) = λρt,T (Z), Z ∈ ZT , λ ≥ 0 and
(v) ρt,T (Z + Zt) = ρt,T (Z) + Zt, Z ∈ ZT , Zt ∈ Zt.

We refer to these properties as convexity, subadditivity, superadditivity, positive homogeneity
and translation equivariance, respectively. Note that if ρt,T is positively homogeneous, then
ρt,T is convex iff it is subadditive.

With convex mapping ρt,T is associated its concave counterpart

νt,T (Z) := −ρt,T (−Z). (3.4)

Note that νt,T (Z) inherits monotonicity, positive homogeneity and translation equivariance
properties of ρt,T , and subadditivity of ρt,T implies superadditivity of νt,T . Following Artzner
et al. (1999) we refer to ρt,T as (convex) coherent if it is subadditive, monotone, positively
homogeneous and translation equivariant.

The preference system (3.3) is monotone (strictly monotone) if ρt,T are monotone (strictly
monotone). In particular, let % : Lp(Ω,F , P )→ R be a law invariant coherent risk measure
and %|Ft be its conditional analogue. Then ρt,T := %|Ft is the corresponding coherent mapping.

4Note that since Zu ⊂ ZT , u = t + 1, . . . , T , the corresponding mapping ρt,T : Zu → Zt is defined as
restriction of ρt,T to Zu.
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When % := E is the expectation operator, the corresponding preference system is given by
conditional expectations

Rt,u(Zt, . . . , Zu) = E|Ft [Zt + · · ·+ Zu], 0 ≤ t < u ≤ T,

which corresponds to the risk neutral setting. As another example take % := AV@Rα, where
the Average Value-at-Risk measure can be defined as

AV@Rα(Z) := inf
u∈R

{
u+ (1− α)−1E[Z − u]+

}
, α ∈ [0, 1). (3.5)

For α = 0 the AV@R0 is the expectation operator and for α = 1 it becomes % = ess sup,
the essential supremum operator. The risk measure AV@Rα is monotone but is not strictly
monotone for α 6= 0. The conditional analogue of the Average Value-at-Risk (3.5) is

AV@Rαt|Ft(Z) = ess inf
ut∈L∞(Ft)

{
ut + (1− αt)−1E|Ft [Z − ut]+

}
, αt ∈ [0, 1).

Example 3.5. Let Zt := L∞(Ω,Ft, P ) and5

Rt,u(Zt, . . . , Zu) := ess sup
Ft

{Zt, . . . , Zu}, 0 ≤ t < u ≤ T.

The objective of the corresponding reference problem (3.1) is then given by the maximum of
the essential supremum of the cost functions in the periods t = 0, . . . , T .

In the additive case, the value Rt,u(Zt, . . . , Zu) is a function of the sum Zt + · · ·+Zu and
is the same as value of Rt,T applied to Zt + · · ·+Zu for any u = t+ 1, . . . , T . That is, in that
framework there is no point of considering preference mappings Rt,u for u different from T .
On the other hand, the preference system of Example 3.5 is not additive and it is essential
there to consider preference mappings Rt,u for u < T .

3.2 Two stage setting
It is informative at this point to discuss the two stage case, T = 2, since time inconsistency
could already happen there. Consider the following two stage stochastic program

min
x0,x1∈X

R
(
f0(x0), f1(x1(·), ω)

)
,

s.t. x0 ∈ X0, x1(ω) ∈ X1(x0, ω),
(3.6)

where X := {x1 : Ω→ Rn1 | f1(x1(·), ·) ∈ Z} with Z being a linear space of measurable
functions Z : Ω → R. The preference functional R : Z0,1 → R is defined on the space
Z0,1 = R×Z. In order to deal with duality issues we consider the following two frameworks
for defining the space Z. In one framework we use, as in the previous section, Z := Lp(Ω,F , P ),

5The conditional essential supremum is the smallest Ft-random variable (Xt, say), so that Zτ � Xt for all
τ with t ≤ τ ≤ u (see Definition 2.1).
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p ∈ [1,∞], with P viewed as the reference probability measure (distribution). The space Z
is paired with the space Z∗ = Lq(Ω,F , P ), where q ∈ [1,∞] is such that 1/p+ 1/q = 1, with
the respective bilinear form

〈ζ, Z〉 =
∫

Ω
ζ(ω)Z(ω)P (dω), ζ ∈ Z∗, Z ∈ Z.

This framework became standard in the theory of coherent risk measures. However, it is
not applicable to the distributionally robust approach when the set of ambiguous distributions
is defined by moment constraints and there is no reference probability measure. In that case
we assume that Ω is a compact metric space and use the space Z := C(Ω) of continuous
functions Z : Ω→ R. The dual Z∗ of this space is the space of finite signed Borel measures
with the respective bilinear form

〈µ, Z〉 =
∫

Ω
Z(ω)µ(dω), µ ∈ Z∗, Z ∈ Z.

Note that in the first framework of Z = Lp(Ω,F , P ), an element Z ∈ Z actually is a class of
functions which can differ from each other on a set of P -measure zero.

The optimization in (3.6) is performed over x0 ∈ X0 ⊂ Rn0 and x1 : Ω→ Rn1 such that
f1(x1(·), ·) ∈ Z. The feasibility constraints x1(ω) ∈ X1(x0, ω) in problem (3.6) should be
satisfied for almost every ω ∈ Ω in the first framework, and for all ω ∈ Ω in the second
framework of Z = C(Ω). For Z,Z ′ ∈ Z we use the notation Z � Z ′ to denote that
Z(ω) ≤ Z ′(ω) for a.e. ω ∈ Ω in the first framework, and for all ω ∈ Ω in the second
framework. As before we write Z ≺ Z ′ to denote that Z � Z ′ and Z 6= Z ′.

The common setting considered in the stochastic programming literature is to define
R(Z0, Z1) := ρ(Z0+Z1), (Z0, Z1) ∈ R×Z, where ρ : Z → R is a specified risk functional. This
is the additive case discussed in Section 3.1. In particular, when ρ is the expectation operator
this becomes the risk neutral formulation. However, there are many other possibilities
to define preference functionals R which are useful in various situations. For example,
consider6 R(Z0, Z1) := Z0 ∨ ρ(Z1). If moreover, in the framework of Z = C(Ω), we take
ρ(Z) := supω∈Ω Z(ω), then the corresponding problem (3.6) can be viewed as a robust type
problem with minimization of the worst possible outcome of the two stages. That is, if
the second stage cost is bigger than the first stage cost for some scenarios, then the worst
second stage cost is minimized. On the other hand, if the first stage cost is bigger for all
scenarios, then the second stage problem is not considered. Similarly in the framework of
Z = L∞(Ω,F , P ), we can take ρ(Z) := ess sup(Z). This is the case of Example 3.5. As we
shall discuss later this is closely related to the problem of optimal stopping time.

In order to proceed we will need the following interchangeability result for a functional
% : Z → R. Consider a function ψ : Rn × Ω→ R ∪ {+∞}. Let

Ψ(ω) := inf
y∈Rn

ψ(y, ω)

6We use notation a ∨ b = max{a, b} and a ∧ b = min{a, b} for a, b ∈ R.
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and
Y := {η : Ω→ Rn |ψη(·) ∈ Z} ,

where ψη(·) := ψ
(
η(·), ·

)
.

Assumption 3.1. In the framework of Z = Lp(Ω,F , P ), suppose that the function ψ(y, ω) is
random lower semicontinous, i.e., its epigraphical mapping is closed valued and measurable
(such functions are called normal integrands in Rockafellar and Wets (1997)). In the framework
of Z = C(Ω) suppose that the minimum of ψ(y, ω) over y ∈ Rn is attained for all ω ∈ Ω.

We have the following result about interchangeability of the minimum and preference
functionals (cf. Shapiro (2017)).

