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Abstract

A collection of objects, some of which are good and some are bad, is to be divided
fairly among agents with different tastes, modeled by additive utility functions. If
the objects cannot be shared, so that each of them must be entirely allocated to
a single agent, then a fair division may not exist. What is the smallest number of
objects that must be shared between two or more agents in order to attain a fair
and efficient division?

In this paper, fairness is understood as proportionality or envy-freeness, and
efficiency, as fractional Pareto-optimality. We show that, for a generic instance
of the problem (all instances except a zero-measure set of degenerate problems), a
fair fractionally Pareto-optimal division with the smallest possible number of shared
objects can be found in polynomial time, assuming that the number of agents is fixed.
The problem becomes computationally hard for degenerate instances, where agents’
valuations are aligned for many objects.
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1 Introduction.

How to divide an inheritance among heirs or common assets among former partners in a
fair way? This question becomes especially difficult if the division is to be made solely
based on participants’ individual preferences, while monetary compensations are excluded
as it is often the case when the divided objects have emotional value for the participants.
Such questions are studied by fair division, a research area at the interface of economics
and computer science; see a recent survey by Moulin (2019). What does it mean that
objects are allocated fairly? The two dominating notions of fairness in economic literature
are envy-freeness, which forbids the situation where some agent prefers the allocation
received by somebody else to his/her own, and proportionality requiring each agent to be
as happy with their own allocation as he/she would be in the equal division.

In economics, objects are traditionally assumed to be some divisible resources. Under
this assumption, fair allocations exist (e.g., the equal division), and, in a variety of
settings, fairness can be combined with economic efficiency. However, if the objects are
indivisible, it may be impossible to allocate them fairly — consider a single valuable
object and two people. Computer science literature focuses on indivisible objects and
suggests looking for an approximately-fair allocation in order to restore the existence.
There are several definitions of approximate fairness, the most common of which is envy-
freeness up to one object. An alternative approach to circumvent indivisibility, popular
among economists, is to make indivisible objects “divisible” via randomization, ensuring
that the division is fair ex-ante (in expectation).

While approximate or ex-ante fairness are reasonable when allocating low-value ob-
jects, such as seats in a course or in a school, they are not suitable for high-value objects,
e.g., houses or precious jewels. Think of two siblings who have to divide three houses
among them; it is unlikely that one of them would agree to receive a bundle that is
envy-free up to one house, or a lottery that gives either one or two houses with equal
probability.

Practical cases, however, fall in between the two extreme cases of divisible and indi-
visible objects. Usually, the objects can technically be shared among participants and,
hence, can be treated as divisible, however, such sharing is undesirable. For example, a
shop can be jointly owned by several partners, sharing the costs and revenues of opera-
tion. A house can be jointly owned by several people, who live in the house alternately.
However, sharing may be quite inconvenient due to the overhead in managing the shared
property. Unfortunately, sharing is inevitable for achieving exact fairness. Therefore,
minimizing the number of objects that have to be shared in a fair allocation becomes in
practice an important concern.

Sharing minimization. We propose a new approach to the problem of fair division:

Treat objects as divisible, make sharing-minimization the objective,
and consider fairness and economic efficiency as constraints.

This approach is a compelling alternative to approximate fairness when the objects to be
divided are highly valuable and sharing is technically possible (as in all examples above
and many other real-life situations) but unwanted.

We consider problems where the divided objects may contain both goods and bads, as
in the practice of partnership dissolution where valuable assets are often divided together
with liabilities. We assume that agents have additive utilities, so the problem can be



represented by a valuation matriz, recording the value of each object to each agent. Such
a “bidding language” is rather restrictive and does not allow to express complementarity
between objects (e.g., a garage becomes more valuable together with a car); however, it is
a standard choice both in theory and practice since such preferences are easy to formulate
and report (Goldman and Procaccia 2015).

We assume that the number of agents n is a fixed small number, as is common in
inheritance cases and divorces, so the problem size is determined by the number of objects,
denoted by m.

We focus on the two classic fairness notions: envy-freeness (each agent weakly prefers
his/her bundle to the bundle of any other agent) and proportionality (each agent gets a
bundle worth at least 1/n of the total value, where n is the number of agents). Economic
efficiency is captured by fractional Pareto optimality: no other allocation, even without
any restriction on sharing, improves the well-being of some agent without harming others.
Note that even if no objects are shared in a given allocation (hence, it can be considered
as an allocation of indivisible objects), the requirement of fractional Pareto optimality
compares it to all divisible allocations. The word “fractional” is meant to stress this fact
and contrast it to the requirement of discrete Pareto optimality which is popular in the
literature on indivisible objects and is discussed below.

