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Abstract

We consider a ubiquitous scenario in the Internet economywhen individual decision-makers
(henceforth, agents) both produce and consume information as they make strategic choices in
an uncertain environment. This creates a three-way tradeoff between exploration (trying out
insufficiently explored alternatives to help others in the future), exploitation (making optimal
decisions given the information discovered by other agents), and incentives of the agents (who
are myopically interested in exploitation, while preferring the others to explore). We posit a
principal who controls the flow of information from agents that came before to the ones that
arrive later, and strives to coordinate the agents towards a socially optimal balance between
exploration and exploitation, not using any monetary transfers. The goal is to design a recom-
mendation policy for the principal which respects agents’ incentives and minimizes a suitable
notion of regret. We extend prior work in this direction to allow the agents to interact with one
another in a shared environment: at each time step, multiple agents arrive to play a Bayesian
game, receive recommendations, choose their actions, receive their payoffs, and then leave the
game forever. The agents now face two sources of uncertainty: the actions of the other agents
and the parameters of the uncertain game environment.

Our main contribution is to show that the principal can achieve constant regret when the
utilities are deterministic (where the constant depends on the prior distribution, but not on the
time horizon), and logarithmic regret when the utilities are stochastic. As a key technical tool,
we introduce the concept of explorable actions, the actions which some incentive-compatible
policy can recommend with non-zero probability. We show how the principal can identify
(and explore) all explorable actions, and use the revealed information to perform optimally. In
particular, our results significantly improve over the prior work on the special case of a single
agent per round, which relies on assumptions to guarantee that all actions are explorable.
Interestingly, we do not require the principal’s utility to be aligned with the cumulative utility
of the agents; instead, the principal can optimize an arbitrary notion of per-round reward.
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1 Introduction

A common phenomenon of the Internet economy is that individual decision-makers (henceforth,
agents) both produce and consume information as they make strategic decisions in an uncertain
environment. Agents produce information through their selection of actions and the resulting
outcomes.1 Agents consume information from other agents who made similar choices in the past,
when and if such information is available, in order to optimize their utilities. The collection and
dissemination of information relevant to agents’ decisions can be instrumented on a very large
scale. Numerous online services do it to provide recommendations concerning various products,
services and experiences: movies to watch, products to buy, restaurants to dine in, and so forth.

The main issue for this work is that the agents tend to be myopic, optimizing their own im-
mediate reward, whereas the society would benefit if they also explore new or insufficiently ex-
plored alternatives. While the tension between acquisition and usage of information is extremely
well-studied (under the name of exploration-exploitation tradeoff ), a crucial new dimension here
is the incentives of the agents: since the agents are self-interested, one cannot expect agents to
explore only because they are asked to do so. This creates a new intriguing three-way tradeoff be-
tween exploration, exploitation and incentives. To study this problem, we introduce a principal,
who abstracts the society or a recommendation system, and whose goal is to optimize some social
objective function such as the social welfare. The principal can control the flow of information
from past experiences to the agents, but is not allowed to use monetary transfers. Absent any new
information, an agent will only perform the a priori better action, resulting in no exploration. Full
transparency — revealing to an agent all information currently known by the principal — is not
a good solution, either, because then an agent would only exploit. The goal is to understand how
the principal can induce sufficient exploration for achieving near-optimal outcomes.

The prior work on this problem (Kremer et al., 2014; Mansour et al., 2015) has a crucial limita-
tion: given the principal’s recommendation, the utility of a given agent is assumed to be unaffected
by the choices of other agents. This is often not the case in practice. We lift this restriction, and
allow the agents to affect one another. Informally, we posit that the agents operate in a shared
environment, and an agent’s decision can affect this environment for a limited period of time.

Motivating example. Let us consider a motivating example based on traffic routing. Consider a
GPS-based navigation application such asWaze that gives each user a recommended driving route
based on the current traffic conditions in the road network (consuming information received from
other drivers), and uses his GPS signal to monitor his progress and the traffic conditions along
the route (producing information for future recommendations). A natural goal for the navigation
system (the “principal” in this example) is to minimize the average delay experienced by the users.

If the application is used by only a few drivers, we can view each user in isolation. However,
once the application serves a substantial fraction of drivers in the region, there is a new aspect:
recommendations may impact the traffic conditions experienced by other drivers. For example, if
the application suggests to all the users in a given region to move to a certain lightly loaded route,
then when/if they all follow the recommendation, the route may become highly congested. The
uncertainty on how congestion affects delays on various routes can be reduced via exploration.

A natural simplified model for this scenario is that at each round, multiple drivers arrive and
interact through a routing game on fixed road network. In this game, the agents simultaneously

1This information can be collected explicitly, e.g., as reviews on products, or implicitly, e.g., by observing the routes
chosen by a driver and the associated driving times via a GPS-enabled device.
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choose their routes, and the delay at each link is determined by the load: the number of routes
that use this link. Typically one assumes a parameterized Bayesian model, where the delay at
a particular link is a known function of the load and a vector of parameters. The parameter
vector is initially not known, but comes from a known Bayesian prior. Thus, we have a Bayesian
game among the drivers. Furthermore, there is a principal that recommends routes to drivers:
before each round, it recommends a route to each driver that arrives in this round, and observes
the associated delays. Since the drivers are not obliged to follow the recommended routes, the
recommendations must be “compatible” with drivers’ incentives, in the sense that they must form
a correlated equilibrium in the routing game. At each time-step, the principal has a two-pronged
goal: to minimize the driving times (exploit) and also to obtain information about the unknown
parameters (explore) for the sake of giving better recommendations in the future. The challenge
is to find an optimal balance between exploration and exploitation under the constraint that even
the exploration must be compatible with drivers’ incentives.

Our model. We put forward a model, called Bayesian Exploration, which captures the essence
of this motivating example (as well as several other examples discussed below). Initially, some
realized state of nature θ0 is selected from a known prior distribution, and never changes since
then. There are T rounds. In each round, a new set of n agents arrive and play a game (the
same game in all rounds): each agent selects an action, and receives utility determined by the
joint action and the state θ0. There is a single principal which, in each round, recommends an
action to each participating agent, and observes the chosen actions and the resulting utilities. The
recommendations must be Bayesian incentive-compatible (BIC), so that the agents are interested
in following them. The principal’s utility, a.k.a. reward, is also determined by the joint action and
the state θ0. The goal of the principal is to maximize her cumulative reward over all rounds, in
expectation over the prior (henceforth, expected reward). We consider two versions, depending on
whether the utilities are “deterministic” or “stochastic”, i.e., whether the utilities of a given joint
action are fixed over time (given θ0), or drawn from a fixed distribution.

The major new contribution of our work over (Kremer et al., 2014; Mansour et al., 2015) is the
introduction of multiple agents at each round, and considering an interaction through an arbi-
trary Bayesian game. This additional interaction allows us to abstract a new host of scenarios,
and introduces a new level of complexity to the framework. In particular, the principal now has a
variety of joint actions it can recommend, and in many cases it has to randomize its recommenda-
tion in order maintain incentive-compatibility. (Technically, in each round the principal needs to
select a Bayes-correlated equilibrium (Bergemann and Morris, 2013), whereas with a single agent
in each round it suffices to select a single action, which is a much simpler object.)

Another important feature of our model is that the utilities of the principal may be unaligned
with the (cumulative) utility of all agents. For example, the principal may be interested in some
form of fairness, such as maximizing the minimum utility in each round. Such objective is very
different from the sum of all utilities. At the extreme, the principal might want to minimize the
cumulative utility. Interestingly, while the BIC constraint generally limits the principal’s ability to
harm the agents, the principal may still be able to significantly lower the Bayesian-expected social
welfare, compared to the worst Bayes-Nash equilibrium that would exist without the principal.
(In fact, this effect can be achieved even in a single round, see Bradonjic et al. (2014).) This is in
stark contrast to the case of single agent per round, where the Bayesian-expected reward of any
BIC policy must be at least that of the a-priori best action.
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The model is stylized in that we consider the same game in each round and make standard
economic assumptions; we discuss this more in Conclusions.

Results and techniques. We design policies for the principal that are near-optimal compared to
the best-in-hindsight policy: a BIC policy which maximizes the expected reward for a particular
problem instance. In fact, we compete against a stronger benchmark: optimal expected reward
achieved in any one round by any BIC policy.

Our first-order result is a BIC policy whose time-averaged expected reward asymptotically
approaches the benchmark. Further, we strive to minimize a version of Bayesian regret: the differ-
ence between the benchmark and the expected reward of the principal. Following the literature
on regret minimization, we are mainly interested in the asymptotic dependence of regret on the
time horizon T . We achieve optimal asymptotic dependence on T : constant for deterministic util-
ities, and logarithmic for stochastic utilities.2 The asymptotic constants depend on the Bayesian
prior, which appears inevitable because of the BIC constraints. Our policies are computationally
efficient: their running time per round is polynomial in the input size.

The stated dependence on T is very non-trivial because the principal faces a game that changes
from round to round: namely, the agents’ beliefs about the principal depend on the round in
which they arrive, because they know that the principal is learning over time. For the sake of
argument, consider a modification in which the agents erroneously believe that the principal is
not learning. Then the principal plays the same game over and over again, and constant (resp.,
logarithmic) dependence on T is much easier to obtain.

Our policy for stochastic utilities does not need to know the distribution of “noise” added to
the utilities. This is somewhat surprising because, for example, one would need to know the noise
distribution in order to do a Bayesian update on the noisy inputs. Such detail-free properties are
deemed desirable in the economics literature.

One important technical contribution concerns the concept of the explorable joint actions:
those that can be explored by some BIC policy in some round with positive probability. In general,
not all joint actions are explorable, and the set of explorable joint actions may depend on the state
θ0. Our high-level approach is to explore all explorable actions. Thus, we face two challenges.
First, we need to identify which joint actions are explorable, and explore them. This has to be done
inductively, whereby the utilities revealed by exploring one joint action may enable the policy to
explore some others, and so forth until no further progress can be achieved. The second challenge
is to compute an optimal (randomized) recommendation after all explorable joint actions have
been explored, and prove that it outperforms any other BIC policy.

To address these two challenges, we develop the theory of the single-round game in our set-
ting. Termed the recommendation game, it is a generalization of the well-knownBayesian Persuasion
game (Kamenica and Gentzkow, 2011) where the signal observed by the principal is distinct from,
but correlated with, the unknown state of nature. (Here the principal’s signal captures the history
observed in the previous rounds.) This generalization allows us to argue about comparative stat-
ics: what happens if the principal’s signal is modified to contain more information relevant to the
state θ0. We show that a more informative signal can only improve the optimal reward achievable
by the principal, and can only increase the set of “explorable” joint actions.

The “monotonicity-in-information” statementsmentioned above (that exploringmore joint ac-
tions or receiving a more informative signal can only help) are non-trivial and not easy to prove,
even if they may seem intuitive. It is worth noting that similar monotonicity-in-information state-

2Our result for stochastic utilities relies on a slightly altered definition of the benchmark, see Section 3.1 for details.
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ments in game theory are sometimes intuitive but false (Engelbrecht-Wiggans, 1986; Kessler, 1998;
Syrgkanis et al., 2015). More generally, while our algorithms and analyses involve many notions,
steps and statements that seem intuitive, formalizing these intuitions required a multi-layered
framework to reason about Bayesian Exploration in precise terms. Building up this framework
has been a major part of the overall effort.

With stochastic utilities, we have an additional obstacle: the deviations between the expected
utilities and our estimates thereof, albeit small and low-probability, may distort agents’ incentives.
Moreover, the number of different possible observations from the same joint action becomes ex-
ponential in the number of rounds, which blows up the running time if we use the techniques
from the deterministic case without modifications. To side-step these obstacles, our analysis care-
fully goes back and forth between the original problem instance and the corresponding problem
instance with deterministic utilities.

Our “algorithmic characterization” of all explorable joint actions is an important contribution
even for the case of single agent per round. While Kremer et al. (2014); Mansour et al. (2015)
provide necessary and sufficient conditions when there are only two actions, for multiple actions
Mansour et al. (2015) only give a sufficient condition which is far from necessary. Our work recti-
fies the situation and provides an explicit algorithm – in fact, an explicit BIC policy – to identify
all explorable joint actions.

Additional motivating examples. The essential features of Bayesian Exploration — the tradeoff
between exploration, exploitation and incentives, and presence of multiple agents in a shared
environment— arise in a variety of scenarios, in addition to the routing scenario described above.

One scenario concerns coordinating participants in a market. Consider sellers that are selling
tickets for a particular sports event on an online platform such as StubHub. Implicitly, these
sellers are involved in a game where they set the prices and the buyers can select which tickets
to buy. A principal (the same platform or a third party) can suggest to the sellers how to set the
prices so as to optimize the sellers’ combined revenue or other notion of social optimality. The
principal learns about the demand of the buyers (through exploration) in order to help the sellers
to set the right prices. The price recommendations need to be incentive-compatible because the
sellers need to be convinced to follow them.

Another scenario concerns optimizing a shared access to a computing resource. For a simple
example, consider a university data center shared by the faculty members, where each user can
specify the machine to run his jobs on. The principal can collect the information from multiple
users, so as to learn their typical resource requirements, and recommend which machines they
should connect to. As a non-critical component, such recommendation system would be easier
to maintain compared to a scheduler which enforces the same resource allocation, e.g., it can be
ignored when/if it malfunctions.

A third scenario addresses a congestion game in which the agents are incentivized towards
homophily. Consider a population of individuals choosing which experience to attend in the
near future (e.g., go to a movie, watch a video on Youtube, read a news article, or attend a sports
event). Often people are interested not only in the inherent quality of the experience, but also
in sharing it with a particular group. This group may be quite large, e.g., it could include many
people that share the same demographic, political views, general tastes, etc. Thus, one could
imagine a recommendation service that would coordinate people towards sharing the experiences
they would like with the people that they would want to share them with. Such recommendation
service would need to explore to learn people’s tastes, and be compatible with people’s incentives.
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2 Related Work

The study of “incentivizingexploration”was initiated by Kremer et al. (2014) andChe and Hörner
(2018). Most relevantly to this paper, Kremer et al. (2014) , introduce a version of Bayesian Explo-
ration with only two actions and without strategic interactions between agents, i.e., with a single
agent in each round. They provide an optimal policy for deterministic utilities, and a preliminary
result for stochastic utilities. Mansour et al. (2015, 2020) obtain optimal regret rate for stochastic
utilities, as well as a reduction from an arbitrary non-BIC policy to a BIC one. Bimpikis et al.
(2018) consider time-discounted utilities. They achieve “first-best” utility if the expected utility
for one of the actions is known. For the general case, they design an optimal but computation-
ally inefficient mechanism, and propose a computationally efficient heuristic. Bahar et al. (2016)
enrich the model to allow agents to observe recommendations of their “friends” in a known so-
cial network (but restrict to deterministic utilities and a small number of high-degree nodes).
Frazier et al. (2014) and Che and Hörner (2018) study related, but technically different problems,
where, resp., the principal can pay the agents and one has continuous information flow and a
continuum of agents. While the core challenges in incentivizing exploration arise even with two
actions, Mansour et al. (2015, 2020) and Frazier et al. (2014) extend their results to multiple ac-
tions.

