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Abstract

The composition of natural liquidity has been changing over time. An analysis of intraday
volumes for the S&P500 constituent stocks illustrates that (i) volume surprises, i.e., deviations
from their respective forecasts, are correlated across stocks, and (ii) this correlation increases
during the last few hours of the trading session. These observations could be attributed, in part,
to the prevalence of portfolio trading activity that is implicit in the growth of ETF, passive
and systematic investment strategies; and, to the increased trading intensity of such strategies
towards the end of the trading session, e.g., due to execution of mutual fund inflows/outflows
that are benchmarked to the closing price on each day.

In this paper, we investigate the consequences of such portfolio liquidity on price impact
and portfolio execution. We derive a linear cross-asset market impact from a stylized model
that explicitly captures the fact that a certain fraction of natural liquidity providers only trade
portfolios of stocks whenever they choose to execute. We find that due to cross-impact and
its intraday variation, it is optimal for a risk-neutral, cost minimizing liquidator to execute a
portfolio of orders in a coupled manner, as opposed to a separable VWAP-like execution that
is often assumed. The optimal schedule couples the execution of the various orders so as to be
able to take advantage of increased portfolio liquidity towards the end of the day. A worst case
analysis shows that the potential cost reduction from this optimized execution schedule over the
separable approach can be as high as 6% for plausible model parameters. Finally, we discuss
how to estimate cross-sectional price impact if one had a dataset of realized portfolio transaction
records that exploits the low-rank structure of its coefficient matrix suggested by our analysis.

1. Introduction

Throughout the past decade or so we have experienced a so-called movement of assets under
management in the equities markets from actively managed to passively and systematically managed
strategies. This migration of assets has also been accompanied by the simultaneous growth of
Exchange-Traded-Funds (ETFs). In very broad strokes, such strategies tend to make investment
and trade decisions based on systematic portfolio-level procedures – e.g., invest in all S&P500
constituents proportionally to their respective market capitalization weights; invest in low-volatility
stocks; high-beta stocks; high dividend stocks; etc. In contrast, active strategies, for example,
may focus on fundamental analysis of individual firms that may, in turn, result into discretionary
investment decisions on the respective stocks. In the sequel, we will refer to passive strategies as
“index fund” strategies.
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This gradual shift in investment styles has affected the nature of trade order flows, which moti-
vates our subsequent analysis. We make three specific observations. First, passive and systematic
strategies tend to generate portfolio trade order flows, i.e., trades that simultaneously execute or-
ders in multiple securities in a coordinated fashion; e.g., buying a $50 million slice of the S&P500
over the next 2 hrs that involves the simultaneous execution of buy orders along most or all of the
index constituents. Second, passive strategies tend to concentrate their trading activity towards
the end of the day; in part, so as to focus around times with increased market liquidity, and because
mutual funds that implement such strategies have to settle buy and sell trade instructions from
their (retail) investors at the closing market price at the end of each day; ETF products exhibit
similar behavior. Third, the shift in asset ownership over time and the changes in the regulatory
environment, have, in turn, changed the composition and strategies under which natural liquidity
is provided in the market – these are the counterparties that step in to either sell of buy stock
against institutional investor interest so as to clear the market.

In §2 we will provide some empirical evidence that show that pairwise correlations amongst
trading volumes across the S&P500 constituents are positive throughout the trading day, and
increase by about a factor of two over the last 1-2 hrs of the trading day. That is, trading volumes
exhibit common intraday variation away from their deterministic forecast in a way that is consistent
with our earlier observations.

In this paper we study the effect of portfolio liquidity provision in the context of optimal trade
execution. Specifically, we consider a stylized model of natural liquidity provision that incorporates
the behavior of single stock and portfolio participants, and, in turn, leads to a market impact
model that incorporates cross-security impact terms; these arise due to the participation of natural
portfolio liquidity providers. We formulate and solve a multi-period optimization problem to min-
imize the expected market impact cost incurred by a risk-neutral investor that seeks to liquidate
a portfolio. We characterize the optimal policy, which is coupled – i.e., the liquidation schedules
for the various orders in the portfolio should be jointly determined so as to incorporate and exploit
the cross-security impact phenomena. We contrast the optimal schedule against that of a separable
execution approach, where the orders in the portfolio are executed independently of each other;
this is commonly adopted by risk-neutral investors. Separable execution is suboptimal, in general,
and we derive a bound on it sub-optimality gap when compared to the optimal (coupled) solution,
which can be interpreted as the execution cost reduction that an investor can achieve by optimizing
around such cross-impact effects.

In a bit more detail, the main contributions of the paper are the following.

Stylized model of cross-sectional price impact: Under the assumption that the magnitude
of single stock and portfolio liquidity provision is linear in the change in short-term trading prices,
we show that market impact is itself linear in the trade quantity vector, and characterize the
coefficient matrix that exhibits an intuitive structure: it is the inverse of a matrix that is a diagonal
–capturing the effect of single-stock liquidity providers – plus a (non-diagonal) low-rank matrix –
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capturing the effect of portfolio liquidity providers that are assumed to trade along a set of portfolio
weight vectors, such as the market and sector portfolios. Cross-impact is the result of portfolio
liquidity provision.

The linear market impact model results in quadratic trading costs, which will allow for a
tractable downstream analysis. The derivation of this model suggests that cross-impact effects
will also arise in settings where liquidity provision follows more complex and possibly non-linear
strategies, as long as a portion of that liquidity is provided by portfolio investors.

Optimal trade scheduling for risk-neutral minimum cost liquidation: We formulate
and solve an optimal multi-period optimization problem that selects the quantities to be traded in
each security over time so as to liquidate the target portfolio over the span of a finite horizon (a day
in our case) in a way that minimizes the cumulative expected market impact costs. Coupling is not
the result of a risk penalty that captures the covariance of intraday price returns, as is typically the
case, but the result of correlated liquidity. The optimal trade schedule is coupled, and, specifically,
incorporates and exploits the presence and intraday variation of cross-impact effects. We identify
the special cases where a separable execution approach would be optimal, namely: a) if there was
no portfolio liquidity provision, or b) the intensity of portfolio liquidity provision was constant
throughout the trading day.

Worst case analysis: We compare the optimal policy against a separable (VWAP-like) exe-
cution approach, and characterize the worst case liquidation portfolios and the magnitude of the
benefit that one derives from the optimized solution. A straightforward estimation of the mixture
of single-stock and portfolio liquidity providers that would be consistent with the intraday volume
profile and the intraday profile of pairwise volume correlations, allows us to back into a numerical
value for the aforementioned bound, which is 6%. The worst case analysis provides some intuition
on the settings where this effects may be more pronounced.

Efficient estimation of cross-impact: We suggest a practical scheme for estimating the
(time-varying) coefficient matrix for price impact. A direct estimation procedure for all cross-
impact coefficients between each pair of stocks seems intractable due to the low signal-to-noise
ratio that often characterizes market impact model estimation, and the increased sparsity of trade
data when we study pairs of stocks. Exploiting the low rank structure of our stylized impact model
derived above, we propose a procedure that only involves the estimation of a few parameters, e.g.,
one parameter per sector. We do not calibrate the cross-impact model, as this typically requires
access to proprietary trading information, but we specify a tractable maximum likelihood procedure
that one could make use.

1.1. Literature Survey

One set of papers that is related with our work focuses on optimal trade scheduling, where the
investor considers a dynamic control problem for how to split the liquidation of a large order over
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a predetermined time horizon so as to optimize some performance criterion. Bertsimas and Lo
(1998) solved this problem in the context of minimizing the expected market impact cost, and
Almgren and Chriss (2000) extended the analysis to the mean-variance criterion; see also Almgren
(2003) and Huberman and Stanzl (2005). Bertsimas and Lo (1998) shows that the cost minimizing
solution under a linear impact model schedules each order in proportion to the stock’s forecasted
volume profile. In these papers, multiple-security trading is shortly discussed as an extension of
single-stock execution, and the similar setup can be found in recent studies (e.g., Brown et al.
(2010), Haugh and Wang (2014)). A separate strand of work, which includes Obizhaeva and Wang
(2013), Rosu (2009) and Alfonsi et al. (2010), treat the market as one limit order book and use
an aggregated and stylized model of market impact to capture how the price moves as a function
of trading intensity. Tsoukalas et al. (2017) builds on Obizhaeva and Wang (2013) to consider
a portfolio liquidation problem incorporating risk and cross-impact effects (that shift the bid/ask
price levels across limit order books in a couple way). Finally, closest to our paper is the recent work
Mastromatteo et al. (2017) that looks at portfolio execution with a linear cost model with cross-
impact terms; their analysis predicates that the portfolio impact matrix has the same eigenvectors
as the return correlation matrix, and is stationary. The problem structure allows for their model
to be estimable – in a way similar to what we suggest in our paper, and the stationary model leads
to a separable optimal trading schedule, which agrees with our results in that special case.

Our stylized derivation of a price impact model, uses ideas from the market microstructure
literature. Specifically, as in Kyle (1985), we assume that each investor’s holding position on a
particular security changes linearly with price, usually justified under a CARA utility function;
the price is determined through a market clearing (equilibrium) condition among all participants.
We don’t explicitly specify the trading volume generating process in this paper, the literature of
sequential information arrival (Copeland (1976), Jennings et al. (1981) and Tauchen and Pitts
(1983)) provides an insightful connection between trading volume, return volatility and liquidity.

While we will not estimate an impact model in this paper, we briefly discuss in the last section
how one would go about doing so given a set of proprietary portfolio executions. We refer to Alm-
gren et al. (2005) for a procedure to estimate an impact model that allows for a linear permanent
component and a possibly non-linear instantaneous component without cross-impact effects. Hu-
berman and Stanzl (2004) showed using a no-arbitrage argument that the permanent price impact
must be a linear function of the quantity traded; see also Gatheral (2010) for an extension of that
argument to a setting where market impact is transient with a specific decay function. Rashkovich
and Verma (2012) make some interesting practical remarks in relation to this market impact model
estimation procedure.

The topic of cross-impact has recently started to be explored, specifically in Benzaquen et al.
(2016) and Schneider and Lillo (2017). The first paper postulates and estimates a linear propagator
impact model based on the trade sign imbalance vector in each period. The second paper explores
the implications of the no arbitrage idea of Huberman and Stanzl (2004) to the structure and
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magnitude of cross-impact.