To the best of our knowledge, the idea of sharing minimization has not appeared
in the literature. However, there are known worst-case and average-case bounds on the
number of shared objects; the gap between them shows that there is a significant room
for optimization. For goods or bads (but not a mixture), Bogomolnaia et al. (2016)
(Lemma 1) show that an envy-free fractionally Pareto-optimal allocation with at most
n — 1 sharings always exists. This upper bound is tight: when there are n — 1 identical
goods, all of them must be shared. Dickerson et al. (2014) considered a random instance
with large number m of indivisible goods and demonstrated that the allocation having the
highest utilitarian welfare (achieved by allocating each object entirely to an agent with
highest utility) is envy-free with high probability. Consequently, for large m, a fractionally
Pareto-optimal allocation with 0 sharings is likely to exist. These theoretical results
suggest that in problems with many objects there is room for optimizing the number of
sharings. Our computational experiments on the real data from the fair division platform
spliddit.org demonstrate that the number of sharings can often be optimized even for
small n: more than 50% of the 2-agents instances, 80% of the 3-agents instances, and 95%
of the 4-agents instances, admit a proportional and fractionally Pareto-optimal allocation
with fewer sharings than prescribed by the worst-case upper bound of n — 1 (see Figure
5).

The results. We consider the algorithmic problem of finding a fair and fractionally
Pareto-optimal allocation that minimizes the number of sharings. We find that the com-
putational hardness of the problem depends on the degree of degeneracy of the valuation
matrix. The degree of degeneracy measures how close the agents’ valuations are to being
identical. Formally, it is the minimal number k£ such that for each pair of agents, at most
k + 1 objects have the same ratio of agents’ values. The degree of degeneracy ranges
between 0 (for non-degenerate valuations) and m — 1 (for identical valuations).
We demonstrate the following dichotomy (Theorem 3.6):

e Minimizing the number of sharings is algorithmically tractable if the degree of de-
generacy of the valuation matriz is at most logarithmic in m, in particular, for
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non-degenerate valuations, we present an algorithm with a runtime polynomial in
m when n is fixed.

e Minimizing the number of sharings is NP-hard for any fixred n > 2 if the degree of
degeneracy 1s at least of the order of m® for some a > 0, in particular, for identical
valuations.

Since the set of valuations with positive degree of degeneracy has zero measure, our
algorithm runs in polynomial time for almost all instances. However, its runtime is expo-
nential in the worst case, which is unavoidable due to the NP-hardness result. Despite this
theoretical hardness, computational experiments on real data demonstrate the practical
relevance of the algorithm.

When neither n nor m are fixed, a complementary hardness result is obtained in a
follow-up paper by Misra and Sethia (2021). They demonstrate that, for instances with
degeneracy 1, finding an fPO and EF allocation with minimal sharing (or even deciding
the existence of an allocation with 0 sharings) is NP-hard.

Our methods and surprising sources of computational hardness. Our results
confirm the common sense that computationally-hard instances of resource-allocation
problems are rare and, in practice, such problems can often be solved efficiently.

However, the fact that computationally-hard instances are those in which agents have
identical valuations is quite surprising. In many previous papers on fair division (e.g.,
Oh et al. (2019), Plaut and Roughgarden (2018)), computational hardness results are
presented with a qualifier saying that the problem is hard “even when the valuations are
identical”; our results show that the “even” is unwarranted because in our model hard
instances are exactly those with identical valuations.

Another observation that may seem surprising is that finding a fair and fractionally
Pareto optimal allocation with minimal sharing is computationally easier than just fair
with minimal sharing (without Pareto-optimality). The underlying reason is that, for
non-degenerate problems, fractional-Pareto-optimality is a strong condition that shrinks
the search space to a polynomial number of structures (see Proposition 3.7 for a formal
statement). Without fractional Pareto-optimality, sharing-minimization becomes NP-
hard, see Remark 3.4. Sharing minimization without Pareto optimality is discussed in a
follow-up paper (Segal-Halevi 2019b).

