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Abstract

Stochastic gradient Hamiltonian Monte Carlo (SGHMC) is a variant of stochastic
gradient with momentum where a controlled and properly scaled Gaussian noise is
added to the stochastic gradients to steer the iterates towards a global minimum.
Many works reported its empirical success in practice for solving stochastic non-convex
optimization problems, in particular it has been observed to outperform overdamped
Langevin Monte Carlo-based methods such as stochastic gradient Langevin dynamics
(SGLD) in many applications. Although asymptotic global convergence properties of
SGHMC are well known, its finite-time performance is not well-understood. In this
work, we study two variants of SGHMC based on two alternative discretizations of
the underdamped Langevin diffusion. We provide finite-time performance bounds for
the global convergence of both SGHMC variants for solving stochastic non-convex
optimization problems with explicit constants. Our results lead to non-asymptotic
guarantees for both population and empirical risk minimization problems. For a fixed
target accuracy level, on a class of non-convex problems, we obtain complexity bounds
for SGHMC that can be tighter than those available for SGLD.

∗The authors are in alphabetical order.
†Department of Systems Engineering and Engineering Management, The Chinese University of Hong

Kong, Shatin, N.T. Hong Kong; xfgao@se.cuhk.edu.hk.
‡Department of Management Science and Information Systems and the DIMACS Institute, Rutgers

University, Piscataway, NJ-08854, United States of America; mg1366@rutgers.edu.
§Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, FL-32306,

United States of America; zhu@math.fsu.edu.

1

ar
X

iv
:1

80
9.

04
61

8v
4 

 [
m

at
h.

O
C

] 
 1

8 
N

ov
 2

02
0



1 Introduction

We consider the stochastic non-convex optimization problem

min
x∈Rd

F (x) := EZ∼D[f(x, Z)] , (1.1)

where Z is a random variable whose probability distribution D is unknown, supported
on some unknown set Z, the objective F is the expectation of a random function f :
Rd × Z → R where the functions x 7→ f(x, z) are continuous and non-convex. Having
access to independent and identically distributed (i.i.d.) samples Z = (Z1, Z2, . . . , Zn)
where each Zi is a random variable distributed with the population distribution D, the
goal is to compute an approximate minimizer x̂ (possibly with a randomized algorithm) of
the population risk, i.e. we want to compute x̂ such that EF (x̂)−F ∗ ≤ ε̂ for a given target
accuracy ε̂ > 0, where F ∗ = minx∈Rd F (x) is the minimum value and the expectation is
taken with respect to both Z and the randomness encountered (if any) during the iterations
of the algorithm to compute x̂. This formulation arises frequently in several contexts
including machine learning. A prominent example is deep learning where x denotes the set
of trainable weights for a deep learning model and f(x, zi) is the penalty (loss) of prediction
using weight x with the individual sample value Zi = zi ∈ Z.

Because the population distribution D is unknown, a common popular approach is to
consider the empirical risk minimization problem

min
x∈Rd

Fz(x) :=
1

n

n∑
i=1

f(x, zi) , (1.2)

based on the dataset z := (z1, z2, . . . , zn) ∈ Zn as a proxy to the problem (1.1) and minimize
the empirical risk

EFz(x)− min
x∈Rd

Fz(x) (1.3)

instead, where the expectation is taken with respect to any randomness encountered during
the algorithm to generate x.1 Many algorithms have been proposed to solve the problem
(1.1) and its finite-sum version (1.2). Among these, gradient descent, stochastic gradient
and their variance-reduced or momentum-based variants come with guarantees for finding
a local minimizer or a stationary point for non-convex problems. In some applications,
convergence to a local minimum can be satisfactory ([GLM17, DLT+18]). However, in
general, methods with global convergence guarantees are also desirable and preferable in
many settings ([HLSS16, ŞimşekliYN+18]).

It has been well known that sampling from a distribution which concentrates around a
global minimizer of F is a similar goal to computing an approximate global minimizer

1We note that in our notation Z is a random vector, whereas z is deterministic vector associated to a
dataset that corresponds to a realization of the random vector Z.
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of F . For example such connections arise in the study of simulated annealing algo-
rithms in optimization which admit several asymptotic convergence guarantees (see e.g.
[Gid85, Haj85, GM91, KGV83, BT93, BLNR15, BM99]). Recent studies made such con-
nections between the fields of statistics and optimization stronger, justifying and popular-
izing the use of Langevin Monte Carlo-based methods in stochastic non-convex optimiza-
tion and large-scale data analysis further (see e.g. [CCS+17, Dal17, RRT17, CCG+16,
ŞimşekliBCR16, ŞimşekliYN+18, WT11, Wib18]).

Stochastic gradient algorithms based on Langevin Monte Carlo are popular variants of
stochastic gradient which admit asymptotic global convergence guarantees where a properly
scaled Gaussian noise is added to the gradient estimate. Two popular Langevin-based algo-
rithms that have demonstrated empirical success are stochastic gradient Langevin dynamics
(SGLD) ([WT11, CDC15]) and stochastic gradient Hamiltonian Monte Carlo (SGHMC)
([CFG14, CDC15, Nea10, DKPR87]) and their variants to improve their efficiency and ac-
curacy ([AKW12, MCF15, PT13, DFB+14, Wib18]). In particular, SGLD can be viewed
as the analogue of stochastic gradient in the Markov Chain Monte Carlo (MCMC) liter-
ature whereas SGHMC is the analogue of stochastic gradient with momentum (see e.g.
[CFG14]). SGLD iterations consist of

Xk+1 = Xk − ηgk +
√

2ηβ−1ξk ,

where η > 0 is the stepsize parameter, β > 0 is the inverse temperature, gk is a conditionally
unbiased estimate of the gradient of Fz and ξk ∈ Rd is a sequence of i.i.d. centered
Gaussian random vector with unit covariance matrix. When the gradient variance is zero,
SGLD dynamics corresponds to (explicit) Euler discretization of the first-order (a.k.a.
overdamped) Langevin stochastic differential equation (SDE)

dX(t) = −∇Fz(X(t))dt+
√

2β−1dB(t) , t ≥ 0 , (1.4)

where {B(t) : t ≥ 0} is the standard Brownian motion in Rd. The process X admits a
unique stationary distribution πz(dx) ∝ exp(−βFz(x))dx, also known as the Gibbs measure,
under some assumptions on Fz (see e.g. [CHS87, HKS89]). For β chosen properly (large
enough), it is easy to see that this distribution will concentrate around approximate global
minimizers of Fz. Recently, [Dal17] established novel theoretical guarantees for the conver-
gence of the overdamped Langevin MCMC and the SGLD algorithm for sampling from a
smooth and log-concave density and these results have direct implications to stochastic con-
vex optimization; see also [DK19]. In a seminal work, [RRT17] showed that SGLD iterates
track the overdamped Langevin SDE closely and obtained finite-time performance bounds
for SGLD. Their results show that SGLD converges to ε-approximate global minimizers
after O(poly( 1

λ∗
, β, d, 1

ε )) iterations where λ∗ is the uniform spectral gap that controls the
convergence rate of the overdamped Langevin diffusion which is in general exponentially
small in both β and the dimension d ([RRT17, TLR18]). A related result of [ZLC17] shows
that a modified version of the SGLD algorithm will find an ε-approximate local minimum
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after polynomial time (with respect to all parameters). Recently, [XCZG18] improved the
ε dependency of the upper bounds of [RRT17] further in the mini-batch setting, and ob-
tained several guarantees for the gradient Langevin dynamics and variance-reduced SGLD
algorithms.

On the other hand, the SGHMC algorithm is based on the underdamped (a.k.a. second-
order or kinetic) Langevin diffusion

dV (t) = −γV (t)dt−∇Fz(X(t))dt+
√

2γβ−1dB(t), (1.5)

dX(t) = V (t)dt, (1.6)

where γ > 0 is the friction coefficient, X(t), V (t) ∈ Rd models the position and the mo-
mentum of a particle moving in a field of force (described by the gradient of Fz) plus a
random (thermal) force described by Brownian noise, first derived by [Kra40]. It is known
that under some assumptions on Fz, the Markov process (X(t), V (t))t≥0 is ergodic and
admits a unique stationary distribution

πz(dx, dv) =
1

Γz
exp

(
−β
(

1

2
‖v‖2 + Fz(x)

))
dxdv, (1.7)

(see e.g. [HN04, Pav14]) where Γz is the normalizing constant:

Γz =

∫
Rd×Rd

exp

(
−β
(

1

2
‖v‖2 + Fz(x)

))
dxdv =

(
2π

β

)d/2 ∫
Rd
e−βFz(x)dx.

Hence, the x-marginal distribution of stationary distribution πz(dx, dv) is exactly the in-
variant distribution of the overdamped Langevin diffusion.2 SGHMC dynamics corre-
spond to the discretization of the underdamped Langevin SDE where the gradients are
replaced with their unbiased estimates. Although various discretizations of the under-
damped Langevin SDE has also been considered and studied ([CDC15, LMS15]), the fol-
lowing first-order Euler scheme is the simplest approach that is easy to implement, and a
common scheme among the practitioners ([TTV16, CCG+16, CDC15]):

Vk+1 = Vk − η[γVk + g(Xk, Uz,k)] +
√

2γβ−1ηξk, (1.8)

Xk+1 = Xk + ηVk, (1.9)

where (ξk)
∞
k=0 is a sequence of i.i.d standard Gaussian random vectors in Rd, {Uz,k : k =

0, 1, . . .} is a sequence of i.i.d random elements such that

Eg(x, Uz,k) = ∇Fz(x) for any x ∈ Rd.
2With slight abuse of notation, we use πz(dx) to denote the x-marginal of the equilibrium distribution

πz(dx, dv).
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In this paper, we focus on the unadjusted dynamics (without Metropolis-Hastings type
of correction) that works well in many applications ([CFG14, CDC15]), as Metropolis-
Hastings correction is typically computationally expensive for applications in machine
learning and large-scale optimization when the size of the dataset n is large and low to
medium accuracy is enough in practice (see e.g. [WT11, CFG14]).

There is also an alternative discretization to (1.8)-(1.9), recently proposed by [CCBJ18]
which leads to state-of-the-art estimates in the special case that improves upon the Euler
discretization when the objective is strongly convex ([CCBJ18]). To introduce this alterna-
tive discretization by [CCBJ18], we first define a sequence of functions ψk by ψ0(t) = e−γt

and ψk+1(t) =
∫ t

0 ψk(s)ds, k ≥ 0. The iterates (X̂k, V̂k) are then defined by the following
recursion:

V̂k+1 = ψ0(η)V̂k − ψ1(η)g(X̂k, Uz,k) +
√

2γβ−1ξk+1, (1.10)

X̂k+1 = X̂k + ψ1(η)V̂k − ψ2(η)g(X̂k, Uz,k) +
√

2γβ−1ξ′k+1, (1.11)

where (ξk+1, ξ
′
k+1) is a 2d-dimensional centered Gaussian vector so that (ξj , ξ

′
j)’s are inde-

pendent and identically distributed (i.i.d.) and independent of the initial condition, and
for any fixed j, the random vectors ((ξj)1, (ξ

′
j)1), ((ξj)2, (ξ

′
j)2), . . . ((ξj)d, (ξ

′
j)d) are i.i.d.

with the covariance matrix:

C(η) =

∫ η

0
[ψ0(t), ψ1(t)]T [ψ0(t), ψ1(t)] dt. (1.12)

In the rest of the paper, we refer to Euler discretization (1.8)-(1.9) as SGHMC1 whereas
the alternative discretization (1.10)-(1.11) as SGHMC2.

Recently, [EGZ19] show that the underdamped SDE converges to its stationary dis-
tribution faster than that of the best known convergence rate of overdamped SDE in the
2-Wasserstein metric under some assumptions, where Fz can be non-convex. Their re-
sult is for the continuous-time underdamped dynamics. This raises the natural question
whether the discretized underdamped dynamics (SGHMC), can lead to better guarantees
than the SGLD method for solving stochastic non-convex optimization problems. Indeed,
experimental results show that SGHMC can outperform SGLD dynamics in many appli-
cations (see e.g. [EGZ19, CDC15, CFG14]). Although asymptotic convergence guarantees
for SGHMC exist (see e.g. [CFG14] [MSH02, Section 3], [LMS15]), there is a lack of finite-
time explicit performance bounds for solving non-convex stochastic optimization problems
with SGHMC in the literature including risk minimization problems.

1.1 Contributions

Our main contributions can be summarized as follows:

• We provide for the first time the non-asymptotic provable guarantees for SGHMC
to find approximate minimizers of both empirical and population risks with explicit
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constants. We establish the results under some regularity and growth assumptions
for the component functions f(x, z) and the noise in the gradients, but we do not
assume f is strongly convex in any region.

• We show that for a class of non-convex problems, SGHMC2 can improve upon the
(vanilla) SGLD algorithm in terms of the gradient complexity, i.e. the total number
of stochastic gradients required to achieve a global minimum. Here, “improvement”
means the best available bounds for SGHMC2, which we prove in our paper, are better
than the best available bounds for SGLD for some class of problems; see Section 5
for details. As a consequence, our analysis gives further theoretical justification to
the success of momentum-based methods for solving non-convex machine learning
problems, empirically observed in practice (see e.g. [SMDH13]).

• We illustrate the applications of our theoretical results using two examples including
binary linear classification and robust ridge regression.

• On the technical side, we adapt the proof techniques of [RRT17] developed for the
overdamped dynamics to the underdamped dynamics and combine it with the anal-
ysis of [EGZ19] which quantifies the convergence rate of the underdamped Langevin
SDE to its equilibrium. The main new technical results we derive in this paper, rel-
ative to these studies, include controlling the discretization errors between SGHMC
and the continuous-time underdamped Langevin SDE, and bounding the moments
of underdamped dynamics.

1.2 Related Work and Comparison to Existing Literature

In a recent work, [ŞimşekliYN+18] obtained a finite-time performance bound for the ergodic
average of the SGHMC iterates in the presence of delays in gradient computations. Their
analysis highlights the dependency of the optimization error on the delay in the gradient
computations and the stepsize explicitly, however it hides some implicit constants which can
be exponential both in β and d in the worst case. A comparison with the SGLD algorithm
is also not given. On the contrary, in our paper, we make all the constants explicit. This
allows us to make gradient complexity comparisons with respect to overdamped MCMC
approaches such as SGLD.

[CCA+18] considered the problem of sampling from a target distribution p(x) ∝ exp(−F (x))
where F : Rd → R is L-smooth everywhere and m-strongly convex outside a ball of finite
radius R. They proved upper bounds for the time required to sample from a distribu-
tion that is within ε of the target distribution with respect to the 1-Wasserstein distance
for both underdamped and overdamped methods that scales polynomially in ε and d.
They also show that underdamped MCMC has a better dependency with respect to ε
and d by a square root factor. Compared to this paper, in our analysis, we consider a
larger class of non-convex functions F (x) that satisfy the dissipativity condition, a weaker
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condition that does not require strong convexity outside a region. Under our assump-
tions, the best known bounds are such that the distance to the invariant distribution
scales exponentially with dimension d in the worst-case but not polynomially in d (see
e.g. [RRT17, XCZG18]). When F is globally strongly convex (or equivalently when the
target distribution p(x) ∝ exp(−F (x)) is strongly log-concave), there is also a growing
interesting literature that establish performance bounds for both overdamped MCMC (see
e.g. [Dal17]) and underdamped MCMC methods (see e.g. [CCBJ18, MS17]). In this par-
ticular setting, the fact that underdamped Langevin MCMC (also known as Hamiltonian
MCMC) can improve upon the best available bounds for overdamped Langevin MCMC
algorithms has also been proven ([CCBJ18, MS17, DRD20, CFM+18]. Similar results have
also been established when F (x) is convex but not strongly convex ([DKRD19]). Compared
to these papers where F (x) is convex, our assumptions are weaker as we allow F (x) to be
non-convex as long as it is dissipative.

A related paper [XCZG18] applies variance reduction techniques to overdamped MCMC
to improve performance when the empirical risk can be non-convex satisfying the same dissi-
pativity assumption considered in our paper. However, these results do not give guarantees
for the risk minimization problem (1.1). Furthermore, such variance reduction techniques
require objectives in the form of a finite sum and do not apply to the streaming data setting
when each data point is used only once. In this work, we obtain guarantees for both the
risk minimization problem and the empirical risk minimization and our results apply to the
streaming data setting. Also, the convergence guarantees provided in [XCZG18] depends
on a spectral gap-related parameter that is not provided explicitly; whereas all our results
are explicit and this allows us to have explicit performance comparisons between the upper
bounds of SGLD and SGHMC algorithms.

We also note that underdamped Langevin MCMC (also known as Hamiltonian MCMC)
and its practical applications have also been analyzed further in a number of recent works
(see e.g. [LV18, BBLG17, Bet17, BBG14, MPS18]). In particular, [MPS18] provide a
characterization of the conductance of Hamiltonian Monte Carlo (HMC) in continuous
time using Liouville’s theorem and invoking the Cheeger’s inequality, they obtain upper
and lower bounds on the spectral gap of HMC in continuous-time. Although the formula
provided in [MPS18] for the conductance of HMC is elegant, it is not an explicit formula.
In our analysis, our focus is to obtain performance bounds with explicit constants and
therefore we build on the coupling techniques of [EGZ19] which leads to explicit constants
for the class of problems we consider.

We also note that [MPS18] consider sampling from the target distribution 1
2N (−1, σ2)+

1
2N (1, σ2) in dimension one and estimate the spectral gap of HMC in the regime as σ → 0
. This is a mixture of two Gaussians with the same variance σ2 centered at −1 and 1
respectively where they argue that for this specific example HMC does not lead to much
improvement over the Random Walk approach for sampling. In our paper, our results
apply to more general targets that are not necessarily mixture of Gaussians. However,
if we consider sampling from the distribution 1

2N (−a, σ2) + 1
2N (a, σ2) as a → ∞ for σ2
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fixed, Proposition 11 is applicable and it implies that HMC will be more efficient than
overdamped Langevin dynamics in terms of dependency to a (which measures the distance
between the modes) in the sense that the mixing time will be O(a) in HMC whereas it
will be O(a2) in Random Walk. This does not contradict results of [MPS18] because we
consider different scaling regimes: We fix σ > 0 and let a→∞ whereas [MPS18] fix a = 1
and let σ → 0.

There are also some connections of our work to existing momentum-based optimiza-
tion algorithms. More specifically, if the term with dB(t) involving the Brownian noise
is removed in the underdamped SDE (1.5)–(1.6), this results in a second-order ODE in
X(t). Momentum-based algorithms for strongly convex objectives such as Polyak’s heavy
ball method as well as Nesterov’s accelerated gradient method can be both viewed as (al-
ternative) discretizations of this ODE (see e.g. [Pol87, SBC14, SDJS18, WRJ16]). It is
known ([SBC14, SDJS18, WRJ16]) that Nesterov’s accelerated gradient method tracks this
second-order ODE (also referred to as the Nesterov’s ODE in the literature), whereas the
first-order non-accelerated methods such as the classical gradient descent are known to
track a first-order ODE in X(t) called the gradient flow dynamics. Furthermore, existing
analysis shows that Nesterov’s ODE converges to its equilibrium faster (in time) than the
first-order gradient flow ODE in terms of upper bounds and this speed-up is also inher-
ited by the discretized dynamics. Roughly speaking, our results can be interpreted as the
analogue of these results in the non-convex optimization setting where we deal with SDEs
instead of ODEs building on the theory of Markov processes and show that SGHMC tracks
the second-order (underdamped) Langevin SDE closely and inherits its favorable conver-
gence guarantees (in terms of upper bounds on the expected suboptimality) compared to
that of overdamped Langevin SDE.

