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Iterative Collaborative Filtering for Sparse Matrix Estimation
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Abstract

We consider sparse matrix estimation where the goal is to estimate an n×nmatrix from noisy
observations of a small subset of its entries. We analyze the estimation error of the popularly
utilized collaborative filtering algorithm for the sparse regime. Specifically, we propose a novel
iterative variant of the algorithm, adapted to handle the setting of sparse observations. We

establish that as long as the fraction of entries observed at random scale as log1+κ(n)
n

for any
fixed κ > 0, the estimation error with respect to the max-norm decays to 0 as n → ∞ assuming
the underlying matrix of interest has constant rank r. Our result is robust to model mis-
specification in that if the underlying matrix is approximately rank r, then the estimation error
decays to the approximate error with respect to the max-norm. In the process, we establish
algorithm’s ability to handle arbitrary bounded noise in the observations.

1 Introduction

We consider the task of sparse matrix estimation given noisy observations. Let F be an n×nmatrix
which we would like to estimate, and let Z be a noisy signal of matrix F such that E[Z] = F . Let
E ⊂ [n] × [n] denote the subset of indices that are observed. In particular, we observe matrix M
where M(u, v) = Z(u, v) for (u, v) ∈ E , and M(u, v) = 0 for (u, v) /∈ E . We assume that the
entries of Z are independent random variables, and we assume a Bernoulli sampling model; each
(u, v) ∈ [n]× [n] is in E with probability p ∈ (0, 1] independently. The goal is to estimate F .

As a prototype for such a problem, consider a noisy observation of a social network where
observed interactions are signals of true underlying connections. We might want to predict the
probability that two users would choose to connect if recommended by the platform, e.g. LinkedIn.
As a second example, consider a recommendation system where we observe movie ratings provided
by users, and we may want to predict the probability distribution over ratings for specific movie-
user pairs. A popular collaborative filtering approach suggests using “similarities” between pairs
of users to estimate the probability that a connection is formed or the probability a user likes
a particular movie. Traditionally, the similarities between pair of users in a social network is
computed by comparing the set of their friends, or in the context of movie recommendation, by
comparing commonly rated movies. In the sparse setting, most pairs of users have no common
friends, or most pairs of users have no commonly rated movies; thus there is insufficient data to
compute the traditional similarity metrics.

In this work, the primary interest is to provide a principled way to extend the simple, intuitive
approach of computing similarities between pair of users or items in order to perform sparse matrix
estimation via nearest neighbor collaborative filtering. We propose to do so by incorporating
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information within a larger radius neighborhood of the data graph rather than restricting only to
immediate neighbors. This variation of collaborative filtering and its analysis in this work can be
viewed as a natural extension of the work by [2, 4] in the context of stochastic block model and
[51, 35] for traditional collaborative filtering.

1.1 Summary of Contributions

The primary contribution of this work is an analysis of an iterative collaborative filtering algorithm
in the sparse regime. We consider the setting of a latent variable model where the matrix F =
[F (u, v)] can be described by a latent function f evaluated over latent variables associated to the
coordinates. In particular, we assume that F (u, v) = f(θu, θv) where f is a piece-wise Lipschitz
function, and θu, θv ∈ [0, 1] are coordinate latent variables sampled uniformly at random. Details
of the model are described in Section 2.

As the main result of this work, we establish that with high probability the max entry-wise
error associated with the resulting estimate converges to 0 as long as the latent function f when
regarded as an integral operator has finite spectrum with constant rank r and p = Ω(n−1+κ) for
κ > 0. In addition, if we have knowledge of the spectrum, the algorithm can be improved so that
the max entry-wise error of the estimate converges to zero as long as p = Ω(n−1 ln1+κ n) for any
κ > 0. We also establish robustness of our result with respect to the low rank requirement of f .
In particular, we provide a robust version of our result that holds when f has ε-approximate rank
r, i.e. there exists a rank r function that approximates f within ε with respect to the ℓ∞ norm.
We establish it by arguing that if all the observed entries are perturbed arbitrarily or adversarially
within ε, then the algorithm estimates for each entry are perturbed by at most O(max(

√
ε, ε)).

The efficacy of the proposed algorithm with respect to arbitrary noise is an interesting result on
its own.

Algorithmically and methodologically, our work builds on [2, 3, 4], which estimates clusters
of the stochastic block model by computing distances from local neighborhoods around vertices.
We improve upon their algorithm and analysis to provide bounds on the maximum entrywise
estimation error for the general latent variable model with finite spectrum. This includes a larger
class of generative models such as mixed membership stochastic block models, in contrast to their
work which focuses on the stochastic block model with non-overlapping communities. We note that
the algorithm considered in this work, uses the knowledge of which entries are observed and which
are not, in line with the literature on matrix estimation. In the setting of clustering cf. [2, 3, 4],
such a knowledge is absent from the purview of the algorithm.

Withthe exception of a few recent results, by and large the literature on matrix estimation
has focused on providing estimation error bounds with respect to the normalized Frobenius norm.
In contrast, we provide bounds on the max entry-wise estimation error which is a lot more chal-
lenging. Our bounds are restricted to the latent variable model, while the traditional matrix
estimation literature considers the underlying matrix to be an arbitrary instance from the family
of (approximately) low-rank matrices with ‘incoherence’-like conditions. Indeed, understanding the
relationship between these two seemingly different model classes remains an important direction
for future work.

A weaker version of this result was published in the NeurIPS conference as [6]. In contrast, this
paper provides sharper bounds for both the MSE and max-norm error that improves the exponent
in the convergence rates. We have also included a perturbation analysis of the algorithm that
shows under “adversarial” bounded noise, the error scales gracefully with the bound on the noise.
This enables analysis of our work for the approximately low-rank setting. We have also included a
modified algorithm that achieves the same rates with a reduced computational complexity, and we
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have shown extensions of our results to relaxed modeling assumptions on the latent variable model.
We have added empirical evaluation of our method compared with state-of-art methods.

1.2 Related Work

The related work includes that of matrix estimation or completion, collaborative filtering, and
graphon estimation arising from the asymptotic theory of graphs. We provide a brief overview of
prior works for each of these topics.

In the context of matrix estimation or completion, there has been much progress under the
low-rank assumption and additive noise model. Most theoretically founded methods are based
on spectral decompositions or minimizing a loss function with respect to spectral constraints, c.f.
[29, 30, 14, 16, 44, 42, 20, 18, 17, 49]. In a nutshell, this collection of works establishes that if
the underlying matrix has rank r, then it can be estimated so that the estimator has normalized
Mean Squared Error (MSE) going to 0 as n → ∞ as long as p = Ω(rn−1 log n). Furthermore,
[30, 15] showed that ω(rn−1) samples are necessarily required for such a guarantee. These near
optimal sample complexity results hold when the noise in each entry of the matrix is independent
and identically distributed. For the setting of generic noise and the general latent variable model
where the latent function is analytic, [17, 49] provide an estimator for which the MSE decays to 0
as n → ∞ as long as p = Ω(n−1poly(log n)).

The guarantee with respect to MSE does not necessarily guarantee recovery of all entries ac-
curately. Indeed, bounding max entrywise error provides such a guarantee as established by our
result. In parallel with our work, there has been recent progress on developing matrix estimation
methods that provide max entrywise bounds for matrices with rank r. In particular, for sufficiently
‘nice’ rank r matrices, [1] establish that a simple spectral algorithm can recover the matrix with
max entrywise error decaying to 0 as long as p = Ω(log n/n). Indeed, improving such max entry-
wise guarantee has been actively pursued over the past few years witnessed in the growing body of
works, cf. [19], [52], [13], [39] and [23].

The collaborative filtering method has been successfully employed across industry applications
(Netflix, Amazon, Youtube) due to its simplicity and scalability, c.f. [27, 37, 33, 43]; however the
theoretical results have been relatively sparse. We call special attention to the recent works by
[51, 35, 36] which provide a non-parametric statistical perspective for the traditional collaborative
filtering method. In particular, they suggest that the practical success of these methods across a
variety of applications may be due to its ability to capture local structure like the classical nearest
neighbor or kernel regression method. They establish that as long as the latent function f is
Lipschitz, the MSE of the resulting estimator decays to 0 as n → ∞ as long as p = ω(n− 1

2 ). A
key limitation of this approach is that it requires a dense dataset with sufficient entries in order to
compute similarity metrics, requiring that each pair of rows or columns has a growing number of
overlapped observed entries, which does not hold when p = o(n−1/2).

Graphons emerged as the limiting object of a sequence of large dense graphs, c.f. [12, 22, 38],
with recent work extending the theory to sparse graphs, c.f. [10, 11, 9, 47]. In the graphon
estimation problem, one observes a single instance of a random graph sampled from an underlying
latent variable model, and the goal is to estimate the function that governs the edge probabilities
of the graph. [24, 31] provide minimax optimal rates for graphon estimation; however a majority
of the proposed estimators are not computable in polynomial time, since they require optimizing
over an exponentially large space (e.g. least squares or maximum likelihood), c.f. [48, 8, 7, 24,
31]. [8] provides a polynomial time method based on degree sorting in the special case when the
expected degree function is monotonic. [49] analyzes universal singular value thresholding (USVT)
for graphon estimation in settings that the spectrum decays quickly, showing convergence rates
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which matches the minimax optimal rate for low dimensional smooth functions.
Stochastic block model (SBM) parameter estimation is an instance of graphon estimation, where

the underlying function has a specific structure. Under the SBM, each vertex is associated to one
of r community types, and the probability of an edge is a function of the community types of
both endpoints. This implies that the edge probability function is block constant. Estimating the
n × n parameter matrix becomes an instance of matrix estimation with a technical distinction –
all entries are fully observed, i.e. each edge is present (1) or absent (0). In SBM, the expected
matrix is at most rank r due to its block structure. Precise thresholds for cluster detection (better
than random) and estimation have been established by [2, 3, 4]. As mentioned before, our work,
both algorithmically and methodically is closely related to their work. The mixed membership
stochastic block model (MMSBM) allows each vertex to be associated to a length r vector, which
represents its weighted membership in each of the r communities. The probability of an edge
is a function of the weighted community memberships vectors of both endpoints, resulting in an
expected matrix with rank at most r. Recent work by [45] provides an algorithm for weak detection
for MMSBM with sample complexity r2n, when the community membership vectors are sparse and
evenly weighted. They provide partial results to support a conjecture that r2n is a computational
lower bound, separated by a gap of r from the information theoretic lower bound of rn. This gap
was first shown in the simpler context of the stochastic block model [21]. [50] proposed a spectral
clustering method for inferring the edge label distribution for a network sampled from a generalized
stochastic block model. When the expected function has a finite spectrum decomposition, i.e. low
rank, then they provide a consistent estimator for the sparse data regime, with Ω(n log n) samples.

In the above discussion, we have focused primarily on the sample complexity required for con-
sistent estimation, i.e. the scaling of the number of samples required (pn) such that the normalized
estimation error such as the MSE or max-norm goes to 0. When consistent estimation is feasible,
we can further consider the rate of decay of the error guarantees. To that end, we provide a brief
overview of the minimax scaling with respect to boudns on the MSE. [17] identifies a minimax lower
bound on the scaling of the MSE for a generic matrix estimation task characterized by the nuclear
norm of the target matrix. In particular, for symmetric matrices with nuclear norm bounded by
δ, the minimax MSE scaling is lower bounded by min

(

δ√
n3p

, δ2

n2 , 1
)

; furthermore [17] argues that

the universal singular value thresholding achieves this scaling. This bound holds even in the sce-
nario where observed entries are noiseless. This characterization however is loose for the setting
of low-rank matrices. Observe that for rank r symmetric matrices with entries bounded in [−1, 1],

the nuclear norm can scale as n
√
r; resulting in a bound of

√

r
np (for small enough p) [17]. For

the setting of rank r matrices with noiseless observations, [29, 30] provide an estimator with MSE
scaling as r

np for p = Ω(1/n). This points to the fact that the class of matrices with bounded nuclear
norm is more complex than the class of rank r matrices with bounded entries. In the setting of low
rank graphon estimation (i.e. binary observations), [25, 32] show a minimax lower bound on the
MSE scaling as log r

pn for small enough p = Ω(log r/n); however the existence of a computationally
efficient estimator that achieves this lower bound under the more general noise setting of graphon
estimation is still an open research direction.

2 Setup

2.1 Model and Assumptions

Recall that our goal is to estimate the n × n matrix F ; Z is a noisy signal of matrix F such that
E[Z] = F . The available data is denoted by (E ,M), where E ⊂ [n]×[n] denotes the subset of indices
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for which data is observed, and M is the n×n data matrix where M(u, v) = Z(u, v) for (u, v) ∈ E ,
and M(u, v) = 0 for (u, v) /∈ E . The observations can be equivalently represented by an directed
weighted graph G with vertex set [n], edge set E , and edge weights given by M . We assume that
{Z(u, v)}(u,v)∈[n]2 are independent random variables across all indices with E[Z(u, v)] = F (u, v),
and that the underlying matrix and observations are bounded, i.e. F (u, v), Z(u, v) ∈ [0, 1]. We
assume a uniform Bernoulli sampling model, where each entry is observed independently with
probability p, i.e. {I((u, v) ∈ E)}(u,v)∈[n]2 are independent Bernoulli(p) random variables.

Latent Variable Model. Assume that each u ∈ [n] is associated to a latent feature variable θu ∼
U [0, 1], which is drawn independently across indices [n] uniformly on the unit interval. We assume
that the expected data matrix can be described by the latent function f , i.e. F (u, v) = f(θu, θv),
where f : [0, 1]2 → [0, 1] is a symmetric bounded function. The symmetry assumption can be easily
relaxed but is assumed for ease of notation in the analysis. The latent function f is assumed to be
fixed and independent of the dimension n. We additionally impose local neighborhood properties
that are primarily used in the nearest neighbor portion of the analysis. We will assume that f is
Lipschitz, but this assumption can be relaxed as discussed in Section 2.2.

Low Rank. We assume that the latent function f has finite spectrum with rank r when regarded
as an integral operator, i.e. for any θu, θv ∈ [0, 1],

f(θu, θv) =

r
∑

k=1

λkqk(θu)qk(θv),

where λk ∈ R for 1 ≤ k ≤ r, and qk are orthonormal ℓ2 functions for 1 ≤ k ≤ r such that

∫ 1

0
qk(y)

2dy = 1 and

∫ 1

0
qk(y)qh(y)dy = 0 for k 6= h ∈ [r].

We assume there exists some B such that supy∈[0,1] |qk(y)| ≤ B for all k ∈ [r]. Let Λ denote the
r×r diagonal matrix with {λk}k∈[r] as the diagonal entries, and let Q denote the r×n matrix where
Q(k, u) = qk(θu). Since Q is a random matrix depending on the sampled θ, it is not guaranteed
to be an orthonormal matrix (even though qk are orthonormal functions). By definition, it follows
that F = QTΛQ. Let r′ ≤ r be the number of distinct valued eigenvalues amongst {λk}k∈[r]. Let

Λ̃ denote the r × r′ matrix where Λ̃(a, b) = λb−1
a .

The finite spectrum assumption also implies that the model can be represented by latent vari-
ables in the r dimensional Euclidean space, where the latent variable for node i would be the vector
(q1(θi), . . . qr(θi)), and the latent function would be bilinear, having the form

f(~q, ~q′) =
∑

k

λkqkq
′
k = qTΛq′.

This condition also implies that the expected matrix F is low rank, which includes scenarios such
as the mixed membership stochastic block model and finite degree polynomials. The function f is
fixed with respect to n, the rank r is assumed to be finite in the low rank setting.

The mixed membership model for network data can be represented with a finite spectrum
latent variable model. Each coordinate is associated to a vector π ∈ ∆r, sampled iid from a
distribution P . For two nodes with respective types π and π′, the observed interaction is f(π, π′) =
∑

ij πiπ
′
jBij = πTBπ′, where B ∈ [0, 1]r×r and assumed to be symmetric. Since B is symmetric,

there exists a diagonal decomposition B = U Λ̃UT with uk denoting the eigenvectors, such that
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f(π, π′) =
∑r

k=1 λ̃ku
T
k πu

T
k π

′. It follows from this decomposition that the Hilbert-Schmidt integral
operator associated to function f : ∆r ×∆r → [0, 1] has finite spectrum with rank at most r.

Interaction data arising from symmetric finite degree polynomials also leads to finite spec-
trum latent variable models. Let f(x, y) be a finite degree symmetric polynomial, represented
by f(x, y) =

∑r
i=0

∑r
j=0 cijx

iyj, where cij = cji for all ij. Let x = (1, x, x2, . . . xr) and y =

(1, y, y2, . . . yr), and let C denote the (r+1)×(r+1) matrix with entries [cij ], so that f(x, y) = xTCy.
Since C is symmetric, there exists a diagonal decomposition B = U Λ̃UT with uk denoting the
eigenvectors, such that f(x, y) =

∑r
k=1 λ̃ku

T
k xu

T
k y. It follows from this decomposition that the

Hilbert-Schmidt integral operator associated to function f has finite spectrum with rank at most
r.

Approximately Low Rank. More generally, we shall consider approximately low-rank f cf.
[46]. Specifically, for a given ε > 0, a symmetric function f is said to have ε-approximate rank r if

sup
θu,θv∈[0,1]

∣

∣f(θu, θv)−
r
∑

k=1

λkqk(θu)qk(θv)
∣

∣ ≤ ε, (1)

where λk ∈ R for 1 ≤ k ≤ r, and qk are orthonormal ℓ2 functions for 1 ≤ k ≤ r. In this case,
it follows that F = QTΛQ + ε where ε = [εij ] ∈ R

n×n is such that maxij |εij | ≤ ε. That is, the
matrix F is approximately rank r. Functions f which do not have finite spectrum, but for which
the eigenvalues decay quickly can be shown to have approximately low rank. [17, 49] use this
observation to analyze the USVT algorithm for latent variable model estimation with Lipschitz,
Holder, and Sobolev functions. [46] also show that any analytic function with bounded derivatives
has approximately low rank. Recall again that we assume the function f is fixed with respect to n,
but we can consider the choice of ε to be dependent on n, so that the ε approximate rank r would
grow with respect to n.

2.2 Discussion on Latent Variable Model

The latent variable model assumes a random generative model on the underlying matrix F , as
opposed to the typical deterministic incoherence style conditions found in the literature. The
generative model assuming i.i.d. sampled latent variables and boundedness of the eigenfunctions
of f guarantee similar properties as incoherence with high probability, as any single row or column
will not dominate the signal in a way that deviates too much from the typical values of f . The
i.i.d. sampling assumption on the latent variables is used in analyzing the local neighborhoods of
the observation graph, however this assumption can likely be replaced by regularity assumptions
over the empirical distribution of the latent factors for large n, e.g. if the latent factors are close
to a typical sample set from a well-behaved underlying distribution.

The Lipschitzness assumption of f together with the assumption that θu ∼ U [0, 1], guarantees
that for any given u ∈ [n] there are sufficiently many other coordinates v ∈ [n] such that the
observed entries are similar across both rows or columns. These assumptions can be relaxed as
long as the key property of “sufficiently many similarly behaving coordinates” is maintained. As
examples, a piecewise Lipschitz function f or a setting with finite latent types would also satisfy
the needed local neighborhood properties. Similarly, the scalar assumption on the latent variables
and the uniform distribution U [0, 1] are not crucial and can be relaxed to i.i.d. sampled random
latent vectors from a larger class of distributions. The critical conditions to maintain are the
finite spectrum of f , boundedness of eigenfunctions, and local neighborhood properties. The local
measure needs to be concentrated enough relative to the rate of change in the function f so that
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when n points are sampled from the space, there are sufficently many “nearby neighbors” for whom
the function behaves similarly for any given point we would want to estimate. This primarily affects
the nearest neighbor portion of the algorithm and analysis. [36] also provides a formal discussion
and results for extending the nearest neighbor analysis to accommodate settings beyond scalar
Lipschitz functions. Our model can also be extended to asymmetric matrix settings and categorical
data. Section 6 discuss how our theorem extend to some of these model variations.

