
ar
X

iv
:1

81
1.

03
09

3v
1 

 [
cs

.D
S]

  7
 N

ov
 2

01
8

An Optimal Approximation for Submodular Maximization under a

Matroid Constraint in the Adaptive Complexity Model

Eric Balkanski
Harvard University

ericbalkanski@g.harvard.edu

Aviad Rubinstein
Stanford University

aviad@cs.stanford.edu

Yaron Singer
Harvard University

yaron@seas.harvard.edu

Abstract

In this paper we study submodular maximization under a matroid constraint in the adaptive
complexity model. This model was recently introduced in the context of submodular optimiza-
tion in [BS18a] to quantify the information theoretic complexity of black-box optimization in
a parallel computation model. Informally, the adaptivity of an algorithm is the number of
sequential rounds it makes when each round can execute polynomially-many function evalu-
ations in parallel. Since submodular optimization is regularly applied on large datasets we
seek algorithms with low adaptivity to enable speedups via parallelization. Consequently, a
recent line of work has been devoted to designing constant factor approximation algorithms
for maximizing submodular functions under various constraints in the adaptive complexity
model [BS18a, BS18b, BBS18, BRS19, EN19, FMZ19, CQ19, ENV18, FMZ18].

Despite the burst in work on submodular maximization in the adaptive complexity model,
the fundamental problem of maximizing a monotone submodular function under a matroid
constraint has remained elusive. In particular, all known techniques fail for this problem and
there are no known constant factor approximation algorithms whose adaptivity is sublinear in
the rank of the matroid k or in the worst case sublinear in the size of the ground set n.

In this paper we present an approximation algorithm for the problem of maximizing a mono-
tone submodular function under a matroid constraint in the adaptive complexity model. The
approximation guarantee of the algorithm is arbitrarily close to the optimal 1− 1/e and it has
near optimal adaptivity of O(log(n) log(k)). This result is obtained using a novel technique
of adaptive sequencing which departs from previous techniques for submodular maximization
in the adaptive complexity model. In addition to our main result we show how to use this
technique to design other approximation algorithms with strong approximation guarantees and
polylogarithmic adaptivity.

0

http://arxiv.org/abs/1811.03093v1


1 Introduction

In this paper we study submodular maximization under matroid constraints in the adaptive com-
plexity model. The adaptive complexity model was recently introduced in the context of submodular
optimization in [BS18a] to quantify the information theoretic complexity of black-box optimization
in a parallel computation model. Informally, the adaptivity of an algorithm is the number of se-
quential rounds it makes when each round can execute polynomially-many function evaluations in
parallel. The concept of adaptivity is heavily studied in computer science and optimization as it
provides a measure of efficiency of parallel computation.

Since submodular optimization is regularly applied on very large datasets, we seek algorithms
with low adaptivity to enable speedups via parallelization. For the basic problem of maximizing
a monotone submodular function under a cardinality constraint k the celebrated greedy algorithm
which iteratively adds to the solution the element with largest marginal contribution is Ω(k) adap-
tive. Until very recently, even for this basic problem, there was no known constant-factor approxi-
mation algorithm whose adaptivity is sublinear in k. In the worst case k ∈ Ω(n) and hence greedy
and all other algorithms had adaptivity that is linear in the size of the ground set.

The main result in [BS18a] is an adaptive sampling algorithm for maximizing a monotone
submodular function under a cardinality constraint that achieves a constant factor approximation
arbitrarily close to 1/3 in O(log n) adaptive rounds as well as a lower bound that shows that
no algorithm can achieve a constant factor approximation in õ(log n) rounds. Consequently, this
algorithm provided a constant factor approximation with an exponential speedup in parallel runtime
for monotone submodular maximization under a cardinality constraint.

In [BRS19, EN19], the adaptive sampling technique was extended to achieve an approximation
guarantee arbitrarily close to the optimal 1 − 1/e in O(log n) adaptive rounds. This result was
then obtained with a linear number of queries [FMZ19], which is optimal. Functions with bounded
curvature have also been studied using adaptive sampling under a cardinality constraint [BS18b].
The more general family of packing constraints, which includes partition and laminar matroids, has
been considered in [CQ19]. In particular, under m packing constraints, a 1 − 1/e − ǫ approxima-
tion was obtained in O(log2 m log n) rounds using a combination of continuous optimization and
multiplicative weight update techniques.

1.1 Submodular maximization under a matroid constraint

For the fundamental problem of maximizing a monotone submodular function under a general ma-
troid constraint it is well known since the late 70s that the greedy algorithm achieves a 1/2 approxi-
mation [NWF78] and that even for the special case of cardinality constraint no algorithm can obtain
an approximation guarantee better than 1 − 1/e using polynomially-many value queries [NW78].
Thirty years later, in seminal work, Vondrák introduced the continuous greedy algorithm which ap-
proximately maximizes the multilinear extension of the submodular function [CCPV07] and showed
it obtains the optimal 1− 1/e approximation guarantee [Von08].

Despite the surge of interest in adaptivity of submodular maximization, the problem of max-
imizing a monotone submodular function under a matroid constraint in the adaptive complexity
model has remained elusive. As we discuss in Section 1.4, when it comes to matroid constraints
there are fundamental limitations of the techniques developed in this line of work. The best known
adaptivity for obtaining a constant factor approximation guarantee for maximizing a monotone
submodular function under a matroid constraint is achieved by the greedy algorithm and is linear

1



in the rank of the matroid. The best known adaptivity for obtaining the optimal 1− 1/e guarantee
is achieved by the continuous greedy and is linear in the size of the ground set.

Is there an algorithm whose adaptivity is sublinear in the size of the rank of the matroid that

obtains a constant factor approximation guarantee?

1.2 Main result

Our main result is an algorithm for the problem of maximizing a monotone submodular function
under a matroid constraint whose approximation guarantee is arbitrarily close to the optimal 1−1/e
and has near optimal adaptivity of O(log(n) log(k)).

Theorem. For any ǫ > 0 there is an O
(

log(n) log
(

k
ǫ3

)

1
ǫ3

)

adaptive algorithm that, with probability

1− o(1), obtains a 1− 1/e−O(ǫ) approximation for maximizing a monotone submodular function

under a matroid constraint.

Our result provides an exponential improvement in the adaptivity for maximizing a monotone
submodular function under a matroid constraint with an arbitrarily small loss in approximation
guarantee. As we later discuss, beyond the information theoretic consequences, this implies that
a very broad class of combinatorial optimization problems can be solved exponentially faster in
standard parallel computation models given appropriate representations of the matroid constraints.

Our main result is largely powered by a new technique developed in this paper which we call
adaptive sequencing. This technique proves to be extremely powerful and is a departure from all
previous techniques for submodular maximization in the adaptive complexity model. In addition
to our main result we show that this technique gives us a set of other strong results that include:

• An O(log(n) log(k)) adaptive combinatorial algorithm that obtains a 1
2 − ǫ approximation for

monotone submodular maximization under a matroid constraint (Theorem 1);

• An O(log(n) log(k)) adaptive combinatorial algorithm that obtains a 1
P+1 − ǫ approximation

for monotone submodular maximization under intersection of P matroids (Theorem 7);

• An O(log(n) log(k)) adaptive algorithm that obtains an approximation of 1−1/e−ǫ for mono-
tone submodular maximization under a partition matroid constraint that can be implemented
in the PRAM model with polylogarithmic depth (Appendix A).

In addition to these results the adaptive sequencing technique can be used to design algorithms
that achieve the same results as those for cardinality constraint in [BRS19, EN19, FMZ19] and for
non-monotone submodular maximization under cardinality constraint as in [BBS18] (Appendix A).

1.3 Technical overview

The standard approach to obtain an approximation guarantee arbitrarily close to 1− 1/e for maxi-
mizing a submodular function under a matroid constraintM is by the continuous greedy algorithm
due to Vondrák [Von08]. This algorithm approximately maximizes the multilinear extension F of
the submodular function [CCPV07] in O(n) adaptive steps. In each step the algorithm updates a
continuous solution x ∈ [0, 1] in the direction of 1S , where S is chosen by maximizing an additive
function under a matroid constraint.

2



In this paper we introduce the accelerated continuous greedy algorithm whose approximation is
arbitrarily close to the optimal 1−1/e. Similarly to continuous greedy, this algorithm approximately
maximizes the multilinear extension by carefully choosing S ∈ M and updating the solution in the
direction of 1S . In sharp contrast to continuous greedy, however, the choice of S is done in a manner
that allows making a constant number of updates to the solution, each requiring O(log(n) log(k))
adaptive rounds. We do this by constructing a feasible set S usingO(log(n) log(k)) adaptive rounds,
at each one of the 1/λ iterations of accelerated continuous greedy, s.t. S approximately maximizes
the contribution of taking a step of constant size λ in the direction of 1S . We construct S via a
novel combinatorial algorithm introduced in Section 2.

The new combinatorial algorithm achieves by itself a 1/2 approximation for submodular max-
imization under a matroid constraint in O(log(n) log(k)) adaptive rounds. This algorithm is de-
veloped using a fundamentally different approach from all previous low adaptivity algorithms for
submodular maximization (see discussion in Section 1.4). This new framework uses a single random
sequence (a1, . . . , ak) of elements. In particular, for each i ∈ [k], element ai is chosen uniformly at
random among all elements such that S ∪ {a1, . . . , ai} ∈ M. This random feasibility of each ele-
ment is central to the analysis. Informally, this ordering allows the sequence to navigate randomly
through the matroid constraint. For each position i in this sequence, we analyze the number of
elements a such that S ∪ {a1, . . . , ai} ∪ a ∈ M and fS∪{a1,...,ai}(a) is large. The key observation is
that if this number is large at a position i, by the randomness of the sequence, fS∪{a1,...,ai}(ai+1) is
large w.h.p., which is important for the approximation. Otherwise, if this number is low we discard
a large number of elements, which is important for the adaptivity.

In Section 3 we analyze the approximation of the accelerated continuous greedy algorithm, which
is the main result of the paper. We use the algorithm from Section 2 to selects S as the direction
and show F (x+ λ1S)− F (x) ≥ (1− ǫ)λ(OPT− F (x)), which implies a 1− 1/e− ǫ approximation.