Acceleration of first-order gradient or stochastic gradient methods and their variance-
reduced versions for finding a local stationary point (a point with a gradient less than ε in
norm) are also studied in the literature (see e.g. [CDHS18, Nes83, GL16, JT19, AZH16]). It
has also been shown that under some assumptions momentum-based accelerated methods
can escape saddle points faster (see e.g. [OW19, LCZZ18]). In contrast, in this work, our
focus is obtaining performance guarantees for convergence to global minimizers instead.

2 Preliminaries and Assumptions

In our analysis, we will use the following 2-Wasserstein distance: For any two probability
measures ν1, ν2 on R2d, we define

W2(ν1, ν2) =

(
inf

Y1∼ν1,Y2∼ν2

E
[
‖Y1 − Y2‖2

])1/2

,

where ‖ · ‖ is the usual Euclidean norm, ν1, ν2 are two Borel probability measures on R2d

with finite second moments, and the infimum is taken over all random couples (Y1, Y2)
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taking values in R2d × R2d with marginals Y1 ∼ ν1, Y2 ∼ ν2 (see e.g. [Vil08]). We let
C1(Rd) denote the set of continuously differentiable functions on Rd and L2(πz) denote the
space of square-integrable functions on Rd with respect to the measure πz.

We first state the assumptions used in this paper below in Assumption 1. Note that
we do not assume the component functions f(x, z) to be convex; they can be non-convex.
The first assumption of non-negativity of f can be assumed without loss of generality by
subtracting a constant and shifting the coordinate system as long as f is bounded be-
low. The second assumption of Lipschitz gradients is in general unavoidable for discretized
Langevin algorithms to be convergent (see e.g. [MSH02]), and the third assumption is
known as the dissipativity condition (see e.g. [Hal88]) and is standard in the literature
to ensure the convergence of Langevin diffusions to the stationary distribution (see e.g.
[RRT17, EGZ19, MSH02]). The fourth assumption is regarding the amount of noise present
in the gradient estimates and allows not only constant variance noise but allows the noise
variance to grow with the norm of the iterates (which is the typical situation in mini-batch
methods in stochastic gradient methods, see e.g. [RRT17]). Finally, the fifth assumption is
a mild assumption saying that the initial distribution µ0 for the SGHMC dynamics should
have a reasonable decay rate of the tails to ensure convergence to the stationary distri-
bution. For instance, if the algorithm is started from any arbitrary point (x0, v0) ∈ R2d,
then the Dirac measure µ0(dx, dv) = δ(x0,v0)(dx, dv) would work. If the initial distribution
µ0(dx, dv) is supported on a Euclidean ball with radius being some universal constant, it
would also work. Similar assumptions on the initial distribution µ0 is also necessary to
achieve convergence to a stationary measure in continuous-time underdamped dynamics as
well (see e.g. [HN04]).

Assumption 1. We impose the following assumptions.

(i) The function f is continuously differentiable, takes non-negative real values, and there
exist constants A0, B ≥ 0 so that

|f(0, z)| ≤ A0, ‖∇f(0, z)‖ ≤ B,

for any z ∈ Z.

(ii) For each z ∈ Z, the function f(·, z) is M -smooth:

‖∇f(w, z)−∇f(v, z)‖ ≤M‖w − v‖.

(iii) For each z ∈ Z, the function f(·, z) is (m, b)-dissipative:

〈x,∇f(x, z)〉 ≥ m‖x‖2 − b .

(iv) There exists a constant δ ∈ [0, 1) such that for every z:

E[‖g(x, Uz)−∇Fz(x)‖2] ≤ 2δ(M2‖x‖2 +B2) .
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(v) The probability law µ0 of the initial state (X0, V0) satisfies:∫
R2d

eαV(x,v)µ0(dx, dv) <∞ ,

where V is a Lyapunov function to be used repeatedly for the rest of the paper:

V(x, v) := βFz(x) +
β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2) , (2.1)

and γ is the friction coefficient as in (1.5), λ is a positive constant less than min(1/4,m/(M+
γ2/2)), and α = λ(1− 2λ)/12.

We note that the Lyapunov function V is used in [EGZ19] to study the rate of conver-
gence to equilibrium for underdamped Langevin diffusion, which itself is motivated by e.g.
[MSH02]. It follows from the above assumptions (applying Lemma 25) that there exists a
constant A ∈ (0,∞) so that

x · ∇Fz(x) ≥ m‖x‖2 − b ≥ 2λ(Fz(x) + γ2‖x‖2/4)− 2A/β . (2.2)

This drift condition, which will be used later, guarantees the stability and the existence of
Lyapunov function V for the underdamped Langevin diffusion in (1.5)–(1.6), see [EGZ19].

3 Main Results for SGHMC1 Algorithm

Our first result shows SGHMC1 iterates (Xk, Vk) in (1.8)–(1.9) track the underdamped
Langevin SDE in the sense that the expectation of the empirical risk Fz with respect
to the probability law of (Xk, Vk) conditional on the sample z, denoted by µk,z, and the
stationary distribution πz of the underdamped SDE is small when k is large enough. The
difference in expectations decomposes as a sum of two terms J0(z, ε) and J1(ε) while the
former term quantifies the dependency on the initialization and the dataset z whereas the
latter term is controlled by the discretization error and the amount of noise in the gradients
which depends on the parameter δ. We also note that the parameter µ∗ (see Table 1) in our
bounds governs the speed of convergence to the equilibrium of the underdamped Langevin
diffusion.

Theorem 2. Consider the SGHMC1 iterates (Xk, Vk) defined by the recursion (1.8)–(1.9)
from the initial state (X0, V0) which has the law µ0. If Assumption 1 is satisfied, then for
β, ε > 0, we have

∣∣EFz(Xk)− E(X,V )∼πz(Fz(X))
∣∣ =

∣∣∣∣∫
Rd×Rd

Fz(x)µk,z(dx, dv)−
∫
Rd×Rd

Fz(x)πz(dx, dv)

∣∣∣∣
≤ J0(z, ε) + J1(ε) ,
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where

J0(z, ε) := (Mσ +B) · C
√
Hρ(µ0, πz) · ε, (3.1)

J1(ε) := (Mσ +B) ·

((
C0

µ
3/2
∗

(log(1/ε))3/2δ1/4 +
C1

µ
3/2
∗

ε

)√
log(µ−1

∗ log(ε−1)) +
C2

µ∗

ε2

(log(1/ε))2

)
,

(3.2)

with σ defined by (A.20) provided that

η ≤ min

{(
ε

(log(1/ε))3/2

)4

, 1,
γ

K2
(d/β +A/β),

γλ

2K1
,

2

γλ

}
, (3.3)

and

kη =
1

µ∗
log

(
1

ε

)
≥ e. (3.4)

Here Hρ is a semi-metric for probability distributions defined by (A.12). All the constants
are made explicit and are summarized in Table 1.

The proof of Theorem 2 will be presented in details in Section A in the Appendix. In the
following subsections, we discuss that this theorem combined with some basic properties
of the equilibrium distribution πz leads to a number of results which provide performance
guarantees for both the empirical risk and population risk minimization.

3.1 Performance bound for the empirical risk minimization

In order to obtain guarantees for the empirical risk given in (1.3), in light of Theorem 2,
one has to control the quantity∫

Rd×Rd
Fz(x)πz(dx, dv)− min

x∈Rd
Fz(x) ,

which is a measure of how much the x−marginal of the equilibrium distribution πz con-
centrates around a global minimizer of the empirical risk. As β goes to infinity, it can be
verified that this quantity goes to zero. For finite β, [RRT17] (see Proposition 11) derives
an explicit bound of the form∫

Rd×Rd
Fz(x)πz(dx, dv)− min

x∈Rd
Fz(x) ≤ J2 :=

d

2β
log

(
eM

m

(
bβ

d
+ 1

))
, (3.5)

(which is also provided in the Appendix for the sake of completeness, see Lemma 28). This
combined with Theorem 2 immediately leads to the following performance bound for the
empirical risk minimization. The proof is omitted.
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Corollary 3 (Empirical risk minimization with SGHMC1). Under the setting of Theo-
rem 2, the empirical risk minimization problem admits the performance bounds:

EFz(Xk)− min
x∈Rd

Fz(x) ≤ J0(ε, z) + J1(ε) + J2 ,

provided that conditions (3.3) and (3.4) hold where the terms J0(z, ε), J1(ε) and J2 are
defined by (3.1), (3.2) and (3.5) respectively.

3.2 Performance bound for the population risk minimization

By exploiting the fact that the x−marginal of the invariant distribution for the under-
damped dynamics is the same as it is in the overdamped case, it can be shown that the
generalization error F (Xk) − FZ(Xk) is no worse than that of the available bounds for
SGLD given in [RRT17], and therefore, we have the following corollary. A more detailed
proof will be given in Section A in the Appendix.

Corollary 4 (Population risk minimization with SGHMC1). Under the setting of Theo-
rem 2, the expected population risk of Xk (the iterates in (1.9)) is bounded by

EF (Xk)− F ∗ ≤ J 0(ε) + J1(ε) + J2 + J3(n) ,

with

J 0(ε) := (Mσ +B) · C ·
√
Hρ(µ0) · ε, (3.6)

J3(n) :=
4βcLS
n

(
M2

m
(b+ d/β) +B2

)
, (3.7)

where σ is defined by (A.20), Hρ(µ0) is defined by (A.18), J1(ε) and J2 are defined by
(3.2) and (3.5) respectively and cLS is a constant satisfying

cLS ≤
2m2 + 8M2

m2Mβ
+

1

λ∗

(
6M(d+ β)

m
+ 2

)
,

and λ∗ is the uniform spectral gap for overdamped Langevin dynamics 3:

λ∗ := inf
z∈Zn

inf

{
β−1

∫
Rd ‖∇g‖

2dπz∫
Rd g

2dπz
: g ∈ C1(Rd) ∩ L2(πz), g 6= 0,

∫
Rd
gdπz = 0

}
. (3.8)

3In [RRT17], their formula for λ∗ missed β−1 factor.
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Constants Source

Ccx =

∫
R2d V(x, v)µ0(dx, dv) + (d+A)

λ
1
8(1− 2λ)βγ2

, Ccv =

∫
R2d V(x, v)µ0(dx, dv) + (d+A)

λ
β
4 (1− 2λ)

(A.1), (A.2)

K1 = max

{
32M2

(
1
2 + γ + δ

)
(1− 2λ)βγ2

,
8
(

1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
β(1− 2λ)

}
(A.3)

K2 = B2 (1 + 2γ + 2δ) (A.4)

Cdx =

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)βγ2

, Cdv =

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
β
4 (1− 2λ)

(A.5), (A.6)

σ = max

{√
Ccx,

√
Cdx

}
=
√
Cdx (A.20)

C0 = γ̂ ·
((

M2Cdx +B2
)
β/γ +

√
(M2Cdx +B2)β/γ

)1/2

(A.8)

C1 = γ̂ ·
(
βM2(C2)2/(2γ) +

√
βM2(C2)2/(2γ)

)1/2
(A.9)

C2 =
(

2γ2Cdv + (4 + 2δ)
(
M2Cdx +B2

)
+ 2γβ−1

)1/2
(A.10)

γ̂ =
2
√

2
√
α0

(
5

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)

))1/2

(A.11)

α0 =
α(1− 2λ)βγ2

64 + 32γ2
, α =

λ(1− 2λ)

12
(A.7)

µ∗ =
γ

768
min{λMγ−2,Λ1/2e−ΛMγ−2,Λ1/2e−Λ} (A.13)

C =
(1 + γ)

√
2e1+ Λ

2

min{1, α1}

√
max{1, 4(1 + 2α1 + 2α2

1)(d+A)β−1γ−1µ−1
∗ /min{1, R1}} (A.14)

Λ =
12

5
(1 + 2α1 + 2α2

1)(d+A)Mγ−2λ−1(1− 2λ)−1, α1 = (1 + Λ−1)Mγ−2 (A.15)

ε1 = 4γ−1µ∗/(d+A) (A.16)

R1 = 4 · (6/5)1/2(1 + 2α1 + 2α2
1)1/2(d+A)1/2β−1/2γ−1(λ− 2λ2)−1/2 (A.17)

Hρ(µ0) = R1 +R1ε1 max

{
M +

1

2
βγ2,

3

4
β

}
‖(x, v)‖2L2(µ0)

+R1ε1

(
M +

1

2
βγ2

)
b+ d/β

m
+R1ε1

3

4
d+ 2R1ε1

(
βA0 +

βB2

2M

)
(A.18)

Table 1: Summary of the constants and where they are defined in the text.13



3.3 Generalization error of SGHMC1 in the one pass regime

Since the predictor Xk is random, it is natural to consider the expected generalization error
EF (Xk)− EFZ(Xk) (see e.g. [HRS16]) which admits the decomposition

EFZ(Xk)− EF (Xk) = (EFZ(Xk)− EFZ(Xπ)) + (EFZ(Xπ)− EF (Xπ)) (3.9)

+ (EF (Xπ)− EF (Xk)) ,

where Xπ is the Gibbs output, i.e. its distribution conditional on Z = z is given by πz. If
every sample is used once, i.e. if only one pass is made over the dataset, then the second
term in (3.9) disappears. As a consequence, the generalization error is controlled by the
bound

|EFZ(Xk)− EF (Xk)| ≤ |EFZ(Xk)− EFZ(Xπ)|+ |EF (Xπ)− EF (Xk)| . (3.10)

The following result provides a bound on this quantity. The proof is similar to the proof
of Theorem 2 and its corollaries, and hence omitted.

Theorem 5 (Generalization error of SGHMC1). Under the setting of Theorem 2, we have

|EF (Xk)− EF (Xπ)| ≤ J 0(ε) + J1(ε) ,

|EFZ(Xk)− EFZ(Xπ)| ≤ J 0(ε) + J1(ε),

provided that (3.3) and (3.4) hold where Xπ is the output of the underdamped Langevin
dynamics, i.e. its distribution conditional on Z = z is given by πz and J 0(ε) is defined
by (3.6). Then, it follows from (3.10) that if each data point is used once, the expected
generalization error satisfies

|EFZ(Xk)− EF (Xk)| ≤ 2J 0(ε) + 2J1(ε).

4 Main Results for SGHMC2 Algorithm

Recall the SGHMC2 algorithm (X̂k, V̂k) defined in (1.10)-(1.11), and denote the probability
law of (X̂k, V̂k) conditional on the sample z by µ̂k,z(dx, dv). Similar to our analysis for
SGHMC1, we can derive similar performance guarantees for SGHMC2 in terms of empirical
risk, population risk and the generalization error. The main difference is that the term J1(ε)
is controlled by the accuracy of the discretization and has to be replaced by another term
Ĵ1(ε), as SGHMC2 algorithm is based on an alternative discretization. In particular, the
performance bounds we get for SGHMC2 are tighter than SGHMC1, as will be elaborated
further in the Section 5.
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Theorem 6. Consider the SGHMC2 iterates (X̂k, V̂k) defined by the recursion (1.10)–
(1.11) from the initial state (X0, V0) which has the law µ0. If Assumption 1 is satisfied,
then for β, ε > 0, we have∣∣∣EFz(X̂k)− E(X,V )∼πz(Fz(X))

∣∣∣ =

∣∣∣∣∫
Rd×Rd

Fz(x)µ̂k,z(dx, dv)−
∫
Rd×Rd

Fz(x)πz(dx, dv)

∣∣∣∣
≤ J0(z, ε) + Ĵ1(ε) ,

where J0(z, ε) is defined in (3.1) and

Ĵ1(ε) := (Mσ +B) ·

(
C0√
µ∗

√
log(1/ε)δ1/4 +

Ĉ1√
µ∗
ε

)√
log(µ−1

∗ log(ε−1)), (4.1)

with σ defined by (A.20) provided that

η ≤ min


(

ε√
log(1/ε)

)2

, 1,
γ

K̂2

(d/β +A/β),
γλ

2K̂1

,
2

γλ

 , (4.2)

and

kη =
1

µ∗
log

(
1

ε

)
≥ e. (4.3)

Here Hρ is a semi-metric for probability distributions defined by (A.12). All the constants
are made explicit and are summarized in Table 1 and Table 2.

The proof of Theorem 6 is given in Section B in the Appendix. Relying on Theorem 6,
one can readily derive the following result on the performance bound for the empirical
risk minimization with the SGHMC2 algorithm. The proof follows a similar argument as
discussed in Section 3.1, and is omitted.

Corollary 7 (Empirical risk minimization with SGHMC2). Under the setting of Theo-
rem 6, the empirical risk minimization problem admits the performance bounds:

EFz(X̂k)− min
x∈Rd

Fz(x) ≤ J0(z, ε) + Ĵ1(ε) + J2 ,

provided that conditions (4.2) and (4.3) hold where the terms J0(z, ε), Ĵ1(ε) and J2 are
defined by (3.1), (4.1) and (3.5) respectively.

Next, we present the performance bound for the population risk minimization with
the SGHMC2 algorithm. Similar as in Section 3.2, to control the population risk during
SGHMC2 iterations, one needs to control the difference between the finite sample size
problem (1.2) and the original problem (1.1) in addition to the empirical risk. This leads
to the following result. The details of the proof are given in Section B in the Appendix.
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Constants Source

K̂1 = K1 +Q1
4

1− 2λ
+Q2

8

(1− 2λ)γ2
(B.1)

K̂2 = K2 +Q3 (B.2)

Q1 =
1

2
c0

(
(5M + 4− 2γ + (c0 + γ2)) + (1 + γ)

(
5

2
+ c0(1 + γ)

)
+ 2γ2λ

)
(B.3)

Q2 =
1

2
c0

[(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)(
2(1 + δ)M2

)
+

(
2M2 + γ2λ+

3

2
γ2(1 + γ)

)]
(B.4)

Q3 = c0

(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)
(1 + δ)B2 + c0B

2

+
1

2
γ3β−1c22 + γ2β−1c12 +Mγβ−1c22 (B.5)

c0 = 1 + γ2, c12 =
d

2
, c22 =

d

3
(B.6)

Ĉ1 = γ̂ ·

(
3βM2

2γ

(
Cdv +

(
2(1 + δ)M2Cdx + 2(1 + δ)B2

)
+

2dγβ−1

3

)

+

√
3βM2

2γ

(
Cdv + (2(1 + δ)M2Cdx + 2(1 + δ)B2) +

2dγβ−1

3

))1/2

(B.8)

Table 2: Summary of the constants and where they are defined in the text.
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Corollary 8 (Population risk minimization with SGHMC2). Under the setting of Theo-
rem 6, the expected population risk of X̂k (the iterates in (1.11)) is bounded by

EF (X̂k)− F ∗ ≤ J 0(ε) + Ĵ1(ε) + J2 + J3(n) ,

where J 0(ε), Ĵ1(ε), J2, J3(n) are defined in (3.6), (4.1), (3.5) and (3.7).

Finally, we present a result on the generalization error of the SGHMC2 algorithm in
the one pass regime. The proof follows from Theorem 6 and the discussion for SGHMC1
algorithm in Section 3.3, and hence is omitted.

Theorem 9 (Generalization error of SGHMC2). Under the setting of Theorem 6, we have∣∣∣EF (X̂k)− EF (Xπ)
∣∣∣ ≤ J 0(ε) + Ĵ1(ε) ,∣∣∣EFZ(X̂k)− EFZ(Xπ)
∣∣∣ ≤ J 0(ε) + Ĵ1(ε),

provided that (4.2) and (4.3) hold where Xπ is the output of the underdamped Langevin
dynamics, i.e. its distribution conditional on Z = z is given by πz and J 0(ε) is defined
by (3.6). Then, it follows from (3.10) that if each data point is used once, the expected
generalization error satisfies

|EFZ(X̂k)− EF (X̂k)| ≤ 2J 0(ε) + 2Ĵ1(ε).

5 Performance comparison with respect to SGLD algorithm

In this section, we compare our performance bounds for SGHMC1 and SGHMC2 to SGLD.
We use the notations Õ and Ω̃ to give explicit dependence on the parameters d, β, µ∗ but
it hides factors that depend (at worst polynomially) on other parameters m,M,B, λ, γ, b
and A0. Without loss of generality, we assume here the initial distribution µ0(dx, dv) is
supported on a Euclidean ball with radius being some universal constant for the simplicity
of performance comparison.

