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Bayesian optimization is a powerful tool for expensive stochastic black-box optimization problems such

as simulation-based optimization or machine learning hyperparameter tuning. Many stochastic objective

functions implicitly require a random number seed as input. By explicitly reusing a seed, a user can exploit

common random numbers, comparing two or more inputs under the same randomly generated scenario, such

as a common customer stream in a job shop problem, or the same random partition of training data into

training and validation set for a machine learning algorithm. With the aim of finding an input with the best

average performance over infinitely many seeds, we propose a novel Gaussian process model that jointly

models both the output for each seed and the average over seeds. We then introduce the Knowledge Gradient

for Common Random Numbers that iteratively determines a combination of input and random seed to

evaluate the objective and automatically trades off reusing old seeds and querying new seeds, thus overcoming

the need to evaluate inputs in batches or measuring differences of pairs as suggested in previous methods.

We investigate the Knowledge Gradient for Common Random Numbers both theoretically and empirically,

finding it achieves significant performance improvements with only moderate added computational cost.
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1. Introduction

We consider the problem of expensive stochastic optimization with limited evaluations,

arg max
x∈X

E[θ(x, s)], (1)

where θ(x, s) is a real valued output, and X ⊂ Rd is the solution space, usually given by box

constraints for continuous variables, or a set of discrete alternatives. The parameter s represents

all of the stochasticity in the objective, i.e., θ(x, s) is deterministic. For example, s may be the

seed of a pseudo random number generator that is called within a simulator and that uniquely

defines a “scenario” passed to the objective function. Hence evaluating multiple x with the same s

will reuse a set of common random numbers (CRN). The aim of optimization is to find an x ∈X

that performs best when averaged over all possible randomly generated scenarios and we apply

Bayesian optimization for the search. Example applications include

Control and Reinforcement Learning: x are parameters of a control policy, s defines a

randomly generated environment (e.g. maze, race track, terrain) and θ(x, s) is final reward.

Machine Learning: x are hyperparameters of a machine learning algorithm or model, s

defines a random split of training data into train and validation sets, and θ(x, s) is accuracy.

Simulation Optimization: In many optimization problems, a solution x can only be evalu-

ated by a stochastic simulator θ(x, s) whose random number generator seed s we may choose.

In this work we empirically investigate the following two simulation optimization applications.

Inventory Management: x are target inventory levels below which more stock is ordered,

s defines a random stream of customers and θ(x, s) is profit.

Base Location: x are spatial locations of ambulance bases, s defines times and locations of

patients randomly appearing across the map, and θ(x, s) is average ambulance journey time.

CRN is well known in the simulation field as a powerful variance reduction technique which helps

to discern the quality difference between alternatives. It is beneficial whenever the quality of two

solutions for different seeds is positively correlated since

Var(θ(x, ·)− θ(x′, ·)) = Var(θ(x, ·)) + Var(θ(x′, ·))− 2Cov(θ(x, ·), θ(x′, ·))

<Var(θ(x, ·)) + Var(θ(x′, ·)).
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This is the case for example because some seeds create scenarios that are easier than others, such

as in the above inventory problem, when a simulation with more customers is likely to lead to

higher profit for most reorder levels.

From a surrogate modeling perspective, as a result of using CRN, the noise corrupting the

objective output is correlated for the same seed. This is in contrast to the common assumption

of independent noise for the objective outputs. There have been some previous works that use

CRN in combination with Bayesian optimization, either evaluating pairs of candidates or multiple

comparisons either “with CRN” or “without CRN”.

In this work, we take a different perspective, generalizing past approaches and explicitly modeling

the influence of the seed. We highlight that the domain of the objective is the cross-product of

the solution space and positive integer seeds X × {1,2, ....} and we refer to this domain as the

acquisition space. Therefore, the surrogate model must be defined over X ×N+, the optimization

algorithm must propose input pairs (x, s) ∈X ×N+ and evaluate θ(x, s) with the goal of learning

argmaxxθ̄(x) = argmaxxE[θ(x, ·)]. Given this perspective, we emphasize that the benefit of using

CRN comes from the emergent structure in the noise, i.e., how the output for a single seed is

uniquely different from the average over seeds,

εs(x) = θ(x, s)− θ̄(x). (2)

In particular, if ε1(x) = o1 is the constant function, this implies that argmaxxθ̄(x) = argmaxxθ(x,1)

and it is sufficient to optimize the single seed s = 1. Thus, first we propose a Gaussian process

model for θ(x, s) that also yields a method for inferring θ̄(x) and is a generalization of standard

models. Second, we propose the Knowledge Gradient for Common Random Numbers (KGCRN)

that quantifies the value of a new point in X ×N+ for learning the optimizer of the average over

infinitely many seeds, argmax θ̄(x). Optimizing KGCRN determines the most beneficial combination

of solution x executed with seed s to learn argmaxxθ̄(x). The KGCRN algorithm is therefore able to

automatically trade-off the benefits of evaluating x with a previously evaluated seed (i.e., utilizing

CRN), and of evaluating x with a fresh new seed, by simply maximizing the expected benefit. This
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removes both, the need to observe multiple x simultaneously in a batch with CRN or the need to

consider differences in pairs of outputs evaluated with CRN.

In the following section we briefly summarize related work, then formally define the problem in

Section 3. Section 4 describes and motivates the proposed surrogate model and Section 5 derives the

new acquisition procedure and discuses practicalities. In Section 6 we draw parallels with a previous

approach based on pairwise sampling. An empirical evaluation on both synthetic experiments and

the two simulation optimization applications mentioned above is presented in Section 7. The paper

concludes in Section 8.

2. Literature Review

Common random numbers (CRN) can be applied to any stochastic optimization problem where

the user can control the randomness of the objective. A typical use case in stochastic computer

simulation is Ranking and Selection, the problem of finding the best from a finite (small) set of

uncorrelated solutions. In such a problem setting, a user is able to perform repeated evaluation

of all solutions, see Kim (2013) and Frazier (2012) for a summary of frequentist and Bayesian

techniques, respectively. Combining CRN with ranking and selection has been considered with

two-stage methods (Nelson and Matejcik 1995, Chick and Inoue 2001) that initially sample all

solutions multiple times to learn noise covariance structure and a second stage to exploit the learnt

structure. Fu et al. (2004) further investigate the second stage of the two stage process. More

recently, a sequential method has been proposed by Görder and Kolonko (2019) that keeps track

of all sampled seeds and uses the same series of seeds for all candidates.

When the candidate solutions have associated features that can inform simulation output, then

surrogate models can aid the optimization and enable search over much larger (possibly infinite)

spaces X. Gaussian Random Fields allow to define a correlated prior over outputs that depends

on similarity in inputs across the space. Gaussian processes (GP) (Rasmussen 2003), or Kriging

(Ankenman et al. 2010), are often employed when the search space is numerical, i.e., continuous or

integer. Jones et al. (1998) consider the optimization of a deterministic function using a Gaussian
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process. Huang et al. (2006b) and Scott et al. (2011) among many others consider noisy functions

assuming independent noise. For integer ordered spaces, or any lattice/network, one may employ

Gaussian Markov Random Fields (Salemi et al. 2019) for faster computation. The consequence

of GP modeling with correlated noise has been considered by Chen et al. (2012) when assuming

constant noise correlation across the solution space X. Xie et al. (2016) propose a method to

combine a GP with CRN for optimization. They sample either a single solution or a pair under a

new seed in each iteration.

In this work we consider the seed s a (categorical) input to the objective θ(x, s) and the target

of optimization θ̄(x) is the objective with the s argument “integrated out”. Hence this work is

related to optimization of functions with (continuous) integrals (Toscano-Palmerin and Frazier

2018) or simulation optimization with an uncertain simulation input parameter (Pearce and Branke

2017). Both methods sequentially determine a solution and input parameter in order to optimize

the objective integrated over input parameters. In such a problem setting, the surrogate model

and data collection are defined over the multidimensional domain of decision variables and input

parameters. However, in the CRN setting, the variable to be averaged out is categorical and there

is no “similarity” over seeds. In this work we show how the structural assumptions of CRN lead to a

specific model design and interactions with the acquisition procedure. This results in a dynamically

growing acquisition space yet the algorithm still maintains minimal computational increase over

an equivalent non-CRN algorithm.

3. Problem Definition

Let θ : X ×N+→ R be an expensive-to-evaluate, real valued function with arguments composed

of a real valued solution x ∈X ⊂ Rd and a nominal positive integer seed s ∈ N+ and the domain

is the acquisition space X̃ = X × N+. We refer to θ(x, s) as the objective function. The random

seed s controls all stochasticity in the function, i.e., θ(x, s) is deterministic. Note that we use the

term ‘seed’ to represent all the stochasticity in the objective function. Usually a simulation requires

many random numbers, often organised in synchronised streams, e.g., a queuing model has one
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stream for arrival times and one stream for processing times. We use s to represent one complete

set of streams of random numbers needed for one simulation, as could for example be generated

by a pseudo random number generator called after setting a specific seed. It is not necessary to

assume that each solution will use the same amount of random numbers from such streams.

The aim is to identify the solution x from the solution space X that maximizes the expectation

of the objective over random number streams

arg max
x

θ̄(x) = arg max
x

E[θ(x, ·)]

and we refer to θ̄(x) as the target. There is a limited budget of N objective function calls, and

for each call, the user can choose a seed s and a solution x, then observe y = θ(x, s). Function

evaluations may be collected sequentially so that after n measurements the user may determine

the x and s for the (n+ 1)th function evaluation.

If every call to the function uses a new unique random seed, the problem reduces to standard

stochastic optimization and the user only needs to determine x values for each evaluation of θ(x, s).

The problem considered here is therefore a more general setting that allows the reuse of random

number seeds by making the argument s explicit.

There are various extensions to this problem setting; one could allow the simulation run length

to be varied, augmenting the domain with a run length variable. Similarly, the setting may be

extended to account for variable cost of objective calls. Here we consider the fundamental setting

where the simulator is a black-box that takes the pair (seed, solution) as input and returns the

observed performance.

4. A Surrogate Model for Simulation with Common Random Numbers

Before we propose KGCRN in Section 5, we describe our model for θ(x, s).

4.1. The Gaussian Process Generative Model

A generative model is a probability distribution over all observable and unobservable quantities

and such a model can be sampled to generate realizations of all variables thereby synthesizing data.
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Inference is the task of estimating the unobserved quantities that are consistent with both, the

generative model and the observed quantities. In the case of optimization with CRN, we desire a

generative model with two properties. First, sampling outputs from the generative model assuming

each output comes from a different seed must recover a model used without CRN. Second, the

seeds are labeled with arbitrary numbers, there is no exploitable “neighborhood” between seeds.