The polynomial “size” of the Pareto frontier for non-degenerate problems is the key
observation, which allows us to conduct the exhaustive search over fPO allocations. A
similar insight underlies the algorithms of Devanur and Kannan (2008) and Branzei and
Sandomirskiy (2021) for computing equilibrium allocations of Fisher markets. We demon-
strate the universal power of these ideas by showing the first application beyond equilibria
of exchange economies. A follow-up paper (Aziz et al. 2020) builds on our results and
demonstrates that the approach can also be used to design polynomial-time algorithms for
approximately-fair fPO allocations of indivisible items. The dynamic programming ap-
proach that we use to enumerate the Pareto frontier is more intuitive than that of Branzei
and Sandomirskiy (2021) and does not rely on the “black-box” of cell-enumeration tech-
nique used by Devanur and Kannan (2008). Another related observation is known within
the framework of smoothed analysis of NP-hard problems: the Pareto frontier for a knap-
sack problem and its extensions becomes polynomially-sized if the instance is randomly
perturbed (see Moitra and O’Donnell (2011) for a survey).



Note the important contrast between fractional and discrete Pareto-optimality, which
is the dominant notion of economic efficiency in the literature on indivisible objects
(an allocation is discrete Pareto-optimal if it is not dominated by any allocation with
zero sharings). For discrete Pareto-optimality, even basic questions are computationally
hard: deciding whether a given allocation is discrete-PO is co-NP complete, and deciding
whether there exists an envy-free discrete-PO allocation is Xb-complete (de Keijzer et al.
2009). In contrast, deciding whether a given allocation is fractional-PO is polynomial
in m and n (see Lemma 2.2), and deciding whether there exists an envy-free and frac-
tionally PO allocation with no sharings is, for almost all instances, polynomial in m for
fixed n (Theorem 3.6). These observations suggest that fractional-Pareto-optimality is a
compelling concept of economic efficiency even for indivisible objects; recent results by
Barman and Krishnamurthy (2018), Barman et al. (2018) support this conclusion.

Checking fractional Pareto-optimality efficiently is a critical building block of our ap-
proach. An algorithm provided by Lemma 2.2 runs in strongly-polynomial time even if
neither the number of agents n nor the number of objects m are bounded; this algorithm
is used to enumerate the Pareto frontier in strongly-polynomial time for fixed n. The
algorithm is based on the equivalent “dual” condition for fractional Pareto-optimality: ab-
sence of profitable cyclic trades (Lemma 2.1). This dual characterization is known in the
case of goods (Bogomolnaia et al. 2016, Barbanel 2005) and in the case of bads (Branzei
and Sandomirskiy 2021), but not in the case of a mixture. Extension to the mixture is not
straightforward and requires a rather tricky definition of a weighted consumption graph,
see Subsection 2.3. As far as we know, algorithmic implications of the characterization
are new even in the case of pure goods or pure bads, e.g., Lemma 2.5. We note that a
weakly polynomial algorithm for checking fractional Pareto optimality can be deduced
from the classic connection between fractional Pareto optimality and weighted welfare
maximization; see Lemma 2.3 and the discussion around.

Fisher markets and competitive allocations. Fair division with divisible goods is
tightly connected to the literature on competitive equilibria of exchange economies known
as Fisher markets; see literature review in Section 5. In such markets, agents are endowed
with budgets of some artificial currency with no intrinsic value, and the goal is to find
prices such the market clears when each agent purchases the most preferred among af-
fordable bundles. The corresponding allocations are called competitive equilibria (CE).
Varian (1974) suggested using CE with equal budgets as a fair division rule; it is denoted
by CEEI since budgets are sometimes referred to as incomes. For general convex prefer-
ences, CEEI exists, it is envy-free and fractionally Pareto optimal; under the additional
assumption of homogeneity, it maximizes the product of agents’ utilities (the Eisenberg-
Gale convex optimization problem). Both properties, convexity and homogeneity, are
satisfied by additive valuations considered in our paper. CEEI was extended to bads and
a mixture of goods and bads by Bogomolnaia et al. (2017).

Any alternative approach to fair division of divisible objects is natural to compare
with the benchmark of CEEI. This benchmark is usually hard to beat, yet our simulations
on the data from spliddit.org demonstrate that the sharing-minimization approach
improves upon CEEIL. Namely, we find a proportional fPO allocation with fewer sharings
in more than 36% of the instances and envy-free fPO allocation, in more than 23% of
them (see Table 1). This should not be surprising since sharing minimization finds the
best allocation among all fair fractionally Pareto optimal allocations, while CEEI picks
a particular point in this set.
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By the First and Second Welfare Theorems, the set of fractionally Pareto optimal
allocations and the set of CE with arbitrary budgets coincide. Hence, sharing minimiza-
tion can be reinterpreted as the optimization in the space of budgets with the number
of sharings as the objective and fairness (either envy-freeness or proportionality) as a
constraint. Unfortunately, nothing is known about the structure of the set of budgets
such that CE is fair except that it contains equal budgets. This obstacle precludes using
the connection to CE to minimize sharing algorithmically.