Proposition 3.6 (Interchangeability principle). Suppose that Assumption 3.1 holds, Ψ ∈ Z
and % : Z → R is monotone. Then

%(Ψ) = inf
η∈Y

%(ψη) (3.7)

and
η̄(·) ∈ arg min

y∈Rn
ψ(y, ·) implies η̄ ∈ arg min

η∈Y
%(ψη). (3.8)

If moreover % is strictly monotone, then the converse of (3.8) holds true as well, i.e.,

η̄ ∈ arg min
η∈Y

%(ψη) implies η̄(·) ∈ arg min
y∈Rn

ψ(y, ·). (3.9)

In the framework of Z = Lp(Ω,F , P ), it is assumed that ψ(y, ω) is random lower
semicontinous. It follows that the optimal value function Ψ(·) and the multifunction
G(·) := arg miny∈Rn ψ(y, ·) are measurable (Rockafellar and Wets, 1997, Chapter 14). In that
framework, the meaning of the left hand side of (3.8) and right hand side of (3.9) is that η̄(·)
is a measurable selection of G(·).

Equation (3.7) means that the minimization and preference functionals can be interchanged,
provided that the preference functional is monotone. Moreover, the pointwise minimizer in
the left hand side of (3.8), if it exists, solves the corresponding minimization problem in the
right hand side. In order to conclude the inverse implication (3.9), that the corresponding
optimal functional solution is also the pointwise minimizer, the stronger condition of strict
monotonicity is needed.

Consider now the problem (3.6), that depends on ω, and let

V (x0, ·) := inf
x1∈X1(x0,·)

R
(
f0(x0), f1(x1, ·)

)
,

which can be viewed as value of the second stage problem. By Proposition 3.6 we have the
following.
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Theorem 3.7. Suppose that: (i) the functional %(·) := R(Z0, ·) is monotone for any Z0 ∈ R,
(ii) V (x0, ·) ∈ Z for all Z0 ∈ R, and (iii) Assumption 3.1 holds for

ψ(x1, ω) :=

f2(x1, ω) if x1 ∈ X1(x0, ω),
+∞ if x1 6∈ X1(x0, ω).

Then the optimal value of the problem (3.6) is the same as the optimal value of

Min
x0∈X0

R
(
f1(x0), V (x0, ·)

)
. (3.10)

Further, (x̄0, x̄1) is an optimal solution of the two stage problem (3.6) if x̄0 is an optimal
solution of the first stage problem (3.10) and 7

x̄1(·) ∈ arg min
x1∈X1(x̄0,·)

R
(
f0(x̄0), f1(x1(·), ·)

)
. (3.11)

Moreover, if R(Z0, ·) is strictly monotone, then (x̄0, x̄1) is an optimal solution of problem (3.6)
if and only if x̄0 is an optimal solution of the first stage problem and (3.11) holds.

Here, time consistency of a policy (x̄0, x̄1), solving the two stage problem (3.6), means
that x̄1 solves the respective second stage problem given x0 = x̄0, i.e., condition (3.11) holds.
That is, if (x̄0, x̄1) is not time consistent, then there exists another feasible solution x̃1
such that f2(x̃1(·), ·) ≺ f2(x̄1(·), ·). Without strict monotonicity of R it could happen that
problem (3.6) has optimal solutions which do not satisfy condition (3.11) and hence are not
time consistent. That is, condition (3.11) is a sufficient but without strict monotonicity is not
necessary for optimality. Such examples can be found, e.g., in Shapiro (2017) and for robust
optimization were given in Delage and Iancu (2015). For example, for R(Z0, Z1) = Z0 ∨ ρ(Z1)
we have that if Z ′1 ≺ Z1 are such that ρ(Z ′1) < ρ(Z1) < Z0, then R(Z0, Z1) = R(Z0, Z

′
1).

That is, R(Z0, ·) is not strictly monotone. It could happen then that a second stage decision
does not satisfy (3.11) and is not time consistent.

Dual representation
The space Z0,1 = R × Z can be equipped, for example, with the norm ‖(Z0, Z1)‖0,1 :=
|Z0|+ ‖Z1‖, where ‖ · ‖ is the respective norm of the space Z, and can be paired with the
space Z∗0,1 = R×Z∗ with the bilinear form

〈(ζ0, ζ1), (Z0, Z1)〉 := ζ0 Z0 + 〈ζ1, Z1〉, (ζ0, ζ1) ∈ Z∗0,1, (Z0, Z1) ∈ Z0,1.

Suppose that the functional R : Z0,1 → R is convex and monotone. Then by the Klee-Nachbin-
Namioka Theorem the functionalR is continuous in the norm topology of Z0,1 (cf. Ruszczyński
and Shapiro (2006b, Proposition 3.1)). Suppose further that R is positively homogeneous, i.e.,

7By writing ‘x̄1(·) ∈ . . . ’ we mean that x̄1(·) is a measurable selection and such inclusion holds for a.e.
ω ∈ Ω in the setting of Z = Lp(Ω,F , P ), and for all ω ∈ Ω in the setting of Z = C(Ω).

11



R(t Z0,1) = tR(Z0,1) for any t ≥ 0 and Z0,1 ∈ Z0,1. Then by the Fenchel-Moreau Theorem,
R has the dual representation

R(Z0, Z1) = sup
(ζ0,ζ1)∈A0,1

〈(ζ0, ζ1), (Z0, Z1)〉 (3.12)

for some convex, bounded and weakly∗ closed set

A0,1 ⊂ {(ζ0, ζ1) ∈ Z∗0,1 : ζ0 ≥ 0, ζ1� 0}

(cf. Ruszczyński and Shapiro (2006b, Theorem 2.2)). The subdifferential of R is then given
by

∂R(Z0, Z1) = arg max
(ζ0,ζ1)∈A0,1

〈(ζ0, ζ1), (Z0, Z1)〉. (3.13)

In particular ∂R(0, 0) = A0,1.
Example 3.8. Consider preference functional of the form R(Z0, Z1) := ϕ(Z0, ρ(Z1)), where
ρ : Z → R is a coherent risk measure and ϕ : R × R → R is a convex monotone positively
homogeneous function. It follows then that R(·, ·) is convex monotone and positively
homogeneous. Let ρ(Z) = supζ∈A〈ζ, Z〉 be the dual representation of ρ, where A is a convex
bounded weakly∗ closed subset of Z∗. Then ∂ϕ(x0, x1) consists of vectors (subgradients)
(γ0, γ1) such that

ϕ(y0, y1)− ϕ(x0, x1) ≥ γ0(y0 − x0) + γ1(y1 − x1)
for all (y0, y1) ∈ R2. Since ϕ is monotone, it follows that ∂ϕ(x0, x1) ⊂ R2

+. Consequently the
representation (3.12) holds with

A0,1 = ∂R(0, 0) = {(ζ0, ζ1) ∈ R×Z∗ : ζ1 = γ1ζ, ζ ∈ A, (ζ0, γ1) ∈ ∂ϕ(0, 0)} .

For example let ϕ(x0, x1) := x0 ∨ x1, and hence R(Z0, Z1) = Z0 ∨ ρ(Z1). Then ∂ϕ(0, 0) =
{(t, 1− t) : t ∈ [0, 1]} and

A0,1 = {(t, (1− t)ζ) : t ∈ [0, 1], ζ ∈ A}.

3.3 Dynamic consistency of preference systems
Many authors investigate time consistency by addressing special properties on the prefer-
ence system itself. This section recalls these concepts and relates these properties to time
consistency of optimal policies. The following concept of dynamic consistency (also called
time consistency by some authors), applied to the preference systems rather than considered
policies, in slightly different forms was used by several authors (cf., Kreps and Porteus (1978);
Wang (1999); Epstein and Schneider (2003); Riedel (2004); Cheridito et al. (2006); Artzner
et al. (2007); Ruszczyński (2010)).
Definition 3.9 (Dynamical consistency). The preference system {Rt,u}1≤t<u≤T is said to be
dynamically consistent if for 1 ≤ s < t < u ≤ T and (Zs, . . . , Zu), (Z ′s, . . . , Z ′u) ∈ Zt,u such
that Zτ = Z ′τ , τ = s, . . . , t− 1, the following ‘forward’ implication holds:

if Rt,u(Zt, . . . , Zu) � Rt,u(Z ′t, . . . , Z ′u) then Rs,u(Zs, . . . , Zu) � Rs,u(Z ′s, . . . , Z ′u). (3.14)
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It turns out that the above ‘forward’ property of dynamic consistency is not always
sufficient to ensure that every optimal policy is time consistent. For that we need a stronger
notion of dynamic consistency (cf. Shapiro et al. (2014, Section 6.8.5)).