Following previous works without CRN, we first assume that the target, θ̄(x), is a realization

of a Gaussian process with (typically constant) prior mean µ̄(x) and covariance function or kernel

kθ̄(x,x
′) such as a 5

2
-Matérn or squared exponential. We use the following notation

θ̄(x)∼GP
(
µ̄(x), kθ̄(x,x

′)
)
. (3)

Given n solutions Xn = (x1, ..., xn) and corresponding seeds Sn = (s1, ..., sn), when all seeds are

unique, e.g. si = i, each output value is generated by evaluating the target and adding independent

and identically distributed Gaussian noise yi ∼N(θ̄(xi), σ2
ε (x

i)) with variance σ2
ε (x

i). The vector

of outputs, Y n = (y1, ..., yn), is assumed to be a single multivariate Gaussian random vector with

constant mean and a covariance matrix composed of a kernel matrix and diagonal noise matrix

with entries σ2
ε (X

n),

Y n ∼N
(
µ̄(Xn), kθ̄(X

n,Xn) + diag(σ2
ε (X

n))
)
. (4)

For θ(x, s) in the CRN setting, we require a kernel over X̃ = X × N+ that when evaluated for

unique seeds recovers the above covariance matrix. To reproduce the diagonal matrix, we require

a Kronecker delta function over seeds δs′s. To model covariance in outputs for the same seed, we

require a difference kernel kε(x,x
′) over X×X that must satisfy kε(x,x) = σ2

ε (x), we return to the

design of kε(x,x
′) shortly. We propose the following model for the objective,

θ(x, s)∼GP
(
µ̄(x, s), kθ̄(x,x

′) + δs′skε(x,x
′)
)
, (5)

where µ̄(x, s) = µ̄ is the constant prior mean. Given Xn and Sn, the generative distribution of Y n

is thus

Y n ∼N
(
µ̄(X̃n), kθ̄(X

n,Xn) +1Sn ◦ kε(Xn,Xn)
)
, (6)
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where ◦ denotes matrix element-wise product and 1Sn ∈ {0,1}n×n is a binary masking matrix

with elements equal to one at (i, j) when si = sj. Hence for the noise matrix, 1Sn ◦ kε(Xn,Xn),

the diagonal and also any off-diagonal elements where si = sj are non-zero with corresponding

covariance kε(x
i, xj). The model assumes the form of the objective consists of the target and

difference functions, εs(x),

θ(x, s) = θ̄(x) + εs(x) (7)

where each εs(x) is an independent GP realization from a common model with constant zero mean,

ε1(x), ε2(x), ...∼GP
(

0, kε(x,x
′)
)
. (8)

This model structure has multiple desirable properties. Firstly, by design it mirrors the standard

model for non-CRN use cases, y = θ̄(x) + ε, where it is commonly assumed that all ε are indepen-

dent Gaussian variable realizations. With CRN, the “noise” terms εs(x) are independent Gaussian

process realizations. Secondly, kε(x,x
′) dictates the covariance in differences from the target (the

covariance in noise) induced by CRN as a function of x and x′, we discuss our choice below. Thirdly,

kε(x,x
′) is typically a parametric function whose hyperparameters are learnt from multiple realiza-

tions, ε1(x), ε2(x), ..., of a single GP and each seed may be viewed as a task in a multi-task model.

This differs slightly from other multi-task models commonly used for multi-fidelity optimization

(Swersky et al. 2013, Poloczek et al. 2017), or for multi-objective optimization (Picheny 2015),

where one task is not necessarily the same as others and a unique GP model for each task may

be more suitable. However, because all εs(x) come from a single common GP, the kernel kε(x,x
′)

must have the flexibility to model how the objective for any seed may differ from the target.

We assume a decomposition of the difference functions, εs(x), into three parts: a constant offset os,

a bias function bs(·), and white noise ws(·):

θ(x, s) = θ̄(x) + εs(x) = θ̄(x) + os + bs(x) +ws(x). (9)

Firstly, we aim to capture the notion that some seeds may result in scenarios that are “easy” and

others “hard”, for example if the demand for a product in a simulation scenario is higher, most
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inventory policies or solutions x will be able to generate higher profit. Thus εs(x) may contain a

global offset os modeled by the constant kernel ko(x,x
′) = η2,

os(x)∼GP(0, ko(x,x
′)), (10)

where the sample function is constant for all x and hence denoted by os ∼N(0, η2).

Secondly, each seed may create a scenario that favours some solutions while penalising others,

leading to seed specific peaks and troughs thus the optimal solution differs across seeds. For exam-

ple, given a stream with high demand, one solution x may perform above average while another

solution x′ is below average. A stream with low demand may reverse the solution ranking. Overall,

we expect the response surface for a particular seed to be reasonably smooth, i.e., for very similar

solutions x and x′ we expect very similar performance. This is ensured by introducing correlation

across nearby solutions in bias functions bs(x) modelled with the same kernel as the target, however

rescaled kb(x,x
′) = σbkθ̄(x,x

′),

bs(x)∼GP(0, kb(x,x
′)) . (11)

Thirdly, fixing the seed results in a deterministic simulator. Despite the fact that we assume

a mostly smooth response surface, there may be discontinuities. For example, in discrete event

simulation, there may exist x for which a small change may suddenly result in a different execution

path of the simulator and a sudden change in outcome. In practice, such effects are impossible to

model. Such effects not captured by os and bs(x), as well as other problems of model misfit, may

simply be treated as noise. Thus, we follow Chen et al. (2012) and Xie et al. (2016) and include

a realization of white noise ws(x) with kernel kw(x,x′) = δx′xσ
2
w

ws(x)∼GP(0, kw(x,x′)) . (12)

Therefore, this functional form of θ(x, s) is a realization of the Gaussian process

θ(x, s) ∼ GP
(
µ̄, kθ̄(x,x

′) + δss′(η
2 + kb(x,x

′) +σ2
wδxx′)

)
(13)

= GP
(
µ̄, k(x, s,x′, s′)

)
. (14)
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Figure 1 Samples from the generative model. In all plots, lines show θ̄(x) and θ̄(x) + os + bs(x) (no white noise),

points show θ(x, s) (including white noise). Left plots: an algorithm must evaluate multiple seeds to find

optimum. Right plots: an algorithm can optimize one seed to find arg max θ̄(x).

See Figure 1 for artificial example realizations, and Figure EC.8 in the Electronic Companion

for some realizations on the two application examples we consider in this paper. These also show

characteristics consistent with the above model.

Note that a standard homoscedastic Gaussian process model requires choosing a kernel kθ̄(x,x
′)

and learning a single noise parameter ws. The CRN model introduces just two further parameters

o2
s and b2

s. While more general models may be used, introducing significantly more parameters can

easily lead to overfitting issues. We discuss this in more detail in Section 5.2.1. For the rest of this

section, we assume that all kernels are known functions and the unknown θ(x, s) are to be inferred.
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4.2. Inferring the Objective θ(x, s)

We denote an observation at time n as (xn, sn, yn), the sequence of observed solutions as

(x1, ..., xn) = Xn, the sequence of observed seed values as Sn and the sequence of input pairs,

x̃i = (xi, si), as (x̃1, ..., x̃n) = X̃n. The vector of observed outputs is denoted (y1, ..., yn) = Y n. And,

abusing notation, we also treat these as sets, e.g., x̃ ∈ X̃n, and use both (x, s) and x̃ interchange-

ably to represent an input pair. The dataset of observed inputs and outputs we denote Dn =

((x̃1, y1), ..., (x̃n, yn)). Inferring the underlying realization of θ(x, s) can be done analytically using

the Bayesian update equations for multivariate Gaussian random variables,

θ(x, s)|Dn ∼ GP
(
µn(x, s), kn(x, s,x′s′)

)
µn(x, s) = µ0(x, s)− k0(x, s, X̃n)K−1(Y n−µ0(X̃n)) (15)

kn(x, s,x′, s′) = k0(x, s,x′, s′)− k0(x, s, X̃n)K−1k0(X̃n, x′, s′) (16)

where k0(x, s,x′s′) is any positive semi-definite kernel over X ×N+. The matrix K = k0(X̃n, X̃n)

is the generative covariance for Y n. For the rest of this work, we use the shorthand En[·] =E[·|Dn].

Note that there is no added identity matrix as in Equation (4), thus the model assumes deterministic

outputs for any given input pair (x, s). At first, this may appear at odds with the white-noise

assumption. However, white noise may be viewed as a squared exponential kernel with infinitely

short length scale and ws(x) is a realization of such a generative model. As a result, the posterior

mean discontinuously interpolates the data as shown in Figure 2.

4.3. Inferring the Target θ̄(x)

The model of θ(x, s) and collected data is over the acquisition space X ×N+ while the aim of the

optimization is to maximize θ̄(x) over solution space X. The target is the objective averaged over

infinite seeds and therefore the GP model of θ(x, s) averaged over infinite seeds induces another

GP for the target θ̄(x) as follows.
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Lemma 1. For any given kernel over X × N+ that is of the form kθ̄(x,x
′) + δss′kε(x,x

′), and a

dataset of n input-output triplets Dn, the posterior over the target is a Gaussian process given by

θ̄(x)|Dn ∼ GP(µnθ̄ (x), knθ̄ (x,x′)) (17)

µnθ̄ (x) = µn(x, s′) (18)

knθ̄ (x,x′) = kn(x, s′, x′, s′′) (19)

where s′, s′′ ∈N+ \Sn with s′ 6= s′′ are any two unobserved unequal seeds.

The intermediate steps and proof are given in the Electronic Companion EC.1.1. In practice, seed

values are mapped to {1, 2, . . . } (without gaps) and we construct a single GP model for θ(x, s) over

X ×N+. We then use predictions from this model on the unobservable seed s= 0 as predictions of

the target, En[θ̄(x)] = µn(x,0).

5. Knowledge Gradient for Common Random Numbers Algorithm

The Knowledge Gradient for Common Random Numbers algorithm (KGCRN) is summarized in

Algorithm 1. Given a budget of N calls to θ(x, s), the proposed Bayesian optimization algorithm

has two phases, an initialization phase where we evaluate a small number of candidates ninit�N ,

chosen as a space filling design in X×{1,2,3,4,5}. That is, we instantiate five (arbitrarily chosen)

seeds to collect data points that are then used to fit a GP model (we show in the Appendix that

the algorithm is insensitive to the number of seeds used for initialisation). In the second phase an

acquisition function (infill criterion) is used to sequentially allocate the remaining N −ninit points

of the budget, updating the model after each new point and determining the next point. Section 5

explains the details of the acquisition function, implementation details and algorithm properties

are discussed in Sections 5.2 and 5.3, respectively.

5.1. Acquisition Function

Evaluations of θ :X ×N+→ R are collected in order to optimize θ̄ :X → R. Given a joint model

of both functions, the acquisition function quantifies the benefit of a new hypothetical observation
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at (x, s) ∈ X̃. This function is then optimized to obtain the most informative (x, s)n+1 and the

objective is evaluated at yn+1 = θ(xn+1, sn+1). The surrogate model is defined over the space of

non-negative seeds X ×{0,1, ...}, the model of the target is over X ×{0} while the objective, and

acquisition, is over X × {1,2, ..}. Therefore we require a ‘correlation aware’ acquisition function

that computes the benefit of a sample at (x, s)n+1 for sn+1 > 0 by measuring changes in the

model at other locations (x′,0) 6= (x, s)n+1. This requirement excludes certain acquisition functions

in their unmodified form such as Expected Improvement (Jones et al. 1998), Upper Confidence

Bound (Srinivas et al. 2009) and Thompson sampling (Kandasamy et al. 2018). Two popular

families of acquisition functions that naturally account for how the whole surrogate model changes

include Entropy Search (Villemonteix et al. 2009), and Knowledge Gradient (Frazier et al. 2009).

Knowledge Gradient quantifies the benefit of a new hypothetical point (x, s, y)n+1 as the expected

incremental increase in the predicted outcome for the user, peak posterior mean E[maxx µ
n+1(x)−

maxx µ
n(x)|Dn, xn+1]. In this work we adopt the Knowledge Gradient for its principled value of

information-based approach and provable performance guarantees.

In our setting the value of information is the expected increase in the predicted peak of the

target, maxµn+1(x,0)−maxµn(x,0), caused by a new sample yn+1 at (x, s)n+1. The Knowledge

Gradient for Common Random Numbers, KGCRN
n : X̃→R+, is given by

KGCRN
n (x, s) = En

[
max
x′∈X

µn+1(x′,0)−max
x′′∈X

µn(x′′,0)

∣∣∣∣(x, s)n+1 = (x, s)

]
(20)

= En
[

max
x′∈X
{µn(x′,0) + σ̃n(x′,0;x, s)Z}−max

x′′∈X
µn(x′′,0)

]
(21)

where, conditioned on Dn, the expectation is only over Z ∼N(0,1) and

σ̃n(x′,0; (x, s)n+1) =
kn(x′,0, (x, s)n+1)√
kn((x, s)n+1, (x, s)n+1)

.