Generalization error in the one-pass setting. A consequence of Theorem 5 is that
the generalization error of the SGHMC1 iterates |EFZ(Xk) − EF (Xk)| in the one-pass
setting satisfy

Õ

(
(d+ β)3/2

µ∗β5/4
ε+

(d+ β)3/2

β(µ∗)3/2

(
(log(1/ε))3/2δ1/4 + ε

)√
log(µ−1

∗ log(ε−1)) +
d+ β

β

ε2

µ∗(log(1/ε))2

)
,(5.1)

for k = KSGHMC1 := Ω̃
(

1
µ∗ε4

log7(1/ε)
)

iterations, and similarly, Theorem 9 implies the

generalization error of the SGHMC2 iterates |EFZ(X̂k)− EF (X̂k)| in the one-pass setting
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satisfy

Õ

(
(d+ β)3/2

µ∗β5/4
ε+

(d+ β)3/2

β
√
µ∗

(√
log(1/ε)δ1/4 + ε

)√
log(µ−1

∗ log(ε−1))

)
, (5.2)

for k = KSGHMC2 := Ω̃
(

1
µ∗ε2

log2(1/ε)
)

iterations (see the discussion in Section G in the

Appendix for details). On the other hand, the results of Theorem 1 in [RRT17] imply that
the generalization error for the SGLD algorithm after KSGLD iterations in the one-pass
setting scales as

Õ
(
β(β + d)2

λ∗

(
δ1/4 log(1/ε) + ε

))
for KSGLD = Ω̃

(
β(d+ β)

λ∗ε4
log5(1/ε)

)
. (5.3)

The constants λ∗ (see (3.8)) and µ∗ (see Table 1) are exponentially small in both β and d in
the worst case, but under some extra assumptions the dependency on d can be polynomial
(see e.g. [CCBJ18]) although the exponential dependence to β is unavoidable in the pres-
ence of multiple minima in general (see [BGK05]). One can readily see that KSGHMC2 has
better dependency on ε than KSGHMC1, and infer from (5.1)–(5.2) that the performance
of SGHMC2 is better than SGHMC1. Hence, in the rest of the section, we will only focus
on the comparison between SGHMC2 and SGLD.

We see that the generalization error for SGHMC2 (5.2) is bounded by

Õ

(
(d+ β)3/2

βµ∗

(√
log(1/ε)δ1/4 + ε

)√
log log(1/ε)

)
, (5.4)

as µ∗ is small, and if we ignore the
√

log log(1/ε) factor 4, then, we get

Õ

(
(d+ β)3/2

βµ∗

(√
log(1/ε)δ1/4 + ε

))
for KSGHMC2 = Ω̃

(
1

µ∗ε2
log2(1/ε)

)
, (5.5)

iterations of the SGHMC2 algorithm whereas the corresponding bound for SGLD from
[RRT17, Theorem 1] is

Õ
(
β(β + d)2

λ∗

(
log(1/ε)δ1/4 + ε

))
for KSGLD = Ω̃

(
β(d+ β)

λ∗ε4
log5(1/ε)

)
(5.6)

iterations of the SGLD algorithm. Note that KSGHMC2 and KSGLD do not have the same
dependency to ε up to log factors (the former scales with ε as log2(1/ε)ε−2 and the latter

4We emphasize that the effect of the last term
√

log log(1/ε) appearing in (5.4) is typically negligible

compared to other parameters. For instance even if ε = 2−216

is double-exponentially small, we have√
log log(1/ε) ≤ 4.
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log5(1/ε)ε−4), and this improvement on ε dependency is due to better diffusion approxi-
mation of SGHMC2 (see Lemma 22) compared to SGLD and the exponential integrability
estimate we have in Lemma 17 which improves the estimate in [RRT17] and using the same
argument, one can improve the log5(1/ε)/ε4 term in (5.6) to log3(1/ε)/ε4.

To make the comparison to SGLD simpler, we notice that in both expressions (5.5) and
(5.6), we see a term scaling with δ1/4 due to the gradient noise level δ (δ is fixed in the
one-pass setting), and we fix the error in (5.5) and (5.6) without the δ term to be the same
order, and then compare the number of iterations KSGHMC2 and KSGLD. More precisely,

given ε̂ > 0 and we choose ε > 0 such that (d+β)3/2

βµ∗
ε = ε̂ in (5.5) so that the generalization

error for SGHMC2 is

Õ

ε̂+
(d+ β)3/2

βµ∗

√
log

(
(d+ β)3/2

βµ∗ε̂

)
δ1/4

 for KSGHMC2 = Ω̃

(
(d+ β)3

β2µ3
∗ε̂

2
log2

(
(d+ β)3/2

βµ∗ε̂

))
.

(5.7)
Similarly, the generalization error for SGLD is

Õ
(
ε̂+

β(β + d)2

λ∗
log

(
β(β + d)2

λ∗ε̂

)
δ1/4

)
for KSGLD = Ω̃

(
β5(d+ β)9

λ5
∗ε̂

4
log5

(
β(β + d)2

λ∗ε̂

))
.

(5.8)
When λ∗ and µ∗ are on the same order or µ∗ is larger, since typically β ≥ 1, the term
involving δ in the generalization error for SGHMC2 above is (smaller) better than the
counterpart for SGLD, and this is guaranteed to be achieved in a less number of iterations
ignoring the log factors and universal constants for KSGHMC2 in (5.7) and KSGLD in (5.8).

Comparing λ∗ and µ∗ on arbitrary non-convex functions seems not trivial, however
we give a class of non-convex functions (see Proposition 11 and Example 10) where 1

µ∗
=

Õ
(√

1
λ∗

)
. For this class, we can infer from (5.7) that KSGHMC2 has a dependency 1/µ3

∗ =

Õ(1/λ
3/2
∗ ) which is much smaller in contrast to 1/λ5

∗ for KSGLD in (5.8).

Empirical risk minimization. The empirical risk minimization bound given in Corol-
lary 7 has an additional term J2 compared to the J 0(ε) and Ĵ1(ε) terms appearing in
the one-pass generalization bounds. Note also that J0(z, ε) ≤ J 0(ε). As a consequence,
SGHMC2 algorithm has expected empirical risk

Õ

(
(d+ β)3/2

µ∗β5/4
ε+

(d+ β)3/2

β
√
µ∗

(√
log(1/ε)δ1/4 + ε

)√
log(µ−1

∗ log(ε−1)) + d · log(1 + β)

β

)
,

(5.9)

after KSGHMC2 = Ω̃
(

1
µ∗ε2

log2(1/ε)
)

iterations as opposed to

Õ
(
β(β + d)2

λ∗

(
δ1/4 log(1/ε) + ε

)
+ d · log(1 + β)

β

)
, (5.10)

19



after KSGLD = Ω̃
(
β(d+β)
λ∗ε4

log5(1/ε)
)

iterations required in [RRT17]. Comparing (5.9)

and (5.10), we see that the last terms are the same. If this term is the dominant term,
then the empirical risk upper bounds for SGLD and SGHMC2 will be similar except that

KSGHMC2 can be smaller than KSGLD for instance when 1
µ∗

= Õ
(√

1
λ∗

)
. Otherwise, if the

last term is not the dominant one and can be ignored with respect to other terms, then, the
performance comparison will be similar to the discussion about the generalization bounds
(5.4) and (5.6) discussed above.

We next briefly discuss the comparisons of SGHMC2 and SGLD based on the total
number of stochastic gradient evaluations (gradient complexity), and we compare with
a recent work [XCZG18] which established a faster convergence result and improved the
gradient complexity for SGLD in the mini-batch setting compared with [RRT17]. Here, the
total number of stochastic gradient evaluations of an algorithm is defined as the number
of stochastic gradients calculated per iteration (which is equal to the batch size in the
mini-batch setting) times the total number of iterations. [XCZG18] showed that it suffices
to take

K̂SGLD = Ω̃

(
d7

λ̂5ε̂5

)
(5.11)

stochastic gradient evaluations to converge to an ε̂ neighborhood of an almost ERM where
Ω̃(·) hides some factors in β and λ̂ is the spectral gap of the discrete overdamped Langevin
dynamics, i.e. SGLD with zero gradient noise. This improves upon the result in [RRT17]

which showed that the same task requires Ω̃
(
d17

λ9
∗ε̂

8

)
stochastic gradient evaluations. Our

results show that (see e.g. (5.9)) for SGHMC2, it suffices to have

K̂SGHMC2 = Ω̃

(
d9

µ4
∗ε̂

6

)
(5.12)

stochastic gradient evaluations, ignoring the log factors in the parameters ε̂, µ∗, d and hiding
factors in β that can be made explicit. To see (5.12), we infer from (5.9) that for fixed
precision ε̂ > 0 and dimension d, by ignoring the log factors and β, we can choose ε so
that d3/2ε/µ∗ = ε̂ and choose the gradient noise level δ so that d3/2δ1/4/

√
µ∗ = ε̂. So the

number of SGHMC2 iterations is

KSGHMC2 = Ω̃

(
1

µ∗ε2

)
= Ω̃

(
d3

µ2
∗ε̂

2

)
.

On the other hand, the mini-batch size to achieve gradient noise level δ is given by 1/δ
(see [RRT17]), which is equal to d6/(µ2

∗ε̂
4). Hence, we obtain (5.12) which is the product

of the mini-batch size and number of iterations.
It is hard to compare λ̂ in (5.11) and µ∗ in (5.12) in general since λ̂ is the spectral

gap of the discrete overdamped Langevin dynamics (i.e. SGLD with zero gradient noise)
without a simple closed-form formula. However, when the stepsize is small enough, we

20



expect λ̂ will be similar to λ∗, which is the spectral gap of the continuous-time overdamped
Langevin diffusion. As a consequence, when the stepsize η is small enough (which is the
case for instance, when target accuracy ε̂ is small enough), we will have λ̂ ≈ λ∗ and 1

µ∗
=

O
(√

1
λ∗

)
= O

(√
1
λ̂

)
for the class of non-convex functions we discuss in Proposition 11

and Example 10. For this class of problems, comparing (5.11) and (5.12), we see that
we obtain an improvement in the spectral gap parameter (µ4

∗ vs. λ̂5), however ε̂ and d
dependency of the bound (5.11) is better than (5.12).

Population risk minimization. If samples are recycled and multiple passes over the
dataset is made, then one can see from Corollary 4 that there is an extra term J3 that
needs to be added to the bounds given in (5.9) and (5.10). This term satisfies

J3 = Õ
(

(β + d)2

λ∗n

)
.

If this term is dominant compared to other terms J 0,J1 and J2, for instance this may
happen if the number of samples n is not large enough, then the performance guarantees
for population risk minimization via SGLD and SGHMC2 will be similar. Otherwise, if
n is large and β is chosen in a way to keep the J2 term on the order J0, then similar
improvement can be achieved.

Comparison of λ∗ and µ∗. The parameters λ∗ (see (3.8)) and µ∗ (see Table 1) govern the
convergence rate to the equilibrium of the overdamped and underdamped Langevin SDE,
they can be both exponentially small in dimension d and in β. They appear naturally in the
complexity estimates of SGHMC2 and SGLD method as these algorithms can be viewed
as discretizations of Langevin SDEs (when the discretization step is small and the gradient
noise δ = 0, the discrete dynamics will behave similarly as the continuous dynamics). Next,
to get further intuition, first we discuss some toy examples of non-convex functions below

where 1
µ∗

= O
(√

1
λ∗

)
. For these examples if the other parameters (β, d, δ) are fixed, then

SGHMC2 can lead to an improvement upon the SGLD performance. We will then show
in Proposition 11 that these examples generalize to a more general class of non-convex
functions.

Example 10. Consider the following symmetric double-well potential in Rd studied previ-
ously in the context of Langevin diffusions ([EGZ19]):

fa(x) = U(x/a) with U(x) :=

{
1
2(‖x‖ − 1)2 for ‖x‖ ≥ 1

2 ,
1
4 −

‖x‖2
2 for ‖x‖ ≤ 1

2 ,

where a > 0 is a scaling parameter which is illustrated in the left panel of Figure 1. For
this example, there are two minima that are apart at a distance R = O(a). For simplicity,
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Figure 1: The illustration of the functions fa(x) (left) and f̃a(x) (right) for a = 4.

we assume there is only one sample, i.e. z = (z1) and Fz(x) = f(x, z1) = fa(x). We
consider the non-convex optimization problem (1.2) with both the SGHMC2 algorithm and
the SGLD algorithm. [EGZ19] showed that µ∗ ≥ Θ( 1

a) for this example whereas λ∗ ≤ Θ( 1
a2 )

making the constants hidden by the Θ explicit. This shows that the contraction rate of the
underdamped diffusion µ∗ is (faster) larger than that of the overdamped diffusion λ∗ by
a square root factor when a is large where all the constants can be made explicit. Such
results extend to a more general class of non-convex functions with multiple-wells and
higher dimensions as long as the gradient of the objective satisfies a growth condition (see
Example 1.1, Example 1.13 in [EGZ19] for a further discussion).

For computing an ε-approximate global minimizer of fa = f(x, z1) (or more gener-
ally for a non-convex problem satisfying Assumption 1), β is chosen large enough so that
the stationary measure concentrates around the global minimizer. Using the tight char-
acterization of λ∗ from Theorem 1.2 in [BGK05] for β large, further comparisons with
similar conclusions between the rate of convergence to the equilibrium distribution between
the underdamped and overdamped dynamics can also be made. For example, consider the
non-convex objective Fz(x) = f̃a(x) = Ũ(x/a) instead, illustrated in the right panel of
Figure 1 for a = 4 where

Ũ(x) =


1
2(x− 1)2 for x ≥ 1

2 ,
1
4 −

x2

2 for − 1
8 ≤ x ≤

1
2 ,

1
2(x+ 1

4)2 + 15
64 for x ≤ −1

8 ,

is the asymmetric double well potential in dimension one. It follows from Theorem 19 (see
also [EGZ19]) that the contraction rate satisfies µ∗ = Θ

(
a−1
)
, whereas it follows from

Theorem 1.2 in [BGK05] that λ∗ = Θ(1/a2). This shows that when the separation between
minima, or alternatively the scaling factor a is large enough, µ∗ is larger than λ∗ by a
square root factor up to constants.
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The behavior in these toy examples can be generalized to more general non-convex
objectives with a finite-sum structure satisfying Assumption 1. Proposition 11 below gives
a class of functions where µ∗ is on the order of the square root of λ∗. The proof will be
presented in details in Section F.

Proposition 11. Suppose that the functions fa(x, z) indexed by a satisfies Assumption 1
(i)-(iii) with m = m1a

−2, M = M1a
−2 and B = B1a

−1 for some fixed constants m1, M1,
and B1. Then, we have as a→∞,

λ∗ = O(a−2), µ∗ = Θ(a−1). (5.13)

This result is more general than the previous example. In particular, if f(x, z) satisfies
Assumption 1 (i)-(iii) with m,M,B replaced by m1,M1, B1, then fa(x, z) := f(x/a, z) sat-
isfies Assumption 1 (i)-(iii) with m = m1a

−2, M = M1a
−2 and B = B1a

−1. Proposition 11
essentially says that if we consider the normalized empirical risk objective Fz(x/a) =
1
n

∑n
i=1 f(x/a, zi) where a is a (normalization) scaling parameter and f(x, z) satisfies As-

sumption 1, then for large enough values of a, the empirical risk surface will be relatively
flat and the convergence rate of momentum variant SGHMC2 to an ε-neighborhood of the
global minimum will be governed by the parameter µ∗ which will be larger than that of the
parameter λ∗ of SGLD when a is sufficiently large. This will lead to improved performance
bounds for SGHMC2 compared to known performance bounds for SGLD.

6 Applications

We note that several non-convex stochastic optimization problems of interest can sat-
isfy Assumption 1 under appropriate noise assumptions for the underlying dataset. For
example, Lasso problems with non-convex regularizers (see e.g. [HLM+17]), non-convex
formulations of the phase retrieval problem around global minimum (see e.g. [ZZLC17]) or
non-convex stochastic optimization problems defined on a compact set including but not
limited to dictionary learning over the sphere (see e.g. [SQW16]), training deep learning
models subject to norm constraints in the model parameters (see e.g. [ALG19]). In this
section, we discuss some applications of our results where we provide two specific examples.

6.1 Binary linear classification

In linear binary classification, the aim is to learn a predictive model of the form P(Y =
1|Ain = a) = σc(〈x̃, a〉), where x̃ ∈ Rd is a parameter vector to be learned, Ain is the input
variable (feature vector), Y is the binary output and σc : R → [0, 1] is a threshold func-
tion. Binary classification arises in many data-driven applications in operations research
from diagnosing patients in healthcare [WL07] to predicting directions in the stock market
[JWHT13].
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A number of empirical studies have demonstrated that non-convex choices of the σc
function can often lead to superior classification accuracy and robustness properties com-
pared to convex choices of σc such as the hinge loss [CDT+09, CSWB06, WL07, NS13].
Given access to a dataset of input-output pairs zi = (ai, yi), a standard way of estimating
x̃ is based on minimizing the regularized squared loss over the dataset, i.e.

min
x∈Rd

1

n

n∑
i=1

(yi − σc(〈x, ai〉))2 +
λr
2
‖x‖2, (6.1)

where λr > 0 is a regularization parameter that may depend on the number of samples n.
By Lagrangian duality, this problem is equivalent to the constrained optimization problem

min
x∈Rd

1

n

n∑
i=1

(yi − σc(〈x, ai〉))2 subject to ‖x‖ ≤ R,

for some R, which has also been considered in the literature (see e.g. [MBM18, FSS18,
WCX19]). For non-convex σc(·), this problem is also non-convex in general. We consider
minimizing the objective (6.1) in the mini-batch setting where the gradients in SGHMC
iterations are estimated from nb data points sampled with replacement, i.e. the gradient
is estimated as

g(x, Uz) =
1

nb

nb∑
j=1

∇f(x, zj) , (6.2)

where zj are i.i.d. with a uniform distribution over the set of indices {1, 2, . . . , n}. We
also consider the following assumption for the threshold function σc which are satisfied by
many choices of σc in practice. A prominent example is the logistic (or sigmoid) function
in which case σc(z) = 1/(1 + e−z) which is also used in deep learning. Another possible
choice is the probit function which corresponds to σc(t) = Φ(t) where Φ is the cumulative
distribution function of the standard normal distribution.

Assumption 12. The threshold function σc is twice continuously differentiable on R. It is
bounded and has bounded first and second derivatives, i.e. there exists a constant Lσc > 0
such that max

{
‖σc‖∞, ‖σ′c‖∞, ‖σ′′c ‖∞

}
≤ Lσc . The distribution of the input data Ain has

compact support, i.e. ‖Ain‖ ≤ D for some D > 0.

We show in the next lemma that if Assumption 12 holds, then Assumption 1 holds
with explicit constants A0, B,M,m, b and σc that we can precise. The proof can be found
in the Appendix.