Definition 3.10 (Strict dynamical consistency). A dynamically consistent preference system
{Rt,u}1≤t<u≤T is said to be strictly dynamically consistent if in addition to (3.14) the following
implication holds:

if Rt,u(Zt, . . . , Zu) ≺ Rt,u(Z ′t, . . . , Z ′u) then Rs,u(Zs, . . . , Zu) ≺ Rs,u(Z ′s, . . . , Z ′u) (3.15)

for all 1 ≤ s < t < u ≤ T .

Note that it follows from (3.14) that

Rt,u(Zt, . . . , Zu) = Rt,u(Z ′t, . . . , Z ′u) implies Rs,u(Zs, . . . , Zu) = Rs,u(Z ′s, . . . , Z ′u).

Recall that in the additive case, Rt,T (Zt, . . . , ZT ) is given by ρt,T (Zt + · · ·+ZT ). In that case
condition (3.14) implies that

if Z,Z ′ ∈ ZT and ρt,T (Z) � ρt,T (Z ′) then ρs,T (Z) � ρs,T (Z ′), 1 ≤ s < t ≤ T − 1. (3.16)

Conversely, if moreover ρs,T is translation equivariant, then we can write for 1 ≤ s < t ≤ T ,

ρt,T (Zs + · · ·+ ZT ) = Zs + · · ·+ Zt−1 + ρt,T (Zt + · · ·+ ZT ),

and hence condition (3.16) implies (3.14) for u = T . If ρt,T := E|Ft , then for s < t we have
that ρs,T (Z) = E|Fs [E|Ft(Z)] and hence this preference system is dynamically consistent. In
fact it is not difficult to see that this preference system is strictly dynamically consistent.

Similar to the additive case we have the following result (cf. Shapiro et al. (2014, Proposi-
tions 6.80)).

Proposition 3.11. The following holds true: (i) If the preference system is dynamically
consistent and π̄ ∈ Π is the unique optimal solution of the reference problem (3.1), then π̄ is
time consistent. (ii) If the preference system is strictly dynamically consistent, then every
optimal solution of the reference problem is time consistent.

4 Decomposability and dynamic equations
Let us start with definition of the following basic decomposability concept.

Definition 4.1 (Recursivity). The preference system {Rt,u}0≤t<u≤T is said to be recursive, if

Rt,u(Zt, . . . , Zu) = Rt,v

(
Zt, . . . , Zv−1,Rv,u(Zv, . . . , Zu)

)
(4.1)

for any 0 ≤ t < v < u ≤ T and (Zt, . . . , Zu) ∈ Zt,u.
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We have the following relation between recursivity and dynamic consistency (discussed in
Section 3.3).

Proposition 4.2. Suppose that preference mappings Rt,u, 1 ≤ t < u ≤ T , are monotone
(strictly monotone) and recursive. Then {Rt,u}1≤t<u≤T is dynamically consistent (strictly
dynamically consistent).

Proof. We need to verify the implication (3.14). By recursivity, for 1 ≤ s < t < u ≤ T , we
have

Rs,u(Zs, . . . , Zu) = Rs,t

(
Zs, . . . , Zt−1,Rt,u(Zt, . . . , Zu)

)
and

Rs,u(Z ′s, . . . , Z ′u) = Rs,t

(
Z ′s, . . . , Z

′
t−1,Rt,u(Z ′t, . . . , Z ′u)

)
.

Assuming Zτ = Z ′τ , τ = s, . . . , t− 1 the implication (3.14) (the implication (3.15)) follows by
monotonicity (strict monotonicity) of Rs,t.

It follows then by Proposition 3.11(ii) that if the system is recursive and the preference
mappings are strictly monotone, then every optimal solution of the reference problem is time
consistent. As already mentioned, without strict monotonicity the recursivity property does
not necessarily imply time consistency of every optimal solution.

In the additive case (discussed in Section 3.1), when Rt,T (Zt, . . . , ZT ) = ρt,T (Zt+ · · ·+ZT ),
t = 0, . . . , T − 1, the recursive property can be written as

ρt,T (ρv,T (Z)) = ρt,T (Z), Z ∈ ZT , 0 ≤ t < v ≤ T − 1. (4.2)

Note that since ρv,T (Z) ∈ Zv, we have that ρt,T (ρv,T (Z)) = ρt,v(ρv,T (Z)). By applying (4.2)
recursively for v = t+ 1, . . . , T − 1, this means that ρt,T can be decomposed as

ρt,T (Z) = ρt,T
(
ρt+1,T (· · · ρT−1,T (Z))

)
, Z ∈ ZT . (4.3)

If moreover ρt,T is translation equivariant, this becomes

ρt,T (Zt + · · ·+ ZT ) = Zt + ρt,T
(
Zt+1 + ρt+1,T (Zt+2) + · · ·+ ρT−1,T (ZT )

)
. (4.4)

For a law invariant convex coherent measure % and ρt,T := %|Ft , the recursive property (4.2)
can hold only in two cases – for the ‘expectation’ and the ‘ ess sup’ operators (cf. Kupper
and Schachermayer (2009)). For example the Average Value-at-Risk preference system,
ρt,T := AV@Rα|Ft , is not recursive for α ∈ (0, 1). Recursive preference system, in the additive
case, can be constructed in the nested form

ρt,T (Z) := φt
(
φt+1 (· · ·φT−1(Z))

)
, Z ∈ ZT , (4.5)

where φs : Zs+1 → Zs, s = 1, . . . , T − 1, are one-step mappings. For example, taking
% := AV@Rα this becomes

ρt,T (·) = AV@Rα|Ft

(
AV@Rα|Ft+1(· · ·AV@Rα|FT−1(·))

)
,
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the so-called nested Average Value-at-Risk mappings. As it was pointed out above, for
α ∈ (0, 1) these nested Average Value-at-Risk mappings are different from the AV@Rα|Ft .

Consider now the general case of the preference system {Rt,u}1≤t<u≤T . The recursive
property (4.1) implies that Rt,u can be decomposed in terms of one step mappings Rs,s+1,
s = t, . . . , u− 1, as

Rt,u(Zt, . . . , Zu) = Rt,t+1

(
Zt,Rt+1,t+2

(
Zt+1, · · · ,Ru−1,u(Zu−1, Zu)

))
. (4.6)

Conversely recursive preference mappings can be constructed in the form (4.6) by choosing
one step mappings Rs,s+1 : Zs ×Zs+1 → Zs, s = 1, . . . , T − 1.

4.1 Dynamic programming equations
The recursive property (4.1) and monotonicity of the preference system allow to write the
following dynamic programming equations for the reference problem (3.1), derivations are
similar to the two stage case discussed in Section 3.2. At the terminal stage T the cost-to-go
function is defined as

VT (xT−1, ω) := ess inf
xT∈XT (xT−1,ω)

fT (xT , ω). (4.7)

Suppose that x0, . . . ,xT−1 are given. Since R = R0,T we have by the interchangeability
principle (Proposition 3.6) and recursivity that

inf
xT∈XT (xT−1,·)

R
[
f0(x0), . . . , fT (xT (·), ·)

]
(4.8)

= R
[
f0(x0), . . . , fT−1(xT−1, ω), inf

xT∈XT (xT−1,ω)
fT (xT , ω)

]
= R0,T

[
f0(x0), . . . , fT−2(xT−2, ω), fT−1(xT−1, ω), VT (xT−1, ω)

]
= R0,T

[
f0(x0), . . . , fT−2(xT−2, ω),RT−1,T [fT−1(xT−1, ω), VT (xT−1, ω)]

]
,

assuming that VT (xT−1, ·) ∈ ZT . Continuing this backward in time we obtain at stages
t = T − 1, . . . , 1, the cost-to-go functions