Since the sets of CE and fractionally Pareto optimal allocations coincide, all the
structural results for the latter, such as Lemma 2.1 and 2.5, translate to the former and
vice versa. In particular, undirected consumption graphs of fractionally Pareto opti-
mal allocations correspond to the so-called maximal bang per buck (MBB) graphs for
the Fisher market. Consequently, the algorithm enumerating all consumption graphs
(Proposition 3.7) can be used to find all MBB graphs. A similar idea for enumeration
of MBB graphs was employed by Branzei and Sandomirskiy (2021) to compute CE for
bads, where it no longer solves a convex optimization problem.

For goods, it is known that the consumption graph of a CE is acyclic or can be made
acyclic via cyclic trades leaving all agents indifferent (Orlin 2010, Barman and Krishna-
murthy 2018). For goods, combining this result with the Second Welfare Theorem, one
can deduce the non-algorithmic part of Lemma 2.5 and the “only if” part of Lemma 2.1.
However, there is a common obstacle for obtaining the algorithmic part of Lemma 2.5, the
“Uf” part Lemma 2.1, as well as Lemma 2.2 (algorithmic corollary of Lemma 2.1) using
the market approach. Cyclic trades considered in the market literature are determined
by equilibrium prices (Barman and Krishnamurthy 2018, proof of Claim 2.2.), but nei-
ther prices nor budgets are given in the lemmas mentioned above. For mixed problems,
the connection to the Fisher market becomes even less helpful since it is not known if
the Second Welfare Theorem holds in this case, and the First Welfare Theorem may be
violated depending on nuances in the definition of CEEI (Bogomolnaia et al. 2017). For
this reason, our proofs do not use Fisher market techniques even though some claims
might be proved via this alternative approach.

Goods, bads, and mixed problems. Starting from the paper by Bogomolnaia et al.
(2017), it has been understood that problems with bads (or a mixture of goods and
bads) are structurally different from those with goods; see Moulin (2019) for a survey.
For example, there are impossibility results specific for bads, CEEI for bads becomes
multi-valued and no longer solves a convex optimization problem, approximate-fairness
guarantees for indivisible objects often differ in the case of goods and bads.

With all this evidence contrasting fair division of goods with that of bads, our results
provide an exception. Although the presence of both goods and bads complicates the
constructions, it does not lead to conceptual obstacles and does not alter the results.

Structure of the paper. In Section 2, we introduce the notation and describe useful
tools such as characterizations of fractional Pareto-optimality and worst-case bounds on
the number of sharings. While most of these results are known for goods, extension
to mixed problems is not straightforward. Our results about sharing-minimization are
contained in Section 3. Section 4 describes computational experiments on real data
from spliddit.org. Related work is surveyed in Section 5. Appendices A and B are
devoted to omitted proofs.
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2 Preliminaries.

2.1 Agents, Objects and Allocations.

There is a set [n] = {1,...,n} of n agents and a set [m| = {1,...,m} of m divisible
objects. A bundle x of objects is a vector (z)ocfm € [0,1]™, where the component z,
represents the portion of o in the bundle (the total amount of each object is normalized
to 1).

Each agent ¢ € [n] has an additive utility function over bundles: u;(x) = Zoe[m] Vi o Lo-
Here v;, € R is agent i’s value of receiving the whole object o € [m]; the matrix v =
(Vio)icn],ocm) is called the valuation matriz; it encodes the information about agents’
preferences and is used below as the input of fair division algorithms.

We make no assumptions on valuation matrix v and allow values of mixed signs:
for example, the same object o can bring positive value to some agents and negative to
others. We say that an object o is:

e a bad if v;, < 0 for all 7 € [n].
e neutral if v;, = 0 for at least one i € [n] and v;, < 0 for all j € [n];
e a good if v;, > 0 for at least one i € [n];

— a pure good if v;, > 0 for all i € [n];

Note the asymmetry in this notation: an object is a bad if everyone think that it is bad,
but an object is a good if at least one agent thinks so. In other words, an object is a good
if it can be allocated in a way that gives the owner positive utility, while a bad harms
any owner.