Note that σ̃n(x′,0; (x, s)n+1) · Z = µn+1(x′,0) − µn(x′,0) gives the change in the posterior mean

at x′ of the target that results from sampling x with seed s. The numerator is the covariance

between the sample location (x, s)n+1 and location of the prediction (x′,0). The denominator
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serves to normalize the posterior variance of the sample. A full derivation of σ̃n(·) can be found

in multiple previous works (Frazier et al. 2009, Pearce and Branke 2017). The next input to

the objective, (x, s)n+1, is determined by optimizing the above acquisition function (x, s)n+1 =

arg maxx,sKGCRN
n (x, s). Evaluating of KGCRN

n (x, s) can be performed analytically when X is a finite

set. For the more general case, approximations are required that we discuss in Section 5.2.2.

The acquisition space, X ×N+, contains an infinite number of seeds. However as a result of the

assumed form of the GP, the posterior mean and correlation are identical for all unobserved new

seeds s ∈ N+ \ Sn. Thus, the value under the acquisition function is identical for all new seeds,

KGCRN
n (x, s) = KGCRN

n (x, s′) for all s, s′ ∈ N+ \ Sn. Hence, it suffices to consider the acquisition

function on all observed seeds s ∈ Sn and only a single new seed s= max{Sn}+ 1. Over multiple

iterations, new seeds may be evaluated and added to the set of observed seeds and the acquisition

space grows accordingly by always including one new seed. Note that the acquisition function

is maximized jointly over the old and the new seed. In particular, no heuristics or user input is

used to make the exploration-exploitation trade-off over old vs. new seeds. Moreover, we show in

Section 5.2.3 how to cheaply compute arg maxx,sKGCRN
n (x, s) in comparable computational time

to standard KG.

A connection can be drawn between our algorithm and recent work on multi-information source

optimization (Swersky et al. 2013, Poloczek et al. 2017). At a given iteration, each seed in the

acquisition space may be viewed as an information source, and a user must choose a solution x and

an information source s in order to optimize a target s= 0. However in the CRN case, the target

itself cannot be observed, all sources have equal budget consumption, and the number of available

sources is infinite.

5.2. Implementation Details

In Section 4 we assumed that kθ̄(x,x
′) and kε(x,x

′) are known while in practice they require

hyperparameters estimated from data. Also, in Section 5 we assumed KGCRN
n (x, s) can be evaluated

and maximized. These practical issues apply to non-CRN and CRN algorithms, however the CRN
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Figure 2 (top) The GP model with offsets, bias functions and white noise. (bottom) KGCRN after 4 initial points

on seeds s= 1,2 (left) and an added 4 sequential points by KGCRN (right). All new points were allocated

to seeds s= 1,2 and the next point will be allocated to s= 1.

model has both more hyperparameters and a larger acquisition space. Ideally, incorporating CRN

should not require significantly more computational resources and we discuss such solutions below.

5.2.1. Gaussian Process Hyperparameters. In this work we assume that the target is

modeled with the popular squared exponential (SE) kernel

kθ̄(x,x
′) = σ2

θ̄ exp(−(x−x′)ᵀL(x−x′)/2)

where L= diag(1/l21, ...,1/l
2
d) is a diagonal matrix of inverse length scales. We also assume that the

bias functions come from a squared exponential kernel kb(x,x
′) = σ2

b exp(−(x− x′)ᵀL(x− x′)/2)

that shares the diagonal matrix L. The constant kernel and white noise kernel each have a single

parameter η2 and σ2
w. The constant kernel, over X, models infinitely long range correlation in
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differences while the white noise kernel models infinitely short range. Therefore the bias kernel only

needs to model intermediate ranges. When determining an intermediate range, one option is to

learn length scales for the bias kernel. However, modeling the length scales of the bias kernel adds

additional model parameters, requiring more data for tuning. We chose to use the same length

scales for the target and all bias functions. The empirical evaluation shows that this worked well

in practice. Also, the resulting model complexity is comparable to models not taking CRN into

account.

In total, the model has parameters L,σθ̄, η
2, σ2

b , σ
2
w, two more than a non-CRN model. All param-

eters are learnt in three steps. First, we fit a non-CRN model with maximum marginal likelihood

by simply clamping η2 = σ2
b = 0. This is performed with multi-start conjugate gradient ascent.

Second, and specifically for CRN, we perform fine tuning of the difference kernel parameters, η2,

σ2
b , σ

2
w, with the constraint η2 + σ2

b + σ2
w = σ2

w,non-CRN. This forces the total variance of the differ-

ence functions to be the same as the independent model noise and simplifies model learning. With

reparameterization, this is a simple hill-climb over the two dimensional unit square for which we

use the Nelder-Mead algorithm. In the third step, we fine-tune all hyperparameters simultaneously

without restriction, a further single conjugate gradient ascent. The difference between fitting a

non-CRN model and a CRN model is in the two additional steps and can be appended to any

Gaussian process code. For details, see the Electronic Companion EC.4.2.

5.2.2. Evaluation of KGCRN
n (x, s). The acquisition function, Equation (20), is a one-step

look-ahead expected peak posterior mean, an expectation of maximizations over X. This may be

evaluated analytically when X is a feasibly small finite set using Algorithm 1 from Frazier et al.

(2009). Alternatively, when X is a continuous set, one may replace the expectation over the infinite

Z with a Monte-Carlo average. For each Z sample, the inner maximization is performed over X

numerically, yielding a stochastic unbiased estimate of KGCRN
n (x, s) (Wu et al. 2017).

In this work, we follow Poloczek et al. (2017) and Xie et al. (2016) that use a deterministic

approximation. This allows us to reliably test a conjecture and allows direct comparison with prior
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work both described in Section 6.2. The inner maximization over X may be replaced with a smaller

random subset A that is frozen between iterations thus approximating KGCRN with

KGCRN
n (x, s;An) =En

[
max

x′∈A∪{x}
µn(x′,0) + σ̃n(x′,0;x, s)Z − max

x′′∈A∪{x}
µ(x′′,0)

]
. (22)

We desire a discretization, An ⊂X, that is both dense around promising regions in X while still

accounting for unexplored regions. Thus, we propose to construct A from a union of a latin hyper-

cube over X with n points, AnLHC , and random perturbations of previously sampled points AnP =

{xi + γ|xi ∈Xn} where γ ∼N(0, I) is Gaussian noise scaled for the application at hand. Finally,

we let An =AnLHC ∪AnP .

5.2.3. Optimization over the Acquisition Space. Typically, acquisition functions are

multi-modal functions over X and maximized by multi-start gradient ascent. For KGCRN
n (x, s),

the acquisition space is larger X̃n
acq =X ×{1, ...,maxSn + 1}, suggesting KGCRN

n (x, s) needs to be

optimized over X for each s. However, recall the fundamental CRN modelling assumption that all

seeds have the same latent θ̄(x). As a result, KGCRN
n (x, s) for each seed often has peaks and troughs

in similar locations, see Figure 2. Therefore, to maximize KGCRN
n (x, s), one may use the same

multi-start gradient ascent method for a non-CRN method where instead each start is allocated to

a random seed si and optimizes x over X ×{si}. Using the best point so far, (xga, sga), the same

xga is evaluated for all seeds to find sfinal and one run of gradient ascent over X×{sfinal} starting

from xga yields xfinal. Thus, the only difference in computational cost of acquisition optimisation

between a non-CRN method optimizing over X and a CRN method optimizing over X ×N+ is in

the final phase from (xga, sga) to (xfinal, sfinal).

5.3. Algorithm Properties

The acquisition benefit obtained by sampling solution x with seed s is the expected gain in the

quality of the best solution that can be selected given all the available information. In this regard,

KGCRN is one-step Bayes optimal by construction. The following observation is trivial yet worth
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Algorithm 1 The KGCRN Algorithm.

Require: θ(x, s), X, ninit, N , kθ̄(x,x
′), method to evaluate E[{maxx′ a(x′) + b(x′, x)Z}] and

∇xE[{maxx′ a(x′) + b(x′, x)Z}] (Sec.5.2.2), Optimizer() over X ×N+ (Sec. 5.2.3)

1: X̃ninit← ninit sampled points by LHC over X ×{1,2,3,4,5}

2: Y ninit← θ(X̃ninit)

3: for n= ninit to N − 1 do

4: µn(x, s), kn(x, s,x′, s′)←GP
(
θ(x, s)

∣∣X̃n, Y n,L,σ2
θ̄
, η2, σ2

b , σ
2
w

)
with MLE hyperparameters

5: KGCRN
n (x, s)←E[{maxx′ µ

n(x′,0) + σ̃n(x′,0, x, s)Z}]−maxx′′ µ
n(x′′,0) and gradient w.r.t. x

6: (x, s)n+1←Optimizer(KGCRN
n (x, s))

7: yn+1← θ(xn+1, sn+1)

8: X̃n+1, Y n+1← (X̃n, (x, s)n+1), (Y n, yn+1)

9: end for

10: µN(x, s)←GP
(
θ(x, s)

∣∣X̃N , Y N ,L,σ2
θ̄
, η2, σ2

b , σ
2
w

)
with MLE hyperparameters

11: return xNr = argmaxxµ
N(x,0)

highlighting: standard Knowledge Gradient (KG) is reproduced by constraining KGCRN to only

acquire data for a new seed in each iteration. Thus, we have

max
x,s∈N+

KGCRN
n (x, s)≥ max

x,s∈N+\Sn
KGCRN

n (x, s) = max
x

KG(x) (23)

and sampling without CRN is a lower bound on the acquisition benefit achievable by KGCRN.

Given an infinite budget, it is a desirable property for any algorithm to be able to discover the

true optimum xOPT = argmaxx∈X θ̄(x) (assuming there is only one optimizer). Here we give an

additive bound on the loss when applying KGCRN to a finite subset, A, of continuous space X. Let

kθ̄(x,x
′) be a Matérn class kernel, and d= maxx′∈X minx∈A dist(x,x′) the largest distance from any

point in the continuous domain X to its nearest neighbor in A.

Theorem 1. Let xNr ∈A be the point that would be recommended after N iterations of the KGCRN

algorithm. For each p∈ [0,1), there is a constant Kp such that with probability p

lim
N→∞

θ̄(xNr )> θ̄(xOPT )−Kpd
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holds.

The proof is given in the Electronic Companion EC.1.2. Note that this establishes consistency for

the finite case where A=X and d= 0. Clearly, this bound is conservative as A is randomized at

each iteration to avoid “overfitting” and KGCRN recommends the best predicted solution in X, not

restricted to A.

6. Comparison with Previous Work

We first show how to recover the generative model considered by Xie et al. (2016) and Chen et al.

(2012) as a special case of our proposed model, prove that for this model it is optimal to sample

only a single seed, and show that the KGCRN algorithm does exactly this. We then discuss the

method of Xie et al. (2016) that also extended Knowledge Gradient to account for common random

numbers.

6.1. Compound Sphericity

If the output of each seed differs from the target by a constant offset, then optimizing a single

seed optimizes the target. In such an application, the model would learn that there are no bias

functions, σb = 0, and the differences kernel reduces to kε(x,x
′) = η2 +σ2

wδxx′ . Thus, the differences

matrix, kε(X
n,Xn), is η2 + σ2

w on the diagonal and constant η2 for all off-diagonal terms. This

matrix composition is referred to as compound sphericity (Chen et al. 2012, Xie et al. 2016). Alter-

natively, the corresponding correlation matrix has a unit diagonal and off diagonal ρ= η2/(η2 +σ2
w)

representing the correlation in noise. Let ∆n = Y n−µ0(X̃n) and 1s = 1s∈Sn ∈ {0,1}n be a binary

masking vector. 1x is defined analogously. Then the posterior mean has the following simple form:

µn(x, s) = µ0(x)− (kθ̄(x,X
n) + η21s +σ2

w1s1x)K
−1∆n

= kθ̄(x,X
n)K−1∆n︸ ︷︷ ︸

µn(x,0)

+ η21sK
−1∆n︸ ︷︷ ︸

independent of x

+ σ2
w1s1xK

−1∆n︸ ︷︷ ︸
= 0 except for (xi,si)∈X̃n

= µn(x,0) + As + Bs1(x,s)∈X̃n (24)

and the posterior mean function for a given seed, s > 0, differs from the target, s= 0, by two additive

terms. This leads to the following two lemmas. Both cases correspond to the second additive term
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equating to zero. Firstly, if there is no white noise (σ2
w = 0) then for all seeds εs(x) = os is only a

constant offset and a user may simply optimize a single seed to learn arg max θ̄(x). This corresponds

to compound sphericity with full correlation, ρ= 1, and may be viewed as a “best case” scenario

for CRN.