An important motivation of our work is the gradual shift of assets under management from active
to passive and systematic strategies, and their implication to market behavior and the composition
and timing of trading flows. This topic has been studied in the financial econometrics literature and
is summarized in Ben-David et al. (2017). In particular, focusing on the topic of liquidity, which
is our main concern, this literature has found a causal relationship between ETF or mutual fund
ownership and the commonality in the liquidity of the underlying constituents, e.g., see Karoli et al.
(2012), Koch et al. (2016), Agarwal et al. (2018); the motivation of that cross-sectional dependency
is attributed to the arbitrage mechanism of ETFs or the correlated trading of mutual funds.1

1.2. Organization of Paper

The remainder of the paper is organized as follows. §2 provides some empirical evidence of the
cross-sectional variation of intraday liquidity. §3 derives the functional form of a price impact model
that incorporates cross-security impact terms that arise from the presence of portfolio (index-fund)
liquidity providers. It subsequently characterizes the expected execution cost given a portfolio
trade schedule. §4 formulates and solves an optimal portfolio execution problem for a risk-neutral
investor, §5 characterizes the performance gains from the optimal schedule over a separable ‘VWAP-
like’ execution that is often used in such a risk-neutral setting. We conclude in §6 with a brief
overview of how to estimate price impact from a set of proprietary record of portfolio transactions,
and discuss some additional practical considerations.

2. Preliminary Empirical Observations

To motivate our downstream analysis, we provide some empirical evidence regarding the cross-
sectional behavior of intraday trading volume, focusing on the level and intraday variation of the
pairwise correlations among trading volumes of the S&P 500 constituent stocks. We analyzed 459
stocks (N = 459), indexed by i, that had been constituents of S&P500 throughout the calendar year
of 2017. Our dataset contains 241 days (D = 241) indexed by d, excluding days that are known to
exhibit abnormal trading activity, namely: the FOMC/FED announcement days on 02/01, 03/15,
05/03, 06/14, 07/26, 09/20, 11/01, 12/13, and the half trading days on 07/03, 11/24.

We use a Trade-And-Quote (TAQ) database, and extract all trades, excluding those that a)
occur before 09:35 or after 16:00; b) opening auction prints or closing auction prints (COND field
contains ‘O’, ‘Q, ‘M’, or ‘6’); and c) trades corrected later (CORR field is not 0, or COND field
contains ‘G’ or ‘Z’). We divide a day into five-minute intervals (T = 77, 09:35-09:40, · · · 15:55-16:00)
indexed by t. We denote by DVolidt the aggregate notional ($) volume traded on stock i across all

1The concentration of trading flows towards the end of the trading day has been a popular topic in the financial
press; see, e.g., Driebusch et al. (2018).
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transactions that took place in time interval t on day d. We define DVolit to be the yearly average
notional volume traded on stock i in time period t, and AvgVolAlloct to be the cross-sectional
average % of daily volume traded in period t (“daily volume” in this definition accounts for all
trading activity between 9:35 and 16:00, excluding auction and corrected prints):

DVolit ,
1
D

D∑
d=1

DVolidt, VolAllocit ,
DVolit∑T
s=1 DVolis

and AvgVolAlloct ,
1
N

N∑
i=1

VolAllocit. (1)

For each pair of stocks (i, j) we denote by Correlijt the pairwise correlation between the respec-
tive intraday notional traded volumes across days for each time period t. As a measure of cross-
sectional dependency, we subsequently calculate the average pairwise correlation over all pairs of
stocks:

Correlijt ,
∑D
d=1(DVolidt −DVolit)(DVoljdt −DVoljt)√∑D

d=1(DVolidt −DVolit)2 ·
∑D
d=1(DVoljdt −DVoljt)2

, (2)

AvgCorrelt ,
1

N(N − 1)
∑
i 6=j

Correlijt. (3)

Figure 1: Cross-sectional average intraday traded volume profile (left) and cross-sectional average
pairwise correlation (right): S&P 500 constituent stocks in 2017.

Figure 1 depicts the graphs of AvgVolAlloct and AvgCorrelt. AvgVolAlloct exhibits the com-
monly observed U-shaped behavior that shows that trading activity is concentrated in the morning
and the end of the day. The graph of AvgCorrelt reveals that (i) trading volumes are positively
correlated throughout a day, and (ii) that the cross-sectional average pairwise correlation increases
significantly during the last few hours of day.2

2Alternative calculations of the intraday volume and correlation patterns produce similar findings. For exam-
ple, one could compute stock specific average traded volume profiles, and for each day compute the stock-specific
normalized volume deviation profiles between the realized and forecasted volume profiles; these could be used for
the pairwise correlation analysis. Similar findings are obtained when we study stocks clustered by their sector, e.g.,
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One possible explanation of the observed intraday volume correlation profile could be the non-
stationary participation of portfolio order flow throughout the course of the trading session. Mar-
ket participants that trade portfolio order flow cause correlated stochastic volume deviations across
stocks that, in turn, could contribute to the observed pairwise correlation profile. Interpreting port-
folio order flows as the primary source of cross-sectional dependency in trading volume, AvgCorrelt
indirectly reflects the intensity of portfolio order flow within the total market order flow. Our
empirical observation indicates that (i) portfolio order flow contributes a certain fraction of trading
activity throughout the day, which (ii) is increasing towards the end of the day. In particular, with
the increasing popularity of ETFs and passive funds in recent years, people now trade similar port-
folios which may incur stronger cross-sectional dependency; Karoli et al. (2012), Koch et al. (2016)
and Agarwal et al. (2018) provide empirical evidence showing that the commonality in trading
volume indeed arises from the trading activity in ETFs or passive funds. Similarly, transactions to
buy or sell shares into mutual funds are settled to the closing prices, and mutual fund companies
tend to execute the net inflows or outflows near or at the end of the trading session.

We will return to these findings about AvgVolAlloct and AvgCorrelt in §5 to approximate the
relative magnitude of the different type of natural liquidity providers (portfolio vs. single stock
investors), and characterize its effect of incorporating this phenomenon on the optimal execution
schedule and execution costs.

3. Model

We assume that there are two types of investors – single-stock and index-fund investors – who
provide natural liquidity in the market. In this section, we derive the cross-sectional market impact
model from a stylized assumption on liquidity provision mechanism of these investors. The term
“single stock” here refers to discretionary or active investors that are willing to supply liquidity on
individual securities.

3.1. Single-stock Investors and Index-fund Investors

Single-stock (discretionary) investors are assumed to trade and provide opportunistic liquidity on
individual stocks by adjusting their holdings in response to changes in the fundamental price of the
stock. This change in single stock investor holdings in stock i is assumed to be linear in the change
in the market price with a coefficient ψid,i. They will sell (or buy) ψid,i shares of stock i when its
price pi rises (or drops) by one dollar.

The assumption about a linear supply relationship between holdings and price is often assumed
in the market microstructure literature (Tauchen and Pitts (1983), Kyle (1985)). It is typically
justified under the assumption that risk averse investors choose their holdings to maximize their

among financial, energy, manufacturing, etc., stock sub-universes.
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expected utility given their own belief on the future price. With a CARA utility function and
normally distributed beliefs, the optimal holding position is proportional to the gap between current
price and their own reservation price, with a proportionality coefficient that incorporates their
confidence in their belief and their preference regarding uncertainty. Our parameter ψid,i can be
thought as a sum of the individual investors’ sensitivity parameters.

We consider a universe of N stocks, indexed by i = 1, . . . , N . Suppose that the change in the
N -dimensional price vector is ∆p ∈ RN . Let ei be the ith unit vector. Single-stock investors on
stock i will experience the price change e>i ∆p and adjust their holding position by −ψid,i · e>i ∆p.
In vector representation, the change in the holding vector of single-stock investors ∆hid ∈ RN can
be written as

∆hid (∆p) = −
N∑
i=1

ei · ψid,i · e>i ∆p = −Ψid∆p ∈ RN , (4)

where Ψid , diag (ψid,1, · · · , ψid,N ) ∈ RN×N . ∆hid (∆p) can be thought as “signed”-volume; i.e.,
it is positive when orders to buy are submitted in the market when the prices drop, and negative
when orders to sell are submitted in the market when prices increase.

In contrast to single-stock investors, index-fund investors trade ‘portfolios’ based on some view
on the entire market, a sector, or a particular group of securities such as high-beta stocks. This
includes many institutional investors, but the individual investors who hold ETFs or join index
funds also belong to this group. We assume that there are K such funds, indexed by k = 1, . . . ,K.
Let wk = (wk1, · · · , wkN )> ∈ RN be the weight vector of index fund k, expressed in # of shares: one
unit of index fund k contains wk1 shares of stock 1, wk2 shares of stock 2, and so on. Given a price
change ∆p ∈ RN , investors on index fund k will experience the price change w>k ∆p. Analogous to
single-stock investors, index-fund investors adjust their holding position on index fund k linearly to
its price change w>k ∆p with a coefficient ψf,k. Since trading one unit of index fund k is equivalent to
trading a basket of individual stocks with weight vector wk, we can state the change in index-fund
investors’ holding position vector ∆hf ∈ RN as a vector of changes in the constituents of that fund:

∆hf (∆p) = −
K∑
k=1

wk · ψf,k ·w>k ∆p = −WΨfW>∆p ∈ RN , (5)

where

W ,


| |

w1 · · · wK

| |

 ∈ RN×K , Ψf , diag (ψf,1, · · · , ψf,K) ∈ RK×K . (6)

Throughout the paper, we assume that all ψid,i’s and ψf,k’s are strictly positive, and that wk’s
are linearly independent.
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3.2. Cross-sectional Price Impact

Consider a time period over which we wish to execute v ∈ RN shares. Each component can be
positive or negative depending on whether we want to buy or sell. Our orders transact (eventually)
against natural liquidity providers provided by single-stock and index-fund investors; market makers
or high frequency traders tend to maintain negligible inventories at the end of the day, so irrespective
of who intermediates the market, we need to elicit v shares from those two groups of investors. A
price change of ∆p ∈ RN will affect an inventory change of v shares if the following market clearing
condition is satisfied:

v + ∆hid (∆p) + ∆hf (∆p) = 0. (7)

Based on equations (4) and (5),

v =
(

N∑
i=1

ei · ψid,i · e>i +
K∑
k=1

wk · ψf,k ·w>k

)
∆p =

(
Ψid + WΨfW>

)
∆p. (8)

The expression means that, out of v shares, Ψid∆p ∈ RN shares are obtained from single-stock
investors and WΨfW>∆p ∈ RN shares from index-fund investors. This linear relationship between
v and ∆p can be translated into the price impact summarized in the next proposition.