2.3 Goal

The goal is to produce F̂ , an estimate of F , using observation matrix M and knowledge of E . We
measure the estimation error through the maximum entry-wise error and the mean squared error.
The maximum entry-wise error or ∞-norm of the error matrix F̂ − F is defined as

‖F̂ − F‖max = max
u,v

|F̂ (u, v) − F (u, v)|. (2)

We will provide bounds on this that hold with high probability, that is, with probability converging
to 1 as n → ∞. The mean squared error (MSE) is defined as

MSE(F̂ ) =
1

n2
E

[

∑

u,v

(F̂ (u, v) − F (u, v))2
]

. (3)

In measuring error either with high probability or in expectation, the randomness is considered
over the data generation process.

3 Algorithm

We propose and analyze a variation of the similarity based collaborative filtering algorithm. At its
core, the collaborative filtering algorithm attempts to produce the estimate F̂ (u, v) by averaging
over observed entries F (u′, v′) for a subset of tuples (u′, v′) such that u′ is “similar” to u and v′ is
“similar” to v.

Sample Splitting. To state the precise algorithm, for technical reasons, we shall use sample splitting.
Recall that E ⊂ [n]2 denotes the set of indices for which we observe noisy signals of F (u, v),
i.e. for each (u, v) ∈ E , M(u, v) = Z(u, v) where E[Z(u, v)] = F (u, v). We assumed that E is
generated according to a Bernoulli(p) sampling model, i.e. for each (u, v) ∈ [n]2, it belongs to E
with probability p independently. We split the samples E into three subsets as follows: for each
tuple or edge (u, v) ∈ E , with probability 1/4 it is placed in E ′, with probability 1/4 it is placed in
E ′′, and with the remaining 1/2 probability it is placed in E ′′′ = E\(E ′ ∪ E ′′).

We will use additional “virtual” edges that will aid in estimating the distance as part of
the algorithm. To that end, note that conditioned on the edge set E ′, for some (u, v) /∈ E ′,
P ((u, v) ∈ E ′′|E ′) = p

4−p = p′. Furthermore, conditioned on E ′, I((u, v) ∈ E ′′) are independent

random variables. Conditioned on E ′, we generate a random subset E ′
ind

⊆ E ′ such that each
(u, v) ∈ E ′ is included in E ′

ind
independently with probability p′ = p

4−p . Therefore, conditioned

on E ′, the set E ′
ind

∪ E ′′ is distributed according to a Bernoulli(p′) sampling model, where each
(u, v) ∈ [n]2 are included in E ′

ind
∪ E ′′ independently with probability p′.

For each u, v ∈ [n], define M ′(u, v) = I((u, v) ∈ E ′)M(u, v), M ′
ind

(u, v) = I((u, v) ∈ E ′
ind

)M(u, v),
M ′′(u, v) = I((u, v) ∈ E ′′)M(u, v), and M ′′′(u, v) = I((u, v) ∈ E ′′′)M(u, v); let M ′ = [M ′(u, v)],
M ′

ind
= [M ′

ind
(u, v)], M ′′ = [M ′′(u, v)] and M ′′′ = [M ′′′(u, v)] denote the associated n× n matrices.

Note that M ′
ind

is strictly contained within M ′ as E ′
ind

⊆ E ′. The algorithm will use observations
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M ′ and M ′′ to producing distance estimates d̂, and it uses observations M ′′′ to produce the final
estimate F̂ given d̂.

Noisy Nearest Neighbor Algorithm. We consider the following noisy nearest neighbor algorithm
described below, followed by three different subroutines to compute distances depending on the
sparsity regime of the dataset.
(1) Compute distances d̂(u, v) between pairs of coordinates u, v ∈ [n]2 using M ′ and M ′′.
(2) For each u, v ∈ [n]2, produce an estimate

F̂ (u, v) = 1
|E ′′′

uv|
∑

(a,b)∈E ′′′
uv

M ′′′(a, b), (4)

where E ′′′
uv = {(a, b) ∈ E ′′′ : d̂(u, a) < η, d̂(v, b) < η} for some small enough η > 0.

We will choose the threshold η = η(n) depending on the local geometry of the latent feature
space with respect to d̂(u, v), in order to guarantee that η(n) is small enough to drive the bias
to zero, yet large enough to ensure |E ′′′

uv| diverges so that the variance due to observation noise is
small. The key part of the algorithm is determining how to estimate the distances d̂(u, v). In what
follows, we describe three variations depending upon the observation density, p.

3.1 Estimating Distance d̂

Dense Regime. When p = ω(n− 1
2 ), it is feasible to compute distances by simply looking at the

overlapping entries; this is popularly done in practice [27] as well as analyzed theoretically in the
recent works [51, 35]. For any (u, a) ∈ [n]2,

d̂(u, a) = 1
|Oua|

∑

y∈Oua
(M(u, y) −M(a, y))2, (5)

where Oua = {y ∈ [n] : (u, y), (a, y) ∈ E ′}. This is a finite sample approximation of
∫ 1
0 (f(θu, y) −

f(θv, y))
2 dy. When p = ω(n− 1

2 ), it follows that |Oua| = ω(1) for all u, a ∈ [n]2 with high probability,
so that d̂(u, a) ≈

∫ 1
0 (f(θu, y) − f(θv, y))

2 dy. [35] subsequently prove that for any Lipschitz latent

function f the MSE decays to 0 as n → ∞ as long as p = ω(n− 1
2 ). The arguments of [35] can

be adapted to show that the maximum entry-wise error decays to 0 with high probability as well.
However, for p = o(n− 1

2 ), for most u, a ∈ [n]2, Oua = ∅ with high probability and hence a different
approach is needed – overcoming the sparse regime is the primary interest of this work.

Sparse Regime. Consider the sparse regime where p = n−1+κ for any κ ∈ (0, 12); in this regime the
overlap is small and thus new distance estimates are required. Recall that the function f has finite
spectrum, i.e. f(θu, θv) =

∑

k λ
r
k=1qk(θu)qk(θv). We propose an estimator which approximates

d(u, v) = ‖ΛtQ(eu − ev)‖22 by comparing depth t neighborhoods of u and v in the data graph G =
([n], E ′). Specifically, let the weight of an edge (a, b) ∈ E ′ in graph G be the observed value M(a, b)
(= M ′(a, b)). By assumption, in expectation this weight equals F (a, b) = f(θa, θb). Therefore,
the product of weights along a path from u to y, of length t, denoted as (u, x1, . . . , xt−1, y) with
(u, x1), (x1, x2), . . . , (xt−1, y) ∈ E ′, in expectation equals

EX1,...,Xt−1

[

f(θu,X1)×
t−2
∏

s=1

f(Xs,Xs+1)× f(Xt−1, θy)|θu, θy
]

=
∑r

k=1 λ
t
kqk(θu)qk(θy)

= eTuQ
TΛtQey. (6)
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Therefore, the product of weights along the path connecting u to y is a good proxy of quantity
eTuQ

TΛtQey. Recall that each entry is observed independently with probability p due to our assumed
Bernoulli sampling model. Therefore, for any u ∈ [n], the number of neighbors of u in G scale as
pn = nκ. More generally, for 1 ≤ t ≤ 1/κ, the number of nodes at distance t from u scale as nκt.
We choose t large enough to guarantee that for any two nodes u and v, there is a sufficient overlap
between the two subset of nodes at distance y from nodes u and v respectively. This suggests that
we choose t so that nκt ≈ n

1
2 , which in effect aggregates enough data in the sparse regime to match

the expected number of observations per row in the dense regime. We formalize this intuition in
the following construction of the distance estimates.

Let Su,s denote the set of vertices which are at distance s from vertex u in the graph defined by
edge set E ′. Specifically, i ∈ Su,s if the shortest path in G = ([n], E ′) from u to i has a length of s.
Let Tu denote a breadth-first tree in G rooted at vertex u. The breadth-first property ensures that
the length of the path from u to i within Tu is equal to the length of the shortest path from u to
i in G. Let T t

u ⊂ Tu denote the sub-tree containing all nodes and edges in Tu up to and including
depth t. If there is more than one valid breadth-first tree rooted at u, choose one uniformly at
random. Let Nu,t ∈ [0, 1]n denote the following vector with support on the boundary of the depth-t
neighborhood of vertex u (we also call Nu,t the neighborhood boundary):

Nu,t(i) =

{

∏

(a,b)∈pathTu
(u,i)M

′(a, b) if i ∈ Su,t,

0 if i /∈ Su,t,

where pathTu(u, i) denotes the set of edges along the path from u to i in the tree Tu. The sparsity of
Nu,t(i) is equal to |Su,t|, and the value of the coordinate Nu,t(i) is equal to the product of weights
along the path from u to i. Let Ñu,t denote the normalized neighborhood boundary such that

Ñu,t = Nu,t/|Su,t|. For each tuple (u, v) ∈ [n]2, compute d̂(u, v) according to

d̂(u, v) =
(

1
p′

)(

Ñu,t − Ñv,t

)T
(M ′′ +M ′

ind)
(

Ñu,t+1 − Ñv,t+1

)

. (7)

Sparser Regime. Consider the even sparser regime where p = n−1 ln1+κ n for some κ > 0. Let
us assume that the algorithm knows the eigenvalues {λk}k∈[r]. Recall that r′ ≤ r denotes the
number of distinct valued eigenvalues amongst {λk}k∈[r]. Recall that Λ is the diagonal matrix with

Λkk = λk, and Λ̃ is the r× r′ Vandermonde matrix where Λ̃(a, b) = λb−1
a . Let z ∈ R

r′ be the vector
that satisfies Λ2t+2Λ̃z = Λ21; z always exists and is unique because Λ̃ is a Vandermonde matrix,
and Λ−2t1 lies within the span of its columns. For every (u, v) ∈ [n]2, compute distance according
to

d̂(u, v) =
(

1
p′

)
∑

ℓ∈[r′] zℓ
(

Ñu,t − Ñv,t

)T
(M ′′ +M ′

ind
)
(

Ñu,t+ℓ − Ñv,t+ℓ

)

. (8)

3.2 Reducing computation by subsampling vertices

The pairwise distances can only be estimated up to a limited precision depending on the sparsity
of the data and amount of noise in the observations, and furthermore we tune the nearest neighbor
threshold to tradeoff between bias and variance. As a result, the performance of the algorithm can
be maintained with reduced computation by clustering the coordinates so that not all n2 pairwise
distances need to be computed. This would involve adding an extra step at the beginning of the
algorithm that samples sufficiently many “anchor” vertices K ⊂ [n] that cover the space well. |K|
should be chosen large enough such that for any vertex u ∈ [n], there exists some anchor vertex
i ∈ K which is “close” to u in the sense that ‖ΛQ(eu − ei)‖22 is small. For all n vertices, we only
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compute the distances to each of the |K| anchor vertices, and we let π : [n] → K be a mapping
from each vertex to the anchor vertex that minimizes the estimated distance d̂ as computed in the
original algorithm statement, π(u) = argmini∈K d̂(u, i). The final estimate then is given by

F̂ (u, v) = F̂ (π(u), π(v)) =
1

|Eπ(u)π(v)|
∑

(a,b)∈Eπ(u)π(v)

M ′′′(a, b),

where Eπ(u)π(v) denotes the set of undirected edges (a, b) such that (a, b) ∈ E3 and both d̂(π(u), a)

and d̂(π(v), b) are less than some threshold η. We can compute Eπ(u)π(v) by the clustering assign-
ments and distances of all vertices to the anchor vertices.

3.3 Computational Complexity

To analyze the computational complexity of the algorithm, we consider each step. Growing local
neighborhoods around each vertex costs at most n|E|, since there are n vertices and the BFS trees
visit each edge at most once. Computing the inner product for all pairs of vertices given the local
neighborhood vectors costs at most n2|E|, since there are n2 vertex pairs and |E| entries in the data
matrix M . The final nearest neighbor estimator involves a (weighted) average of the datapoints,
which costs at most n2|E|, as there are n2 entries in the matrix to estimate, and at worst the estimate
would involve averaging over |E| datapoints. This extremely crude bound leads to a computational
complexity of O(pn4). The bottleneck of the algorithm is the final nearest neighbor estimate, which
may be reduced by using approximate nearest neighbor methods.

If we instead used the modified algorithm that subsamples |K| anchor vertices at random and
treats them as “cluster centers”, there are only (|K|2 + n|K|) pairwise distances computed, for a
computational cost of (|K|2 + n|K|)|E| instead of n2|E|. Once we cluster the vertices, the final
estimate is only computed for the pairwise cluster blocks, as the final estimate is a block constant
matrix with only |K|2 distinct valued estimates. This results in |K|2|E| computation for the final
step of the estimation. The computational complexity reduces from O(n2|E|) to O((|K|2+n|K|)|E|).
The choice of |K| depends on the distribution of latent variables, the shape of the latent function,
and the error tolerance. In a setting with finitely many latent types, then |K| would be roughly
linear in the number of latent types.

A practical benefit of our algorithm is that it is amenable to a distributed and parallelized im-
plementation. The key computational step of our algorithm involves comparing the expanded local
neighborhoods of pairs of vertices to find the “nearest neighbors”. As the algorithm is inherently
local with respect to the data graph, it can be easily implemented for large scale datasets where
the data may be stored in a distributed fashion optimized for local graph computations. The local
neighborhoods can be computed in parallel, as they are independent computations. Using approx-
imate nearest neighbor techniques and subsampling vertices to cluster will additionally reduce the
computation.

3.4 Discussion

In practice, we may not know the model parameters, and we would use cross validation to tune
the BFS tree depth t and nearest neighbor threshold η. If the depth t is either too small or too
large, then the vector Nu,t will be too sparse, and will not optimally aggregate the datapoints. The
threshold η trades off between bias and variance of the final estimate. When the sampled obser-
vations are not uniform across entries, the algorithm may require more modifications to properly
normalize for high degree hub vertices, as the optimal choice of depth t may differ depending on
the local sparsity.
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In our algorithm, we assumed that we observed the edge set E . Specifically, this means that
we are able to distinguish between entries of the matrix that have value zero because they are
not observed, i.e. (i, j) /∈ E , or if the entry was observed to be value zero, i.e. (i, j) ∈ E and
M(i, j) = Z(i, j) = 0. This fits well for applications such as recommendations, where the system
does know the information of which entries are observed or not. Some social network applications
contain this information (e.g. facebook would know if they have recommended a link which was
then ignored) but other network information may lack this information, e.g. we do not know if link
does not exist because observations are sparse, or because observations are dense but the probability
of an edge is small. The absence of this knowledge would primarily affect the normalization of the
neighborhood vectors as well as the normalization in the final averaging step.

The idea of comparing vertices by looking at larger radius neighborhoods was introduced in
[2], and has connections to belief propagation [21, 4] and the non-backtracking operator [34, 28,
41, 40, 5]. The non-backtracking operator was introduced to overcome the issue of sparsity. For
sparse graphs, vertices with high-degree dominate the spectrum, such that the informative compo-
nents of the spectrum get hidden behind the high degree vertices. The non-backtracking operator
avoids paths that immediately return to the previously visited vertex in a similar manner as belief
propagation, and its spectrum has been shown to be more well-behaved, perhaps adjusting for the
high degree vertices, which get visited very often by paths in the graph. In our algorithm, the
neighborhood paths are defined by first selecting a rooted tree at each vertex, thus enforcing that
each vertex along a path in the tree is unique. This is important in our analysis, as it guarantees
that the distribution of vertices at the boundary of each subsequent depth of the neighborhood is
unbiased, since the sampled vertices are freshly visited.

4 Results

In all of the results below, we assume the latent variable model assumptions laid out in Section
2. As a reminder, we assume uniform Bernoulli sampling with density p, independent bounded
observation noise, and a generative latent variable model where coordinates are associated to i.i.d.
sampled latent variables and the underlying matrix behaves according to a bounded latent function
f that is Lipschitz and low rank (or approximately low rank) with bounded eigenfunctions.

4.1 f has rank r

We first provide theoretical bounds for the estimation error in both sparse regimes mentioned above
when f has finite spectrum with rank r.

Sparse Regime. Theorem 4.1 shows that the maximum entrywise error of the collaborative filtering
algorithm using distance function (7) converges to zero in the sparse regime when p = n−1+κ for
some κ ∈ (0, 12 ).

Theorem 4.1. Let f have rank r, p = n−1+κ for some κ ∈ (0, 12) so that 1/κ is not an integer.
Consider the estimates produced by the nearest neighbor algorithm using the distance defined in (7)

for t = ⌊ ln(1/p)ln(np) ⌋ and selecting the nearest neighbor distance threshold to satisfy η = Θ(n− 1
2
(κ−ρ))

for any ρ ∈ (0, κ). Let Cf = |λ1|/|λr| denote the condition number of the latent function f . With
probability 1− o(1),

‖F̂ − F‖max = O
(

rC
1/κ
f n− 1

4
(κ−ρ)

)

. (9)
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Furthermore,

MSE(F̂ ) =
1

n2
‖F̂ − F‖2Fr = O

(

r2C
2/κ
f n− 1

2
(κ−ρ)

)

. (10)

Sparser Regime. Theorem 4.2 shows that the maximum entrywise error of the collaborative filtering

algorithm using distance function (8) converges to zero in the sparser regime when p = n−1 ln1+κ n
for some κ > 0.

Theorem 4.2. Let f have rank r, p = n−1 ln1+κ n for some κ > 0. Consider the estimates produced
by the nearest neighbor algorithm using the distance defined in (8) for t = ⌈ ln(0.08/p)

ln(0.275np) − r′⌉ and

selecting the nearest neighbor distance threshold to satisfy η = Θ
(

(lnn)−
1
2
(κ−ρ)

)

for any ρ ∈ (0, κ).

With probability 1− o(1),

‖F̂ − F‖max = O
(

(lnn)−
1
4
(κ−ρ)

)

. (11)

Furthermore,

MSE(F̂ ) = O
(

(ln n)−
1
2
(κ−ρ)n

)

. (12)

Theorems 4.1 and 4.2 show that for symmetric sparse matrix estimation, as long as the fraction

of entries observed at random scale as log1+κ(n)
n for any fixed κ > 0, the estimation error of our

proposed iterative variant of the classical collaborative filtering algorithm with respect to the max-
norm decays to 0 as n → ∞ assuming the underlying matrix of interest has constant rank r.

4.2 f has ε-approximate rank r

We extend the above stated result to the setting when the latent function f has ε-approximate rank
r; this captures settings where f may have infinite but quickly decaying spectrum. We formally
state the extension in the sparse regime (p = n−1+κ), but we believe that a similar result is likely to
hold for the sparser regime (p = n−1 log1+κ(n)) as well, which we omit for simplicity of presentation.