Lemma 2. Let the function θ(x, s) be a realization of a Gaussian process with compound sphericity

with full correlation, ρ = 1. Then for all s ∈ N+, the posterior mean functions have the same

optimizer as the target estimate

arg max
x∈X

En[θ̄(x)] = arg max
x∈X

µn(x, s′) ∀s′ ∈N+.

Proof ρ= 1 implies σ2
w = 0 which implies Bs = 0 in Equation (24), and the posterior means for

all seeds differ by only an additive constant As. Therefore the maximizer of any two seeds is the

same and by Lemma 1 the same maximizer as the estimate of En[θ̄(x)]. �

Secondly, if there is white noise and the set of solutions X is continuous, a user may simply

optimize a single seed to learn arg max θ̄(x) as above.

Lemma 3. Let the function θ(x, s) be a realization of a Gaussian process with compound sphericity

over a continuous set of solutions X, then for all s ∈ N+, the posterior mean functions have the

same optimizer excluding locations of past observations X \Xn

arg max
x∈X\Xn

En[θ̄(x)] = arg max
x∈X\Xn

µn(x, s′) ∀s′ ∈N+.

Proof By excluding past evaluated solutions x∈Xn, the second additive term in Equation (24)

vanishes (Bs1(x,s)∈X̃n = 0). The posterior means for all seeds differ by only an additive constant,

As, therefore the maximizer of any two seeds is the same and by Lemma 1 the same as En[θ̄(x)].

�

The right column of Figure 1 illustrates example functions for these cases and the top row

of Figure 2 shows how the posterior mean is discontinuous at evaluated points. If there are no

bias functions and these discontinuities are excluded, the posterior mean has the same shape for



Pearce, Poloczek and Branke: Bayesian Optimization Allowing for Common Random Numbers
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

all seeds. Consequently, using a compound spheric model in practice is equivalent to assuming

that the response surfaces for all seeds have the same shape. This result agrees with those found

by Chen et al. (2012): in the case ρ = 1 with data collected on seed s = 1, the intercept of the

function θ̄(x) is less accurately known while derivatives ∇xθ̄(x) are more accurately known. This

is because in the ρ= 1 case, the generative modeling assumption imposes the functional form as

θ(x, s) = θ̄(x) + os implying ∇xθ(x, s) = ∇xθ̄(x). It is due to the presence of the bias functions,

bs(x), that the optimizer of one seed, arg maxx θ(x, s), is not an accurate estimate of the optimizer

of the target function, arg maxx θ̄(x), and an optimization algorithm must evaluate multiple seeds.

Next, in Lemma 4 we show that if all solutions of a finite set X have been evaluated there is no

more acquisition benefit according to KGCRN, the optimizer is known even though its underlying

value is unknown.

Lemma 4. Let θ(x, s) be a realization of a Gaussian process with the compound spheric kernel

and ρ= 1. Let X = {x1, ..., xd} and evaluated points X̃n = {(x1,1), ..., (xd,1)}, then for all (x, s) ∈

X ×N+, there is no more value of any measurement

KGCRN
n (x, s) = 0 (25)

and the maximizer argmaxxθ̄(x) is known.

Proof is given in the Electronic Companion EC.1.3.

KGCRN may be evaluated according to the method proposed by Scott et al. (2011). The method

discretizes the inner maximization over X with past evaluated points, Xn, and the new proposed

point so that the integral over Z is analytically tractable. Then, in the full correlation case KGCRN

is guaranteed to never choose a new seed and simplifies to Expected Improvement (Jones et al.

1998) applied to seed s= 1.

Lemma 5. Let θ(x, s) be a realization of a Gaussian process with the compound spheric kernel with

ρ= 1. Let X ⊂ Rd be the set of possible solutions, X̃n = {(x1,1), ..., (xn,1)} be the set of sampled

locations and Xn = (x1, ..., xn). Define

KGCRN
n (x, s;A) =En

[
max

x′∈A∪{x}
µn+1(x′,0)− max

x′∈A∪{x}
µn(x′,0)

∣∣∣∣(x, s)n+1 = (x, s)

]
. (26)
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Then for all x∈X

KGCRN
n (x,1;Xn)>KGCRN

n (x,2;Xn)

and therefore maxxKGCRN
n (x,1;Xn) > maxxKGCRN

n (x,2;Xn) and seed s = 2 will never be evalu-

ated. Further

KGCRN
n (x,1;Xn) =En

[
max{0, yn+1−maxY n}

∣∣xn+1 = x, sn+1 = 1
]
.

The proof is given in the Electronic Companion EC.1.3.

In the more general case, evaluating KGCRN
n (x, s) by any method, when using compound spheric

with either full correlation or in a continuous domain X, we conjecture that the true myopically

optimal behaviour is to never go to a new seed,

max
x∈X,sold∈Sn

KGCRN
n (x, sold)> max

x∈X,snew /∈Sn
KGCRN

n (x, snew)

and a new seed s /∈ Sn will never be sampled. However, the above inequality cannot be proven

because maxx∈X KGCRN(x, s) has no analytic expression and must be found numerically via gradient

ascent algorithms. (Note that KGCRN
n (x, sold)>KGCRN

n (x, snew) is not true in general, xi ∈Xn are

counterexamples.) Therefore we numerically demonstrate this conjecture in Section 7.

In practice, this conjectured behaviour comes with the risk that if compound sphericity is

assumed as in Chen et al. (2012) and Xie et al. (2016), or artificially enforced in our model by

clamping σ2
b = 0, the algorithm will try to optimize a single seed regardless of whether or not such

behaviour is desirable for a given application. We observe this phenomenon in our experiments in

Section 7 where compound sphericity on a continuous search space encourages greedy resampling

of only observed seeds. While compound sphericity with full correlation is the best case scenario

for CRN, rigidly enforcing this assumption can lead to poor performance. Including bias functions

in the model allows it to optionally learn compound sphericity.
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6.2. Comparison with Knowledge Gradient with Pairwise Sampling

The method proposed by Xie et al. (2016) is also an extension of Knowledge Gradient to use

common random numbers. For the generative model, the method assumes that θ̄(x) is a realization

of a GP and considers compound spheric covariance for difference functions. For acquisition, the

standard Knowledge Gradient acquisition function quantifies the value of a single observation

without CRN (on a new seed) and this is extended with a second acquisition function that quantifies

the value of a pair of observations with CRN (on the same new seed). The acquisition space is thus

X̃PW = {X,X×X}. The method switches between the serial mode and the batch mode depending

on which mode promises the larger value per sample. Since the value of a pair cannot be computed

analytically, a lower bound is given by considering the difference between the pair of outcomes

KGPW
n (xi, xj) =

1

2

(
En
[

max
x′∈X

{
µn(x′,0) + ˜̃σn(x′,0;xi, xj)Z

}
−max
x′′∈X

µn(x′′,0)

])
(27)

˜̃σn(x,0;xi, xj) =
kn(x,0, xi, s

n+1)− kn(x,0, xj, s
n+1)√

kn(xi, sn+1, xi, sn+1) + kn(xj, sn+1, xj, sn+1)− 2kn(xi, sn+1, xj, sn+1)
(28)

where sn+1 = n+ 1 is a new seed and KGPW
n (x,x′) is optimized over X×X. Note we have adapted

the notation from the original work where the seed is not an explicit argument to the formula-

tion presented in this work. In the original work, numerical evaluation of KGPW is performed by

discretizing the inner maximization, as discussed in Section 5.2.2. One call to KGPW requires eval-

uating both kn(x,0, xi, s
n+1) and kn(x,0, xj, s

n+1) for each x and is thus more expensive than one

call to KG or KGCRN.

In the large |X| setting, it is efficient to use GP regression, with compound sphericity in the high

ρ setting it is efficient to use CRN. Within both of these regimes, it is doubly beneficial to revisit

old seeds as implied by both Lemmas 2 and 3. Therefore, the Knowledge Gradient with Pairwise

Sampling combines an acquisition procedure that can only sample new seeds with a model of

differences for which it is efficient to only sample old seeds. From a value of information perspective,

both serial and batch modes of KGPW yield equal or lower value of information than sequential

allocation by KGCRN.
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Lemma 6. Let Dn be a dataset of observation triplets. For a Gaussian process with a kernel of the

form kθ̄(x,x
′) + δss′kε(x,x

′), the expected increase in value after two steps allocated according to

KGCRN is at least as big as two steps allocated according to KGPW,

En
[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGCRN

]
≥ En

[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGPW

]
The proof given in EC.1.4 relies on three sub-optimal aspects of KGPW, (i) all samples are restricted

to new seeds, (ii) the batch mode pre-allocates two samples that would be better allocated sequen-

tially, and (iii) KGPW uses a lower bound instead of the true value of information.

Instead, we make explicit the domain for the objective function as both a solution x and a seed s

and build a surrogate model and acquisition procedure over the same space. This approach has

many advantages. Firstly there is no need to consider batches/pairs, reducing the dimensionality of

the search space for the acquisition, thus reducing the cost per call to the acquisition function, and

increasing value of information. Secondly the structure in the noise, as modeled by the difference

functions, can be more aggressively exploited allocating budget to either a few seeds or many new

seeds as necessary. Thirdly, the GP model allows a user to replace KG with any multi-fidelity/multi-

information source (Huang et al. 2006a, Poloczek et al. 2017) or ‘correlation aware’ serial acquisition

procedure and a corresponding parallel batch acquisition function is not required.

On the other hand, when enabling resampling of old seeds, assuming compound sphericity incen-

tivises sampling of old seeds. KGCRN includes bias functions enabling accurate modeling and the

appropriate trade-off between old and new seeds. KGPW does not encounter such pitfalls as it does

not sample old seeds.

7. Numerical Experiments

We perform three sets of experiments, first using synthetic GP sample functions and known hyper-

parameters, allowing perfect comparison of just the acquisition procedures. The next two problems

are taken from the SimOpt library (http://simopt.org), the Assemble-to-order problem (ATO)

and the Ambulances in a Square problem (AIS). The code for all experiments is available at

https://bayesianblog.com/BO-CRN/.
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7.1. Compared Algorithms and Variants

We aim to investigate the empirical effects of including bias functions and the ability of the acquisi-

tion procedure to revisit old seeds whilst holding all other experimental factors constant. Therefore

we consider the following five algorithms.

Knowledge Gradient (KG): A GP model with independent homoskedastic noise is fitted,

η2 = σ2
b = 0, σ2

w > 0. Acquisition is according to KGCRN artificially constrained to a new seed.

KG with Pairwise Sampling (KGPW): Proposed by Xie et al. (2016). A GP with the

compound spheric differences kernel is fitted σ2
b = 0, η2, σ2

w ≥ 0. For acquisition, the value of a

single sample is given by KGCRN and pairs by KGPW, both are constrained to a new seed.

KG with Pairwise Sampling and Bias Functions (KGPW-bias): A GP with both off-

sets and bias functions is fitted, σ2
b , η

2, σ2
w ≥ 0. Acquisition is the same as above.

KG for Common Random Numbers with Compound Sphericity (KGCRN-CS): A

GP with σ2
b = 0 and η2, σ2

w ≥ 0 is fitted. Acquisition can sample any seed according to KGCRN.