Absent strategic issues, Bayesian Exploration reduces to multi-armed bandits, a fundamental
and well-studied model for exploration-exploitation tradeoff. A huge literature on bandits has
been summarized in several books (Bubeck and Cesa-Bianchi, 2012; Gittins et al., 2011; Slivkins,
2019; Lattimore and Szepesvári, 2020). More specifically, if the algorithm is not constrained to
be BIC and the agents always follow the recommendations, then Bayesian Exloration reduces to
multi-armed bandits with stochastic rewards, where action set is A and rewards are equal to the
principal’s utility. This is a well-understood problem, with optimal regret-minimizing algorithms
and matching lower bounds (Lai and Robbins, 1985; Auer et al., 2002a,b).

Bayesian Exploration is closely related to information design and social learning, two promi-
nent subareas of theoretical economics. Information design studies the design of information
disclosure policies and incentives therein (see surveys Bergemann and Morris, 2019; Kamenica,
2019; Dughmi and Xu, 2016). In particular, a single round of Bayesian Exploration is a version of
the Bayesian Persuasion game (Kamenica and Gentzkow, 2011) with multiple agents, where the
signal observed by the principal is correlated with the unknown “state”. Our notion of BIC is
a version of Bayes Correlated Equilibrium (Bergemann and Morris, 2013). Social learning stud-
ies self-interested agents that interact and learn over time in a shared environment. A version
of our setting with long-lived agents and no principal to coordinate them has been studied since
Bolton and Harris (1999), see Hörner and Skrzypacz (2017) for a survey. A vast literature on learn-
ing in games (Fudenberg and Levine, 1998) posits reasonable learning dynamics for the agents, as
a proxy for their strategic behavior, and studies convergence to a given solution concept. A long
line of work on sequential social learning posits that agents receive private signals and observe
previous agents’ actions before choosing their own, see Golub and Sadler (2016) for a survey.

Exploration-exploitation problems with self-interested agents arise in several other, techni-
cally incomparable scenarios: dynamic pricing (e.g., Kleinberg and Leighton, 2003; Besbes and Zeevi,
2009; Babaioff et al., 2015a; Wang et al., 2014), dynamic auctions (e.g., Athey and Segal, 2013;
Bergemann and Välimäki, 2010; Kakade et al., 2013), pay-per-click ad auctions (e.g., Babaioff et al.,
2014; Devanur and Kakade, 2009; Babaioff et al., 2015b), human computation (e.g., Ho et al.,
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2016; Ghosh and Hummel, 2013; Singla and Krause, 2013), and competition between firms (e.g., Bergemann and Välimäki,
2000; Keller and Rady, 2003; Aridor et al., 2020). A unified perspective on exploration with in-
centives can be found in Chapter 11.6 in Slivkins (2019).

Subsequent work. The study of Bayesian Exploration has progressed subsequent to the initial
version of this paper (Mansour et al., 2016). All work has focused on the version of a single agent
per round. First, the economic model is generalized: Immorlica et al. (2019) study an extension
to heterogenous agents with public or private types, and Bahar et al. (2019) consider unavoidable
information leakage (in a different model compared to Bahar et al. (2016)). Second, results are
refined in the basic model with stochastic rewards: Sellke and Slivkins (2021) characterize the
“price of incentives”: loss in performance compared to optimal multi-armed bandit algorithms,
and Immorlica et al. (2020) mitigate economic assumptions andmake a direct connection to social
learning on networks. Third, the exploration problem is generalized: Simchowitz and Slivkins
(2021) incentivize exploration in reinforcement learning.

3 Bayesian Exploration: our model and results

Our model, called Bayesian Exploration, is a game between a principal and multiple agents. The
game consists of T rounds, where T is the time horizon.

There is a global parameter θ0, called the (realized) state. It is drawn from a Bayesian prior
distribution ψ over a finite state space Θ. It is chosen before the first round, and stays the same
throughout the game. The state space Θ and the prior ψ are common knowledge, but the state
itself is not revealed neither to the principal, nor to the agents. (But the principal can learn it over
time.) Elements of Θ are called (feasible) states, to distinguish them from the realized state θ0.

In each round, there is a fresh set of agents, denoted [n] := {1 , . . . ,n}, playing a simultaneous
game. Each agent i chooses an action ai from some finite set Ai of possible actions. A tuple
a = (ai)i∈[n] is called a joint action. The set of all possible joint actions, termed the action set, is
A = A1 × . . . × An. The utility of each agent i is determined by the joint action a chosen by the
agents and the realized state θ0. More formally, it is given by a function ui : A×Θ→ [0,1], called
the utility function of agent i. The utility of the principal, a.k.a. reward, is also determined by the
pair (a,θ0), and given by the reward function f : A×Θ→ [0,1]. The action set A and the functions
(f ;u1 , . . . ,un) are the same for all rounds, and are common knowledge.

In each round t, the principal recommends a joint action to the agents. Specifically, the round
proceeds as follows: a fresh set of n agents arrives; the principal recommends a joint action a ∈ A;
each agent i only observes his recommended action ai ; the agents choose their actions in the
simultaneous game, and the utilities are realized. The principal observes the chosen actions and
the realized utilities. Agents know t, but do not observe what happened in the previous rounds.

The principal commits to an algorithm π that proceeds in rounds, so that in each round it out-
puts a joint action, and then inputs the chosen actions and the realized utilities. This algorithm,
called the iterative recommendation policy, is known to the agents.

We will now define the incentive-compatibility constraint. Let πt be the joint action recom-
mended by π in round t; we interpret it as a random variable taking values in A. Let Et−1 be
the event that the agents have followed principal’s recommendations up to (but not including)
round t. Here and henceforth, we will use a standard game-theoretic notation: we will repre-
sent a joint action a ∈ A as a pair (ai ,a−i ), where i is an agent, ai ∈ A is its action, and a−i =
(a1, . . . ,ai−1,ai+1, . . . ,an) is the joint action of all other agents; we will sometimes write (ai ,a−i ;θ) to
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denote the pair (a,θ), where θ ∈ Θ is a state. We will write A−i for the set of all possible a−i ’s. In
particular, πt−i ∈ A−i denotes the joint action of all other agents chosen by policy π in round t.

Definition 3.1. An iterative recommendation policy π is Bayesian Incentive Compatible (BIC) if for
all rounds t and agents i ∈ [n] we have

E

[
ui(ai , π

t
−i ; θ0)− ui(a′i , πt−i ; θ0) | πti = ai , Et−1

]
≥ 0, (1)

where ai ,a
′
i ∈ Ai are any two distinct actions such that Pr[πti = ai | Et−1] > 0. (The probabilities are over

the realized state θ0 ∼ ψ and the internal randomization in π.)

In words, suppose agent i is recommended to play action ai in a given round t. Assume that all
agents followed the recommendations in the previous rounds, and that all agents but i follow the
recommendations in round t. Then agent i cannot improve his conditional expected utility (given
the information available to this agent) by choosing a different action a′i .

Throughout, we assume that the agents follow recommendations of a BIC iterative recommen-
dation policy, so that the agents’ behavior is completely specified.

The principal’s goal is to optimize its expected total reward, as given by the reward function
f , subject to the BIC constraint. While we allow f to be arbitrary, one natural version is social
welfare, i.e., the sum of utilities of all agents in a given round.

The utility structure U is a tuple that consists of the action setA, the state space Θ, the prior ψ,
the utility functions (u1 , . . . ,un), and the reward function f . Note that U completely determines
the simultaneous game. A problem instance consists of U and time time horizon T .

Stochastic utilities. We allow amore general version, termed Bayesian Exploration with stochastic
utilities. Given the joint action a ∈ A and state θ = θ0, the vector of all realized utilities is drawn
independently from some distribution D(a,θ) over such vectors, so that the expected utility of
each agent i and the principal are, respectively, ui(a,θ) and f (a,θ). All realized utilities lie in
[0,1].3 The special case when the realized utilities are always equal to their expectations is termed
Bayesian Exploration with deterministic utilities.

Each distributionD(a,θ) is determined by the utility tuple

U(a,θ) = (u1(a,θ) , . . . ,un(a,θ); f (a,θ) ) .

(We use this assumption to prove Lemma 6.1.) We assume that the mapping from utility tuples
U(a,θ) to distributions D(a,θ) is known to the agents, so that they can form Bayesian posteriors.
Whether this mapping is known to the mechanism is irrelevant to our results.

A problem instance of Bayesian Exploration with stochastic utilities consists of the utility
structure U , time horizon T , and the distributionsD(a,θ), (a,θ) ∈ A×Θ.

Computational model. Our results include bounds on the per-round running time of our algo-
rithms. These bounds assume infinite-precision arithmetic (infinite-precision arithmetic operations
can be done in unit time), and continuous random seed (a number can be drawn independently and
uniformly at random from the unit interval in unit time). Such assumptions are commonly used
in theoretical computer science to simplify exposition.

From the computational point of view, an iterative recommendation policy inputs the utility
structure. We assume the utilities are represented generically, as a (n + 1) × |A| × |Θ| table. We
obtain per-round running times that are polynomial in the input size.

3Our results extend to a more general case of sub-Gaussian noise; we omit the easy details.
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Discussion. One can consider a more general version of Bayesian Exploration in which the princi-
pal can send arbitrary messages to agents. However, the restriction of messages to recommended
actions is without loss of generality (see Remark 4.4).

We fix the time horizon T only for ease of presentation. Knowing T is irrelevant to the defini-
tion of BIC and hence to the agents, and not needed in our solution for deterministic utilities. For
stochastic utilities, knowing T can be mitigated via standard tricks from multi-armed bandits.4

Formally, we will assume that every BIC iterative recommendation policy π is well-defined
and BIC for all rounds t ∈ N, even if it is tailored to a particular time horizon T . This is without
loss of generality: e.g., one can extend π by setting πt = πT for all rounds t > T .

3.1 Statement of the main results

Given an iterative recommendation policy π, the total expected reward is denoted

REW(π) =
∑T
t=1REWt(π

t), REWt(π) = E

[
f (πt ,θ0)

]
.

Here REWt(π) is the expected reward of π in a given round t. The expectation is taken over the
realized state θ0, the internal randomness in π, and possibly the noise in the rewards.

Deterministic utilities. We compete with all BIC iterative recommendation policies with infinite
time horizon; the class of all such policies is denoted ΠBIC. Our benchmark is the best expected
reward achieved in any one round by any policy in a given policy class Π:

OPT(Π) := sup
t∈N,π∈Π

REWt(π). (2)

Our main result is a BIC policy whose time-averaged expected reward is close to OPT(ΠBIC).

Theorem 3.2. Consider Bayesian Exploration with deterministic utilities. There exists a BIC iterative
recommendation policy π whose Bayesian regret with respect to ΠBIC satisfies

T · OPT(ΠBIC)− REW(π) ≤ C, (3)

where C depends only on the utility structure, but not on the time horizon.5 The per-round running
time of π is polynomial in the generic input size.

Stochastic utilities. Our results for stochastic utilities compete against a slightly restricted class
of BIC policies. For a given parameter δ > 0, a policy is called δ-BIC if it satisfies a stronger version
of Definition 3.1 in which right-hand side of (1) is δ rather than 0.6 The class of all such policies is
denotedΠδ. We construct a BIC policy whose time-averaged expected reward is close to OPT(Πδ).

4First, one could use an upper bound T ′ ≥ T instead of T . It is immediate from our analysis that such policy is
BIC and suffers only log(T ′) in the regret bound in Theorem 3.3. So, even a crude upper bound T ′ would suffice; this
would probably be a preferred solution in practice. Second, one could starts with a BIC iterative recommendation
policy parameterized by a known time horizon, and transform it into a policy that runs indefinitely and attains similar
performance. Specifically, we partition time into consecutive phases i = 1,2, . . ., each of predetermined duration Ti
rounds, and restart the policy in the beginning of each phase with time horizon Ti . It is easy to see that such policy is

BIC. Durations Ti = 22
i
suffice for our purposes, to guarantee O(logT ) dependence on regret in each round T .

5Specifically, C = |A|2 · |Θ|/p∗sig, where p∗sig is spelled out in Remark 5.12.
6For ease of notation, we extend this definition to δ = 0, in which case “δ-BIC” is the same as “BIC”.
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Theorem 3.3. Consider Bayesian Exploration with stochastic utilities. For any given δ > 0, there exists
a BIC iterative recommendation policy π whose Bayesian regret with respect to Πδ satisfies

T · OPT(Πδ)− REW(π) ≤ Cδ · logT , (4)

where Cδ depends only on the utility structure and the parameter δ, but not on the time horizon.7

The per-round running time of π is polynomial in the generic input size. Policy π does not input the
parameterized utility distributions D(a,θ), (a,θ) ∈ A×Θ.

The “structure-dependent” constants in Theorem 3.2 and Theorem 3.3 are in line with prior
work on Bayesian Exploration: e.g., all results in Mansour et al. (2015, 2020) (which are for the
special case of single agent per round) have similar ‘structure-dependent” constants. As in prior
work, it is unclear whether the dependence on particular parameters is necessary or optimal.8

In Appendix C, we prove that theO(logT ) regret rate in Theorem 3.3 is essentially optimal for
Bayesian Exploration with stochastic utilities, even with a single agent per round and only two
actions. This is in line with the fact that O(logT ) regret rate is optimal in multi-armed bandits
(Lai and Robbins, 1985; Auer et al., 2002a). Our proof builds on the negative result for bandits,
and also invokes a positive result for Bayesian Exploration from Mansour et al. (2015, 2020).

3.2 Discussion of the benchmarks

Recall that our generic benchmark OPT(Π) considers the optimal reward in any one round, and
does not have a built-in time horizon. Therefore, it is at least as strong as the optimal time-averaged
reward for the same policy class, OPTave(Π) := supπ∈Π, T∈NREW(π)/T . While the latter benchmark
can be achieved by some policy in Π (up to an arbitrarily small precision), this is not trivially
the case for OPT(Π). However, our theorems imply that these two benchmarks are equal: for
deterministic rewards with Π =ΠBIC, and for stochastic rewards withΠ =Πδ, δ > 0.