Vt(xt−1, ω) := ess inf
xt∈Xt(xt−1,ω)

Rt,t+1
(
ft(xt, ω), Vt+1(xt, ω)

)
, (4.9)

representing the corresponding dynamic programming equations. Finally, at the first stage,
the problem

min
x0∈X0

R0,1
(
f0(x0), V1(x0, ·)

)
should be solved. We conclude with (4.8) that

V0 := min
π∈Π
R
[
f0(x0), f1(x1(·), ·), . . . , fT (xT (·), ·)

]
(4.10)

for the recursive preference system R.
In a rudimentary form such approach to writing dynamic equations with relation to time

consistency was outlined in Shapiro (2009).
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Definition 4.3 (Dynamic programming equations). We say that a policy π = (x0,x1, . . . ,xT )
satisfies the dynamic programming equations (4.7), (4.9) and (4.10) if

xT (·) ∈ arg min
xT∈XT (xT−1, ·)

fT (xT , ·), (4.11)

xt(·) ∈ arg min
xt∈Xt(xt−1,·)

Rt,t+1
(
ft(xt, ·), Vt+1(xt, ·)

)
, t = 1, . . . , T − 1, (4.12)

x0 ∈ arg min
x0∈X0

R0,1(f0(x0), V1(x0, ·)). (4.13)

If a policy satisfies the dynamic programming equations, then it is optimal for the reference
multistage problem (3.1) and is time consistent. Without strict monotonicity it could happen
that a policy, which is optimal for the reference problem (3.1), does not satisfy the dynamic
programming equations and is not time consistent. As it was discussed in Section 3.2 this
could happen even in the two stage case and a finite number of scenarios.
Remark 4.4. Consider the additive case where Rt,t+1(Zt, Zt+1) = ρt,T (Zt + Zt+1). If moreover
mappings ρt are translation equivariant, this becomes

Rt,t+1(Zt, Zt+1) = Zt + ρt,T (Zt+1). (4.14)

Suppose further that mappings ρt,T are decomposable via a family of one-step coherent
mappings φt, as in (4.5). In that case equations (4.7)–(4.10) coincide with the respective
equations of the additive case (cf. Ruszczyński and Shapiro (2006a)).
Example 4.5. Let us define one step mappings as

Rs,s+1(Zs, Zs+1) := Zs ∨ %|Fs(Zs+1), s = 0, . . . , T − 1, (4.15)

and the corresponding preference mappings of the form (4.6), where % is a law invariant coher-
ent measure. In particular for % := ess sup we obtain the preference system of Example 3.5.
Here the dynamic equations (4.9) take the form

Vt(xt−1, ω) = ess inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) ∨ %|Ft (Vt+1(xt, ω))

}
, (4.16)

and the reference problem can be viewed as minimization of the worst possible outcome over
the considered period of time measured in terms of the measure %.

As we shall see in Section 5.2, this example is closely related to the stopping time risk
averse formulation of multistage programs.

5 Time consistent optimal stopping
In this section we discuss a combination of the optimal stopping time and time consistent
formulations of multiperiod preference measures.
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Definition 5.1. Let %t|Ft : Zt+1 → Zt, t = 0, . . . , T −1, be monotone, translation equivariant
mappings and consider the corresponding mappings ρs,t : Zt → Zs represented in the nested
form

ρs,t(·) := %s|Fs

(
%s+1|Fs+1

(
· · · %t−1|Ft−1(·)

) )
, 0 ≤ s < t ≤ T. (5.1)

The stopping risk measure is

ρ0,T (Zτ ) = 1{τ=0} Z0 + %0|F0

(
1{τ=1} Z1 + · · ·+ %T−1|FT−1(1{τ=T} ZT )

)
. (5.2)

The stopping risk measure is well-defined by virtue of (2.4) and the translation equivariance
of the mappings %t|Ft . Since F0 is trivial, the corresponding functional ρ0,T : ZT → R is real
valued.

In the risk neutral case when %t|Ft := E|Ft , we have that ρs,t = E|Fs for 0 ≤ s < t ≤ T , in
particular ρ0,T = E|F0 = E, hence

E(Zτ ) = E
[
T∑
t=0

1{τ=t} Zt

]
= 1{τ=0} Z0 + E|F0

(
1{τ=1} Z1 + · · ·+ E|FT−1(1{τ=T} ZT )

)
. (5.3)

The stopping time risk measure suggests the following counterpart of the risk neutral stopping
time problem (2.1) (recall that by ‘min/ max’ we mean that either the minimization or
maximization procedure is applied):

min/ max
τ∈T

ρ0,T (Zτ ). (5.4)

As it was argued in the previous sections, the above formulation (5.4) can be viewed as time
consistent and is amenable to writing the dynamic programming equations.

5.1 Distributionally robust approach
It is possible to view the stopping time formulation (5.4) from the following distributionally
robust point of view. Consider a convex coherent functional % : Lp(Ω,F , P )→ R. It can be
represented in the dual form

%(Z) = sup
Q∈M

EQ[Z], (5.5)

where M is a set of probability measures absolutely continuous with respect to the reference
probability measure P and such that the densities dQ/dP , Q ∈M, form a bounded convex
weakly∗ closed set A ⊂ Lq(Ω,F , P ) in the dual space Lq(Ω,F , P ) = Lp(Ω,F , P )∗. For
the concave counterpart −%(−Z) of % (see (3.4)), the corresponding dual representation is
obtained by replacing ‘sup’ in (5.5) with ‘inf’, that is

−%(−Z) = inf
Q∈M

EQ[Z].

Conversely, given a set M of probability measures absolutely continuous with respect
to the reference probability measure P and such that the densities dQ/dP , Q ∈M, form a
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bounded convex weakly∗ closed set A ⊂ Lq(Ω,F , P ), one can use the righthand side of (5.5)
as a definition of the corresponding functional %. The so defined functional % is convex
coherent. It is law invariant iff the set A is law invariant in the sense that if ζ ∈ A and ζ ′

is a density distributionally equivalent8 to ζ, then ζ ′ ∈ A. This holds even if the reference
probability measure P has atoms (cf. Shapiro (2017, Theorem 2.3)).

Since EQ[ · ] = EQ
[
EQ[ · |Ft]

]
, for Q ∈M, we have that

sup
Q∈M

EQ[ · ] = sup
Q∈M

EQ
[
EQ[ · |Ft]

]
≤ sup

Q∈M
EQ
[

ess sup
Q∈M

EQ[ · |Ft]
]
. (5.6)

The functional %|Ft(·) := ess supQ∈M EQ[ · |Ft] can be viewed as the conditional counterpart
of the corresponding functional %. Equality in (5.6) would mean the recursive property
%(·) = %(%|Ft(·)). In the law invariant case and when the reference probability measure is
nonatomic, the functional % has such recursive property only when the set M is a singleton
or consists of all probability measures absolutely continuous with respect to the reference
measure (cf. Kupper and Schachermayer (2009)).

The nested functional ρ0,T , defined in (5.1), is decomposable, i.e., has the recursive
property (4.2). For not decomposable (law invariant) risk measure % the corresponding
nested stopping objective ρ0,T (Zτ ), of the form (5.2), is different from %(Zτ ). As we shall see
below the nested formulation of stopping time is amenable for writing dynamic programming
equations, and in the sense of nested decomposition is time consistent.
Remark 5.2. In some recent publications it was suggested to consider the following formulation
of distributionally robust (risk averse) optimal stopping time problems

max
τ∈T

{
%(Zτ ) := inf

Q∈M
EQ[Zτ ]

}
. (5.7)

As it is pointed above, unless the set M is a singleton or consists of all probability measures,
this is not the same as the corresponding nested formulation. In order to deal with this, and
eventually to write the associated dynamic equations, it was assumed in Föllmer and Schied
(2004, Section 6.5) that the set M possesses a certain property, called stability. By the above
discussion it appears that such stability property will hold only in rather exceptional cases.
Remark 5.3. Consider the maximization variant of problem (5.4). By the dual representa-
tion (5.5), such formulation with convex preference functional can be viewed as somewhat
optimistic; hoping that the uncertainty of the probability distribution, represented by the
respective set M, works in our favor potentially giving a larger value of the return Zτ . From
the risk averse (pessimistic) point of view it makes more sense either to use the corresponding
concave counterpart ν0,T (defined in (3.4)), or to work with the minimization variant while
employing the convex preference functional. As we shall see later these considerations raise
delicate issues of preserving convexity of considered problems which is crucial for efficient
numerical procedures.