KG for Common Random Numbers (KGCRN): A GP with both offsets and bias func-

tions is fitted, σ2
b , η

2, σ2
w ≥ 0. Acquisition can sample any seed according to KGCRN.

In Xie et al. (2016), it was shown that the Industrial Strength Compass (Xu et al. 2010) performed

significantly worse than Pairwise KG in similar settings as in our paper, hence we do not consider

it here.

7.2. Synthetic Data, no Bias Functions

We set X = {1, ..,100} and generate synthetic data from a multivariate Gaussian θ̄(X) ∼

N(0, kθ̄(X,X)) where kθ̄(x,x
′) = 1002 exp

(
− (x−x′)2

2·52

)
. The offsets are sampled os ∼N(0, ρ502) and

the white noise ws(x) ∼ N(0, (1− ρ)502). We vary ρ ∈ {0,0.1, ...,0.9,1.0} holding the total noise

constant such that standard KG will always perform the same. We compare normal KG, KGPW

and KGCRN all without bias functions. For each method, we evaluate the KG by Equation 22 and

set A=X. We optimize the acquisition function by exhaustive search. In all cases we fit the GP

regression model with known kernel hyperparameters except for KG where we force ρ = 0. This
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Figure 3 (top left) Opportunity Cost for the ρ= 1 case, the ρ= 0 case all algorithms equal KG. KGCRN aggres-

sively optimizes a single seed. (top right) final OC for a range of ρ values. For increasing ρ both CRN

methods improve. (bottom left) the average seed reuse for the cases ρ= 0,1. For large ρ, KGPW is upper

bounded by 0.5, KGCRN never samples a new seed. (bottom right) final seed reuse over a range of ρ.

allows us to focus only on differences in the generative model and acquisition function. We measure

opportunity cost at iteration n

OCn = max θ̄(x)− θ̄(xnr ). (29)

where xnr = arg maxx µ
n(x,0). We report the frequency of seed reuse, how often at an iteration n

the next sampled seed sn+1 was in the current history of observed seeds Sn. If KGPW samples a

pair for every iteration, the first sample of each pair would be new and the second would be old

hence the average reuse frequency is upper bounded by 0.5.

From top row plots of Figure 3, for low ρ values, all algorithms have similar opportunity cost

as there is no exploitable CRN structure. As ρ increases there is more CRN structure to exploit

and KGPW performance improves for larger budgets while KGCRN performance improves for all

budgets.
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The bottom row plots of Figure 3 show seed reuse which we interpret as how much an algorithm

uses CRN. For all ρ, KGCRN starts by resampling old seeds, utilizing CRN, and later samples more

new seeds only for low ρ, seed reuse dropping to 0.8, or querying new seeds 20% of the time. We

see that this results in significantly faster convergence in the ρ= 1 case plotted.

KGPW instead starts by sampling singles on new seeds, ignoring CRN and reproducing KG. For

larger budgets KGPW uses more pairs and improves upon KG for the range of ρ. However in the

best case for CRN, ρ= 1, KGPW quickly hits its seed reuse upper bound of 0.5, querying new seeds

50% of the time, and cannot fully utilize CRN.

In the Electronic Companion EC.2, we present the same experiment using only bias functions,

and observe no improvement over standard KG, suggesting that local differences correlation is not

as beneficial as global, i.e. constant, correlation.

7.3. Assemble to Order Benchmark

The Assemble to Order (ATO) simulator was introduced by Xu et al. (2010) and a slightly modified

version was used in (Xie et al. 2016) to test the KGPW algorithm and show that KGPW outperforms

other well-known simulation optimization methods such as COMPASS Xu et al. (2010). A shop

sells five products assembled from eight items held in inventory. A random stream of customers

arrives into the shop, each buying a product and consuming inventory. When an item in inventory

drops below a user defined threshold, an order for more is placed. The shop aims to maximize

profit, product sales minus storage cost, by optimizing the reorder thresholds for each item. A seed

defines the stream of customers and the item delivery times. For this problem, the solution space

is X = {1, ..,20}8.

KGCRN
n (x, s) is evaluated and optimized as described in Section 5.2. The expectation of the

maximizations within KGPW(xn+1, xn+2) is evaluated exactly the same way and the function is

optimized in two ways. First, xn+1 is found using KGCRN on the new seed. KGPW(xn+1, xn+2) is

then optimized over X for xn+2 only with the same multi-start gradient ascent optimizer. Second,

including the best pair so far as one start, we use multi-start gradient ascent over the full X ×X.
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Figure 4 Top left: profit of xNr evaluated on a held-out set of 2,000 test seeds. Top right: average seed reuse over

iterations. Bottom: seed allocation for KGCRN without bias functions (left) and with bias functions

(right) with the 5 initialization seeds sorted in order of decreasing sample size. Both KGCRN variants

mostly sample a single seed.

All methods start with ninit = 20. All hyperparameters are learnt by maximum likelihood and

fine tuned after each new sample. We record the quality of the recommended xnr = argmaxxµ
n(x,0)

on a held-out test set of seeds. ATO results are reported in Figure 4.

Both algorithms with KGCRN acquisition yield the largest profits and the KGPW variants

marginally improve upon KG. In this application, the KGCRN variants never use new seeds after

the initial five seeds, instead allocating almost all budget to a single seed suggesting that this

ATO problem strongly benefits from reuse of seeds. This is also consistent with Figure EC.8 in

the Appendix which shows that response surfaces for different seeds mostly differ by an offset, but

have no significant influence on the optimizer.

From the previous experiment we observed that KGCRN samples old seeds early and moves onto

new seeds for large budgets. In this learnt hyperparameter case, as reported in the Electronic
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Companion EC.2, the offset hyperparameter, η2, grows over time as model fit improves and data

collection focuses on the peak. Consequently, for larger budgets KGCRN is even more likely to

resample old seeds. With KGPW, the early behavior samples singles (as opposed to pairs) on new

seeds which cannot inform any CRN hyperparameters and the algorithm never learns a larger offset

parameter. As a result it allocates very little of the budget to pairs failing to significantly exploit

the CRN structure and hence producing marginally superior results to KG. In this application,

the ability to revisit old seeds clusters observations on fewer seeds which allows for more robust

learning of CRN hyperparameters.

7.4. Ambulances in a Square Problem

This simulator (AIS) was introduced by Pasupathy and Henderson (2006). Given a city over a

30km by 30km square, one must optimize the location of three ambulance bases to reduce the

journey time to patients that appear across the city as a Poisson point process. The seed defines

the times and locations of patients. The solution space is X = [0,30]6, the valid (x,y) locations for

each of three ambulance bases. We run the simulator for 1800 simulated time units in which on

average 30 patients appear. This problem is over a continuous search space and the optimal result

for each realization of patients is to place the ambulance bases near the patients. Hence the peak

x of one seed is not the same as the average of seeds and bias functions are required. Results are

summarized in Figure 5

Both algorithms with the surrogate model that includes bias functions provide the best results

in this benchmark, marginally improving upon KG. The KGCRN−CS algorithm that has the com-

pound sphericity assumption in a continuous search space leads to excessive sampling of observed

seeds agreeing with Lemma 3 and the conjectured behaviour of KGCRN acquisition. Our proposed

KGCRN with bias functions on the other hand does not suffer and automatically queries many new

seeds. Again, both KGPW variants sample far more seeds which is less penalized in this benchmark.

We also performed experiments where the sum of ambulance journey times was optimized and

where the number of patients was fixed. All results, including ATO, are summarized in Table 1. In
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Figure 5 Top left: average journey time to patients. Top right: seed reuse over iterations. Bottom: seed allocation

by KGCRN without (left) and with (right) bias functions, with the 5 initialization seeds sorted in order

of decreasing sample size. The algorithms with bias functions provide the best results. The compound

spheric assumption, which is violated in this benchmark, leads to greedy sampling of observed seeds

and sub optimal performance.

all experiments, the KGCRN-CS without bias functions never sampled a new seed. In the Electronic

Companion EC.2 we also report running time of all experiments and in all cases KG was quickest,

followed by the KGCRN variants and the KGPW variants used the most computational time.

Therefore both, the ability to revisit old seeds and the modelling of bias functions, are necessary

to make a robust algorithm that works across a variety of problems.

From the synthetic experiments, we observe that offsets alone yield a big benefit of using CRN

while bias functions alone do not. Note that offsets are a natural phenomenon in many simulators.

A single call to the ATO simulator generates a stream of customers, simulates stock levels for a

fixed time period and then returns the profits summed over customers. Regardless of stock level,

a stream with more customers yields larger profits, a global positive offset, than a stream with
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Table 1 Mean ± 2 standard errors of average performance for all benchmarks, results that do not significantly

differ from the best are in bold. The ability to revisit seeds improves the ATO results and including bias functions

improves AIS results (or compound sphericity significantly harms AIS). N = 500 unless specified otherwise.

KG KGPW KGPW-bias KGCRN-CS KGCRN

ATO 109.35± 1.88 111.86± 0.65 112.69± 0.67 120.99 ± 0.71 119.84 ± 1.13

AIS .1498± .0011 .1483 ± 0.0010 .1477 ± .0010 .1512± .0010 .1482± .0010

AIS, N=1000 .1455± .0010 .1450± 0.0010 .1435 ± .0009 .1481± .0009 .1436 ± .0008

AIS, sum time 4.66± 0.33 4.611± .045 4.449± .030 4.515± .035 4.430 ± .034

AIS, 30 patients .1498± .0009 .1468 ± .0008 .1467 ± .0009 .1482 ± .0008 .1467 ± .0009

fewer customers, a negative offset. The AIS simulator generates a stream of patients, and simulates

ambulances driving for a fixed time period. It then returns the average per patient waiting time.

Similarly, a stream with more patients will result in longer average waiting times for any ambulance

locations, a positive offset, while a stream with fewer patients would yield lower times, a negative

offset. In both ATO and AIS we see a benefit of CRN.

To explore this hypothesis, we consider two modifications of the AIS simulator. The first aims to

increase CRN benefit: Instead of the mean journey time, the simulator returns the sum of journey

times. Given two streams, one with many patients and one with few patients, the difference between

mean journey times is purely due to crowding causing journey delays while the difference in the

sum of journey times is due to crowding as well as the summations containing more patients.

Consequently, we observe a much greater difference between the default AIS and the AIS-sum as

shown in Table 1.

The second modification changes the stopping criterion of the AIS simulator such that each

simulation runs until 30 patients have been visited. As can be seen in Table 1, in this case KGCRN

has no significant benefit over KGPW.

8. Conclusion

We proposed a Bayesian approach to simulation optimization with common random numbers where

the seed of the random number generator used within a stochastic objective function is an input to
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be chosen by the optimization algorithm. We augment a standard Gaussian process model with two

extra hyperparameters to model structured noise (seed/scenario influence), while maintaining the

ability to predict the average output of the target function in closed form. Matching this augmented

model, we propose KGCRN that quantifies the benefit of evaluating the objective for a given solution

and seed, providing a clean framework that allows Bayesian optimization to automatically exploit

CRN where this is beneficial, and recovers standard KG where not. The proposed KGCRN algorithm

structure does not add significant computational burden over the equivalent non-CRN Knowledge

Gradient due to the fundamental structure of CRN.

In this work we focus on global optimization, in future work we plan to augment other problem

settings with common random numbers, such as multi-fidelity optimization, simulations with input

uncertainty, and multi-objective optimization. The KGCRN algorithm can also be extended to batch

acquisition, e.g., using the technique of Wu and Frazier (2016), heteroscedastic noise settings, and

to account for unequal simulation cost (e.g. by caching precomputed random number streams)

using the method of Poloczek et al. (2017).
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E-Companion: Proofs and Additional Experiments

EC.1. Proofs of Statements

EC.1.1. Estimating the Target

The data collected and the surrogate model are over the domain X ×N+ whereas the target of

optimization is a function over X. In what follows, we show how to derive an estimate for the

target. This result is an immediate consequence of the symmetry of the model across unobserved

seeds proven in Lemma EC.1. As a result of this symmetry, when taking the limit of the sum over

infinite seeds, unobserved seeds dominate this sum yielding a simple form of the GP posterior for

the target. This result is consistent with other CRN and non-CRN methods that do not make the

seed explicit but do incorporate off-diagonal noise covariance matrix.