Our benchmarks OPT(ΠBIC) and OPT(Πδ) are, in general, weaker than the best-action benchmark
(the expected reward of the best action), a standard benchmark in multi-armed bandits. In our
notation, this benchmark equals Eθ0∼ψ [maxa∈A f (a,θ0) ]. BIC policies cannot always match the
best action because not all actions are explorable, and even explorable actions are not necessarily
implementable with high probability by a BIC policy. We know, however, that the benchmark
OPT(ΠBIC) for deterministic utilities does reduce to the best action in the special case when there
is a single agent per round and the principal’s reward coincides with the agent’s utility, as long as
all actions are explorable (see Corollary 5.6).9

Our benchmark for deterministic utilities can be characterized as follows: OPT(ΠBIC) is the
maximal per-round expected reward of a BIC policy that has access to the utilities of all explorable
joint actions, see Theorem 5.5 for a precise statement.

7The exact guarantee is spelled out in Eq. (22).
8A recent follow-up paper (Sellke and Slivkins, 2021) partially characterizes optimal dependence on parameters

in the special case of one agent per round, assuming that the prior is independent across actions. They focus on
polynomial vs. exponential dependence on the number of actions and the strength of beliefs.

9For this special case, Mansour et al. (2015, 2020) provide sufficient conditions when all arms are explorable. In
particular, this happens when the prior is independent across actions, and for each action the prior on the mean re-
ward has full support on [0,1]. Mansour et al. (2015, 2020) also provide another sufficient condition which allows for
correlated priors. However, we cannot immediately apply these sufficient conditions to help characterize our bench-
mark Π

det
δ for stochastic rewards. This is because the results in Mansour et al. (2015, 2020) only guarantee that all

actions are explorable by some BIC policy, but not necessarily by a δ-BIC policy for a given δ > 0.

11



4 Warm-up and tools

As a warm-up, let us consider the version with deterministic utilities, and focus on a relatively
simple scenario when a BIC iterative recommendation policy explores all joint actions, and then
exploits (in the sense that wemake precise later). We show that this policy can achieve optimal per-
round performance once all joint actions are explored. Recall that our benchmark is OPT(ΠBIC),
where ΠBIC is the class of all BIC iterative recommendation policies, and OPT(·) is defined in (2).

Lemma 4.1. Consider Bayesian Exploration with deterministic utilities. Let π be a BIC iterative rec-
ommendation policy that explores all joint actions by a fixed time Tπ ≤ T . Then there exists a BIC
policy π′ which coincides with π before round Tπ, and achieves expected reward at least OPT(ΠBIC) in
all subsequent rounds. Therefore, f (π′) ≥ (T −Tπ) OPT(ΠBIC).

While very intuitive, this result is surprisingly technical to prove from scratch. Essentially, one
needs to specify what “exploitation” means in this context, and argue that this notion of exploita-
tion is BIC and can only benefit from having full information about the utility structure. Thus,
we develop a framework to reason about this, which will be an essential toolbox throughout the
paper. More specifically, we define and analyze a game which captures a single round of Bayesian
Exploration, and formulate a framework to combine BIC “subroutines” into a BIC iterative rec-
ommendation policy. A proof of Lemma 4.1 using these tools is in the very end of this section.

While Lemma 4.1 relies on the ability to explore all joint actions, this ability is not guaranteed.
This can be seen even in the special case of a single agent per round and only two actions. For this
special case, Kremer et al. (2014) and Mansour et al. (2020) present necessary and sufficient con-
ditions under which all actions are explorable, as well as simple examples when these conditions
fail. Mansour et al. (2020) also provides sufficient conditions for the version with a single agent
per round and an arbitrary number of actions.

4.1 The recommendation game: a single round of Bayesian Exploration

We view a single round of Bayesian Exploration as a stand-alone game between the principal and
the agents, termed the recommendation game. Here the principal observes an auxiliary “signal”,
which represents the information received in the previous rounds (and possibly also the internal
random seed). Then the principal recommends a joint action, and the agents choose their actions.

Formally, the recommendation game is a version of the Bayesian Persuasion game (Kamenica and Gentzkow,
2011) with multiple agents. Unlike the original Bayesian Persuasion game, in our version the sig-
nal observed by the principal is distinct from (but correlated with) the state.

For a problem instance of Bayesian Exploration with a given utility structure, the correspond-
ing recommendation game proceeds as follows:

• the state θ0 is drawn from a Bayesian prior distribution ψ over Θ;
• the principal observes a signal S , then recommends action ai ∈ Ai for each agent i;
• the agents choose their actions in the simultaneous game;
• the principal and the agents receive utilities according to the utility structure.

Signal S is an arbitrary random variable with finite support X (the elements of X are called feasible
signals). The signal can be correlated with the state: formally, S and θ0 are random variables on
the same probability space. The signal structure associated with S is the tuple (Θ,X ,ψ∗), where ψ∗
is the joint distribution of (S,θ0). An important special case is the empty signal: one which always
takes the same value. Such signal will be denoted as S = ⊥.
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The utility structure and the signal structure are common knowledge. The realized state θ0 is
not revealed to the principal (other than through the signal S). Each agent i only observes his own
recommendation ai ; it does not observe the state θ0, the signal S , or the other recommendations

The principal commits to a recommendation policy: a randomized mapping π : X → A, which
takes as input a feasible signal and outputs an action for each agent. The corresponding incentive-
compatibility constraint is defined as follows:

Definition 4.2. Given signal S , a recommendation policy π is Bayesian incentive compatible (BIC) if
for each agent i ∈ [n] and any two distinct actions ai ,a

′
i ∈ Ai such that Pr[πi(S) = ai ] > 0 we have

E

[
ui (ai , π−i(S); θ0)− ui(a′i , π−i (S) ;θ0) | πi (S) = ai

]
≥ 0. (5)

In words, whenever agent i is recommended to play some action ai , he could not improve his
expected utility (given the information available to this agent, and assuming that all other agents
follow the recommendations) by choosing a different action a′i . We assume that the agents follow
the recommendations of a BIC policy, so that the expected reward is well-defined.

For the recommendation game, the distinction between stochastic and deterministic utilities
is unimportant (for statements that only involve expected utilities and rewards). In particular, a
given recommendation policy is BIC for stochastic utilities if and only if it is BIC for the corre-
sponding problem instance with deterministic utilities.

For the computational results, we assume that the joint distribution of (S,θ0) is given explic-
itly, as a |X | × |Θ| table of probabilities.

Remark 4.3. Consider an iterative recommendation policy π. W.l.o.g., the internal random seed ω of
policy π is chosen once, before the first round, and persists throughout. LetHt be the history up to round
t: the chosen joint actions and the realized utilities over all past rounds. Then policy π can be represented
as a sequence (π(t) : t ∈ N), where for each round t, π(t) is a randomized mapping from St = (ω,Ht) to
joint actions (called the restriction of π to round t). Each round t can be seen as a recommendation
game with signal St , and π

(t) is a recommendation policy in this game. It is easy to see that π is BIC if
and only if π(t) is BIC for all t.

Remark 4.4. The notion of Bayesian Incentive Compatibility in the recommendation game is closely
connected to the notion of Bayes Correlated Equilibrium (Bergemann and Morris, 2013): modulo the
differences in terminology, the former is a special case in which the agents do not receive private signals.
In particular, it follows that a BIC recommendation policy always exists.

One can consider a more general version of the recommendation game in which the principal can
send arbitrary messages to agents. Then the principal commits to a messaging policy: a randomized
mapping which inputs the signal S and outputs a messagemi for each agent i. However, such messaging
policies can without loss of generality be restricted to recommendation policies. More precisely, suppose
a messaging policy τ induces a Bayes Nash Equilibrium ρ (which, in our notation, is a randomized
mapping that inputs the joint message (m1 , . . . ,mn) and outputs a joint action a ∈ A). Then the
composition ρ ⊕ τ is a randomized mapping that inputs signal S and outputs a joint action, i.e., a
recommendation policy. According to Bergemann and Morris (2013), this composition is BIC.10 Thus,
the principal can use ρ⊕ τ instead of τ.

10This follows from the ”only if” direction of Theorem 1 in Bergemann and Morris (2013). In their notation, we use
the special case where the information structure S is empty, and S∗ is induced by the messaging policy τ. Then the
“decision rule” π in the theorem corresponds to the recommendation policy ρ⊕ τ.
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4.2 Optimality in the recommendation game

Given a recommendation policy π for signal S , its expected reward is

REW(π) = E [ f (π(S),θ0) ] = E
(s,θ)∼ψ∗

[f (π(s),θ) ] .

The expectation is over the joint distribution of signal S and realized state θ0, and the internal
randomness in policy π. The optimal reward given signal S is defined as

REW∗[S] = sup
BIC recommendation policies π for S

REW(π).

Thus, it is the largest expected reward achievable in a recommendation game with signal S .11 A
BIC policy π in this game will be called optimal for S if REW(π) = REW∗[S].

We will represent the problem of finding an optimal recommendation policy π as a linear
program (henceforth, LP). We represent π as a set of numbers xa,s = Pr[π(s) = a], for each joint
action a ∈ A and each feasible signal s ∈ X . These numbers, termed the LP-representation of π, will
be the decision variables in the LP. The linear program is as follows:

maximize
∑

a∈A, s∈I , θ∈Θ
ψ(θ) ·ψ∗(s | θ) · xa,s · f (a,θ)

for all i ∈ [n],ai ,a′i ∈ Ai ,
∑

a−i∈A−i , s∈I , θ∈Θ
ψ(θ) ·ψ∗(s | θ) ·

(
ui(ai ,a−i ;θ)− ui(a′i ,a−i ;θ)

)
· xa,s ≥ 0

for all s ∈ I ,a ∈ A xa,s ≥ 0 and
∑
a∈A xa,s = 1

In the above LP, ψ(θ) stands for Pr[θ0 = θ], and ψ∗(s | θ) stands for Pr[S = s | θ0 = θ]. The objective
is REW(π), written in terms of the LP-representation, and the first constraint states that π is BIC.12

The feasible region of this LP is polytope in R
|I |×|A|, which we denote by BIC[S].

Claim 4.5. A policy π is BIC if and only if its LP-representation lies in BIC[S].

Corollary 4.6. An optimal recommendation policy exists. Given the utility structure and the signal
structure, an optimal recommendation policy and the optimal reward REW∗[S] can be computed in time
polynomial in |A| · |X | · |Θ|. Further, a convex combination of BIC policies is also BIC.

Let us study a recommendation game with a signal that corresponds to exploring a given
(possibly randomized) subset B ⊂ A of joint actions. Formally, B will be a 2A-valued signal: a
signal whose values are subsets of A; e.g., its realization may depend on the realized state θ0.

Let us consider the signal which corresponds to exploring all joint actions in B. This signal
consists of all relevant utilities, and also includes B itself:

AllInfo(B) := ( B; (f (a,θ0);u1(a,θ0) , . . . ,un(a,θ0)) : a ∈ B) . (6)

11We write REW∗[S] rather than REW∗(S) to emphasize that the optimal reward is a function of the random variable S ,
rather than a function of a particular realization of this random variable. We will use a similar notation function[S]
for some other functions of signal S as well, e.g., for the polytope BIC[S].
12For a particular agent i and actions ai ,a

′
i ∈ Ai , the BIC constraint in Definition 4.2 states that Pr[E] > 0 implies

E[W | E] ≥ 0, where W = ui(ai ,π−i (S),θ0) − ui (a′i ,π−i (S),θ0) and E = {πi (S) = ai }. This is equivalent to E[1E ·W ] ≥ 0.
And E[1E ·W ] is precisely the left-hand side of the first constraint in the LP.
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Note that it is a random variable, because it depends on random variables B and θ0.
Despite a rather complicated definition, S = AllInfo(B) is just a signal in a recommendation

game. In particular, we can consider an optimal recommendation policy given this signal. By
Corollary 4.6, such a policy exists, and its LP-representation (and its expected reward) can be
computed in time polynomial in |Θ| · |A| · |support(S)|.

We prove that if a BIC iterative recommendation policy is restricted to joint actions in B, then
its expected per-round reward cannot exceed REW∗ [AllInfo(B) ] (the proof requires additional
machinery, developed in the next subsection).

Claim 4.7. Consider Bayesian Exploration with stochastic utilities. Let B ⊂ A be a 2A-valued signal
(i.e., a randomized set of joint actions). Let π be a BIC iterative recommendation policy such that before
a given round t it can only choose joint actions in B. Then REWt(π) ≤ REW∗ [AllInfo(B) ].

4.3 Recommendation game with coupled signals

Throughout, we consider a fixed utility structure U , but allow the signal S to vary from one game
instance to another. We suppress U from our notation, but make the dependence on S explicit. To
study how the properties of a game depend on a particular signal S , we consider multiple signals
that are random variables in the same probability space as the true state θ0; such signals will be
called coupled. While each of these signals corresponds to a separate game instance, we will refer
to all these game instances jointly as recommendation game with coupled signals.

We prove that REW∗[S] can only increase if signal S becomes more informative. To make this
statement formal, we consider a recommendation game with coupled signals S,S ′ . We give a
definition that compares the two signals in terms of their “state-relevant” information content,
and state the “monotonicity-in-information” lemma (proved in Appendix A).

Definition 4.8. Consider a recommendation game with coupled signals S,S ′ , with resp. supports X ,X ′ .
We say that signal S is at least as informative as S ′ if

Pr[θ0 = θ | S = s, S ′ = s′] = Pr[θ0 = θ | S = s] ∀s ∈ X , s′ ∈ X ,θ ∈Θ.

An important special case is when S determines S ′ : S ′ = g(S) for some g : X → X ′.

Lemma 4.9 (monotonicity-in-information). In a recommendation game with coupled signals S,S ′ , if
signal S is at least as informative as S ′ then REW∗[S] ≥ REW∗[S ′].

A recommendation policy π for signal S is also well-defined for signal S ′ that determines S .
Formally, π induces a recommendation policy π′ that inputs S ′, maps it to the corresponding
value of S , and returns π(S). Note that π and π′ choose the same joint actions, and π is BIC given
S if and only if π′ is BIC given S ′ . Henceforth we identify all such “induced” policies π′ with π.

Proof of Claim 4.7. Consider the recommendation game that corresponds to the t-th round of
Bayesian Exploration. Recall that the signal in this game is St = (ω,Ht), where ω is the inter-
nal random seed of policy π, and Ht is the history before round t. Then π(t), the restriction of
policy π to round t, is a BIC recommendation policy in this game.

The expected reward of policy π in round t is the same as the expected reward of the restricted

policy π(t), i.e.: REWt(π) = REW
(
π(t)

)
. By optimality of REW∗[St] we have REW

(
π(t)

)
≤ REW∗[St]. Since

policy π is restricted to actions in B, signal AllInfo(B) is at least as informative as signal St. So by
Lemma 4.9 we have REW∗[St] ≤ REW∗ [AllInfo(B) ], completing the proof.
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4.4 Composition of subroutines

We design iterative recommendation policies in a modular way, via “subroutines” that comprise
multiple rounds and accomplish a particular task. In particular, we need a formal framework to
argue that our “subroutines” are BIC if considered separately, and jointly form a BIC policy.