8It is said that ζ and ζ ′ are distributionally equivalent if P (ζ ≤ z) = P (ζ ′ ≤ z) for all z ∈ R.

18



5.2 Multistage risk averse optimal stopping time
By employing nested functionals9 ρ0,T of the form (5.1), and by using (2.4), the corresponding
optimal stopping time counterparts of problems (2.2) can be written as

min/ max
π∈Π

min/ max
τ∈T

ρ0,T (fτ (xτ , ω)) , (5.8)

with
ρ0,T (fτ (xτ , ω)) = 1{τ=0} f0(x0) + %0|F0

(
1{τ=1} f1(x1, ω)+

· · ·+ %T−1|FT−1(1{τ=T} fT (xT , ω)
)
.

(5.9)

Remark 5.4. It is also possible to consider optimization of ρ0,T
(
f0(x0) + · · ·+ fτ (xτ , ω)

)
by

using (2.5) rather than (2.4), i.e., by replacing the cost function fτ (xτ , ω) with the cumulative
cost f0(x0) + · · ·+ fτ (xτ , ω) (for the risk neutral case and fixed stopping time τ this type of
problems were considered recently in Guigues (2018)). These formulations are equivalent and
we concentrate below on the formulations (5.8).

The problems (5.8) are twofold, they consist in finding simultaneously an optimal policy
π∗ = (x∗0,x∗1 . . . ,x∗T ) and an optimal stopping time τ ∗ ∈ T. In the risk neutral case when
%t|Ft = E|Ft , for a given (fixed) policy π ∈ Π, these problems become the classical problem (2.1)
of stopping time for the process

Zt(ω) := ft
(
xt(ω), ω

)
. (5.10)

For a given stopping time τ ∈ T we can write the corresponding dynamic programming
equations, of the form (4.9), for the minimization (with respect to π ∈ Π) problem (5.8) (cf.
Ruszczyński and Shapiro (2006a))

V τ
T (xT−1, ω) := ess inf

xT∈Xt(xT−1,ω)
1{τ=T} fT (xT , ω), (5.11)

V τ
t (xt−1, ω) := ess inf

xt∈Xt(xt−1,ω)
1{τ=t} ft(xt, ω) + %t|Ft

(
V τ
t+1(xt, ω)

)
, (5.12)

t = 1, . . . , T − 1, and the first stage problem at t = 0 is (note that %0|F0 = %0)

min
x0∈X0

f0(x0) + %0
(
V τ

1 (x0, ω)
)
.

5.2.1 The min-max problem

Let us consider the min-max (minimization with respect to π ∈ Π – maximization with
respect to τ ∈ T) variant of problem (5.8). For a fixed policy π = (x0,x1, . . . ,xT ) ∈ Π we
need to solve the optimal stopping time problem

max
τ∈T

{
ρ0,T (Zτ ) = 1{τ=0} Z0 + %0|F0

(
1{τ=1} Z1 + · · ·+ %T−1|FT−1(1{τ=T} ZT )

)}
, (5.13)

9Recall that the considered nested functionals are assumed to be monotone and translation equivariant,
while can be convex or concave.
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with Zt given in (5.10). The following is a natural extension of the classical results in the risk
neutral case to the considered risk averse setting (5.13), e.g., Shiryaev (1978, Section 2.2).

Definition 5.5 (Snell envelope). Let (Z0, . . . , ZT ) ∈ Z0,T be a stochastic process. The Snell
envelope (associated with functional ρ0,T ) is the stochastic process

ET := ZT ,

Et := Zt ∨ %t|Ft(Et+1), t = 0, . . . , T − 1, (5.14)

defined in backwards recursive way.

For m = 0, . . . , T , consider Tm := {τ ∈ T : τ ≥ m}, the optimization problem

max
τ∈Tm

ρ0,T (Zτ ), (5.15)

and
τ ∗m(ω) := min{t : Et(ω) = Zt(ω), m ≤ t ≤ T}, ω ∈ Ω. (5.16)

Denote by vm the optimal value of the problem (5.15). Of course, for m = 0, the problem (5.15)
coincides with problem (5.13) and v0 is the optimal value of problem (5.13). Note that by
the recursive property (4.2) we have that10 ρ0,T (Zτ ) = ρ0,m(ρm,T (Zτ )), m = 1, . . . , T .

The following assumption was used by several authors under different names (see, for
example, Cheridito and Kupper (2009), where it is called local property and references therein):

%t|Ft(1A ·Z) = 1A ·%t|Ft(Z), for all A ∈ Ft, t = 0, . . . , T − 1. (5.17)

For coherent mappings %t|Ft it always holds (cf. Shapiro et al. (2014, Theorem 6.70)).
The following can be compared with classical results in the risk neutral case (e.g., Bingham

and Peskir (2008, Theorem 1)).

Theorem 5.6. Let %t|Ft : Zt+1 → Zt, t = 0, . . . , T − 1, be monotone translation equivariant
mappings possessing property (5.17) and ρs,t, 0 ≤ s < t ≤ T , be the corresponding nested
functionals defined in (5.1). Then for (Z0, . . . , ZT ) ∈ Z0,T the following holds:

(i) for m = 0, . . . , T , and τ ∗m defined in (5.16),

Em � ρm,T (Zτ ), ∀τ ∈ Tm,

Em = ρm,T (Zτ∗m),

(ii) the stopping time τ ∗m is optimal for the problem (5.15),
(iii) if τ̂m is an optimal stopping time for the problem (5.15), then τ̂m � τ ∗m,
(iv) vm = %0,m(Em), m = 1, . . . , T , and v0 = E0.

10By the definition ρT,T (ZT ) ≡ ZT .
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Proof. We use induction in m going backwards in time. Recall that ET = ZT and hence the
assertions follow for m = T . Now let m = T − 1 and τ ∈ TT−1. Since ρT−1,T = %T−1|FT−1 , by
using the translation equivariance and property (5.17), we can write

ρT−1,T (Zτ ) = %T−1|FT−1

(
1{τ=T−1} ZT−1 + 1{τ=T} ZT

)
= 1{τ=T−1} ZT−1 + 1{τ=T} %T−1|FT−1(ZT ).

We have that Ω is the union of the disjoint sets Ωτ
T−1 and Ωτ

T (defined in (2.3)), and hence
(recall that ET = ZT )

1{τ=T−1} ZT−1 + 1{τ=T} %T−1|FT−1(ZT ) � max{ZT−1, %T−1|FT−1(ET )} = ET−1. (5.18)

It follows that ρT−1,T (Zτ ) � ET−1.
Conditional on the event {ZT−1 ≥ %T−1|FT−1(ET )} we have: ET−1 = ZT−1 and τ ∗T−1 =

T − 1, and
ρT−1,T (Zτ∗T−1

) = %T−1|FT−1(ZT−1) = ZT−1 = ET−1,

and τ ∗T−1 is optimal for the corresponding problem (5.15). Otherwise conditional on the event
{ZT−1 < %T−1|FT−1(ZT )}, we have that ET−1 = %T−1|FT−1(ZT ), and τ ∗T−1 = T is optimal for
the corresponding problem (5.15). In both cases the assertion (iii) also holds.