Lemma 1 For any given kernel over the domain X×N+ that is of the form kθ̄(x,x
′)+δss′kε(x,x

′),

and a dataset of n input-output triplets Dn, the posterior over the target is a Gaussian process

given by

θ̄(x)|Dn ∼ GP (µnθ̄ (x), knθ̄ (x,x′)), (EC.1)

µnθ̄ (x) = µn(x, s′), (EC.2)

knθ̄ (x,x′) = kn(x, s′, x′, s′′), (EC.3)

where s′, s′′ ∈N+ \Sn with s′ 6= s′′ any two unobserved unequal seeds.

Recall that the Gaussian process is defined over the domain X ×N+, with infinite seeds. The

following result states that the Gaussian process model makes identical predictions for all the

unobserved seeds.

Lemma EC.1. Let θ(x, s) be a realization of a Gaussian Process with µ0(x, s) = 0 and any positive

semi-definite kernel of the form k(x, s,x′, s′) = kθ̄(x,x
′)+ δss′kε(x,x

′). For all x∈X, sobs ∈ Sn, and

unobserved seeds s, s′, s′′ ∈N+ \Sn, the posterior mean and kernel satisfy

µn(x, s) = µn(x, s′), (EC.4)
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kn(x, sobs, x
′, s) = kn(x, sobs, x

′, s′), (EC.5)

kn(x, s,x′, s′) = kn(x, s,x′, s′′) = kn(x, s′, x′, s′′). (EC.6)

Proof Writing out the posterior mean in full from Equation 15 in the main paper,

µn(x, s) = k0(x, s, X̃n)K−1Y n

=


(
kθ̄(x,X

n) + (1ᵀs=Sn ◦ kε(x,Xn))
)
K−1Y n s∈ Sn

kθ̄(x,X
n)K−1Y n s∈N+ \Sn

where a ◦ b is element-wise product and 1s=Sn ∈ {0,1}n is a binary masking column vector that is

zero for all s ∈ N+ \ Sn. The proofs for Equations EC.5 and EC.6 follow similarly from Equation

16 in the main paper. �

We next prove the main lemma. Keep in mind that the target for the optimization is the infinite

average over seeds, and the Gaussian process model makes identical predictions for unobserved

seeds. The infinite average is dominated by unobserved seeds with identical predictions. Hence we

may simply use the prediction of any one unobserved seed as a model for the infinite average/target.

Proof of Lemma 1 The target of optimization, θ̄(x), is given by the average output over

infinitely many seeds which may be written as the limit

θ̄(x) = lim
Ns→∞

1

Ns

Ns∑
s=1

θ(x, s). (EC.7)

Adopting the shorthand En[...] =E[...|Dn], we first consider the posterior expected performance,

En[θ̄(x)] = En

[
lim

Ns→∞

1

Ns

Ns∑
s=1

θ(x, s)

]
(EC.8)

= lim
Ns→∞

1

Ns

Ns∑
s=1

En [θ(x, s)] (EC.9)

= lim
Ns→∞

1

Ns

Ns∑
s=1

µn(x, s). (EC.10)

Let ns = max{Sn} be the largest observed seed. The sum of posterior means can be split into

sampled seeds s∈ {1, ..., ns} and unsampled seeds s∈ {ns + 1, ....,Ns},

En[θ̄(x)] = lim
Ns→∞

1

Ns

(
ns∑
s=1

µn(x, s) +

Ns∑
s′=ns+1

µn(x, s′)

)
(EC.11)
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= lim
Ns→∞

1

Ns

(
ns∑
s=1

µn(x, s) + (Ns−ns)µn(x,ns + 1)

)
(EC.12)

= lim
Ns→∞

1

Ns

(
ns∑
s=1

µn(x, s)−nsµn(x,ns + 1)

)
+µn(x,ns + 1) (EC.13)

= µn(x,ns + 1), (EC.14)

where we have used Lemma EC.1 to simplify. Similarly for the covariance, writing each θ̄(x) term

as the limit of a sum over seeds,

En
[(
θ̄(x)−En[θ̄(x)]

)(
θ̄(x′)−En[θ̄(x′)]

)]
(EC.15)

= En

[(
lim

Ns→∞

1

Ns

Ns∑
s=1

θ(x, s)−µ(x, s)

)(
lim
Nt→∞

1

Nt

Nt∑
s′=1

θ(x′, s′)−µ(x′, s′)

)]
(EC.16)

= lim
Ns,Nt→∞

1

NsNt

Ns,Nt∑
s,s′=1

En [(θ(x, s)−µ(x, s)) (θ(x′, s′)−µ(x′, s′))] (EC.17)

= lim
Ns,Nt→∞

1

NsNt

Ns,Nt∑
s,s′=1

kn(x, s,x′s′). (EC.18)

The domain in the limit of the summation, N+×N+, is unaffected by setting Nt =Ns. The sum-

mation decomposes into four terms,

Ns∑
s,s′=1

kn(x, s,x′, s′) =

ns∑
s,s′=1

kn(x, s,x′, s′)︸ ︷︷ ︸
observed seeds full covariance

+

Ns∑
s′=ns+1

ns∑
s=1

kn(x, s,x′, s′)︸ ︷︷ ︸
observed-unobserved covariance

+

Ns∑
s=ns+1

kn(x, s,x′, s)︸ ︷︷ ︸
unobserved seeds variance

+
∑

ns<s6=s′≤Ns

kn(x, s,x′, s′)︸ ︷︷ ︸
unobserved seeds covariance

=

ns∑
s,s′=1

kn(x, s,x′, s′)︸ ︷︷ ︸
constant with Ns

+2(Ns−ns)
ns∑
s=1

kn(x, s,x′, s′)︸ ︷︷ ︸
linear with Ns

+(Ns−ns)kn(x, s′, x′, s′)︸ ︷︷ ︸
linear with Ns

+(Ns−ns)2kn(x, s′, x′, s′′),︸ ︷︷ ︸
quadratic with Ns

where s′ and s′′ are two unequal unobserved seeds. Dividing the final equation by N 2
s and taking

the limit Ns→∞, only the final term remains. �

Given the assumed kernel with independent and identically distributed difference functions,

the average of infinitely many seeds includes finite observed seeds and infinitely many identical
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unobserved seeds. Unobserved seeds dominate the infinite average and the performance under

any unobserved seed is an estimator for the objective function. Likewise the posterior covariance

between infinite averages is the posterior covariance between any two unique unobserved seeds.

Also note that the kernel of the Gaussian process prior for the objective evaluated at different

seeds returns the prior kernel for the target k̄0(x,x′) = k0(x,1, x′,2) = kθ̄(x,x
′) as desired.

EC.1.2. Proof of Theorem 1

We next show that, under certain assumptions on the target function, given an infinite sampling

budget, N →∞, the KGCRN algorithm will discover the true optimum. We first restate the result.

Theorem 1 Let xNr ∈A be the point that KGCRN recommends in iteration N . For each p ∈ [0,1)

there is a constant Kp such that with probability p

lim
N→∞

θ̄(xNr )> θ̄(xOPT )−Kpd.

We first prove properties of the KGCRN
n (x, s) function and then consider the error due to discretiza-

tion.

Lemma EC.2 ensures the GP model exists in the limit of infinite data. We then show that

KGCRN
n (x, s) is non-negative in Lemma EC.3 and that it is zero for sampled input pairs in

Lemma EC.4. We then show that if a single x is sampled for infinitely many (not necessarily con-

secutive) seeds, again KGCRN
n (x, s) tends to zero also for all unevaluated seeds in Lemma EC.5.

Then in Lemma EC.6 we show the opposite direction, if KGCRN
n (x, s) is zero, this implies that the

peak of the target prediction will not change by sampling (x, s). This is extended in Lemma EC.7

that states that if for a new seed s, KGCRN
n (x, s) = 0 for all X then no more samples will change

the peak prediction of the target and the true peak is known when X is a discrete set.

The error due to discretization relies on the assumption of a differentiable GP kernel, such as

Matérn, and using a Lipschitz continuity argument, the error may be bounded proving Theorem 1.

The following result simply states that the GP model exists in the limit of infinite data. First we

define V n(x,x′) =En[θ̄(x)θ̄(x′)].
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Lemma EC.2. Let x,x′ ∈X. Then the limits of the series (µ̄n(x))n and (V n(x,x′))n exist and are

denoted by µ̄∞(x) and V ∞(x,x′), respectively. Then we have

lim
n→∞

µ̄n(x) = µ̄∞(x) (EC.19)

lim
n→∞

V n(x,x′) = V ∞(x,x′) (EC.20)

almost surely.

Proof θ̄(x) and θ̄(x)θ̄(x′) are integrable random variables for all x,x′ ∈X by choice of θ̄. Propo-

sition 2.7 in Çınlar (2011) states that any sequence of conditional expectations of an integrable

random variable under an increasing filtration is uniformly integrable martingale. Thus, both

sequences converge almost surely to their respective limit. �

The next result states the KGCRN(x, s) is non-negative for all input pairs.

Lemma EC.3. KGCRN
n (x, s)≥ 0 holds for all (x, s)∈X ×N+.

Proof Adopting the shorthand xnr = argmaxx∈Xµ
n(x,0), we may write maxx µ

n(x,0) = µn(xnr ,0)

and

KGCRN
n (x, s) = E

[
max
x′∈X
{µn(x′,0) + σ̃n(x′,0;x, s)Z}−µn(xnr ,0)

]
= E

[
max
x′∈X
{µn(x′,0) + σ̃n(x′,0;x, s)Z}−µn(xnr ,0)

]
−E[cZ]︸ ︷︷ ︸

=0

= E
[
max
x′∈X
{µn(x′,0) + (σ̃n(x′,0;x, s)− c)Z}−µn(xnr ,0)

]
where the expectation is over Z ∼N(0,1) and c is an arbitrary constant. In particular, by setting

c= σ̃n(xnr ,0;x, s), the inner expression, when evaluated at xnr ∈X, satisfies

µn(xnr ,0) + (σ̃n(xnr ,0;x, s)− σ̃n(xnr ,0;x, s))Z −µn(xnr ,0) = 0

for all Z ∈R and

max
x′∈X
{µ(x′,0) + (σ̃n(x′,0;x, s)− c)Z −µ0} ≥ µ(xnr ,0) + (σ̃n(xnr ,0;x, s)− c)Z −µn(xnr ,0) = 0

for all Z and KGCRN
n (x, s) may be written as the expectation of a non-negative random variable.

�
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The following result states that once an input pair (x, s) has been observed, θ(x, s) is known and

KGCRN
n (x, s) is zero. Combined with the result that KGCRN

n (x, s) is non-negative, it follows that

observed input pairs (x, s) are minima of the function KGCRN
n (x, s).

Lemma EC.4. Given deterministic simulation outputs, there is no improvement in re-sampling a

sampled point.

KGCRN
n (xi, si) = 0

for all (xi, si)∈ X̃n.