We model a “subroutine” as an iterative recommendation policy that inputs the history of the
previous rounds and chooses its own duration. More generally, we consider a common generaliza-
tion of Bayesian Exploration and the recommendation game: the state θ0 is drawn and the signal
S is observed exactly as in the recommendation game, and then the game proceeds over multi-
ple rounds, exactly as in Bayesian Exploration. (Note that the recommendation game is simply a
special case with time horizon T = 1).

We focus on a versionwhere the time horizon is infinite (and irrelevant). Instead, each iterative
recommendation policy π runs for Tπ rounds, where the number Tπ, termed duration, is chosen by
the policy rather than given exogenously. The duration is chosen before the signal is observed, and
thus can only depend on the utility structure and the signal structure. (This restriction is crucial,
see Remark 4.11.) The notion of BIC carries over word-by-word from Definition 3.1. Iterative
recommendation policies in this model will also be called subroutines.

From the computational point of view, the input to a subroutine consists of the utility struc-
ture, the signal structure, and the realization of the signal. The output of a subroutine is the tuple
(S,H), where H is the history: the chosen joint actions and the rewards/utilities for all rounds in
the execution, or any function of (S,H).

A recommendation game and aGeneral Bayesian Exploration game with the same utility/signal
structure are called associated. As in Section 4.3, we fix the utility structure, but allow the signal
S to vary from one subroutine to another. A subroutine π initialized with a particular feasible
signal s will be denoted π(s).

Now we can define the composition of subroutines. Consider two subroutines π,π′ with re-
spective signals S,S ′ . Then the composition of π followed by π′, denoted π ⊕ π′, is a subroutine
with signal S and duration Tπ + Tπ′ . The first Tπ rounds of π ⊕ π′ are controlled by π, and the
subsequent Tπ′ rounds are controlled by π′. In order for the composition to be well-defined, the
signal for π′ should be expressed in terms of the output of π. Formally, we say that π′ is a valid
sequel for π if the pair (S,H) determines S ′, where H is the history of π.

Claim 4.10. Fix the utility structure. Consider BIC subroutines π,π′ such that π′ is a valid sequel for
π. Then the composition π⊕π′ is a BIC subroutine.

Proof. Consider the BIC condition for round t of the composition π ⊕ π′. If t ≤ Tπ then this
condition is equivalent for the BIC condition for round t of subroutine π. Else, it is equivalent to
the BIC condition for round t −Tπ of subroutine π′.

Remark 4.11. It is crucial for Claim 4.10 that the subroutine’s durations are fixed in advance. If Tπ
is state-dependent, observing a recommended action at a given round t in the execution of π ⊕π′ may
shed light on whether π has terminated. This may leak something about the true state, breaking the
incentives provided by π and π′. Formally, the proof of Claim 4.10 breaks for the following reason:
when one invokes the BIC property of subroutine π (resp., π′), this property is now conditional on
t ≤ Tπ (resp., t > Tπ), and therefore may no longer hold.

A sequence of subroutines (π,π′ ,π′′ , . . .) is called valid if the every next subroutine is a valid
sequel for the previous one. It is easy to see that the composition is associative: π ⊕ (π′ ⊕ π′′) =
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(π ⊕ π′) ⊕ π′′, so it is uniquely defined by the sequence, and can be denoted π ⊕ π′ ⊕ π′′. Thus,
a BIC iterative recommendation policy can be presented as a composition of a valid sequence of
subroutines, where the first subroutine inputs an empty signal, and all durations sum up to T .

4.5 Proof of Lemma 4.1

Let π be the policy from the lemma statement, and let σ be the subroutine of duration Tπ which
coincides with π on the first Tπ rounds. (In other words, σ is a version of policy π that is “trun-
cated” after round Tπ.) Let π∗ be an optimal recommendation policy for signal S = AllInfo(A).
Note that REW∗[S] ≥ OPT(ΠBIC) by Claim 4.7. Let π′ be an iterative recommendation policy defined
as the composition of σ followed by T − Tσ copies of π∗. Note that π′ is BIC by Claim 4.10, and
receives expected reward REW∗[A] in each round after Tπ by construction.

5 Bayesian Exploration with deterministic utilities

In this section, we focus on deterministic utilities, and prove Theorem 3.2. In particular, we will
construct a BIC iterative recommendation policy π whose expected reward REW(π) satisfies (3).

Rather than comparing π directly to OPT(ΠBIC), we will use an intermediate benchmark of the

form REW∗
[
AllInfo(Adet

θ0
)
]
, for some subsetAdet

θ0
⊂ A of joint actions that depends on the realized

state θ0. While we usedAdet
θ0

=A to prove Lemma 4.1, this is not a “fair” intermediate benchmark,
because there may be some joint actions that cannot be explored by any BIC policy. Instead, we
will only consider joint actions that can be explored.

Definition 5.1 (explorability). A joint action a ∈ A is called eventually-explorable given a state
θ ∈Θ if Pr[πt = a | θ0 = θ] > 0 for some BIC iterative recommendation policy π and some round t ∈ N.
The set of all such joint actions is denoted Adet

θ .

Thus,Adet
θ0

is the set of all joint actions that can be explored by some BIC policy in some round,
given the realized state θ0. Note that it is a random variable whose realization is determined by
θ0. Using REW

∗[Adet
θ0

] as an intermediate benchmark suffices because, by Claim 4.7 we have

REW∗
[
Adet
θ0

]
≥ OPT(ΠBIC). (7)

Remark 5.2. To see thatAdet
θ0

may depend on θ0, consider the following simple example. Assume a basic
scenario with a single agent per round, two possible actions a1,a2, and deterministic rewards (denoted
R1 and R2). The prior for each action chooses reward independently and uniformly from two possible
values: {12 ,1} for R1, and {0,1} for R2. Then a2 can be explored if and only if R1 =

1
2 . (Why? In the first

round the algorithm must recommend a1. In every subsequent round before a2 is chosen, the algorithm’s
policy is a randomized mapping π : R1 → {a1,a2}. If π puts a positive probability on a2 after seeing
R1 = 1, then π is not BIC: indeed, an agent would prefer to deviate to a1 when recommended a2. On the
other hand, a policy π which deterministically chooses a1 when R1 = 1, and a2 otherwise, is BIC.)

We construct a BIC iterative recommendation policy which explores all of Adet
θ0

. Note that the
existence of such policy does not immediately follow from Definition 5.1, because the definition
only guarantees a BIC policy separately for each (θ,a) pair, whereas we need one BIC policy which
“works” for the specific (and unknown) realized state θ0, and all “matching” joint actions a.
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Definition 5.3. A subroutine is called maximally-exploring if it is a BIC subroutine that inputs an
empty signal and explores all joint actions in Adet

θ0
by the time it stops.

A maximally-exploring subroutine can be followed by exploitation, using the corresponding
optimal recommendation policy. The resulting BIC iterative recommendation policy achieves the
regret bound claimed in Theorem 3.2.

Lemma 5.4. Let σ be a maximally-exploring subroutine of duration Tσ . Let π
∗ be an optimal recom-

mendation policy for signal AllInfo(Adet
θ0

). Let π be the composition of subroutine σ followed by T −Tσ
copies of π∗. Then π is a BIC iterative recommendation policy that satisfies

REW(π) ≥ (T −Tσ ) OPT(ΠBIC). (8)

The lemma easily follows from the machinery developed in Section 4. Namely, we use the notion
and existence of Adet

θ0
-optimal policy (see Corollary 4.6), the “monotonicity-in-information” anal-

ysis which guarantees (7), and the “composition of subroutines” analysis which guarantees that π
is BIC (via Claim 4.10).

The existence of a maximally-exploring subroutine also allows to characterize the benchmark
OPT(ΠBIC) as the maximal per-round expected reward of a BIC policy that has access to the utilities
of all explorable joint actions.

Theorem 5.5. For Bayesian Exploration with deterministic utilities, OPT(ΠBIC) = REW∗[Adet
θ0

].

Corollary 5.6. Consider Bayesian Exploration with deterministic utilities. Assume that there is only
a single agent per round, the principal’s reward coincides with the agent’s utility, and all actions are
explorable. Then the benchmark is the expected reward of the best action:

OPT(ΠBIC) = E
θ0∼ψ

[
max
a∈A

f (a,θ0)
]
.

The rest of this section is organized as follows. In Section 5.1 we develop the theory of “ex-
plorability” in a recommendation game. In Section 5.2 we use this theory to define a natural BIC
subroutine and prove that it is maximally-exploring (and has the desired per-round computation
time). Finally, in Section 5.3 we put it all together to prove Theorem 3.2 and Theorem 5.5.

5.1 Explorability in the recommendation game

In this subsectionwe investigate which joint actions can be explored in the recommendation game.
We adopt a very permissive definition of “explorability”, study some of its properties, and design
a subroutine which explores all such joint actions. Throughout, we consider a recommendation
game with signal S whose support is X .
Definition 5.7. Consider a recommendation game with signal S . A joint action a is called signal-
explorable, for a given feasible signal s ∈ X , if there exists a BIC recommendation policy π = πa,s such
that Pr[π(s) = a] > 0. The set of all such joint actions is denoted EXs[S]. The signal-explorable set is
defined as EX[S] = EXS [S].

Note that EXs[S] is a fixed subset of joint actions, determined by the feasible signal s ∈ X ,
whereas EX[S] is a random variable (in fact, a 2A-valued signal) whose realization is determined
by the realization of signal S .

We show that the signal-explorable set EX[S] can only increase if signal S becomes more infor-
mative. (The proof is deferred to Appendix A.)
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Lemma 5.8 (monotonicity-in-information for explorability). Consider a recommendation game with
coupled signals S,S ′ . If signal S is at least as informative as S ′ then EX[S] ⊃ EX[S ′].

Note that EX[S] and EX[S ′] are set-valued random variables, and the claim asserts that one random
set is always contained in the other. (In general, if X and Y are random variables, we will write
X ∈ Y and X ⊂ Y to mean that the corresponding event holds for all realizations of randomness.)

A recommendation policy withmaximal support. Observe that policies πa,s in Definition 5.7 can
be replaced with a single BIC recommendation policy πmax such that EXs[S] = support (πmax(s) )
for each feasible signal s ∈ X . We will call such πmax a max-support policy for signal S . For
example, we can set

πmax = 1
|X |

∑
s∈X

1
| EXs[S] |

∑
a∈EXs[S]π

a,s. (9)

This policy is BIC as a convex combination of BIC policies, and max-support by design.
We compute a max-support policy as follows. For each joint action a ∈ A and each feasible

signal s ∈ X , we solve the following LP:

max
x∈BIC[S]

ηa,s subject to xa,s ≥ ηa,s. (10)

This LP always has a solution ηa,s ≥ 0, because BIC policies exist and any BIC policy gives a
solution x ∈ BIC[S] with ηa,s = 0. Further, ηa,s > 0 if and only if a ∈ EXs[S], in which case the solution
x is the LP-representation of a policy πa,s such that Pr[πa,s(s) = a] > 0. Then the max-support
policy πmax is computed via (9). The computational procedure is given in Algorithm 1. Note that
ComputeMaxSupport computes subsets As = EXs[S], and the output x is the LP-representation of
the policy given by (9).

Algorithm 1 ComputeMaxSupport: computes a max-support policy.

Input: the utility structure and the signal structure.
Output: an LP-representation of a max-support policy.

For each joint action a ∈ A and feasible signal s ∈ X :
solve the linear program (10); let xa,s be a solution with objective value ηa,s.

Let As = {a ∈ A : ηa,s > 0} for each s ∈ X .
Output x = 1

|X |
∑
s∈X

1
|As |

∑
a∈As x

a,s.

The “quality” of a max-support policy πmax is, for our purposes, expressed by the minimal
probability of choosing a joint action in its support:

pmin(π
max) := min

s∈X , a∈support(πmax(s) )
Pr[πmax(s) = a ] . (11)

We relate this quantity to the minimax probability in Definition 5.7:

psig[S] := min
s∈X , a∈EXs[S]

max
x∈BIC[S]

xa,s. (12)

It is easy to see that ComputeMaxSupport constructs policy πmax with pmin(π
max) ≥ 1

|A|·|X | psig[S].
To summarize, we have proved the following:
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Claim 5.9. There is a max-support policy πmax with pmin(π
max) ≥ 1

|A|·|X | psig[S]. It can be computed

by ComputeMaxSupport in time polynomial in |A|, |X |, and |Θ|.

Maximal exploration given a signal. Let us design a subroutine σ which explores all signal-
explorable joint actions. More specifically, given a recommendation game with signal S , we are
looking for a subroutine σ in the associated Generalized Bayesian Exploration game which ex-
plores all joint actions in EX[S]. Such subroutine is called maximally-exploring for signal S .

We start with a max-support policy πmax returned by ComputeMaxSupport. Let xmax be its
LP-representation, so that xmax

a,s := Pr[πmax(s) = a]. Given a particular signal realization s ∈ X ,
we proceed as follows. We compute the signal-explorable set EXs[S] as the support of πmax(s).
For each joint action a ∈ EXs[S], we choose the dedicated round τs(a) when this action is chosen.
The dedicated rounds are chosen uniformly at random, in the sense that an injective function τs :
EXs[S]→ [Tσ ] is chosen uniformly at random among all such functions (where Tσ is the duration
of the subroutine). To guarantee that the subroutine is BIC, we ensure that

Pr
[
σ t(s) = a

]
= xmax

a,s for each round t and joint action a ∈ A. (13)

To this end, for each non-dedicated round the joint action is chosen independently from a fixed
distribution Ds that is constructed to imply (13). Specifically, we write Ns = |EXs[S]| and define:

Ds(a) =
xmax
a,s − 1/Tσ
Tσ −Ns

∀a ∈ EXs[S]. (14)

It is easy to see that Ds is a distribution, provided that the duration is large enough. Specifically,
it suffices to set Tσ =max(1 +Ns , ⌈1/pmin(πmax)⌉). Then for each round t and action a ∈ EXs[S],

Pr
[
σ t(s) = a

]
= 1/Tσ +Ds(a) · (Tσ −Ns) = xmax

a,s ,

where the 1/Tσ is the probability that round t is dedicated for action a. This completes the de-
scription of the subroutine, and the proof that it is BIC. The computational procedure for this
subroutine is summarized in Algorithm 2.

Our discussion of MaxExplore can be summarized as the following claim:

Claim 5.10. MaxExplore is a maximally-exploring subroutine for signal S . Its duration is at most
|A| · |X | / psig[S] rounds. The running time is polynomial in |A| · |X | in pre-processing, and linear in |A|
per each round.

5.2 A maximally-exploring subroutine

We come back to Bayesian Exploration, and strive to explore as many joint actions as possible. We
define a natural BIC subroutine for this goal, and prove that it is indeed maximally-exploring.