Finally, in Section 4 we parallelize the matroid oracle queries. The random sequence generated
in each iteration of the combinatorial algorithm in Section 2 is independent of function evalua-
tions and requires zero adaptive rounds, though it sequentially queries the matroid oracle. For
practical implementation it is important to parallelize the matroid queries to achieve fast parallel
runtime. When given explicit matroid constraints such as for uniform or partition matroids, this
parallelization is relatively simple (Section A). For general matroid constraints given via rank or
independence oracles we show how to parallelize the matroid queries in Section 4. We give upper
and lower bounds by building on the seminal work of Karp, Upfal, and Wigderson on the parallel
complexity of finding the base of a matroid [KUW88]. For rank oracles we show how to execute the
algorithms with O(log(n) log(k)) parallel steps that matches the O(log(n) log(k)) adaptivity. For
independence oracles we show how to execute the algorithm using Õ(n1/2) steps of parallel matroid
queries and give an Ω̃(n1/3) lower bound even for additive functions and partition matroids.

1.4 Previous optimization techniques in the adaptive complexity model

The random sequencing approach developed in this paper is a fundamental departure from the
adaptive sampling approach introduced in [BS18a] and employed in previous combinatorial algo-
rithms that achieve low adaptivity for submodular maximization [BS18b, BBS18, BRS19, EN19,
FMZ19, FMZ18]. In adaptive sampling an algorithm samples multiple large feasible sets at every
iteration to determine elements which should be added to the solution or discarded. The issue with
these uniformly random feasible sets is that, although they have a simple structure for uniform
matroids, they are complex objects to generate and analyze for general matroid constraints.

3



Chekuri and Quanrud recently obtained a 1 − 1/e − ǫ approximation in O(log2 m log n) adap-
tive rounds for the family of m packing constraints, which includes partition and laminar ma-
troids [CQ19]. This setting was then also considered for non-monotone functions in [ENV18].
Their approach also uses the continuous greedy algorithm, combined with a multiplicative weight
update technique to handle the constraints. Since general matroids consist of exponentially many
constraints, a multiplicative weight update approach over these constraints is not feasible. More
generally packing constraints assume an explicit representation of the matroid. For general ma-
troid constraints, the algorithm is not given such a representation but an oracle. Access to an
independence oracle for a matroid breaks these results as shown in Section 4: any constant factor
approximation algorithm with an independence oracle must have Ω̃(n1/3) sequential steps.

1.5 Preliminaries

Submodularity. A function f : 2N → R+ over ground set N = [n] is submodular if the marginal
contributions fS(a) := f(S ∪ a) − f(S) of an element a ∈ N \ S to a set S ⊆ N are diminishing,
meaning fS(a) ≥ fT (a) for all S ⊆ T ⊆ N and a ∈ N \T . Throughout the paper, we abuse notation
by writing S ∪ a instead of S ∪ {a} and assume f is monotone, so f(S) ≤ f(T ) for all S ⊆ T .
The value of the optimal solution O for the problem of maximizing the submodular function under
some constraintM is denoted by OPT, i.e. O := argmaxS∈M f(S) and OPT := f(O).

Adaptivity. Given a value oracle for f , an algorithm is r-adaptive if every query f(S) for the
value of a set S occurs at a round i ∈ [r] s.t. S is independent of the values f(S′) of all other
queries at round i, with at most poly(n) queries at every round.

Matroids. A set systemM⊆ 2N is amatroid if it satisfies the downward closed and augmentation

properties. A set system M is downward closed if for all S ⊆ T such that T ∈ M, then S ∈ M.
The augmentation property is that if S, T ∈ M and |S| < |T |, then there exists a ∈ T such that
S ∪ a ∈ M. We call a set S ∈ M feasible or independent. The rank k = rank(M) of a matroid
is the maximum size of an independent set S. The rank rank(S) of a set S is the maximum size
of an independent subset T ⊆ S. A set B ∈ M is called a base of M if |B| = rank(M). The
matroid polytope P (M) is the collection of points x ∈ [0, 1]n in the convex hull of the independent
sets ofM, or equivalently the points x such that

∑

i∈S xi ≤ rank(S) for all S ⊆ [n].

The multilinear extension. The multilinear extension F : [0, 1]n → R+ of a function f maps a
point x ∈ [0, 1]n to the expected value of a random set R ∼ x containing each element i ∈ [n] with
probability xi independently, i.e. F (x) = ER∼x[f(R)]. We note that given an oracle for f , one
can estimate F (x) arbitrarily well in one round by querying in parallel a sufficiently large number

of samples R1, . . . , Rm
i.i.d.∼ x and taking the average value of f(Ri) over i ∈ [m] [CJV15, CQ19].

For ease of presentation, we assume throughout the paper that we are given access to an exact
value oracle for F in addition to f . The results which rely on F then extend to the case where the
algorithm is only given an oracle for f with an arbitrarily small loss in the approximation, no loss
in the adaptivity, and additional O(n log n) factor in the query complexity.1

1With O(ǫ−2n log n) samples, F (x) is estimated within a (1±ǫ) multiplicative factor with high probability[CQ19].

4



2 The Combinatorial Algorithm

In this section we describe a combinatorial algorithm used at every iteration of the accelerated
continuous greedy algorithm to find a direction 1S for an update of a continuous solution. In the
next section we will show how to use this algorithm as a subprocedure in the accelerated continu-
ous greedy algorithm to achieve an approximation arbitrarily close to 1−1/e with O(log(n) log(k))
adaptivity. The optimization of this direction S is itself an instance of maximizing a monotone sub-
modular function under a matroid constraint. The main result of this section is a O(log(n) log(k))
adaptive algorithm, which we call Adaptive Sequencing, that returns a solution {ai}i s.t., for
all i, the marginal contribution of ai to {a1, . . . , ai−1} is near optimal with respect to all elements a
s.t. {a1, . . . , ai−1, a} ∈ M. We note that this guarantee also implies that Adaptive Sequencing

itself achieves an approximation that is arbitrarily close to 1/2 with high probability.
As discussed in Section 1.3 unlike all previous low-adaptivity combinatorial algorithms for sub-

modular maximization, the Adaptive Sequencing algorithm developed here does not iteratively
sample large sets of elements in parallel at every iteration. Instead, it samples a single random se-

quence of elements in every iteration. Importantly, this sequence is generated without any function
evaluations, and therefore can be executed in zero adaptive rounds. The goal is then to identify a
high-valued prefix of the sequence that can be added to the solution and discard a large number of
low-valued elements at every iteration. Identifying a high valued prefix enables the approximation
guarantee and discarding a large number of elements in every iteration ensures low adaptivity.

2.1 Generating random feasible sequences

The algorithm crucially requires generating a random sequence of elements in zero adaptive rounds.

Definition 1. Given a matroidM we say that (a1, . . . , arank(M)) is a random feasible sequence

if for all i ∈ [rank(M)], ai is an element chosen u.a.r. from {a : {a1, . . . , ai−1, a} ∈ M}.

A simple way to obtain a random feasible sequence is by sampling feasible elements sequentially.

Algorithm 1 Random Sequence

Input: matroidM
for i = 1 to rank(M) do

X ← {a : {a1, . . . , ai−1, a} ∈ M}
ai ∼ a uniformly random element from X

return a1, . . . , arank(M)

It is immediate that Algorithm 1 outputs a random feasible sequence. Since Algorithm 1 is
independent of f , its adaptivity is zero. For ease of presentation, we describe the algorithm using
Random Sequence as a subroutine, despite its sequential calls to the matroid oracle. In Section 4
we show how to efficiently parallelize this procedure using standard matroid oracles.

2.2 The algorithm

The main idea behind the algorithm is to generate a random feasible sequence in each adaptive
round, and use that sequence to determine which elements should be added to the solution and
which should be discarded from consideration. Given a position i ∈ {1, . . . , l} in a sequence

5



(a1, a2, . . . , al), a subset S, and threshold t, we say that an element a is good if adding it to
S ∪ {a1, . . . , ai} satisfies the matroid constraint and its marginal contribution to S ∪ {a1, . . . , ai} is
at least threshold t. In each adaptive round the algorithm generates a random feasible sequence and
finds the index i⋆ which is the minimal index i such that at most a 1− ǫ fraction of the surviving
elements X are good. The algorithm then adds the set {a1, . . . , ai⋆} to S. A formal description of
the algorithm is included below. We useM(S,X) := {T ⊆ X : S ∪ T ∈M} to denote the matroid
over elements X where a subset is feasible in M(X,S) if its union with the current solution S is
feasible according toM.

Algorithm 2 Adaptive Sequencing

Input: function f , feasibility constraintM
S ← ∅, t← maxa∈N f(a)
for ∆ iterations do

X ← N
while X 6= ∅ do

a1, . . . , arank(M(S,X)) ← Random Sequence(M(S,X))
Xi ← {a ∈ X : S ∪ {a1, . . . , ai, a} ∈ M and fS∪{a1,...,ai}(a) ≥ t}
i⋆ ← min {i : |Xi| ≤ (1− ǫ)|X|}
S ← S ∪ {a1, . . . , ai⋆}
X ← Xi⋆

t← (1− ǫ)t
return S

Intuitively, adding {a1, . . . , ai⋆} to the current solution S is desirable for two important reasons.
First, for a random feasible sequence we have that S ∪ {a1, . . . , ai⋆} ∈ M and for each element ai
at a position i ≤ i⋆, there is a high likelihood that the marginal contribution of ai to the previous
elements in the sequence is at least t. Second, by definition of i⋆ a constant fraction ǫ of elements
are not good at that position, and we discard these elements from X. This discarding guarantees
that there are at most logarithmically many iterations until X is empty.

The threshold t maintains the invariant that it is approximately an upper bound on the optimal
marginal contribution to the current solution. By submodularity, the optimal marginal contribution
to S decreases as S grows. Thus, to maintain the invariant, the algorithm iterates over decreasing
values of t. In particular, at each of ∆ = O

(

1
ǫ log

(

k
ǫ

))

iterations, where k := rank(M), the
algorithm decreases t by a 1− ǫ factor when there are no more elements which can be added to S
with marginal contribution at least t, so when X is empty.

2.3 Adaptivity

In each inner-iteration the algorithm makes polynomially-many queries that are independent of
each other. Indeed, in each iteration, we generate X1, . . . ,Xk−|S| non-adaptively and make at most
n function evaluations for each Xi. The adaptivity immediately follows from the definition of i⋆

that ensures an ǫ fraction of surviving elements in X are discarded at every iteration.