Proof The posterior covariance between the output at any point and the output at an observed

point is zero, writing out the full matrix multiplication for the posterior kernel and simplifying

yields

kn(xi, si;x, s) = k0(xi, si;x, s)− k0(xi, si; X̃n)
(
k0(X̃n; X̃n)

)−1

k0(X̃n;x, s)

= k0(xi, si;x, s)−
[
k0(X̃n; X̃n)

]
i

(
k0(X̃n; X̃n)

)−1

k0(X̃n;x, s)

= k0(xi, si;x, s)−1ni
ᵀk0(X̃n;x, s)

= k0(xi, si;x, s)− k0(xi, si;x, s)

= 0

where [·]i is the ith row. The second line contains the ith row of a matrix multiplied by its inverse

returning the ith row of the identity matrix denoted 1ni
ᵀ. Therefore σ̃n(x, s;xi, si) = 0 for all (x, s)

and KGCRN
n (x, s) = 0. �

Let ω denote an arbitrary sample path, ω = ((x, s)1, (x, s)2, ......), determining an input pair for

each query to the objective as n→∞. Lemmas EC.3 and EC.4 imply sampled point inputs are

minima of KGCRN and recall that according to the algorithm, new samples are allocated to maxima

(x, s)n+1 = argmaxKGCRN
n (x, s). These facts together imply that no input (x, s) will be sampled

more than once. We need only to consider sample paths ω where all sampled inputs pairs (xi, si)

are unique. Recall that we suppose a (finite) discretization of X, thus there must be an x∈X that
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is observed for an infinite number of seeds on ω as n→∞. We study the asymptotic behaviour

KGCRN
n (x, s) for n→∞ as a function of µn(x,0), σ̃n(x′,0, x, s).

If s is a new seed and x has been observed for infinitely many seeds, the next result states that

KGCRN
n (x, s) tends to zero, there is less/no value in re-evaluating x for another new seed.

Lemma EC.5. If x is sampled for infinitely many (not necessarily consecutive) seeds, then

σ̃∞(x′,0;x, s) = 0 for all x′ ∈X and all s∈N+ and KGCRN
∞ (x, s) = 0 for all s∈N+ almost surely.

Proof Setting xn+1 = x and assuming (xi, si) pairs are arranged such that sn+1 is always a new

seed, the posterior variance reduces to zero

lim
n→∞

|σ̃n(x′,0;x, sn+1)| = lim
n→∞

|kn(x′,0, x, sn+1)|√
kn(x, sn+1, x, sn+1)

= lim
n→∞

k̄n(x′, x)√
k̄n(x,x) + kε(x,x)

≤ lim
n→∞

√
k̄n(x′, x′)

√
k̄n(x,x)√

k̄n(x,x) + kε(x,x)

= 0

where the final line is by noting that k̄n(x,x) + kε(x,x)> 0 for all n and x. �

The following result states that if there is no benefit of a new measurement for an input pair (x, s),

then the change in the posterior mean, σ̃n(x′,0;x, s) must be constant, i.e. the new sample at (x, s)

will only have the effect of adding a constant to the prediction of the target, hence learning nothing

about the peak of the target. The contrapositive is that for input points for which σ̃n(x′,0;x, s)

varies with x′, KGCRN is strictly positive.

Lemma EC.6. Let (x, s) be an input pair for which KGCRN
n (x, s) = 0. Then for all x′ ∈X

σ̃n(x′,0;x, s) = c

where c is a constant.

Proof From Equation EC.21, KGCRN
n (x, s) can be written as the expectation of a non-negative

random variable. Therefore the random variable itself must equate to zero almost surely implying

max
x′∈X
{µ(x′,0) + (σ̃(x′,0;x, s)− c)Z −µn(xnr ,0)} = 0

max
x′∈X
{µ(x′,0) + (σ̃(x′,0;x, s)− c)Z} = max

x′′∈X
{µ(x′′,0)}
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for all Z ∈R. This implies σ̃(x′,0;x, s) = c for all x′ ∈X. �

Note that in the case where (x, s)∈ X̃n we have that σ̃n(x′,0;x, s) = 0 for all x′ ∈X.

We next show that if there is no value in evaluating any input pair, then the optimizer of the

target is known.

Lemma EC.7. Let s ∈ N+ \ Sn be an unobserved seed, if KGCRN
n (x, s) = 0 for all x ∈ X, then

argmaxxµ
n(x,0) = argmaxxθ̄(x)

Proof By Lemma EC.6, we have that k̄n(x,x′) = c for all x,x′ ∈X and the covariance matrix

k̄n(X,X) is proportional to the all ones matrix. Hence θ̄(x)−µn(x,0) is a normal random variable

that is constant across all x∈X and argmaxx∈Xµ(x,0) = argmaxx∈X θ̄(x) holds. �

Lemmas EC.4, EC.5, consider evaluating KGCRN as the sampling budget increases in a specific

way. More generally, recall that KGCRN picks (x, s)n+1 ∈ argmaxKGCRN
n (x, s) in each iteration n.

Since θ(x, ·) is evaluated infinitely often (by choice of x), KGCRN
n (x, ·)→ 0 for all x∈A holds almost

surely and by Lemma EC.7 the true optimizer is known.

Proof of Theorem 1 We give a bound on the loss due to discretization of a continuous search

space. Suppose that X ⊂Rd is compact and A⊂X is a finite set of discretization points. Suppose

that µ̄0(x) = 0 for all x and that kθ̄(x,x
′) is a four times differentiable Matérn kernel, e.g., the

popular squared exponential kernel. Moreover, suppose that θ̄(x) is drawn from the prior, i.e., let

θ̄(x)∼GP(µ̄0(x), kθ̄(x,x
′)), then the sample θ̄(x) from the set of functions is itself twice continu-

ously differentiable in X with probability one (Ghosal et al. 2006). The extrema of δ
δxi
θ̄(x) over X

are probabilistically bounded, since the derivative processes of θ̄(x) are also Gaussian for our choice

of k0
θ̄
(x,x) (Ghosal et al. 2006). Let xOPT = argmaxx∈X θ̄(x) and d= maxx′∈X minx∈A dist(x,x′) be

the largest distance from any point in the continuous domain X to its nearest neighbor in A. We

can compute for every p∈ [0,1) a constant Kp such that θ̄(x) is Kp Lipschitz continuous on X with

probability at least p, thus there exists an x̄∈A with dist(x̄, xOPT )≤ d and

θ̄(x̄)> θ̄(xOPT )−Kpd
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holds with probability p. Finally the point recommended by KGCRN is the maximizer of xNr ∈

argmaxx∈Aθ̄(x) and therefore is not worse than x̄

lim
N→∞

θ̄(xNr ) ≥ θ̄(x̄)

≥ θ̄(xOPT )−Kpd

�

Thus, when applying the KGCRN algorithm to a discretized search space, the true optimizer

becomes known as the sampling budget increases without bound and if the underlying target

function is continuous, the error is bounded simply due to Lipschitz continuity.

EC.1.3. Behavior in the Compound Spheric Case

We next provide proofs for Lemma 4 and Lemma 5 relating to the KGCRN algorithm behaviour in

the case of compound sphericity with full noise correlation. Recall this corresponds to the difference

functions reducing to constant offsets and an algorithm may optimize one seed as a single seed

is a deterministic function with the same optimizer as the target. This is essentially a best-case

scenario for optimization with common random numbers. Lemma 2 of the main paper states that

the difference µn(x, s)− µn(x, s′) = As −As′ is constant for all x. Likewise the same relationship

applies to σ̃n(x′, s′;x, s) that quantifies changes in the posterior mean and therefore must also

maintain the symmetry over seeds s′. All results in this section assume θ(x, s) is a realization of a

Gaussian process with the compound spheric kernel and full correlation kε(x,x
′) = η2.

The first result states that, when sampling a point (x, s), the update in the prediction for one

seed differs from the update in prediction for another seed by an additive constant. Predictions for

all seeds have the same shape/gradient and differ only by global constants.

Lemma EC.8. Let x,x′ ∈X, s, s′ ∈N+, then the difference in posterior mean updates satisfies

σ̃n(x′, s′;x, s) = σ̃n(x′,0;x, s) +hn(s′, x, s).
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Proof

σ̃n(x′, s′;x, s) =
kn(x′, s′;x, s)√
kn(x, s,x, s)

=
1√

kn(x, s,x, s)

(
kθ̄(x

′, x) + η2δss′ −
(
kθ̄(x

′,Xn) + η21
ᵀ
s′=Sn

)
K−1

(
kθ̄(X

n, x) + η21s=Sn

))

= σ̃n(x′,0;x, s) +

η2δss′ − η21
ᵀ
s′=SnK−1

(
kθ̄(X

n, x) + η21s=Sn

)
√
kn(x, s,x, s)︸ ︷︷ ︸

independent of x′

= σ̃n(x′,0;x, s) +hn(s′, x, s)

�

As a result of the symmetry over seeds it is possible to use any seed s ∈ N+ as the target of

optimization formalized in the following Lemma.

Lemma EC.9. Let x∈X, s, s′ ∈N+, then

KGCRN
n (x, s) =E[max

x′∈X
µn(x′, s′) + σ̃n(x′, s′;x, s)Z −max

x′′∈X
µn(x′′, s′)].

Proof

KGCRN
n (x, s) = E[max

x′∈X
µn(x′,0) + σ̃n(x′,0;x, s)Z −max

x′′∈X
µn(x′′,0)]

= E[max
x′∈X

µn(x′, s′)−As′ + (σ̃n(x′, s′;x, s)−h(s′, x, s))Z −max
x′′∈X

µn(x′′, s′)−As′ ]

= E[max
x′∈X

µn(x′, s′) + σ̃n(x′, s′;x, s)Z −max
x′′∈X

µn(x′′, s′)]−h(s′, x, s)E[Z]

= E[max
x′∈X

µn(x′, s′) + σ̃n(x′, s′;x, s)Z −max
x′′∈X

µn(x′′, s′)]

We next prove Lemma 4 from the main paper: if there are finite solutions X and all have been

evaluated on a common seed, then the value of sampling any solution on any seed is zero.

Lemma 4 Let X = {x1, ..., xd} and X̃n = {(x1,1), ..., (xd,1)} then for all (x, s)∈X ×N+

KGCRN
n (x, s) = 0

and the maximizer arg maxx θ̄(x) is known.
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Proof Lemma EC.9 shows that any seed can be used as the target of optimization. Therefore

we may choose s= 1 as the target. All x have been sampled for s= 1 therefore σ̃n(x,1;x′, s′) = 0

for all x∈X and s′ ∈N+. Hence

KGCRN(x, s) = E[max
x′∈X

µn(x′,1) + 0Z −max
x′′∈X

µn(x′′,1)]

= 0

for all x, s ∈ X × N+. By Lemma EC.7 the maximizer argmaxx∈X θ̄(x) is known (although it’s

underlying value, max θ̄(x), is not known). �

We next prove Lemma 5 from the main paper that KGCRN, when evaluated as in Scott et al.

(2011), never samples a new seed and reduces to Expected Improvement (EI) of Jones et al. (1998).

Lemma 5 Let X ⊂Rd be a set of possible solutions, X̃n = {(x1,1), ..., (xn,1)} be the set of sampled

input pairs and Xn = (x1, ..., xn). Define

KGCRN
n (x, s;A) =E

[
max

x′∈A∪{x}
µn+1(x′,0)− max

x′∈A∪{x}
µn(x′,0)

∣∣∣∣Dn, (x, s)n+1 = (x, s)

]
.

Then for all x∈X

KGCRN
n (x,1;Xn)>KGCRN

n (x,2;Xn)

and therefore maxxKGCRN
n (x,1;Xn) > maxxKGCRN

n (x,2;Xn) and seed s = 2 will never be evalu-

ated. Further

KGCRN
n (x,1;Xn) =E

[
max{0, yn+1−maxY n}

∣∣Dn, xn+1 = x, sn+1 = 1
]
.