Our BIC subroutine is based on the following intuition. Initially, one can explore some joint
actions via “maximal exploration” for an empty signal S1 = ⊥. This gives some additional obser-
vations, so one can now run ”maximal exploration” for a new signal S2 which comprises these
new observations. This in turn provides some new observations, and so forth. We stop after |A|
iterations, which (as we prove) suffices to guarantee that no further progress can be made.
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Algorithm 2 Subroutine MaxExplore: maximal exploration given signal S .

Input: utility structure U , signal structure Sstr, and signal realization s ∈ X .
// compute the parameters

x ← ComputeMaxSupport(U ,Sstr) // LP-representation of a max-support policy

πmax

B← {a :∈ A : xa,s > 0} // signal-explorable set EXs[S]
pmin←min(xa,s′ : a ∈ B, s′ ∈ X ) // computes pmin(π

max)
T ←max(1+ |B|, ⌈1/pmin⌉) // the duration of the subroutine

Pick injective function τ : B→ [T ] u.a.r. from all such functions.

D(a)← xa,s−1/T
T−|B| ∀a ∈ B. // distribution (14) for non-dedicated rounds

// issue the recommendations

for rounds t = 1 . . .T do

if t = τ(a) for some a ∈ B then at ← a else choose at from distribution D
Recommend action at , observe the corresponding utilities

Output: signal AllInfo({a1 , . . . ,aT }).

Formally, the subroutine proceeds in phases ℓ = 1,2,3 , . . . , |A|. In each phase, we start with the
“current” signal Sℓ, and perform “maximal exploration” given this signal by calling MaxExplore.
This call computes the “next” signal, defined recursively as

Sℓ+1 = AllInfo (EX[Sℓ] ) . (15)

After the last phase, we output the latest signal S|A|+1 which (as we prove) encompasses all obser-
vations received throughout the subroutine. Each call to MaxExplore must be parameterized with
the signal structure for the corresponding signal Sℓ. Since the signal is uniquely determined by the
realized state θ0, the signal structure is completely specified by the tuple Sstrℓ = (Sℓ(θ) : θ ∈Θ ),
where Sℓ(θ) is the value of the signal that corresponds to realized state θ0 = θ. Henceforth we
identify Sstrℓ with the signal structure. All signal structures are computed before the repeated
game starts. The pseudocode is summarized in Algorithm 3.

Let us summarize the immediate properties of RepeatMaxExplore. It is BIC as a composi-
tion of BIC subroutines by Claim 4.10. Since the support of each signal Sℓ is of size at most
|Θ|, the per-round running time is polynomial in |A| · |Θ|. This is because the running time of
ComputeMaxSupport and the per-round running time of MaxExplore are polynomial in |A| · |Θ|, by
Claims 5.9 and 5.10. The call to MaxExplore in each phase ℓ completes in poly

(
|A| · |X | / psig[Sℓ]

)

rounds by Claim 5.10. Thus:

Claim 5.11. Subroutine RepeatMaxExplore is BIC; its per-round running time is polynomial in |A|·|Θ|;
its duration is at most |A|2 · |Θ|/p∗sig rounds, where p∗sig =minℓ≤|A| psig[Sℓ].

Remark 5.12. As per Claim 5.11, p∗sig = minℓ≤|A| psig[Sℓ] is the key parameter which determines the
number of rounds in RepeatMaxExplore. It is determined by the utility structure: recall that psig[S] is
defined in (12) for any signal S , and signals Sℓ, ℓ ≤ |A| are defined recursively in (15).

Let Bℓ+1 be the set of all joint actions explored during phase ℓ. For the sake of the argument,
let us define B1 = ∅, and extend the definition of sets Bℓ and signals Sℓ to phases ℓ = 1,2,3, . . . (i.e.,
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Algorithm 3 Subroutine RepeatMaxExplore: maximal exploration.

Input: the utility structure U .
Initialize: S1 = S

str
1 = ⊥. // ‘‘phase-1 signal" is empty

// compute signal structure Sstrℓ for each signal Sℓ, as per (15)
for each phase ℓ = 1,2 , . . . , |A| do
x← ComputeMaxSupport(U ,Sstrℓ ) // LP-representation of a max-support policy

for each state θ ∈Θ do

s← Sℓ(θ) // value of signal Sℓ if θ0 = θ.
Sℓ+1(θ)← AllInfo

( {a ∈ A : xa,s > 0}) // if θ0 = θ then EX[Sℓ] =
{
a ∈ A : xa,s > 0

}
.

Sstrℓ+1← (Sℓ+1(θ) : θ ∈Θ ). // signal structure for Sℓ+1

// play the repeated game

for each phase ℓ = 1,2 , . . . , |A| do
Sℓ+1←MaxExplore(U ,Sstrℓ ,Sℓ) // compute signal Sℓ+1, as per (15)

Output: signal S|A|+1.

without an upper bound on the number of phases). By construction, Bℓ+1 = EX[Sℓ] is a random
variable whose realization is determined by the realized state θ0, and Sℓ = AllInfo(Bℓ).

We show that Bℓ+1 is the set of all joint actions explored during the first ℓ phases, and that
stopping after |A| phases is without loss of generality:

Claim 5.13. Sets (Bℓ : ℓ ∈ N) are non-decreasing in ℓ, and identical for ℓ ≥ |A|+1.

Proof. To prove that sets (Bℓ : ℓ ∈ N) are non-decreasing in ℓ, we use induction on ℓ and Lemma 5.8(a)
on “monotonicity-in-information”. Now, a strictly increasing sequence of subsets of A, starting
from an empty set, cannot have more than |A| + 1 elements. It follows that Bℓ = Bℓ+1 for some
phase ℓ ≤ |A|+1. By definition of Bℓ, the sets (Bℓ′ : ℓ

′ ≥ ℓ) are identical.

Depending on the state θ0, some of the later phases may be redundant in terms of exploration,
in the sense that Bℓ = Bℓ+1 = . . . = B|A|+1 starting from some phase ℓ. Nevertheless, we use a fixed
number of phases so as to ensure that the duration is fixed in advance. (This is required by the
definition of a subroutine so as to ensure composability, as per Claim 4.10.)

Lemma 5.14. Subroutine RepeatMaxExplore is maximally-exploring.

Proof. We consider an arbitrary BIC iterative recommendation policy π, and prove that all joint
actions explored by π are also explored by RepeatMaxExplore.

Denote the internal random seed in π byω. Without loss of generality,ω is chosen once, before
the first round, and persists throughout. Let At be the set of joint actions explored by π in the
first t − 1 rounds. It is a random variable whose realization is determined by the random seed ω
and realized state θ0. Let us represent policy π as a sequence of (π(t) : t ∈ [T ]), where each π(t) is
a BIC recommendation policy which inputs signal S∗t which consists of the random seed and the
observations so far: S∗t = (ω,AllInfo(At)), and is deterministic given that signal. In each round t,
the recommended joint action is chosen by policy π(t); it is denoted π(t)(S∗t ).

We will prove the following claim using induction on round t:

for each round t, there exists phase ℓ ∈ N such that π(t)(S∗t ) ∈ Bℓ. (16)
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For the induction base, consider round t = 1. Then A1 = ∅, so the signal is simply S∗1 = (ω,⊥).
Note that the empty signal ⊥ is at least as informative as the signal S∗1. Therefore:

π(1)(S∗1) ∈ EX
[
S∗1

]
(by definition of EX

[
S∗1

]
)

⊂ EX[⊥] (by Lemma 5.8)

= B1 (by definition of B1).

For the induction step, assume that (16) holds for all rounds t < t0, for some t0. Then At0 ⊂
Bℓ for some phase ℓ, so signal Sℓ = AllInfo(Bℓ) for phase ℓ of RepeatMaxExplore is at least as
informative as signal S∗t0 = (ω,AllInfo(At0)) for round t0 of policy π. Therefore:

π(t0)(S∗t0) ∈ EX
[
S∗t0

]
(by definition of EX

[
S∗t0

]
)

⊂ EX[Sℓ] (by Lemma 5.8)

= Bℓ+1 (by definition of Bℓ).

This completes the proof of (16). Therefore policy π can only explore joint actions in ∪ℓ∈NBℓ, and
by Claim 5.13 this is just B|A+1|, the set of joint actions explored by RepeatMaxExplore.

5.3 Putting this all together: proof of Theorem 3.2 and Theorem 5.5

We use the maximally-exploring subroutine RepeatMaxExplore from Section 5.2 (let T0 denote its

duration), and an optimal recommendation policy for signal S = AllInfo
(
Adet
θ0

)
, denote it π∗.

Let π be the composition of subroutine RepeatMaxExplore followed by T − T0 copies of π∗. By
Lemma 5.4, this policy has the reward guarantee claimed in Theorem 3.2.

Recall that REW(π∗) = REW∗
[
Adet
θ0

]
, which is at least OPT(ΠBIC) by (7). It follows that the supre-

mum in the definition of OPT(ΠBIC) is attained by π ∈ΠBIC. Which implies Theorem 5.5.
To complete the proof of Theorem 3.2, let us argue about the computational implementation of

π. For brevity, let us say polytime-computable to mean “computable in time polynomial in |A| · |Θ|”.
We need to prove that each round of π is polytime-computable. Each round of RepeatMaxExplore

is polytime-computable by Claim 5.11, and each round of π∗ is polytime-computable by defini-
tion, so it remains to prove that a suitable π∗ is polytime-computable.

By Corollary 4.6, policy π∗ is poly-time computable given the signal structure for signal S
(because the signal is determined by the realized state θ0, and therefore has support of size at
most |Θ|). Recall that S = S|A+1| is the signal computed in the last phase of RepeatMaxExplore. So
the corresponding signal structure is poly-time computable using a version of RepeatMaxExplore

without the calls to MaxExplore. This completes the proof of Theorem 3.2.
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6 Bayesian Exploration with stochastic utilities

We turn our attention to stochastic utilities. As we pointed out in Section 3.1, we compete against
δ-BIC iterative recommendation policies, for a given δ > 0.13 We construct a BIC policy whose
time-averaged expected reward is close to OPT(Πδ), where Πδ is the class of all δ-BIC policies.

In fact, we achieve a stronger result. We consider the deterministic instance: a version of the
original problem instance with deterministic utilities. For the deterministic instance, let Πdet

δ be
the class of all δ-BIC policies, and let OPTdet(·) be the value of OPT(·). We will compete against
OPTdet(Πdet

δ ). This is indeed a stronger benchmark:

Lemma 6.1. OPTdet(Πdet
δ ) ≥ OPT(Πδ) for all δ > 0.

Proof. Fix δ > 0. Given an arbitrary δ-BIC iterative recommendation policy π for the original
instance, one can construct an iterative recommendation policy σ such that for the deterministic
instance this policy is δ-BIC and achieves the same per-round expected rewards:

E

[
f (σ t ,θ0)

]
= E

[
f (πt ,θ0)

]
for each round t.

The construction is very simple: in each round t of the deterministic instance, π′ recommends the
joint action a = at selected by policy π, observes the utility tuple U(a,θ0), draws a “fake” vector of
realized utilities from the corresponding distribution D(a,θ0), and feeds this vector to π.

To complete the proof, recall that OPT(·) in (2) is defined via sup. For any ε > 0 there exists a
δ-BIC iterative recommendation policy for the original instance which comes ε-close, in the sense
that E[f (πt ,θ0)] > OPT(Πδ)− ε for some round t. Taking the corresponding policy σ as above,

OPTdet(Πdet
δ ) ≥ E

[
f (σ t ,θ0)

]
= E

[
f (πt ,θ0)

]
> OPT(Πδ)− ε.

Our policy (and regret bounds) depend on two parameters determined by the utility structure:
a version of p∗sig from Remark 5.12, and the separation parameter defined below:

Definition 6.2. The separation parameter is the smallest number ζsep > 0 such that for any states
θ,θ′ ∈Θ, any agent i ∈ [n], and any joint action a ∈ A we have

ui(a,θ) , ui(a,θ
′) ⇒ |ui (a,θ)− ui(a,θ′)| ≥ ζsep.

In words: fixing a joint action and going from one state to another, the utility of any agent
changes by at least ζsep, if it changes at all. Less formally, if the utilities change when the state
changes, then the change must be sufficiently large. The separation parameter is superficially
similar to “gap” in stochastic bandits (the difference in expected rewards between the best and
the second-best arms), but different in that ζsep refers to the difference between states, not arms.

The main steps in our solution are as follows. First, we extend some basic tools and concepts
of BIC recommendation policies to δ-BIC recommendation policies. Second, we give a useful sub-
routine that approximates the expected utilities using multiple samples of the stochastic utilities.
We show that any δ-BIC recommendation policy for the deterministic instance remains BIC when
it inputs approximate utilities instead of the expected utilities, as long as the approximation is
sufficiently good. Third, we present a maximally-exploring subroutine, analogous to the one in
Section 5, and use it to construct a BIC recommendation policy that achieves logarithmic regret
compared to the class of all δ-BIC policies.

13Recall that δ-BIC policies satisfy a stronger version of Definition 3.1 in which right-hand side of (1) is δ.
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6.1 Preliminaries: from BIC to δ-BIC

We extend some of the machinery developed in the previous sections to δ-BIC policies. In the
interest of space, we sometimes refer to the said machinery rather than spell out the full details.

We start with the notions of “eventually-explorable joint action” and “maximally-exploring
subroutine”. Note that the former only considers the deterministic instance.

Definition 6.3 (δ-explorability). Consider the deterministic instance and fix δ ≥ 0. A joint action
a ∈ A is called δ-eventually-explorable given a state θ ∈ Θ if Pr[πt = a | θ] > 0 for some δ-BIC
iterative recommendation policy π and some round t ∈ N. The set of all such joint actions is denotedAδθ .

Definition 6.4. A subroutine is called δ-maximally-exploring, for a given δ > 0, if it is a BIC subroutine
that inputs an empty signal and explores all joint actions in Aδθ0 by the time it stops.

Let us turn to the recommendation game. For the recommendation game, the distinction be-
tween deterministic and stochastic utilities is irrelevant, as far as this paper is concerned, because
only the expected utilities matter.

Definition 6.5. Consider a recommendation game with signal S , and fix δ ≥ 0. Policy π is called δ-BIC
if it satisfies a version of Definition 4.2 in which the right-hand side of (5) is δ rather than 0. Further:
• A joint action a is called δ-signal-explorable, for a particular feasible signal s ∈ X , if there exists
a δ-BIC recommendation policy πa,s such that Pr[πa,s(s) = a] > 0. The set of all such joint actions
is denoted EXδs [S]. The δ-signal-explorable set is defined as a random set EXδ[S] := EXδS [S].

• A δ-BIC policy π is called δ-max-support if support(π(s)) = EXδs [S] for each signal s ∈ X .

The LP-representation of a δ-BIC recommendation policy satisfies a version of the LP from
Section 4.2 where the first constraint expresses δ-BIC condition rather than BIC. Specifically, the
right-hand side in the first constraint should be changed from 0 to δ · Pr[πi(S) = ai ]. In terms of
the LP variables, the right-hand side becomes δ ·∑a−i∈A−i , s∈I , θ∈Θ ψ(θ) ·ψ∗(s | θ) · xa,s. The feasible
region of the modified LP will be denoted BICδ[S].