Proposition 1 (Cross-sectional price impact). When executing v ∈ RN shares, the market clearing
price change vector ∆p ∈ RN is such that

∆p = Gv and G ,
(
Ψid + WΨfW>

)−1
. (9)

Note that the coefficient matrix G is an inverse of Ψid + WΨfW> which is composed of two
symmetric and strictly positive-definite matrices. Therefore, G is itself a well-defined symmetric
positive-definite matrix, with the following structure: a diagonal matrix plus a non-diagonal low-
rank matrix. The following matrix expansion derived from an application of Woodbury’s identity
will prove useful:

G =

 Ψid︸︷︷︸
diagonal

+ WΨfW>︸ ︷︷ ︸
rank K


−1

= Ψ−1
id︸ ︷︷ ︸

diagonal

−Ψ−1
id W

(
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id︸ ︷︷ ︸
rank K

. (10)

Proposition 1 characterizes the structure of the cross price impact model. The cross-impact
is captured by the non-diagonal entries in WΨfW> that result as a consequence of the natural
liquidity provision attributed to index-fund (portfolio) investors.

We shall interpret the terms Ψid , diagNi=1(ψid,i) and Ψf , diagKk=1(ψf,k) as “liquidity”. ψid,i

represents the amount of liquidity provided by single stock investors in stock i and ψf,k represents
the liquidity supplied by of index fund k investors. The sum Ψid + WΨfW> indicates the total
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market liquidity. As shown in (9), the price impact is inversely proportional to the liquidity, which
agrees with the conventional definition of liquidity as a measure of ease of trading. When ψid,i or
ψf,k is large, equivalently when the liquidity is abundant, price impact is low. ψid,i and ψf,k were
originally defined as the sensitivity of investors’ holdings to market price movements, and, as such,
capture how many shares we can obtain from these two types of investors when the price moves by
a certain amount; a measure of price impact.

3.3. One-period Transaction Cost

Consider a liquidator that wishes to execute v ∈ RN shares over a short period of time, say 5 to
15 minutes. Let p0 ∈ RN be the price at the beginning of this execution period. Assuming that v
is traded continuously and at a constant rate over the duration of that time period, the liquidator
will realize an average transaction price given by

p̄tr = p0 + 1
2Gv + ε̄tr, (11)

where ε̄tr ∈ RN represents a random error term that captures unpredictable market price fluctu-
ations or the effect of trades executed in that period by other investors; this suggests that costs
accumulate linearly over the duration of the period, and that the average execution price is halfway
the average impact plus a random contribution due to fluctuations in the price due to exogenous
factors. (We will return to this assumption later on.) We will assume that the error is independent
of our execution v and zero mean: i.e., E

[
ε̄tr|v

]
= 0. The single-period expected implementation

shortfall incurred by the liquidator is given by

C̄ (v) , E
[
v>
(
p̄tr − p0

)]
= 1

2v>Gv. (12)

Linear price impact induces quadratic implementation shortfall costs; note that the resulting cost
is always positive since G is positive definite. The following proposition briefly explores how the
mixture of natural liquidity providers affects the expected execution cost.

Proposition 2 (Extreme cases). Consider a parametric scaling of the single-stock and index-fund
natural liquidity, Ψid and Ψf, respectively, given by

G =
(
α ·Ψid + β ·WΨfW>

)−1
, (13)

for some scalars α ∈ (0, 1] and β ∈ (0, 1].

(i) If there are no index-fund investors (α→ 1 and β → 0), the expected execution cost becomes
separable across individual assets:

lim
α→1,β→0

C̄ (v) = 1
2v>Ψ−1

id v = 1
2

N∑
i=1

v2
i

ψid,i
. (14)
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(ii) If there are no single-stock investors (α → 0 and β → 1), the liquidator can only execute
with finite expected execution costs portfolio orders that can be expressed as a linear combination of
the index-fund weight vectors. Specifically:

lim
α→0,β→1

C̄ (v) =
{

∞ if v /∈ span (w1, · · · ,wK)
1
2u>Ψ−1

f u if v = Wu
. (15)

(The proof is provided in Appendix B.1.) Therefore, separable (security-by-security) market
impact cost models, often assumed in practice, essentially predicate, per our analysis, that all
natural liquidity in the market is provided by opportunistic single-stock investors. And, in that
case, (14) recovers the commonly used “diagonal” market impact cost model. The other extreme
scenario assumes that all liquidity is provided along the weight vectors of the index fund investors,
and the resulting cost then depends on how the target execution vector v can be expressed as a
linear combination of the (w1, · · · ,wK). In practice, the latter case suggests that execution costs
may increase in periods with relatively higher intensity of portfolio liquidity provision when the
target portfolio that is being liquidated is not well aligned with the directions in which portfolio
liquidity is supplied.

3.4. Time-varying Liquidity and Multi-period Transaction Cost

The stylized observations of Proposition 2 suggest that intraday trading costs may be affected by
intraday variations in the mixture of natural liquidity providers, and, in particular, if the relative
contribution of index fund investors increases significantly over time.

We will consider the transaction cost of an intraday execution schedule v1, · · · ,vT over T peri-
ods, in which vt ∈ RN shares are executed during the time interval t. We will make the following
assumptions on the intraday behavior of price impact, price dynamics, and realized execution costs.

a) We allow the mixture of liquidity provision to fluctuate over the course of the day. We denote
the time-varying liquidity by ψid,it and ψf,kt with an additional subscript t. We assume that the
portfolio weight vectors wk of index liquidity providers are assumed to be fixed during a given day.
Under this setting, the coefficient matrix of price impact can be represented as follow:

Gt =
(
Ψid,t + WΨf,tW>

)−1
.

b) Let pt be the fundamental price at the end of period t. The ‘fundamental’ price means
the price on which the market agrees as a best guess of the future price excluding the temporary
deviation of the realized transaction price due to market impact. The fundamental price process
(p0,p1, · · · ,pT ) is assumed to be a martingale independent from the execution schedule:

pt = pt−1 + εt, for all t = 1, · · · , T,

11



where the innovation term εt satisfies E [εt|Ft−1] = 0 with all the past information Ft−1. The
term εt is commonly understood as the change in market participants’ belief perhaps due to the
information revealed during the period t. We are implicitly assuming that our execution conveys
no information about the future price.

c) The realized ‘transaction’ price in each period can deviate from the fundamental price tem-
porarily, e.g., due to a short-term imbalance between buying order flow and selling order flow. In
executing vt shares, the liquidator is contributing to such an imbalance, which causes the tempo-
rary price impact according to the mechanism described earlier on. We assume that this impact
is temporary, we particularly assume that the transaction price begins at the fundamental price
at each period regardless of the liquidator’s trading activity in prior periods. Given the coefficient
matrix Gt, when vt is executed smoothly, the average transaction price is

p̄tr
t = pt−1 + 1

2Gtvt + ε̄tr
t ,

where the error term ε̄tr
t satisfies E

[
ε̄tr
t |vt

]
= 0 as before.

Under these assumptions, the expected transaction cost of executing a series of portfolio trans-
actions v1, · · · ,vT is separable over time and can be expressed as follows:

C̄ (v1, · · · ,vT ) , E
[
T∑
t=1

v>t
(
p̄tr
t − p0

)]
=

T∑
t=1

1
2v>t Gtvt.

This formulation implicitly assumes that the intraday liquidity captured through ψid,it’s and ψf,kt’s
is deterministic and known in advance. Although intraday liquidity evolves stochastically over the
course of the day, its expected profile exhibits a fairly pronounced shape that serves as a forecast
that can be used as a basis for analysis (as is done in practice); c.f., the discussion in §6.

4. Optimal Portfolio Execution

We will formulate and solve the multi-period optimal portfolio execution problem in §4.1, and
subsequently explore the properties of the optimal solution as a function of the intraday variation
of the two sources of natural liquidity providers in §4.2.

4.1. Optimal Trade Schedule

Consider a risk neutral liquidator interested in executing x0 ∈ RN shares over an execution horizon
T (e.g., a day). We formulate a discrete-time optimization problem to find an optimal schedule
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v1, · · · ,vT that minimizes the expected total transaction cost:

minimize C̄ (v1, · · · ,vT ) =
T∑
t=1

1
2v>t Gtvt (16)

subject to
T∑
t=1

vt = x0. (17)

Proposition 3 (“Coupled” execution). The risk-neutral cost minimization problem (16)-(17) has a
unique optimal solution given by

v∗t = G−1
t

(
T∑
s=1

G−1
s

)−1

x0 =
(
Ψid,t + WΨf,tW>

) (
Ψ̄id + WΨ̄fW>

)−1
x0, (18)

where the total daily liquidity Ψ̄id and Ψ̄f are defined as follows

Ψ̄id ,
T∑
t=1

Ψid,t, Ψ̄f ,
T∑
t=1

Ψf,t. (19)

We make the following observations. First, the optimal solution is “coupled” across securities.
Specifically, as long as the market impact is cross-sectional, the cost minimizing solution needs to
consider all orders simultaneously in optimally scheduling how to liquidate the constituent orders, as
opposed to scheduling each order separately and attempting to minimize costs as if market impact
is separable; such a separable execution approach is often used in practice (effectively assuming
that there are no cross impact effects). The coupled execution recognizes that the blend of natural
liquidity changes intraday, and attempts to change the composition of the residual liquidation
portfolio so as to take advantage of portfolio liquidity that may be available towards the end of the
day, for example. We will explore this point further in the remainder of this section. Second, it
is typical to derive coupled optimal portfolio trade schedules for investors that are risk-averse and
consider the variance of the execution costs in the objective function or as a constraint; in that
case, the covariance structure of the portfolio throughout its liquidation horizon intuitively leads
to coupled execution solution. In our problem formulation, the coupling of the execution path is
driven by the cross-sectional dependency of natural (portfolio) liquidity provided by index funds
that leads to cross-impact, as opposed to the cross-sectional dependency of intraday returns. Third,
we note that in the above formulation we have not imposed side constraints that would enforce
that the liquidation path is monotone; we will return to this point later on.

The structure of the optimal schedule in (18) takes an intuitive form: the proportion of the
trade that is liquidated in period t is proportional to the available liquidity in that period, as
captured by the time-dependent numerator matrix Ψid,t + WΨf,tW>, normalized by the total
liquidity made available throughout the day, as captured by the time-independent denominator
matrix Ψ̄id+WΨ̄fW>. An alternative interpretation also given by (18) is that the optimal schedule
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splits the order inversely proportional to a normalized time-dependent market impact matrix.