Lemma 1. With ∆ = O
(

1
ǫ log

(

k
ǫ

))

, Adaptive Sequencing has adaptivity O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

.

Proof. The for loop has ∆ iterations. The while loop has at most O(ǫ−1 log n) iterations since, by

6



definition of i⋆, an ǫ fraction of the surviving elements are discarded from X at every iteration. We
can find i⋆ by computing Xi for each i ∈ [k] in parallel in one round.

We note that the query complexity of the algorithm is O
(

nk log(n) log
(

k
ǫ

)

1
ǫ2

)

and can be

improved toO
(

n log(n) log(k) log
(

k
ǫ

)

1
ǫ2

)

if we allow O
(

log(n) log(k) log
(

k
ǫ

)

1
ǫ2

)

adaptivity by doing
a binary search over at most k sets Xi to find i⋆. The details can be found in Appendix B.

2.4 Approximation guarantee

The main result for the approximation guarantee is that the algorithm returns a solution S =
{a1, . . . , al} s.t. for all i ≤ l, the marginal contribution obtained by ai to {a1, . . . , ai−1} is near
optimal with respect to all elements a such that {a1, . . . , ai−1, a} ∈ M. To prove this we show that
the threshold t is an approximate upper bound on the maximum marginal contribution.

Lemma 2. Assume that f is submodular and that M is downward closed. Then, at any iteration,

t ≥ (1− ǫ)maxa:S∪a∈M fS(a).

Proof. The claim initially holds by the initial definitions of t = maxa∈N f(a), S = ∅ and X = N .
We show that this invariant is maintained through the algorithm when either S or t are updated.

First, assume that at some iteration of the algorithm we have t ≥ (1− ǫ)maxa:S∪a∈M fS(a) and
that S is updated to S ∪ {a1, . . . , ai⋆}. Then, for all a such that S ∪ a ∈ M,

fS∪{a1,...,ai⋆}(a) ≤ fS(a) ≤ t/(1− ǫ)

where the first inequality is by submodularity and the second by the inductive hypothesis. Since
{a : S ∪ {a1, . . . , ai⋆} ∪ a ∈ M} ⊆ {a : S ∪ a ∈ M} by the downward closed property ofM,

max
a:S∪{a1,...,ai⋆}∪a∈M

fS∪{a1,...,ai⋆}(a) ≤ max
a:S∪a∈M

fS∪{a1,...,ai⋆}(a).

Thus, when S is updated to S ∪ {a1, . . . , ai⋆}, we have t ≥ (1− ǫ)maxa:S∪{a1,...,ai⋆}∪a∈M fS(a).
Next, consider an iteration where t is updated to t′ = (1− ǫ)t. By the algorithm, X = ∅ at that

iteration with current solution S. Thus, by the algorithm, for all a ∈ N , a was discarded from X at
some previous iteration with current solution S′ s.t. S′∪{a1, . . . , ai⋆} ⊆ S. Since a was discarded, it
is either the case that S′∪{a1, . . . , ai⋆}∪a 6∈ M or fS∪{a1,...,ai⋆}(a) < t. If S′∪{a1, . . . , ai⋆}∪a 6∈ M
then S∪a 6∈ M by the downward closed property ofM and since S′∪{a1, . . . , ai⋆} ⊆ S. Otherwise,
fS′∪{a1,...,ai⋆}(a) < t and by submodularity, fS(a) ≤ fS′∪{a1,...,ai⋆}(a) < t = t′/(1−ǫ). Thus, ∀a ∈ N
s.t. S ∪ a ∈ M, t′ ≥ (1− ǫ)fS(a) and the invariant is maintained.

By exploiting the definition of i⋆ and the random feasible sequence property we show that
Lemma 2 implies that every element added to S at some iteration j has near-optimal expected
marginal contribution to S. We define XM

i := {a ∈ X : S ∪ {a1, . . . , ai} ∪ a ∈ M}.

Lemma 3. Assume that a1, . . . , arank(M(S,X)) is a random feasible sequence, then for all i ≤ i⋆,

Eai

[

fS∪{a1,...,ai−1}(ai)
]

≥ (1− ǫ)2 max
a:S∪{a1,...,ai−1}∪a∈M

fS∪{a1,...,ai−1}(ai).

7



Proof. By the random feasibility condition, we have ai ∼ U(XM
i−1). We get

Pr
ai

[

fS∪{a1,...,ai−1}(ai) ≥ t
]

· t = |Xi−1|
|XM

i−1|
· t ≥ |Xi−1|

|X| · t ≥ (1− ǫ)(1 − ǫ) max
a:S∪{a1,...,ai−1}∪a∈M

fSi−1(ai)

where the equality is by definition of Xi−1, the first inequality since XM
i−1 ⊆ X, and the second since

i ≤ i⋆ and by Lemma 2. Finally, note that E
[

fS∪{a1,...,ai−1}(ai)
]

≥ Pr
[

fS∪{a1,...,ai−1}(ai) ≥ t
]

·t.

Next, we show that if every element ai in a solution S = {a1, . . . , ak} of size k = rank(M)
has near-optimal expected marginal contribution to Si−1 := {a1, . . . , ai−1}, then we obtain an
approximation arbitrarily close to 1/2 in expectation.

Lemma 4. Assume that S = {a1, . . . , ak} such that Eai [fSi−1(ai)] ≥ (1− ǫ)maxa:Si−1∪a∈M fSi−1(a)
where Si = {a1, . . . , ai}. Then, for a matroid constraint M, we have E [f(S)] ≥ (1/2 −O(ǫ))OPT.

Proof. Let O = {o1, . . . , ok} such that {a1, . . . , ai−1, oi} is feasible for all i, which exists by the
augmentation property of matroids. We get,

E[f(S)] =
∑

i∈[k]

E[fSi−1(ai)] ≥ (1− ǫ)
∑

i∈[k]

E[fSi−1(oi)] ≥ (1− ǫ)fS(O) ≥ (1− ǫ)(OPT− f(S)).

A corollary of the lemmas above is that Adaptive Sequencing has O(log(n) log(k)) adaptive
rounds and provides an approximation that is arbitrarily close to 1/2, in expectation. To obtain
this guarantee with high probability we can simply run parallel instances of the while-loop in the
algorithm and include the elements obtained from the best instance. We also note that the solution
S returned by Adaptive Sequencing might have size smaller than rank(M), which causes an
arbitrarily small loss for sufficiently large ∆. We give the full details in Appendix B.

Theorem 1. For any ǫ > 0, there is an O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptive algorithm that obtains a

1/2−O(ǫ) approximation with probability 1−o(1) for maximizing a monotone submodular function

under a matroid constraint.

In Appendix B, we generalize this result and obtain a 1/(P + 1) − O(ǫ) approximation with
high probability for the intersection of P matroids.

3 The Accelerated Continuous Greedy Algorithm

In this section we describe the accelerated continuous greedy algorithm that achieves the main re-
sult of the paper. This algorithm employs the combinatorial algorithm from the previous section to
construct a continuous solution which approximately maximizes the multilinear relaxation F of the
function f . This algorithm requires O(log(n) log(k)) adaptive rounds and it produces a continuous
solution whose approximation to the optimal solution is with high probability arbitrarily close to
1 − 1/e. Finally, since the solution is continuous and we seek a feasible discrete solution, it re-
quires rounding. Fortunately, by using either dependent rounding [CVZ09] or contention resolution
schemes [VCZ11] this can be done with an arbitrarily small loss in the approximation guarantee
without any function evaluations, and hence without any additional adaptive rounds.

8



3.1 The algorithm

The accelerated continuous greedy algorithm follows the same principle as the (standard) continuous
greedy algorithm [Von08]: at every iteration, the solution x ∈ [0, 1]n moves in the direction of a
feasible set S ∈ M. The crucial difference between the accelerated continuous greedy and the
standard continuous greedy is in the choice of this set S guiding the direction in which x moves.
This difference allows the accelerated continuous greedy to terminate after a constant number of
iterations, each of which has O(log(n) log(k)) adaptive rounds, in contrast to the continuous greedy
which requires a linear number of iterations.

To determine the direction in every iteration, the accelerated continuous greedy applies Adap-

tive Sequencing on the surrogate function g that measures the marginal contribution to x when
taking a step of size λ in the direction of S. That is, g(S) := Fx(λS) = F (x + λS) − F (x) where
we abuse notation and write λS instead of λ1S for λ ∈ [0, 1] and S ⊆ N . Since f is a monotone
submodular function it is immediate that g is monotone and submodular as well.

Algorithm 3 Accelerated Continuous Greedy

Input: matroidM, step size λ
x← 0
for 1/λ iterations do

define g : 2N → R to be g(T ) = Fx(λT )
S ← Adaptive Sequencing(g,M)
x← x+ λS

return x

The analysis shows that in every one of the 1/λ iterations, Adaptive Sequencing finds S such
that the contribution of taking a step of size λ in the direction of S is approximately a λ fraction
of OPT− F (x). For any λ this is a sufficient condition for obtaining the 1− 1/e − ǫ guarantee.

The reason why the standard continuous greedy cannot be implemented with a constant number
of rounds 1/λ is that in every round it moves in the direction of 1S for S := argmaxT∈M

∑

a∈T g(a).
When λ is constant Fx(λS) is arbitrarily low due to the potential overlap between high valued
singletons (see Appendix C). Selecting S using Adaptive Sequencing is the crucial part of the
accelerated continuous greedy which allows implementing it in a constant number of iterations.

3.2 Analysis

We start by giving a sufficient condition on Adaptive Sequencing to obtain the 1− 1/e −O(ǫ)
approximation guarantee. The analysis is standard and the proof is deferred to Appendix C.

Lemma 5. For a given matroid M assume that Adaptive Sequencing outputs S ∈ M s.t.

ES [Fx(λS)] ≥ (1 − ǫ)λ(OPT − F (x)) at every iteration of Accelerated Continuous Greedy.

Then Accelerated Continuous Greedy outputs x ∈ P (M) s.t. E[F (x)] ≥ (1− 1/e − ǫ) OPT.

For a set S = {a1, . . . , ak} we define Si := {a1, . . . , ai} and Sj:k := {aj , . . . , ak}. We use this
notation in the lemma below. The lemma is folklore and proved in Appendix C for completeness.