Theorem 4.3. Let f have ε-approximate rank r for some ε > 0, p = n−1+κ for some κ ∈ (0, 12 ) so
that 1/κ is not an integer. Consider the estimates produced by the nearest neighbor algorithm using

the distance defined in (7) for t = ⌊ ln(1/p)ln(np) ⌋ < 1
κ − 1 and selecting the nearest neighbor distance

threshold to satisfy η = Θ(n− 1
2
(κ−ρ)) for any ρ ∈ (0, κ). Let Cf,r = |λ1|/|λr| denote the condition

number of the rank r approximation to the latent function f . With probability 1− o(1),

‖F̂ − F‖max = O
(

rC
1/κ
f,r n

− 1
4
(κ−ρ)

)

+O
(

|λr|−
1
κ
√
r

(
√

ε

κ
(1 + ε)

1
2κ

− 1
2 +

ε

κ
(1 + ε)

1
κ
− 3

2

)

)

(13)

Furthermore,

MSE(F̂ ) = O
(

r2C
2
κ
f,rn

− 1
2
(κ−ρ)

)

+O
(

|λr|−
2
κ r

(

ε

κ
(1 + ε)

1
κ
−1 +

ε2

κ2
(1 + ε)

2
κ
−3

)

)

. (14)

As we assume the function values are bounded in [0, 1], we can assume that ε ∈ [0, 1], such that

the dominating terms in (13) are O
(

rC
1/κ
f,r n

− 1
4
(κ−ρ)

)

+ O
(

√

εr|λr|−
2
κκ−1

)

, and the dominating
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terms in (14) are O
(

r2C
2/κ
f,r n

− 1
2
(κ−ρ)

)

+O
(

εr|λr|−
2
κκ−1

)

. While we assume the function f is fixed

with respect to n, when the function f has infinite spectrum, we can choose ε to decrease with n
in order to tradeoff between the two terms in the error bound. Note that the approximate rank
r and the approximate condition number Cf,r also depend on the choice of ε. In particular the
relationship between ε, r, and Cf,r will depend on the spectrum of f and how quickly the tail decays
to zero. Choosing a larger value of r will increase the condition number as |λr| will be smaller, and
it will decrease the approximation error ε. Below we present a specific example as a consequence
of Theorem 4.3.

Corollary 4.4. Let p = n−1+κ for some κ ∈ (0, 12 ) so that 1/κ is not an integer. Consider f such
that for any r ≥ 1, it has εr-approximate rank r with |λr| corresponding to rank r approximation
with Cf,r = |λ1|/|λr| being the condition number such that |λ1| = O(1) and

lim
r→∞

εr|λr|−2/κr = 0. (15)

Then, for any δ > 0, for all n large enough, with probability 1 − o(1), ‖F̂ − F‖max = O
(√

δ
)

.

Further, MSE(F̂ ) = O
(

δ
)

.

Proof of Corollary 4.4. For any δ > 0, by (15), there exists large enough r = r(δ) such that
εr|λr|−2/κr ≤ δ. Due to |λ1| = O(1), Cf,r = O(|λr|−1). Given choice of r = r(δ), for n large enough

we have rC
1/κ
f,r n

− 1
4
(κ−ρ) ≤

√
δ. By (13) of Theorem 4.3 it follows that ‖F̂ − F‖max = O(

√
δ) with

probability at least 1− o(1). By (14) of Theorem 4.3, it follows that MSE(F̂ ) = O(δ). �

From Corollary 4.4, it follows that ‖F̂ −F‖max = o(1) with probability 1− o(1) and MSE(F̂ ) =
o(1) when the spectrum decays in such a way that limr→∞ εr|λr|−2/κr = 0.

4.3 Discussion

In our latent variable model, the latent function f is fixed with respect to n, so the max norm of
the truth matrix is constant ‖F‖max = Θ(1), and the Frobenius norm of the truth matrix scales
linear with the matrix dimension so that 1

n2‖F‖2Fr = Θ(1). As a result the above stated results
also show the convergence rates with respect to the relative errors of the max norm and normalized
Frobenius norm.

The overall proof sketch can be split into two parts. First we prove that the estimated pairwise
distances concentrate to a metric computed with respect to the true latent function f . Second we
prove that given well behaved estimated distances, the nearest neighbor estimate with properly
chosen thresholds to balance mean and variance will converge at the above stated rate. This
second part of the proof is straightforward and follows the standard proof for any nearest neighbor
style algorithm. The crux of the proof is arguing that in sparse settings the computed distances
concentrate well. This relies on the uniform sampling assumption, independence of the observation
noise, regularity of the latent feature variables, and the finite spectrum assumption of the latent
function. The assumptions on the specific distribution of the latent variables and the Lipschitzness
of the latent function are in fact primarily used for the second nearest neighbor portion of the
proof, and thus can be relaxed. The key property needed is that there are sufficiently many
“nearest neighbor” coordinates; the precise distribution of the latent variables and shape of the
latent function will affect the tuning of the threshold parameter to tradeoff between bias and
variance. We provide formal statements for a few variations of the model in Section 6.
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In addition to providing bounds on the MSE, our theorem also provides bounds on the maximum
entrywise error of the estimate. The rate of our maximum entrywise error is the square root of the
MSE rate, which suggests that the error is uniformly spread across all entries. This is a stronger
guarantee that the typical MSE bounds found in the literature, and it can be useful for downstream
results that use the estimates for decision making such as ranking and recommendations.

Thus far, we have focused on finding conditions on p that allow for consistent estimation with
respect to both the MSE and max entrywise error. Our results also provide the rate at which the
error decays. Specifically, our bound for the mean squared error (MSE) scales as O((pn)−1/2+ρ) for
any arbitrarily small constant ρ > 0, and our bound for the max entrywise error is O((pn)−1/4+ρ)
for any small ρ.

5 Proof Sketch for Analyzing Noisy Nearest Neighbors

As the algorithm uses a fixed radius nearest neighbor estimate, the analysis boils down to arguing
that the distance functions as defined in (7) and (8) have certain desired properties that enable
the classical nearest neighbor algorithm to be effective. In this section we characterize the needed
properties for the convergence of noisy nearest neighbors.

Our algorithm estimates F (u, v), i.e. f(θu, θv), according to (4), which simply averages over
datapoints M(u′, v′) corresponding to tuples (u′, v′) for which u′ is close to u and v′ is close to v
according to the estimated distance function d̂. This simple nearest neighbor averaging estimator
suggests that the last step of the analysis involves choosing the threshold η to tradeoff between bias
and variance.

The primary desired property is that the data-driven distance estimates d̂(u, v) concentrate
around some ideal data-independent distance d(θu, θv) for d : [0, 1]2 → R+. We can then sub-
sequently argue that the nearest neighbor estimate produced by (4) using d(θu, θv) in place of
d̂(u, v) will yield a good estimate by properly choosing the threshold η to tradeoff between bias and
variance. The bias will depend on the local geometry of the function f relative to the distances
defined by d. The variance depends on the measure of the latent variables {θu}u∈[n] relative to the
distances defined by d, i.e. the number of observed tuples (u′, v′) ∈ E ′′′ such that d(θu, θu′) ≤ η and
d(θv, θv′) ≤ η needs to be sufficiently large. We formalize the above stated desired properties.

Property 5.1 (Good Distance). We call an ideal distance function d : [0, 1]2 → R+ to be a
bias-good distance function for some bias : R+ → R+ if for any given η > 0 it follows that
|f(θa, θb)−f(θu, θv)| ≤ bias(η) for all (θa, θb, θu, θv) ∈ [0, 1]4 such that d(θu, θa) ≤ η and d(θv, θb) ≤
η.

Property 5.1 follows from choosing an appropriate ideal distance function d. In particular we
will choose d with respect to the spectral representation of f , and the desired property and the
expression for bias(η) will follow from the low rank assumption as well as the boundedness of the
eigenfunctions.

Property 5.2 (Good Distance Estimation). For some ∆ > 0, we call distance d̂ : [n]2 → R+ a
∆-good estimate for ideal distance d : [0, 1]2 → R+, if |d(θu, θa)− d̂(u, a)| ≤ ∆ for all (u, a) ∈ [n]2.

Showing property 5.2 is the crux of the proof and follows from the design of the algorithm along
with the assumptions of uniform sampling and the latent variable model. It essentially uses all the
model assumptions except for Lipschitzness of f .
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Property 5.3 (Sufficient Representation). The collection of coordinate latent variables {θu}u∈[n] is
called meas-represented for some meas : R+ → R+ if for any u ∈ [n] and η′ > 0, 1

n

∑

a∈[n] I(d(u, a) ≤
η′) ≥ meas(η′).

Property 5.3 is only used for the final step of the nearest neighbor analysis. In particular,
as the estimate averages datapoints within an estimated nearby region of the target coordinates,
there is a bias variance tradeoff that depends on how the datapoints are locally distributed. In
particular, we need to guarantee that for any (a, b) ∈ [n]2, there exists sufficiently many observed
pairs (u, v) ∈ [n]2 such that the function behaves similarly, i.e. f(a, b) is close to f(u, v). This
property follows from our assumption that the latent variables are sampled i.i.d. from U [0, 1], and
that the function f is L-Lipschitz. As discussed in section 2, these assumptions can be relaxed, but
alternative assumptions would need to guarantee property 5.3 for some reasonable local measure
function meas(η).

Given the above three properties, we can then prove Lemma 5.1, which characterizes the error
of the noisy nearest neighbor algorithm as a function of the bias function, meas function, and
estimation error ∆. Section 8 uses Lemma 5.1 to establish Theorems 4.1, 4.2, and 4.3 by simply
showing the three properties for suitable choices of bias, meas, and ∆, and tuning η accordingly to
balance between different terms of the error. Proving that the distance estimates concentrate well,
i.e. property 5.2, is the most involved part of the analysis, which we defer to sections 9 and 10.
Property 5.1 follows from the low rank assumption and property 5.3 arises from the latent variable
model assumptions, in particular the distribution of the latent variables and shape of the latent
function.

Lemma 5.1. Assume that properties 5.1-5.3 hold with probability 1 − α for some η,∆, and η′ =
η−∆; in particular d is a bias-good distance function, d̂ as estimated from M ′ and M ′′ is a ∆-good
distance estimate for d, and {θu}u∈[n] is meas-represented. The noisy nearest neighbor estimate F̂
computed according to (4) satisfies

MSE(F̂ ) ≤ bias
2(η +∆) +

2

(1− δ)p (meas(η −∆)n)2
+ exp

(

−δ2p (meas(η −∆)n)2

4

)

+ α,

for any δ ∈ (0, 1). Furthermore, for any δ′ ∈ (0, 1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| ≤ bias(η +∆) + δ′,

with probability at least

1− n2 exp
(

−1
4δ

2p (meas(η −∆)n)2
)

− n2 exp
(

−δ′2(1− δ)p (meas(η −∆)n)2
)

− α.

Proof of Lemma 5.1. Recall that the algorithm uses sample splitting, where d̂ is computed using
M ′ and M ′′, and the final estimate F̂ is computed using M ′′′. Therefore, for some (a, b) ∈ E ′′′, the
observation M(a, b) = Z(a, b) is independent of d̂, and E[M(a, b)] = f(θa, θb). Conditioned on E ′′′,
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by definition of F̂ and by assuming properties 5.1 and 5.2, it follows that

E[(F̂ (u, v)− f(θu, θv))
2] =





1

|E ′′′
uv|

∑

(a,b)∈E ′′′
uv

f(θa, θb)− f(θu, θv)





2

+
1

|E ′′′
uv|2

∑

(a,b)∈E ′′′
uv

Var[M(a, b)]

(a)

≤ bias2(η +∆) +
1

|E ′′′
uv|

.

Inequality (a) follows from Properties 5.1-5.2: |d(u, a)− d̂(u, a)| ≤ ∆ and d̂(u, a) ≤ η =⇒ d(u, a) ≤
η+∆. By definition M(a, b) ∈ [0, 1] for all (a, b), which implies Var[M(a, b)] ≤ 1 for all (a, b) ∈ E ′′′.
Define Vuv = {(a, b) ∈ [n]2 : d(u, a) < η −∆, d(v, b) < η −∆}. Assuming property 5.3,

|Vuv| = |{a ∈ [n] : d(u, a) < η −∆}| |{b ∈ [n] : d(v, b) < η −∆}|
≥ (meas(η −∆)n)2 .

By the Bernoulli sampling model and sample splitting process, each tuple (a, b) ∈ [n]2 belongs to
E ′′′ with probability p/2 independently. By a straightforward application of Chernoff’s bound, it
follows that for any δ ∈ (0, 1),

P

(

|E ′′′ ∩ Vuv| ≤
(1 − δ)p

2
(meas(η −∆)n)2

)

≤ exp

(

−δ2p (meas(η −∆)n)2

4

)

. (16)

Therefore, by assuming property 5.2, it follows that with probability at least 1−exp
(

− δ2p(meas(η−∆)n)2

4

)

,

|E ′′′
uv| = |{(a, b) ∈ E ′′′ : d̂(u, a) < η, d̂(v, b) < η}|

≥ |{(a, b) ∈ E ′′′ : d(u, a) < η −∆, d(v, b) < η −∆}|
= |E ′′′ ∩ Vuv|

≥ (1− δ)p

2
(meas(η −∆)n)2 .

Define the eventH = {|E ′′′
uv| ≥ (1−δ)p

2 (meas(η −∆)n)2 |}. It follows that P (Hc) ≤ exp
(

−1
4δ

2p (meas(η −∆)n)2
)

.

By definition, F (u, v) = f(θu, θv) ∈ [0, 1] for all u, v ∈ [n]. Therefore, assuming properties 5.1-5.3
hold,

E[(F̂ (u, v)− f(θu, θv))
2]

≤ E[(F̂ (u, v)− f(θu, θv))
2
∣

∣

∣
H] + P (Hc)

≤ bias
2(η +∆) +

2

(1− δ)p (meas(η −∆)n)2
+ exp

(

−1

4
δ2p (meas(η −∆)n)2

)

.

We add an additional α in the final MSE bound to account for the probability that properties
5.1-5.3 are violated.

To obtain the high-probability bound on the maximum entry-wise error, note that M(a, b) are
independent across indices (a, b) ∈ E ′′′ as well as independent of observations in E ′∪E ′′. Additionally,
the model assumes that M(a, b), F (a, b) ∈ [0, 1], and E[M(a, b)] = F (a, b) for observed tuples (a, b).
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By an application of Hoeffding’s inequality for bounded, zero-mean independent variables, for any
δ′ ∈ (0, 1) it follows that assuming properties 5.1-5.3 hold,

P





∣

∣

∣

∑
(a,b)∈E′′′uv

(M(a,b)−F (a,b))

∣

∣

∣

|E ′′′
uv| ≥ δ′

∣

∣

∣

∣

∣

∣

H



 ≤ exp
(

−δ′2(1− δ)p (meas(η −∆)n)2
)

.

By union bound it follows that

max
(u,v)∈[n]2

|F̂uv − f(θu, θv)| ≤ bias(η +∆) + δ′,

with probability at least

1− n2 exp

(

−1

4
δ2p (meas(η −∆)n)2

)

− n2 exp
(

−δ′2(1− δ)p (meas(η −∆)n)2
)

− α.

This completes the proof of Lemma 5.1. �

6 Extensions

6.1 Subsampled Anchor Vertices

As mentioned in Section 3.2, we can reduce the computational complexity of the algorithm by
subsampling a set of anchor vertices K and only computing pairwise distances relative to the
anchor vertices, equivalent to computing a clustering amongst vertices and using that to estimate.
For pairs of anchor vertices (a, b) ∈ K2 which we also refer to as cluster centers, the algorithm
estimates F̂ (a, b) according to the original stated algorithm with no modifications. For u /∈ K, we
denote π(u) = argmini∈K d̂(u, i) to be a clustering that maps from u to the closest anchor vertex
in K. The final estimate for (u, v) /∈ K2 is then given by the estimate of the associated anchor
vertices, which act as cluster centers, F̂ (u, v) = F̂ (π(u), π(v)).

The original argument provides high probability bounds on |F̂ (u, v)−F (u, v)| for cluster centers
(u, b) ∈ K2, as nothing changed in the algorithm for the cluster centers. The only additional
part of the proof is to bound the additional bias for non cluster centers, as |F̂ (u, v) − F (u, v)| ≤
|F̂ (π(u), π(v))−F (π(u), π(v))|+ |F (π(u), π(v))−F (u, v)|. The first term is directly bounded by the
current analysis, and the bias from the second term will depend on the size of |K|. Recall our latent
variable model assumption that each vertex u is associated to a latent variable θu

∑

U [0, 1] such
that F (u, v) = f(θu, θv) and f is L-Lipschitz with respect to the latent variables. For |K| = 2

δ log(
1
δ ),

with probability at least 1− δ, each interval [(i− 1)δ, iδ] for i ∈ [1/δ] contains at least one anchor
point in K, as the latent variables of these anchor points are chosen at random. Under this good
event, then maxu∈[n]mini∈K |θu − θi| ≤ δ.

We discuss the results and analysis for the sparse setting when p = n−1+κ for some κ ∈ (0, 12),
however a similar argument applies for the sparser setting of p = n−1 ln1+κ n as well. Equation
(20) will show that d(θu, θv) ≤ |λ1|2tL2|θu − θv|2, so that for some u ∈ [n], the closest anchor point
a ∈ K with respect to the latent representation will also satisfy d(θu, θa) ≤ |λ1|2tL2δ2. As Property
5.2 guarantees |d(θu, θa) − d̂(u, a)| ≤ ∆ for all estimated distances, it follows that d(θu, θπ(u)) ≤
|λ1|2tL2δ2+2∆ for all u ∈ [n]. By Property 5.1, |F (π(u), π(v))−F (u, v)| ≤ bias(|λ1|2tL2δ2+2∆).

We choose |K| so that δ =
√
∆

L|λ1|t , and we plug in the choice of ∆ and t from Theorem 4.1, resulting

in δ = Br|λ1|(κ+1)/κL−1n− 1
4
(κ−ρ) = o(1) so that |K| = Θ(n

1
4
(κ−ρ)). This choice of |K| will guarantee

that the extra added bias does not change the existing guarantees in Theorem 4.1 by more than a
constant.
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6.2 Local Geometry

We can generalize the latent variable model beyond scalar valued latent variables and Lipschitz
latent functions. These assumptions only affect the function meas in Property 5.3, and thus it
only changes the last portion of the nearest neighbor proof in which we tune the threshold η to
tradeoff between the bias and variance terms. We present two examples of extending our results to
a different local geometry, illustrating the modifications for the sparse setting when p = n−1+κ for
some κ ∈ (0, 12 ).

If there were only m distinct latent types such that θu ∈ [m] and pmin = mini∈[m] P (θu = i) > 0,
then meas(η′) could be chosen to be a constant slightly less than pmin for every value of η′ > 0. If the
minimum distance measured by d(θu, θv) between any two distinct types θu 6= θv is larger than 2∆,
then we can choose η to be ∆ so that by Property 5.2, the algorithm will achieve perfect clustering.
In particular, if Property 5.2 holds then no vertex of a different type will have estimated distance
less than η and bias(η + ∆) = 0. Given this, each type has at least pminn instances realized, on
average. Therefore, for a given u, v ∈ [n], there are roughly (pminn)

2 entries (u′, v′) ∈ [n]× [n] such
that u, u′ and v, v′ are of the same type. Each of these (pminn)

2 is observed with probability p.
Therefore, by taking average over these observed entries, the Mean Squared Error should scale as
1/(p(pminn)

2) and the max entry-wise error would scale as (p(pminn)
2)−1/2. In the case that the

minimum distance between any two distinct types is less than ∆, then the bias term will still be
there and the limiting term is still bias(∆), and thus the convergence rate would be limited by the
same rate as stated in Theorem 4.1.