Corollary 1 (No index fund investors, Ψf,t = 0 for t = 1, . . . , T ). When there are no index fund
investors: i.e., ψ̄f = 0, a separable ‘VWAP’-like trade schedule is optimal:

v∗it = ψid,it∑T
s=1 ψid,is

· xi0, for i = 1, · · · , N. (20)

Proof of Proposition 3 Note that since Gt is symmetric, ∂
∂vt

1
2v>t Gtvt = Gtvt. The KKT conditions

of the convex minimization problem in (16)-(17) require that there exists a vector λ ∈ RN such
that

λ = ∂

∂vt
1
2v>t Gtvt

∣∣∣∣
vt=v∗t

= Gtv∗t , for all t = 1, · · · , T,

which together with the inventory constraint in (17) imply that

x0 =
T∑
t=1

v∗t =
T∑
t=1

G−1
t λ.

It follows that v∗t = G−1
t λ = G−1

t

(∑T
s=1 G−1

s

)−1
x0. Since all Gt’s are invertible, the optimal

solution exists and is unique. �

In a market where all natural liquidity is provided by single stock, opportunistic investors, there
are not cross-security impact effects, market impact is separable, and the minimum cost schedule
for a risk-neutral liquidator is also separable across securities – the optimal solution simply needs
to minimize expected impact costs separately for each order in the portfolio. Each individual
order can be scheduled independently of the others, and the resulting schedule is ‘VWAP’-like in
that the execution quantity vit is proportional to the available liquidity ψid,it at that moment.
Indeed, treating the overall market trading volume profile as the observable proxy of the natural
liquidity profile, the solution spreads each order separately and in a way that is proportional to
the percentage of the market volume that is forecasted for each time period; this is what a typical
VWAP execution algorithm does.

Conversely, if some of the natural liquidity is provided by index fund investors that wish to
trade portfolios –e.g., liquidate some amount of an energy tracking portfolio if the energy sector
has had a significant, positive return intraday, we would expect that the separable VWAP schedule
does not minimize expected market impact costs, and it is not optimal for the motivating trade
scheduling problem.

4.2. Optimal Trade Schedule under Parametric Liquidity Profile

To gain some insight on the structure of the optimal policy we explore a setting where the intensity
of single stock and index fund liquidity provision varies parametrically as follows: single-stock
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investors’ liquidity ψid,it varies over time t = 1, 2, · · · , T according to a profile αt, and index-fund
investors’ liquidity ψf,kt varies according to another profile βt.

Ψid,t = αt · Ψ̄id, Ψf,t = βt · Ψ̄f, for t = 1, · · · , T, (21)

where ∑T
t=1 αt = ∑T

t=1 βt = 1.

We will assume that all single stocks share the same time-varying profile αt, and likewise all
index funds share the profile βt. The empirical findings of §2 indicate that pairwise correlations of
trading volumes increase towards the end of the day. If a primary source of stochastic fluctuations
in intraday trading volumes is the stochastic arrivals of single stock and portfolio trades, then
one would expect that the profiles αt, βt vary intraday so as to generate the well known U -shaped
volume profile, and to vary differently from each other so as as to generate the time-varying pairwise
correlation relationship; this is supported by behavior of market participants towards the end-of-
day, discussed earlier. Indeed, if the two groups of natural liquidity had the same trading activity
profiles, i.e., αt = βt, then the average correlation in intraday trading volume would not vary
intraday. We expect that towards the end of the day, the intensity of index fund liquidity provision
(βt) increases relatively faster than the intensity of single stock liquidity provision (αt).

Proposition 4 (Optimal execution under structured variation). Under the parameterization of (21),
the schedule v∗t is optimal for the risk-neutral cost minimization (16):

v∗t = αt · x0 + (βt − αt) ·W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id x0, (22)

or, equivalently,

v∗t = αt · x0 + (βt − αt) ·
K∑
k=1

(ŵ>k x0) ·wk, (23)

where Ŵ , Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
, and ŵk denotes the kth column of Ŵ.

Before offering an interpretation for (23) we state the following corollary.

Corollary 2 (Optimal execution under common variation). If αt = βt for all t = 1, · · · , T , a separable,
‘VWAP’-like strategy is again optimal.

v∗t = αt · x0. (24)

The proof of Proposition 4 is given in the Appendix B.2. Corollary 2 states that when the
intensity of natural liquidity provision is the same for single stock and index fund investors, αt = βt,
the optimal schedule v∗t is again aligned with x0 scaled by αt. As αt (= βt) represents the market
activity at time t, the above policy can be interpreted as a ‘VWAP’-like execution that spreads
each individual orders proportionally to the total volume available at each point in time; this is
separable across orders. As noted earlier, the setting where αt = βt is, however, inconsistent with
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the empirical findings regarding the intraday behavior of pairwise correlations of trading volumes.

In contrast, (23) highlights that when the mixture of natural liquidity varies intraday (through
the difference between αt and βt) , the optimal schedule tilts away from the ‘VWAP’-like execution
encountered in (24) so as to take advantage of increased available index fund liquidity, e.g., offered
along the direction of sector portfolios.

5. Illustration of Optimal Execution and Performance Bounds

In this section we provide a brief illustration of the optimized execution path that incorporates the
effect of index fund (portfolio) liquidity. Risk-neutral investors often adapt a separable execution
style, i.e., trade each asset separately, most often using a Volume-Weighted-Average-Price (VWAP)
algorithm. As we show in §4, this separable strategy, under some assumptions, can be shown to
minimize expected impact costs per order, but disregards the effect of portfolio liquidity and cross-
impact costs when trading multiple orders side-by-side. For a stylized model of natural liquidity of
the form introduced in §4.2 simplified to the case of a single index fund (e.g., the market portfolio),
we establish a worst case bound on the sub-optimality gap of such a separable execution approach
against the optimized portfolio schedule derived earlier.

Specifically, restricting attention to the parameterization introduced in §4.2 in a setting with a
single index fund (K = 1): Ψid,t = αt · Ψ̄id and Ψf,t = βt · Ψ̄f with ∑T

t=1 αt = ∑T
t=1 βt = 1, and

Proposition 4 states that the optimal execution v∗t is

v∗t = αt · x0 + (βt − αt) ·
(
ŵ>1 x0

)
·w1, for t = 1, · · · , T, (25)

where w1 ∈ RN is the weight vector of the index fund (e.g., the market portfolio), expressed in
number of shares, and ŵ1 ,

(
ψ̄−1

f,1 + w>1 Ψ̄−1
id w1

)−1
Ψ̄−1

id w1. In contrast, the separable execution
vsep
t liquidates each order in the portfolio independently, allocating quantities to be traded in each

period in a way that is proportional to the total traded volume that is forecasted to execute in that
period:

vsep
it = VolAllocit · x0i, for t = 1, · · · , T, for each i = 1, · · · , N, (26)

where VolAllocit is the percentage of the daily volume in security i that trades in period t, defined
in (1).

§5.1 (and, in more detail, Appendix §B.3) posits a stylized stochastic process generative model
for single stock and portfolio (index fund) investor order flow, that results in a simple parametric
structure for the total traded volume profile VolAllocit and the resulting pairwise correlation profile
(among traded volumes) Correlijt. The model’s primitive parameters can be estimated so as to be
consistent with the AvgVolAlloct and AvgCorrelt depicted in §2. §5.2 provides analytic results on
the optimality gap between the separable and the optimal execution schedules, in (26) and (25),
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respectively, which for the parameters estimated in §5.1 could be as high as 6.2%.

5.1. A Useful Parametrization of Intraday Liquidity

We will posit a simple generative model of single stock and portfolio (index fund) order flow (driven
by two underlying Poisson processes). This mixture of order flows comprise the total volume for
the day, and also generates a certain correlation structure in the traded volumes per period across
securities. (We will offer a brief overview in this section, and defer to the Appendix §B.3 for
additional detail on this model.) Let θi denote the fraction of traded volume in a day for stock i

that is generated by order flow submitted by index fund investors. Formally,

θi ,
|w̃1i| · q̄f

q̄id,i + |w̃1i| · q̄f
, (27)

where q̄f is the notional traded by portfolio investors, w̃1i is the weight of security i in this index
fund (notionally weighted), and q̄id,i is the notional traded by single stock investors in security
i. For simplicity, further assume that θ1 = θ2 = · · · θN = θ, i.e., all securities have the same
composition of order flow as contributed by single stock and portfolio (index fund) investors.

In such a model, (as explained in §B.3) the intraday volume and pairwise correlation profiles
are given by:

AvgVolAlloct = 1
N

N∑
i=1

E [DVolidt]∑T
s=1 E [DVolids]

= αt · (1− θ) + βt · θ, (28)

AvgCorrelt = 1
N(N − 1)

∑
i 6=j

Correlijt = βt · θ2

αt · (1− θ)2 + βt · θ2 . (29)

We note that the assumption that θi = θ for all securities i leads to the conclusion that all securities
have the same intraday volume profile, and, perhaps, more importantly that the intraday volume
correlation profile Correlijt is the same across all pairs of stocks. The latter is arguably a fairly
strong restriction, and it is only imposed so as to allow for a more tractable closed form performance
analysis.

Given the empirically observed profiles for AvgVolAlloct and AvgCorrelt, visualized in Figure 1,
we can solve a set of coupled equations defined by (28)-(29) where the respective left hand sides are
given by the empirically estimated values, to identify the values of θ, α1, · · · , αT and β1, · · · , βT .
The results are summarized in Figures 2 and 3. θ was estimated to be 0.21, implying that 21% of
total traded volume originate from the index fund. We can observe that, at the beginning of the
day, the trading activity of index-fund investors βt is smaller than that of single-stock investors αt,
but βt far exceeds αt in the last hour of the day, as expected. Such an intraday variation in the
composition of order flow is consistent with the increasing pairwise correlation in volumes towards
the end of the trading day.
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Figure 2: Left panel: the intensity of single stock investors, αt, and portfolio (index fund) investors, βt,
calibrated to best match the empirical profiles of traded volume, AvgVolAlloct and pairwise volume cor-
relations, AvgCorrelt. Right panel: depicts the deviation of αt, βt form the market profile AvgVolAlloct.

Figure 3: The intraday trading volume profiles αt · (1 − θ) and βt · θ (left), and the proportion of
index-fund order flows βt·θ

αt·(1−θ)+βt·θ (right).