Lemma 6. LetM be a matroid, then for any feasible sets S = {a1, . . . , ak} and O of size k, there
exists an ordering of O = {o1, . . . , ok} where for all i ∈ [k], Si ∪Oi+1:k ∈ M and Si ∩Oi+1:k = ∅.

9



The following lemma is key in our analysis. We argue that unless the algorithm already con-
structed S of sufficiently large value, the sum of the contributions of the optimal elements to S is
arbitrarily close to the desired λ(OPT− F (x)).

Lemma 7. Assume that g(S) ≤ λ(OPT− F (x)), then
∑

i gS\Oi:k
(oi) ≥ λ(1− λ)(OPT− F (x)).

Proof. We first lower bound this sum of marginal contribution of optimal elements with the con-
tribution of the optimal solution to the current solution x+ λS at the end of the iteration:

∑

i∈[k]

gS\Oi:k
(oi) =

∑

i∈[k]

Fx+λS\Oi:k
(λoi) ≥

∑

i∈[k]

Fx+Oi−1+λS(λoi) ≥ λ
∑

i∈[k]

Fx+Oi−1+λS(oi) = λFx+λS(O)

where the first inequality is by submodularity and the second by the multilinearity of F . In the
standard analysis of greedy algorithms the optimal solution O may overlap with the current solution.
In the continuous algorithm, since the algorithm takes steps of size λ, we can bound the overlap
between the solution at this iteration λS and the optimal solution:

Fx+λS(O) = Fx(O + λS)− Fx(λS) ≥ Fx(O)− λ(OPT− F (x)) = (1− λ) (OPT− F (x))

the first inequality is by monotonicity and lemma assumption and the second by monotonicity.

As shown in Lemma 6, Adaptive Sequencing picks elements ai with near-optimal marginal
contributions. Together with Lemma 7 we get the desired bound on the contribution of λS to x.

Lemma 8. Let ∆ = O
(

1
ǫ log

(

k
ǫλ

))

and λ = O(ǫ). For any x such that F (x) < (1 − 1/e)OPT, the
set S returned by Adaptive Sequencing(g,M) satisfies E [Fx(λS)] ≥ (1−O(ǫ))λ(OPT − F (x)).

Proof. Initially, we have ti < OPT. After ∆ = O
(

1
ǫ log

(

k
ǫλ

))

iterations of the outer loop of Adap-

tive Sequencing, we get tf = (1− ǫ)∆OPT = O
(

ǫλOPT
k

)

. We begin by adding dummy elements to
S so that |S| = k, which enables pairwise comparisons between S and O. In particular, we consider
S′, which is S together with rank(M) − |S| dummy elements a|S|+1, . . . ak such that, for any y
and λ, Fy(λa) = tf , which is the value of t when Adaptive Sequencing terminates. Thus, by
Lemma 2, for dummy elements ai, gSi−1(ai) = tf ≥ (1− ǫ)maxa:Si−1∪a∈M gSi−1(a).

We will conclude the proof by showing that S is a good approximation to S′. From Lemma 3
that the contribution of ai to Si−1 approximates the optimal contribution to Si−1:

E
[

Fx(λS
′)
]

=

k
∑

i=1

E
[

gSi−1(ai)
]

≥
k

∑

i=1

(1− ǫ)2 max
a:Si−1∪a∈M

gSi−1(ai).

By Lemma 6 and submodularity, we have maxa:Si−1∪a∈M gSi−1(ai) ≥ gS\Oi:k
(oi). By Lemma 7,

we also have
∑k

i=1 gS\Oi:k
(oi) ≥ λ(1− λ)(OPT− F (x)). Combining the previous pieces, we obtain

E
[

Fx(λS
′)
]

≥ (1− ǫ)2λ(1− λ)(OPT− F (x)).

We conclude by removing the value of dummy elements,

E [Fx(λS)] = E
[

Fx(λS
′)− Fx+λS(λ(S

′ \ S))
]

≥ E
[

Fx(λS
′)
]

− ktf ≥ E
[

Fx(λS
′)
]

− ǫλOPT.

The lemma assumes that F (x) < (1 − 1/e)OPT and λ = O(ǫ), so OPT ≤ e(OPT − F (x)) and
ǫλOPT = O(ǫ)λ(OPT − F (x)). We conclude that E [Fx(λS)] ≥ (1−O(ǫ))λ(OPT− F (x)).

10



The approximation guarantee of the Accelerated Continuous Greedy follows from lem-
mas 8 and 5, and the adaptivity from Lemma 1. We defer the proof to Appendix C.

Theorem 2. For any ǫ > 0 Accelerated Continuous Greedy makes O
(

log(n) log
(

k
ǫ2

)

1
ǫ2

)

adaptive rounds and obtains a 1−1/e−O(ǫ) approximation in expectation for maximizing a mono-

tone submodular function under a matroid constraint.

The final step in our analysis shows that the guarantee of Accelerated Continuous Greedy

holds not only in expectation but also with high probability. To do so we argue in the lemma below
that if over all iterations i, Fx(λS) is close on average over the rounds to λ(OPT−F (x)), we obtain
an approximation arbitrarily close to 1− 1/e with high probability. The proof is in Appendix C.

Lemma 9. Assume that Adaptive Sequencing outputs S ∈ M s.t. Fx(λS) ≥ αiλ(OPT− F (x))

at every iteration i of Accelerated Continuous Greedy and that λ
∑λ−1

i=1 αi ≥ 1 − ǫ. Then

Accelerated Continuous Greedyoutputs x ∈ P (M) s.t. F (x) ≥ (1− 1/e− ǫ) OPT.

The approximation αi obtained at iteration i is 1−O(ǫ) in expectation by Lemma 8. Thus, by
a simple concentration bound, w.h.p. it is close to 1−O(ǫ) in average over all iterations. Together
with Lemma 9, this implies the 1− 1/e− ǫ approximation w.h.p.. The details are in Appendix C.

Theorem 3. Accelerated Continuous Greedy is an O
(

log(n) log
(

k
ǫλ

)

1
ǫλ

)

adaptive algorithm

that, with probability 1 − δ, obtains a 1 − 1/e − O(ǫ) approximation for maximizing a monotone

submodular function under a matroid constaint, with step size λ = O
(

ǫ2 log−1
(

1
δ

))

.

4 Parallelization of Matroid Oracle Queries

Throughout the paper we relied on Random Sequence as a simple procedure to generate a
random feasible sequence to achieve our O(log(n) log(k)) adaptive algorithm with an approximation
arbitrarily close to 1−1/e. Although Random Sequence has zero adaptivity, it makes rank(M)
sequential steps depending on membership in the matroid to generate the sets X1, . . . ,Xrank(M).
From a practical perspective, we may wish to accelerate this process via parallelization. In this
section we show how to do so in the standard rank and independence oracle models for matroids.

4.1 Matroid rank oracles

Given a rank oracle for the matroid, we get an algorithm that only makes O (log(n) log(k)) steps
of matroid oracle queries and has polylogarithmic depth on a PRAM machine. Recall that a rank
oracle forM is given a set S and returns its rank, i.e. the maximum size of an independent subset
T ⊆ S. The number of steps of matroid queries of an algorithm is the number of sequential steps
it makes when polynomially-many queries to a matroid oracle forM can be executed in parallel in
each step [KUW88].2 We use a parallel algorithm from [KUW88] designed for constructing a base
of a matroid with a rank oracle, and show that it satisfies the random feasibility property.

2More precisely, it allows p queries per step and the results depend on p, we consider the case of p = poly(n).

11



Algorithm 4 Parallel Random Sequence for matroid constraint with rank oracle

Input: matroidM, ground set N
b1, . . . , b|N | ← random permutation of N
ri ← rank({b1, . . . , bi}), for all i ∈ {1, . . . , n}
ai ← ith bj s.t. rj − rj−1 = 1
return a1, . . . , aℓ

With Algorithm 4 as the Random Sequence subroutine for Adaptive Sequencing, we
obtain the following result for matroid rank oracles (proof in Appendix D).

Theorem 4. For any ǫ > 0, there is an algorithm that obtains, with probability 1−o(1), a 1/2−O(ǫ)
approximation with O

(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptivity and steps of matroid rank queries.

This gives O(log(n) log(k)) adaptivity and steps of independence queries with 1 − 1/e − ǫ ap-
proximation for maximizing the multilinear relaxation and 1/2− ǫ approximation for maximizing a
monotone submodular function under a matroid constraint. In particular, we get polylogarithmic
depth on a PRAM machine with a rank oracle.

4.2 Matroid independence oracles

Recall that an independence oracle forM is an oracle which given S ⊆ N answers whether S ∈ M
or S 6∈M . We give a subroutine that requires Õ(n1/2) steps of independence matroid oracle queries
and show that Ω̃(n1/3) steps are necessary. Similar to the case of rank oracles we use a parallel
algorithm from [KUW88] for constructing a base of a matroid that can be used as the Random

Sequence subroutine while satisfying the random feasibility condition.

Õ(
√
n) upper bound. We use the algorithm from [KUW88] for constructing a base of a matroid.

Algorithm 5 Parallel Random Sequence for matroid constraint with independence oracle

Input: matroidM, ground set N
c← 0,X ← N
while |N | > 0 do

b1, . . . , b|X| ← random permutation of X
i⋆ ← max{i : {a1, . . . , ac} ∪ {b1, . . . , bi} ∈ M}
ac+1, . . . , ac+i⋆ ← b1, . . . , bi⋆

c← c+ i⋆

X ← {a ∈ X : {a1, . . . , ac, a} ∈ M}
return a1, . . . , ac

With Algorithm 5 as the Random Sequence subroutine for Adaptive Sequencing, we
obtain the following result with independence oracles. We defer the proof to Appendix D.

Theorem 5. There is an algorithm that obtains, w.p. 1 − o(1), a 1/2 −O(ǫ) approximation with

O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptivity and O
(√

n log(n) log
(

k
ǫ

)

1
ǫ2

)

steps of independence queries.

12



This gives O(log(n) log(k)) adaptivity and
√
n log(n) log(k) steps of independence queries with

1− 1/e− ǫ approximation for maximizing the multilinear relaxation and 1/2− ǫ approximation for
maximizing a monotone submodular function under a matroid constraint. In particular, even with
independence oracles we get a sublinear algorithm in the PRAM model.