Lemma 13. In the setting of binary linear classification, consider the SGHMC method
applied to the objective (6.1) where gradients are estimated according to (6.2) where the
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probability law µ0 of the initial state has compact support. If Assumption 12 holds; then
Assumption 1 hold for any δ ∈ [ 1

4nb
, 1) with the following constants:

A0 = (1 + ‖σc(0)‖)2, B = 2D (1 + ‖σc‖∞) ‖σ′c‖∞, (6.3)

M = 2D2‖σ′c‖2∞ + 2D2(1 + ‖σc‖∞)‖σ′′c ‖∞ + 5λr, (6.4)

m = λ/2, b = 8(1 + ‖σc‖∞)2‖σ′c‖2∞D2/λr. (6.5)

We conclude from Lemma 13 that the objective is dissipative and our main results for
SGHMC1 and SGHMC2 algorithms described in Sections 3–5 apply to binary linear classi-
fication under Assumption 12 with the constants given in Lemma 13 and where µ∗ is given
by the formula in Table 1. For example, if D = O(1), then we have 1

µ∗
= Θ̃(

√
d+ βeΘ̃(d+β))

(see (G.1)) and we conclude from (5.12) that it suffices to have

K̂SGHMC2 = Ω̃

(
d9

µ4
∗ε̂

6

)
= Ω̃

(
d9eΘ̃(d+β)

(d2 + β2)ε̂6

)

stochastic gradient evaluations to converge to an ε̂ neighborhood of an almost ERM ignor-
ing the log factors in the parameters ε̂, µ∗, d and hiding other constants that can be made
explicit based on Lemma 13.5

6.2 Robust Ridge Regression

Given an input (feature) vector Ain ∈ Rd, the aim is to predict the output Y ∈ R. Given
access to a dataset of input-output pairs zi = (ai, yi), we assume a linear model yi = aTi x̃+εi
where the errors εi are i.i.d. with mean zero. The standard ridge regression estimate of x̃
minimizes a penalized residual sum of squares [HK70], i.e. minimizes

∑n
i=1 ‖yi−〈x, ai〉‖2 +

λr‖x‖2 where λr > 0 is a regularization parameter.6 However, this formulation can be
sensitive to outliers. Robust formulations of the ridge regression [ROK12] can be obtained
if one solves instead the following problem

min
x∈Rd

1

n

n∑
i=1

f(x, zi), f(x, zi) = ρ (yi − 〈x, ai〉) +
λr
2
‖x‖2, (6.6)

where λr > 0 is a regularization parameter and ρ : R→ R is a suitably chosen loss function.
In particular, for achieving robustness to outliers, the non-convex choices of the function ρ
that are either bounded or slowly growing near infinity has been considered in the literature

5We also note that under further assumptions on the statistical nature of the input and if the number
of data points is large enough, it can be shown that the objective (6.1) admits a unique minimizer and the
objective is strongly convex in some regions [MBM18]. However, our assumptions here are weaker, therefore
such arguments are not directly applicable.

6See [KO01] for details regarding the choice of the parameter λr.
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(as opposed to the standard ridge regression setting which corresponds to ρ(t) = ‖t‖2). For
example, popular choices of the function t 7→ ρ(t) include Tukey’s bisquare loss defined as

ρTukey(t) =

{
1− (1− (t/t0)2)3 for ‖t‖ ≤ t0,
1 for |t| ≥ t0,

(see e.g. [MBM18]) and exponential squared loss [WJHZ13]: ρexp(t) = 1− e−‖t‖2/t0 , where
t0 > 0 is a tuning parameter. In the following, similar to [WCX19], we assume that the
data Ain is bounded and the threshold function and its derivatives up to order two are
bounded, similar to [MBM18]. This assumption for ρ is satisfied in several cases, including
Tukey’s bisquare loss and exponential squares loss mentioned above.

Assumption 14. The function ρ is twice continuously differentiable on R. The function
ρ is bounded and has bounded first and second derivatives; i.e. there exists a constant Lρ
such that max(‖ρ‖∞, ‖ρ′‖∞, ‖ρ′′‖∞) ≤ Lρ. Furthermore, the distribution of the input data
Ain has compact support, i.e. there exists D such that ‖Ain‖ ≤ D.

The following lemma shows that under Assumption 14, our assumptions (Assumption
1) for analyzing SGHMC methods hold with proper initialization.

Lemma 15. In the setting of robust regression, consider the objective (6.1) where gradients
are estimated according to (6.2) where the probability law µ0 of the initial state has compact
support. If Assumption 12 holds; then Assumption 1 hold for both SGHMC1 and SGHMC2
methods for any choice of δ ∈ [ 1

4nb
, 1) with the following constants:

A0 = ‖ρ‖∞, B = 4‖ρ′‖∞D, (6.7)

M = ‖ρ′′‖∞D2 + λr, m = λr/2, b =
2‖ρ′‖2∞D2

λr
. (6.8)

Similarly, we conclude from Lemma 15 that our main results for SGHMC1 and SGHMC2
algorithms described in Sections 3–5 apply to the problem of robust regression under As-
sumption 14.

7 Outline of the Proof

To obtain the main results in this paper, we adapt the proof techniques of [RRT17]
developed for the overdamped dynamics to the underdamped dynamics and combine it
with the analysis of [EGZ19] which quantifies the convergence rate of the underdamped
Langevin SDE to its equilibrium. In an analogy to the fact that momentum-based first-
order optimization methods require a different Lyapunov function and a quite different set
of analysis tools (compared to their non-accelerated variants) to achieve fast rates (see e.g.
[LFM18, SBC14, Nes83]), our analysis of the momentum-based SGHMC1 and SGHMC2
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algorithms requires studying a different Lyapunov function V defined in (2.1) that also de-
pends on the objective f as opposed to the classic Lyapunov function H(x) = ‖x‖2 arising
in the study of the SGLD algorithm (see e.g. [MSH02, RRT17]). This fact introduces some
challenges for the adaptation of the existing analysis techniques for SGLD to SGHMC. For
this purpose, we take the following steps:

First, we show that SGHMC1 and SGHMC2 iterates track the underdamped Langevin
diffusion closely in the 2-Wasserstein metric. As this metric requires finiteness of sec-
ond moments, we first establish uniform (in time) L2 bounds for both the underdamped
Langevin SDE and SGHMC1 and SGHMC2 iterates (see Lemma 16 and Lemma 21 in Ap-
pendix), exploiting the structure of the Lyapunov function V. Second, we obtain a bound
for the Kullback-Leibler divergence between the discrete and continuous underdamped dy-
namics making use of the Girsanov theorem, which is then converted to bounds in the
2-Wasserstein metric by an application of an optimal transportation inequality of [BV05].
This step requires proving a certain exponential integrability property of the underdamped
Langevin diffusion (Lemma 17 in Appendix). We show in Lemma 17 that the exponential
moments grow at most linearly in time, which strictly improves the exponential growth in
time in Lemma 4 in [RRT17]. 7 As a result, the method improves upon the ε dependence
of the number of iterates (see equations (5.5) and (5.6)).

Second, we apply the seminal result of [EGZ19] which showed that the continuous-time
underdamped Langevin SDE is geometrically ergodic with an explicit rate µ∗ in the 2-
Wasserstein metric. In order to get explicit performance guarantees, we derive new bounds
that make the dependence of the constants to the initialization in [EGZ19] explicit (see
Lemma 20 in Appendix).

As the x-marginal of the equilibrium distribution πz(dx, dv) of the underdamped Langevin
SDE concentrates around the global minimizers of Fz for β appropriately chosen, and we
can control the error between the discrete-time SGHMC1 and SGHMC2 dynamics and the
underdamped SDE by choosing the step size accordingly; this leads to performance bounds
for the empirical risk minimizations for SGHMC1 and SGHMC2 algorithms in Corollary 3
and Corollary 7. For controlling the population risk during SGHMC iterations, in addition
to the empirical risk, one has to control the generalization error F (Xk) − FZ(Xk) that
accounts for the differences between the finite sample size problem (1.2) and the original
problem (1.1). By exploiting the fact that the x−marginal of the invariant distribution
for the underdamped dynamics is the same as it is in the overdamped case, we control
the generalization error in Corollary 4 and Corollary 8 which is no worse than that of the
available bounds for SGLD given in [RRT17].

7The method that is used in the proof of Lemma 17 in Appendix can indeed be adapted to improve the
exponential integrability and hence the overall estimates in [RRT17] for SGLD as well.
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8 Conclusion

SGHMC is a momentum-based popular variant of stochastic gradient where a controlled
amount of isotropic Gaussian noise is added to the gradient estimates for optimizing a
non-convex function. We obtained first-time finite-time guarantees for the convergence
of SGHMC1 and SGHMC2 algorithms to the ε-global minimizers under some regularity
assumption on the non-convex objective f . We also show that on a class of non-convex
problems, SGHMC2 can be faster than overdamped Langevin MCMC approaches such
as SGLD in the sense that the best available bounds for SGHMC2, which we prove in
our paper, are better than the best available bounds for SGLD. This effect is due to the
momentum term in the underdamped SDE. Furthermore, our results show that momentum-
based acceleration is possible on a class of non-convex problems under some conditions if
we compare known upper bounds between SGLD and SGHMC. Finally, we mention a few
limitations in our work that may lead to some future research directions. In our paper,
the performance dependence on dimension is exponential in general. In the future, we will
investigate for what class of (non-convex) target functions f we can obtain performance
bound independent of dimension d or has polynomial dependence on d. In addition, our
results suggest that momentum-based SGHMC methods will work particularly well when
the (non-convex) target functions have relatively flat landscapes. In the future, we will
investigate whether we can obtain theoretical results for SGHMC on a wider class of non-
convex problems.
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A Proof of Theorem 2 and Corollary 4

We first present several technical lemmas that will be used in our analysis and review
existing results for the underdamped Langevin SDE. The proof of these lemmas will be
deferred to Section C.

Our analysis for analyzing the convergence speed of the SGHMC1 algorithm and its
comparison to the underdamped Langevin SDE is based on the 2-Wasserstein distance and
this requires the L2 norm of the iterates to be finite. In the next lemma, we show that
L2 norm of the both discrete and continuous dynamics are uniformly bounded over time
with explicit constants. The main idea is to make use of the properties of the Lyapunov
function V which is designed originally for the continuous-time process and show that the
discrete dynamics can also be controlled by it.

Lemma 16 (Uniform L2 bounds). (i) It holds that

sup
t≥0

Ez‖X(t)‖2 ≤ Ccx :=

∫
R2d V(x, v)dµ0(x, v) + d+A

λ
1
8(1− 2λ)βγ2

<∞, (A.1)

sup
t≥0

Ez‖V (t)‖2 ≤ Ccv :=

∫
R2d V(x, v)dµ0(x, v) + d+A

λ
β
4 (1− 2λ)

<∞. (A.2)

(ii) For 0 < η ≤ min
{

γ
K2

(d/β +A/β), γλ
2K1

, 2
γλ

}
, where

K1 := max

{
32M2

(
1
2 + γ + δ

)
(1− 2λ)βγ2

,
8
(

1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
β(1− 2λ)

}
, (A.3)

K2 := 2B2

(
1

2
+ γ + δ

)
, (A.4)

we have

sup
j≥0

Ez‖Xj‖2 ≤ Cdx :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8(1− 2λ)βγ2

<∞, (A.5)

sup
j≥0

Ez‖Vj‖2 ≤ Cdv :=

∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
β
4 (1− 2λ)

<∞. (A.6)

Since SGHMC1 is a discretization of the underdamped SDE (except that noise is also
added to the gradients), we expect SGHMC1 to follow the underdamped SDE dynamics. It
is natural to seek for bounds between the probability law µz,k of the SGHMC1 algorithm at
step k with time step η and that of the underdamped SDE at time t = kη which we denote
by νz,kη. In our analysis, we first control the Kullback-Leibler (KL) divergence between
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these two, and then convert these bounds into bounds in terms of the 2-Wasserstein met-
ric, applying an optimal transportation inequality by [BV05]. Note that Bolley and Villani
theorem has also been successfully applied to analyzing the SGLD dynamics in [RRT17].
However, the analysis in [RRT17] does not directly apply to our setting as underdamped
dynamics require a different Lyapunov function. This step requires an exponential integra-
bility property of the underdamped SDE process which we establish next, before stating
our result in Lemma 18 about the diffusion approximation of the SGHMC1 iterates.

Lemma 17 (Exponential integrability). For every t,

Ez

[
eα0‖(X(t),V (t))‖2

]
≤
∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)t,

where

α0 :=
α

64
(1−2λ)βγ2 + 32

β(1−2λ)

, α :=
λ(1− 2λ)

12
. (A.7)

We showed in the above Lemma 17 that the exponential moments grow at most linearly
in time t, which is a strict improvement from the exponential growth in time t in [RRT17].
As a result, in the following Lemma 18 for the diffusion approximation, our upper bound is
of the order (kη)3/2

√
log(kη)(δ1/4 + η1/4) + kη

√
η compared to kη(δ1/4 + η1/4) in [RRT17].

The method that is used in the proof of Lemma 17 for the underdamped dynamics can
indeed be adapted to the case of the overdamped dynamics to improve the results in
[RRT17].

Lemma 18 (Diffusion approximation). For any k ∈ N and any η ≤ 1, so that kη ≥ e and
η satisfies the condition in Part (ii) of Lemma 16. Then, we have

W2(µz,k, νz,kη) ≤ (C0δ
1/4 + C1η

1/4) · (kη)3/2 ·
√

log(kη) + C2(kη)
√
η,

where C0, C1 and C2 are given by:

C0 = γ̂ ·

((
M2Cdx +B2

) β
γ

+

√
(M2Cdx +B2)

β

γ

)1/2

, (A.8)

C1 = γ̂ ·

((
M2βη

γ
+
βηγ

2

)
(C2)2 +

√(
M2βη

γ
+
βηγ

2

)
(C2)2

)1/2

, (A.9)

C2 =
(

2γ2Cdv + (4 + 2δ)
(
M2Cdx +B2

)
+ 2γβ−1

)1/2
, (A.10)

γ̂ =
2
√

2
√
α0

(
5

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)

))1/2

. (A.11)
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A.1 Convergence rate to the equilibrium of the underdamped SDE

We consider the underdamped SDE and bound the 2-Wasserstein distance W2(νz,t, πz) to
the equilibrium for a fix arbitrary time t ≥ 0. Crucial to the analysis is [EGZ19], which
quantifies the convergence to equilibrium for underdamped Langevin diffusions. We first
review the results from [EGZ19]. Let us recall from (2.1) the definition of the Lyapunov
function V(x, v):

V(x, v) = βFz(x) +
β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2).

For any (x, v), (x′, v′) ∈ R2d, we set:

r((x, v), (x′, v′)) = α1‖x− x′‖+ ‖x− x′ + γ−1(v − v′)‖,
ρ((x, v), (x′, v′)) = h(r((x, v), (x′, v′))) · (1 + ε1V(x, v) + ε1V(x′, v′)),

where α1, ε1 > 0 are appropriately chosen constants, and h : [0,∞)→ [0,∞) is continuous,
non-decreasing concave function such that h(0) = 0, h is C2 on (0, R1) for some constant
R1 > 0 with right-sided derivative h′+(0) = 1 and left-sided derivative h′−(R1) > 0 and h
is constant on [R1,∞). For any two probability measures µ, ν on R2d, we define

Hρ(µ, ν) := inf
(X,V )∼µ,(X′,V ′)∼ν

E[ρ((X,V ), (X ′, V ′))]. (A.12)

Note that Hρ is a semi-metric, but not necessarily a metric. A simplified version of the
main result from [EGZ19] which will be used in our setting is given below.

Theorem 19 (Theorem 2.3. and Corollary 2.6. in [EGZ19]). There exist constants α1, ε1 ∈
(0,∞) and a continuous non-decreasing function h : [0,∞) → [0,∞) with h(0) = 0 such
that we have

W2(νz,kη, πz) ≤ C
√
Hρ(µ0, πz)e−µ∗kη ,

where

µ∗ =
γ

768
min{λMγ−2,Λ1/2e−ΛMγ−2,Λ1/2e−Λ}, (A.13)

C =
√

2e1+ Λ
2

1 + γ

min{1, α1}

√
max{1, 4(1 + 2α1 + 2α2

1)(d+A)β−1γ−1µ−1
∗ /min{1, R1}},

(A.14)

Λ =
12

5
(1 + 2α1 + 2α2

1)(d+A)Mγ−2λ−1(1− 2λ)−1, α1 = (1 + Λ−1)Mγ−2, (A.15)

ε1 = 4γ−1µ∗/(d+A), (A.16)

R1 = 4 · (6/5)1/2(1 + 2α1 + 2α2
1)1/2(d+A)1/2β−1/2γ−1(λ− 2λ2)−1/2. (A.17)
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We remark that the definitions of Λ, α1 in (A.15) are coupled and there exists α1 ∈
(0,∞) so that Λ, α1 in (A.15) are well defined; see Theorem 2.3. in [EGZ19]. In order to
get explicit performance bounds, we also derive an upper bound for Hρ(µ0, πz) in the next
lemma. It is based on the (integrability properties) structure of the stationary distribution
πz and the Lyapunov function V that controls the L2 norm of the initial distribution µ0.

Lemma 20 (Bounding initialization error). If parts (i), (ii), (iii) and (iv) of Assumption 1
hold, then we have

Hρ(µ0, πz) ≤ Hρ(µ0) := R1 +R1ε1 max

{
M +

1

2
βγ2,

3

4
β

}
‖(x, v)‖2L2(µ0)

+R1ε1

(
M +

1

2
βγ2

)
b+ d/β

m
+R1ε1

3

4
d+ 2R1ε1

(
βA0 +

βB2

2M

)
, (A.18)

where ‖(x, v)‖2L2(µ0) :=
∫
R2d ‖(x, v)‖2µ0(dx, dv).

A.2 Proof of Theorem 2

As the function Fz satisfies the conditions in Lemma 26 in Section E with c1 = M and
c2 = B (Lemma 25 in Section E), and the probability measures µk,z, πz have finite second
moments (Lemma 16), we can apply Lemma 26 and deduce that∣∣∣∣∫

Rd×Rd
Fz(x)µk,z(dx, dv)−

∫
Rd×Rd

Fz(x)πz(dx, dv)

∣∣∣∣ ≤ (Mσ +B) · W2(µz,k, πz). (A.19)

Here, one can obtain from Lemma 16 and Theorem 19 (convergence in 2-Wasserstein
distance implies convergence of second moments) that

σ2 = max
{
Ccx, C

d
x

}
= Cdx. (A.20)

Now, by Lemma 18 and Theorem 19, we have

W2(µz,k, πz) ≤ W2(µz,k, νz,kη) +W2(νz,kη, πz)

≤ (C0δ
1/4 + C1η

1/4) · (kη)3/2 ·
√

log(kη) + C2(kη)
√
η + C

√
Hρ(µ0, πz)e−µ∗kη.

It then follows from (A.19) that∣∣∣∣∫
Rd×Rd

Fz(x)µk,z(dx, dv)−
∫
Rd×Rd

Fz(x)πz(dx, dv)

∣∣∣∣
≤ (Mσ +B) ·

(
C
√
Hρ(µ0, πz)e−µ∗kη + (C0δ

1/4 + C1η
1/4) · (kη)3/2 ·

√
log(kη) + C2(kη)

√
η

)
.
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Let kη ≥ e, and

kη =
1

µ∗
log

(
1

ε

)
.

Then for any η satisfying the condition in Lemma 16 and η ≤
(

ε
(log(1/ε))3/2

)4
, we have∣∣∣∣∫

Rd×Rd
Fz(x)µk,z(dx, dv)−

∫
Rd×Rd

Fz(x)πz(dx, dv)

∣∣∣∣
≤ (Mσ +B) ·

(
C
√
Hρ(µ0, πz)ε+

(
C0

µ
3/2
∗

(log(1/ε))3/2δ1/4 +
C1

µ
3/2
∗

ε

)√
log(µ−1

∗ log(ε−1))

+
C2

µ∗

ε2

(log(1/ε))2

)
.

The proof is therefore complete.

A.3 Proof of Corollary 4

With a slight abuse of notations, consider the random elements (X̂, V̂ ) and (X̂∗, V̂ ∗) with
Law((X̂, V̂ )|Z = z) = µz,k and Law((X̂∗, V̂ ∗)|Z = z) = πz. Then we can decompose the

expected population risk of X̂ (which has the same distribution as Xk) as follows:

EF (X̂)−F ∗ =
(
EF (X̂)− EF (X̂∗)

)
+
(
EF (X̂∗)− EFZ(X̂∗)

)
+
(
EFZ(X̂∗)− F ∗

)
. (A.21)

The first term in (A.21) can be written as:

EF (X̂)− EF (X̂∗) =

∫
Zn
Pn(dz)

(∫
R2d

Fz(x)µk,z(dx, dv)−
∫
R2d

Fz(x)πz(dx, dv)

)
,

where Pn is the product measure of independent random variables Z1, . . . , Zn. Then it
follows from Theorem 2 and Lemma 20 that

EF (X̂)− EF (X̂∗) ≤ J 0(ε) + J1(ε).