Finally, Figure 4 provides a graphical illustration of the effect of these estimated to the optimal
execution schedule in (25). The example depicts an investor wants to liquidate a portfolio x0 with
two orders, where the weights of the liquidation portfolio deviate significantly from the weights of
the index portfolio w1 (as captured by the angle between x0 and w1). To exploit the increased
end-of-day liquidity in the direction of the index portfolio, w1, the optimal schedule trades more
aggressively stock 2 in the morning session, as shown by v∗t , thus tilting away from a separable
VWAP-like execution that would be aligned with x0. As a consequence, the residual portfolio
executed towards the end of the day is better aligned with the index portfolio (in the afternoon,
v∗t is closer to the index portfolio w1).
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Figure 4: Illustration of the optimized schedule, which is shown to tilt away or toward the direction of
index fund depending on the difference between single stock and index fund liquidity.

5.2. Implementation Shortfall Comparison: Optimal vs. Separable Execution Sched-
ules

From (26) and (28) we get that the separable schedule vsep
t is given by:

vsep
t = (αt · (1− θ) + βt · θ) · x0, (30)

and for v∗t and vsep
t , the expected implementation shortfall can be written as follows:

C̄(v∗t ) = 1
2x>0

(
Ψ̄id + WΨ̄fW>

)−1
x0, (31)

C̄(vsep
t ) = 1

2

T∑
t=1

(αt · (1− θ) + βt · θ)2 · x>0
(
αtΨ̄id + βtWΨ̄fW>

)−1
x0. (32)

Note that under the assumption that there is only one index fund, w1, we could simplify the
above expressions and reduce WΨ̄fW> to w1ψ̄f,1w>1 . The expression for C̄(vsep

t ) is obtained from
substituting (30) into (16). We define as a relative performance measure the ratio between the
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expected transaction costs incurred by the two execution schedules.

Υ(x0) , C̄(v
sep
t )

C̄(v∗t )
; (33)

this ratio is clearly greater or equal to 1, and captures the additional cost incurred by the separable
‘VWAP-like’ schedule over the optimized, coupled, execution schedule.

Proposition 5 (Exact cost ratio). For any x0 ∈ RN ,

Υ(x0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ ∆ ·

 x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 ·
1 + η1

ψ̄f,1
− 1


−1

, (34)

where

γt ,
βt
αt
, η1 , ψ̄f,1w>1 Ψ̄−1

id w1, and ∆ ,
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
1 + η1 · γt

. (35)

(The proof is given in Appendix B.4.1.) The parameter η1 is the ratio of index fund liquid-
ity (1/ψ̄f,1) over the liquidity provided by single stock investors along the index fund weights
(w>1 Ψ̄−1

id w1). Equivalently, it is the ratio of the price change of trading along the index fund direc-
tion w1 against only the portion of single stock investors in the market3, versus the price change
of trading along w1 along only the index fund investors, which is 1/ψ̄f,1.4

The last expression in the performance metric is a product two terms: the first is associated
with the intraday variation of liquidity and trading volume (∆), and the second is associated with
the degree of alignment between the execution portfolio x0 and the index fund weights w1.

Worst case liquidation portfolios. First, we explore the structure of the portfolios that would
exhibit the largest optimality gap under a separable execution.

Remark 1 (Maximum/minimum cost ratio). Let Υmarket and Υorth be the cost ratio when, respectively,
x0 = w1, and when x0 = w⊥1 where w⊥1 is an arbitrary portfolio such that w>1 Ψ̄−1

id w⊥1 = 0 with
3If we trade w1 against single stock investors we will cause a change in prices given by ∆p = Ψ̄−1

id w1, which would
imply a change in the price of the market portfolio equal to w>1 Ψ̄−1

id w1.
4To gain some intuition as to the magnitude of that parameter, imagine wanting to buy a $100 million slice of

the S&P500, where in one case this is acquired from distinct liquidity providers, each trading only one of constituent
orders, while in the other case it is acquired from the same (portfolio) liquidity provider. The mere difference in the
aggregate volatility held by the distinct liquidity providers in the first scenario versus the unique liquidity provider
trading the market portfolio in the latter, would suggest a potentially significant difference in trading costs, and
therefore a high (� 1) value for η1.

20



w>1 6= 0.

Υmarket , Υ(x0 = w1) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ η1 ·∆, (36)

Υorth , Υ(x0 = w⊥1 ) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
. (37)

Then, largest and smallest cost ratio are obtained at either x0 = w1 or x0 = w⊥1 depending on the
sign of ∆.

max
x0∈RN

{Υ(x0)} =
{

Υmarket if ∆ ≥ 0
Υorth if ∆ ≤ 0

, (38)

min
x0∈RN

{Υ(x0)} =
{

Υorth if ∆ ≥ 0
Υmarket if ∆ ≤ 0

. (39)

In particular, for fixed (η1, α1, · · · , αT , β1, · · · , βT ), there exists θ∗ ∈ [0, 1] such that

∆ ≥ 0 if θ ≤ θ∗ and ∆ ≤ 0 if θ ≥ θ∗. (40)

Similarly, for fixed (θ, α1, · · · , αT , β1, · · · , βT ), there exists η∗1 ∈ [ θ
1−θ ,∞] such that

∆ ≤ 0 if η1 ≤ η∗1 and ∆ ≥ 0 if η1 ≥ η∗1. (41)

This remark identifies which portfolios give rise to the largest and smallest cost ratios, respec-
tively. It is straightforward that the cost ratio has extreme values at x0 = w1 and x0 = w⊥1 , i.e.,
when x0 is most and least aligned with the market portfolio w1. From (30) and (23) we get that
in these two extreme cases the separable and optimal schedules are given by:

vsep
t = (αt · (1− θ) + βt · θ) · x0, and v∗t =


(
αt ·

(
1− η1

1+η1

)
+ βt · η1

1+η1

)
· x0 if x0 = w1,

αt · x0 if x0 = w⊥1 .

When x0 = w1, the sensitivity of the optimized schedule to the intensity of index-fund liquidity
provision, βt, is η1

1+η1
, whereas that of the separable execution is θ. If θ > η1

1+η1
, the separable

execution will trade more than is optimal to do in the morning, and trade less than optimal towards
the end of the day; the opposite happens if θ < η1

1+η1
. We can expect that the suboptimality

of separable execution roughly scales with
(
θ − η1

1+η1

)2
. A similar argument suggests that the

suboptimality gap when x0 = w⊥1 roughly scales like (θ − 0)2. Comparing
(
θ − η1

1+η1

)2
and θ2 as

proxies for Υmarket and Υorth, respectively, leads to the findings of Remark 1.

Performance implications when trading the market portfolio. Next we characterize Υmarket

as a function of the parameter η1.
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Remark 2 (Characterization of Υmarket). For fixed (θ, α1, · · · , αT , β1, · · · , βT ), as a function of η1,

Υmarket(η1) decreases if η1 ≤
θ

1− θ , and Υmarket(η1) increases if η1 ≥
θ

1− θ . (42)

For particular values of η1,

Υmarket(η1 = 0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
, (43)

Υmarket

(
η1 = θ

1− θ

)
= 1, (44)

lim
η1→∞

Υmarket(η1) = 1 + (1− θ)2 ·
(

T∑
t=1

α2
t

βt
− 1

)
. (45)

It predicts that Υmarket decreases first and then increases as η1 varies. This can be similarly
understood as in Remark 1: separable execution correctly reacts to the liquidity provided by index-
fund investors only when η1 = θ

1−θ , and overreacts or underreacts when η1 deviates from θ
1−θ .

Figure 5: Possible range of cost ratio Υ with respect to η1 given the values of θ, α1, · · · , αT , β1, · · · , βT
obtained in §5.1. The coupled execution could save up to 6.2 % when trading the market portfolio.

Our estimate for the fraction of index fund liquidity, θ = .21, which suggests a threshold value for
θ/(1− θ) ≈ .27. Even though the value of η1 is unidentifiable in our context, one would expect the
value of η1 to be moderately large (cf. Footnote 4), and that the realized benefits from optimizing
the coupled execution of the portfolio over that of a separable execution to approach the upper
bound in (45). That upper bound is equal to 6.2% for the parameters θ, α1, · · · , αT , β1, · · · , βT
estimated in §5.1, and Figure 5 graphs Υmarket and Υorth as functions of η1.That is, under the
assumptions of our stylized generative model of order flow one could reduce execution costs over the
separable ‘VWAP-like’ execution by as much as 6.2% by optimally coupling the execution schedules
of the various orders that are being liquidated so as to exploit the benefits due to portfolio liquidity
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provision and incorporating cross-impact phenomena.

Liquidating single orders. Finally, we specialize our results to the case where the target portfolio
to be liquidated is an order on a single security.

Remark 3 (Individual orders). When trading a single stock,

Υ(x0 = ei) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ η1,i

1 + η1 − η1,i
·∆, (46)

where η1,i ,
w2

1i·ψ̄f,1
ψ̄id,i

. We can further identify the stock that incurs the largest cost ratio:

argmax
i=1,··· ,N

{Υ(x0 = ei)} =


argmaxi=1,··· ,N

{
w2

1i

ψ̄id,i

}
if ∆ ≥ 0

argmini=1,··· ,N

{
w2

1i

ψ̄id,i

}
if ∆ ≤ 0

. (47)

Here we are comparing the performance implications of liquidating a single order via a ‘VWAP-
like’ execution versus liquidating it via an optimized schedule that may add positions early in the
day, so as to unwind the residual portfolio later in the day in a way that benefits from the liquidity
provided by index fund investors. The fraction w2

1i/ψ̄id,i determines which security is most costly
to trade, and depends both on the market weight of the security in the index fund portfolio, and
the liquidity provided by its own single-stock investors. Assuming that for our estimated value for
θ, η1 is sufficiently large (∆ ≥ 0), (47) suggests that the optimized execution schedule may be most
beneficial when trading in securities with large market weights.

6. Concluding Remarks

In closing, we briefly review a tractable estimation procedure for the cross-security market impact
model, and discuss some practical considerations of portfolio execution algorithms.

6.1. Estimation of Cross-asset Market Impact

Estimating a cross-security impact model that explicitly measures the impact coefficient among
any pair of securities i, j is hard due to the high dimensionality of the unknown coefficient matrix
(N ×N in this case), and because the underlying data tends to be very noisy. In this subsection
we sketch a procedure that would take as input a large set of proprietary portfolio transactions,
and exploit the structure of the cost model postulated in the previous two sections to efficiently
estimate an impact cost model with K + 1 free parameters, where K is the number of index funds
along which portfolio investors supply liquidity.