Ω̃(n1/3) lower bound. We show that there is no algorithm which obtains a constant approxima-
tion with less than Ω̃(n1/3) steps of independence queries, even for a cardinality function f(S) = |S|.
We do so by using the same construction for a hard matroid instance as in [KUW88] used to show
an Ω̃(n1/3) lower bound on the number of steps of independence queries for constructing a base of
a matroid. Although the matroid instance is the same, we use a different approach since the proof
technique of [KUW88] does not hold in our case (see proof and discussion in Appendix D).

Theorem 6. For any constant α, there is no algorithm with n1/3

4α log2 n
− 1 steps of poly(n) matroid

queries which, w.p. strictly greater than n−Ω(logn), obtains an α approximation for maximizing a

cardinality function under a partition matroid constraint when given an independence oracle.

To the best of our knowledge, the gap between the lower and upper bounds of ˜Omega(n1/3) and
O(n1/2) parallel steps for constructing a matroid basis given an independence oracle remains open
since [KUW88]. Closing this gap for submodular maximization under a matroid constraint given
an independence oracle is an interesting open problem that would also close the gap of [KUW88].

13



References

[BBS18] Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximiza-
tion in exponentially fewer iterations. NIPS, 2018.

[BRS19] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel
running time for submodular maximization without loss in approximation. SODA, 2019.

[BS18a] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular
function. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, pages 1138–1151. ACM, 2018.

[BS18b] Eric Balkanski and Yaron Singer. Approximation guarantees for adaptive sampling. In
International Conference on Machine Learning, pages 393–402, 2018.

[CCPV07] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a sub-
modular set function subject to a matroid constraint (extended abstract). In Integer

Programming and Combinatorial Optimization, 12th International IPCO Conference,

Ithaca, NY, USA, June 25-27, 2007, Proceedings, pages 182–196, 2007.

[CJV15] Chandra Chekuri, TS Jayram, and Jan Vondrák. On multiplicative weight updates for
concave and submodular function maximization. In Proceedings of the 2015 Conference

on Innovations in Theoretical Computer Science, pages 201–210. ACM, 2015.

[CQ19] Chandra Chekuri and Kent Quanrud. Submodular function maximization in parallel
via the multilinear relaxation. SODA, 2019.

[CVZ09] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding
for matroid polytopes and applications. arXiv preprint arXiv:0909.4348, 2009.

[EN19] Alina Ene and Huy L Nguyen. Submodular maximization with nearly-optimal approx-
imation and adaptivity in nearly-linear time. SODA, 2019.

[ENV18] Alina Ene, Huy L Nguyen, and Adrian Vladu. Submodular maximization with packing
constraints in parallel. arXiv preprint arXiv:1808.09987, 2018.

[FMZ18] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Non-monotone
submodular maximization with nearly optimal adaptivity complexity. arXiv preprint

arXiv:1808.06932, 2018.

[FMZ19] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Submodular max-
imization with optimal approximation, adaptivity and query complexity. SODA, 2019.

[KUW88] Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. J.
Comput. Syst. Sci., 36(2):225–253, 1988.

[NW78] George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of operations research, 3(3):177–
188, 1978.

14



[NWF78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of ap-
proximations for maximizing submodular set functionsi. Mathematical Programming,
14(1):265–294, 1978.

[VCZ11] Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximiza-
tion via the multilinear relaxation and contention resolution schemes. In Proceedings of

the forty-third annual ACM symposium on Theory of computing, pages 783–792. ACM,
2011.

[Von08] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proceedings of the 40th Annual ACM Symposium on Theory of Com-

puting, Victoria, British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008.

15



Appendix

A Discussion about Additional Results

We discuss several cases for which our results and techniques generalize.

Cardinality constraint. We first mention a generalization of Adaptive Sequencing that is a
O (log(n)) adaptive algorithm that obtains a 1−1/e−O(ǫ) approximation with probability 1−o(1)
for monotone submodular maximization under a cardinality constraint, which is the special case
of a uniform matroid. Instead of sampling uniformly random subsets of X of size k/r as done in
every iteration of the algorithm in [BRS19], it is possible to generate a single sequence and then
add elements to S and discard elements from X in the same manner as Adaptive Sequencing.
We note that generating a random feasible sequence in parallel is trivial for a cardinality constraint
k, one can simply pick k elements uniformly at random. Similarly, the elements we add to the
solution are approximately locally optimal and we discard a constant fraction of elements at every
round. A main difference is that for the case of a cardinality constraint, setting the threshold t
to t = (OPT− f(S))/k is sufficient and, as shown in [BRS19], this threshold only needs a constant
number of updates. Thus, for the case of a cardinality constraint, we obtain a O(log n) adaptive
algorithm with a variant of Adaptive Sequencing. In addition, the continuous greedy algorithm
is not needed for a cardinality constraint since adding elements with marginal contribution which
approximates (OPT− f(S))/k at every iteration guarantees a 1− 1/e− ǫ approximation.

Non-monotone functions. For the case of maximizing a non-monotone submodular function
under a cardinality constraint, similarly as for the monotone algorithm discussed above, we can
also generate a single sequence instead of multiple random blocks of elements, as done in [BBS18].

Partition matroids with explicit representation. Special families of matroids, such as graph-
ical and partition matroids, have explicit representations. We consider the case where a partition
matroid is given as input to the algorithm not as an oracle but with its explicit representation,
meaning the algorithm is given the parts P1, . . . , Pm of the partition matroid and the number
p1, . . . , pm of elements of each parts allowed by the matroid.

For the more general setting of packing constraints given to the algorithm as a collection of m
linear constraints, as previously mentioned, [CQ19] develop a O(log2(m) log(n)) adaptive algorithm
that obtains with high probability a 1− 1/e− ǫ approximation, and has polylogarithmic depth on
a PRAM machine for partition matroids.

In this case of partition matroids, we obtain a O
(

log(n) log
(

k
ǫλ

)

1
ǫλ

)

adaptive algorithm that,
with probability 1−δ, obtains a 1−1/e−O(ǫ) approximation with λ = O

(

ǫ2 log−1
(

1
δ

))

. This algo-
rithm also has polylogarithmic depth. This algorithm uses Accelerated Continuous Greedy

with the Random Sequence subroutine for rank oracles since a rank oracle for partition matroids
can easily be constructed in polylogarithmic depth when given the explicit representation of the
matroid. As mentioned in [CQ19], it is also possible to obtain a rounding scheme for partition
matroids in polylogarithmic depth.

Intersection of P matroids. We formally analyze the more general constraint consisting of the
intersection of P matroids in Appendix B.

16



B Missing Proofs from Section 2

B.1 Quasi-linear query complexity

The query complexity of Adaptive Sequencing and Accelerated Continuous Greedy can
be improved from O(nk log(n) log(k)) to quasi-linear with O(n log(n) log2(k)) queries if we allow
O(log(n) log2(k)) rounds. This is done by finding i⋆ at every iteration of Adaptive Sequencing

by doing binary search of i ∈ [rank(M(S,X))] instead of computing Xi for all i in parallel. Since
there are at most k values of i, this decrease the query complexity of finding i⋆ from nk to n log k,
but increases the adaptivity by log k.

An important property to be able to perform binary search is to have |Xi| decreasing in i. We
show this with the following lemma.

Lemma 10. At every iteration of Adaptive Sequencing, Xi+1 ⊆ Xi for all i < rank(M(S,X)).

Proof. Assume a ∈ Xi+1. Thus, S∪{a1, . . . , ai}+a ∈ M and fS∪{a1,...,ai}(a) ≥ t. By the downward
closed property of matroids, S ∪ {a1, . . . , ai−1} + a ∈ M. By submodularity, fS∪{a1,...,ai−1}(a) ≥
fS∪{a1,...,ai}(a) ≥ t. We get that a ∈ Xi.

Corollary 1. If Adaptive Sequencing finds i⋆ by doing binary search, then its query complexity

is O(n log(n) log2(k))and its adaptivity is O(log(n) log2(k)).

B.2 From expectation to high probability for the combinatorial algorithm

We generalize Adaptive Sequencing to obtain an algorithm called Adaptive Sequencing++,
described below, which achieves a 1/2 − ǫ approximation with high probability, instead of in ex-
pectation. We note that this generalization is not needed when Adaptive Sequencing is used as
a subroutine of Accelerated Continuous Greedy for the 1− 1/e − ǫ result.

Algorithm 6 Adaptive Sequencing++, Adaptive Sequencing with high probability guar-
antee

Input: function f , feasibility constraintM
S ← ∅, t← maxa∈N f(a)
for ∆ iterations do

X ← N
while X 6= ∅ do

for j = 1 to ρ do (non-adaptivity and in parallel)
a1, . . . , arank(M(S,X)) ← Random Sequence(M(S,X))
Xi ← {a ∈ X : S ∪ {a1, . . . , ai, a} ∈ M and fS∪{a1,...,ai}(a) ≥ t}
i⋆ ← min {i : |Xi| ≤ (1− ǫ)|X|}
Sj ← S ∪ {a1, . . . , ai⋆}
Xj ← Xi⋆

vj ← 1
i⋆
∑i⋆

ℓ=1 fS∪{a1,...,aℓ−1}(aℓ)

j⋆ ← argmaxj∈[ρ] v
j

S ← Sj

X ← Xj

t← (1− ǫ)t
return S

17



Theorem 1. For any ǫ > 0, there is an O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptive algorithm that obtains a

1/2−O(ǫ) approximation with probability 1−o(1) for maximizing a monotone submodular function

under a matroid constraint.

Proof. We set ∆ = O
(

1
ǫ log

(

k
ǫ

))

. Initially we have ti ≤ OPT. After ∆ iterations of Adaptive

Sequencing, the final value of t is tf ≤ (1 − ǫ)∆OPT = O
(

ǫ
k

)

OPT. We begin by adding dummy
elements to S so that |S| = k, which enables pairwise comparisons between S and O. In particular,
we consider S′, which is S together with rank(M)− |S| dummy elements a|S|+1, . . . ak such that,
for any T , fT (a) = tf . Thus, by Lemma 2, for dummy elements ai, fSi−1(ai) = tf ≥ (1 −
ǫ)maxa:Si−1∪a∈M fSi−1(a).