Claim 6.6. A recommendation policy π is δ-BIC if and only if its LP-representation lies in BICδ[S].

We carry over the notion of max-support policies: a δ-max-support policy πmax is a δ-BIC rec-
ommendation policy πmax such that EXδs [S] = support(πmax(s)) for each feasible signal s ∈ X .
Assuming there exists a δ-BIC policy, a δ-max-support policy can be computed by a version of
Algorithm 1, where in the linear program (10) the feasible set is BICδ[S] rather than BIC[S]. Let us
call this modified algorithm ComputeMaxSupportδ. Thus:

Claim 6.7. If there exists a δ-BIC policy, then there exists a δ-max-support policy πmax with

pmin(π
max) ≥ pδsig[S] / (|A| · |X |).

It can be computed by ComputeMaxSupportδ in time polynomial in |A|, |X |, and |Θ|.

Here pδsig[S] is defined as the natural extension of pmin[S] from Eq. (12):

pδsig[S] := min
s∈X , a∈EXδs [S]

max
x∈BICδ[S]

xa,s. (17)
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6.2 Approximating the expected utilities

Let us discuss how to to approximate the expected utilities using multiple samples of stochastic
utilities, and how to use the resulting approximate signal. In particular, we introduce an impor-
tant tool (Lemma 6.9): a fact about approximate signals which we use throughout this section.

Notation. Formulating this discussion in precise terms requires some notation. Fix subset B ⊂ A
of joint actions. Given state θ, the expected utilities of joint actions in B form a table

U(B,θ) := (( f (a,θ);u1(a,θ) , . . . ,un(a,θ) ) : a ∈ B ) .
Recall that in Section 4.2, full information pertaining to the joint actions in B is expressed as a
signal AllInfo(B) = (B, U(B,θ0)), as defined in (6).

Now, let θ = θ0 be the realized state. Let an IID utility vector for a joint action a ∈ B be an
independent sample from distribution D(a,θ). Recall from Section 3 that such sample is a random

vector in [0,1]n+1 whose expectation is U(a,θ). Further, the d-sample for B, d ∈ N, is a collection
UB = (v(a, j) : a ∈ B,j ∈ [d] ), where each v(a, j) is an IID utility vector for the corresponding joint
action a. We would like to use the sample UB to approximate U(B,θ).

Approximation procedure. Our approximation procedure is fairly natural. We input a d-sample
UB for some subset B ⊂ A. Then we compute average utilities across the d samples:

U =
(
1
d

∑d
j=1 v(a, j) : a ∈ B

)
.

Then we map these averages to the state θ which provides the best fit for the averages:

θ̂ = argmin
θ∈Θ

∥∥∥U −U(B,θ)
∥∥∥∞ ,

where the ties are broken uniformly at random (any fixed tie-breaking rule would suffice).

We will represent the output of this procedure as a signal DeNoise(UB) =
(
B, U(B,θ̂)

)
. Note

that such signal has the same structure as the “correct” signal AllInfo(B), in the sense that
DeNoise(UB) ∈ support(AllInfo(B)), so we can directly compare the two signals.

Properties of the approximation. First, we observe that the approximate signal DeNoise(UB) is
exactly equal to the correct signal AllInfo(B) with high probability, as long as the number of
samples is large compared to log(n |B|) and the inverse of the separation parameter ζsep.

Lemma 6.8. Fix subset B ⊆ A of joint actions. Let UB be a d-sample for B such that d is large enough,
namely d ≥ ζ−2sep · ln(2n |B|/β) for some β > 0, where ζsep is the separation parameter. Then

Pr[AllInfo(B) = DeNoise(UB) | θ0 = θ ] ≥ 1− β, ∀θ ∈Θ. (18)

(This is an easy consequence of Chernoff-Hoeffding Bound, see Appendix B).
The crucial point here is that DeNoise(UB) can be used instead of AllInfo(B) in the recom-

mendation game. More specifically, if π be a δ-BIC recommendation policy for signal AllInfo(B),
then it is also a BIC recommendation policy for signal DeNoise(UB), as long as the approximation
parameter β is sufficiently small compared to the minimal probability pmin(π).

Lemma 6.9. Fix subset B ⊆ A of joint actions. Let UB be a d-sample for B which satisfies (18) for
some β > 0. Let π be a δ-BIC recommendation policy for signal AllInfo(B). Then π is also a BIC
recommendation policy for signal DeNoise(UB), as long as β ≤ δ

2 · pmin(π)/ |Θ|.
We derive Lemma 6.9 as a corollary of Lemma 6.11, a general fact about approximate signals

in a recommendation game, which we develop in the next subsection.
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6.3 Approximate signals in a recommendation game

We abstract (18) as a property of two coupled signals, and generalize Lemma 6.9.

Definition 6.10. Consider a recommendation game with coupled signals S,S ′ , where the two signals
have same support X . Signal S ′ is called a β-approximation for S , β ∈ (0,1), if

Pr
[
S = S ′ | θ0 = θ

] ≥ 1− β, ∀θ ∈Θ,

where the randomness is taken over the realization of (S,S ′ ,θ0).

Lemma 6.11. Consider the setting of Definition 6.10. Let π be a δ-BIC recommendation policy for
signal S . Then π is also a BIC recommendation policy for signal S ′ , as long as β ≤ δ

2 · pmin(π)/ |X |.

As an intermediate step, we will show the following technical lemma.

Lemma 6.12. Consider the setting of Definition 6.10. Let g be a random variable in the same probability
space as (S,S ′ ,θ0), with bounded range [0,H]. Then

∣∣∣ Pr[S = s] ·E [g | S = s ] − Pr[S ′ = s] ·E[
g | S ′ = s ]

∣∣∣ ≤ βH, ∀s ∈ X . (19)

Proof. Let E denote the event of (S = S ′), which occurs with probability at least 1−β by definition.
We will also write ¬E to denote the event of (S , S ′), and we know Pr[¬E] ≤ β. Observe that the
event (S ′ = s)∧E is equivalent to the event (S = s)∧E . Also note that g ∈ [0,H], so for each s ∈ X ,
we could write

Pr[S ′ = s] ·E[g | S ′ = s] =Pr[E , S ′ = s] ·E[g | E , S ′ = s] + Pr[¬E , S ′ = s] ·E[g | ¬E , S ′ = s]
≤Pr[E , S ′ = s] ·E[g | E , S ′ = s] + Pr[¬E] ·E[g | ¬E , S ′ = s]
≤Pr[E , S = s] ·E[g | E , S = s] + βH

≤Pr[E , S = s] ·E[g | E , S = s] + Pr[¬E , S = s] ·E[g | ¬E , S = s] + βH

=Pr[S = s] ·E[g | S = s] + βH

Similarly,

Pr[S ′ = s] ·E[g | S ′ = s] =Pr[E , S ′ = s] ·E[g | E , S ′ = s] + Pr[¬E , S ′ = s] ·E[g | ¬E , S ′ = s]
≥Pr[E , S ′ = s] ·E[g | E , S ′ = s]
≥Pr[E , S = s] ·E[g | E , S = s]

≥Pr[E , S = s] ·E[g | E , S = s] + Pr[¬E , S = s] ·E[g | ¬E , S = s]− βH
≥Pr[S = s] ·E[g | S = s]− βH.

Proof of Lemma 6.11. For any agent i ∈ [n] and any joint action a ∈ A, the utility ui(a,θ) is a random
variable with bounded range [0,1]. In particular, we obtain (19) for random variable g = ui (a,θ0).

Let x be the LP-representation of policy π from the lemma statement. Pick some action ai ∈ Ai
such that Pr[πi(S) = ai ] > 0, and some other action a′i ∈ Ai \ {ai }. Denote

W (a−i ; θ0) = ui(ai ,a−i ; θ0)− ui(a′i ,a−i , ; θ0),

where a−i ∈ A−i is a joint action of all agents but i. Then
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∑

a−i∈A−i , s∈X
Pr[S = s] ·E [W (a−i ; θ0) | S = s] xa,s ≥ δ ·

∑

a−i∈A−i , s∈X
Pr[S = s] xa,s ≥ δ · pmin(π)

To show that policyπ is a BIC policy for signal S ′, it suffices to show thatE [W (π−i (S) | πi(S) = ai ]
is non-negative, and we could write

∑

a−i∈A−i , s∈X
Pr[S ′ = s] ·E[

W (a−i ; θ0) | S ′ = s
]
xa,s

≥
∑

a−i∈A−i , s∈X
(Pr[S = s] ·E [W (a−i ; θ0) | S = s ]− 2β ) xa,s ((19) with g = ui(a,θ0))

=
∑

a−i∈A−i , s∈X
Pr[S = s] ·E [W (a−i ; θ0) | S = s ] xa,s − 2β |X |

≥δpmin(π)− 2β |X | ≥ 0 (by assumptions in Lemma 6.11)

Therefore, we know that π is BIC w.r.t. the signal S .

6.4 Maximal exploration in a recommendation game

Let S be a signal with support X . We present a BIC subroutineMaxExploreδ that given an approxi-
mation signal Ŝ to the signal S , explores all the joint actions in the setA′ = EXδ[S]. The subroutine
collects multiple utility samples of each explored joint action, which allows us to construct a new
signal approximation for the signal AllInfo(A′). The pseudocode can be found in Algorithm 4.

Lemma 6.13. Let Λ = pδsig[S] / (|A| · |X |) be the lower bound on pmin(π
max) from Claim 6.7. The

subroutine MaxExploreδ is BIC if the input approximation parameter satisfies β ≤ δ
2 ·Λ/ |X |. The total

number of rounds is at most
ln(2n |A|/β′ )

Λ·ζ2sep
.

Proof. Let π be the policy computed by ComputeMaxSupportδ(U ,Sstr) within our instantiation of
MaxExploreδ. Since ComputeMaxSupportδ is a composition of R copies of π, the BIC property fol-
lows fromClaim 4.10 and Lemma 6.11. The number of rounds is immediate from the specification
of the subroutine, plugging in Λ ≤ pmin.

Note that if our algorithm has access to deterministic utilities, in the end it will be able to
construct a signal AllInfo(B), where B is the (random) set of actions explored by the algorithm.
We now show that even though our algorithm only has access to stochastic utilities, the output
signal will be a β-signal approximation to AllInfo(B).

Lemma 6.14. The output signal S ′ in MaxExploreδ is a (β + β ′)-approximation to AllInfo
(
EXδ[S]

)
,

where β and β ′ are, resp., the input and output approximation parameters.

Proof. Fix any feasible state θ. First, Pr[S = Ŝ] ≥ 1 − β, where the probability is over the ran-
domness in S and Ŝ . Conditional on S = Ŝ , the subroutine explores the subset of joint actions
B = EXδS [S] that we are interested in. Then, the lemma follows from the accuracy guarantee of
DeNoise (Lemma 6.8).
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Algorithm 4 MaxExploreδ(U ,Sstr, Ŝ ,β,β ′): maximal exploration given an approximate signal Ŝ .

Input: utility structure U , signal structure Sstr with associated signal S ;
Ŝ is a β-signal approximation to S , where β ∈ (0,1) is the input approximation parameter;
β ′ ∈ (0,1) is the output approximation parameter

// compute the parameters

let s ∈ X be the realization of signal Ŝ
x← ComputeMaxSupportδ(U ,Sstr) // LP-representation of πmax

B← {a :∈ A : xa,s > 0} // δ-signal-explorable set EXδs [S]
pmin←min(xa,s′ : a ∈ B, s′ ∈ X ) // computes pmin(π

max)

T ←max(1+ |A|, ⌈1/pmin⌉) and R← 1
ζ2sep

ln
(
2n|B|
β′

)
// #rounds and #meta-rounds

Pick injective function τ : B→ [T ] u.a.r. from all such functions. // ‘‘dedicated rounds"

D(a)← xa,s−1/T
T−|B| ∀a ∈ B. // distribution (14) for non-dedicated rounds

Initiate a set UB for storing stochastic utilities samples.
// issue the recommendations

formeta-rounds r = 1 . . .R do

for rounds t = 1 . . .T do

if t = τ(a) for some a ∈ B then at ← a else choose at from distribution D
Recommend action at , store the corresponding utilities in UB

Output: signal S ′ = (B,Û )← DeNoise(B,UB)

6.5 Maximal exploration in a repeated game

Let us presents the maximal-exploration subroutine analogous to the one in Section 5.2. It (only)
accesses stochastic utilities, and explores all joint actions that are explorable by any δ-strictly BIC
policy that has access to deterministic utitlities.

Similar to RepeatMaxExplore, the subroutine proceeds in phases ℓ = 1,2,3, . . . , |A|. In each

phase ℓ, we use the approximate signal S
β
ℓ to perform maximal exploration by instantiating the

function MaxExploreδ. This allows us to construct an approximate signal for the next phase. The
pseudocode can be found in Algorithm 5.

To state the immediate guarantees about this subroutine, let us denote

Λ
δ
sig =

minℓ≤|A| p
δ
sig[Sℓ]

|A| · |X | . (20)

By Claim 6.7, it is a lower bound on pmin(π
max) for each signal Sℓ.

Lemma 6.15. RepeatMaxExploreδ(U ,β) is BIC as long as the parameter satisfies β ≤ δ ·Λδ
sig/ |Θ|. The

total number of rounds is at most Tβ,δ =
|A|·ln(4n |A|/β )

Λ
δ
sig·ζ2sep

. The per-round running time is poly( |A| · |Θ| ).

Proof. RepeatMaxExploreδ could be viewed as a composition of subroutines MaxExploreδ such
that for each ℓ ∈ [|A|] the instantiation in phase ℓ + 1 is a valid sequel of the one in phase ℓ.
Also observe that the support of each signal Sℓ has size at most |Θ|. Then Lemma 6.13 implies
that instantiation of MaxExploreδ in each phase is BIC as long as β ≤ δ

2 ·Λδ
sig/ |Θ|. It follows that

RepeatMaxExploreδ(U ,β) is also BIC as a composition of BIC subroutines (by Claim 4.10).
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Algorithm 5 Subroutine RepeatMaxExploreδ(U ,β): δ-maximal exploration.

Input: utility structure U , confidence parameter β ∈ (0,1)
Initialize: β ′ = β/ |A| and Ŝ1 = S1 = S

str
1 = ⊥. // ‘‘phase-1 signal" is empty

// compute signal structure Sstrℓ for each signal Sℓ
for each phase ℓ = 1,2 , . . . , |A| do
x← ComputeMaxSupportδ

(
U ,Sstrℓ

)
// LP-representation of a max-support policy

for each state θ ∈Θ do

s← Sℓ(θ) // value of signal Sℓ if θ0 = θ.
Sℓ+1(θ)← AllInfo

( {a ∈ A : xa,s > 0}) // if θ0 = θ then EXδ[Sℓ] =
{
a ∈ A : xa,s > 0

}
.