Now let m = T − 2 and τ ∈ TT−2. We have that ρT−2,T (·) = %T−2|FT−2

(
%T−1|FT−1(·)

)
and

ρT−2,T (Zτ ) = %T−2|FT−2

(
%T−1|FT−1(1{τ=T−2} ZT−2 + 1{τ≥T−1} Zτ )

)
= 1{τ=T−2} ZT−2 + %T−2|FT−2(1{τ=T−1} ZT−1 + 1{τ=T} %T−1|FT−1(ZT ))
= 1{τ=T−2} ZT−2 + 1{τ>T−2} %T−2|FT−2(1{τ=T−1} ZT−1 + 1{τ=T} %T−1|FT−1(ZT )),

where the last equation holds since 1{τ>T−2} 1{τ=T−1} = 1{τ=T−1} and 1{τ>T−2} 1{τ=T} =
1{τ=T} and by (5.17). Then by (5.18) and monotonicity of %T−2|FT−2 we obtain

ρT−2,T (Zτ ) � 1{τ=T−2} ZT−2 + 1{τ>T−2} %T−2|FT−2(ET−1)
� max{ZT−2, %T−2|FT−2(ET−1)} = ET−2.

Conditional on {ZT−2 ≥ %T−2|FT−2(ET−1)}, we have that ET−2 = ZT−2 and τ ∗T−2 = T − 2,
and

ρT−2,T (Zτ∗T−2
) = %T−2|FT−2(%T−1|FT−1(ZT−2)) = ZT−2 = ET−2,

and τ ∗T−2 is optimal for the corresponding problem (5.15). Otherwise conditional on the
event {ZT−2 < %T−2|FT−2(ET−1)}, we have ET−2 = %T−2|FT−2(ET−1) and τ ∗T−2 ≥ T − 1.
Conditioning further on {ZT−1 < %T−1|FT−1(ET )} we have that ET−1 = %T−1|FT−1(ZT ), and
τ ∗T−2 = T is optimal for the corresponding problem (5.15). Otherwise conditional further on
{ZT−1 ≥ %T−1|FT−1(ET )} we have that τ ∗T−2 = T − 1 and the assertions are verified.

The assertion follows by going backwards in time for m = T − 3, . . . .
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Note that it follows by (5.14) that Zt(ω) ≤ Et(ω) for all t = 0, . . . , T and a.e. ω ∈ Ω. We
have that

τ ∗0 (ω) = min{t : Zt(ω) ≥ Et(ω), t = 0, . . . , T} (5.19)

is an optimal solution of problem (5.13), and the optimal value of problem (5.13) is equal
to E0. That is, going forward the optimal stopping time τ ∗0 stops at the first time Zt = Et.
In particular it stops at t = 0 if Z0 ≥ E0 (recall that Z0 and E0 are deterministic), i.e., iff
Z0 ≥ %0|F0(E1); and it stops at t = T iff Zt < Et for t = 0, . . . , T − 1. As in the risk neutral
case the time consistency (Bellman’s principle) is ensured here by the decomposable structure
of the considered nested risk measure. That is, if it was not optimal to stop within the
time set {0, . . . ,m − 1}, then starting the observation at time t = m and being based on
the information Fm (i.e., conditional on Fm), the same stopping rule is still optimal for the
problem (5.15).

Consider (compare with (4.15))

Rs,s+1(Zs, Zs+1) := Zs ∨ %s|Fs(Zs+1), s = 0, . . . , T − 1. (5.20)

Then we can write Et in the following recursive form (compare with (4.6))

Et = Rt,t+1

(
Zt,Rt+1,t+2

(
Zt+1, · · · ,RT−1,T (ZT−1, ZT )

))
, t = 0, . . . T − 1.

Consequently (recall that v0 = E0) problem (5.8) can be written in the form (3.1) with
R := R0,T , where R0,T is given in the nested form discussed in Section 4, Rs,s+1 defined
in (5.20), and with the respective dynamic programming equations of the form (4.16). For
an optimal policy π̄ = {x̄0, x̄1, . . . , x̄T}, the Snell envelop of the corresponding stopping time
problem is Et(ω) = Vt(x̄t−1, ω), t = 1, . . . , T , where Vt(·, ω) is the value function defined by
the dynamic equations (4.16).
Remark 5.7. As it was already mentioned in Remark 5.3, there is a delicate issue of preserving
convexity of the considered optimization problems. Suppose that the functionals %t|Ft are
convex. Together with the assumed monotonicity of %t|Ft and since maximum of two convex
functions is convex, convexity of the respective value functions Vt(·, ω) is implied by convexity
of the objective functions ft(·, ω) if, for example, the feasibility constraints are linear of the
form

Xt(xt−1, ω) := {xt ≥ 0: Bt(ω)xt−1 + At(ω)xt = bt(ω)}. (5.21)

On the other hand if %t|Ft are concave, then convexity of Vt(·, ω) is not guaranteed.

5.2.2 The min-min problem

Consider the min-min (minimization with respect to π ∈ Π and τ ∈ T) variant of problem (5.8).
In that case for a fixed policy π ∈ Π we need to solve the optimal stopping time problem

min
τ∈T

ρ0,T (Zτ ). (5.22)
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Here the one step mappings Rs,s+1, used in construction of the corresponding preference
system (discussed in Section 4), take the form

Rs,s+1(Zs, Zs+1) := Zs ∧ %s|Fs(Zs+1), s = 0, . . . T − 1. (5.23)

In contrast to (5.20) considered above, the mappings Rs,s+1 defined in (5.23) do not preserve
convexity of %s|Fs . The corresponding dynamic programming equations (4.9)–(4.10) (and
(4.11)–(4.13)) apply here as well and are somewhat simpler as the essential infimum and the
minimum can be interchanged.

5.2.3 Supermartingales and delayed stopping

Recall that a sequence of random variables {Xt}0≤t≤T is said to be supermartingale relative
to the filtration F, if Xt � E|Ft(Xt+1), t = 0, . . . , T − 1. By analogy we say that the sequence
Xt ∈ Zt is P-supermartingale, with respect to the collection of mappings P = {%t|Ft}t=0,...,T−1,
if

Xt � %t|Ft(Xt+1), t = 0, . . . , T − 1. (5.24)
It follows by the definition (5.14) that the Snell envelope sequence {Et}0≤t≤T is P-super-
martingale. It also follows from (5.14) that Et � Zt, i.e., Et dominates Zt. We have that
{Et}0≤t≤T is the smallest P-supermartingale which dominates the corresponding sequence
{Zt}0≤t≤T .
Remark 5.8. Consider two collections %t|Ft : Zt+1 → Zt and %′t|Ft

: Zt+1 → Zt, t = 0, . . . , T −1,
of monotone translation equivariant mappings possessing property (5.17), with the respective
Snell envelope sequences Et and E ′t and stopping times τ ′0 = inf{t : E ′t = Zt} and τ ∗0 =
inf{t : Et = Zt}, defined for (Z0, . . . , ZT ) ∈ Z0,T . Suppose that %t|Ft(·) � %′t|Ft

(·), t =
0, . . . , T − 1. It follows then that Et � E ′t for t = 0, . . . , T , and hence τ ∗0 ≤ τ ′0. That is, for
larger risk mappings the optimal (maximization) stopping time, defined in (5.16), is delayed.

For convex law invariant risk functionals it holds that E[X] ≤ ρ(X) (e.g., Shapiro
et al. (2014, Corollary 6.52)). In that case it follows together with (5.24) that every P-
supermartingale Xt, t = 0, . . . , T − 1, is also a martingale in the usual sense, i.e., with respect
to the expectation. For the concave counterpart ν(X) = −ρ(−X) the converse inequality
ν(X) ≤ E[X] follows of course.

6 Numerical illustration
This section discusses computational approaches to solving stopping time problems with
preference systems of the general form (5.8). We illustrate two different approaches based
on the pricing of American put options. This stopping time problem is well-known in
mathematical finance.

We start by solving the dynamical equations explicitly in the following section and then
elaborate on Stochastic Dual Dynamic Programming (SDDP) type algorithm in Section 6.2.
We give numerical examples for optimal stopping in univariate, as well as for multivariate
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problems (basket options). Further, the examples cover both, the convex and the concave
nested (stopping) preference systems.