Next we discuss a higher dimensional setting. Assume the latent variables are sampled uni-
formly over a m-dimensional hypercube such that θu ∼ U([0, 1]m) and the latent function f is
L-Lipschitz with respect to an underlying metric dm, such that the measure of a ball with radius δ

is Θ(δm). Property 5.3 would instead hold for meas(η′) = Θ((
√
η′

λtL )
m), resulting in a different choice

of threshold η to balance between bias and variance. If m ≤ (κ + 2)/κ, then the current bias(∆)
term dominates such that we would choose η = Θ(∆), and the error convergence rate will be the
same as that stated in Theorem 4.1. For high dimension m > (κ + 2)/κ, we choose the threshold
η = Θ((pn2)−1/(m+1)) such that the MSE bound will scale as Θ((pn2)−1/(m+1)) = Θ(n−(1+κ)/(m+1))
and the max entrywise error bound will scale as Θ(n−(1+κ)/2(m+1)).

6.3 Asymmetric Matrix

Even though our stated results are for symmetric models, we can transform an asymmetric latent
variable model to a symmetric model as long as the row and column dimensions grow proportionally
to one another. Consider an n × m matrix F which we would like to learn, where F (u, v) =
f(αu, βv) ∈ [0, 1], and f has finite spectrum. We can construct a (n+m)× (n+m) matrix where
F is placed on the off-diagonal blocks and the diagonal n × n and m × m blocks are set to zero.
We can argue that this constructed matrix is sampled form a symmetric latent model, so that we
can apply our algorithm and analysis directly.

6.4 Categorical Valued Data

If the edge labels are categorical instead of real-valued, then the goal is instead to estimate the
distribution over the different categories or labels. This is particularly suitable for a setting in
which there is no obvious metric between the categories such that an aggregate statistic such as the
expected label would not be meaningful. If the edge labels take values within m category types, we
can split the data is split into m different matrices, each containing the information for a separate
category (or edge label). For each category or label ℓ ∈ [m], the associated matrix Fℓ represents the
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probability that each datapoint is labeled with ℓ, such that P(Z(u, v) = ℓ) = Fℓ(u, v) = fℓ(αu, αv),
where f is a symmetric function having finite spectrum. The algorithm can then be applied to each
matrix separately to estimate the probability of each category across the different entries. Since we
need the estimates across different categories for the same entry to sum to 1, we can simply let the
estimate for the m-th category one minus the sum of the estimates for the first m− 1 categories.
To obtain an error bound, we can simply use union bound across the m − 1 applications of the
algorithm, which simply multiplies the error probability by m− 1.

6.5 Non-Uniform Sampling

We assumed a uniform sampling model, where each entry is observed independently with probability
p. However, in reality the probability that entries are observed may not be uniform across all pairs
(i, j). Our results can be extended to a setting where the sampling probability is instead a function
of the latent variable, i.e. entry (i, j) is observed with probability cng(θi, θj) where g is a Lipschitz
low rank function independent of n and cn is a scaling factor governing the density. The observed
data M(i, j) would then be sampled according to

M(i, j) =

{

0 with probability 1− cng(θi, θj)

Z(i, j) with probability cng(θi, θj).

for E[Z(i, j)] = f(θi, θj). Whereas previously we had E[M(i, j)] = pf(θi, θj), in this modified
model, E[M(i, j)] = cng(θi, θj)f(θi, θj). A limitation of this model is that we need the sampling
probabilities to all scale at the same order with respect to n. The model is not fully identifiable as
we could multiply cn by a constant and divide g by the same constant and obtain the same data
distribution, and thus we can only estimate up to a constant scaling factor.

We can essentially then apply our algorithm twice, first using data matrix M to estimate the
product g(θi, θj)f(θi, θj) up to a scaling factor. Second we apply our algorithm to the binary
adjacency matrix representing the sparsity of the observation set Ω in order to estimate g(θi, θj) up
to scaling factor. The one nuance one would have to handle is that since the set of observed entries
is not uniformly sampled, the constructed BFS trees will grow non-uniformly, which will affect the
normalization and scaling terms. As the model is only recoverable up to scaling, this is the best
we can do. If we had data from a two-step sampling process in which we first observe binary edges
sampled uniformly with probability cn, and then subsequently observed datapoints sampled with
an additional probability g(θi, θj), then the model would exactly fall into our assumptions and the
results could directly be applied to estimating g(θi, θj) and the product g(θi, θj)f(θi, θj).

7 Experiments

We show results on synthetic data to illustrate the performance of our algorithm. We did not
do sample splitting as it is primarily introduced for the purpose of the analysis. We computed
distances according to equation (7) (but again without sample splitting) for fixed radius parameters
of t ∈ {0, 1, 2, 3, 4}. Note that the depth for expanding the BFS tree is until t + 1. We did not
specifically tune the nearest neighbor threshold η, but simply chose it to be the 70th percentile
amongst all estimated distances. As a result, the expected number of entries used to compute the
final weighted average estimate is 0.49pn2. We compare against a naive baseline which predicts
using the column-wise mean. And we compare against the softimpute implementation in python’s
fancyimpute package and alternating least squares with rank 2 from parafac algorithm in the python
tensorly package (higher rank performed more poorly in the sparse setting as it overfit to noise).
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Figure 1: Adjusted MSE of missing entries vs. sampling probability p. The rank of the ground
truth matrix is 10, and the observations are perturbed with mean zero additive Gaussian noise
with variance σ2. Results are shown left to right for matrices of sizes 500-by-500, 1000-by-1000,
and 5000-by-5000.

Nuclear norm minimization was too slow for the size of instances that we show and thus was
omitted.

The matrix F is generated as follows. For rank r = 10, we first sample two Gaussian n×r latent
factor matrices U ∈ R

n×r and V ∈ R
n×r. Each entry of the latent factor matrices is sampled from

an independent Gaussian distribution with mean 10 and standard deviation 10. Next we compute
F according to

F =
(UV T −mean(UV T ))

max(abs(UV T ))
.

For a κ ∈ (0, 1], the density is chosen to be p = n−1+κ, and each entry is observed (and thus
included in sample set Ω) with probability p independently of all other entries. For each observed
entry (u, v) ∈ Ω, there is an added independent Gaussian noise M(u, v) = F (u, v) + ε(u, v), where
ε(u, v) ∼ N(0, σ2) where σ is chosen to be the 40th percentile of the magnitude of entries in F . We
show results for n = 500, 1000, and 5000.

We compute an adjusted mean squared error (MSE), limited to the error in predicting missing
entries, and we normalize by the squared error of predicting with zeros. When the adjusted MSE
is larger than 1, it means the estimate is worse than predicting all zeros.

adjusted MSE =

∑

(u,v)/∈Ω(F̂ (u, v) − F (u, v))2
∑

(u,v)/∈Ω F (u, v)2

Figure 1 shows the adjusted MSE of the algorithms with respect to the sampling probability
p. When p is very small, then our algorithm with the optimal choice of the depth parameter t
performs better than ALS and SoftImpute, however when it is too sparse than either the simple
mean estimate or predicting with all zeros is best. Note that we did not do any tuning of the
nearest neighbor parameter η, and thus there may be additional gains possible for our algorithm.
If we consider the minimum density for which the algorithm performs better than the simple mean,
SoftImpute requires the most dense observation. The minimum density required for our algorithm
depends on optimally choosing the depth parameter t, but for an optimal choice of t, our algorithm
requires less data than ALS before it performance better than the simple mean.

Figure 2 shows the adjusted MSE of the algorithms with respect to the exponent of the density
parameter κ where p = n−1+κ. This rescales the x-axis so that the small values of p are more
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Figure 2: Adjusted MSE of missing entries vs. sampling probability exponent κ = ln(pn)/ ln(n).
The rank of the ground truth matrix is 10, and observations are perturbed with mean zero additive
Gaussian noise with variance σ2. Results shown left to right for matrices of sizes 500-by-500,
1000-by-1000, and 5000-by-5000.
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Figure 3: Computation time vs. sampling probability exponent κ = ln(pn)/ ln(n). The rank
of the ground truth matrix is 10, and the observations are perturbed with mean zero additive
Gaussian noise with variance σ2. Results are shown left to right for matrices of sizes 500-by-500,
1000-by-1000, and 5000-by-5000.

visible. We plot only up to κ = 0.6 as we are focusing on the sparse regime with little overlaps
in entries between pairs of rows and columns. Notice the dependence on the performance of our
algorithm with respect to the radius parameter t as illustrated best in Figure ??. For too small
values of t the alg is suboptimal as it does not aggregate data sufficiently, but for too large values
of t the algorithm again is suboptimal as it simply estimates zeros due to the BFS trees running
out of vertices.

Figure 3 shows the time each of the algorithms took to run. We can see that our proposed
algorithm is faster than SoftImpute, and this gap in speed is amplified with large n. Alternating
Least Squares (ALS) is very fast, nearly as fast as the simple mean. Nuclear norm minimization
was too slow to run on the size of instances in our example and thus was not included.

8 Proofs for Theorems 4.1, 4.2, and 4.3

In this section, we use the noisy nearest neighbor lemma 5.1 along with to establish Theorems 4.1,
4.2, and 4.3. Proofs of the concentration of distance estimates is deffered to sections 9 and 10.
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8.1 Analyzing Sparse Regime: Proofs of Theorem 4.1 and 4.3

We prove that as long as p = n−1+κ for any κ ∈ (0, 12), with high probability, properties 5.1-5.3

hold for an appropriately chosen function d, and for distance estimates d̂ computed according to (7)

with t = ⌊ ln(1/p)ln(np) ⌋. We subsequently use Lemma 5.1 to conclude Theorem 4.1. The most involved
part in the proof is establishing that property 5.2 holds with high probability for an appropriately
chosen ∆, which is delegated to Lemma 8.1.

Good distance d and Property 5.1. We start by defining the ideal distance d as follows. For all
(u, v) ∈ [n]2, let

d(θu, θv) = ‖Λt+1Q(eu − ev)‖22 =
r
∑

k=1

λ
2(t+1)
k (qk(θu)− qk(θv))

2. (17)

Recall that t = ⌊ ln(1/p)ln(np) ⌋. Assuming p = n−1+κ, κ ∈ (0, 12 )

t =

⌊

ln(1/p)

ln(np)

⌋

=

⌊

1

κ
− 1

⌋

. (18)

We want to show that there exists bias : R+ → R+ so that |f(θa, θb)− f(θu, θv)| ≤ bias(η)for
any η > 0 and (u, a, v, b) ∈ [n]4 such that d(θu, θa) ≤ η and d(θv, θb) ≤ η. By the finite spectrum
characterization of the function f , it follows that

|f(θu, θv)− f(θa, θb)| = |eTuQTΛQev − eTaQ
TΛQeb|

= |eTuQTΛQ(ev − eb)− (ea − eu)
TQTΛQeb|

(a)

≤ B
√
r‖ΛQ(ev − eb)‖2 +B

√
r‖ΛQ(eu − ea)‖2

≤ B
√
r|λr|−t‖Λt+1Q(ev − eb)‖2 +B

√
r|λr|−t‖Λt+1Q(eu − ea)‖2

= B|λr|−t√r
(

√

d(θv, θb) +
√

d(θu, θa)
)

≤ 2B|λr|−t√rη ≡ bias(η), (19)

where (a) follows from assuming that |qk(θ)| ≤ B for all k ∈ [r] and θ ∈ [0, 1]. In summary, property
5.1 is satisfied for distance function d defined according to (17) and bias(η) = 2B|λr|−t√rη.

Good distance estimate d̂ and Property 5.2. We state the following Lemma when f has rank r,
whose proof is delegated to Section 9.

Lemma 8.1. Let f has rank r, p = n−1+κ for κ ∈ (0, 12) such that 1/κ is not an integer. Consider

d̂ as computed in (7) with t = ⌊ ln(1/p)ln(np) ⌋. For any ρ ∈ (0, κ)

max
u,a∈[n]2

|d(θu, θa)− d̂(u, a)| = O(Br|λ1|2/κn− 1
2
(κ−ρ)),

with probability at least 1−O
(

n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

)

.

Lemma 8.1 implies that property 5.2 holds with probability 1−o(1) for some ∆ = Θ(Br|λ1|2/κn−(κ−ρ)/2)
and any ρ ∈ (0, κ). The distance error bound ∆ is minimized by choosing ρ arbitrarily close to 0
so that ∆ can be arbitrarily close to Θ(Br|λ1|2/κn−κ/2) = Θ(Br|λ1|2/κ(pn)−1/2).

The corresponding statement for f that has ε-approximate rank r is stated below.
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Lemma 8.2. Let f have ε-approximate rank r, p = n−1+κ for κ ∈ (0, 12) such that 1/κ is not an

integer. Consider d̂ as computed in (7) with t = ⌊ ln(1/p)ln(np) ⌋. For any ρ ∈ (0, κ)

max
u,a∈[n]2

|d(θu, θa)− d̂(u, a)| = O(Br|λ1|2/κn− 1
2
(κ−ρ)) +O

(

tε(1 + ε)t + t2ε2(1 + ε)2t−1
)

,

with probability at least 1−O
(

n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

)

.

Sufficient representation and Property 5.3. Since f is L-Lipschitz, the distance d as defined in (17)
is bounded above by the squared ℓ2 distance:

d(θu, θv) = ‖Λt+1Q(eu − ev)‖22
≤ |λ1|2t‖ΛQ(eu − ev)‖22

= |λ1|2t
∫ 1

0
(f(θu, y)− f(θv, y))

2dy

≤ |λ1|2tL2|θu − θv|2. (20)

We assumed that the latent parameters {θu}u∈[n] are sampled i.i.d. uniformly over [0, 1]. Therefore,
for any θu ∈ [0, 1], for any v ∈ [n] and η′ > 0,

P
(

d(θu, θv) ≤ η′
∣

∣ θu
)

≥ P
(

|λ1|2tL2|θu − θv|2 ≤ η′
∣

∣ θu
)

= P

(

|θu − θv| ≤
√
η′

|λ1|tL
∣

∣ θu

)

≥ min
(

1,

√
η′

|λ1|tL
)

.

Let us define

meas(η′) =
(1− δ)

√
η′

|λ1|tL
(21)

for all η′ ∈ (0, |λ1|2tL2). By an application of Chernoff’s bound and a simple majorization argument,
it follows that for all η′ ∈ (0, |λ1|2tL2) and δ ∈ (0, 1),

P





1

n− 1

∑

a∈[n]\u
I
(

d(u, a) ≤ η′
)

≤ meas(η′)
∣

∣ θu



 ≤ exp

(

−δ2(n− 1)
√
η′

2|λ1|tL

)

.

By using union bound over all n indices, it follows that for any η′ ∈ (0, |λ1|2tL2), with probability

at least 1− n exp
(

− δ2(n−1)
√
η′

2|λ1|tL

)

, property 5.3 is satisfied with meas as defined in (21).

Concluding Proof of Theorem 4.1. In summary, with probability at least 1− α for

α = O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

) + n exp

(

−δ2(n− 1)
√
η −∆

2|λ1|tL

)

,
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properties 5.1-5.3 are satisfied for the estimate d̂ computed from (7) with t = ⌊ ln(1/p)ln(np) ⌋, and the
choices of

d(θu, θv) = ‖Λt+1Q(eu − ev)‖22,
bias(η) = 2B|λr|−t√rη,

∆ = Θ(Br|λ1|2/κn− 1
2
(κ−ρ)),

meas(η′) =
(1− δ)

√
η′

|λ1|tL
, (22)

for any η > 0, ρ ∈ (0, κ), δ ∈ (0, 1) and η′ = η −∆ ∈ (0, |λ1|2tL2). By substituting the expressions
for bias, meas, and α into Lemma 5.1, it follows that

MSE(F̂ ) ≤ 4B2|λr|−2tr(η +∆) +
2|λ1|2tL2

(1− δ)3pn2(η −∆)
+ exp

(

− δ2pn2(1− δ)2(η −∆)

4L2|λ1|2t

)

+O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

) + n exp

(

−δ2(n− 1)
√
η −∆

2|λ1|tL

)

. (23)

Additionally, for any δ′ ∈ (0, 1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| ≤ 2B|λr|−t
√

r(η +∆) + δ′ (24)

with probability at least

1− n2 exp
(

− δ2(1−δ)2pn2(η−∆)
4|λ1|2tL2

)

− n2 exp
(

− δ′2(1−δ)3pn2(η−∆)
|λ1|2tL2

)

−O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

)− n exp

(

−δ2(n− 1)
√
η′

2|λ1|tL

)

.

By selecting η = Θ
(

Br|λ1|2/κn− 1
2
(κ−ρ)

)

with a large enough constant, it follows that

η ±∆ = Θ(η) = Θ(∆),

pn2η = Θ(Br|λ1|2/κn1+κ− 1
2
(κ−ρ)) = Ω(Br|λ1|2/κn1+κ/2),

n
√
η = ω(

√
Br|λ1|1/κn

7
8 ).

By substituting this choice of η and δ = 1
2 into (23), it follows that

MSE(F̂ ) = O
(

r2B3|λr|2(|λ1|/|λr|)2/κn− 1
2
(κ−ρ)

)

. (25)

By choosing δ′ = 2B|λr|−t
√

r(η +∆), it follows that δ′2pn2η = Ω(n). Therefore, by substituting
into (24), it follows that with probability 1− o(1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| = O
(

rB3/2|λr|(|λ1|/|λr|)1/κn− 1
4
(κ−ρ)

)

. (26)

This completes the proof of Theorem 4.1. �

Concluding Proof of Theorem 4.3. Like Proof of Theorem 4.1, with probability at least 1− α for

α = O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

) + n exp

(

−δ2(n− 1)
√
η −∆

2|λ1|tL

)

,
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properties 5.1-5.3 are satisfied for the estimate d̂ computed from (7) with t = ⌊ ln(1/p)ln(np) ⌋, and the
choices of

d(θu, θv) = ‖Λt+1Q(eu − ev)‖22,
bias(η) = 2B|λr|−t√rη,

∆ = Θ(Br|λ1|2/κn− 1
2
(κ−ρ)) + Θ

(

tε(1 + ε)t + t2ε2(1 + ε)2t−1
)

,

meas(η′) =
(1− δ)

√
η′

|λ1|tL
, (27)

for any η > 0, ρ ∈ (0, κ), δ ∈ (0, 1) and η′ = η−∆ ∈ (0, |λ1|2tL2). Note that the only difference is in
choice of ∆ due to Lemma 8.2 for f that has ε-approximate rank r. By substituting the expressions
for bias, meas, and α into Lemma 5.1, it follows that

MSE(F̂ ) ≤ 4B2|λr|−2tr(η +∆) +
2|λ1|2tL2

(1− δ)3pn2(η −∆)
+ exp

(

− δ2pn2(1− δ)2(η −∆)

4L2|λ1|2t

)

+O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

) + n exp

(

−δ2(n− 1)
√
η −∆

2|λ1|tL

)

. (28)

Additionally, for any δ′ ∈ (0, 1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| ≤ 2B|λr|−t
√

r(η +∆) + δ′ (29)

with probability at least

1− n2 exp
(

− δ2(1−δ)2pn2(η−∆)
4|λ1|2tL2

)

− n2 exp
(

− δ′2(1−δ)3pn2(η−∆)
|λ1|2tL2

)

−O(n2 exp
(

−Θ(nmin(ρ,κ(t− 1
2
)))
)

)− n exp

(

−δ2(n− 1)
√
η′

2|λ1|tL

)

.