By Lemma 1, there are O(∆ log(n)/ǫ) iterations of the while-loop. Since each iteration of the
while-loop is non-adaptive, Adaptive Sequencing++ is O(∆ log(n)/ǫ) adaptive

Consider an iteration of the while-loop of Adaptive Sequencing++. We first argue that for
each inner-iteration j,

∑

i∈[i⋆] fSi−1(ai) ≥ (1−ǫ)2i⋆t. We first note that Prai
[

fS∪{a1,...,ai−1}(ai) ≥ t
]

≥
1 − ǫ by the definition of i⋆ and the random feasible sequence property. Let Y be the number of
indices i ≤ i⋆ such that fS∪{a1,...,ai−1}(ai) ≥ t. By Chernoff bound, with µ = E[Y ] ≥ (1− ǫ)i⋆

Pr [Y ≤ (1− ǫ)(1 − ǫ)i⋆] ≤ e−ǫ2(1−ǫ)i⋆/2 ≤ e−ǫ2(1−ǫ)/2.

Let Z ≤ ρ be the number of inner-iterations j such that Y ≥ (1 − ǫ)(1 − ǫ)i⋆. By Chernoff
bound, with µ = E[Z] ≥ (1 − e−ǫ2(1−ǫ)/2)ρ,

Pr

[

Z ≤ 1

2
(1− e−ǫ2(1−ǫ)/2)ρ

]

≤ e(1−e−ǫ2(1−ǫ)/2)ρ/8.

Thus, with ρ = O
(

1

1−e−ǫ2
log

(

∆logn
ǫδ

))

, we have that with probability 1 − O (ǫδ/(∆ log n)),

there is at least one inner-iteration j such that Y ≥ (1 − ǫ)(1 − ǫ)i⋆. Thus
∑

i∈[i⋆] fSi−1(ai) ≥
(1− ǫ)2i⋆t. By Lemma 2,

∑

i∈[i⋆]

fSi−1(ai) ≥ (1− ǫ)3 max
a:Si−1∪a∈M

fSi−1(a).

By a union bound, this holds over all iterations of the while-loop of Adaptive Sequencing++

with probability 1− δ and we get that
∑

i∈[k]

fSi−1(ai) ≥ (1− ǫ)3 max
a:Si−1∪a∈M

fSi−1(a).

Let O = {o1, . . . , ok} such that {a1, . . . , ai−1, oi} is feasible for all i, which exists by the augmenta-
tion property of matroids. We conclude that with probability 1− δ,

f(S′) =
∑

i∈[k]

E[fSi−1(ai)]

≥ (1− ǫ)3 max
a:Si−1∪a∈M

fSi−1(a)

≥ (1− ǫ)3
∑

i∈[k]

E[fSi−1(oi)]

≥ (1− ǫ)3fS′(O)

≥ (1− ǫ)3(OPT− f(S′))

18



and since
f(S) = f(S′)− (rank(M)− |S|)tf ≥ f(S′)−O(ǫ)OPT,

we conclude that f(S) ≥ (1/2 −O(ǫ))OPT.

B.3 Intersection of matroid constraints

We consider constraint M = ∩Pi=1Mi which is the intersection of P matroids Mi, i.e. S ∈ M if
S ∈ Mi for all i ≤ P . Similarly as for a single matroid constraint, we denote the size of the largest
feasible set by k. We denote the rank of a set S with respect to matroid Mj by rankj(S). We
define spanj(S), called the span of S inMj by:

spanj(S) = {a ∈ N : rankj(S ∪ a) = rankj(S)}

We will use the following claim.

Claim 1 (Prop. 2.2 in [NWF78]). If for ∀t ∈ [k]
∑t−1

i=0 σi ≤ t and pi−1 ≥ pi, with σi, pi ≥ 0 then:

k−1
∑

i=0

piσi ≤
k−1
∑

i=0

pi.

Similarly as for a single matroid, we give the approximation guaranteed obtained by a solution
S with near-optimal marginal contributions for each a ∈ S.

Lemma 11. Assume that S = {a1, . . . , ak} such that

fSi−1(ai) ≥ (1− ǫ) max
a:Si−1∪a∈M

fSi−1(a)

where Si = {a1, . . . , ai}. Then, ifM is the intersection of P matroids, we have

f(S) ≥
(

1

P + 1
−O(ǫ)

)

OPT.

Proof. Since Si and O are independent sets inMj we have:

rankj(spanj(Si) ∩O) = |spanj(Si) ∩O| ≤ |spanj(Si)| = |Si| ≤ i

Define Ui = ∪Pj=1spanj(Si), to be the set of elements which are not part of the maximization
at index i+ 1 of the procedure, and hence cannot give value at that stage. We have:

|Ui ∩O| = |(∪Pj=1spanj(Si)) ∩O| ≤
P
∑

j=1

|spanj(Si) ∩O| ≤ P · i

Let Vi = (Ui \ Ui−1) ∩ O be the elements of O which are not part of the maximization at index i,
but were part of the maximization at index i− 1. If a ∈ Vi then it must be that

(1− ǫ)fSk
(a)(1 − ǫ) ≤ fSi−1(a) ≤ max

b:Si−1∪b∈M
fSi−1(b)

19



where the first inequality is due to submodularity of f . Hence, we can upper bound:

∑

o∈O\Sk

fSk
(o) ≤

k
∑

i=1

∑

o∈Vi

max
a:Si−1∪a∈M

fSi−1(a) =
k

∑

i=1

|Vi| max
a:Si−1∪a∈M

fSi−1(a) ≤ P
k

∑

i=1

max
a:Si−1∪a∈M

fSi−1(a)

where the last inequality uses
∑i

t=1 |Vt| = |Ui ∩ O| ≤ Pi and the claim due to 1. Together with
OPT ≤ f(O ∪ Sk) ≤ f(Sk) +

∑

o∈O\Sk
fSk

(o) and fSi−1(ai) ≥ (1− ǫ)maxa:Si−1∪a∈M fSi−1(a) we get:

f(S) ≥
(

1

P + 1
−O(ǫ)

)

OPT.

as required.

Since Lemma 2 only uses the downward closed property ofM and since intersections of matroids
are downward closed, Adaptive Sequencing++ obtains a solution S with near-optimal marginal
contributions for each ai ∈ S = {a1, . . . , ak}. Combined with the previous lemma, we obtain the
result for intersections of matroids.

Theorem 7. For any ǫ > 0, Adaptive Sequencing++ is an O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptive

algorithm that obtains a 1/(P + 1) −O(ǫ) approximation with probability 1− o(1) for maximizing

a monotone submodular function under the intersection of P matroids.

Proof. The first part of the of the proof follows similarly as the proof for Theorem 3 by using
Lemma 2, which also hold for intersections of matroids, to obtain the near-optimal marginal con-
tributions of each ai ∈ S with probability 1− o(1):

∑

i∈[i⋆]

fSi−1(ai) ≥ (1− ǫ)3 max
a:Si−1∪a∈M

fSi−1(a).

We then combine this with Lemma 11 to obtain the 1/(P+1)−O(ǫ) approximation with probability
1− o(1).

C Missing Proofs from Section 3

Discussion on constant step size λ. In contrast to the continuous greedy, the accelerated
continuous greedy uses constant steps sizes λ to guarantee low adaptivity. The challenge with
using constant λ is that Fx(λS) is arbitrarily low with S := argmaxT∈M

∑

a∈T g(a) due to the
overlap in value of elements a with high individual value g(a).

For example, consider ground set N = A ∪B with

f(S) = min(log n, |S ∩A|) + |S ∩B|,

x = 0 and S = A. With λ = 1/n, we note that sampling R ∼ λA where R independently
contains each element in S with probability 1/n gives |R| ≤ log n with high probability and we
get Fx(λA) = (1 − o(1))|A|, which is near-optimal for a set of size |A|. However, with constant λ,
then sampling R ∼ λA gives |R| > log n with high probability. Thus Fx(λA) ≤ log(n) which is
arbitrarily far from optimal for |A| = |B| >> log n since Fx(λB) = λ|B|.

20



Lemma 5. For a given matroid M assume that Adaptive Sequencing outputs S ∈ M s.t.

ES [Fx(λS)] ≥ (1 − ǫ)λ(OPT − F (x)) at every iteration of Accelerated Continuous Greedy.

Then Accelerated Continuous Greedy outputs x ∈ P (M) s.t. E[F (x)] ≥ (1− 1/e − ǫ) OPT.

Proof. First, x ∈ P since it is a convex combinations of λ−1 vectors 1S with S ∈ M. Next, let xi

denote the solution x at the ith iteration of Accelerated Continuous Greedy. The algorithm
increases the value of the solution x by at least (1− ǫ) · λ · (OPT− F (x)) at every iteration. Thus,

F (xi) ≥ F (xi−1) + (1− ǫ) · λ · (OPT− F (xi−1)) .

Next, we show by induction on i that

F (xi) ≥
(

1− (1− (1− ǫ)λ)i
)

OPT.

Observe that

F (xi) ≥ F (xi−1) + (1− ǫ)λ (OPT− F (xi−1))

= (1− ǫ)λOPT+ (1− (1− ǫ)λ)F (xi−1)

≥ (1− ǫ)λOPT+ (1− (1− ǫ)λ)
(

1− (1− (1− ǫ)λ)i−1
)

OPT

=
(

1− (1− (1− ǫ)λ)i
)

OPT

Thus, with i = λ−1, we return solution x = xλ−1 such that

F (x) ≥
(

1− (1− (1− ǫ)λ)λ
−1
)

OPT.

Next, since 1 − x ≤ e−x for all x ∈ R, (1− (1− ǫ)λ)λ
−1 ≤

(

e−(1−ǫ)λ
)λ−1

= e−(1−ǫ). We conclude
that

F (x) ≥
(

1− e−(1−ǫ)
)

OPT =

(

1− eǫ

e

)

OPT ≥
(

1− 1 + 2ǫ

e

)

OPT ≥
(

1− 1

e
− ǫ

)

OPT

where the second inequality is since ex ≤ 1 + 2x for 0 < x < 1.

Lemma 6. LetM be a matroid, then for any feasible sets S = {a1, . . . , ak} and O of size k, there
exists an ordering of O = {o1, . . . , ok} where for all i ∈ [k], Si ∪Oi+1:k ∈ M and Si ∩Oi+1:k = ∅.