Next, we bound the second and third terms in (A.21). Note that∫
R2d

Fz(x)πz(dx, dv) =

∫
Rd
Fz(x)πz(dx),

where πz(dx) = Λze
−βFz(x)dx and Λz =

∫
Rd e

−βFz(x)dx. The distribution πz(dx), i.e., the
x−marginal of πz(dx, dv), is the same as the stationary distribution of the overdamped
Langevin SDE in (1.4). Therefore the second term and the third term in (A.21) can be
bounded the same as in [RRT17] for the overdamped dynamics.
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Specifically, the second term in (A.21) can be bounded as

EF (X̂∗)− EFZ(X̂∗) ≤ 4βcLS
n

(
M2

m
(b+ d/β) +B2

)
= J3(n),

by applying Lemma 27, and the last term in (A.21) can be bounded as

EFZ(X̂∗)− F ∗ = E
[
FZ(X̂∗)− min

x∈Rd
FZ(x)

]
+ E

[
min
x∈Rd

FZ(x)− FZ(x∗)

]
≤ E

[
FZ(X̂∗)− min

x∈Rd
FZ(x)

]
≤ J2,

where x∗ is any minimizer of F (x), i.e., F (x∗) = F ∗, and the last step is due to Lemma 28.
The proof is complete.

B Proof of Theorem 6 and Corollary 8

The proof of Theorem 6 (Corollary 8) is similar to the proof of Theorem 2 (Corollary 4).
There are two key new results that we need to establish: a uniform (in time) L2 bound for
the SGHMC2 iterates (X̂k, V̂k), and the diffusion approximation that characterizes the 2-
Wasserstein distance between the SGHMC2 iterates and the continuous-time underdampled
Langevin diffusion. We summarize these two results in the following two lemmas and defer
their proofs to Section D. With these two lemmas, Theorem 6 and Corollary 8 readily
follow and we omit the proof details.

Lemma 21 (Uniform L2 bounds for SGHMC2 iterates).

For 0 < η ≤ min
{

1, γ

K̂2
(d/β +A/β), γλ

2K̂1
, 2
γλ

}
, where

K̂1 := K1 +Q1
4

1− 2λ
+Q2

8

(1− 2λ)γ2
, (B.1)

K̂2 := K2 +Q3, (B.2)
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where K1, K2 are defined in (A.3) and (A.4), and

Q1 :=
1

2
c0

(
(5M + 4− 2γ + (c0 + γ2)) + (1 + γ)

(
5

2
+ c0(1 + γ)

)
+ 2γ2λ

)
, (B.3)

Q2 :=
1

2
c0

[(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)(
2(1 + δ)M2

)
+

(
2M2 + γ2λ+

3

2
γ2(1 + γ)

)]
, (B.4)

Q3 := c0

(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)
(1 + δ)B2 + c0B

2

+
1

2
γ3β−1c22 + γ2β−1c12 +Mγβ−1c22, (B.5)

where

c0 := 1 + γ2, c12 :=
d

2
, c22 :=

d

3
, (B.6)

we have
sup
j≥0

Ez‖X̂j‖2 ≤ Cdx, sup
j≥0

Ez‖V̂j‖2 ≤ Cdv , (B.7)

where Cdx and Cdv are defined in (A.5) and (A.6).

Next, let us provide a diffusion approximation between the SGHMC2 algorithm (X̂k, V̂k)
and the continuous time underdamped diffusion process (X(kη), V (kη)), and we use µ̂z,k
to denote the law of (X̂k, V̂k) and νz,k to denote the law of (X(kη), V (kη)).

Lemma 22 (Diffusion approximation). For any k ∈ N and any η, so that kη ≥ e and η
satisfies the condition in Lemma 21, we have

W2(µ̂z,k, νz,kη) ≤ (C0δ
1/4 + Ĉ1η

1/2) ·
√
kη ·

√
log(kη),

where C0 is defined in (A.8) and Ĉ1 is given by:

Ĉ1 := γ̂ ·

(
3βM2

2γ

(
Cdv +

(
2(1 + δ)M2Cdx + 2(1 + δ)B2

)
+

2dγβ−1

3

)

+

√
3βM2

2γ

(
Cdv + (2(1 + δ)M2Cdx + 2(1 + δ)B2) +

2dγβ−1

3

))1/2

, (B.8)

where γ̂ is defined in (A.11).
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C Proofs of Lemmas in Section A

C.1 Proof of Lemma 16

(i) We first prove the continuous–time case. The main idea is to use the following Lyapunov
function (see (2.1)) introduced in [EGZ19] for the underdamped Langevin diffusion:

V(x, v) = βFz(x) +
β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2). (C.1)

Lemma 1.3 in [EGZ19] showed that if the drift condition in (2.2) holds, then

LV ≤ γ(d+A− λV), (C.2)

where L is the infinitesimal generator of the underdamped Langevin diffusion (X,V ) de-
fined in (1.5)–(1.6):

LV = −(γv +∇Fz(x))∇vV + γβ−1∆vV + v∇xV. (C.3)

To show part (i), we first note that for λ ≤ 1
4 ,

V(x, v) ≥ βFz(x) +
β

4
(1− 2λ)γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2)

≥ max

{
1

8
(1− 2λ)βγ2‖x‖2, β

4
(1− 2λ)‖v‖2

}
. (C.4)

Now let us set for each t ≥ 0,

L(t) := Ez[V(X(t), V (t))], (C.5)

and we will provide an upper bound for L(t).
First, we can compute that

∇vV = βv +
βγ

2
x, (C.6)

By Itô’s formula and (C.6),

d(eγλtV(X(t), V (t))) = γλeγλtV(X(t), V (t))dt+ eγλtLV(X(t), V (t))dt

+ eγλt
(
βV (t) +

βγ

2
X(t)

)
·
√

2γβ−1dB(t),

which together with (C.2) implies that

eγλtV(X(t), V (t)) ≤ V(X(0), V (0)) + γ(d+A)

∫ t

0
eλγsds

−
∫ t

0
eγλs

(
βV (s) +

βγ

2
X(s)

)
·
√

2γβ−1dB(s). (C.7)
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Note that∇Fz(x) is Lipschitz continuous by part (ii) of Assumption 1, and hence (X(t), V (t))

is the unique strong solution of the SDE (1.5)-(1.6), and thus E[
∫ T

0 ‖V (t)‖2 +‖X(t)‖2dt] <
∞ for every T > 0 (See e.g. [Øks03]). Therefore, for every T > 0, we have∫ T

0
e2γλs

∥∥∥∥βV (s) +
βγ

2
X(s)

∥∥∥∥2

(2γβ−1)ds <∞,

and hence
∫ t

0 e
γλs
(
βV (s) + βγ

2 X(s)
)
·
√

2γβ−1B(s) is a martingale. Then we can infer

from (C.7) and (C.5) that for any t ≥ 0,

L(t) = Ez[V(X(t), V (t))] ≤ L(0)e−γλt +
d+A

λ
(1− e−γλt).

In combination with (C.4), we obtain that (X,V ) are uniformly (in time) L2 bounded.
Indeed, we have

1

8
(1− 2λ)βγ2Ez‖X(t)‖2 ≤ Ez[V(X0, V0)] +

d+A

λ
,

β

4
(1− 2λ)Ez‖V (t)‖2 ≤ Ez[V(X0, V0)] +

d+A

λ
.

The proof of part (i) is complete by noting that Ez[V(X0, V0)] is finite from part (v) of
Assumption 1.

(ii) Next, we prove the uniform (in time) L2 bounds for (Xk, Vk). Let us recall the
dynamics:

Vk+1 = Vk − η[γVk + g(Xk, Uz,k)] +
√

2γβ−1ηξk, (C.8)

Xk+1 = Xk + ηVk, (C.9)

where Eg(x, Uz,k) = ∇Fz(x) for any x. We again use the Lyapunov function V(x, v) in
(C.1), and set for each k = 0, 1, . . . ,

L2(k) = EzV(Xk, Vk)/β = Ez

[
Fz(Xk) +

1

4
γ2
(
‖Xk + γ−1Vk‖2 + ‖γ−1Vk‖2 − λ‖Xk‖2

)]
.

(C.10)
We show below that one can find explicit constants K1,K2 > 0, such that

(L2(k + 1)− L2(k))/η ≤ γ(d/β +A/β − λL2(k)) + (K1L2(k) +K2) · η.

We proceed in several steps in upper bounding L2(k + 1).
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First, by using the independence of Vk − η[γVk + gk(Xk, Uz,k)] and ξk, we can obtain
from (C.8) that

Ez‖Vk+1‖2

= Ez‖Vk − η[γVk + gk(Xk, Uz,k)]‖2 + 2γβ−1ηEz‖ξk‖2

= Ez‖Vk − η[γVk + gk(Xk, Uz,k)]‖2 + 2γβ−1ηd

= Ez‖Vk − η[γVk +∇Fz(Xk)]‖2 + 2γβ−1ηd+ η2Ez‖∇Fz(Xk)− gk(Xk, Uz,k)‖2

≤ (1− ηγ)2Ez‖Vk‖2 − 2η(1− ηγ)Ez[〈Vk,∇Fz(Xk)〉] + η2Ez‖∇Fz(Xk)‖2 + 2γβ−1ηd

+ 2δη2M2Ez‖Xk‖2 + 2δη2B2

≤ (1− ηγ)2Ez‖Vk‖2 − 2η(1− ηγ)Ez[〈Vk,∇Fz(Xk)〉]
+ η2(M2Ez‖Xk‖2 +B2 + 2MBEz‖Xk‖) + 2γβ−1ηd

+ 2δη2M2Ez‖Xk‖2 + 2δη2B2,

where we have used part (iv) of Assumption 1 and Lemma 25 in Section E in the Appendix.

By using |x| ≤ |x|
2+1
2 , we immediately get

Ez‖Vk+1‖2 ≤ (1− ηγ)2Ez‖Vk‖2 − 2ηEz[〈Vk,∇Fz(Xk)〉] + 2η2γEz[〈Vk,∇Fz(Xk)〉]
+
(
η2M2 + η2MB + δη2M2

)
Ez‖Xk‖2 + (η2MB + 2γβ−1ηd+ 2δη2B2).

(C.11)

Second, we can compute from (C.9) that

Ez‖Xk+1‖2 = Ez‖Xk‖2 + 2ηEz[〈Xk, Vk〉] + η2Ez‖Vk‖2. (C.12)

Third, note that

Fz(Xk+1) = Fz(Xk + ηVk) = Fz(Xk) +

∫ 1

0
〈∇Fz(Xk + τηVk), ηVk〉dτ,

which immediately suggests that

|Fz(Xk+1)− Fz(Xk)− 〈∇Fz(Xk), ηVk〉| =
∣∣∣∣∫ 1

0
〈∇Fz(Xk + τηVk)−∇Fz(Xk), ηVk〉dτ

∣∣∣∣
≤
∫ 1

0
‖∇Fz(Xk + τηVk)−∇Fz(Xk)‖ · ‖ηVk‖ dτ

≤ 1

2
Mη2‖Vk‖2,

where the last inequality is due to the M−smoothness of Fz. This implies

EzFz(Xk+1)− EzFz(Xk) ≤ ηEz〈∇Fz(Xk), Vk〉+
1

2
Mη2Ez‖Vk‖2. (C.13)
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Finally, we can compute that

Ez

∥∥Xk+1 + γ−1Vk+1

∥∥2

= Ez

∥∥∥Xk + γ−1Vk − ηγ−1g(Xk, Uz,k) +
√

2γ−1β−1ηξk

∥∥∥2

= Ez

∥∥Xk + γ−1Vk − ηγ−1g(Xk, Uz,k)
∥∥2

+ 2γ−1β−1ηd

= Ez

∥∥Xk + γ−1Vk − ηγ−1∇Fz(Xk)
∥∥2

+ 2γ−1β−1ηd

+ Ez

∥∥ηγ−1g(Xk, Uz,k)− ηγ−1∇Fz(Xk)
∥∥2

≤ Ez

∥∥Xk + γ−1Vk − ηγ−1∇Fz(Xk)
∥∥2

+ 2γ−1β−1ηd+ 2η2γ−2δ(M2Ez ‖Xk‖2 +B2)

= Ez

∥∥Xk + γ−1Vk
∥∥2 − 2ηγ−1Ez〈Xk + γ−1Vk,∇Fz(Xk)〉

+ η2γ−2Ez ‖∇Fz(Xk)‖2 + 2γ−1β−1ηd+ 2η2γ−2δ(M2Ez‖Xk‖2 +B2), (C.14)

where we have used part (iv) of Assumption 1 in the inequality above.
Combining the equations (C.11), (C.12), (C.13) and (C.14), we get

(L2(k + 1)− L2(k))/η

=

(
Ez[Fz(Xk+1)]− Ez[Fz(Xk)] +

1

4
γ2
(
Ez‖Xk+1 + γ−1Vk+1‖2 − Ez‖Xk + γ−1Vk‖2

)
+

1

4

(
Ez‖Vk+1‖2 − Ez‖Vk‖2

)
− 1

4
γ2λ

(
Ez‖Xk+1‖2 − Ez‖Xk‖2

))/
η

≤ Ez〈∇Fz(Xk), Vk〉+
1

2
MηEz‖Vk‖2 −

1

2
γE
〈
Xk + γ−1Vk,∇Fz(Xk)

〉
+

1

4
ηE‖∇Fz(Xk)‖2 +

1

2
γβ−1d+

1

2
ηδ(M2E‖Xk‖2 +B2)

+
1

4
(−2γ + ηγ2)Ez‖Vk‖2 −

1

2
(1− ηγ)Ez[〈Vk,∇Fz(Xk)〉]

+
1

4
η(M2Ez‖Xk‖2 +B2 + 2MBEz‖Xk‖) +

1

2
γβ−1d

+
1

2
δηM2Ez‖Xk‖2 +

1

2
δηB2 − 1

2
γ2λEz〈Xk, Vk〉 −

1

4
γ2ληEz‖Vk‖2

= −γ
2
Ez〈∇Fz(Xk), Xk〉 −

γ

2
Ez‖Vk‖2 −

γ2λ

2
Ez〈Xk, Vk〉+ γβ−1d+ Ekη

≤ −γλEz[Fz(Xk)]−
1

4
λγ3Ez‖Xk‖2 + γA/β − γ

2
Ez‖Vk‖2 −

γ2λ

2
Ez〈Xk, Vk〉+ γβ−1d+ Ekη,

(C.15)
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where we used the drift condition (2.2) in the last inequality, and

Ek :=

(
1

2
M +

1

4
γ2 − 1

4
γ2λ

)
Ez‖Vk‖2 +

1

4
Ez‖∇Fz(Xk)‖2 + δ(M2E‖Xk‖2 +B2)

+
1

2
γEz[〈Vk,∇Fz(Xk)〉] +

1

4
(M2Ez‖Xk‖2 +B2 + 2MBEz‖Xk‖).

We can upper bound Ek as follows:

Ek ≤
(

1

2
M +

1

4
γ2 − 1

4
γ2λ

)
Ez‖Vk‖2 +

1

4
Ez‖∇Fz(Xk)‖2 + δ(M2Ez‖Xk‖2 +B2)

+ γEz‖Vk‖2 + γEz‖∇Fz(Xk)‖2 +
1

4
Ez(M‖Xk‖+B)2

≤
(

1

2
M +

1

4
γ2 − 1

4
γ2λ+ γ

)
Ez‖Vk‖2 + δ(M2Ez‖Xk‖2 +B2)

+

(
1

4
+ γ

)
Ez(M‖Xk‖+B)2 +

1

4
Ez(M‖Xk‖+B)2

≤
(

1

2
M +

1

4
γ2 − 1

4
γ2λ+ γ

)
Ez‖Vk‖2

+ 2M2

(
1

2
+ γ + δ

)
Ez‖Xk‖2 + 2B2

(
1

2
+ γ + δ

)
.

Since λ ≤ 1
4 , we obtain from (C.4) and (C.10) that

L2(k) ≥ max

{
1

8
(1− 2λ)γ2Ez‖Xk‖2,

1

4
(1− 2λ)Ez‖Vk‖2

}
(C.16)

≥ 1

16
(1− 2λ)γ2Ez‖Xk‖2 +

1

8
(1− 2λ)Ez‖Vk‖2.

Therefore,
Ek ≤ K1L2(k) +K2, (C.17)

where we recall from (A.3) and (A.4) that

K1 = max

{
2M2

(
1
2 + γ + δ

)
1
16(1− 2λ)γ2

,

(
1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
1
8(1− 2λ)

}
,

and

K2 = 2B2

(
1

2
+ γ + δ

)
.

Moreover, since λ ≤ 1
4 , we infer from the definition of L2(k) in (C.10) that

L2(k) = Ez[Fz(Xk)] +
1

4
γ2(1− λ)Ez‖Xk‖2 +

1

2
γEz[〈Xk, Vk〉] +

1

2
Ez‖Vk‖2

≤ Ez[Fz(Xk)] +
1

4
γ2Ez‖Xk‖2 +

1

2
γEz[〈Xk, Vk〉] +

1

2λ
Ez‖Vk‖2.

48



Together with (C.15) and (C.17), we deduce that

(L2(k + 1)− L2(k))/η ≤ γ(d/β +A/β − λL2(k)) + (K1L2(k) +K2)η.

For 0 < η ≤ min
{

γ
K2

(d/β +A/β), γλ
2K1

}
, we get

(L2(k + 1)− L2(k))/η ≤ 2γ(d/β +A/β)− 1

2
γλL2(k),

which implies
L2(k + 1) ≤ ρL2(k) +K,

where
ρ := 1− ηγλ/2, K := 2ηγ(d/β +A/β),

and we have ρ ∈ [0, 1), where we used the assumption that η ≤ 2
γλ . It follows that

L2(k) ≤ L2(0) +
K

1− ρ
= Ez [V(X0, V0)/β] +

4(d/β +A/β)

λ
.

The result then follows from the inequality above and (C.16).

C.2 Proof of Lemma 17

From (C.1)–(C.3), we can directly obtain that

LeαV =
[
−(γv +∇Fz(x))α∇vV + γβ−1α∆vV + γβ−1α2‖∇vV‖2 + vα∇xV

]
eαV

=
[
αLV + γβ−1α2‖∇vV‖2

]
eαV

≤
[
αγd+ αγA− αγλV + α2γβ−1‖∇vV‖2

]
eαV . (C.18)

Moreover, we recall from (C.6) that

∇vV = βv +
βγ

2
x,

and thus

‖∇vV‖2 ≤ 2β2‖v‖2 +
β2γ2

2
‖x‖2.

We recall from (C.4) that

V(x, v) ≥ max

{
1

8
(1− 2λ)βγ2‖x‖2, β

4
(1− 2λ)‖v‖2

}
.

Therefore, we have

‖∇vV‖2 ≤
[

8β2

β(1− 2λ)
+

4β2γ2

(1− 2λ)βγ2

]
V =

12β

1− 2λ
V. (C.19)
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By choosing:

α =
λβ
12β

1−2λ

=
λ(1− 2λ)

12
, (C.20)

we get
LeαV ≤ αγ(d+A)eαV . (C.21)

Since LeαV =
[
LαV + γβ−1‖∇vαV‖2

]
eαV , we have showed that

LαV + γβ−1‖∇vαV‖2 ≤ αγ(d+A).

Applying an exponential integrability result, e.g. Corollary 2.4. in [CHJ13], we get

E
[
eαV(X(t),V (t))

]
≤ E

[
eαV(X(0),V (0))

]
eαγ(d+A)t.