By selecting η = Θ
(

Br|λ1|2/κn− 1
2
(κ−ρ)

)

+Θ(tε(1 + ε)t + t2ε2(1 + ε)2t−1
)

with appropriately large

enough constants, it follows that

η ±∆ = Θ(η) = Θ(∆),

pn2η = Ω(n1+κ/2),

n
√
η = ω(n

7
8 ).

By substituting this choice of η and δ = 1
2 into (23), and using t < 1/κ− 1, it follows that

MSE(F̂ ) = O
(

r2(|λ1|/|λr|)2/κn− 1
2
(κ−ρ)

)

+O
(

|λr|−2/κr

(

ε

κ
(1 + ε)1/κ−1 +

ε2

κ2
(1 + ε)2/κ−3

)

)

.

(30)

By choosing δ′ = Θ(B|λr|−t
√

r(η +∆)), it follows that δ′2pn2η = Ω(n). Therefore, by substituting
into (24), it follows that with probability 1− o(1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)|

= O
(

r(|λ1|/|λr|)1/κn− 1
4
(κ−ρ)

)

+O
(

|λr|−
1
κ
√
r(

√

ε

κ
(1 + ε)

1
2κ

− 1
2 +

ε

κ
(1 + ε)

1
κ
− 3

2 )
)

. (31)

This completes the proof of Theorem 4.3. �
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8.2 Analyzing Sparser Regime: Proof of Theorem 4.2

Similar to the proof of Theorem 4.1, we prove that as long as p = logn1+κ

n for any κ > 0, with high
probability, properties 5.1-5.3 are satisfied for an appropriately chosen function d and for distance
estimates d̂ computed according to (8) with t = ⌈ ln(0.08/p)

ln(0.275pn) − r′⌉. We subsequently use Lemma 5.1
to conclude Theorem 4.2. The most involved part in the proof is establishing that property 5.2
holds with high probability for an appropriately chosen ∆, which is delegated to Lemma 8.3.

Good distance d and Property 5.1. We start by defining the ideal distance d as follows. For all
(u, v) ∈ [n]2,

d(θu, θv) = ‖ΛQ(eu − ev)‖22 =

∫ 1

0
(f(θu, y)− f(θv, y))

2dy. (32)

For any u, v, a, b ∈ [n] with corresponding θu, θv, θa, θb ∈ [0, 1],

|f(θu, θv)− f(θa, θb)| = |eTuQTΛQev − eTaQ
TΛQeb|

= |eTuQTΛQ(ev − eb)− (ea − eu)
TQTΛQeb|

(a)

≤ B
√
r‖ΛQ(ev − eb)‖2 +B

√
r‖ΛQ(eu − ea)‖2,

= B
√
r(
√

d(θv, θb) +
√

d(θu, θa)),

where (a) follows from assuming that |qk(θ)| ≤ B for all k ∈ [r] and θ ∈ [0, 1]. It follows that for any
η > 0, if d(θu, θa) ≤ η and d(θv, θb) ≤ η, then |f(θu, θv)−f(θa, θb)| ≤ 2B

√
rη. In summary, property

5.1 is satisfied for distance d defined in (32) with bias : R+ → R+ defined as bias(η) = 2B
√
rη.

Good distance estimation d̂ and Property 5.2. We state the following Lemma whose proof is dele-
gated to Section 9.

Lemma 8.3. Assume that p = n−1 ln1+κ n for some κ > 0. Consider d̂ as computed in (8) with

t =

⌈

ln(0.08/p)

ln(0.275np)
− r′

⌉

.

For any ρ ∈ (0, κ),

max
u,a∈[n]2

|d(θu, θa)− d̂(u, a)| ≤ c(ln n)−
1
2
(κ−ρ)

with probability at least

1−O
(

n2 exp(−Θ((lnn)1+ρ))
)

,

where c = c(λ1, λr, λgap, r, B) is independent of n and λgap = min1≤s<s′≤r |λs − λ′
s|.

Therefore, property 5.2 is satisfied with probability 1 − o(1) for some ∆ = Θ
(

(lnn)−
1
2
(κ−ρ)

)

for any ρ ∈ (0, κ).

Sufficient representation and Property 5.3. Since f is L-Lipschitz, the distance d as defined in (17)
is bounded above by squared ℓ2 distance:

d(θu, θv) = ‖ΛQ(eu − ev)‖22 =

∫ 1

0
(f(θu, y)− f(θv, y))

2dy (33)

≤ L2|θu − θv|2. (34)
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Note that the only difference in (20) and (34) is the constant L2|λ1|2t versus L2. It follows by

a similar argument that with probability at least 1 − n exp
(

− δ2(n−1)
√
η′

2L

)

, for any η′ ∈ (0, L2),

property 5.3 is satisfied with meas(η′) = (1−δ)
√
η′

L .

Concluding Proof of Theorem 4.2. In summary, with probability at least 1− α for

α = O
(

n2 exp(−Θ((lnn)1+ρ))
)

+ n exp

(

−δ2(n − 1)
√
η′

2L

)

,

properties 5.1-5.3 are satisfied for the estimate d̂ computed from (8) with t = ⌈ ln(0.08/p)
ln(0.275np) − r′⌉, and

the choices of

d(θu, θv) = ‖ΛQ(eu − ev)‖22,
bias(η) = 2B

√
rη,

∆ = Θ
(

(lnn)−
1
2
(κ−ρ)

)

,

meas(η′) =
(1− δ)

√
η′

L
, (35)

for any η > 0, ρ ∈ (0, κ), δ ∈ (0, 1) and η′ = η −∆ ∈ (0, L2). By substituting the expressions for
bias, meas, and α into Lemma 5.1, it follows that

MSE(F̂ ) ≤ 4B2r(η +∆) +
2σ2L2

(1− δ)3pn2(η −∆)
+ exp

(

− δ2pn2(1− δ)2(η −∆)

4L2

)

+O
(

n2 exp(−Θ((lnn)1+ρ))
)

+ n exp

(

−δ2(n − 1)
√
η −∆

2L

)

. (36)

Additionally, for any δ′ ∈ (0, 1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| ≤ 2B
√

r(η +∆) + δ′ (37)

with probability at least

1− n2 exp
(

− δ2(1−δ)2pn2(η−∆)
4L2

)

− n2 exp
(

− δ′2(1−δ)3pn2(η−∆)
L2

)

−O
(

n2 exp(−Θ((lnn)1+ρ))
)

− n exp

(

−δ2(n− 1)
√
η −∆

2L

)

.

By selecting η = Θ

(

(

ln1+ρ n
np

)1/2
)

= Θ
(

(ln n)−
1
2
(κ−ρ)

)

with a large enough constant, it follows

that

η ±∆ = Θ(η) = Θ(∆),

pn2η = Ω(n),

n
√
η = ω(

√
n).

By substituting this choice of η and δ = 1
2 into (36) it follows that

MSE(F̂ ) = O(η) = O
(

(lnn)−
1
2
(κ−ρ)

)

. (38)
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By choosing δ′ = Θ(
√
η), it follows that δ′2pn2η = ω(

√
n). Therefore, by substituting into (37), it

follows that with probability 1− o(1),

max
(u,v)∈[n]2

|F̂ (u, v) − f(θu, θv)| = O(
√
η) = O

(

(ln n)−
1
4
(κ−ρ)

)

. (39)

This completes the proof of Theorem 4.2. �

9 Proving distance estimates are close when f has rank r

This section is dedicated to establishing that the distance estimates (7) and (8) are good approx-
imations of the desired ideal distances as claimed in the statements of Lemmas 8.1 and 8.3 when
f has rank r. We start by establishing key auxiliary concentration results which will lead to their
proofs.

9.1 Regular enough growth of bread-first-search tree

Recall that we grow the neighborhood of each u ∈ [n] in G = ([n], E ′) and use associated observations
in M ′ as well as M ′′ to compute the distance estimates d̂. By the assumed Bernoulli sampling
model, any tuple (a, b) ∈ [n]2 is independently included in E ′ with probability p/4. Therefore, the
expected number of immediate neighbors of u (not including itself) is (n − 1)p/4 ≈ np/4. The
expected number of nodes at distance s ≥ 1 from a given u scales as (np/4)s. We define some
necessary notation before we present the formal statement of this event. Given δ ∈ (0, 1), define

φ(δ) = 1−
(

1− δ

1− δ
√

2/3

)1/2

< 1. (40)

For any p = ω
(

1
n

)

and p = o(1),

s∗(δ, p, n) = sup
{

s ≥ 1 :
p

8

(

(1 + δ)np

4

)s−1

≤ φ(δ)
}

. (41)

For any given δ, s∗(δ, p, n) is well defined for n large enough since p = o(1).

Lemma 9.1. Let ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1). For 1 ≤ s ≤ s∗(δ, p, n),

P

(

s
⋃

h=1

{

|Su,h| /∈
[

(

(1− δ)np

4

)h

,

(

(1 + δ)np

4

)h
]})

≤ 4 exp

(

− δ2((1 − δ)np)

12(1 − δ
√

2/3)

)

The proof of Lemma 9.1 follows from standard argument using repeated application of Cher-
noff’s bound and is well known in the literature in various forms. For completeness, we have
included it in the Appendix. Lemma 9.1 suggests definition of events that will hold with high
probability. Specifically, for any u ∈ [n] and h ≥ 1, define

A1
u,h(δ) =

{

|Su,h| ∈
[

(

(1− δ)np

4

)h

,

(

(1 + δ)np

4

)h
]}

. (42)

We note that by event A1
u,h(δ) we simply require that the number of nodes at distance h from a

given node u ∈ [n] is nearly (np/4)h. However, it does not impose any restrictions on how the
nodes are connected or the latent parameters associated with the nodes themselves.
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9.2 Concentration of a Quadratic Form One

The event ∩s+ℓ
h=1A1

u,h(δ) implies that the size of |Su,h| grows regularly as expected for h ≤ s + ℓ ≤
s∗(δ, p, n). Conditioned on this event, we prove that a specific quadratic form concentrates around
its mean. This will be used as the key property to eventually establish that the distance estimates
are a good approximation to the ideal distances.

Lemma 9.2. Let ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1), s ≥ 0, ℓ ≥ 1 for s+ ℓ ≤ s∗(δ, p, n). Then

P

(

|eTkQÑu,s+ℓ − eTk Λ
ℓQÑu,s| ≥ λℓ

k((1− δ)np/4)−(s+1)/2x
∣

∣

∣ ∩s+ℓ
h=1 A1

u,h(δ)
)

≤ 2 exp

(

−x2λ2
k

4

)

,

as long as x < 2((1−δ)np/4)(s+1)/2

B|λk|(1+|λk|) .

Proof of Lemma 9.2. Recall that conditioning on event ∩s+ℓ
h=1A1

u,h(δ) simply imposes the re-
striction that the neighborhood of u ∈ [n] grows at a specific rate, i.e. number of nodes at distances
h ≤ s + ℓ is within ((1 ± δ)np/4)h. However, this event is independent from latent parameters
{θi}i∈[n] and the realization of observations M(i, j) = Z(i, j) for (i, j) ∈ [n]× [n]. Consider any re-

alization of the tree T s+ℓ
u satisfying ∩s+ℓ

h=1A1
u,h(δ); the tree contains information regarding the depth

s+ℓ neighborhood of u. Given such a realization, let Fu,h for 0 ≤ h ≤ s+ℓ denote the sigma-algebra
containing information about the latent parameters, edges and the values associated with T h

u , i.e.
the depth h BFS tree rooted at u. Specifically, Fu,0 contains information about latent parameter
θu associated with u ∈ [n]; Fu,s contains information about latent parameters ∪s

h=1{θi}i∈Su,h
and

all edges and observations involved in the depth h BFS tree, i.e. {M(i, j)}(i,j)∈T h
u
. This implies

that Fu,0 ⊂ Fu,1 ⊂ Fu,2, etc.
We shall consider a specific martingale sequence with respect to the filtration Fu,h that will

help establish the desired concentration of eTkQÑu,s+ℓ − eTk Λ
ℓQÑu,s. For s+ 1 ≤ h ≤ s+ ℓ, define

Yu,h = eTkΛ
s+ℓ−hQÑu,h

Du,h = Yu,h − Yu,h−1

Yu,s+ℓ − Yu,s = eTkQÑu,s+ℓ − eTk Λ
ℓQÑu,s

=
s+ℓ
∑

h=s+1

Du,h

Note that Yu,h is measurable with respect to Fu,h because eTkΛ
s+ℓ−hQÑu,h only depends on observa-

tions in T h
u and latent variables associated to vertices in Su,h. We will show that Yu,h is martingale

with finite mean with respect to Fu,h for s+ 1 ≤ h ≤ s+ ℓ,

E[Yu,h − Yu,h−1 | Fu,h−1] = 0 and E[|Du,h|] < ∞. (43)
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For any s+ 1 ≤ h ≤ s+ ℓ,

Du,h = Yu,h − Yu,h−1

= λs+ℓ−h
k

(

eTkQÑu,h − λke
T
kQÑu,h−1

)

= λs+ℓ−h
k

(

1

|Su,h|
eTkQNu,h − λke

T
kQÑu,h−1

)

= λs+ℓ−h
k





1

|Su,h|
∑

i∈Su,h

Nu,h(i)qk(θi)− λke
T
kQÑu,h−1





=
∑

i∈Su,h

Xi,

where for i ∈ Su,h, we define

Xi ,
λs+ℓ−h
k

|Su,h|
(

Nu,h(i)qk(θi)− λke
T
kQÑu,h−1

)

. (44)

By definition,

Nu,h(i) =
∑

j∈Su,h−1

I((i, j) ∈ E ′)M(i, j)Nu,h−1(j). (45)

Conditioned on Fu,h−1, Nu,h−1(j) for j ∈ Su,h−1 is determined and so is θj. However, θi is con-
ditionally independent random variable. Also, given the construction of the breadth-first-search
tree, for any given i ∈ Su,h any of the j ∈ Su,h−1 is equally likely to be its parent with probability
1/|Su,h−1|. Therefore, we have that Xi, i ∈ Su,h are independent and

E

[

Xi|Fu,h−1

]

(46)

=
λs+ℓ−h
k

|Su,h|
(

∑

j∈Su,h−1

1

|Su,h−1|
E[f(θi, θj)qk(θi)|θj ]Nu,h−1(j) − λke

T
kQÑu,h−1

)

.

Now Nu,h−1(j)/|Su,h−1| = Ñu,h−1(j). And

E[f(θi, θj)qk(θi)|θj] =
r
∑

k′=1

λk′E[qk′(θi)qk′(θj)qk(θi)|θj ]

=

r
∑

k′=1

λk′qk′(θj)E[qk′(θi)qk(θi)]

= λkqk(θj),

where we use the orthonormality of qk′, k′ ∈ [r]. Therefore,

∑

j∈Su,h−1

1

|Su,h−1|
E[f(θi, θj)qk(θi)|θj ]Nu,h−1(j) =

∑

j∈Su,h−1

λkqk(θj)Ñu,h−1(j)

= λke
T
kQÑu,h−1.
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Therefore, we conclude that for i ∈ Su,h

E

[

Xi|Fu,h−1

]

= 0. (47)

That is, E[Yu,h − Yu,h−1|Fu,h−1] = 0. By definition, we have Nu,h(i) ∈ [0, 1] for any i ∈ Su,h and
‖qk‖∞ ≤ B. Therefore, it follows that for any i ∈ Su,h,

|Xi| ≤
B(1 + |λk|)|λk|s+ℓ−h

|Su,h|
. (48)

Therefore, it follows that

|Du,h| ≤ B(1 + |λk|)|λk|s+ℓ−h. (49)

Thus, we have {(Du,h,Fu,h) : s+1 ≤ h ≤ s+ℓ} as a martingale difference sequence with differences
being uniformly bounded. Now we wish to establish its concentration. To that end, consider Xi

for i ∈ Su,h as defined in (44). Its variance is bounded as

Var[Xi | Fu,h−1]

=
λ
2(s+ℓ−h)
k

|Su,h|2
Var
[

∑

j∈Su,h−1

I((i, j) ∈ E ′)M(i, j)Nu,h−1(j)qk(θi) | Fu,h−1

]

.

Since Var[Z] ≤ E[Z2] for any Z, we can upper bound the variance expression by the second moment,
additionally using the fact that I((i, j) ∈ E ′) only takes value 1 for a single j ∈ Su,h−1 and otherwise
takes value 0,

Var[Xi | Fu,h−1]

=
λ
2(s+ℓ−h)
k

|Su,h|2
E

[

∑

j∈Su,h−1

I((i, j) ∈ E ′)M(i, j)2N2
u,h−1(j)q

2
k(θi) | Fu,h−1

]

.

We use the fact that M(i, j)2 ≤ 1, E[q2k(θi)] = 1 due to orthonormality assumptions on qk, for
i ∈ Su,h it holds that E[I((i, j) ∈ E ′ | Fu,h−1] =

1
|Su,h−1| , so that

Var[Xi | Fu,h−1] ≤
λ
2(s+ℓ−h)
k

|Su,h|2
‖Nu,h−1‖22
|Su,h−1|

(a)

≤ λ
2(s+ℓ−h)
k

|Su,h|2

where (a) follows from the assumption that Nu,h−1 has sparsity Su,h−1 and has entries bounded in
[0, 1]. It follows that Xi conditioned on Fu,h−1 is sub-exponential with parameters

(

λ
(s+ℓ−h)
k

|Su,h|
,
B(1 + |λk|)|λk|s+ℓ−h

|Su,h|

)

.

Now Du,h is sum of such Xi for i ∈ Su,h which are independent of each other conditioned on Fu,h−1.
Therefore, it follows that conditioned on Fu,h−1, Du,h is sub-exponential with parameters

(λ
(s+ℓ−h)
k
√

|Su,h|
,
B(1 + |λk|)|λk|s+ℓ−h

|Su,h|
)

.
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Since {(Du,h,Fu,h) : s+1 ≤ h ≤ s+ℓ} is a martingale difference sequence,
∑s+ℓ

h=s+1Du,h conditioned
on Fu,s is sub-exponential with parameters

(

√

√

√

√

s+ℓ
∑

h=s+1

λ
2(s+ℓ−h)
k

|Su,h|
, max
h∈[s+1,s+ℓ]

B(1 + |λk|)|λk|s+ℓ−h

|Su,h|

)

.

Under event ∩s+ℓ
h=1A1

u,h(δ), for any realization of the breadth-first-search tree of u, |Su,h| ∈ [((1 −
δ)np/4)h, ((1+δ)np/4)h] for all h ∈ [s+ℓ]. Therefore, we can bound the sub-exponential parameters
of
∑s+ℓ

h=s+1Du,h conditioned on Fu,s using the property p = ω(1/n) or np = ω(1) as

(

λℓ−1
k

√
2

(

(1− δ)np

4

)−(s+1)/2

, B(1 + |λk|)|λk|ℓ−1

(

(1− δ)np

4

)−(s+1)
)

.

By Azuma’s concentration inequality, for 0 < x < 2((1−δ)np/4)(s+1)/2

B|λk|(1+|λk |) ,

P

(

|eTkQÑu,s+ℓ − eTk Λ
ℓQÑu,s| ≥ λℓ

k((1 − δ)np/4)−(s+1)/2x | ∩s+ℓ
h=1 A1

u,h(δ),Fu,s

)

≤ 2 exp

(

−min

(

x2λ2
k

4
,
x|λk|((1 − δ)np/4)(s+1)/2

2B(1 + |λk|)

))

≤ 2 exp

(

−x2λ2
k

4

)

.