The data set: We assume that the given data contains a set of tuples (ṽdt, r̄dt,W̃d), where
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ṽdt ∈ RN is the portfolio vector executed during time interval t on day d, expressed in notional $
amounts; r̄dt ∈ RN is the notional-weighted implementation shortfall incurred in the execution of
portfolio ṽdt relative to the arrival price vector at the beginning of time interval t on day d; and
W̃d ∈ RN×K are the dollar-weighted vectors of the K index funds on day d. In summary, one has
access to realized portfolio executions, their realized shortfalls, and reference information about the
prevailing weight vectors of popular index funds (such as the market and sector portfolios).

The derivation in §3 predicts the following relationship between the executed quantity ṽdt and
the realized shortfall r̄dt:5

r̄dt = 1
2
(
Ψ̃id,dt + W̃dΨ̃f,dtW̃>

d

)−1
ṽdt + εdt, (48)

where the rescaled liquidity matrices are given by Ψ̃id,dt = diag(ψ̃id,1dt, . . . , ψ̃id,Ndt) and Ψ̃f,dt =
diag(ψ̃f,1dt . . . , ψ̃f,Kdt). Finally, the intraday covariance matrix of the noise term is Σ̂dt , Cov [εdt].

The liquidity variable – or supply function– ψ̃id,idt (or ψ̃f,kdt) represents the notional amount of
stock i (or index fund k) that will be supplied by single-stock investors (or index fund investors) in
response to a movement in the price of the stock or index. The liquidity variable ψ̃ captures (i) the
number of investors, or participation intensity, present in each period that we are executing, and
(ii) their sensitivity to price movements. The first factor roughly scales in proportion to trading
volume, while the second factor varies in a way that depends to the volatility of the underlying
security or index, and, specifically, it is plausible to imagine that it scales inversely proportional
to the volatility itself. We will approximate ψ̃id,idt’s and ψ̃f,kdt’s with the following reduced form
parameterizations

ψ̃id,idt = γid ·
D̂Volidt
σ̂idt

, ψ̃f,kdt = γf,k ·
D̂Volf,kdt
σ̂f,kdt

, (49)

where D̂Volidt and σ̂idt are the forecasted trading volume and the forecasted volatility of stock i

on day d at time t, and γid, γf,1, · · · , γf,K are unknown parameters to be estimated in the sequel.6

We have selected a simple parametrization where all single stock terms ψ̃id,idt share the same
coefficient γid that is believed to reflect some invariant characteristic of all single-stock investors.7

The parameterization of ψ̃f,kdt is analogous to that of ψ̃id,idt. As a proxy for D̂Volf,kdt one may
use the interval trading volume of a related ETF, a weighted sum of the underlying volume of
the constituent stocks, or a projection of intraday market volume along the direction of the index

5In this section, we are using the realized shortfall (return) r̄dt instead of the absolute price change ∆pdt, and
notional traded vectors ṽdt instead of number of shares vdt. Similarly, we use dollar-weighted vectors w̃k instead of
shares-weighted vectors wk. With the rescaled liquidity parameters Ψ̃id and Ψ̃f, the structure of the price impact
model remains the same. See Appendix A.

6We have chosen to use forecasted values for volume and volatility; another option is to use realized values during
the execution intervals. In using a market impact model to make cost predictions of future executions, one has to
use forecasted quantities; e.g., the average trading volume or the realized volatility over the past 30 trading days can
be used, possibly after some treatment of outliers.

7Such a parameterization of ψ̃id,idt is consistent with most of the literature in estimating market impact models;
e.g., assuming that there are only single stock natural liquidity providers, one would recover a commonly encountered
cost model of the form (1/γid)σ̂idt((executed quantity)/D̂Volidt); cf., Almgren et al. (2005)).
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weight vector. We allow for distinct coefficients γf,k for each index funds, k; a more parsimonious
parametrization would consider a common coefficient γf for all k = 1, . . . ,K.

Under this parameterization, (48) reduces to

r̄dt = 1
2G̃dt (γid, γf,1:K)−1 ṽdt + εdt, (50)

where the coefficient matrix G̃dt takes the form

G̃dt (γid, γf,1:K) , γid ·Did,dt + W̃d ·Df,dt · W̃>
d , (51)

and

Did,dt = diagNi=1

(
D̂Volidt
σ̂idt

)
and Df,dt = diagKk=1

(
γf,k ·

D̂Volf,kdt
σ̂f,kdt

)
.

Given (50)-(51) and the observations (ṽdt, r̄dt,W̃d) one can pick γid, γf,1, · · · , γf,K to best explain
the realized execution costs. Assuming that the error terms εdt are drawn from multivariate normal
distribution with known covariance matrix Σ̂dt, the log-likelihood is

L (γid, γf,1:K) = −
D∑
d=1

T∑
t=1

(
r̄dt −

1
2G̃dt (γid, γf,1:K)−1 ṽdt

)>
Σ̂−1
dt

(
r̄dt −

1
2G̃dt (γid, γf,1:K)−1 ṽdt

)
.

The parameters γid, γf,1, · · · , γf,K can be estimated so as to maximize the log-likelihood L(·) (MLE).8

The MLE is a non-linear, but low-dimensional, optimization problem; in its implementation, it is
useful to again exploit the Woodbury matrix identity in calculating G̃−1

dt , since this can be done by
inverting K ×K matrix instead of the larger N ×N matrix.

Given the estimated values of γid, γf,1, · · · , γf,K , one can use the corresponding reduced form
impact cost model in the risk-neutral cost minimization problem (16) to compute the optimal
trade schedule, or equivalently plug into the solution in (18).

6.2. Portfolio Execution Algorithms

Trading constraints. Trade execution algorithms used to liquidate portfolios may impose addi-
tional constraints, starting with side constraints that force the liquidation schedule to only execute
on the securities that are included on the target liquidation portfolio, and to only trade in the
direction of the parent orders themselves – i.e., only sell stock in securities that were submitted as
‘sell’ orders, and vice versa for ‘buy’ orders. For example, such side constraints are enforced when
investors delegate the execution of a portfolio to a broker-dealer on a so-called ‘agency’ basis, where
the broker executes the orders on behalf of its client. They may also be enforced in asset manage-

8An alternative approach would use a non-linear regression procedure with an appropriate heteroskedasticity
correction.
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ment firms where portfolio construction and trade execution are treated as separate functions, and
execution traders do not have discretion to deviate from the target liquidation portfolio.

§4 - §5 did not impose these side trading constraints, and the derived optimal schedules may
violate this restrictions, e.g., choosing to trade in securities that are outside those in the target
liquidation portfolio, x0, so that the residual liquidation portfolio towards the end of the day could
take advantage of (cheaper) portfolio natural liquidity.9 Similarly, the optimal schedule may choose
to increase the size of an existing order (as opposed to start liquidating it) early in the day, if that
would be beneficial when liquidating the residual portfolio towards the end of the day.

The constrained portfolio liquidation problem is similar in nature to the one studied in the pre-
vious section, and (the numerically) optimized schedule will continue to incorporate and exploit the
effect of cross-impact and natural portfolio liquidity provision. One exception is when liquidating a
single parent order, in which case these cross-impact and portfolio liquidity factors are not relevant
in such a constrained formulation.10

Functional form of the impact cost model. In §3 we made two assumptions: a) natural
liquidity is supplied in quantities that scale linearly as a function of the price dislocation; and b)
that the price impact is transient. These two assumptions allowed us to proceed with an intuitive,
closed form analysis, and extract insights on the structure of the optimal trade schedules for a risk
neutral liquidator. The key structural findings of our analysis, however, remain valid even if we
consider a model of liquidity provision that leads to sub-linear impact or a model that incorporates
impact decay.

References

V. Agarwal, P. Hanouna, R. Moussawi, and C. W. Stahel. Do ETFs increase the commonality in
liquidity of underlying stocks? 28th Annual Conference on Financial Economics and Accounting,
2018.

A. Alfonsi, A. Fruth, and A. Schied. Optimal execution strategies in limit order books with general
shape functions. Quantitative Finance, 10:143–157, 2010.

R. Almgren. Optimal execution with nonlinear impact functions and trading-enhanced risk. Applied
Mathematical Finance, 10:1–18, 2003.

R. Almgren and N. Chriss. Optimal control of portfolio transactions. Journal of Risk, 3:5–39, 2000.
9In a market where all liquidity is provided from single stock investors, the optimal schedule would never choose

to trade outside the universe of securities that were in the liquidation portfolio or to trade against the direction of
the respective parent orders.

10In practice, the liquidation problem may impose additional trading constraints, e.g., upper bounds on the speed
of execution, (linear) exposure constraints, etc. In addition, the liquidator may either incorporate a risk term in
her objective function, or add a risk budget constraint. The resulting problem continues to be a convex quadratic
program with similar structural properties.

26



R. Almgren, C. Thum, E. Hauptmann, and H. Li. Direct estimation of equity market impact. Risk,
18(7):58–62, 2005.

I. Ben-David, F. A. Franzoni, and R. Moussawi. Exchange-traded funds. Annual Review of Finan-
cial Economics, 9:169–189, 2017.

M. Benzaquen, I. Mastromatteo, Z. Eisler, and J-P. Bouchaud. Dissecting cross-impact on stock
markets: An empirical analysis. Working paper, 2016.

D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial Markets, 1:
1–50, 1998.

D. B. Brown, B. Carlin, and M. S. Lobo. Optimal portfolio liquidation with distress risk. Manage-
ment Science, 56(11):1997–2014, 2010.

T. E. Copeland. A model of asset trading under the assumption of sequential information arrival.
The Journal of Finance, 31(4):1149–1168, 1976.

C. Driebusch, A. Osipovich, and G. Zuckerman. What’s the biggest trade on the new
york stock exchange? the last one, March 2018. URL https://www.wsj.com/articles/

at-closing-time-the-stock-market-heats-up-like-a-bar-at-last-call-1521038300.

J. Gatheral. No-dynamic-arbitrage and market impact. Quantitative Finance, 10(7):749–759, 2010.

M. Haugh and C. Wang. Dynamic portfolio execution and information relaxations. SIAM Journal
of Financial Mathematics, 5(1):316–359, 2014.