That is,

Ez

[
eαV(X(t),V (t))

]
≤
∫
R2d

eαV(x,v)+αγ(d+A)tµ0(dx, dv) <∞. (C.22)

Next, applying Itô’s formula to e
1
4
αV(X(t),V (t)), we obtain

e
1
4
αV(X(t),V (t)) = e

1
4
αV(X(0),V (0)) +

∫ t

0
Le

1
4
αV(X(s),V (s))ds

+

∫ t

0

1

2

(
βV (s) +

βγ

2
X(s)

)
e

1
4
αV(X(s),V (s)) · dB(s). (C.23)

For every T > 0, ∫ T

0
E
∥∥∥∥1

2

(
βV (s) +

βγ

2
X(s)

)
e

1
4
αV(X(s),V (s))

∥∥∥∥2

ds

≤ β2

2

∫ T

0
E
[(
‖V (s)‖2 + γ2‖X(s)‖2

)
e

1
2
αV(X(s),V (s))

]
ds

≤ 6β

1− 2λ

∫ T

0
E
[
V(X(s), V (s))e

1
2
αV(X(s),V (s))

]
ds

≤ 12β

1− 2λ

∫ T

0
E
[
eαV(X(s),V (s))

]
ds <∞,

where we used (C.4) and (C.22). Thus,
∫ t

0
1
2

(
βV (s) + βγ

2 X(s)
)
e

1
4
αV(X(s),V (s)) · dB(s) is a

martingale. By taking expectations on both hand sides of (C.23), we get

E
[
e

1
4
αV(X(s),V (s))

]
= E

[
e

1
4
αV(X(0),V (0))

]
+

∫ t

0
E
[
Le

1
4
αV(X(s),V (s))

]
ds. (C.24)
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From (C.18), (C.19) and (C.20), we can infer that

Le
1
4
αV ≤

(
1

4
αγ(d+A)− 1

4
αγλV + γβ−1α

2

16
‖∇vV‖2

)
e

1
4
αV

≤
(

1

4
αγ(d+A)− 3

16
αγλV

)
e

1
4
αV

≤ 1

4
αγ(d+A)e

α(d+A)
3λ ,

where in the last inequality we used the facts that V ≥ 0 and 1
4αγ(d + A) − 3

16αγλV ≥ 0

if and only if V ≤ 4(d+A)
3λ . Therefore, it follows from (C.24) that

E
[
e

1
4
αV(X(s),V (s))

]
≤ E

[
e

1
4
αV(X(0),V (0))

]
+

1

4
e
α(d+A)

3λ αγ(d+A)t.

Finally, by (C.4) again,

‖(x, v)‖2 ≤ 2‖x‖2 + 2‖v‖2 ≤
[

16

(1− 2λ)βγ2
+

8

β(1− 2λ)

]
V(x, v).

Hence, the conclusion follows.

C.3 Proof of Lemma 18

The proof is inspired by the proof of Lemma 7 in [RRT17] although more delicate in our
setting. Note that the main technical difficulty here is that the underdamped Langevin
diffusion is a hypoelliptic diffusion, i.e. the diffusion matrix of the stochastic differential
equation defining the multidimensional diffusion process is not of full rank, but its solutions
admit a smooth density, see [DS19]. In our case, there is no Brownian noise in dX(t) term
in (1.6) and the underdamped Langevin diffusion (1.5)-(1.6) is hypoelliptic. Consider the
following continuous-time interpolation of (Xk, Vk):

V (t) = V0 −
∫ t

0
γV (bs/ηcη)ds−

∫ t

0
g(X(bs/ηcη), Uz(s))ds+

√
2γβ−1

∫ t

0
dB(s), (C.25)

X(t) = X0 +

∫ t

0
V (bs/ηcη)ds, (C.26)

where Uz(t) := Uz,k for kη ≤ t < (k + 1)η. Then (X(kη), V (kη)) and (Xk, Vk) have the
same distribution µz,k for each k ≥ 0. Since there is no Brownian noise in dX(t) term in
(1.6) and dX(t) term in (C.26), and their dynamics are different, there does not exist a
solution to equation (7.115) in Theorem 7.18 in [LS13], and one can not apply Girsanov
theorem to compute the relative entropy between (X(t), V (t)) and (V (t), X(t)), which
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is the main technical difficulty here. To overcome this challenge, we define an auxiliary
diffusion process (X̃(t), Ṽ (t)):

Ṽ (t) = V0 −
∫ t

0
γṼ (bs/ηcη)ds

−
∫ t

0
g

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du, Uz(s)

)
ds+

√
2γβ−1

∫ t

0
dB(s),

(C.27)

X̃(t) = X0 +

∫ t

0
Ṽ (s)ds, (C.28)

which serves as a bridge between the underdamped Langevin diffusion (X(kη), V (kη)) and
the discrete time SGHMC1 iterates (Xk, Vk). Then, it is easy to see that Ṽ (kη) has the
same distribution as Vk, though X̃(kη) is not distributed the same as Xk. Since the drift
term in (C.28) in the auxiliary diffusion process (X̃(t), Ṽ (t)) has the same dynamics as the
dX(t) term in (1.6), Girsanov theorem is applicable according to Theorem 7.18 in [LS13].

Let P be the probability measure associated with the underdamped Langevin diffu-
sion (X(t), V (t)) in (1.5)–(1.6) and P̃ be the probability measure associated with the
(X̃(t), Ṽ (t)) process in (C.27)–(C.28). Let Ft be the natural filtration up to time t. Then,
the Radon-Nikodym derivative of P w.r.t. P̃ is given by the Girsanov theorem (see e.g.
Section 7.6 in [LS13]):

dP
dP̃

∣∣∣∣
Ft

= e
−
√

β
2γ

∫ t
0

(
γṼ (s)−γṼ (bs/ηcη)+∇Fz(X̃(s))−g

(
X0+

∫ bs/ηcη
0 Ṽ (bu/ηcη)du,Uz(s)

))
·dB(s)

· e−
β
4γ

∫ t
0

∥∥∥γṼ (s)−γṼ (bs/ηcη)+∇Fz(X̃(s))−g
(
X0+

∫ bs/ηcη
0 Ṽ (bu/ηcη)du,Uz(s)

)∥∥∥2
ds
.

Then by writing Pt and P̃t as the probability measures P and P̃ conditional on the filtration
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Ft,

D(P̃t‖Pt)

:= −
∫
dP̃t log

dPt
dP̃t

=
β

4γ

∫ t

0
Ez

∥∥∥∥∥γṼ (s)− γṼ (bs/ηcη) +∇Fz(X̃(s))− g

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du, Uz(s)

)∥∥∥∥∥
2

ds

≤ β

2γ

∫ t

0
Ez

∥∥∥∥∥∇Fz

(
X0 +

∫ bs/ηcη
0

Ṽ (u)du

)
− g

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du, Uz(s)

)∥∥∥∥∥
2

ds

+
β

2γ

∫ t

0
Ez

∥∥∥γṼ (s)− γṼ (bs/ηcη)
∥∥∥2
ds

≤ β

γ

∫ t

0
Ez

∥∥∥∥∥∇Fz

(
X0 +

∫ bs/ηcη
0

Ṽ (u)du

)
−∇Fz

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du

)∥∥∥∥∥
2

ds

+
β

γ

∫ t

0
Ez

∥∥∥∥∥∇Fz

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du

)
− g

(
X0 +

∫ bs/ηcη
0

Ṽ (bu/ηcη)du, Uz(s)

)∥∥∥∥∥
2

ds

+
β

2γ

∫ t

0
Ez

∥∥∥γṼ (s)− γṼ (bs/ηcη)
∥∥∥2
ds,

which implies that

D(P̃kη‖Pkη)

≤ βη

γ

k−1∑
j=0

Ez

∥∥∥∥∇Fz

(
X0 +

∫ jη

0
Ṽ (u)du

)
−∇Fz

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du

)∥∥∥∥2

+
βη

γ

k−1∑
j=0

Ez

∥∥∥∥∇Fz

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du

)
− g

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du, Uz,j

)∥∥∥∥2

+
β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥γṼ (s)− γṼ (bs/ηcη)
∥∥∥2
ds. (C.29)
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We first bound the first term in (C.29):

βη

γ

k−1∑
j=0

Ez

∥∥∥∥∇Fz

(
X0 +

∫ jη

0
Ṽ (u)du

)
−∇Fz

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du

)∥∥∥∥2

≤M2βη

γ

k−1∑
j=0

Ez

∥∥∥∥∫ jη

0

(
Ṽ (u)− Ṽ (bu/ηcη)

)
du

∥∥∥∥2

≤M2βη

γ

k−1∑
j=0

jη

∫ jη

0
Ez

∥∥∥Ṽ (u)− Ṽ (bu/ηcη)
∥∥∥2
du

= M2βη

γ

k−1∑
j=0

jη

j−1∑
i=0

∫ (i+1)η

iη
Ez

∥∥∥Ṽ (u)− Ṽ (bu/ηcη)
∥∥∥2
du ,

where we used part (ii) of Assumption 1 Cauchy-Schwarz inequality.
For iη < u ≤ (i+ 1)η, we have

Ṽ (u)− Ṽ (bu/ηcη) = −(u− iη)γVi− (u− iη)g (Xi, Uz,i) +
√

2γβ−1(B(u)−B(iη)), (C.30)

in distribution. Therefore,

Ez

∥∥∥Ṽ (u)− Ṽ (bu/ηcη)
∥∥∥2

= (u− iη)2Ez ‖γVi + g (Xi, Uz,i)‖2 + 2γβ−1(u− iη)

= (u− iη)2Ez ‖γVi +∇Fz(Xi)‖2 + (u− iη)2Ez ‖∇Fz(Xi)− g (Xi, Uz,i)‖2 + 2γβ−1(u− iη)

≤ 2η2Ez ‖γVi‖2 + 2η2Ez ‖∇Fz(Xi)‖2 + η22δ(M2Ez ‖Xi‖2 +B2) + 2γβ−1η

≤ 2γ2η2Ez ‖Vi‖2 + 4η2
(
M2Ez ‖Xi‖2 +B2

)
+ η22δ(M2Ez ‖Xi‖2 +B2) + 2γβ−1η.

(C.31)

This implies that

M2βη

γ

k−1∑
j=0

jη

j−1∑
i=0

∫ (i+1)η

iη
Ez

∥∥∥Ṽ (u)− Ṽ (bu/ηcη)
∥∥∥2
du

≤M2β

γ
(kη)3

(
2γ2η2 sup

j≥0
Ez ‖Vj‖2 + (4 + 2δ)η2

(
M2 sup

j≥0
Ez ‖Xj‖2 +B2

)
+ 2γβ−1η

)
.
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We can also bound the second term in (C.29):

βη

γ

k−1∑
j=0

Ez

∥∥∥∥∇Fz

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du

)
− g

(
X0 +

∫ jη

0
Ṽ (bu/ηcη)du, Uz,j

)∥∥∥∥2

≤ βη

γ

k−1∑
j=0

2δ

(
M2Ez

∥∥∥∥X0 +

∫ s

0
Ṽ (bu/ηcη)du

∥∥∥∥2

+B2

)

=
βη

γ

k−1∑
j=0

2δ
(
M2Ez ‖Xj‖2 +B2

)

≤ 2βδ

γ
kη

(
M2 sup

j≥0
Ez ‖Xj‖2 +B2

)
,

where the first inequality follows from part (iv) of Assumption 1.
Finally, let us bound the third term in (C.29) as follows:

β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥γṼ (s)− γṼ (bs/ηcη)
∥∥∥2
ds

≤ β

2γ
(kη)γ2

(
2γ2η2Cdv + (4 + 2δ)η2

(
M2Cdx +B2

)
+ 2γβ−1η

)
,

where we used the estimate in (C.31).
Hence, together with Lemma 16, we conclude that that

D(P̃kη‖Pkη) ≤M2β

γ
(kη)3

(
2γ2η2Cdv + (4 + 2δ)η2

(
M2Cdx +B2

)
+ 2γβ−1η

)
+

2βδ

γ
kη
(
M2Cdx +B2

)
+

β

2γ
(kη)γ2

(
2γ2η2Cdv + (4 + 2δ)η2

(
M2Cdx +B2

)
+ 2γβ−1η

)
.

We can then apply the following result of [BV05], that is, for any two Borel probability
measures µ, ν on R2d with finite second moments,

W2(µ, ν) ≤ Cν

[√
D(µ‖ν) +

(
D(µ‖ν)

2

)1/4
]
,

where

Cν = 2 inf
λ>0

(
1

λ

(
3

2
+ log

∫
R2d

eλ‖w‖
2
ν(dw)

))1/2

.
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From the exponential integrability of the measure νz,kη in Lemma 17, we have

Cνz,kη ≤ 2

(
1

α0

(
3

2
+ log

∫
R2d

eα0‖(x,v)‖2νz,kη(dx, dv)

))1/2

≤ 2

(
1

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)kη

)))1/2

.

Hence

W2
2 (P̃kη, νz,kη) ≤

4

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)kη

))

·

√D(P̃kη‖Pkη) +

(
D(P̃kη‖Pkη)

2

)1/4
2

, (C.32)

where

D(P̃kη‖Pkη) ≤ (kη)3

[(
M2βη

γ
+
βηγ

2

)(
2γ2ηCdv + (4 + 2δ)η

(
M2Cdx +B2

)
+ 2γβ−1

)
+
βδ

γ

(
M2Cdx +B2

)]
.

Note that η ≤ 1 so that 2γ2ηCdv + (4 + 2δ)η
(
M2Cdx +B2

)
+ 2γβ−1 ≤ (C2)2, where C2 is

defined in (A.10). Then, we have

D(P̃kη‖Pkη) ≤ (kη)3

[(
M2βη

γ
+
βηγ

2

)
(C2)2 +

βδ

γ

(
M2Cdx +B2

)]
.

By using (x+ y)2 ≤ 2(x2 + y2), we get

W2
2 (P̃kη, νz,kη) ≤

8

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)kη

))
·
[
D(P̃kη‖Pkη) +

√
D(P̃kη‖Pkη)

]
. (C.33)

Since kη ≥ e > 1, we get

8

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)kη

))
≤ 8

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)

)
+ log(kη)

)
≤ 8

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)

)
+ 1

)
log(kη) , (C.34)
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and

D(P̃kη‖Pkη) +

√
D(P̃kη‖Pkη)

≤

((
M2βη

γ
+
βηγ

2

)
(C2)2 +

√(
M2βη

γ
+
βηγ

2

)
(C2)2

)
(kη)3η1/2

+

((
M2Cdx +B2

) β
γ

+

√
(M2Cdx +B2)

β

γ

)
(kη)3

√
δ,

which implies that

W2
2 (P̃kη, νz,kη) ≤ (C2

0

√
δ + C2

1

√
η)(kη)3 log(kη),

where C0 and C1 are defined in (A.8) and (A.9). The result then follows from the fact that√
x+ y ≤

√
x+
√
y for non-negative real numbers x and y.

Finally, let us provide a bound on W2(µz,k, P̃kη). Note that by the definition of Ṽ , we

have that
(
X0 +

∫ kη
0 Ṽ (bs/ηcη)ds, Ṽ (kη)

)
has the same law as µz,k, and we can compute

that

Ez

∥∥∥∥X̃(kη)−X0 −
∫ kη

0
Ṽ (bs/ηcη)ds

∥∥∥∥2

= Ez

∥∥∥∥∫ kη

0
Ṽ (s)− Ṽ (bs/ηcη)ds

∥∥∥∥2

≤ kη
∫ kη

0
Ez

∥∥∥Ṽ (s)− Ṽ (bs/ηcη)
∥∥∥2
ds

≤ (kη)2η
(

2γ2ηCdv + (4 + 2δ)η
(
M2Cdx +B2

)
+ 2γβ−1

)
≤ (kη)2η(C2)2.

where we used the assumption η ≤ 1 so that 2γ2ηCdv + (4 + 2δ)η
(
M2Cdx +B2

)
+ 2γβ−1 ≤

(C2)2 in the last inequality above, where C2 is defined in (A.10). Therefore,

W2(µz,k, P̃kη) ≤ C2kη
√
η.

The proof is complete.

C.4 Proof of Lemma 20

We recall first from (C.4) that

V(x, v) ≥ max

{
1

8
(1− 2λ)βγ2‖x‖2, β

4
(1− 2λ)‖v‖2

}
.
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Since
∫
R2d e

αV(x,v)µ0(dx, dv) <∞ with α > 0, we have ‖(x, v)‖L2(µ0) <∞.
Next, let us notice that by the concavity of the function h, we have (see [EGZ19])

h(r) ≤ min{r, h(R1)} ≤ min{r,R1}, for any r ≥ 0.

It follows that

ρ((x, v), (x′, v′)) ≤ min{r((x, v), (x′, v′)), R1}(1 + ε1V(x, v) + ε1V(x′, v′))

≤ R1(1 + ε1V(x, v) + ε1V(x′, v′)).

Moreover, by the definition of V in (2.1) and Lemma 25, we deduce that

V(x, v) ≤ β
(
M

2
‖x‖2 +B‖x‖+A0

)
+

1

4
βγ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2)

≤ β
(
M

2
‖x‖2 +B‖x‖+A0

)
+

1

4
βγ2(2‖x‖2 + 2γ−2‖v‖2 + ‖γ−1v‖2 − λ‖x‖2)

≤ β
(
M‖x‖2 +A0 +

B2

2M

)
+

1

4
βγ2(2‖x‖2 + 2γ−2‖v‖2 + ‖γ−1v‖2 − λ‖x‖2)

≤
(
βM +

1

2
βγ2

)
‖x‖2 +

3

4
β‖v‖2 + βA0 +

βB2

2M
.

Therefore, we obtain

Hρ(µ0, πz)

≤ R1 +R1ε1

((
M +

1

2
βγ2

)∫
R2d

‖x‖2µ0(dx, dv) +
3

4
β

∫
R2d

‖v‖2µ0(dx, dv) + βA0 +
βB2

2M

)
+R1ε1

((
M +

1

2
βγ2

)∫
R2d

‖x‖2πz(dx, dv) +
3

4
β

∫
R2d

‖v‖2πz(dx, dv) + βA0 +
βB2

2M

)
.

(C.35)

It has been shown in [RRT17, Section 3.5] that∫
R2d

‖x‖2πz(dx, dv) ≤ b+ d/β

m
.

In addition, from the explicit expression of πz(dx, dv) in (1.7), we have∫
R2d

‖v‖2πz(dx, dv) = (2πβ−1)−d/2
∫
Rd
‖v‖2e−‖v‖2/(2β−1)dv = d/β.

Hence, the conclusion follows from (C.35).
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D Proofs of Lemmas in Section B

D.1 Proof of Lemma 21

Before we proceed to the proof of Lemma 21, let us state two technical lemmas, which
will be used in the proof of Lemma 21. Recall ψ0(t) = e−γt and ψk+1(t) =

∫ t
0 ψk(s)ds,

and (ξk+1, ξ
′
k+1) is a 2d-dimensional centered Gaussian vector from the SGHMC2 iterates

(X̂k, V̂k) given in (1.10)–(1.11). Using the definitions, it is straightforward to establish
these two lemmas, so we omit the details of their proofs.

Lemma 23. For any η ≥ 0,

max {|ψ0(η)− 1 + γη|, |η − ψ1(η)|, |ψ2(η)|} ≤ c0η
2, (D.1)

where c0 := 1 + γ2.