Proof By Lemma EC.9, we may set s= 1 as the target of optimization. For all sampled points

i= 1, ..., n, we have that σ̃n(xi,1;x, s) = 0 and µn(xi,1) = yi therefore maxµn(X̃n) = maxY n. Define

Ȳ n = maxY n. The expression for Knowledge Gradient becomes

KGCRN
n (x, s;Xn) = E

[
max{Ȳ n, µn(x,1) + σ̃n(x,1;x, s)Z}

]
−max{Ȳ n, µn(x,1)}

= E
[
max{0, µn(x,1) + σ̃n(x,1;x, s)Z − Ȳ n}

]
= ∆(x)Φ

(
∆(x)

|σ̃n(x,1;x, s)|

)
− |σ̃n(x,1;x, s)|φ

(
∆(x)

|σ̃n(x,1;x, s)|

)
= f

(
∆(x), |σ̃n(x,1;x, s)|

)
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where Φ(·), φ(·) are cumulative and density functions of the Gaussian distribution, ∆(x) =

µn(x,1) − Ȳ n and f(a, b) is the well known expected improvement acquisition function derived

from the expectation of a truncated Gaussian random variable. Note that the function f(a, b) is

monotonically increasing in b, d
db
f(a, b) = φ(−a/b)> 0. Hence, to prove the lemma, it is sufficient

to show |σ̃n(x,1;x,1)|> |σ̃n(x,1;x,2)| for all x∈X. Firstly we may simplify σ̃n(x,1;x,1) as follows

σ̃n(x,1;x,1) = kn(x,1, x,1)/
√
kn(x,1, x,1) (EC.21)

=
√
kn(x,1, x,1). (EC.22)

Substituting this into the inequality yields

|σ̃n(x,1;x,1)| > |σ̃n(x,1;x,2)|√
kn(x,1, x,1) >

|kn(x,1, x,2)|√
kn(x,2, x,2)

1 >
|kn(x,1, x,2)|√

kn(x,2, x,2)kn(x,1, x,1)

−1 < corr(θ(x,1), θ(x,2)|Dn)≤ 1

where the last line is true by the positive semi-definiteness of the kernel, the correlation between

two random variables cannot be greater than one. The above result demonstrates that allocating

samples according to KGCRN will always sample seed s= 1. The target is stochastic however the

objective is deterministic and the new output yn+1 ∼ N(µn(x,1), kn(x,1, x,1)). The acquisition

function simplifies to

KGCRN
n (x,1;Xn) = E

[
max{0, µn(x,1) +

√
kn(x,1, x,1)Z − Ȳ n}

]
= E

[
max{0, yn+1− Ȳ n}

∣∣Dn, xn+1 = x, sn+1 = 1
]

where the last line is exactly the EI acquisition criterion of Jones et al. (1998). �

EC.1.4. Suboptimality of KGPW

Finally we prove that the Value of Information achieved by KGPW is less than that of KGCRN,

given the same set of observations and Gaussian process models.
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Lemma 6 Let Dn be a dataset of observation triplets. For a Gaussian process with a kernel of the

form kθ̄(x,x
′) + δss′kε(x,x

′), the expected increase in value after two steps allocated according to

KGCRN is at least as big as two steps allocated according to KGPW,

En
[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGCRN

]
≥ En

[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGPW

]

Proof The suboptimality of one or two steps of the serial mode of KGPW is clear by noting

it is constrained to a new seed, a subset of the same acquisition space considered by KGCRN as

mentioned in Equation (23). We focus on the suboptimality of one step of the batch mode

En
[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGCRN

]
= max

(x,s)n+1
En
[

max
(x,s)n+2

En+1

[
max
x′

µn+2(x′,0)
∣∣(x, s)n+2

]
−max

x′′
µn(x′′,0)

∣∣∣∣(x, s)n+1

]
≥ max

xn+1
En
[

max
xn+2

En+1

[
max
x′

µn+2(x′,0)
∣∣xn+2

]
−max

x′′
µn(x′′,0)

∣∣∣∣xn+1, sn+1 = sn+2 = n+ 1

]
(EC.23)

≥ max
xn+1,xn+2

En
[

max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)

∣∣∣∣xn+1, xn+2, sn+1 = sn+2 = n+ 1

]
(EC.24)

≥ En
[

max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)

∣∣∣∣(xn+1, xn+2) = arg maxKGPW
n (x,x′), sn+1, sn+2 = n+ 1

]
= En

[
max
x′

µn+2(x′,0)−max
x′′

µn(x′′,0)
∣∣(x, s)n+1, (x, s)n+2 ∼KGPW

]

where the first inequality is due to constraining the acquisition space to a new seed, the second

is by Jensen’s inequality and the convexity of the max operator implying sub-optimality due to

batch pre-allocation, and the third inequality is due to the approximation with differences used in

KGPW as pairs are not allocated to maximize the true batch value. �

Sequentially allocating two singles to the same new seed is guaranteed to have higher value

per sample than a corresponding batch mode pre-allocating a pair to a single seed as shown by

Equations (EC.23) and (EC.24). However the serial and batch mode of KGPW compute the value

over different subsets of the full acquisition space and therefore the batch mode can return higher

value per sample.
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EC.2. Further Experimental Results
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Figure EC.1 Results for synthetic data where the objective function was drawn from the algorithm’s GP model

with offsets and white noise (η,σw ≥ 0, σb = 0) only. We let ρ= η2/(η2 +σ2
w) and hold η2 +σ2

w = 502

constant. For low ρ, all algorithms perform similarly. As ρ increases, KGCRN samples more old

seeds and outperforms other methods. We observe that KGPW samples singletons initially, hence its

performance is comparable to KG in that phase. Later the performance of KGPW improves over KG

and when it samples correlated doubles later improving upon KG.
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Figure EC.2 More results on GP synthetic data that was generated with η2 = 0 and ρ= σ2
b/(σ

2
b + σ2

w), holding

σ2
b + σ2

w = 502 constant. We do not observe a significant benefit from bias functions alone in the

case of no offsets.
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Figure EC.3 ATO results. The KGPW algorithm samples singletons early on, and never learns a large offset

parameter η2. KGCRN samples old seeds and eventually learns a large offset parameter and never

samples any new seeds. KG has the smallest running time, followed by KGCRN variants and the

KGPW variants.
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Figure EC.4 Ambulances in a square problem (AIS). The bias functions provide significant benefit to both

KGCRN and KGPW. Excluding bias functions, KGCRN − CS, leads to inefficient sampling of old

seeds only. The KGCRN variants learn larger offset parameters and require less computation time.
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Figure EC.5 The AIS problem with the sum of journey times in a simulation as the objective. KGCRN variants

improve performance over KG, and bias functions improve performance over compound spheric

variants. All methods reuse seeds to the extent that this is possible for them.
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Figure EC.6 All algorithm variants perform similarly. The offset and bias parameters are considerably lower

than the white noise parameter, suggesting there is little exploitable structure in the noise for this

problem.

Figure EC.7 The ATO benchmark where the KGCRN algorithm is initialized with 20 points spread over 3, 5, or

8 seeds. In all cases, the KGCRN algorithm converges to exactly the same level of profit.
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EC.3. Response Surfaces for ATO and Ambulances Problem

To understand the impact of the random seed on some real-world problems, Figure EC.8 depicts

(empirically estimated) θ̄(x) and θ(x, s) for each problem along a linear path within the higher

dimensional solution space. For the ATO problem, the objective for each seed and the target have

almost identical shape differing mostly by additive offsets, thus seed peaks align almost exactly

with the target peak and CRN will be beneficial. For the Ambulance problem, each seed has an

offset as well as more unique variation, the peaks of seeds are approximately similar to the target

and CRN may be beneficial but less so than ATO.

To demonstrate the better fit of our proposed GP model, we also examined its predictive accuracy

in a cross-validation analysis. For each of ATO, AIS, AIS-sum, AIS-1800s, using the sampled data

from the KGCRN optimization runs, Xn, Sn, Y n, we fit both a standard GP to predict Y n given

Xn and our proposed CRN-GP to predict Y n given Xn, Sn. Figure EC.9 depicts the average leave-

one-out cross validation error for the 400 datasets, one from each experiment replication. We see

that modeling the ATO and AIS-sum benefit greatly from the CRN-GP while AIS and AIS-1800s

only show a marginal difference.

Figure EC.8 Left: ATO problem x= (l, ..., l) for l ∈ {0, ...,20} and for 6 seeds of θ(x, s) (grey) and θ(x) (black).

Each seed has shape and peak location almost identical to the target. Right: AIS where x= (l, x2:6)

with random fixed x2:6. Each seed θ(x, s) has an offset and more seed specific variation from θ̄(x).
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Figure EC.9 For ATO, and AIS-sum, the CRN-GP model performs significantly better and these problems also

showed the most benefit from using CRN. For AIS and AIS-1800s, we observe no significant benefit

from the CRN model.

EC.4. Algorithm Implementation Details

EC.4.1. Hyperparameter Learning

The hyperparameters of the GP prior are estimated by multi-start conjugate gradient ascent of

the marginal likelihood (Rasmussen 2003). All parameters are lower bounded by zero. We set

upper bounds for the length scale parameters to double the largest separation between points

in each dimension. For all other parameters we set the upper bound to 1.5(maxY n −minY n)2.

We perform optimization in two ways, a full optimization and a finetuning optimization. For the

full optimization, we evaluate the marginal likelihood at 1000 points that are randomly uniformly

distributed. The best 20 points are used as starting points for 100 steps of conjugate gradient

ascent each. This expensive search is used for each of the first 200 iterations of the algorithm,

then at increasing intervals thereafter to save computation time. For all other iterations, we only

fine tune by conducting 20 steps of gradient ascent using the current best hyperparameters as a

starting point.

Recall that the likelihood has the following form:

P[Y n|X̃n,L,σ2
θ̄ , η

2, σ2
b , σ

2
w] = −1

2

(
(Y n− Ȳ )ᵀK−1(Y n− Ȳ ) + log(|K|) +n log(2π)

)
Kij = σ2

θ̄ exp

(
−1

2
(xi−xj)ᵀL(xi−xj)

)
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+1si=sj

(
η2 +σ2

b exp

(
−1

2
(xi−xj)ᵀL(xi−xj)

)
+1xi=xjσ

2
w

)
.

Firstly, an independent noise model (IND) is fitted by clamping η2 = σ2
b = 0 to yield

LIND, σ2
θ̄

IND
, σ2

w

IND
= argmaxP[Y n|X̃n,L,σ2

θ̄ , η
2 = σ2

b = 0, σ2
w]. (EC.25)

Secondly, the noise parameters η2, σ2
b , σ

2
w are optimized whilst keeping the total noise fixed η2 +

σ2
b +σ2

w = σ2
w
IND

which is a two-dimensional optimization, we reparameterize as follows

η2(α,β) = β(1−α)σ2
w

IND

σ2
b (α,β) = (1−β)(1−α)σ2

w

IND

σ2
w(β) = ασ2

w

IND

α,β = argmax[0,1]2P[Y n|X̃n,LIND, σ2
θ̄

IND
, η2(α,β), σ2

b (α,β), σ2
w(β)]

Thirdly, the final estimates of all hyperparameters are simultaneously fine-tuned by gradient

ascent. This three-stage method guarantees that the found likelihood is greater than the equivalent

non-CRN parameter estimates. Note that the second extra step of optimization is performed only

over the unit square and is thus cheaper than learning all hyperparameters from scratch.

EC.4.2. Optimization of KGCRN
n (x, s)

Derivatives of KGCRN and KGPW, when evaluated by discretization over X as we do, are easily

(but tediously) derived and can be found in multiple previous works (Scott et al. 2011, Xie et al.

2016). Alternatively, any automatic differentiation package, (Autograd, TensorFlow, PyTorch) may

be used as the mathematical operations are all common functions. We propose the following opti-

mization procedure:

1. Evaluate KGCRN(x, s) across an initial Latin Hypercube design with 1000 points over the

acquisition space X̃acq =X ×{1, ...,maxSn + 1}.

2. Use the top 20 initial points to initialize 100 steps of conjugate gradient ascent over X, holding

the seed constant within each run.
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3. For the largest (x, s) pair found, evaluate KGCRN(x, s) for the same x on all seeds s ∈

{1, ...,maxSn + 1}

4. Perform 20 steps of gradient ascent to fine tune the x from the best seed.

When not using common random numbers, stages one and two use the same new seed and stages

three and four are omitted.
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