An allocation z is a collection of bundles (z;);c[n), one for each agent, with the condition
that all the objects are fully allocated. An allocation can be identified with the matrix
z := (Zi)icn],0cfm] Such that all z;, > 0 and Zie[n] 2o = 1 for each o € [m].

The wutility profile of an allocation z is the vector u(z) := (u;(2;))ic)-

2.2 Fairness and efficiency concepts.

The two fundamental notions of fairness, taking preferences of agents into account, are
envy-freeness and a weaker concept of proportionality (also known as equal split lower
bound or fair share guarantee).

An allocation z = (2;);c[n is called envy-free (EF) if every agent weakly prefers his/her
bundle to the bundles of others. Formally, for all i, j € [n]: u;(z;) > u;(z;).

An allocation z is proportional (PROP) if each agent prefers his/her bundle to the
equal division: Vi € [n] u;(z;) > %Zoe[m] v; 0. Every envy-free allocation is also propor-
tional; with n = 2 agents, envy-freeness and proportionality are equivalent.

The idea that the objects must be allocated in an efficient, non-improvable way is
captured by Pareto-optimality. An allocation z is Pareto-dominated by an allocation y
if y gives at least the same utility to all agents and strictly more to at least one of them.

An allocation z is fractionally Pareto-optimal (fPO) if no feasible y dominates it.
We note that the literature on indivisible objects considers a weaker notion of economic
efficiency: z is discrete Pareto-optimal if it is not dominated by any feasible y with



Yio € {0,1} for every agent ¢ and object o. While fractional-Pareto-optimality has good
algorithmic properties, its discrete version does not, see the discussion in Section 1.

We will also need the following extremely weak but easy-to-check efficiency notion:
an allocation z is non-malicious if each good o is consumed by agents ¢ with v;, > 0
and each neutral object o by agents ¢ with v; , = 0. Non-malicious allocations impose no
restriction on the allocation of bads. Every fPO allocation is clearly non-malicious.

2.3 Agent-object Graphs and a Characterization of fPO.

Our algorithms use several kinds of agent-object graphs — bipartite graphs in which the
nodes on one side are the agents and the nodes on the other side are the objects:

In the (undirected) consumption-graph €3, of an allocation z, there is an edge between
agent ¢ € [n] and object o € [m] iff z;, > 0.

The weighted directed consumption-graph G?z of z is constructed as follows. There is
an edge (i — o) with weight w;_,, = |v;,| if one of the two condition holds:

e z,,>0and v;, > 0 (agent ¢ consumes a non-zero amount of o and thinks that o is
not a bad)

e 2, <1and v;, <0 (apositive fraction of o is not consumed by i, who treats o as
a bad).

The opposite edge (0 — i) with weight w,_,; = ﬁ is included in @Z in one of the two
cases:

e 2, >0 and v;, <0 (agent i consumes a non-zero amount of o and perceives o as

a bad)

e 2, <1and v, >0 (apositive fraction of o is not consumed by 4, who thinks that
o0 is a good).

Intuitively, @z captures the structure of possible exchanges in which agents may
engage. Outgoing edges represent those objects that an agent i can use as a “currency”
to pay others: either goods i owns or bads owned by somebody else (in this case i pays j
who owns a bad b by taking some portion of b). Similarly, the incoming edges represent
those objects that the agent can accept as a payment. A transaction involving an object
o and agents ¢ and j such that ¢’s utility weakly decreases and j’s utility strictly increases
is possible if there are edges i — o0 — j.

Incoming edges are those objects that i is ready to accept as a currency: either to
receive a valuable good, or to diminish ¢’s own bad. An example is shown in Figure 1.

Given v, one can reconstruct C‘%Z from GG, and vice versa. Indeed, the condition
Zio < 1 from the definition of €G, holds if and only if there is an agent j # ¢ with
zjo > 0, i.e., if 0 is connected to some j # ¢ in CY,.

The product of a directed path P in @z, denoted 7(P), is the product of weights of
edges in P. In particular, the product of a cycle C' = (i = 01 — ... = o — i1 = i1)
is:

L
7T<C) - H (wik—mk : wok—ﬂkﬂ)'

k=1
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Figure 1: Some examples of weighted directed consumption graphs in an instance with
pure goods. Alice gets the farm, Bob gets the car, and they share the house. Left:
The farm, house and car are valued by Alice at 4, 2.5 and 1, and by Bob at 1.25, 2 and 5.
The allocation is fPO.  Right: The house is valued by Alice at 25 (all other valuations
are the same). The allocation is not fPO; a cycle C' with 7(C') < 1 is shown by bold
arrows.