Lemma 24. For any η ≥ 0,

C11(η) := E‖ξk‖2 ≤ c11η := dη, (D.2)

C22(η) := E‖ξ′k‖2 ≤ c22η
3 :=

d

3
η3, (D.3)

C12(η) := E〈ξk, ξ′k〉 ≤ c12η
2 :=

d

2
η2. (D.4)

Now, we are ready to prove Lemma 21, i.e. the uniform (in time) L2 bounds for (X̂k, V̂k)
defined in (1.10)–(1.11). We can rewrite the dynamics of the SGHMC2 iterates as follows:

V̂k+1 = (1− γη)V̂k − ηg(X̂k, Uz,k) + Êk +
√

2γβ−1ξk+1, (D.5)

X̂k+1 = X̂k + ηV̂k + Ê′k +
√

2γβ−1ξ′k+1, (D.6)

where

Êk := (ψ0(η)− 1 + γη)V̂k + (η − ψ1(η))g(X̂k, Uz,k), (D.7)

Ê′k := (ψ1(η)− η)V̂k − ψ2(η)g(X̂k, Uz,k), (D.8)

where Eg(x, Uz,k) = ∇Fz(x) for any x. We again use the Lyapunov function V(x, v) defined
as before, and set for each k = 0, 1, . . . ,

L̂2(k) = EzV(X̂k, V̂k)/β = Ez

[
Fz(X̂k) +

1

4
γ2
(
‖X̂k + γ−1V̂k‖2 + ‖γ−1V̂k‖2 − λ‖X̂k‖2

)]
.

(D.9)
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We can compute that

EFz(X̂k+1) = EFz

(
X̂k + ηV̂k + Ê′k +

√
2γβ−1ξ′k+1

)
≤ EFz

(
X̂k

)
+ E

〈
∇Fz(X̂k), ηV̂k + Ê′k

〉
+
M

2
E
∥∥∥ηV̂k + Ê′k +

√
2γβ−1ξ′k+1

∥∥∥2

= EFz

(
X̂k

)
+ E

〈
∇Fz(X̂k), ηV̂k

〉
+
M

2
η2E

∥∥∥V̂k∥∥∥2
+ δ1(k),

where

δ1(k) := E
〈
∇Fz(X̂k), Ê

′
k

〉
+
M

2
E
∥∥∥Ê′k +

√
2γβ−1ξ′k+1

∥∥∥2
+ME

〈
ηV̂k, Ê

′
k +

√
2γβ−1ξ′k+1

〉
(D.10)

= E
〈
∇Fz(X̂k), Ê

′
k

〉
+
M

2
E
∥∥∥Ê′k∥∥∥2

+Mγβ−1C22(η) +ME
〈
ηV̂k, Ê

′
k

〉
. (D.11)

We can also compute that

1

4
γ2E

∥∥∥X̂k+1 + γ−1V̂k+1

∥∥∥2

=
1

4
E
∥∥∥γX̂k+1 + V̂k+1

∥∥∥2

=
1

4
E
∥∥∥(γX̂k + V̂k − ηg(X̂k, Uz,k) +

√
2γβ−1ξk+1

)
+ γÊ′k + γ

√
2γβ−1ξ′k+1 + Êk

∥∥∥2

=
1

4
E
∥∥∥γX̂k + V̂k − ηg(X̂k, Uz,k)

∥∥∥2
+ δ2(k),

where

δ2(k) :=
1

2
γβ−1C11(η) +

1

2
γ3β−1C22(η) + γ2β−1C12(η)

+
1

4
E
∥∥∥γÊ′k + Êk

∥∥∥2
+

1

2
E
〈
γX̂k + V̂k − ηg(X̂k, Uz,k), γÊ

′
k + Êk

〉
.

We can also compute that

1

4
γ2E

∥∥∥γ−1V̂k+1

∥∥∥2
=

1

4
E
∥∥∥V̂k+1

∥∥∥2

=
1

4
E
∥∥∥(1− γη)V̂k − ηg(X̂k, Uz,k) + Êk +

√
2γβ−1ξk+1

∥∥∥2

=
1

4
E
∥∥∥(1− γη)V̂k − ηg(X̂k, Uz,k) + Êk

∥∥∥2
+

1

2
γβ−1C11(η)

=
1

4
E
∥∥∥(1− γη)V̂k − ηg(X̂k, Uz,k)

∥∥∥2
+ δ3(k),

where

δ3(k) :=
1

4
E
∥∥∥Êk∥∥∥2

+
1

2
E
〈

(1− γη)V̂k − ηg(X̂k, Uz,k), Êk

〉
+

1

2
γβ−1C11(η). (D.12)
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Finally, we can compute that

−1

4
γ2λE

∥∥∥X̂k+1

∥∥∥2
= −1

4
γ2λE

∥∥∥X̂k + ηV̂k + Ê′k +
√

2γβ−1ξ′k+1

∥∥∥2

= −1

4
γ2λE

∥∥∥X̂k + ηV̂k

∥∥∥2
− 1

4
γ2λE

∥∥∥Ê′k +
√

2γβ−1ξ′k+1

∥∥∥2

− 1

2
γ2λE

〈
X̂k + ηV̂k, Ê

′
k +

√
2γβ−1ξ′k+1

〉
≤ −1

4
γ2λE

∥∥∥X̂k + ηV̂k

∥∥∥2
+ δ4(k),

where

δ4(k) := −1

2
γ2λE

〈
X̂k + ηV̂k, Ê

′
k

〉
. (D.13)

By following the proofs of the L2 uniform bound for SGHMC1 iterates, we get

L̂2(k + 1)− L̂2(k)

η
≤ γ(A/β−λL̂2(k))+(K1L̂2(k)+K2) ·η+

δ1(k) + δ2(k) + δ3(k) + δ4(k)

η
,

where K1 and K2 are given in (A.3) and (A.4).
Next, we can estimate that

δ1(k) = E
〈
∇Fz(X̂k), Ê

′
k

〉
+
M

2
E
∥∥∥Ê′k∥∥∥2

+ME
〈
ηV̂k, Ê

′
k

〉
+Mγβ−1C22(η)

≤ c0η
2E
[
‖∇Fz(X̂k)‖ ·

(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)]
+
M

2
c2

0η
4E
(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

+Mc0η
2E
[
‖V̂k‖ ·

(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)]
+Mγβ−1c22η

3

≤ 1

2
c0η

2E‖∇Fz(X̂k)‖2 +Mc2
0η

4E‖g(X̂k, Uz,k)‖2 +Mγβ−1c22η
3

+
1

2
Mc0η

2(1 + 2η2)E‖V̂k‖2 +
1

2
(M + 1)c0η

2E
(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

≤ 1

2
c0η

2E‖∇Fz(X̂k)‖2 +Mc2
0η

4E‖g(X̂k, Uz,k)‖2 +Mγβ−1c22η
3

+
1

2
Mc0η

2(1 + 2η2)E‖V̂k‖2 + (M + 1)c0η
2E‖V̂k‖2 + (M + 1)c0η

2E‖g(X̂k, Uz,k)‖2

=
1

2
c0η

2E‖∇Fz(X̂k)‖2 + c0η
2(Mc0η

2 +M + 1)E‖g(X̂k, Uz,k)‖2 +Mγβ−1c22η
3

+
1

2
c0η

2(M(1 + 2η2) + 2M + 2)E‖V̂k‖2,
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and

δ2(k) =
1

2
γβ−1C11(η) +

1

2
γ3β−1C22(η) + γ2β−1C12(η)

+
1

4
E‖γÊ′k + Êk‖2 +

1

2
E
〈
γX̂k + V̂k − ηg(X̂k, Uz,k), γÊ

′
k + Êk

〉
≤ 1

2
γβ−1c11η +

1

2
γ3β−1c22η

3 + γ2β−1c12η
2

+
1

4
c2

0η
4(1 + γ)2E

(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

+
1

2
c0η

2(1 + γ)E
[∥∥∥γX̂k + V̂k − ηg(X̂k, Uz,k)

∥∥∥ · (‖V̂k‖+ ‖g(X̂k, Uz,k)‖
)]

≤ 1

2
γβ−1c11η +

1

2
γ3β−1c22η

3 + γ2β−1c12η
2

+
1

4
c0η

2(1 + γ)(1 + c0η
2(1 + γ))E

(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

+
1

4
c0η

2(1 + γ)E
∥∥∥γX̂k + V̂k − ηg(X̂k, Uz,k)

∥∥∥2

≤ 1

2
γβ−1c11η +

1

2
γ3β−1c22η

3 + γ2β−1c12η
2

+
1

2
c0η

2(1 + γ)(1 + c0η
2(1 + γ))E‖V̂k‖2

+
1

2
c0η

2(1 + γ)(1 + c0η
2(1 + γ))E‖g(X̂k, Uz,k)‖2

+
3

4
c0η

2(1 + γ)γ2E‖X̂k‖2 +
3

4
c0η

2(1 + γ)E‖V̂k‖2

+
3

4
c0η

2(1 + γ)η2E‖g(X̂k, Uz,k)‖2

=
1

2
γβ−1c11η +

1

2
γ3β−1c22η

3 + γ2β−1c12η
2

+
1

2
c0η

2(1 + γ)

(
5

2
+ c0η

2(1 + γ)

)
E‖V̂k‖2

+
1

2
c0η

2(1 + γ)

(
1 + c0η

2(1 + γ) +
3

2
η4

)
E‖g(X̂k, Uz,k)‖2

+
3

4
c0η

2(1 + γ)γ2E‖X̂k‖2,
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and we can compute that

δ3(k) =
1

4
E‖Êk‖2 +

1

2
E
〈

(1− γη)V̂k − ηg(X̂k, Uz,k), Êk

〉
+

1

2
γβ−1C11(η)

≤ 1

4
c2

0η
4E
(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

+
1

2
c0η

2E
[∥∥∥(1− γη)V̂k − ηg(X̂k, Uz,k)

∥∥∥ · (‖V̂k‖+ ‖g(X̂k, Uz,k)‖
)]

+
1

2
γβ−1c11η

≤ 1

4
c0η

2(1 + c0η
2)E

(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

+
1

4
c0η

2E
∥∥∥(1− γη)V̂k − ηg(X̂k, Uz,k)

∥∥∥2
+

1

2
γβ−1c11η

≤ 1

2
c0η

2(1 + c0η
2)E‖V̂k‖2 +

1

2
c0η

2(1 + c0η
2)E‖g(X̂k, Uz,k)‖2

+
1

2
c0η

2(1− γη)2E‖V̂k‖2 +
1

2
c0η

4E‖g(X̂k, Uz,k)‖2 +
1

2
γβ−1c11η

=
1

2
c0η

2(2− 2γη + (c0 + γ2)η2)E‖V̂k‖2

+
1

2
c0η

2(1 + (c0 + 1)η2)E‖g(X̂k, Uz,k)‖2 +
1

2
γβ−1c11η,

and finally we can compute that

δ4(k) = −1

2
γ2λE

〈
X̂k + ηV̂k, Ê

′
k

〉
≤ 1

2
γ2λc0η

2E
[∥∥∥X̂k + ηV̂k

∥∥∥ · (‖V̂k‖+ ‖g(X̂k, Uz,k)‖
)]

≤ 1

4
γ2λc0η

2E‖X̂k + ηV̂k‖2 +
1

4
γ2λc0η

2E
(
‖V̂k‖+ ‖g(X̂k, Uz,k)‖

)2

≤ 1

2
γ2λc0η

2E‖X̂k‖2 +
1

2
γ2λc0η

2(1 + η2)E‖V̂k‖2 +
1

2
γ2λc0η

2E‖g(X̂k, Uz,k)‖2.
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Putting everything together, we have

L̂2(k + 1)− L̂2(k)

η

≤ γ(A/β − λL̂2(k)) + (K1L̂2(k) +K2) · η +
δ1(k) + δ2(k) + δ3(k) + δ4(k)

η

≤ γ((d+A)/β − λL̂2(k)) + (K1L̂2(k) +K2) · η

+
1

2
c0η

(
(M(1 + 2η2) + 2M + 4− 2γη + (c0 + γ2)η2)

+ (1 + γ)

(
5

2
+ c0η

2(1 + γ)

)
+ γ2λ(1 + η2)

)
E‖V̂k‖2

+
1

2
c0η

(
(1 + γ)

(
1 + c0η

2(1 + γ) +
3

2
η4

)
+ 1 + (c0 + 1)η2

+ λγ2 + 2(Mc0η
2 +M + 1)

)
E‖g(X̂k, Uz,k)‖2

+
1

2
c0ηE‖∇Fz(X̂k)‖2 +

1

2
γ2c0η

(
λ+

3

2
(1 + γ)

)
E‖X̂k‖2

+
1

2
γ3β−1c22η

2 + γ2β−1c12η +Mγβ−1c22η
2,

where we used the fact that c11 = d. Moreover,

E‖∇Fz(X̂k)‖2 ≤ E(M‖X̂k‖+B)2 ≤ 2M2E‖X̂k‖2 + 2B2,

and

E‖g(X̂k, Uz,k)‖2 = E‖∇Fz(X̂k)‖2 + E‖g(X̂k, Uz,k)−∇Fz(X̂k)‖2

≤ E‖∇Fz(X̂k)‖2 + 2δM2E‖X̂k‖2 + 2δB2

≤ 2(1 + δ)M2E‖X̂k‖2 + 2(1 + δ)B2. (D.14)
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Therefore, we have

L̂2(k + 1)− L̂2(k)

η
≤ γ((d+A)/β − λL̂2(k)) + (K1L̂2(k) +K2) · η

+
1

2
c0η

(
(M(1 + 2η2) + 2M + 4− 2γη + (c0 + γ2)η2)

+ (1 + γ)

(
5

2
+ c0η

2(1 + γ)

)
+ γ2λ(1 + η2)

)
E‖V̂k‖2

+
1

2
c0η

[(
(1 + γ)

(
1 + c0η

2(1 + γ) +
3

2
η4

)
+ 1 + (c0 + 1)η2

+ λγ2 + 2(Mc0η
2 +M + 1)

)(
2(1 + δ)M2

)
+

(
2M2 + γ2λ+

3

2
γ2(1 + γ)

)]
E‖X̂k‖2

+ c0η

(
(1 + γ)

(
1 + c0η

2(1 + γ) +
3

2
η4

)
+ 1 + (c0 + 1)η2

+ λγ2 + 2(Mc0η
2 +M + 1)

)
(1 + δ)B2 + c0B

2η

+
1

2
γ3β−1c22η

2 + γ2β−1c12η +Mγβ−1c22η
2,

By applying the assumption η ≤ 1, we have

L̂2(k + 1)− L̂2(k)

η
≤ γ((d+A)/β − λL̂2(k)) + (K1L̂2(k) +K2) · η

+ ηQ1E‖V̂k‖2 + ηQ2E‖X̂k‖2 + ηQ3,

where the constants Q1, Q2, Q3 are given in (B.3)–(B.5). Let us recall that for λ ≤ 1
4 ,

V(x, v) ≥ max

{
1

8
(1− 2λ)βγ2‖x‖2, β

4
(1− 2λ)‖v‖2

}
.

Thus, we have

L̂2(k + 1)− L̂2(k)

η
≤ γ((d+A)/β − λL̂2(k)) + (K1L̂2(k) +K2) · η

+ η

(
Q1

4

1− 2λ
+Q2

8

(1− 2λ)γ2

)
L̂2(k) + ηQ3,
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Therefore, for

0 < η ≤ min

{
γ

K̂2

(d/β +A/β),
γλ

2K̂1

}
, (D.15)

where K̂1 := K1 + 4Q1

1−2λ + 8Q2

(1−2λ)γ2 , and K̂2 := K2 +Q3, we get

(L̂2(k + 1)− L̂2(k))/η ≤ 2γ(d/β +A/β)− 1

2
γλL̂2(k).

This implies L̂2(k + 1) ≤ ρL̂2(k) + K, where ρ := 1 − ηγλ/2 ∈ [0, 1), where we used the
assumption η ≤ 2

γλ , and K := 2ηγ(d/β +A/β). It follows that

L̂2(k) ≤ L̂2(0) +
K

1− ρ
= Ez

[
V(X̂0, V̂0)/β

]
+

4(d/β +A/β)

λ
.

The uniform L2 bounds then readily follow.

D.2 Proof of Lemma 22

We follow similar steps as in the proof of Lemma 7 in [RRT17]. Recall that with the same
initialization, the SGHMC2 iterates (X̂k, V̂k) has the same distribution as (X̂(kη), V̂ (kη))
where (X̂(·), V̂ (·)) is a continuous-time process satisfying

dV̂ (t) = −γV̂ (t)dt− g(X̂(bt/ηcη), Uz(t))dt+
√

2γβ−1dB(t), (D.16)

dX̂(t) = V̂ (t)dt, (D.17)

Let P be the probability measure associated with the underdamped Langevin diffusion
(X(t), V (t)) in (1.5)–(1.6) and P̂ be the probability measure associated with the (X̂(t), V̂ (t))
process. Let Ft be the natural filtration up to time t. Then, the Radon-Nikodym derivative
of P w.r.t. P̂ is given by the Girsanov theorem (see e.g. Section 7.6 in [LS13]):

dP
dP̂

∣∣∣∣
Ft

= e
−
√

β
2γ

∫ t
0 (∇Fz(X̂(s))−g(X̂(bs/ηcη),Uz(s)))·dB(s)− β

4γ

∫ t
0 ‖∇Fz(X̂(s))−g(X̂(bs/ηcη),Uz(s))‖2ds

.

Then by writing Pt and P̂t as the probability measures P and P̂ conditional on the filtration
Ft,

D(P̂t‖Pt) := −
∫
dP̂t log

dPt
dP̂t

=
β

4γ

∫ t

0
Ez

∥∥∥∇Fz(X̂(s))− g(X̂(bs/ηcη), Uz(s))
∥∥∥2
ds.
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Then, we get

D(P̂kη‖Pkη) =
β

4γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(X̂(s))− g(X̂(bs/ηcη), Uz(s))
∥∥∥2
ds

≤ β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(X̂(s))−∇Fz(X̂(bs/ηcη))
∥∥∥2
ds

+
β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(X̂(bs/ηcη))− g(X̂(bs/ηcη), Uz(s))
∥∥∥2
ds.

(D.18)

We first bound the first term in (D.18). Before we proceed, let us notice that for any
kη ≤ s < (k + 1)η,

X̂(s) = X̂k + ψ1(s− kη)V̂k − ψ2(s− kη)g(X̂k, Uz,k) +
√

2γβ−1ξ′k+1,s−kη, (D.19)

in distribution, where ξ′k+1,s−kη is centered Gaussian independent of Fk and E‖ξ′k+1,s−kη‖2 =

C22(s− kη) ≤ d
3(s− kη)3 ≤ d

3η
3. Moreover, ψ1(s− kη) =

∫ s−kη
0 e−γtdt ≤ (s− kη) ≤ η, and

ψ2(s− kη) =
∫ s−kη

0 ψ1(t)dt ≤
∫ s−kη

0 tdt ≤ η2. Therefore, we can compute that

β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(X̂(s))−∇Fz(X̂(bs/ηcη))
∥∥∥2
ds

≤ βM2

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥X̂(s)− X̂(bs/ηcη)
∥∥∥2
ds

=
βM2

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥ψ1(s− jη)V̂j − ψ2(s− jη)g(X̂j , Uz,j) +
√

2γβ−1ξ′j+1,s−jη

∥∥∥2
ds

≤ 3βM2

2γ

k−1∑
j=0

∫ (j+1)η

jη

(
Ez

∥∥∥ψ1(s− jη)V̂j

∥∥∥2
+ Ez

∥∥∥ψ2(s− jη)g(X̂j , Uz,j)
∥∥∥2

+ Ez

∥∥∥√2γβ−1ξ′j+1,s−jη

∥∥∥2
)
ds

≤ 3βM2

2γ
(kη)

(
η2 sup

j≥0
Ez‖V̂j‖2 + η4

(
2(1 + δ)M2 sup

j≥0
E‖X̂j‖2 + 2(1 + δ)B2

)
+
dη3

3
2γβ−1

)
≤ 3βM2

2γ
(kη)η2

(
Cdv +

(
2(1 + δ)M2Cdx + 2(1 + δ)B2

)
+

2dγβ−1

3

)
,

where we used (D.14), the assumption η ≤ 1 and Lemma 21.