This completes the proof of Lemma 9.2. �

Lemma 9.2 suggests the following high probability events: for any u ∈ [n], k ∈ [r], x > 0, s ≥
0, ℓ ≥ 1, δ ∈ (0, 1), define

A2
u,k,s,ℓ(x, δ) =

{

|eTkQÑu,s+ℓ − eTk Λ
ℓQÑu,s| ≤ λℓ

k((1 − δ)np/4)−(s+1)/2x
}

.

9.3 Concentration of a Quadratic Form Two

We state a useful concentration that builds on Lemma 9.2 towards establishing Lemma 8.1.

Lemma 9.3. Let ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1), s ≥ 0, ℓ ≥ 1 with s + ℓ ≤ s∗(δ, p, n), and x ≤
B((1 − δ)np/4)1/2. Consider any u, v ∈ [n]. Then, conditioned on event ∩r

k=1(A2
u,k,0,s(x, δ) ∩

A2
v,k,0,s+ℓ(x, δ)), we have

∣

∣ÑT
u,sFÑv,s+ℓ − eTuQ

TΛ2s+ℓ+1Qev
∣

∣ ≤ 3Bx

((1− δ)np/4)1/2

(

r
∑

k=1

|λk|2s+ℓ+1
)

.

and

∣

∣ÑT
u,sFÑv,s+ℓ

∣

∣ ≤ 4B2
(

r
∑

k=1

|λk|2s+ℓ+1
)

.
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Proof of Lemma 9.3. Assuming event ∩r
k=1(A2

u,k,0,s(x, δ)∩A2
v,k,0,s+ℓ(x, δ)) holds, and using the

fact that F = QTΛQ, it follows that

|ÑT
u,sFÑv,s+ℓ − eTuQ

TΛ2s+ℓ+1Qev|
≤ |(ÑT

u,sQ
T − eTuQ

TΛs)(ΛQÑv,s+ℓ − Λs+ℓ+1Qev)|
+ |(ÑT

u,sQ
T − eTuQ

TΛs)Λs+ℓ+1Qev|+ |eTuQTΛs+1(QÑv,s+ℓ − Λs+ℓQev)|

≤
∣

∣

∣

r
∑

k=1

(eTkQÑu,s − eTkΛ
sQeu)(e

T
k ΛQÑv,s+ℓ − eTkΛ

s+ℓ+1Qev)
∣

∣

∣

+
∣

∣

∣

r
∑

k=1

(eTkQÑu,s − eTkΛ
sQeu)e

T
k Λ

s+ℓ+1Qev

∣

∣

∣

+
∣

∣

∣

r
∑

k=1

(eTk Λ
s+1Qeu)(e

T
kQÑv,s+ℓ − eTkΛ

s+ℓQev)
∣

∣

∣

≤ x

((1 − δ)np/4)1/2

(

x

((1 − δ)np/4)1/2
+ 2B

)(

r
∑

k=1

|λk|2s+ℓ+1

)

≤ 3Bx

((1 − δ)np/4)1/2

(

r
∑

k=1

|λk|2s+ℓ+1

)

, (50)

where we have used the conditioned event ∩r
k=1(A2

u,k,0,s(x) ∩ A2
v,k,0,s+ℓ(x)), the model assumption

that ‖Q‖∞ ≤ B, and the fact that x ≤ B((1 − δ)np/4)1/2 for n sufficiently large. From (50), it
follows that

|ÑT
u,tFÑv,t+ℓ|

≤ |eTuQTΛ2t+ℓ+1Qev|+ |ÑT
u,tFÑv,t+ℓ − eTuQ

TΛ2t+ℓ+1Qev|

≤ (B2 + 3B2)
(

r
∑

k=1

|λk|2t+ℓ+1
)

.

�

9.4 Concentration of a Quadratic Form Three

We establish a final concentration that will lead us to the proof of good distance function property.

Lemma 9.4. Let ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1), s ≥ 0, ℓ ≥ 1 with s + ℓ ≤ s∗(δ, p, n) and 0 < x ≤
B((1− δ)np/4)1/2. Let u, v ∈ [n]. Define event

A′(u, v, s, ℓ)(x) = ∩r
k=1(A2

u,k,0,s(x) ∩ A2
v,k,0,s+ℓ(x)) ∩ A1

u,s ∩ A1
v,s+ℓ.

For 0 < z ≤ 4B2

√

(

∑r
k=1 |λk|2s+ℓ+1

)

× p′((1− δ)np/4)2s+ℓ, conditioned on the event A′(u, v, s, ℓ)(x),

with probability at least

1− 2 exp

(

− z2

8B2

)

− exp

(

−Θ

(

p′
(

(1− δ)np

4|λr|−1

)2s+ℓ− 1
2

))

,

it holds that

| 1
p′
Ñu,s

(

M ′′ +M ′
ind

)

Ñv,s+ℓ − Ñu,sFÑv,s+ℓ| ≤
|λr|2s
(pn)1/2

+ z

√

∑r
k=1 |λk|2s+ℓ+1

p′((1 − δ)np/4)2s+ℓ
.

33



Proof of Lemma 9.4. We establish this result by arguing that conditioned on the event A′(u, v, s, ℓ)(x),
the matrix M ′′ +M ′

ind
is statistically very similar to a freshly sampled dataset with density p′. Re-

call that E ′
ind

was constructed so that conditioned on E ′, the set E ′
ind

∪ E ′′ is distributed according
to a Bernoulli(p′) sampling model, where each (u, v) ∈ [n]2 are included in E ′

ind
∪ E ′′ indepen-

dently with probability p′. The event A′(u, v, s, ℓ)(x) depends on E ′ and the values M(i, j) such
that (i, j) ∈ T s

u ∪ T s+ℓ
v . Therefore datapoints M(i, j) = Z(i, j) for tuples (i, j) /∈ T s

u ∪ T s+ℓ
v are

independent from the event A′(u, v, s, ℓ)(x).
Let us define M ′′

ind
= [M ′′

ind
(i, j)] where

M ′′
ind(i, j) =

{

M(i, j) = Z(i, j) if (i, j) ∈ (E ′′ ∪ E ′
ind

) and (i, j) /∈ T s
u ∪ T s+ℓ

v

Zind(i, j) if (i, j) ∈ E ′
ind

and (i, j) ∈ T s
u ∪ T s+ℓ

v

,

and Zind(i, j) is a freshly sampled observation for edge (i, j), distributed equivalently to Z(i, j).
Conditioned on E ′ and the event A′(u, v, s, ℓ)(x), M ′′

ind
has sparsity pattern E ′′ ∪ E ′

ind
, which is

distributed according to a Bernoulli(p′) sampling model where each (i, j) ∈ [n]2 is included in
E ′′ ∪ E ′

ind
with probability p′. Furthermore, conditioned on A′(u, v, s, ℓ), for each (i, j) ∈ E ′′ ∪ E ′

ind

with probability p′, the datapoint M ′′
ind

(i, j) is independent of all observations used to compute Ñu,s

and Ñv,s+ℓ. As a result, M ′′
ind

(i, j) is a fresh independent signal of F (i, j), distributed according to
Z(i, j). First we will argue that

(

1
p′

)

ÑT
u,s(M

′′ +M ′
ind)Ñv,s+1 ≈

(

1
p′

)

ÑT
u,sM

′′
indÑv,s+1.

By construction, M ′′
ind

differs from M ′′+M ′
ind

only for indices (i, j) ∈ E ′
ind

∩ (T s
u ∪T s+ℓ

v ). Therefore,
it follows that

|Nu,sM
′′
ind

Nv,s+ℓ −Nu,s

(

M ′′ +M ′
ind

)

Nv,s+ℓ|
≤
∑

i,j

I((i, j) ∈ E ′
ind ∩ (T s

u ∪ T s+ℓ
v ))|Zind(i, j) − Z(i, j)|Nu,s(i)Nv,s+ℓ(j).

By the boundedness assumption, |Zind(i, j) − Z(i, j)| ≤ 1. Furthermore, Nu,s(i)Nv,s+ℓ(j) ∈ [0, 1] is
only nonzero for (i, j) ∈ Su,s × Sv,s+ℓ. Therefore,

|Nu,sM
′′
indNv,s+ℓ −Nu,s

(

M ′′ +M ′
ind

)

Nv,s+ℓ|
≤
∑

i,j

I((i, j) ∈ E ′
ind

∩ (T s
u ∪ T s+ℓ

v ))I((i, j) ∈ Su,s × Sv,s+ℓ)

= |{(i, j) ∈ E ′
ind

∩ (T s
u ∪ T s+ℓ

v ) ∩ (Su,s × Sv,s+ℓ)}| =: X.

Conditioned on E ′ and the event A′(u, v, s, ℓ)(x), the quantity above, denoted as X, is distributed as
a Binomial random variable, where each pair (i, j) ∈ (T s

u ∪T s+ℓ
v )∩ (Su,s×Sv,s+ℓ) is included in the

set E ′
ind

independently with probability p′. The number of tuples in (T s
u ∪ T s+ℓ

v )∩ (Su,s ×Sv,s+ℓ) is
bounded above by |Su,s|+ |Sv,s+ℓ|, since the only edges in T s

u ∪T s+ℓ
v that intersect with Su,s×Sv,s+ℓ

must be at the last layer of T s
u or T s+ℓ

v . By construction, the number of edges in tree T s
u at depth s

is equal to |Su,s|. For sufficiently large n, by event A′(u, v, s, ℓ)(x), it follows that |Su,s| ≤ |Sv,s+ℓ|.
Therefore the random variable X is stochastically dominated by a Binomial(2|Sv,s+ℓ|, p′) random
variable. For sufficiently large n, conditioned on E ′ and the event A′(u, v, s, ℓ)(x), by Chernoff’s
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bound,

P

(

X ≥ p′|Su,s||Sv,s+ℓ|
|λr|−2s(pn)1/2

)

≤ exp

(

−1

3

(

p′|Su,s||Sv,s+ℓ|
|λr|−2s(pn)1/2

− 2p′|Sv,s+ℓ|
))

= exp

(

−2

3
p′|Sv,s+ℓ|

( |Su,s|
2|λr|−2s(pn)1/2

− 1

))

≤ exp

(

−2

3
p′
(

(1− δ)np

4

)s+ℓ
(

(1− δ)1/2

4|λr|−1

(

(1− δ)np

4|λr|−2

)s− 1
2

− 1

))

= exp

(

−Θ

(

p′
(

(1− δ)np

4|λr|−1

)2s+ℓ− 1
2

))

It follows that conditioned on event A′(u, v, s, ℓ)(x), with probability at least 1−exp

(

−Θ

(

p′
(

(1−δ)np
4|λr |−1

)2s+ℓ− 1
2

))

,

| 1
p′
Ñu,sM

′′
indÑv,s+ℓ −

1

p′
Ñu,s

(

M ′′ +M ′
ind

)

Ñv,s+ℓ| ≤
X

p′|Su,s||Sv,s+ℓ|

≤ |λr|2s
(pn)1/2

. (51)

Next, we prove that with high probability,

(

1
p′

)(

Ñu,s − Ñv,s

)T
M ′′

ind

(

Ñu,s+1 − Ñv,s+1

)

≈ ÑT
u,sFÑv,s+ℓ.

Let F(u, v, s, ℓ, x) denote all the information related to T s
u and T s+ℓ

v , including the node latent
parameters and observations in M ′ that are associated to edges in T s

u ∪ T s+ℓ
v . Furthermore, let

F(u, v, s, ℓ, x) be conditioned on the event that A′(u, v, s, ℓ)(x) holds, which is fully determined by
the realization of edges and weights in T s

u and T s+ℓ
v . We establish concentration of NT

u,sM
′′
ind

Nv,s+ℓ

by showing that the expression can be written as a sum of independent random variables conditioned
on F(u, v, s, ℓ, x),

NT
u,sM

′′
indNv,s+ℓ =

∑

i,j

I((i, j) ∈ E ′′ ∪ E ′
ind)M

′′
ind(i, j)Nu,s(i)Nv,s+ℓ(j),

where each term of the summation is bounded in [0, 1] due to the fact that all observed entries are
bounded in [0, 1]. Let

φ(i, j) = I((i, j) ∈ E ′′ ∪ E ′
ind)M

′′
ind(i, j)Nu,s(i)Nv,s+ℓ(j).

By construction, {φ(i, j)}(i,j)∈[n]2 are independent random variables conditioned on F(u, v, s, ℓ, x),
because Nu,s and Nv,s+ℓ are measurable with respect to F(u, v, s, ℓ, x), and conditioned on E ′,
E ′′ ∪ E ′

ind
is distributed according to the Bernoulli(p′) sampling model, and the corresponding ob-

servations in M ′′
ind

are constructed to be independent due to resampling observations Zind(i, j) for
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(i, j) ∈ T s
u ∪ T s+ℓ

v . We can verify that

E[φ(i, j)|F(u, v, s, ℓ, x)] = p′F (i, j)Nu,s(i)Nv,s+ℓ(j), and

Var[φ(i, j)|F(u, v, s, ℓ, x)]

= (Nu,s(i)Nv,s+ℓ(j))
2
E[I((i, j) ∈ E ′′ ∪ E ′

ind)M
′′
ind(i, j)

2 | F(u, v, s, ℓ, x)]

(a)

≤ Nu,s(i)Nv,s+ℓ(j)E[I((i, j) ∈ E ′′ ∪ E ′
ind)M

′′
ind(i, j) | F(u, v, s, ℓ, x)]

≤ p′Nu,s(i)Nv,s+ℓ(j)F (i, j)

where inequality (a) follows from the assumption that observed entries are within [0, 1]. Therefore,

E[NT
u,sM

′′
indNv,s+ℓ|F(u, v, s, ℓ, x)] = p′NT

u,sFNv,s+ℓ, (52)

and

Var[NT
u,sM

′′
indNv,s+ℓ|F(u, v, s, ℓ, x)] ≤ p′NT

u,sFNv,s+ℓ

≤ 4p′|Su,s||Sv,s+ℓ|B2
(

r
∑

k=1

|λk|2s+ℓ+1
)

. (53)

The last inequality follows from Lemma 9.3. By an application of Bernstein’s inequality, for z ≤
4B2

(

∑r
k=1 |λk|2s+ℓ+1

)

,

P

(

∣

∣

1

p′
Ñu,sM

′′
indÑv,s+ℓ − Ñu,sFÑv,s+ℓ| > z | F(u, v, s, ℓ, x)

)

= P
(∣

∣NT
u,sM

′′
indNv,s+ℓ − p′NT

u,sFNv,s+ℓ

∣

∣ > p′|Su,s||Sv,s+ℓ|z | F(u, v, s, ℓ, x)
)

≤ 2 exp



−min





z2p′|Su,s||Sv,s+ℓ|
8B2

(

∑r
k=1 |λk|2s+ℓ+1

) ,
zp′|Su,s||Sv,s+ℓ|

2









≤ 2 exp



− p′|Su,s||Sv,s+ℓ|z2

8B2
(

∑r
k=1 |λk|2s+ℓ+1

)

|



 .

Conditioned on the event A′(u, v, s, ℓ)(x), |Su,s| and |Sv,s+ℓ| are lower bounded by ((1 − δ)np/4)s

and ((1− δ)np/4)s+ℓ. By reparametrizing z → z
√ ∑r

k=1 |λk|2s+ℓ+1

p′((1−δ)np/4)2s+ℓ , we conclude that

P

(

∣

∣

1

p′
Ñu,sM

′′
indÑv,s+ℓ − Ñu,sFÑv,s+ℓ| > z

√

∑r
k=1 |λk|2s+ℓ+1

p′((1− δ)np/4)2s+ℓ

∣

∣

∣

∣

∣

F(u, v, s, ℓ, x)

)

≤ 2 exp

(

− z2

8B2

)

,

for 0 < z ≤ 4B2

√

(

∑r
k=1 |λk|2s+ℓ+1

)

× p′((1− δ)np/4)2s+ℓ. The final step in the proof is to

combine the above probability bound with the inequality stated in (51). �

Define event

A3
u,v,s,ℓ(z, δ) =

{

∣

∣

1

p′
Ñu,s

(

M ′′ +M ′
ind

)

Ñv,s+ℓ − Ñu,sFÑv,s+ℓ| ≤ (54)

|λr|2s
(pn)1/2

+ z

√

∑r
k=1 |λk|2s+ℓ+1

p′((1 − δ)np/4)2s+ℓ

}

.
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9.5 Proof of Lemma 8.1

By statement of Lemma 8.1, we have t = ⌊ ln(1/p)ln(np) ⌋ with p = n−1+κ where 1/κ is not an integer. We

wish to establish that distance d̂, as defined in (7) is a good proxy of distance d as defined in (17).
We shall establish this result under event A where

A = A1(0.1) ∩ A2(nρ/2, 0.1) ∩ A3(nρ/2, 0.1), (55)

where

A3(nρ/2, 0.1) = ∩u,v∈[n]A3
u,v,t,1(n

ρ/2, 0.1),

A2(nρ/2, 0.1) = ∩u∈[n] ∩k∈[r] (A2
u,k,0,t(n

ρ/2, 0.1) ∩ A2
u,k,0,t+1(n

ρ/2, 0.1)),

A1(0.1) = ∩u∈[n] ∩t+1
s=1 A1

u,s(0.1).

We shall use Lemmas 9.1, 9.2, 9.3 and 9.4 to conclude the desired result. To that end, we verify
that appropriate conditions required in the statement of these Lemmas are satisfied.

A crucial condition is that t + 1 ≤ s∗(n, p, δ) originally imposed by Lemma 9.1. By definition
of s∗(n, p, δ), it is sufficient to establish that

p

8

(

(1 + δ)np

4

)t

≤ φ(δ) (56)

where recall φ(δ) = 1 −
(

1−δ

1−δ
√

2/3

)1/2

. We shall fix δ = 0.1 for the convenience through the

remainder of the proof. To that end, it can be checked that φ(0.1) > 0.01. Therefore, it is sufficient
to have

t ≤ ln(0.08/p)

ln(0.275np)
<

ln(8φ(0.1)/p)

ln(0.275np)
.

We have chosen t = ⌊ ln(1/p)ln(np) ⌋. That is,

t =
⌊(1− κ) ln n

κ lnn

⌋

=
⌊(1− κ)

κ

⌋

<
1− κ

κ
,

since 1/κ is not an integer. And,

ln(8φ(0.1)/p)

ln(0.275np)
≥ ln 0.08 + (1− κ) ln n

ln 0.275 + κ ln n
→ 1− κ

κ

>
⌊(1− κ)

κ

⌋

= t.

for n large enough. That is, for all n large enough, t+1 ≤ s∗(n, p, 0.1). Since 1/κ is not an integer,
for some γ ∈ (0, 1)

t =
⌊(1− κ)

κ

⌋

=
1− κ

κ
− γ.

That is,

κ(t+ 2)− 1 = κ(1 − γ) > 0. (57)
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For ρ ∈ (0, κ), we use x = nρ/2 in statement of Lemmas 9.2, 9.3 and 9.4, and z = nρ/2 in statement
of Lemma 9.4. We need to verify condition on x and z. Note that δ,B, |λk|, r, t are all constant
with respect to n. Lemma 9.2 requires

x <
2((1− δ)np/4)1/2

B|λk|(1 + |λk|)
= Θ((np)1/2)

and Lemma 9.3 requires
x < B((1− δ)np/4)1/2 = Θ((np)1/2).