6.1 Optimal stopping by solving the dynamic equations
Like a simple stock, the option is an investment which comes with risk. The risk averse
investor is not willing to pay the fair price for risk-prone investments, instead, the potential
buyer expects a discount corresponding to his general decline of risk. As the American put
option with strike price K > 0 can be exercised any time the investor considers the optimal
stopping problem

sup
τ∈T

ρ0,T
(
e−r τ · [K − Sτ ]+

)
, (6.1)

where r > 0 is a fixed discount rate and St is the price of the underlying at time t.
The risk neutral investor chooses the expectation, ρ0,T = E, in (6.1), this problem is the

well-known optimal stopping problem in mathematical finance. The risk averse investor, in
contrast, chooses a preference measure ρ0,T reflecting his personal risk profile.

Note that the situation reverses for the owner of a risky asset. This market participant is
willing to accept a fee (a commission, like a premium in insurance) to get rid of his risky
asset, i.e., to sell the risk. As well, he will choose a preference functional when computing his
personal price of the option, but his personal preference functional reveals opposite preferences
than the buyer’s functional.

Following the Black-Scholes scheme we consider the geometric random walk process

St = St−1 · exp
(
r − σ2/2 + εt

)
, t = 1, . . . , T, (6.2)

in discrete time with εt being an i.i.d. Gaussian white noise process, εt ∼ N (0, σ2).
By considering St as the state variable the corresponding dynamic equations can be

written recursively as
VT (ST ) := [K − ST ]+ (6.3)

and
Vt(St) = [K − St]+ ∨ e−r · %t|St

(
Vt+1(St+1)

)
, (6.4)

for t = T − 1, . . . , 1, where % is a chosen law invariant coherent risk measure. In particular
we can use the Entropic Value-at-Risk, % := EV@Rβ, where for β > 0,

EV@Rβ(Z) := inf
u>0

{
u−1

(
β + logE[euZ ]

)}
. (6.5)

Note that this is a convex law invariant coherent risk measure, it is the homogeneous version
of the risk measure studied in Kupper and Schachermayer (2009). We refer to Ahmadi-Javid
and Pichler (2017) for details on this particular risk measure, which allows explicit evaluations
for Gaussian random variables.

Figure 1 displays the decision rules for % = EV@Rβ and varying levels β of risk aversion.
The option is not exercised, as long as the price of the stock stays in the continuation region.
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(a) Regions for the risk averse option holder
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(b) Regions for the risk averse option buyer

Figure 1: Stopping and continuation regions for risk averse option traders

Once the price of the stock drops out of the continuation region into the stopping region,
then it is optimal to exercise the put option. The optimal stopping time thus is

τ = inf
{
i ∈ {0, . . . , n} : (ti, Sti) 6∈ continuation region

}
.

In view of (6.4) the stopping rule can be restated as

St + Vt(St) ≤ K, (6.6)

where St is the current price of the stock and Vt(St) the actual and updated price of the
corresponding put option. The rule (6.6) is known as fugit in mathematical finance.

It holds as well that −%(−Y ) ≤ %(Y )11 and Figure 1b displays the continuation and
stopping region for the respective concave functional ν(Y ) := −EV@Rβ(−Y ), the solution of
the problem

sup
τ∈T

ν0,T
(
e−r τ · [K − Sτ ]+

)
;

this plot describes the trading regions for the risk averse option buyer. In the risk neutral case,
β = 0, the regions are notably identical as the expectation is linear and thus E[Y ] = −E[−Y ].

6.2 Stochastic Dual Dynamic Programming
The SDDP algorithm was introduced in Pereira and Pinto (1991) and extended to a risk
averse setting in Shapiro (2011). For a discussion of the SDDP method we can refer to
Shapiro et al. (2014, Section 5.10) and references therein.

11Indeed, 0 = %(0) ≤ %(Y ) + %(−Y ).
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6.2.1 Univariate SDDP

To study the performance of the SDDP approach to solving optimal stopping problems, we
remove nonlinear influences and consider the arithmetic version of the reference problem (6.1),
which is

sup
τ∈T

ρ0,T
(
[K − Sτ ]+ − rτ

)
(Schachermayer and Teichmann (2007) discuss the differences of these models). We use risk
measure % := (1 − λ)E + λAV@Rα for some λ ∈ [0, 1] and α ∈ (0, 1) and consider T = 25
stages. The SDDP algorithm first discretizes the random variables εt. If εt takes the values
±σ S0 with probability 1/2 each, then the dynamic programming equations reduce to the
binomial option pricing model. Nevertheless, the SDDP algorithm can handle the general
situation where εt follows an arbitrary distribution, as long as it is possible to obtain samples
from such distribution. In the following experiments we let εt ∼ N (0, σ2S2

0). In order to solve
the problem numerically we discretize the (continuous) distribution by randomly generating
N realizations at every stage. We refer to the obtained approximation as the discretized
problem. The following numerical experiments use N = 100 discretized points for each time
period.

We assess the quality of the SDDP algorithm on two aspects, namely the statistical prop-
erties of the approximations of dynamic programming equations formed under discretization,
and the efficiency of the algorithm in solving the discretized problem. Since the problem
is univariate (i.e., a single stock price St), it is possible to solve the discretized problem
quite accurately simply by discretization of the state variables. So the main purpose of the
following exercise is to verify efficiency of the SDDP algorithm. After that we investigate a
multivariate setting where simple discretization of state variables is not possible. We first run
the algorithm, applied to the discretized problem, for 1000 iterations and record the lower
bounds generated in each iteration.

The upper bound of the optimal value is constructed by piecewise linear approximations
of the value functions Vt(·) (this could be inefficient in the multivariate setting). Note that
the SDDP algorithm, applied to the discretized problem, also generates a policy for the
original problem with continuous distributions of εt. Its value for the original problem can be
estimated by generating random sample paths (scenarios) from the original distributions and
averaging the obtained values. We sample 2000 scenarios from the distributions of εt (either
the original or the discretized one) and plot the distributions of the corresponding stopping
time and the interest discounted profit. To assess how well the discretization approximates
the true dynamic programming equations, we run the SDDP algorithm 30 times and compare
the distributions of stopping time and interest discounted profit.

Formulation 1: λ = 0 (the risk neutral case). Figure 2 exhibits a typical convergence
of lower bounds generated by the SDDP algorithm. In particular, the gap between the upper
and the lower bounds is already small after, say, 500 iterations. The algorithm solves the
discretized problem quite well. Moreover values of the constructed policies for the discretized
and original problems are very similar.
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Figure 2: Upper and lower bounds of the optimal objective values (of formulation 1) generated
by the SDDP algorithm in 1000 iterations.

We run 30 trials of the SDDP algorithm for randomly generated discretizations of the
original continuous distributions of εt. We sample 2000 scenarios from both the true and the
discretized distributions of εt and plot the distributions of the corresponding stopping time
and the interest discounted profit. We refer to the discretized distribution as the empirical
distribution.

Figures 3 and 4 contain plots for typical distributions of interest discounted profits
and stopping times generated by the discretized problems in 30 trials, respectively. In
particular, the subplot on the left of each plot corresponds to the scenarios sampled from the
discretized distribution of εt, whereas the subplot on the right corresponds to the original
normal distribution. Although figure 4 indicates that the distributions of the stopping times
generated in different trials could be different, the distribution of the profits share a common
shape as shown in Figure 3. This indicates that the optimal objective value of (6.1) generated
by the discretization is reasonably accurate when N = 100, while optimal stopping times are
unstable.
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Figure 3: Typical distributions of interest discounted profit (of formulation 1) where the
scenarios are sampled from both the empirical and the original normal distribution.

Figure 4: Typical distributions of stopping time (of formulation 1) where the scenarios are
sampled from both the empirical and the original normal distribution.

Formulation 2: λ = 0.2 and α = 0.05. We present similar analysis as in the risk neutral
case. Figure 5 shows the gap between the upper and the lower bounds which is already
small after 500 iterations. Moreover, all distributions of stopping times and profits have the
same shape (see Figure 6). As predicted in Remark 5.3, such formulation hopes that the
uncertainty of the probability distribution works in our favor potentially giving a larger value
of the return, thereby delays the stopping time to late stages.
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Figure 5: Upper and lower bounds of the optimal objective values (of formulation 2) generated
by the SDDP algorithm in 1000 iterations.

Figure 6: Typical distributions of stopping time and interest discounted profit (of formula-
tion 2) where the scenarios are sampled from both the empirical and the original normal
distribution.