67



We can also bound the second term in (D.18):

β

2γ

k−1∑
j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(X̂(bs/ηcη))− g(X̂(bs/ηcη), Uz(s))
∥∥∥2
ds

=
β

2γ
η
k−1∑
j=0

Ez

∥∥∥∇Fz(X̂j)− g(X̂j , Uz,j)
∥∥∥2

≤ β

2γ
ηδ

k−1∑
j=0

2(M2Ez‖X̂j‖2 +B2)

≤
(
M2Cdx +B2

) β
γ
kηδ,

where the first inequality follows from part (iv) of Assumption 1, and we also used Lemma 21.
Hence, we conclude that

D(µ̂z,k‖νz,kη) ≤
3βM2

2γ
(kη)η2

(
Cdv +

(
2(1 + δ)M2Cdx + 2(1 + δ)B2

)
+

2dγβ−1

3

)
+
(
M2Cdx +B2

) β
γ
kηδ. (D.20)

To complete the proof, we can follow similar steps as in the proof of Lemma 18. By using
the estimate in (D.20), the result from [BV05], and the exponential integrability of the
measure νz,kη in Lemma 17, we can infer that

D(µ̂z,k‖νz,kη) +
√
D(µ̂z,k‖νz,kη)

≤

(
3βM2

2γ

(
Cdv +

(
2(1 + δ)M2Cdx + 2(1 + δ)B2

)
+

2dγβ−1

3

)

+

√
3βM2

2γ

(
Cdv + (2(1 + δ)M2Cdx + 2(1 + δ)B2) +

2dγβ−1

3

))
kη2

+

((
M2Cdx +B2

) β
γ

+

√
(M2Cdx +B2)

β

γ

)
kη
√
δ,

and

W2
2 (µ̂z,k, νz,kη) ≤

8

α0

(
3

2
+ log

(∫
R2d

e
1
4
αV(x,v)µ0(dx, dv) +

1

4
e
α(d+A)

3λ αγ(d+A)kη

))
·
[
D(µ̂z,k‖νz,kη) +

√
D(µ̂z,k‖νz,kη)

]
,
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which together implies that

W2
2 (µ̂z,k, νz,kη) ≤ (C2

0

√
δ + Ĉ2

1η)(kη) log(kη),

where C0 and Ĉ1 are defined in (A.8) and (B.8). The result then follows from the fact that√
x+ y ≤

√
x+
√
y for non-negative real numbers x and y.

E Supporting Lemmas

In this section, we present several supporting lemmas from the existing literature. These
lemmas are used in our proofs, so we include them here for the sake of completeness. The
first lemma shows that f admits lower and upper bounds that are quadratic functions.

Lemma 25 (See [RRT17, Lemma 2]). If parts (i) and (ii) of Assumption 1 hold, then for
all x ∈ Rd and z,

‖∇f(x, z)‖ ≤M‖x‖+B,

and
m

3
‖x‖2 − b

2
log 3 ≤ f(x, z) ≤ M

2
‖x‖2 +B‖x‖+A0.

The next lemma shows a 2-Wasserstein continuity result for functions of quadratic
growth. This lemma was also used in [RRT17] to study the SGLD dynamics.

Lemma 26 (See [PW16]). Let µ, ν be two probability measures on R2d with finite second
moments, and let G : R2d → R be a C1 function obeying

‖∇G(w)‖ ≤ c1‖w‖+ c2,

for some constants c1 > 0 and c2 ≥ 0. Then,∣∣∣∣∫
R2d

Gdµ−
∫
R2d

Gdν

∣∣∣∣ ≤ (c1σ + c2)W2(µ, ν),

where

σ2 = max

{∫
R2d

‖w‖2µ(dw),

∫
R2d

‖w‖2ν(dw)

}
.

The next lemma shows a uniform stability of πz. Note that the x−marginal of πz(dx, dv)
for the underdamped diffusion is the same as the stationary distribution for the overdamped
diffusion studied in [RRT17]. For two n−tuples z = (z1, . . . , zn), z = (z1, . . . , zn) ∈ Zn, we
say z and z differ only in a single coordinate if card|{i : zi 6= zi}| = 1.

69



Lemma 27 (Proposition 12, [RRT17]). For any two z, z ∈ Zn that differ only in a single
coordinate,

sup
z∈Z

∣∣∣∣∫
R2d

f(x, z)πz(dx, dv)−
∫
R2d

f(x, z)πz(dx, dv)

∣∣∣∣ ≤ 4βcLS
n

(
M2

m
(b+ d/β) +B2

)
,

where

cLS ≤
2m2 + 8M2

m2Mβ
+

1

λ∗

(
6M(d+ β)

m
+ 2

)
,

where λ∗ is the uniform spectral gap for overdamped Langevin dynamics:

λ∗ = inf
z∈Zn

inf

{
β−1

∫
Rd ‖∇g‖

2dπz∫
Rd g

2dπz
: g ∈ C1(Rd) ∩ L2(πz), g 6= 0,

∫
Rd
gdπz = 0

}
.

The next lemma show that for large values of β, the x−marginal of the stationary
distribution πz(dx, dv) is concentrated at the minimizer of Fz. Note in Proposition 11 of
[RRT17], they have the assumption β ≥ 2/m, which seems to be only used to derive their
Lemma 4, but not used in deriving their Proposition 11.

Lemma 28 (Proposition 11, [RRT17]). It holds that∫
R2d

Fz(x)πz(dx, dv)− min
x∈Rd

Fz(x) ≤ d

2β
log

(
eM

m

(
bβ

d
+ 1

))
.

F Proof of Proposition 11

Let us first prove that λ∗ = O(a−2). We first recall that λ∗ is the uniform spectral gap for
overdamped Langevin dynamics:

λ∗ := inf
z∈Zn

inf

{
β−1

∫
Rd ‖∇g‖

2dπz∫
Rd g

2dπz
: g ∈ C1(Rd) ∩ L2(πz), g 6= 0,

∫
Rd
gdπz = 0

}
.

In particular, fix any z ∈ Zn so that for every g ∈ C1(Rd) ∩ L2(πz), such that g 6= 0,
and

∫
Rd gdπz = 0, we have

λ∗ ≤
β−1

∫
Rd ‖∇g‖

2e−βFz(x)dx∫
Rd g

2e−βFz(x)dx
.

It follows from Lemma 25 that

m

3
‖x‖2 − b

2
log 3 ≤ Fz(x) ≤ M2

2
‖x‖2 +B‖x‖+A0, (F.1)

with m = m1a
−2, M = M1a

−2, and B = B1a
−1.
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Next, let us take the test function g1(x) := ‖x‖2. And we further define

c1 :=

∫
Rd
g1dπz =

∫
Rd g1(x)e−βFz(x)dx∫

Rd e
−βFz(x)dx

, (F.2)

and we also define
g(x) := g1(x)− c1,

so that g ∈ C1(Rd) ∩ L2(πz), g 6= 0, and
∫
Rd gdπz = 0. Moreover, we have

‖∇g(x)‖ = ‖∇g1(x)‖ = 2‖x‖, and g1(ax) = a2g1(x) = a2‖x‖2.

Next, by the definition of c1 in (F.2) and the bounds in (F.1), we get

c1 ≥
∫
Rd ‖x‖

2e−β(M
2

2
‖x‖2+B‖x‖+A0)dx∫

Rd e
−β(m

3
‖x‖2− b

2
log 3)dx

=

∫
Rd ‖ax‖

2e−β(M
2

2
‖ax‖2+B‖ax‖+A0)dx∫

Rd e
−β(m

3
‖ax‖2− b

2
log 3)dx

= a2c1,

c1 ≤
∫
Rd ‖x‖

2e−β(m
3
‖x‖2− b

2
log 3)dx∫

Rd e
−β(M

2

2
‖x‖2+B‖x‖+A0)dx

=

∫
Rd ‖ax‖

2e−β(m
3
‖ax‖2− b

2
log 3)dx∫

Rd e
−β(M

2

2
‖ax‖2+B‖ax‖+A0)dx

= a2c1,

where

c1 :=

∫
Rd ‖x‖

2e−β(
M2

1
2
‖x‖2+B1‖x‖+A0)dx∫

Rd e
−β(

m1
3
‖x‖2− b

2
log 3)dx

,

c1 :=

∫
Rd ‖x‖

2e−β(
m1
3
‖x‖2− b

2
log 3)dx∫

Rd e
−β(

M2
1

2
‖x‖2+B1‖x‖+A0)dx

.

Hence, we have

λ∗ ≤
β−1

∫
Rd ‖∇g(x)‖2e−β(m

3
‖x‖2− b

2
log 3)dx∫

Rd g(x)2e−β(M
2

2
‖x‖2+B‖x‖+A0)dx

=
β−1

∫
Rd 4‖x‖2e−β(m

3
‖x‖2− b

2
log 3)dx∫

Rd(g1(x)− c1)2e−β(M
2

2
‖x‖2+B‖x‖+A0)dx

=
β−1

∫
Rd 4‖ax‖2e−β(m

3
‖ax‖2− b

2
log 3)dx∫

Rd(g1(ax)− c1)2e−β(M
2

2
‖ax‖2+B‖ax‖+A0)dx

≤
β−1

∫
Rd 4‖ax‖2e−β(m

3
‖ax‖2− b

2
log 3)dx

mina2c1≤c̃≤a2c1

∫
Rd(a

2‖x‖2 − c̃)2e−β(M
2

2
‖ax‖2+B‖ax‖+A0)dx

= a−2 β−1
∫
Rd 4‖x‖2e−β(

m1
3
‖x‖2− b

2
log 3)dx

minc1≤c≤c1
∫
Rd(‖x‖2 − c)2e−β(

M2
1

2
‖x‖2+B1‖x‖+A0)dx

,
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where we used m = m1a
−2, M = M1a

−2, B = B1a
−1 and g1(ax) = a2g1(x) = a2‖x‖2.

Hence, we conclude that λ∗ = O(a−2).
Next, let us prove that µ∗ = Θ(a−1). We recall that µ∗ the convergence rate for

underdamped Langevin dynamics is given by:

µ∗ =
γ

768
min

{
λMγ−2,Λ1/2e−ΛMγ−2,Λ1/2e−Λ

}
,

where

Λ =
12

5
(1 + 2α1 + 2α2

1)(d+A)Mγ−2λ−1(1− 2λ)−1, α1 = (1 + Λ−1)Mγ−2,

where λ,A come from the drift condition (2.2), and from [GGZ20], we can take

λ =
1

2
min

(
1

4
,

m

M + γ2/2

)
, A =

β

2

m

M + 1
2γ

2

(
B2

2M + γ2
+

b

m

(
M +

1

2
γ2

)
+A0

)
.

(F.3)
Note that µ∗ depends on the objective function Fz only via the parameters from its prop-
erties, which is independent of z. Recall that m = m1a

−2, M = M1a
−2, B = B1a

−1. We
define γ =: γ1a

−1 so that γ1 is independent of a and

µ∗ = a−1 γ1

768
min

{
λM1γ

−2
1 ,Λ1/2e−ΛM1γ

−2
1 ,Λ1/2e−Λ

}
, (F.4)

where we can check that λ, Λ are independent of a. Then, we can see from (F.4) that µ∗
is linear in a−1 so that we have µ∗ = Θ(a−1). The proof is complete.

G Explicit dependence of constants on key parameters

In this section we provide explicit dependence of constants on parameters β, d, µ∗, λ∗ and
n, which is used in Section 5. To simplify the presentation, we use the notation Õ, Θ̃ to
hide factors that depend on other parameters.

We recall the constants from Table 1. It is easy to see that

A = Θ̃(β), α1 = Θ̃(1), Λ = Θ̃(d+ β),

where we take A as in (F.3) and

µ∗ = Θ̃
(√

d+ βe−Λ
)

= Θ̃
(√

d+ βe−Θ̃(d+β)
)
. (G.1)

Since ε1 = Õ(µ∗/(d+ β)), and µ∗ is exponentially small in β + d, we get that

Hρ(µ0) = Õ(R1) = (1 + d/β)1/2.
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In addition, in view of (G.1), it follows that

C = Õ
(
eΛ/2(d+ β)1/2β−1/2µ

−1/2
∗

)
= Õ

(
(d+ β)3/4β−1/2

µ∗

)
.

The structure of the initial distribution µ0(dx, dv) would affect the overall dependence on
β, d. Since we assumed in Section 5 that µ0(dx, dv) is supported on a Euclidean ball with
radius being a universal constant, then the Lyapunov function V in (2.1) is linear in β. We
can then obtain∫

R2d

V(x, v)µ0(dx, dv) = Õ(β),

∫
R2d

eαV(x,v)µ0(dx, dv) = eÕ(β),

It follows that

Cdx = Õ ((β + d)/β) , Cdv = Õ ((β + d)/β) , σ = Õ
(√

(β + d)/β
)
.

Next, we have α0 = Õ(β) and α = Õ(1), and

γ̂ = Õ(
√

(β + d)/β),

C0 = Õ
(

(d+ β)/
√
β
)
, C1 = Õ

(
(d+ β)/

√
β
)
, C2 = Õ

(√
(d+ β)/β

)
.

Moreover, by the definition of Ĉ1 in (B.8), we get

Ĉ1 = Õ
(

(d+ β)/
√
β
)
.

Hence, from (3.6), we obtain

J 0(ε) = Õ

(
(d+ β)3/2

µ∗β5/4
ε

)
,

and from (3.2), we get

J1(ε) = Õ

(
(d+ β)3/2

β(µ∗)3/2

(
(log(1/ε))3/2δ1/4 + ε

)√
log(µ−1

∗ log(ε−1)) +
d+ β

β

ε2

µ∗(log(1/ε))2

)
.

Moreover, from (4.1), we get

Ĵ1(ε) = Õ

(
(d+ β)3/2

β
√
µ∗

(√
log(1/ε)δ1/4 + ε

)√
log(µ−1

∗ log(ε−1))

)
.

Finally, from (3.5) and (3.7), we have

J2 = Õ
(
d

β
log(β + 1)

)
, and J3(n) = Õ

(
1

n

(β + d)2

λ∗

)
.
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H Proof of Lemma 13 and Lemma 15

H.1 Proof of Lemma 13

Since the distribution of Ain has compact support, we have ‖ai‖ ≤ D for some D > 0. Let
si := 〈ai, x〉. By taking the gradient of f(x, zi) with respect to x, we obtain

∇f(x, zi) = −2 (yi − σ(si))σ
′(si)ai + λrx. (H.1)

This implies

〈∇f(x, zi), x〉 = −2 (yi − σ(si))σ
′(si)si + λr‖x‖2 (H.2)

≥ λr‖x‖2 − 2(1 + ‖σ‖∞)‖σ′‖∞|si| (H.3)

≥ λr‖x‖2 − 2(1 + ‖σ‖∞)‖σ′‖∞D‖x‖ , (H.4)

where we used the triangle inequality and the Cauchy-Schwartz inequality. Then, it is
straightforward to check that we obtain 〈∇f(x, zi), x〉 ≥ m‖x‖2 − b for

m = λr/2, b = 8(1 + ‖σ‖∞)2‖σ′‖2∞D2/λr ,

and therefore part (iii) of Assumption 1 holds. Also for any z = (a, y), |f(0, z)| = |(y −
σ(0))2| ≤ A0 for A0 = (1 + ‖σ(0)‖)2. Similarly, ‖∇f(0, z)‖ = ‖ − 2(y − σ(0))σ′(0)a‖ ≤ B1

for
B1 := 2(1 + |σ(0)|)|σ′(0)|D.

Therefore, part (i) of Assumption 1 holds for any B ≥ B1. We also have the Hessian matrix

∇2f(x, zi) = 2[σ′(si)]
2aia

T
i − 2(yi − σ(si))σ

′′(si)aia
T
i + λrId ,

where Id is the d× d identity matrix. Hence, ‖∇2f(x, zi)‖ ≤M1 where

M1 = 2‖σ′‖2∞D2 + 2 (1 + ‖σ‖∞) ‖σ′′‖∞D2 + λr.

Therefore, part (ii) of Assumption 1 also holds for M = M1. In particular, ∇f(x, zj) is
also i.i.d. and we have E[∇f(x, zj)] = ∇Fz(x) for any x ∈ Rd. Furthermore, it follows
from (H.1) that

‖∇f(x, zj)‖ ≤ B2 + λr‖x‖, where B2 := 2 (1 + ‖σ‖∞) ‖σ′‖∞D,

for any zj . Therefore, if we let uj := ∇f(x, zj)−∇Fz(x), then uj are i.i.d. with E[uj ] = 0
and

E‖uj‖2 ≤ 2E
[
‖∇f(x, zj)‖2

]
+ 2E

[
‖∇Fz(x)‖2

]
≤ 4(B2 + λr‖x‖)2

≤ 8B2
2 + 8λ2

r‖x‖2 , (H.5)
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where we used Cauchy-Schwarz inequality. This implies

E
[
‖g(x, Uz)−∇Fz(x)‖2

]
= E

∥∥∥∥∥∥ 1

nb

nb∑
j=1

uj

∥∥∥∥∥∥
2

=
1

n2
b

nb∑
j=1

E‖uj‖2 ≤ 2δ(M2‖x‖2 +B2) (H.6)

for any δ ∈ [ 1
4nb

, 1), M ≥ M2 := 4λr, B ≥ B2 := 4M2 where we used (H.5) and the
fact that uj are i.i.d. with mean zero. If we choose, for instance, M = M1 + M2, B =
max(B1, B2) = B2; we observe that part (i) and (iv) of Assumptions 1 hold.

H.2 Proof of Lemma 15

We set ri = yi − 〈ai, x〉 and follow a similar approach to the proof of Lemma 13.
We can compute that

∇f(x, zi) = −ρ′(ri)ai + λrx.

This leads to

〈∇f(x, zi), x〉 = −ρ′(ri)〈ai, x〉+ λr‖x‖2 ≥ λr‖x‖2 − ‖ρ′‖D‖x‖ ≥ m‖x‖2 − b , (H.7)

with

m = λr/2, b =
2‖ρ′‖2∞D2

λr
,

Therefore, part (iii) of Assumption 1 holds. We have also

|f(0, zi)| ≤ |ρ(yi)|, ∇f(0, zi) = −‖ρ′(yi)ai‖ ≤ ‖ρ′‖∞D

for any zi. Therefore, part (i) of Assumption 1 holds with A0 = ‖ρ‖∞ and B = ‖ρ′‖∞D.
Since

∇2f(0, zi) = ρ′′(ri)aia
T
i + λrId ,

where Id is the d× d identity matrix, we also have∥∥∇2f(0, zi)
∥∥ ≤ ‖ρ′′‖∞D2 + λr.

Therefore, part (ii) of Assumption 1 holds for any M ≥ ‖ρ′′‖∞D2 + λr. We have also

‖∇f(x, zi)‖ ≤ ‖ρ′‖∞D + λr‖x‖.

Therefore, if we let vj = ∇f(x, zj)−∇Fz(x), then vj are i.i.d. with E[vj ] = 0 and

E‖vj‖2 ≤ 2E
[
‖∇f(x, zj)‖2

]
+ 2E

[
‖∇Fz(x)‖2

]
≤ 4

(
‖ρ′‖∞D + λr‖x‖

)2
≤ 8

(
‖ρ′‖2∞D2 + 8λ2

r‖x‖2
)
, (H.8)
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where we used Cauchy-Schwarz inequality. This implies

E
[
‖g(x, Uz)−∇Fz(x)‖2

]
= E

∥∥∥∥∥∥ 1

nb

nb∑
j=1

vj

∥∥∥∥∥∥
2

=
1

n2
b

nb∑
j=1

E‖vj‖2 ≤ 2δ(M2‖x‖2 +B2) (H.9)

for any δ ∈ [ 1
4nb

, 1) and M2 ≥ 4λr and B ≥ 4‖ρ′‖∞D where we used (H.8) and the fact that

vj are i.i.d. with mean zero. We conclude that Assumption 1 work for M = ‖ρ′′‖∞D2 +5λr
and B = 4‖ρ′‖∞D.
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