Sstrℓ+1← (Sℓ+1(θ) : θ ∈Θ ).

// play the repeated game

for each phase ℓ = 1,2 , . . . , |A| do
// compute phase-(ℓ +1) approximate signal to Sℓ+1 = AllInfo

[
EXδ[Sℓ]

]

Ŝℓ+1 = (Bℓ+1, Ûℓ+1)←MaxExploreδ
(
U , Sstrℓ , Ŝℓ , β/2, β/2

)
.

Output: final signal Ŝ|A|+1

Finally, we will show that RepeatMaxExploreδ is δ-maximally exploring and outputs a β ap-
proximate signal for AllInfo(Aδθ).

Lemma 6.16. The subroutine RepeatMaxExploreδ is δ-maximally-exploring with probability at least
1 − β over the randomness of the stochastic utilities, and outputs a signal Ŝ|A|+1 that is a β-signal ap-

proximation to AllInfo(Aδθ0).

Proof. Fix any game state θ as our true state θ0. Let π be any δ-BIC iterative recommendation
policy with access to deterministic utilities. Our goal is to show that all actions explored by π are
also explored by RepeatMaxExploreδ with probability at least 1− β.

Note that in each phase ℓ of the RepeatMaxExploreδ, we know by Lemma 6.14 that except with
probability at most β ′ over the randomness of the stochastic utilities, the output signal satisfies

Ŝℓ+1 = AllInfo(EXδ[Sℓ])

For the remainder of the proof, we will condition on this event over all phases of RepeatMaxExploreδ,
which by union bound occurs with probability at least 1− |A|β ′ = 1− β.

Denote the internal random seed in π by ω. We will think of ω being drawn ahead of first
round of our Bayesian exploration game and fixed throughout the game. Let At be the set of
actions explored by π in the first (t − 1) rounds, which is determined by the realization of ω
and the true state θ0 (since π sees deterministic utitlities). We will represent π as a sequence of(
π(t) : t ∈ [T ]

)
, where each π(t) is a BIC recommendation policy which inputs the signal S∗t which

consists of the random seed and the observations so far: S∗t = (ω,AllInfo(At)), and is determined
given that signal. In each round t, we will denote the recommended joint action by π(t)(S∗t ). We
will prove the following claim using induction on round t:

for each round t, there exists phase ℓ ∈ N such that π(t)(S∗t ) ∈ Bℓ , (21)
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where Bℓ is the random set of joint actions explored by subroutine RepeatMaxExploreδ in phase ℓ.
For the base case (t = 1), we know that A1 = ∅, so the signal S∗1 = (ω,⊥). Since the random seed

is independent of the game state, we know that the empty signal (⊥) is at least as informative as
the signal S∗1. This means

π(1)(S∗1) ∈ EXδ[S∗1] (by Definition 6.5)

⊆ EXδ[⊥] (by Lemma 5.8)

= B1 (by definition of B1)

For the induction step, assume that (21) holds for all rounds t < t0, for some t0 ∈ N. This im-
pliesAt0 ⊆ Bℓ for some phase ℓ of RepeatMaxExploreδ, and so the signal Ŝℓ is at least as informative
as the signal S∗t = (ω,AllInfo(At0)). It follows that

π(t0)(S∗t0) ∈ EX
δ[S∗t0] (by Definition 6.5)

⊆ EXδ[Ŝℓ] (by Lemma 5.8)

= Bℓ (by definition of Bℓ)

This gives a proof for the claim in (21). By the same reasoning of Claim 5.13, the (Bℓ : ℓ ∈ N)
are non-decreasing in ℓ, and identical for all ℓ ≥ |A| + 1, so we have shown that all joint actions
explored by π must be contained in B|A|+1. It follows that RepeatMaxExploreδ is δ-maximally

exploring given access to stochastic utitlities, and Ŝℓ+1 = AllInfo(Aδθ0).

6.6 Putting this all together: proof of Theorem 3.3

We show that RepeatMaxExploreδ leads to a near-optimal iterative recommendation policy. The
remaining piece is that whenever a subroutine outputs an approximate signal Ŝ for AllInfo(Aδθ0),
we can use Ŝ afterwards to obtain near-optimal rewards.

Lemma 6.17. Let δ,β ∈ (0,1/2) and σ be any subroutine with duration Tσ that outputs a β-signal
approximation Ŝ to the signal S∗ = AllInfo(Aδθ). Let π∗ be an optimal δ-BIC recommendation policy

for signal S∗, and π be the composition of subroutine σ followed by T − Tσ copies of π∗(Ŝ). Then π is
BIC as long as β ≤ δ

2 ·Λδ
sig/ |Θ|, where Λδ

sig is from (20). Moreover,

REW(π) ≥ (T −Tσ )(1− β)OPTdet(Πdet
δ ).

Proof. Since the support of S∗ is at most the number of states |Θ|, it follows from Lemma 6.9 that
π∗ ∈ BIC[Ŝ], and since σ is BIC, we also have that π is BIC by Claim 4.10.

In the following, we will write s∗ and ŝ to denote the realization of signals S∗ and Ŝ respectively,
and use ψ∗ to denote the joint distribution over the two signals S∗, Ŝ and the state θ. By the
definition of β-signal approximation in Definition 6.10, we have for each θ ∈Θ,

ψ∗
(
Ŝ = S∗ | θ0 = θ

)
≥ 1− β.
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For t > Tσ , we can write the reward at round t as

E
π,ψ∗

[f (πt(ŝ),θ0) ] =
∑

θ∈Θ
ψ(θ) E

π,ψ∗
[ f (πt(ŝ),θ) | θ0 = θ ]

=
∑

θ∈Θ
ψ(θ)

(
ψ∗(Ŝ = S∗ | θ0 = θ) · E

π,ψ∗

[
f (πt(ŝ),θ) | θ0 = θ, Ŝ = S∗

]

+ψ∗(Ŝ , S
∗ | θ) · E

π,ψ∗

[
f (πt(ŝ),θ) | θ0 = θ, Ŝ , S∗

])

≥
∑

θ∈Θ
ψ(θ)(1− β) E

π,ψ∗

[
f (πt(ŝ),θ) | θ0 = θ, Ŝ = S∗

]

= (1− β)
∑

θ∈Θ
ψ(θ) E

π,ψ∗

[
f (πt(s

∗),θ) | θ0 = θ, Ŝ = S∗
]

Note that the randomvariableEπ,ψ∗ [ f (πt(s
∗),θ) | θ0 = θ ] is independent of event

{
Ŝ = S∗

}
since

the reward is fully determined by the state and the randomness of π. In particular, for each θ ∈Θ,

E
π,ψ∗

[
f (πt(s

∗),θ) | θ0 = θ, Ŝ = S∗
]
= E
π
[ f (πt(S

∗(θ),θ)) ]

In other words,

E
π,ψ∗

[ f (πt(ŝ),θ) ] ≥ (1− β)
∑

θ∈Θ
ψ(θ)E

π
[ f (πt(S

∗(θ),θ)) ] = (1− β) REW∗[S∗]

Note that we also have REW∗[S∗] ≥ OPTdet(Πdet
δ ) by Claim 4.7. Therefore, in the last (T −Tσ) rounds,

the expected reward of π is at least (1− β)OPTdet(Πdet
δ ).

To derive Theorem 3.3, we invoke Lemma 6.17 for subroutine RepeatMaxExploreδ(U ,β). Its
duration is upper-bounded by Tβ,δ in Lemma 6.15, and it is guaranteed to output a β-signal-

approximation to AllInfo(Aδθ0) by Lemma 6.16. Taking β =min
(
1
T ,

δ
2 ·Λ

δ
sig/ |Θ|

)
, we obtain

T OPTdet
(
Π

det
δ

)
− REW(π) ≤ 1+

|A| · ln (4n |A|/β )
Λ
δ
sig · ζ2sep

, where Λδ
sig is from (20). (22)

By Lemma 6.1 the benchmark OPTdet
(
Π

det
δ

)
is at least as strong as the one used in Theorem 3.3.

7 Conclusions and open questions

We introduce Bayesian Exloration, a fundamental model which captures incentivizing explo-
ration in Bayesian games, and resolve the first-order issues in this model: explorability and con-
stant/logarithmic regret. Our policies are computationally efficient, in that the per-round running
time is polynomial in the input size under a generic game representation. The number of rounds
is polynomial in the input size (in the same sense), and also depends on the Bayesian prior.

We make some simplifying assumptions for the sake of tractability. Let us discuss them in
more detail, and outline the corresponding directions for future work.
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First, we assume that the game does not change over time, even though there is a fresh set of
agents in each round. A more realistic model would have each round and/or each agent identified
by ”context”, such as the current weather and the source-destination pair in the traffic routing
example, and allow the tuple of contexts to change from one round to another. Then we (still)
have a parameterized game matrix that the principal wishes to learn, but the parametrization is
now by states and contexts. Absent BIC restriction, this is special case of “contextual bandits”, a
generalization of multi-armed bandits that is well-studied in machine learning (e.g., see Chapter
8 in Slivkins, 2019). Extending Bayesian Exploration to a model with contexts would be parallel
to extending from multi-armed bandits to contextual bandits in the machine learning literature.
For the special case of a single agent per round, such extensions have been accomplished in prior
work (Mansour et al., 2015, 2020) and subsequent work (Immorlica et al., 2019).

Second, we assume that the principal can commit to a particular policy, and the agents ratio-
nally respond to the incentives created by this policy. Such assumptions are standard in theo-
retical economics, and tremendously useful in many scenarios. Mitigating them tends to be very
challenging. A subsequent paper (Immorlica et al., 2020) accomplishes this for the basic version
of Bayesian Exploration with one agent per round. A part of the challenge is that it is funda-
mentally unclear what are the “right” assumptions on economic behavior that one should strive
for.

Third, our results for stochastic utilities only compete against δ-BIC policies, for a given δ > 0,
whereas the standard notion of BIC corresponds to δ = 0. Essentially, this is because our approach
requires at least log(1/δ) samples from each explorable joint action. While such approach cannot
handle δ = 0, one could hope to compete against δ-BIC policies for all δ > 0 at once, call such
policies strictly-BIC. This is equivalent to competing against δ-BIC policies for a sufficiently small
δ = δmin > 0, which needs to be found by the algorithm. However, such δmin may depend on the
true state θ0 (because the set of explorable joint actions may depend on θ0, as per Remark 5.2),
so it cannot be computed in advance. Estimating δmin on the fly may be feasible, but it appears to
require the MaxExploreδ subroutine to have a data-dependent duration (because of the required
number of samples mentioned above). This breaks our analysis on a very basic level, as per Re-
mark 4.11, because we cannot ensure that the composition of BIC subroutines is itself BIC. So,
competing against strictly-BIC policies remains elusive.

There is also a major assumption that we do notmake: we do not assume that the game matrix
has a succinct representation, e.g., via an (unknown) low-dimensional parameter vector. More
generally, we do not make any “inference assumptions” that would allow one to infer something
about the rewards of one joint action from the rewards of other actions.14 Absent such ”inference
assumptions”, exploring all explorable joint actions is typically necessary to optimize the recom-
mendation policy, and computation must take time polynomial in the size of the game matrix. In
contrast, a succinct game representation may potentially allow for must faster exploration and/or
computation. A subsequent paper (Simchowitz and Slivkins, 2021) addresses this question in the
special case of one agent per round, focusing on incentivizing exploration in reinforcement learn-
ing; here the succinct representation is given by the MDP. A simultaneous paper (Dughmi and Xu,
2016) addresses a similar question for computationally solving the Bayesian Persuasion game.

14Similarly, ”inference assumptions” do not appear in the fundamental results on multi-armed bandits (such as
Gittins, 1979; Auer et al., 2002a,b), and instead are relegated to the subsequent work.

33



References

Guy Aridor, YishayMansour, Aleksandrs Slivkins, and StevenWu. Competing bandits: The perils
of exploration under competition., 2020. Working paper. Subsumes conference papers in ITCS
2018 and ACM EC 2019. Available at https://arxiv.org/abs/2007.10144.

Susan Athey and Ilya Segal. An efficient dynamic mechanism. Econometrica, 81(6):2463–2485,
November 2013. A preliminary version has been available as a working paper since 2007.
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A Monotonicity in information: formulations and proofs

Recall the recommendation game with coupled signals S,S ′ such that S is at least as informative as
S ′ (as per Definition 4.8). We prove the following lemmawhich unifies Lemma 4.9 and Lemma 5.8.
We state this lemma for δ-BIC policies, as it is also used for stochastic utilities in Section 6.

Lemma A.1 (monotonicity-in-information). Consider a recommendation game with coupled signals
S,S ′ such that S is at least as informative as S ′. Then

(a) REW∗[S] ≥ REW∗[S ′]

(b) Fix δ ≥ 0. Then EXδ[S ′] ⊂ EXδ[S] with probability 1.

Throughout this section, signals S,S ′ are as in Lemma A.1, and X ,X ′ are their respective sup-
ports. All expectations are over the random choice of (S,S ′ ,θ0), and also the internal randomness
of recommendation policies (if applicable).

We will use the notion of “at least as informative” via the following corollary (which is imme-
diate from Definition 4.8):

Claim A.2. For any function h :Θ→ R and any feasible signal s ∈ S,s′ ∈ S ′

E [h(θ0) | S = s ] = E
[
h(θ0) | S = s,S ′ = s′

]
.

Given a policy π′ for signal S ′, one can define the induced policy π for signal S by setting

Pr[π(s) = a ] = Pr
[
π′(S ′) = a | S = s

] ∀a ∈ A, s ∈ X .

We use Claim A.2 to derive a more elaborate technical property: essentially, that policies π
and π′ are equivalent when applied to any given function of h :A×Θ→ R.

Claim A.3. Let π′ be an arbitrary recommendation policy for signal S ′ , and let π be the induced policy
for signal S . Then for any function h :A×Θ→ R,

E [h(π(S),θ0) ] = E
[
h(π′(S ′),θ0)

]
. (23)

Proof. Fix a feasible signal s ∈ X . Assume for now that policy π′ is deterministic. Then for any
joint action a ∈ X we have

Pr[π(s) = a | S = s]

= Pr[π(s) = a] (because randomization in π is independent)

= Pr[π′(S ′) = a | S = s] (by definition of induced policy)

=
∑

s′∈X ′
Pr[π′(s′) = a] ·Pr[S ′ = s′ | S = s]

=
∑

s′∈X ′ : π′(s′ )=a
Pr[S ′ = s′ | S = s] (since π′ is deterministic). (24)
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Therefore,

E [h(π(S),θ0) | S = s ]

=
∑

a∈A
E [h(a,θ0) | S = s ] ·Pr[π(s) = a | S = s]

=
∑

a∈A, s′∈X ′ : π′(s′ )=a
E [h(a,θ0) | S = s ] ·Pr[S ′ = s′ | S = s] (by (24))

=
∑

s′∈X ′
E
[
h(π′(s′),θ0) | S = s

] ·Pr[S ′ = s′ | S = s]

=
∑

s′∈X ′
E
[
h(π′(s′),θ0) | S = s, S = s′

] ·Pr[S ′ = s′ | S = s] (by Claim A.2)

= E
[
h(π′(s′),θ0) | S = s

]
.