Since np = nκ and x = nρ/2 with ρ < κ, both of the above conditions are satisfied for sufficiently
large n. For Lemma 9.4, we require

z < 4B2
(

p′((1− δ)np/4)2t+1 × (
r
∑

k=1

|λk|2t+2)
)1/2)

= Θ((p′(np)2t+1)1/2).

Now p′(np/4)2t+1 = Θ(n2κ(t+1)−1). By (57), 2κ(t+ 1)− 1 = κ(t+2)− 1 + κt > κt ≥ κ. By choice,
z = nρ/2 for ρ < κ ≤ 2κ(t + 1) − 1. Therefore, for sufficiently large n, the above condition is also
satisfied.

Now we are ready to bound the difference between d(u, v) and d̂(u, v) for any u, v ∈ [n]. Recall,

d(θu, θv) = ‖Λt+1Q(eu − ev)‖2 = (eu − ev)
TQTΛ2t+2Q(eu − ev) (58)

= eTuQ
TΛ2t+2Qeu + eTv Q

TΛ2t+2Qev − eTuQ
TΛ2t+2Qev − eTv Q

TΛ2t+2Qeu.

Recall, that according to (7),

d̂(u, v) =
(

1
p′

)(

Ñu,t − Ñv,t

)T
(M ′′ +M ′

ind)
(

Ñu,t+1 − Ñv,t+1

)

, (59)

=
1

p′
ÑT

u,t(M
′′ +M ′

ind)Ñu,t+1 +
1

p′
ÑT

v,t(M
′′ +M ′

ind)Ñv,t+1

− 1

p′
ÑT

u,t(M
′′ +M ′

ind
)Ñv,t+1 −

1

p′
ÑT

v,t(M
′′ +M ′

ind
)Ñu,t+1.

Under event A as defined in (55), by Lemmas 9.3 and 9.4,

∣

∣

1

p′
ÑT

u,t(M
′′ +M ′

ind
)Ñu,t+1 − eTuQ

TΛ2t+2Qeu
∣

∣

≤ 3Bx

((1 − δ)np/4)1/2

(

r
∑

k=1

|λk|2t+2
)

+
|λr|2t
(pn)1/2

+ z

√

∑r
k=1 |λk|2t+2

p′((1 − δ)np/4)2t+1

≤ 3Bnρ/2

(0.225np)1/2

(

r
∑

k=1

|λk|2t+2
)

+
|λr|2t
(pn)1/2

+ nρ/2

√

∑r
k=1 |λk|2t+2

p′(0.225np)2t+1

= O(Br|λ1|2t+2n−(κ−ρ)/2) +O(|λr|2tn−κ/2) +O((r|λ1|2t+2)1/2n−(2κ(t+1)−1−ρ)/2)

= O
(

Br|λ1|2t+2n− 1
2
(κ−ρ)

)

,

where the last equality follows from observing that the first term asymptotically dominates with
respect to n as ρ < κ ≤ 2κ(t + 1) − 1. Similarly, all other three terms on the right hand side in
(58) and (59) can be bounded by same quantities. Therefore, we conclude that for any u, v ∈ [n]

∣

∣

∣d(θu, θv)− d̂(u, v)
∣

∣

∣ = O
(

Br|λ1|2/κn− 1
2
(κ−ρ)

)

, (60)

38



where we used t < 1−κ
κ .

To conclude the proof, we need to argue that event A holds with high enough probability. To
that end, through union bound and Lemmas 9.1, 9.2, and 9.4, we have

P (¬A) ≤ P

(

¬A3(nρ/2, 0.1) | A1(0.1) ∩ A2(nρ/2, 0.1)
)

+

P

(

¬A2(nρ/2, 0.1) | A1(0.1)
)

+ P
(

¬A1(0.1)
)

.

By union bound and Lemma 9.4, we have that

P

(

¬A3(nρ/2, 0.1) | A1(0.1) ∩ A2(nρ/2, 0.1)
)

≤ O

(

n2 exp
(

−Θ(nρ)
)

+ n2 exp

(

−Θ

(

p′
(

(1− δ)np

4|λr|−1

)2t+ 1
2

)))

(a)

≤ O
(

n2 exp
(

−Θ(nρ)
)

+ n2 exp
(

−Θ
(

(np)t−
1
2

)))

≤ O
(

n2 exp
(

−Θ(nρ)
)

+ n2 exp
(

−Θ
(

nκ/2
)))

.

where the inequality (a) follows from the choice of t, and the fact that δ and t are constant with
respect to n. By union bound and Lemma 9.2, we have that

P

(

¬A2(nρ/2, 0.1) | A1(0.1)
)

≤ O
(

nr exp
(

−Θ(nρ)
))

.

By union bound and Lemma 9.1, we have that

P
(

¬A1(0.1)
)

≤ O
(

n exp
(

−Θ(nκ)
))

.

In summary, (60) holds with probability 1 − O
(

n2 exp
(

− Θ(nmin(ρ,κ(t− 1
2
)))
))

. This completes the
proof of Lemma 8.1. �

9.6 Concentration in The Sparser Regime

We state consequence of earlier results that will help establish Lemma 8.3.

Lemma 9.5. Fix δ = 0.1, p = n−1 ln1+κ n for some κ > 0. Let

t =

⌈

ln(0.08/p)

ln(0.275np)
− r′

⌉

.

Let ρ ∈ (0, κ). Suppose the events, ∩r
k=1(A2

u,k,0,t(ln
(1+ρ)/2(n), δ)∩A2

v,k,0,t(ln
(1+ρ)/2(n), δ)), ∩k∈[r]∩r′

ℓ=1

A2
v,k,t,ℓ(ln

(1+ρ)/2(n), δ), ∩r′

ℓ=1A3
u,v,t,ℓ(ln

(1+ρ)/2(n), δ) and ∩t+r′

s=1

(

A1
u,s(δ) ∩ A1

v,s(δ)
)

hold. Then,

∣

∣

∣

∑

k′∈[r′] zk′
(

1
p′

)

ÑT
u,t(M

′′ +M ′
ind

)Ñv,t+k′ − eTuQ
TΛ2Qev

∣

∣

∣ ≤ c ln−
(κ−ρ)

2 n

for some constant c = c(λ1, λr, λgap, r, B), independent of n with λgap = min1≤s<s′≤r |λs − λs′ |.
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Proof of Lemma 9.5. By choice of t, we have that

ln(0.08/p)

ln(0.275np)
− r′ ≤ t <

ln(0.08/p)

ln(0.275np)
− r′ + 1. (61)

We would like to verify that t+r′ ≤ s∗(δ, p, n) for δ = 0.1. By definition of s∗(n, p, δ), it is sufficient
to establish that

1

8
p

(

(1 + δ)np

4

)t+r′−1

≤ φ(δ)

where recall φ(δ) = 1−
(

1−δ

1−δ
√

2/3

)1/2

. For δ = 0.1, it can be verified that φ(0.1) > 0.01. Therefore,

it is sufficient to have

t+ r′ − 1 ≤ ln(0.08/p)

ln(0.275np)
,

which is implied by (61).
For p = n−1 ln1+κ n, lnnp = ln ln1+κ n = (1 + κ) ln lnn. We choose ρ ∈ (0, κ), which implies

ρ ∈ (0, ln(np)ln lnn − 1). Throughout the proof, we will denote x = ln(1+ρ)/2 n = ω(1). It follows that for
sufficiently large n,

x2((1− δ)np/4)−1 = 4(1 − δ)−1(lnn)−(κ−ρ) = o(1). (62)

Next, we verify properties of z. Recall that z is a vector that satisfies Λ2t+2Λ̃z = Λ21. That is,
for any k ∈ [r],

∑

k′∈[r′]
zk′λ

k′−1
k = λ−2t

k . (63)

Therefore,

∑

k′∈[r′]
zk′e

T
uQ

TΛ2t+k′+1Qev = eTuQ
TΛ2Qev . (64)

Let L be the r′× r′ diagonal matrix containing only the distinct eigenvalues amongst {λk}k∈[r],
such that Lhh denotes the h-th distinct eigenvalue. Let L̃ denote the associated r′×r′ Vandermonde
matrix containing only the distinct eigenvalues, i.e. if L̃ab takes the value of the a-th distinct
eigenvalue raised to the (b− 1)-th power. Note that Λ2t+2Λ̃z = Λ21 is satisfied whenever

L2t+2L̃z = L1

is satisfied. Let us define a diagonal matrix D with Dbb = |λ1|−(b−1). Therefore the explicit
expression for z is given by

z = D(L̃D)−1L−2t1,

such that for ℓ ∈ [r′],

zℓ =
∑

h∈[r′]
|λ1|−(h−1)(L̃D)−1

ℓh L
−2t
hh . (65)
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Theorem 1 of [26] provides bounds on the sum of entries of the inverse of a Vandermonde matrix.
It states that for a N ×N Vandermonde matrix V such that Vab = λb−1

a , if V −1 denotes the inverse
of V , then

max
j∈[N ]

∑

i∈[N ]

|(V −1)ij | ≤ max
j∈[N ]

∏

i 6=j

1 + |λi|
|λi − λj|

.

Using this result, we obtain

∑

j∈[r′]

∑

i∈[r′]
|(L̃D)−1

ij | ≤
∑

j∈[r′]

∏

i 6=j

(

1 + |Lii|/|λ1|
|Lii − Ljj|/|λ1|

)

≤ r′
( |λ1|+ |λ1|
mini,j |Lii − Ljj|

)r′−1

= r′
(

2|λ1|
λgap

)r′−1

, (66)

where λgap is the minimum gap between eigenvalues only amongst the distinct eigenvalues,

λgap = min
i,j

|Li − Lj| = min
i,j:λi 6=λj

|λi − λj |.

Our interest is in bounding

|∑k′∈[r′] zk′
(

1
p′

)

ÑT
u,t(M

′′ +M ′
ind

)Ñv,t+k′ − eTuQ
TΛ2Qev|

≤ |
∑

k′∈[r′]
zk′
(

(

1
p′

)

ÑT
u,t(M

′′ +M ′
ind)Ñv,t+k′ − ÑT

u,tFÑv,t+k′

)

| (67)

+ |
∑

k′∈[r′]
zk′
(

ÑT
u,tQ

TΛQÑv,t+k′ − ÑT
u,tQ

TΛk′+1QÑv,t

)

| (68)

+ |
∑

k′∈[r′]
zk′
(

ÑT
u,tQ

TΛk′+1QÑv,t − eTuQ
TΛ2t+k′+1Qev

)

| (69)

Conditioned on events ∩r
k=1(A2

u,k,0,t(x, δ) ∩ A2
v,k,0,t(x, δ)) and given that all conditions of Lemma

9.3 are satisfied, it follows that

|(69)| =
∣

∣

∣

∣

∣

∑

k∈[r]
λ2
k

(

(eTkQÑu,t)(e
T
kQÑv,t)− (eTkΛ

tQeu)(e
T
k Λ

tQev)
)(

∑

k′∈[r′]
zk′λ

k′−1
k

)

∣

∣

∣

∣

∣

(a)
=

∣

∣

∣

∣

∣

∑

k∈[r]
λ2−2t
k

(

eTkQÑu,t − eTkΛ
tQeu

)(

eTkQÑv,t − eTkΛ
tQev + eTkΛ

tQev

)

∣

∣

∣

∣

∣

+
∑

k∈[r]
λ2−2t
k eTkΛ

tQeu

(

eTkQÑv,t − eTkΛ
tQev

)

≤
∑

k∈[r]
|λk|2−2t

(

|λk|2tx2
(

(1− δ)np

4

)−1

+ 2B|λk|2tx
(

(1− δ)np

4

)−1/2
)

≤ x

(

(1− δ)np

4

)−1/2
(

x

(

(1− δ)np

4

)−1/2

+ 2B

)

∑

k∈[r]
|λk|2,
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where (a) follows from (63).
Similarly, conditioned on events ∩r

k=1∩r′

ℓ=1 (A2
u,k,t,ℓ(x, δ)∩A2

v,k,t,ℓ(x, δ)) with x = ln(1+ρ)/2 n and
δ = 0.1, we have

|(68)| ≤
∑

k′∈[r′]
zk′

∣

∣

∣

∣

∣

∑

k

λk(e
T
kQÑu,t)

(

eTkQÑv,t+k′ − eTk Λ
k′QÑv,t

)

∣

∣

∣

∣

∣

(a)

≤
∑

k′∈[r′]
zk′Bx

(

(1− δ)np

4

)−(t+1)/2
∑

k∈[r]
|λk|k

′+1

(b)
=
∑

k′∈[r′]

∑

h∈[r′]
|λ1|−k′+1(L̃D)−1

k′hL
−2t
hh Bx

(

(1− δ)np

4

)−(t+1)/2
(

∑

k∈[r]
|λk|k

′+1
)

(c)

≤ |λ1|2|λr|2Brx

(

(1− δ)|λr |4np
4

)−(t+1)/2
(

∑

k′∈[r′]

∑

h∈[r′]
(L̃D)−1

k′h

)

(d)

≤ |λ1|2|λr|2Brx

(

(1− δ)|λr |4np
4

)−(t+1)/2

r′
(

2|λ1|
λgap

)r′−1

,

where (a) follows from events ∩r
k=1∩r′

ℓ=1 (A2
u,k,t,ℓ(x, δ)∩A2

v,k,t,ℓ(x, δ)) and showing that eTkQÑu,t ≤ B

due to the boundedness of Q and ‖Ñu,t‖1 ≤ 1 by normalization; (b) follows from (65); (c) follows
from |λk| ≤ |λ1| and |L−1

hh | ≤ |λr|−1;(d) follows from (66).

Conditioned on the event ∩r′

ℓ=1A3
u,v,t,ℓ(ln

(1+ρ)/2(n), δ) and Lemma 9.3, x = ln(1+ρ)/ 2n and δ =
0.1 it follows that

|(67)| ≤
∑

k′∈[r′]
zk′



x

(

∑r
k=1 |λk|2t+k′+1

p′((1 − δ)np/4)2t+k′

)1/2

+
|λr|2t
(pn)1/2





(a)

≤
∑

k′∈[r′]

∑

h∈[r′]
L−2t
hh (L̃D)−1

k′h|λ1|−k′+1



x

(

∑r
k=1 |λk|2t+k′+1

p′((1− δ)np/4)2t+k′

)1/2

+
|λr|2t
(pn)1/2





≤ |λr|−2t

(

x

(

r|λ1|2t+2

p′((1− δ)np/4)2t+1

)1/2

+
max(1, |λ1|−r′+1)

(pn)1/2

)

(

∑

k′∈[r′]

∑

h∈[r′]
(L̃D)−1

k′h

)

(b)

≤
(

(

x2r|λr|2|λ1|
p′((1− δ)|λr |2|λ1|−1np/4)2t+1

)1/2

+
max(1, |λ1|−r′+1)

(pn)1/2

)

r′
(

2|λ1|
λgap

)r′−1

where (a) follows using (65) as well as the fact that np = ω(1) and hence for n sufficiently large,
((1− δ)np/4)−t ≥ ((1− δ)np/4)−t−k′ for any k′ ≥ 0; (b) follows using (66).
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In summary, we conclude

|∑k′∈[r′] zk′
(

1
p′

)

ÑT
u,t(M

′′ +M ′
ind

)Ñv,t+k′ − eTuQ
TΛ2Qev|

≤
(

(

x2r|λr|2|λ1|
p′((1 − δ)|λr|2|λ1|−1np/4)2t+1

)1/2

+
max(1, |λ1|−r′+1)

(pn)1/2

)

r′
(

2|λ1|
λgap

)r′−1

(70)

+ |λ1|2|λr|2Brx

(

(1− δ)|λr|4np
4

)−(t+1)/2

r′
(

2|λ1|
λgap

)r′−1

(71)

+ x

(

(1− δ)np

4

)−1/2
(

x

(

(1− δ)np

4

)−1/2

+ 2B

)

∑

k∈[r]
|λk|2. (72)

Observe that due to (62), x((1 − δ)np/4)−1/2 = o(1) and t = Θ(lnn/ ln lnn) = ω(1), hence there
exists some constant c1 = c1(λ1, λr, λgap, r, B), independent of n, such that

|term(71) + term(72)|+ max(1, |λ1|−r′+1)

(pn)1/2
r′
(

2|λ1|
λgap

)r′−1

≤ c1x(np)
− 1

2 . (73)

Recall that we chose t such that by (61),

ln(p′) = ln(p)− ln(4− p)

= ln(0.08/(4 − p))− ln(0.08/p)

≥ ln(0.08/(4 − p))− (t+ r′) ln(0.275np).

It follows by t = Θ( ln(1/p)ln(np) ) = Θ( ln(n)
ln lnn) = ω(1) that,

ln(p′((1− δ)|λr|2|λ1|−1np/4)2t)

≥ ln(0.08/(4 − p))− (t+ r′) ln(0.275np) + 2t(ln(
(1 − δ)|λr |2

4|λ1|
) + lnnp)

= t ln(np) + ln(0.08/(4 − p))− r′ ln(0.275np) + t

(

2 ln(
(1 − δ)|λr|2

4|λ1|
)− ln(0.275)

)

= Θ(t ln(np)) = Θ(ln(n)) = ω(1). (74)

This implies that for some constant c2 = c2(λ1, λr, λgap, r, B), the square of the first term in (70)
satisfies

x2r|λr|2|λ1|
p′((1− δ)|λr |2|λ1|−1np/4)2t+1

(r′)2
(

2|λ1|
λgap

)2(r′−1)

≤ c2x
2(np)−1. (75)

Putting everything together, we have that for some constant c = c(λ1, λr, λgap, r, B)

|∑k′∈[r′] zk′
(

1
p′

)

ÑT
u,t(M

′′ +M ′
u,v,t,k′))Ñv,t+k′ − eTuQ

TΛ2Qev| ≤ cx(np)−1/2. (76)

Replacing x = ln(1+ρ)/2 n, we obtain the desired result. �
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9.7 Proof of Lemma 8.3

The proof of Lemma 8.3 would follow from Lemma 9.5 and once we verify the probability of events
required to hold for Lemma 9.5 to be applicable. To that end, given κ > 0 so that p = n−1 ln1+κ n,
let ρ ∈ (0, κ) be parameter of choice. We set

t =

⌈

ln(0.08/p)

ln(0.275np)
− r′

⌉

.

Define event A where

A = A1(0.1) ∩A2(ln(1+ρ)/2(n), 0.1) ∩ A3(ln(1+ρ)/2(n), 0.1), (77)

where

A3(ln(1+ρ)/2(n), 0.1) = ∩u,v∈[n] ∩r′

ℓ=1 A3
u,v,t,ℓ(ln

(1+ρ)/2(n), 0.1),

A2(ln(1+ρ)/2(n), 0.1) = ∩u∈[n] ∩k∈[r] A2
u,k,0,t(ln

(1+ρ)/2(n), 0.1)

∩u∈[n] ∩k∈[r] ∩r′

ℓ=1 A2
u,k,t,ℓ(ln

(1+ρ)/2(n), 0.1),

A1(0.1) = ∩u∈[n] ∩t+r′

s=1 A1
u,s(0.1).

We shall use Lemmas 9.1, 9.2, 9.3 and 9.4 to conclude the desired result. To that end, we verify
that appropriate conditions required in the statement of these Lemmas are satisfied.