6.2.2 Basket options

We also analyze the SDDP algorithm applied to the (multivariate) American basket option
pricing problem

sup
τ∈T

ρ0,T

([∑
j∈J wjS

j
τ −K

]
+
− rτ

)
. (6.7)

Here J is an index set of assets with |J | = 5, and T = 25. Also % = (1− λ)E + λAV@Rα for
some λ ∈ [0, 1] and α ∈ (0, 1), wj ∈ R are weights, K is the strike price, Sjt is the price of
asset j at time t. In particular, suppose µj = rSj0 and iid εt ∼ N(0,Σ) for some covariance
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matrix Σ of order |J | × |J |, then Sjt is a random walk process for each j ∈ J such that

Sjt = µj + Sjt−1 + (εt)j, t = 1, . . . , T. (6.8)

The SDDP algorithm for (6.7) proceeds the same way as the one for (6.1), and our analysis of
the algorithm is the same as before, i.e., we assess how well the discretization approximates
the true dynamic programming equations and how efficient the algorithm in solving the
original problem. As mentioned before, the construction of a deterministic upper bound
could be inefficient in the multivariate setting, hence we simply let the algorithm run 1000
iterations.

Formulation 3: basket option with λ = 0 (the risk neutral case). Figure 7 shows
that the lower bounds generated by the SDDP algorithm stabilize after about 500 iterations.
It appears that the SDDP algorithm solves the discretized problem quite accurately, and we
evaluate its performance for the original problem by generating scenarios from the original
distribution. As shown in Figures 8 and 9, the distributions of policies, namely interest
discounted profits and stopping times, vary across trials.

To further understand the relation between the quality of the discretization and the
number of discretized points, we run 30 additional trials with N = 300 for each time period,
and the results are summarized in Figures 10 and 11. In short, the distributions of profits
now look similar, though the distributions of stopping times still have a moderate variation.

Figure 7: Lower bounds of the optimal objective values (of formulation 3) generated by the
SDDP algorithm in 1000 iterations.
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Figure 8: Typical distributions of interest discounted profit (of formulation 3 with N = 100)
where the scenarios are sampled from both the empirical and the original normal distribution.

Figure 9: Typical distributions of stopping time (of formulation 3 with N = 100) where the
scenarios are sampled from both the empirical and the original normal distribution.
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Figure 10: Typical distributions of interest discounted profit (of formulation 3 with N = 300)
where the scenarios are sampled from both the empirical and the original normal distribution.

Figure 11: Typical distributions of stopping time (of formulation 3 with N = 300) where the
scenarios are sampled from both the empirical and the original normal distribution.

Formulation 4: basket option with λ = 0.2 and α = 0.05. Like the other formulations,
the lower bounds generated by the SDDP algorithm in this case stabilize after about 500
iterations, hence we omit the plot. Similar to formulation 2, all distributions of stopping
times and profits have the same shape (see Figure 12), and the stopping time concentrates
on late stages. This indicates that the discretization gives is a good approximation of the
original problem even when N = 100 for each time period.
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Figure 12: Typical distributions of stopping time and interest discounted profit (of formu-
lation 4) where the scenarios are sampled from both the empirical and the original normal
distribution.

We next consider the American basket option pricing problem (6.7) with concave risk
measure, with T = 25 and %(Z) = (1 − λ)E(Z) − λAV@Rα(−Z) for some λ ∈ [0, 1] and
α ∈ (0, 1). This is a risk averse formulation since the concave risk measure shifts more
weights to scenarios that reduce the profits. As mentioned in Remark 5.3, the convexity is
not preserved when a concave risk measure is used.

Without convexity, the SDDP algorithm cannot be applied directly. We circumvent this by
approximating the risk averse formulation by solving a sequence of risk neutral problems. The
basic idea is to treat every stage of the risk averse formulation as a saddle point problem like
(5.2). Starting with the discretized distribution that assigns equal probability to each scenario
at every stage, we iteratively solve the risk neutral problem and construct a new discretized
distribution by shifting more weights to the “bad” scenarios for the current risk neutral
problem. Specifically, in each iteration, we first let the SDDP algorithm solve the discretized
risk neutral problem. Then we sample scenarios from the discretized distribution; each
scenario corresponds to a sequence of stock prices {Sj0}j∈J , {Sj1}j∈J , . . . , {SjT}j∈J according
to the equation (6.8). For each t = 1, . . . , T , we consider Vt({Sjt−1}j∈J , ε̂t) constructed by the
discretized problem, where ε̂t are the possible realizations of εt in the discretized distribution.
Consequently we arrange these values in the ascending order. For each ε̂t, we then count the
frequency (i.e., the number of scenarios) that V t(St−1, ε̂t) has one of the dαNe-lowest values.
The new distribution is constructed based on the frequency such that the realization ε̂t is
assigned the probability

• 1−λ
N

+ λ
αN

, if its frequency is among the top bαNc frequencies for stage t.

• 1−λ
N

+ λ(αN−bαNc)
αN

, if its frequency is the (bαNc+ 1)-highest frequency for stage t.

• 1−λ
N

, otherwise.
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Note that those probability weights are exactly the ones assigned by % to different outcomes
of the random variable Z when Z has only finitely many outcomes.

The sequence of risk neutral problems is not guaranteed to converge to the original problem
in general. Nonetheless, this approach works well on the basket option pricing problem we
tested. First of all, the sequence of constructed distributions converges. Besides, the policies
generated by the discretization, obtained in the last iteration, exhibit risk aversion. Indeed,
compared to Figures 9 and 11, the stopping time shown in Figure 13 has more weights in
the early stages, and the distribution of the interest discounted profit (see Figure 13) has a
shorter range, because the higher potential returns are turned down in exchange for less risk.

Figure 13: Typical distributions of stopping time and interest discounted profit (of formu-
lation 4) where the scenarios are sampled from both the empirical and the original normal
distribution.
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A. Ruszczyński and A. Shapiro. Conditional risk mappings. Mathematics of Operations
Research, 31(3):544–561, 2006a. doi:10.1287/moor.1060.0204. 16, 19

A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. Mathematics of
Operations Research, 31:433–452, 2006b. doi:10.1287/moor.1050.0186. 11, 12

36

http://dx.doi.org/10.1016/0167-6377(96)00003-x
http://dx.doi.org/10.1111/j.1467-9965.2007.00320.x
http://dx.doi.org/10.1007/b98840
http://dx.doi.org/10.1515/9783110213140
http://dx.doi.org/10.1137/090775841
http://dx.doi.org/10.2307/1913656
http://dx.doi.org/10.1007/s11579-009-0019-9
http://dx.doi.org/10.1007/s11579-009-0019-9
http://dx.doi.org/10.1016/j.spa.2004.03.004
http://dx.doi.org/10.1007/978-3-642-02431-3
https://books.google.com/books?id=w-NdOE5fD8AC
https://books.google.com/books?id=w-NdOE5fD8AC
http://dx.doi.org/10.1007/s10107-010-0393-3
http://dx.doi.org/10.1287/moor.1060.0204
http://dx.doi.org/10.1287/moor.1050.0186


H. Scarf. A min-max solution of an inventory problems. Studies in the Mathematical Theory
of Inventory and Production, pages 201–209. Stanford University Press, 1958. 2

W. Schachermayer and J. Teichmann. How close are the option pricing formulas of Bachelier
and Black-Merton-Scholes? Mathematical Finance, 18(1):155–170, 2007. doi:10.1111/j.1467-
9965.2007.00326.x. 26

A. Shapiro. On a time consistency concept in risk averse multistage stochastic programming.
Operations Research Letters, 37(37):143–147, 2009. doi:10.1016/j.orl.2009.02.005. 15

A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of
Operational Research, 209(1):63–72, 2011. 25

A. Shapiro. Distributionally robust stochastic programming. SIAM Journal on Op-
timization, 27(4):2258–2275, jan 2017. doi:10.1137/16M1058297. URL http://www.
optimization-online.org/DB_FILE/2015/12/5238.pdf. 10, 11, 18
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