G. Huberman and W. Stanzl. Price manipulation and quasi-arbitrage. Econometrica, 74(4):1247–
1276, 2004.

G. Huberman and W. Stanzl. Optimal liquidity trading. Review of Finance, 9:165–200, 2005.

R. H. Jennings, L. T. Starks, and J. C. Fellingham. An equilibrium model of asset trading with
sequential information arrival. The Journal of Finance, 36(1):143–161, 1981.

G. A. Karoli, K-H Lee, and M. A. van Dijk. Understanding commonality in liquidity around the
world. Journal of Financial Economics, 105(1):82–112, 2012.

A. Koch, S. Ruenzi, and L. Starks. Commonality in liquidity: A demand-side explanation. The
Review of Financial Studies, 29(8):1943–1974, 2016.

A. S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):1315–1335, November
1985.

I. Mastromatteo, M. Benzaquen, Z. Eisler, and J-P. Bouchaud. Trading lightly: cross-impact amd
optimal portfolio execution. Working paper, 2017.

A. Obizhaeva and J. Wang. Optimal trading strategy and supply/demand dynamics. Journal of
Financial Markets, 16(1):1–32, 2013.

27

https://www.wsj.com/articles/at-closing-time-the-stock-market-heats-up-like-a-bar-at-last-call-1521038300
https://www.wsj.com/articles/at-closing-time-the-stock-market-heats-up-like-a-bar-at-last-call-1521038300


V. Rashkovich and A. Verma. Trade cost: Handicapping on PAR. Journal of Trading, 7(4), 2012.

I. Rosu. A dynamic model of the limit order book. Review of Financial Studies, 22:4601–4641,
2009.

M. Schneider and F. Lillo. Cross-impact and no dynamic arbitrage. Working paper, 2017.

G. E. Tauchen and M. Pitts. The price variability-volume relationship on speculative markets.
Econometrica, 51(2):485–505, 1983.

G. Tsoukalas, J. Wang, and K. Giesecke. Dynamic portfolio execution. Management Science, 2017.

28



A. Change of Units

In §3 and §4, the price impact was the equilibrium expected price change ∆p, expressed in dollars, required
for the market to clear when executing a vector v, expressed in number of shares for each security in the
executed portfolio. We can restate the market impact in terms of the return r ∈ RN as a function of the
vector of notional execution quantities ṽ ∈ RN . Let p denote the (arrival) equilibrium price vector p ∈ RN ,
snapped at the beginning of the execution period, and define the diagonal matrix P , diag(p) ∈ RN×N .
Then,

r , P−1∆p and ṽ , Pv. (52)

We redefine the liquidity variable ψid,i, ψf,k and weight vectors wk accordingly:

ψ̃id,i , p
2
i · ψid,i, ψ̃f,k , (w>k p)2 · ψf,k and w̃k ,

Pwk

p>wk
. (53)

The redefined liquidity variable ψid,i now has the following interpretation: single-stock investors will sell (or
buy) 1% · ψ̃id,it dollar amount of stock i, when its price rises (or drops) by 1 %. The rescaled weight vector
w̃k represents the normalized dollar-weighted portfolio. Putting it all together

r = P−1Gv = P−1 (Ψid + WΨfW>)−1 P−1 ·Pv

=
(
PΨidP + PWΨfW>P

)−1 ṽ =
(
Ψ̃id + W̃Ψ̃fW̃>)−1 ṽ.

The resulting expected implementation shortfall cost is unchanged:

C̄(v) , 1
2v>∆p = 1

2 ṽ>r = 1
2 ṽ>

(
Ψ̃id + W̃Ψ̃fW̃>)−1 ṽ.

B. Proofs

B.1. Proof of Proposition 2

We first focus on the case where v = Wu in (15). When α = β = 1, by Woodbury identity we get that

G =
(
Ψid + WΨfW>)−1 = Ψ−1

id −Ψ−1
id W

(
Ψ−1

f + W>Ψ−1
id W

)−1 W>Ψ−1
id .

Consequently,

W>GW = W>Ψ−1
id W−W>Ψ−1

id W
(
Ψ−1

f + W>Ψ−1
id W

)−1 W>Ψ−1
id W

=
((

W>Ψ−1
id W

)−1 + Ψf

)−1
.

Next, we incorporate the effect of α and β as follows:

W>GW =
(
α ·
(
W>Ψ−1

id W
)−1 + β ·Ψf

)−1
−→ Ψ−1

f as α→ 0 and β → 1.
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Therefore, for any u ∈ RK ,

lim
α→0,β→1

C̄ (v = Wu) = lim
α→0,β→1

1
2u>W>GWu = 1

2u>Ψ−1
f u.

Next we consider the case when v /∈ span(w1, · · · ,wK). Let v = Wu + e for some e ∈ RN such that
W>e = 0 and e 6= 0. Using Woodbury matrix identity,

G = α−1 ·Ψ−1
id − α

−1 ·Ψ−1
id W

(
α

β
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id .

Therefore,
lim

α→0,β→1
{α ·G} = Ψ−1

id −Ψ−1
id W

(
W>Ψ−1

id W
)−1 W>Ψ−1

id .

With r , Ψ−1/2
id e and A , Ψ−1/2

id W,

e>
(
Ψ−1

id −Ψ−1
id W

(
W>Ψ−1

id W
)−1 W>Ψ−1

id

)
e = r>r− r>A

(
A>A

)−1 A>r.

Note that A
(
A>A

)−1 A>r is a projection of r onto the space spanned by A (denoted by span(A)). There-
fore,

lim
α→0,β→1

{
α · e>Ge

}
= 0 if and only if r ∈ span(A).

If r ∈ span(A): i.e., r = As for some s ∈ RK , e = Ψ1/2
id r = Ψ1/2

id Ψ−1/2
id Ws = Ws, and hence v ∈ span(W).

Since we are assuming v /∈ span(W), we have r /∈ span(A), and therefore

lim
α→0,β→1

{
α · e>Ge

}
> 0.

Furthermore,

GW = α−1 ·Ψ−1
id W− α−1 ·Ψ−1

id W
(
α

β
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id W

= α−1 ·Ψ−1
id W

(
IK −

[
α

β

(
W>Ψ−1

id W
)−1 Ψ−1

f + IK
]−1

)
︸ ︷︷ ︸

−→O as α→0

.

Therefore,
lim

α→0,β→1

{
α · e>GWu

}
= 0.

To summarize, together with the fact that limα→0,β→1
{
uW>GWu

}
= u>Ψ−1

f u,

lim
α→0,β→1

{
α · (Wu + e)>G (Wu + e)

}
= lim

α→0,β→1

{
α · uW>GWu

}
+ lim
α→0,β→1

{
α · 2e>GWu

}
+ lim
α→0,β→1

{
α · e>Ge

}
= 0 + 0 + lim

α→0,β→1

{
α · e>Ge

}
> 0. (54)

It follows that limα→0,β→1

{
(Wu + e)>G (Wu + e)

}
=∞. �
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B.2. Proof of Proposition 4

Note that

WΨ̄fW>Ψ̄−1
id −WΨ̄fW>Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

= WΨ̄f ·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)
·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

−WΨ̄f ·W>Ψ̄−1
id W ·

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

= WΨ̄f ·
(
Ψ̄−1

f + W>Ψ̄−1
id W−W>Ψ̄−1

id W
)
·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

= W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id .

Again using the Woodbury matrix identity,

G−1
t

(
T∑
s=1

G−1
s

)−1

=
(
αtΨ̄id + βtWΨ̄fW>) (Ψ̄id + WΨ̄fW>)−1

=
(
αtΨ̄id + βtWΨ̄fW>) (Ψ̄−1

id − Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

)
= αtIN − αtW

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

+βtWΨ̄fW>Ψ̄−1
id − βtWΨ̄fW>Ψ̄−1

id W
(
Ψ̄−1

id + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id

= αtIN + (βt − αt)W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id︸ ︷︷ ︸

,Ŵ>

.

�

B.3. Simple Generative Model of Order Flow used in §5

We first establish an explicit relationship between intraday variation of natural liquidity and intraday varia-
tion of the resulting traded volume by introducing a stochastic process generative model for trading volume.
The underlying motivation is simple yet intuitive: single-stock and index-fund investors create (stochastic)
order flows onto the securities they wish to trade. The arrival intensity of these order flows per type of
investor in each time period is proportional to the corresponding trading activity or liquidity provided by
this investor type in this time period. This is captured by the profiles αt and βt, respectively.

Specifically, we assume that the notional trade volume of stock i on day d in time interval t, DVolidt, is
composed of order flows made by single-stock investors Qid,idt and a |w̃1i| proportion of order flows made
by index-fund investors Qf,dt. |w̃1i| represents dollar-weighted ownership of stock i in the index fund so that
trading one dollar amount of index fund accumulates |w̃1i| dollar amount of notional trade volume onto stock
i. Each order flow can naturally be decomposed into small transactions.

DVolidt = Qid,idt + |w̃1i| ·Qf,dt =
Nid,idt∑
j=1

qid,idt(j) + |w̃1i| ·
Nf,dt∑
j=1

qf,dt(j), (55)

where Nid,idt and qid,idt(j) represent # of transactions and the absolute size of the jth transaction made by
single-stock investors on day d in time interval t. Nf,dt and qf,dt(j) are defined analogously. We treat Nid,idt,
Nf,dt, qid,idt(j) and qf,dt(j) as random variables that follow particular distribution assumptions.
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The order arrival processes for the two investor types are assumed to be Poisson with time-varying rates
that are proportional to αt and βt.

Nid,idt ∼ Poisson(αt · Λ) and Nf,dt ∼ Poisson(βt · Λ). (56)

We further assume that the individual order quantities qid,idt(j)’s (and qf,dt(j)’s) are all independent and
identically distributed with following moment conditions.

E [qid,idt(j)] = q̄id,i, Var [qid,idt(j)] = c2v · q̄2
id,i, E [qf,dt(j)] = q̄f, Var [qid,idt(j)] = c2v · q̄2

f , (57)

where cv represents a coefficient of variation.