To argue that A1(0.1) holds with high probability, we wish to apply Lemmas 9.1 which requires
verifying t+r′ ≤ s∗(n, p, 0.1) which is done in proof of Lemma 9.5. To argue thatA2(ln(1+ρ)/2(n), 0.1)
and A3(ln(1+ρ)/2(n), 0.1) hold with high probability, we will utilize Lemmas 9.2, 9.3 and 9.4 with
x = ln(1+ρ)/2(n) as well as z = ln(1+ρ)/2(n) in statement of Lemma 9.4. We need to verify condition
on x and z. Lemma 9.2 requires

x ≤ 2((1 − δ)np/4)1/2

B|λk|(1 + |λk|)
and Lemma 9.3 requires

x ≤ B((1− δ)np/4)1/2.

For sufficiently large n these conditions are satisfied by our choice of x due to ρ < κ. For Lemma
9.4, we require

z ≤ 4B2
(

p′((1 − δ)np/4)2t+ℓ × (

r
∑

k=1

|λk|2t+ℓ+1)
)1/2

.

Now z = ln(1+ρ)/2 n and np = ln1+κ n and since ρ < κ we have that z = o((np)1/2). By the
same argument as (74) in the proof of Lemma 9.5, p′((1 − δ)|λr|np/4)2t = ω(1). As a result, the
right hand side of the inequality is ω((np)ℓ/2), which implies that for sufficiently large n, the above
condition on z is satisfied.

Conditioned on event A, by Lemma 9.5 it follows immediately that for distances defined as per
(32) and (8),

max
u,v∈[n]

|d(θu, θv)− d̂(u, v)| = O
(

ln−
κ−ρ
2 n

)

= O

(

√

ln1+ρ n

np

)

. (78)
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To conclude the proof, we need to argue that event A holds with high enough probability. To
that end, through union bound and Lemmas 9.1, 9.2, and 9.4, we have

P (¬A) ≤ P

(

¬A3(ln(1+ρ)/2(n), 0.1) | A1(0.1) ∩ A2(ln(1+ρ)/2(n), 0.1)
)

+

P

(

¬A2(ln(1+ρ)/2(n), 0.1) | A1(0.1)
)

+ P
(

¬A1(0.1)
)

.

By union bound and Lemma 9.4, we have that

P

(

¬A3(ln(1+ρ)/2(n), 0.1) | A1(0.1) ∩ A2(ln(1+ρ)/2(n), 0.1)
)

(79)

≤ O
(

n2r′ exp
(

−Θ(ln1+ρ n)
)

)

+O
(

n2r′ exp

(

−Θ

(

p′
(

(1− δ)np

4|λr|−1

)2t+ 1
2

))

)

. (80)

By the choice of t to satisfy (61), it follows that p(0.275np)t+r′ ≥ 0.08. Therefore,

p′
(

(1− δ)np

4|λr|−1

)2t+ℓ− 1
2

≥ p

4− p
(0.275np)t+r′

(

(1− δ)

1.1|λr|−1

)t+r′ ((1− δ)np

4|λr|−1

)t+ 1
2
−r′

=
0.08

4− p

(

(1− δ)

1.1|λr|−1

)2r′− 1
2
(

(1− δ)2np

4.4|λr |−2

)t+ 1
2
−r′

= Θ

(

(

(1− δ)2np

4.4|λr|−2

)t+ 1
2
−r′
)

= Ω(np) = Θ(ln1+κ n),

where we used the fact that δ, |λr |, r′ are all constants, while t = ω(1) and np = ω(1). By union
bound and Lemma 9.2, we have that

P

(

¬A2(ln(1+ρ)/2(n), 0.1) | A1(0.1)
)

≤ O
(

nrr′ exp
(

−Θ(ln1+ρ n)
)

)

. (81)

By union bound and Lemma 9.1, we have that

P
(

¬A1(0.1)
)

≤ O
(

n exp
(

−Θ(ln1+κ n)
)

)

. (82)

In summary, the desired claim holds with probability 1− O
(

n2 exp
(

−Θ((ln n)1+ρ)
)

)

. This com-

pletes the proof of Lemma 8.3. �

10 Proving distance estimate is close when f has ε-approximate

rank r

In this section, we extend the result that distance estimate (7) is good approximation of the desired
ideal distance as claimed in the statement of Lemma 8.2 when f has ε-approximate rank r. We will
primarily establish robustness of the distance estimate with respect to arbitrary, additional error
of magnitude at most ε in each observed entry. This will help conclude Lemma 8.2 from Lemma
8.1.
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10.1 Robustness of The Quadratic Form In (7)

When f has ε-approximate rank r, the F = QTΛQ+ ε with ‖ε‖max ≤ ε. In contrast, when f has
rank r, ε = 0, i.e. F = QTΛQ. That is, the setting of f has ε-approximate rank r can be viewed
as a perturbation of the setting with f having rank r: each observation M(i, j) is first generated
as per rank r setting and then arbitrary perturbation or adversarial noise εij is added to it where
|εij | ≤ ε. Therefore, we shall analyze the distance estimate as defined in (7) for the setting of f that
has ε-approximate rank r by bounding the perturbation (or change) induced in distance estimates
for the setting of f that is rank r, due to the addition of such an arbitrary perturbation εij .

Lemma 10.1. Let f have rank r, ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1), t ≥ 0 with t + 1 ≤ s∗(δ, p, n) and

0 < x ≤ B((1− δ)np/4)1/2. Let u, v ∈ [n]. As before, define event

A′(u, v, t, 1)(x) = ∩r
k=1(A2

u,k,0,t(x) ∩ A2
v,k,0,t+1(x)) ∩ A1

u,t ∩ A1
v,t+1.

We condition on the event that A′(u, v, t, 1)(x) holds. Let d̂(u, v) be the distance estimate computed
according to (7). Upon adding arbitrary εij ∈ [−ε, ε] to M(i, j) for each (i, j) ∈ E, with probability
at least

1− exp

(

−Θ

(

p′
(

(1− δ)np

4

)2t+1
))

,

d̂(u, v) changes at most by O(tε(1 + ε)t + t2ε2(1 + ε)2t−1).

Proof of Lemma 10.1. Recall that d̂(u, v) is the sum of four quadratic terms (see (59) for
example). For each of these terms, we shall argue that it changes by O(ε+tε(1+ε)t+t2ε2(1+ε)2t−1)
with high probability as claimed. This will conclude the proof. To that end, let us start by
considering 1

p′ Ñ
T
u,tM̄Ñu,t+1 where M̄ = M ′′ +M ′

ind
; others follow in a similar manner. Specifically,

consider

NT
u,tM̄Nv,t+1 =

∑

i,j

I((i, j) ∈ E ′′ ∪ E ′
ind)M̄ (i, j)Nu,t(i)Nv,t+1(j).

Let F(u, v, t, 1, x) denote all the information related to T t
u and T t+1

v , including the node latent
parameters and observations in M̄ that are associated to edges in T t

u ∪ T t+1
v . Furthermore, let

F(u, v, t, 1, x) be conditioned on the event that A′(u, v, t, 1)(x) holds, which is fully determined by
the realization of edges and weights in T t

u and T t+1
v . We wish to understand how NT

u,tM̄Nv,t+1

changes if we perturb each entry M(i, j) by adding arbitrary εij so that |εij | ≤ ε for all (i, j) ∈ E .
To that end, define

φ(i, j) = I((i, j) ∈ E ′′ ∪ E ′
ind)M̄(i, j)Nu,t(i)Nv,t+1(j).

By construction, {φ(i, j)}(i,j)∈[n]2 in non-zero only if all four terms in its product are. Given
F(u, v, t, 1, x) and conditioned on E ′, I((i, j) ∈ E ′′ ∪ E ′

ind
) are i.i.d. Bernoulli(p′). Each M̄(i, j) is

perturbed at most by ε. By definition Nu,t(i) is a product t terms, each of which takes value in
[0, 1] and is perturbed by at most ε (in absolute) value. Let Nu,t(i) =

∏t
s=1ws with |ws| ≤ 1 for

all s ≤ t. Let εs be perturbation added to ws with |εs| ≤ ε for all s ≤ t. The change in Nu,t(i) is
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bounded as

∣

∣

t
∏

s=1

ws −
t
∏

s=1

(ws + εs)
∣

∣ =
∣

∣

∑

S⊂[t]:S 6=∅

∏

s∈S
εs

∏

s∈[t]\S
ws

∣

∣ ≤
∑

S⊂[t]:S 6=∅

∏

s∈S
|εs|

∏

s∈[t]\S
|ws|

≤
∑

S⊂[t]:S 6=∅
ε|S| =

t
∑

s=1

(

t

s

)

εs

= ε
(

t−1
∑

s=0

t!

(t− s− 1)!(s + 1)!
εs
)

≤ tε
(

t−1
∑

s=0

(t− 1)!

((t− 1)− s)!s!
εs
)

= tε
(

t−1
∑

s=0

(

t− 1

s

)

εs
)

= tε(1 + ε)t−1. (83)

Similarly, the perturbation in Nv,t+1(j) can be bounded above by (t + 1)ε(1 + ε)t. That is,
the overall perturbation in M̄(i, j)Nu,t(i)Nv,t+1(j) is bounded above as O(tε(1 + ε)t + t2ε2(1 +
ε)2t−1) since each of the M̄(i, j), Nu,t(i), Nv,t+1(j) are O(1). Therefore, the overall perturbation
in NT

u,tM̄Nv,t+1 is bounded above by O(tε(1 + ε)t + t2ε2(1 + ε)2t−1) times the number of (i, j)
such that Nu,t(i), Nv,t+1(j) are non-zero and I((i, j) ∈ E ′′ ∪ E ′

ind
). Given F(u, v, t, 1, x), this is pre-

cisely Binomial(|Su,t||Sv,t+1|, p′). Therefore, by Chernoff’s bound, it follows that
∑

i,j∈[n] I((i, j) ∈
E ′′∪E ′

ind
) is at most 2|Su,t||Sv,t+1|p′ with probability at least 1− exp

(

−|Su,t||Sv,t+1|p′/3
)

. That is,
perturbation in NT

u,tM̄Nv,t+1 is bounded above by O(|Su,t||Sv,t+1|p′)×O(tε(1+ε)t+t2ε2(1+ε)2t−1)
with probability at least 1 − exp

(

− |Su,t||Sv,t+1|p′/3
)

. Conditioned on the event A′(u, v, t, 1)(x),
|Sv,s+ℓ| are lower bounded by ((1− δ)np/4)t and ((1 − δ)np/4)t+1. That is, the above claim holds
with probability at least 1 − exp

(

− (1 − δ)np/4)2t+1p′/3
)

. Recall that Ñu,t = Nu,t/|Su,t|. It fol-

lows that the perturbation in 1
p′ Ñ

T
u,tM̄Ñu,t+1 is bounded above by O(tε(1 + ε)t + t2ε2(1 + ε)2t−1)

with probability at least 1− exp
(

− (1− δ)np/4)2t+1p′/3
)

. Using an identical argument, the same
conclusion holds for perturbation induced in the other three terms in distance estimate (7). This
completes the proof of Lemma 10.1. �

10.2 Proof of Lemma 8.2

Using Lemma 10.1 and Lemma 8.1, we establish the proof of Lemma 8.2. As argued in the proof of
Lemma 8.1, for choice of t = ⌊ ln(1/p)ln(np) ⌋ with p = n−1+κ where 1/κ is not an integer and δ = 0.1, we

have that t+1 ≤ s∗(n, p, 0.1) for n large enough. Further, np = nκ and p′(np/4)2t+1 = Θ(n2κ(t+1)−1)
with κ ≤ 2κ(t + 1) − 1. As in Lemma 8.1, we choose x = nρ/2 for ρ ∈ (0, κ) in Lemma 10.1. By

this selection, we have x ≤ (np/4)
1
2 for n large enough. As in Lemma 8.1, the event A (recall

definition from (55)) holds with probability at least 1 − O
(

n2 exp
(

− Θ(nmin(ρ,κ(t− 1
2
)))
))

. Indeed,

A implies the condition required for Lemma 10.1 to hold with x = nρ/2 for all u 6= v ∈ [n].
Finally, given this, the conclusion of Lemma 10.1 holds for all u 6= v ∈ [n] with probability at least

1− exp
(

n2 exp
(

−Θ(nκ)
)

)

. In summary, from Lemma 10.1 and Lemma 8.1, it follows that

|d(u, v) − d̂(u, v)| ≤ O
(

Br|λ1|2/κn− 1
2
(κ−ρ)

)

+O
(

tε(1 + ε)t + t2ε2(1 + ε)2t−1
)

, (84)

holds with probability at least 1 − O
(

n2 exp
(

− Θ(nmin(ρ,κ(t− 1
2
)))
))

. This completes the proof of
Lemma 8.2. �
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A Proof of Extra Lemmas

Lemma A.1. We use two simple inequalities to argue when a summation is dominated by the
single largest term. For any ρ ≥ 2,

r
∑

s=1

ρs ≤ 2ρr

For any ρ ≥ r1/(r−1), it holds that ρs ≥ sρ for all s ≤ r. If additionally exp(−aρ) ≤ 1
2 ,

r
∑

s=1

exp(−aρs) ≤ 2 exp(−aρ)

Recall the definitions of φ and s∗,

φ(δ) = 1−
(

1− δ

1− δ
√

2/3

)1/2

< 1. (85)

For any p = ω
(

1
n

)

and p = o(1),

s∗(δ, p, n) = sup
{

s ≥ 1 :
p

8

(

(1 + δ)np

4

)s−1

≤ φ(δ)
}

. (86)

For any given δ, s∗(δ, p, n) is well defined for n large enough since p = o(1). Event A1
u,s(δ) is defined

as

A1
u,s(δ) :=

{

|Su,s| ∈
[(

(1− δ)np

4

)s

,

(

(1 + δ)np

4

)s]}

.
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Lemma A.2. Let ω( 1n) ≤ p ≤ o(1), δ ∈ (0, 1). For 1 ≤ s ≤ s∗(δ, p, n),

P
(

¬A1
u,s(δ) | ∩s−1

h=1 A1
u,h(δ)

)

≤ 2 exp

(

− δ2

3(1− δ
√

2/3)

(

(1− δ)np

4

)s
)

.

It follows that for t+ ℓ ≤ s∗(δ, p, n),

P

(

∪t+ℓ
s=1¬A1

u,s(δ)
)

≤ 4 exp

(

− δ2((1− δ)np)

12(1− δ
√

2/3)

)

.

Proof of A.2. By definition, s ≤ s∗(δ, p, n) implies that

1

8
p

(

(1 + δ)np

4

)s−1

≤ 1−
(

1− δ

1− δ
√

2/3

)1/2

=: φ(δ), (87)

Let us denote Bu,s−1 = ∪s−1
h=1Su,h. Conditioned on ∩s−1

h=1A1
u,h(δ), we can upper bound |Bu,s−1|

by

|Bu,s−1| = 1 +

s−1
∑

h=1

|Su,h| ≤ 1 +

s−1
∑

h=1

(
(1 + δ)np

4
)h ≤ 1 + 2(

(1 + δ)np

4
)s−1,

where the last step follows from Lemma A.1 showing that the summation is dominated by the
largest term for sufficiently large n. By assuming s ≤ s∗(δ, p, n), it follows that for sufficiently large
n, because np = ω(1),

|Bu,s−1| ≤ 1 +
16φ(δ)n

np
≤ φ(δ)n.

Conditioned on the set Bu,s−1 and the set Su,s−1, any vertex i ∈ [n] \ Bu,s−1 is in Su,s indepen-
dently with probability (1− (1− p

4 )
|Su,s−1|). Thus the number of vertices in Su,s is distributed as a

binomial random variable. By Chernoff’s bound,

P

(

|Su,s| > (1 + δ)(n − |Bu,s−1|)
(

1−
(

1− p

4

)|Su,s−1|
) ∣

∣

∣

∣

Bu,s−1,Su,s−1,A1
u,s−1

)

≤ exp

(

−1

3
δ2(n− |Bu,s−1|)

(

1−
(

1− p

4

)|Su,s−1|
))

(a)

≤ exp

(

−1

3
δ2(n− |Bu,s−1|)

(

p|Su,s−1|
4

)(

1− 1

8
p|Su,s−1|

))

(b)

≤ exp

(

− 1

12
δ2np(1− φ(δ))

(

(1− δ)np

4

)s−1

(1− φ(δ))

)

= exp

(

−1

3
δ2

(1− φ(δ))2

1− δ
(
(1 − δ)np

4
)s
)

(c)
= exp

(

− δ2

3(1 − δ
√

2/3)

(

(1− δ)np

4

)s
)

,

where inequality (a) follows from (1− (1−x)y) ≥ xy(1− 1
2xy) for x ∈ (0, 1) and y ∈ Z+, inequality

(b) follows from the event A1
u,s−1 and the assumption s ≤ s∗(δ, p, n), and equality (c) follows from
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the fact that we constructed φ such that (1 − δ
√

2/3)(1 − φ(δ))2 = (1 − δ). We obtain a lower
bound on |Su,s| by a similar argument using Chernoff’s bound,

P

(

|Su,s| < (1− δ
√

2/3)(n − |Bu,s−1|)
(

1−
(

1− p

4

)|Su,s−1|
) ∣

∣

∣

∣

Bu,s−1,Su,s−1,A1
u,s−1

)

≤ exp

(

−1

2
(δ
√

2/3)2(n− |Bu,s−1|)
(

1−
(

1− p

4

)|Su,s−1|
))

≤ exp

(

−1

3
δ2(n − |Bu,s−1|)

(

p|Su,s−1|
4

)(

1− 1

8
p|Su,s−1|

))

≤ exp

(

− δ2

3(1− δ
√

2/3)

(

(1− δ)np

4

)s
)

.

Conditioned on A1
u,s−1, the above two inequalities show that A1

u,s holds with high probability. The
upper bound follows from

|Su,s| ≤ (1 + δ)(n − |Bu,s−1|)
(

1−
(

1− p

4

)|Su,s−1|
)

≤ (1 + δ)
np

4
|Su,s−1| ≤

(

(1 + δ)np

4

)s

and the lower bound follows from

|Su,s| ≥ (1− δ
√

2/3)(n − |Bu,s−1|)
(

1−
(

1− p

4

)|Su,s−1|
)

≥ (1− δ
√

2/3)n(1− φ(δ))
p|Su,s−1|

4

(

1− 1

8
p|Su,s−1|

)

≥ (1− δ
√

2/3)
np

4
(1− φ(δ))|Su,s−1|

(

1− 1

8
p

(

(1 + δ)np

4

)s−1
)

≥ (1− δ
√

2/3)
np

4
(1− φ(δ))|Su,s−1|(1− φ(δ))

= (1− δ
√

2/3)
np

4
|Su,s−1|(1− φ(δ))2

(b)
=

(1− δ)np

4
|Su,s−1| ≥

(

(1− δ)np

4

)s

.

where equality (b) follows from the fact that we constructed φ such that (1− δ
√

2/3)(1− φ(δ))2 =
(1− δ).

We finally lower bound the probability of event ∩t+ℓ
s=1A1

u,s, by a repeated application of Chernoff’s
bound for all s ∈ [t+ ℓ],

P

(

∪t+ℓ
s=1¬A1

u,s(δ)
)

=

t+ℓ
∑

s=1

P
(

¬A1
u,s(δ) | ∩s−1

h=1 A1
u,h(δ)

)

≤
t+ℓ
∑

s=1

2 exp

(

− δ2

3(1− δ
√

2/3)

(

(1− δ)np

4

)s
)

(a)

≤ 4 exp

(

− δ2((1 − δ)np)

12(1 − δ
√

2/3)

)

,

where inequality (a) follows from the assumption that pn = ω(1) such that the largest term in the
summation dominates. �
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