Proof. The proof is by reverse induction. For i = k, we have Si∪Oi+1:k = Sk = S ∈ M by Lemma 2.
Consider i < k and assume that Si+1 ∪ Oi+2:k ∈ M for some ordering oi+2, . . . , ok of Oi+2:k. By
the downward closed property of matroids, Si ∪ Oi+2:k ∈ M. By the augmentation property of
matroids, there exists oi+1 ∈ O \ (Si ∪Oi+2:k) such that Si ∪Oi+2:k + oi+1 = Si ∪Oi+1:k ∈ M.

Theorem 2. For any ǫ > 0 Accelerated Continuous Greedy makes O
(

log(n) log
(

k
ǫ2

)

1
ǫ2

)

adaptive rounds and obtains a 1−1/e−O(ǫ) approximation in expectation for maximizing a mono-

tone submodular function under a matroid constraint.

21



Proof. We use step size λ = O (ǫ) forAccelerated Continuous Greedy and ∆ = O
(

1
ǫ log

(

k
ǫλ

))

outer-iterations for Adaptive Sequencing. Thus, by Lemma 1, the adaptivity is O
(

∆logn
λǫ

)

=

O
(

log(n) log
(

k
ǫ2

)

1
ǫ2

)

. By Lemma 8, we have E[Fx(δS)] ≥ (1−O(ǫ))λ(OPT−F (x)) at every iteration
i. Combining with Lemma 5, we obtain that E[F (x)] ≥ (1− e−1 −O(ǫ))OPT.

It remains to round the solution x. We note that there exist rounding schemes with arbitrarily
small loss that are independent of the function f [CVZ09, VCZ11] (so they do not perform any
queries to f). The set S we obtain from rounding the solution x returned by Accelerated

Continuous Greedy with these techniques is thus a 1 − 1/e − O(ǫ) approximation with no
additional adaptivity.

Lemma 9. Assume that Adaptive Sequencing outputs S ∈ M s.t. Fx(λS) ≥ αiλ(OPT− F (x))

at every iteration i of Accelerated Continuous Greedy and that λ
∑λ−1

i=1 αi ≥ 1 − ǫ. Then

Accelerated Continuous Greedyoutputs x ∈ P (M) s.t. F (x) ≥ (1− 1/e− ǫ) OPT.

Proof. First, x ∈ P since it is a convex combinations of λ−1 vectors 1S ∈M. Next, let xi denote the
solution x at the ith iteration of Accelerated Continuous Greedy. The algorithm increases
the value of the solution x by at least αi · λ · (OPT− F (x)) at every iteration. Thus,

F (xi) ≥ F (xi−1) + αi · λ · (OPT− F (xi−1)) .

Next, we show by induction on i that

F (xi) ≥



1−
i

∏

j=1

(1− λαj)



 OPT.

Observe that

F (xi) ≥ F (xi−1) + αiλ (OPT− F (xi−1))

= αiλOPT+ (1− αiλ)F (xi−1)

≥ αiλOPT+ (1− αiλ)



1−
i−1
∏

j=1

(1− λαj)



 OPT

= αiλOPT+



1− αiλ−
i

∏

j=1

(1− λαj)



 OPT

=



1−
i

∏

j=1

(1− λαj)



 OPT

where the first inequality is by the assumption of the lemma, the second by the inductive hypothesis,
and the equalities by rearranging the terms. Thus, with i = λ−1, we return solution x = xλ−1 such
that

F (x) ≥



1−
λ−1
∏

j=1

(1− λαj)



 OPT.

22



Since 1− x ≤ e−x for all x ∈ R,

1−
λ−1
∏

j=1

(1− λαj) ≥ 1−
λ−1
∏

j=1

e−λαj = 1− e−λ
∑λ−1

j=1 αj ≥ 1− e−(1−ǫ) ≥ 1− e−1 − 2ǫ/e ≥ 1− e−1 − ǫ

where the second inequality is since ex ≤ 1 + 2x for 0 < x < 1.

Theorem 3. Accelerated Continuous Greedy is an O
(

log(n) log
(

k
ǫλ

)

1
ǫλ

)

adaptive algorithm

that, with probability 1 − δ, obtains a 1 − 1/e − O(ǫ) approximation for maximizing a monotone

submodular function under a matroid constaint, with step size λ = O
(

ǫ2 log−1
(

1
δ

))

.

Proof. We use ∆ = O
(

1
ǫ log

(

k
ǫλ

))

outer-iterations for Adaptive Sequencing. Thus, by Lemma 1,

the adaptivity is O
(

∆ logn
λǫ

)

= O
(

log(n) log
(

k
ǫλ

)

1
ǫλ

)

.

By Lemma 8, we have Fx(δS) ≥ αiλ(OPT−F (x)) at every iteration i with E [αi] ≥ 1− ǫ′ where
ǫ′ = O(ǫ). By a Chernoff bound with E[λ

∑

i∈λ−1 αi] ≥ 1− ǫ′,

Pr



λ
∑

i∈[λ−1]

αi < (1− ǫ)(1 − ǫ′)



 ≤ e−ǫ2(1−ǫ′)λ−1/2.

Thus, with probability p = 1− e−ǫ2(1−ǫ′)λ−1/2, λ
∑

i∈[λ−1] αi ≥ 1− ǫ− ǫ′. By Lemma 9, we conclude

that w.p. p, F (x) ≥ (1 − e−1 − (ǫ+ ǫ′))OPT. With step size λ = O(ǫ2/ log(1/δ)), we get that with
probability 1− δ, F (x) ≥ (1− e−1 −O(ǫ))OPT.

It remains to round the solution x. We note that there exist rounding schemes with arbitrarily
small loss that are independent of the function f [CVZ09, VCZ11] (so they do not perform any
queries to f). The set S we obtain from rounding the solution x returned by Accelerated

Continuous Greedy with these techniques is thus a 1 − 1/e − O(ǫ) approximation with no
additional adaptivity.

D Missing Analysis from Section 4

D.1 Lower bound on steps of independence queries

We first give the construction from [KUW88]. The partition matroid has p = n1/3/ log2 n parts
P1, . . . , Pp of equal size n2/3 log2 n and a set S is independent if |S ∩ Pi| ≤ in1/3 log2 n for all parts
Pi. Informally, the hardness is since an algorithm cannot learn part Pi+1 in i steps of independence
queries.

We lower bound the performance of any algorithm against a matroid chosen uniformly at random
over all such partitions P1, . . . , Pp.

The issue with applying the approach in [KUW88] is that when it considers a query B at some
step j < i, the analysis bounds the intersection of fixed query B with uniformly random parts
Pi, . . . , Pp of N \ ∪i−1

j=1Pj . However, a query at step j < i is not independent of the randomization

Pi, . . . , Pp over N \∪i−1
j=1Pj . For example, consider a query T at step j− 1 such that its intersection

with N \∪i−2
j=1Pj is of size in1/3 log2 n+1 and the oracle answers S ∈ M. This implies that T 6⊆ Pi

and thus for a fixed query B at step j, Pi is not a random part since it cannot be such that T 6⊆ Pi.

23



Instead, we use an approach which argues about independence of queries with some parts Pi, . . . , Pp

under some conditioning on Pi, . . . , Pp.
We introduce some notation. LetM(S) be the indicator variable for S ∈ M. We denote by Sj

the elements in S that are not in a part Pi with i < j, i.e. Sj := S \ {P1, . . . , Pj−1}. We say that a
set S, assuming |Si| ≥ n1/3 log2 n, concentrates at step i if

|Si ∩ Pj | ≤
(1 + 1/8i)|Si|

p− i

for all j > i and we use c(S, i) for the indicator variable for S concentrating at step i. Finally,
I(S, i) indicates if, for some P1, . . . , Pi, the answer M(S) of the independence oracle M to query
S is independent of the randomization of parts Pi+1, . . . , Pp over N \ ∪ij=1Pj . The main lemma is
the following.

Lemma 12. For any i ∈ [p], with probability at least 1− n−Ω(logn) over P1, . . . , Pi, for all queries

S by an algorithm with i steps of queries, the answer M(S) of the oracle is independent of

Pi+1, . . . , Pp, conditioned on S concentrating over these parts, i.e., for all queries S at step i

Pr
P1,...,Pi

[I(S, i)|c(S, i)] ≥ 1− n−Ω(logn).

Proof. The proof is by induction on i. Consider i > 0 and assume that for all queries S at step
j < i, PrP1,...,Pj [I(S, j)|c(S, j)] ≥ 1− n−Ω(logn). By a union bound, with probability 1− n−Ω(logn),
this holds for all queries at all steps j < i and we assume this is the case.

Consider some set S and a part Pj which is a uniformly random subset of N \ ∪i−1
ℓ=1Pℓ, with

j ≥ i. Then EPj

[

|Si ∩ Pj |
]

= |Si|/(p − i) and by Chernoff bound we get that

Pr
Pj

[

|Si ∩ Pj | ≤ (1 + 1/8i)|Si|/(p − i)
]

≥ 1− e−(1/8i)2 |Si|/2(p−i)

≥ 1− e−(1/8i)2n1/3 log2 n/2

= 1− e−Ω(log2 n)

≥ 1− n−Ω(logn),

assuming that |Si|/(p − i) ≥ n1/3 log2 n and since i ≤ n1/3. By a union bound, for all queries S at
some step j < i, |Si ∩ Pℓ| ≤ (1 + 1/8i)|Si|/(p − i) for all j < ℓ < i with probability 1 − n−Ω(logn)

over the randomization of P1, . . . , Pi−1 and we assume this is the case.
The answer of query S at step j < i is independent of the randomization of parts Pj+1, . . . , Pp

over N \ ∪jℓ=1Pℓ conditioned on these parts concentrating. Since we assumed parts Pj+1, . . . , Pi−1

concentrate with S, it is independent of the randomization of parts Pi, . . . , Pp over N \ ∪i−1
ℓ=1Pℓ

conditioned on these parts concentrating.
Thus, the decision of the algorithm to query a set S at step i is independent of the randomization

of Pi, . . . , Pp, conditioned on these parts concentrating with previous queries.
We first consider a uniformly random part Pi over N \ ∪i−1

ℓ=1Pℓ. There are two cases for a query
S at step i

• If |Si| > (1 + 1/4i)in1/3(p − i). Then by Chernoff bound with µ = EPi

[

|Si ∩ Pi|
]

= (1 +

1/4i)in1/3 log2 n,

Pr
Pi

[

|Si ∩ Pi| ≤ in1/3 log2 n
]

= n−Ω(logn).