Under the above assumptions, the single-stock investor’s order flow Qid,idt is a compound Poisson process
with following mean and variance:

E [Qid,idt] = E [Nid,idt] · E [qid,idt(j)] = αt · Λ · q̄id,i (58)
Var [Qid,idt] = E [Var (Qid,idt|Nid,idt)] + Var [E (Qid,idt|Nid,idt)] (59)

= E
[
Nid,idt · c2v · q̄2

id,i
]

+ Var [Nid,idt · q̄id,i] (60)
= αt · Λ · (c2v + 1) · q̄2

id,i. (61)

The mean and variance of Qf,dt can be expressed in a similar manner. Summing these flows for each security
we get that

E [DVolidt] = αt · Λ · q̄id,i + βt · Λ · |w̃1i| · q̄f (62)
Var [DVolidt] = αt · Λ · (1 + c2v) · q̄2

id,i + βt · Λ · |w̃1i|2 · (1 + c2v) · q̄2
f (63)

Cov [DVolidt,DVoljdt] = βt · Λ · |w̃1i| · |w̃1j | · (1 + c2v) · q̄2
f . (64)

The common order flow Qf,dt made by index-fund investors, results into a positive correlation between stocks
represented in the index.

Define θi to be the proportion of daily traded volume generated by index-fund investors out of the total
daily traded volume of stock i.

θi ,

∑T
t=1 E [|w̃1i| ·Qf,dt]∑T
t=1 E [DVolidt]

= |w̃1i| · q̄f

q̄id,i + |w̃1i| · q̄f
. (65)

The intraday traded volume profile VolAllocit and the pairwise correlation Correlijt, defined in (1) and (2),
can be simply expressed with θi and θj .

VolAllocit ≡
E [DVolidt]∑T
s=1 E [DVolids]

= αt · (1− θi) + βt · θi (66)

Correlijt ≡
Cov [DVolidt,DVoljdt]√

Var [DVolidt] ·
√

Var [DVoljdt]
(67)

= βt · θi · θj√
αt · (1− θi)2 + βt · θ2

i ·
√
αt · (1− θj)2 + βt · θ2

j

(68)
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If we further assume that the proportions θi are the same across all securities,

θ ≡ θ1 = θ2 = · · · = θN , (69)

then VolAllocit is the same for all stocks i and Correlijt is identical across all pairs of stocks, i, j, as given
in (28)-(29).

B.4. Proofs for §5.2

B.4.1. Proof of Proposition 5

Note that

Υ(x0) =
∑T
t=1(αt · (1− θ) + βt · θ)2 · x>0

(
αtΨ̄id + βtWΨ̄fW>)−1 x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

=
T∑
t=1

αt · (1 + θ · (γt − 1))2 ·
x>0
(
Ψ̄id + γtWΨ̄fW>)−1 x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0
.

By Woodbury’s matrix identity,

x>0
(
Ψ̄id + γtWΨ̄fW>)−1 x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

=
x>0 Ψ̄−1

id x0 − x>0 Ψ̄−1
id W

(
γ−1
t Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +

(
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

)
−
(
x>0 Ψ̄−1

id W
(
γ−1
t Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

)
x>0 Ψ̄−1

id x0 − x>0 Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +
x>0 Ψ̄−1

id W
((

Ψ̄−1
f + W>Ψ̄−1

id W
)−1 −

(
γ−1
t Ψ̄−1

f + W>Ψ̄−1
id W

)−1)W>Ψ̄−1
id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 ·
(
γ−1
t − 1

)
Ψ̄−1

f ·
(
γ−1
t Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

= 1 + (1− γt) ·
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 (IK + γtW>Ψ̄−1
id WΨ̄f

)−1 W>Ψ̄−1
id x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0
.

Restricted to the case when K = 1,

(
IK + γtW>Ψ̄−1

id WΨ̄f
)−1 =

(
1 + γtw>1 Ψ̄−1

id w1ψ̄f,1
)−1 = 1

1 + γt · η1
.
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Consequently,

x>0
(
Ψ̄id + γtWΨ̄fW>)−1 x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

= 1 + 1− γt
1 + η1 · γt

·
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 + 1− γt
1 + η1 · γt

·

(
x>0 Ψ̄−1

id x0

x>0 Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

− 1
)−1

= 1 + 1− γt
1 + η1 · γt

·

 x>0 Ψ̄−1
id x0

x>0 Ψ̄−1
id w1 · ψ̄f,1

1+ψ̄f,1w>1 Ψ̄−1
id w1

·w>1 Ψ̄−1
id x0

− 1


−1

= 1 + 1− γt
1 + η1 · γt

·

(
x>0 Ψ̄−1

id x0(
w>1 Ψ̄−1

id x0
)2 · 1 + η1

ψ̄f,1
− 1
)−1

.

To simplify notation, define

f(x) ,
(

x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 · 1 + η1

ψ̄f,1
− 1
)−1

.

Then,

Υ(x0) =
T∑
t=1

αt · (1 + θ · (γt − 1))2 ·
(

1 + 1− γt
1 + η1 · γt

· f(x0)
)
.

Note that

T∑
t=1

αt · (1 + θ · (γt − 1))2 =
T∑
t=1

αt · (1 + 2θ · (γt − 1) + θ2 · (γ2
t − 2γt + 1))

=
T∑
t=1

αt + 2θ · (βt − αt) + θ2 ·
(
β2
t

αt
− 2βt + αt

)

= 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)
.

As a result,

Υ(x0) = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+
(

T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
1 + η1 · γt

)
︸ ︷︷ ︸

,∆

×f(x0).

�
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B.5. Proof of Remarks 1 - 3

Maximum/minimum cost ratio. Note that f(x0) is a decreasing function of x>0 Ψ̄−1
id x0

(w>1 Ψ̄−1
id x0)2 , and

min
x0∈RN

x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 =
(

max
x0∈RN

(
w>1 Ψ̄−1

id x0
)2

x>0 Ψ̄−1
id x0

)−1

=

max
y∈RN

(
w>1 Ψ̄−1/2

id y
)2

y>y


−1

=
(
w>1 Ψ̄−1

id w1
)−1 = ψ̄f,1

η1
.

The above value is obtained at x0 = w1. Therefore,

max
x0∈RN

f(x0) = f(x0 = w1) =
(
ψ̄f,1

η1
· 1 + η1

ψ̄f,1
− 1
)−1

= η1.

On the other hand, since minx0∈RN
(w>1 Ψ̄−1

id x0)2

x>0 Ψ̄−1
id x0

= 0 at x0 = w⊥1 ,

min
x0∈RN

f(x0) = f(x0 = w⊥1 ) = 0.

Combining these two results, we have that

max
x0∈RN

Υ(x0) = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+ max
x0∈RN

{∆ · f(x0)} = max{Υmarket,Υorth}

min
x0∈RN

Υ(x0) = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+ min
x0∈RN

{∆ · f(x0)} = min{Υmarket,Υorth},

and trivially, Υmarket ≥ Υorth if and only if ∆ ≥ 0.

Sign of ∆ with respect to θ. Note that ∆(θ) is a quadratic function of θ. It suffices to show that
∆(θ = 0) ≥ 0 and ∆(θ = 1) ≤ 0. Note that for an arbitrary function h(·),{

if h(·) is non-decreasing, h(γ) · (1− γ) ≤ h(1) · (1− γ), ∀γ
if h(·) is non-increasing, h(γ) · (1− γ) ≥ h(1) · (1− γ), ∀γ

. (70)

In the case of θ = 0, by setting h(γt) , 1
1+η1·γt

which is a non-increasing function, we can show that

∆(θ = 0) =
T∑
t=1

αt · (1− γt)
1 + η1 · γt

(70)
≥

T∑
t=1

αt · (1− γt)
1 + η1

= (1 + η1)−1
T∑
t=1

(αt − βt) = 0.

In the case of θ = 1, by setting h(γt) , γ2
t

1+η1·γt
, which is a non-decreasing function,

∆(θ = 1) =
T∑
t=1

αt · γ2
t (1− γt)

1 + η1 · γt

(70)
≤

T∑
t=1

αt · (1− γt)
1 + η1

= 0.
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Change of Υmarket with respect to η1. Note that

∂Υmarket

∂η1
= ∂

∂η1
(η1 ·∆(η1))

= ∂

∂η1

(
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
η−1

1 + γt

)

=
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
η2

1 · (η−1
1 + γt)2

= θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + γt

)2

(1− γt).

Set h(γt) ,
(

1 + θ−1−1−η−1
1

η−1
1 +γt

)2
. If η1 ≤ θ

1−θ , then θ−1 − 1 − η−1
1 ≤ 0 and thus h(·) is non-decreasing.

Therefore,

∂Υmarket

∂η1
= θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + γt

)2

(1− γt)

(70)
≤ θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

(1− γt)

= θ2

η2
1
·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

·
T∑
t=1

αt(1− γt)

= θ2

η2
1
·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

·
T∑
t=1

(αt − βt)

= 0.

If η1 ≥ θ
1−θ , then h(·) is non-increasing, and thus the sign of the inequality reverses. Therefore,

∂Υmarket

∂η1
≤ 0 if η1 ≤

θ

1− θ , and ∂Υmarket

∂η1
≥ 0 if η1 ≥

θ

1− θ .

�

When η1 = 0,

Υmarket(η1 = 0) = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)
.

Note that Υmarket(η1 = 0) = Υorth. Since Υmarket(η1) is decreasing in [0, θ
1−θ ], this completes proof of (41).

When η1 = θ
1−θ , since (1−θ+θ·γt)2

1+η1·γt
= (1− θ) · (1− θ + θ · γt),

Υmarket(η1 = θ

1− θ ) = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+ θ

1− θ · (1− θ) ·
T∑
t=1

αt · (1− θ · (1− γt)) (1− γt)

= 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)
− θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

= 1.
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As η1 →∞,

lim
η1→∞

Υmarket = 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+ lim
η1→∞

(η1 ·∆(η1))

= 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
γt

= 1 + θ2 ·

(
T∑
t=1

β2
t

αt
− 1
)

+ (1− θ)2 ·

(
T∑
t=1

α2
t

βt

)
− 1 + 2θ − θ2 ·

(
T∑
t=1

β2
t

αt

)

= 1 + (1− θ)2 ·

(
T∑
t=1

α2
t

βt
− 1
)
.

�

Cost ratio of a single stock trading. Note that

f(ei) =
(

e>i Ψ̄−1
id ei(

w>1 Ψ̄−1
id ei

)2 · 1 + η1

ψ̄f,1
− 1
)−1

=

 ψ̄−1
id,i(

w1i · ψ̄−1
id,i

)2 ·
1 + η1

ψ̄f,1
− 1


−1

=
(

1 + η1

η1,i
− 1
)−1

= η1,i

1 + η1 − η1,i
.

Also note that
η1,i

1 + η1 − η1,i
≥ η1,j

1 + η1 − η1,j
if and only if w2

1i
ψ̄id,i

≥
w2

1j

ψ̄id,j
.

Then, the results immediately follow from (34). �
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