Taking expectations over the realizations of signal S , we obtain the claim (namely, (23)) for the
special case when policy π′ is deterministic. For a randomized policy π′, we obtain the claim by
taking expectation over all possible realizations of π′.

We use Claim A.3 in two ways: to argue about the rewards and to argue about BIC.

Corollary A.4. Let π′ be a policy for signal S ′, and let π be the induced policy for signal S .
(a) REW(π) ≥ REW(π′).
(b) Fix δ ≥ 0. If π′ is δ-BIC, then the induced policy π is δ-BIC, too.

Proof. For part (a), simply use Claim A.3 with function h(a,θ) = f (a,θ).
For part (b), fix agent i and any two actions ai , ãi ∈ Ai . Let us use the following shorthand:

∆u(b,θ) := ui ((ai ,b−i ),θ)− ui ((ãi ,b−i ),θ) , b ∈ A, θ ∈Θ.

Use Claim A.3 with function

h(b,θ) := 1{bi=ai } ·∆u(b,θ), b ∈ A, θ ∈Θ.

It follows that

E

[
1{πi(S)=ai } ·∆u(π(S);θ0)

]
= E

[
1{π′i(S ′)=ai } ·∆u(π

′(S ′);θ0)
]
.

Consequently, since Pr[πi(S) = ai ] = Pr[π′i(S
′) = ai], we have

E [∆u(π(S);θ0) | πi(S) = ai ] = E

[
∆u(π′(S ′);θ0) | π′i(S ′) = ai

]
,

whenever Pr[πi(S) = ai ] > 0. The right-hand side of this equation is greater or equal to δ because
policy π′ is δ-BIC for signal S ′. Since this holds for any agent i and any two actions ai , ãi ∈ Ai , the
induced policy π is δ-BIC, too.

Proof of Lemma A.1. To prove that REW∗[S] ≥ REW∗[S ′], let π′ be an optimal policy for signal S ′ , and
π be the corresponding induced policy for signal S . Then by Corollary A.4 it follows that policy
π is BIC and has the same expected reward; therefore, REW∗[S] ≥ REW(π) = REW(π′) = REW∗[S ′].
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To prove that EXδ[S ′] ⊂ EXδ[S], let π′ be a δ-max-support policy for signal S ′, and π be the
corresponding induced policy for signal S . Policy π is δ-BIC by Corollary A.4(b). Moreover, for
all feasible signals s ∈ X , s′ ∈ X ′ such that Pr[S ′ = s′ | S = s] > 0 we have:

EXs[S] = {a ∈ A : Pr[π(s) = a] > 0 }
=

{
a ∈ A : Pr[π′(S ′) = a | S = s] > 0

}
(since π is an “induced policy”)

⊃ {
a ∈ A : Pr[π′(s′) = a] > 0

}
(see below) (25)

= EXs′ [S
′].

It follows that EXδ[S] ⊃ EXδ[S ′], as claimed.
It remains to prove that the inclusion ⊃ holds in (25). Fix some joint action a ∈ A such that

Pr[π′(s′) = a] > 0. Recall that Pr[S ′ = s′ | S = s] > 0 by assumption. Then

Pr[π′(S ′) = a | S = s] ≥ Pr[S ′ = s′ | S = s] ·Pr[π′(S ′ = s′) = a | S = s, S ′ = s′]

= Pr[S ′ = s′ | S = s] ·Pr[π′(s′) = a]
> 0.

B Approximating the expected utilities: proof of Lemma 6.8

We will use the Chernoff-Hoeffding Bound, a standard result on concentration of measure.

Lemma B.1 (Chernoff-Hoeffding Bound). Let X1, . . . ,Xn be i.i.d. random variables with EX[Xi] = µ
and a ≤ Xi ≤ b for all i. Then for every δ > 0,

Pr

[∣∣∣∣∣

∑
iXi
n
−µ

∣∣∣∣∣ ≥ δ
]
≤ 2exp

(
−2δ2n
(b − a)2

)
.

To show that S ′ is a β-approximation for S , we will first show that for any fixed state θ, with
probability at least 1−β over the realization of the stochastic utilities, the realizations of S ′ matches
with S . In particular, we will show that the average utilities U = (ui(a))i∈[n],a∈A are close to the

expected utilities ui(a,θ). Note that each realized utilities has bounded range u
j
i (a) ∈ [0,1], by

Chernoff-Hoeffding bound and an application of union bound, we know with probability at least
1− β, the average utilities satisfy

for all i ∈ [n],a ∈ B, |ui (a)− ui(a)| ≤

√
1

2d
ln

(
2|B|n
β

)

Note that for d ≥ 1
ζ2

ln
(
2|B|n
β

)
, then we will have |ui(a) − ui(a)| < ζ/2 for all i ∈ [n],a ∈ B with

probability at least 1 − β. We will condition on this event. This means
∥∥∥U −U(θ)

∥∥∥∞ < ζ, so Û =
U(θ) and therefore, S ′ = S .
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C Lower bound for stochastic utilities

Let us argue that theO(logT ) regret rate in Theorem 3.3 is essentially optimal for Bayesian Explo-
ration with stochastic utilities. We draw on the logarithmic lower bound in multi-armed bandits,
a well-known result that dates back to Lai and Robbins (1985).15

We start with a simpler formulation of our lower bound:

Theorem C.1. Consider Bayesian Exploration with stochastic utilities. Focus on a special case with
only a single agent per round and only two actions. For any C > 0 there is an absolute constant δ0 and a
problem instance for which any iterative recommendation policy π (BIC or not) suffers Bayesian regret

OPT(Πδ)− REW(π) ≥ C · logt for infinitely many rounds t and any δ ∈ (0,δ0). (26)

A stronger and more informative result (Theorem C.4, which implies Theorem C.1) is formu-
lated and proved later in this section, preceded by some background and discussion.

C.1 Background and discussion

Lower bounds in bandits. On a high level, a lower bound on regret in a multi-armed bandit
problem asserts that a given family F of problem instances is “hard” for any algorithm. A precise
statement of such result can take one of the following three forms found in the literature:

(i) any algorithm incurs high expected regret on some problem instance in F .

(ii) if a problem instance is drawn from some distribution over F , any algorithm incurs high
expected regret.

(iii) any algorithm incurs high regret on every problem instance in F , perhaps under some as-
sumption on the algorithm.

Form (ii) is stronger than (i). Form (iii) without any assumption is stronger than (ii). The two
most known lower bounds are the

√
T bound fromAuer et al. (2002b) and the instance-dependent

constant times log(T ) bound from Lai and Robbins (1985); they are in the form (ii) and (iii), re-
spectively. The Lai-Robbins lower bound has a weaker but more lucid corollary in the form (i).

In all bandit lower bounds that we are aware of, the construction of the family F tends to be
quite simple and intuitive, whereas the actual regret bound is obtained by a lengthy and intricate
mathematical analysis based on KL-divergence. Thus, when proving a new lower regret bound it
is very desirable to reduce it to an existing one rather than derive it from first principles.

Additional difficulties in Bayesian Exploration. Connecting Bayesian Exploration to the Lai-
Robbins lower bound is subtle, for several reasons.

First, we’d like a lower bound for the same benchmark as the upper bound in Theorem 3.3,
i.e., for OPT(Πδ), whereas the bandit lower bound is relative to the best action. While in Bayesian
Exploration some actions might not be explorable, we use the tools from Mansour et al. (2020)
to argue that all actions are explorable in the problem instances that we focus on. Moreover, the
benchmark OPT(Πδ) is about δ-BIC policies, δ > 0, whereas the results from Mansour et al. (2020)
are only about δ = 0 as stated. We need to be careful with our assumptions so as to observe that

15A more modern and lucid exposition of this result can be found in Bubeck and Cesa-Bianchi (2012, Section 2.3).
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the technique from Mansour et al. (2020) yields in δ-BIC policies, for any sufficiently small δ. In
the end, we conclude that OPT(Πδ) equals the best-action benchmark.

Second, the Lai-Robbins lower bound includes a non-trivial assumption that, essentially, the
algorithm’s regret is not too high. So, the lower bound for Bayesian Exploration should either
include a similar assumption explicitly, or derive it inside the proof (we accomplish the latter).
Moreover, while a policy for Bayesian Exploration can be seen as a bandit algorithm, in Bayesian
Exploration the algorithm inputs a prior, whereas in the Lai-Robbins lower bound it doesn’t. In
particular, the Lai-Robbins machinery immediately applies only when the prior is fixed. In or-
der to resolve these difficulties and apply the Lai-Robbins lower bound after all, we focus on a
carefully constructed instance of Bayesian Exploration, and formulate a non-standard version of
Lai-Robbins whose proof is implicit in Bubeck and Cesa-Bianchi (2012, Section 2.3).

C.2 Formulation and proof

We focus on a relatively simple special case of Bayesian Exploration for which the techniques from
Mansour et al. (2020) and Lai and Robbins (1985) can be usefully applied.

Definition C.2. Consider a special case of Bayesian Exploration with only a single agent per round
(n = 1), and only two actions, a1 and a2. We posit that principal’s reward equals agent’s utility, and that
the (realized) agents’ utilities are Bernoulli random variables. The prior is independent:

Pr[u(a1) = ν1 and u(a2) = ν2 ] = Pr[u(a1) = ν1] ·Pr[u(a2) = ν2],

where u(a) denotes the expected utility of action a.
Further, expected utilities can only take exactly three distinct values:

u(a) ∈ {ν1,ν2,ν3} ⊂ (0,1) for each action a,

and the prior assigns a positive probability to each action-value pair: Pr[u(ai) = νj ] > 0. The two actions
have distinct prior mean rewards: E[u(a1)] , E[u(a2)].

Such problem instances are called two-by-three instances with support {ν1,ν2,ν3}.

Lemma C.3. For any two-by-three instance of Bayesian Exploration, there exists δ0 > 0 such that

BU = OPT(Πδ) for any δ ∈ (0,δ0).

Proof. Fix a two-by-three problem instance, let U denote its utility structure. Since the two actions
have distinct prior mean rewards, without loss of generality assume that E[u(a1)] > E[u(a2)].

It is easy to see that this problem instance satisfies the following property. Let Sk be the the
random variable representing the first k rewards received from action a1. Let

Xk = E

[
µ2 −µ1|Sk

]
.

There exist constants kU ,τU ,ρU > 0, possibly depending on U ,

Pr
[
Xki > τU

]
≥ ρU ∀k > kU .

Mansour et al. (2020, Section 4) proved that with this property, both actions are eventually ex-
plorable. Moreover, they provided a BIC policy which explores both actions at least k times, for
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any given k, and terminates at some round T = Tk,U determined by the k and the utility structure.
Let us extend this policy by one more round, so that in the last round it recommends an arm with
a highest posterior mean reward. It is easy to verify that this extended policy is in fact δ-BIC for
any δ ∈ (0,δU ) and k > k′U , for some constants δU and k′U that are determined by the utility struc-
ture. Let f (k) be the Bayesian-expected reward of this policy in the last round, as a function of
parameter k. It is easy to see that f (k)→ BU as k→∞.

We consider iterative recommendation policies π that run indefinitely, without a built-in time
horizon. In light of Lemma C.3, we focus on regret with respect to the best-action benchmark. For
technical convenience, we define it here for each round t and before taking the expectation over
the prior:

R(t) := t ·
[
max
a∈A

u(a,θ0)
]
−

t∑

s=1

u(πs,θ0).

Theorem C.4. Fix two distinct numbers ν1,ν2 ∈ [14 , 34 ]. There exists a number ν ∈ (0,1) \ {ν1,ν2} and
an absolute constant C0 with the following property. Consider any two-by-three instance of Bayesian
Exploration with support {ν,ν1,ν2} and prior probabilities

Pr
[
u(ai ) = νj

]
∈ [14 , 34 ], i, j = {1,2}. (27)

On this problem instance, any iterative recommendation policy (BIC or not) suffers regret

E[R(t)] ≥ C0 · logt
|ν1 − ν2|

for infinitely many rounds t. (28)

To prove Theorem C.4, we make a connection to a basic model of multi-armed bandits in
which there are only two actions a1,a2, the reward of each action a is a Bernoulli random variable
with a fixed but unknown expectation µ(a), and no Bayesian prior is available to the algorithm.
Henceforth, we refer to this model as Basic Bandits. An instance of Basic Bandits is specified by
the mean rewards µ(a1),µ(a2). Any iterative recommendation policy for a two-by-three instance
can be interpreted as an algorithm for Basic Bandits.

We use a non-standard version of the Lai-Robbins lower bound, stated below. It is implicit in
the proof of the standard version, as presented in Bubeck and Cesa-Bianchi (2012, Section 2.3).

TheoremC.5 (Lai and Robbins (1985); Bubeck and Cesa-Bianchi (2012)). Fix two distinct numbers
ν1,ν2 ∈ [14 ,

3
4 ]. There exists a number ν ∈ (0,1) \ {ν1,ν2} with the following property. Consider any

algorithm for Basic Bandits which achieves a “not-too-high” regret for each problem instance with mean
rewards in {ν,ν1,ν2}. Specifically, assume this algorithm achieves regret

E[R(t)] ≤O(CI ,α t
α) for each round t and each α > 0, (29)

where the constant CI ,α is determined by the problem instance and the α. Then for any problem instance
with distinct mean rewards in {ν1,ν2} this algorithm suffers regret

E[R(t)] ≥ C · logt|ν1 − ν2|
for any time t > t0, (30)

where C is an absolute constant and t0 can depend on the problem instance.

43



Proof of Theorem C.4. Fix an iterative recommendation policy π, BIC or not. Pick ν as in Theo-
rem C.5. Fix a two-by-three problem instance I with support {ν,ν1,ν2} and prior probabilities as
in (27). For the sake of contradiction, suppose policy π does not satisfy the lower bound (28) for
this problem instance. Then, letting c0 = 1/ |ν1 − ν2|, for some time t0 it holds that

E[R(t)] ≤O(c0 log t) for any time t > t0

(where the O() notation hides absolute constants). It follows that policy π satisfies this upper
bound for any instance of Basic Bandits with mean rewards in {ν,ν1,ν2}. Then by Theorem C.5
policy π suffers the lower bound (30) for the instance of Basic Bandits with mean rewards µ(a1) =
ν1 and µ(a2) = ν2. This instance occurs with constant probability with respect to the prior in I ,
which implies the desired lower bound (28).
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