24



Thus, with probability 1−n−Ω(logn), S 6∈ M and this is independent of the randomization of
Pi+1, . . . , Pp.

• If |Si| ≤ (1+1/4i)in1/3(p− i). Then, if S concentrates with parts Pi+1, . . . , Pp, by definition,

|Si ∩ Pj | ≤ (1 + 1/8i) |S
i|

p−i and

|Si ∩ Pj | ≤ (1 + 1/4i)(1 + 1/8i)in1/3 log2 n < (i+ 3/4)n1/3 log2 n < jn1/3 log2 n

for j > i and S is feasible with respect to part Pj . SoM(S) is independent of the random-
ization of Pi+1, . . . , Pp, conditioned on c(S, i).

The last piece needed from Pi is that, due to the conditioning, it must concentrate with all queries
from previous steps. As previously, this is the case with probability 1− n−Ω(logn). Combined with
the above, we obtain PrP1,...,Pi [I(S, i)|c(S, i)] ≥ 1− n−Ω(logn).

Theorem 6. For any constant α, there is no algorithm with n1/3

4α log2 n
− 1 steps of poly(n) matroid

queries which, w.p. strictly greater than n−Ω(logn), obtains an α approximation for maximizing a

cardinality function under a partition matroid constraint when given an independence oracle.

Proof. Consider a uniformly random partition of the ground set in parts P1, . . . , Pp with p =
n1/3/ log2 n each of size n2/3 log2 n, the partition matroid overt these parts described previously,
and the simple function f(S) = |S|. By a similar Chernoff bound as in Lemma 12, we have that
PrPj

[

|Si ∩ Pj | ≤ (1 + 1/8i)|Si|/(p − i)
]

≥ 1 − n−Ω(logn) for all queries at S at step i and j > i.

Thus Pr[c(S, i)] ≥ 1 − n−Ω(logn) for query S at step i and by a union bound this holds for all
queries by the algorithm. Thus, by Lemma 12, we have that for all queries S by an p/(4α)−1 steps
algorithm, the answer of the oracle to query S is independent of the randomization of Pp/(4α), . . . , Pp

with probability 1 − n−Ω(logn), conditioned on these parts concentrating with the queries, which
they do with probability 1− n−Ω(logn).

Thus, the solution S returned by the algorithm after p/(4α) − 1 steps of matroid queries is
independent of the randomization of Pp/(4α), . . . , Pp with probability 1− n−Ω(logn), conditioned on
these parts concentrating with the queries.

Assume the algorithm returns S such that |Sp/(4α)| > (1+1/8n1/3)(1−1/(4α))pn2/3 log2 n/(4α).

Thus, with Pp/(4α)+1 a random part of N \ ∪p/(4α)−1
ℓ=1 Pℓ,

EPp/(4α)

[

|S ∩ Pp/(4α)+1|
]

= (1 + 1/8n1/3)n2/3 log2 n/(4α).

By Chernoff bound, we have that with probability 1− n−Ω(logn),

Pr
Pp/(4α)

[

|S ∩ Pp/(4α)| > n2/3 log2 n/(4α)
]

≥ 1− n−Ω(logn)

and thus S 6∈ M.
If the algorithm returns S such that |Sp/(4α)| ≤ (1 + 1/8n1/3)(1 − 1/(4α))pn2/3 log2 n/(4α).

Then, if S ∈ M, there are at most p/(4α) · n1/3 log2(n)p/(4α) elements in S from the first p/(4α)
parts. Thus

|S| ≤ (1 + 1/8i)(1 − 1/(4α))n/(4α) + p/(4α) · n1/3 log2(n)p/(4α) < n/(2 log2(n)α).

25



Note that a base B for the matroid has size

|B| =
p

∑

i=1

in1/3 log2 n = n1/3n1/3(n1/3/ log2 n+ 1)/2 > n/(2 log2 n).

The parts Pn1/3/(4α), . . . , Pp concentrate with all the queries with probability 1 − n−Ω(logn).

Thus, the algorithm returns, with probability 1 − n−Ω(logn), either a set S 6∈ M or a set S such
that |S| < |B|/α. Thus there is at least one instance of parts P1, . . . , Pp such that the algorithm
does not obtain an α approximation with probability strictly greater than n−Ω(logn).

D.2 An algorithm with Õ(
√
n) steps of independence queries

We show that Algorithm 5 satisfies the random feasibility condition required by Adaptive Se-

quencing.

Lemma 13. Algorithm 5 satisfies the random feasibility condition.

Proof. Consider ai for i ≤ c. By the algorithm, we have ai = bj for some j ≤ i⋆ at some
iteration ℓ with b1, . . . , b|Xℓ| and cℓ. By the definition of bj and X, we have that bj is a uni-
formly random elements among all elements Xℓ \ {b1, . . . , bj−1}. Conditioned on i⋆ ≥ j, we have
that {a1, . . . , acℓ , b1, . . . , bj} ∈ M. By the downward closed property of matroids, {a ∈ X :
{a1, . . . , acℓ , b1, . . . , bj−1, a} ∈ M} ⊆ Xℓ \ {b1, . . . , bj−1}. Thus bj = ai is uniformly random over all
a ∈ X such that {a1, . . . , acℓ , b1, . . . , bj−1, a} = {a1, . . . , ai−1, a} ∈ M.

[KUW88] showed that this algorithm has O(
√
n) iterations.

Lemma 14 ([KUW88]). Algorithm 5 has O(
√
n) steps of independence queries.

Theorem 5. There is an algorithm that obtains, w.p. 1 − o(1), a 1/2 −O(ǫ) approximation with

O
(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptivity and O
(√

n log(n) log
(

k
ǫ

)

1
ǫ2

)

steps of independence queries.

Proof. By Theorem 1, Adaptive Sequencing++ is a 1/2 − ǫ approximation algorithm with
O(log(n) log(k)) adaptivity if Random Sequence satisfies the random feasibility condition, which
Algorithm 5 does by Lemma 13. Since there are O(log(n) log(k)) iterations of calling Random

Sequence and Random Sequence has O(
√
n) steps of independence queries by Lemma 14,

there are O(
√
n log(n) log(k)) total steps of independence queries.

D.3 An algorithm with O(log(n) log(k)) steps of rank queries

Lemma 15. Algorithm 4 satisfies the random feasibility condition.

Proof. Consider ai with i ≤ ℓ. Then ai = bj for some j ∈ |N | such that rj = rj−1 + 1. Since
b1, . . . , b|N | is a random permutation, bj is uniformly random elements in N \ {b1, . . . , bj−1}. We
argue that {a : rank({b1, . . . , bj−1, a})− rj−1 = 1} is the set of all elements a = bℓ for some ℓ ≥ j
such that {a1, . . . , ai−1, a} ∈ M by induction.

We first show that if rank({b1, . . . , bj−1, a}) − rj−1 = 1 then {a1, . . . , ai−1, a} ∈ M. By
the algorithm, rank({b1, . . . , bj−1}) = i − 1 and by the inductive hypothesis, {a1, . . . , ai−1} ∈
M. Thus, {a1, . . . , ai−1} is an independent subset of {b1, . . . , bj−1} of maximum size. Let S
be an independent subset of {b1, . . . , bj−1, a} of maximum size. Since rank({b1, . . . , bj−1, a}) −

26



rj−1 = 1, |S| = |{a1, . . . , ai−1}| + 1 = i. Thus, by the augmentation property, there exists b ∈ S
such that {a1, . . . , ai−1, b} ∈ M. We have b 6= bj′ , j

′ < j since otherwise this would contradict
rank({b1, . . . , bj−1}) = i− 1. Thus b = a and {a1, . . . , ai−1, a} ∈ M.

Next, we show that if a = bℓ for some ℓ ≥ j such that {a1, . . . , ai−1, a} ∈ M, then
rank({b1, . . . , bj−1, a}) − rj−1 = 1. By the algorithm rj−1 = |{a1, . . . , ai−1}| = j − 1. Since
{a1, . . . , ai−1, a} ∈ M, rank({b1, . . . , bj−1, a}) ≥ j. Since the rank can only increase by one when
adding an element, we have rank({b1, . . . , bj−1, a}) = j = rj−1 + 1.

It is easy to see that Algorithm 4 has one step of rank queries. [KUW88] showed that Algorithm 4
constructs a base ofM.

Lemma 16 ([KUW88]). Algorithm 4 returns a base of M.

Theorem 4. For any ǫ > 0, there is an algorithm that obtains, with probability 1−o(1), a 1/2−O(ǫ)
approximation with O

(

log(n) log
(

k
ǫ

)

1
ǫ2

)

adaptivity and steps of matroid rank queries.

Proof. By Theorem 1, Adaptive Sequencing++ is a 1/2 −O(ǫ) approximation algorithm with
O(log(n) log(k)) adaptivity if Random Sequence satisfies the random feasibility condition, which
Algorithm 5 does by Lemma 15. Since there are O(log(n) log(k)) iterations of calling Random

Sequence and Random Sequence has 1 step of rank queries, there are O(log(n) log(k)) total
steps of rank queries.

27


	1 Introduction
	1.1 Submodular maximization under a matroid constraint
	1.2 Main result
	1.3 Technical overview
	1.4 Previous optimization techniques in the adaptive complexity model
	1.5 Preliminaries

	2 The Combinatorial Algorithm
	2.1 Generating random feasible sequences
	2.2 The algorithm
	2.3 Adaptivity
	2.4 Approximation guarantee

	3 The Accelerated Continuous Greedy Algorithm
	3.1 The algorithm
	3.2 Analysis

	4 Parallelization of Matroid Oracle Queries
	4.1 Matroid rank oracles
	4.2 Matroid independence oracles

	A Discussion about Additional Results
	B Missing Proofs from Section ??
	B.1 Quasi-linear query complexity
	B.2 From expectation to high probability for the combinatorial algorithm
	B.3 Intersection of matroid constraints

	C Missing Proofs from Section ??
	D Missing Analysis from Section ??
	D.1 Lower bound on steps of independence queries
	D.2 An algorithm with (n) steps of independence queries
	D.3 An algorithm with O(log(n)log(k)) steps of rank queries