The importance of this product is justified by the following lemma (proved in Ap-
pendix A):

Lemma 2.1. An allocation z is fractionally Pareto-optimal if-and-only-if it is non-
malicious and its directed consumption graph CSY, has no cycle C with w(C') < 1.

We see that the information about Pareto-optimality of an allocation is “encoded”
in its consumption graph. An analog of Lemma 2.1 is known for pure goods in a cake-
cutting context (Barbanel 2005) and was recently extended to problems with bads only
by Branzei and Sandomirskiy (2021). Lemma 2.1 has a useful computational implication,
which is also proved in Appendix A.

Lemma 2.2. [t is possible to decide in time O(nm(n+m)) whether a given allocation z
18 fractionally Pareto-optimal.

Classic results in economic theory (Negishi 1960, Varian 1976) represent the Pareto
frontier of economies with convex sets of feasible utilities as the set of allocations z that
maximize the weighted utilitarian welfare Zie[n] Aiui(z;) for some positive weights ;.
This leads to another characterization of fPO allocations. The proof can be found in
Branzei and Sandomirskiy (2021) for the case of bads and in Appendix A for a mixture
of goods and bads.

Lemma 2.3. An allocation z is fractionally Pareto-optimal if and only if there is a vector
of weights A = (Ni)icp) with A > 0, i € [n], such that

Zio > 0 amplies N\vio > \jvjo (2.1)
for all agents i,j € [n] and objects o € [m)].

We note that Lemma 2.3 implies an alternative algorithm for checking fractional
Pareto-optimality, which, in contrast to the strongly-polynomial algorithm of Lemma 2.2
runs in weakly polynomial time. Indeed, fractional Pareto-optimality of z is equivalent to
the existence of the vector A and the latter exists if and only if the linear program formed
by inequalities (2.1) and the positivity condition is feasible (the positivity requirement
can be replaced by \; > 1, i € [n], since the linear program is homogeneous).
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Lemma 2.3 provides useful insights into the “threshold” structure of fractionally
Pareto optimal allocations captured by the following necessary condition for fPO.

Corollary 2.4. For a fractionally Pareto-optimal allocation z and any pair of agents
i # j, there is a threshold t;; > 0 (t;; = ’)\\—J from Lemma 2.3) such that for any object o

o ifv;,-vj, >0 (ie., both agents agree whether o is a good or a bad), then

— for Zf"’ > t;j, we have zj, = 0 in the case of a good and z;, = 0 in the case
J,0

of a bad

— for z"ﬁ" < t;j, we have z;, = 0 in the case of a good and z;, = 0 in the case
7,0

of a bad

o if v, vV, <0, then an agent with negative value cannot consume o

o ifv,, =0 butvj, #0, then z;, =0 for negative v;, and z;,, = 0 for positive v;,.

Vi, o

In particular, the only objects o that can be shared between i and j are those with oo = tij

or with v;, = vj, = 0.

A similar result underlies the Adjusted Winner procedure introduced by Brams and
Taylor (1996) for goods and extended to mixed problems in (Aziz et al. 2018). The
condition is necessary and sufficient for n = 2 (see (Bogomolnaia et al. 2016) for either
goods or bads). For n > 3, the condition is not sufficient; as one can see, it is equivalent

to having no cycles of length 4 with 7(C) < 1 in @z (for n = 2 any simple cycle has
length at most 4). However, it does not exclude longer cycles.

2.4 Measures of Sharing and Worst-case Bounds.

If for some ¢ € [n], z;, = 1, then the object o is not shared — it is fully allocated to agent
1. Otherwise, object o is shared between two or more agents. Throughout the paper, we
consider two measures quantifying the amount of sharing in a given allocation z.

The simplest one is the number of shared objects | {o € [m] : z;, € (0,1) for some i € [n]}|.
Alternatively, one can take into account the number of times each object is shared. This
is captured by the number of sharings

#shar, = Z ([{i €n]: zio>0} —1).

0€[m)]

For discrete allocations, where each object is allocated entirely to one of the agents, both
measures are zero. They differ, for example, if only one object o is shared but each agent
consumes a bit of o: the number of shared objects is then 1 while the number of sharings
is n — 1. Clearly, the number of shared objects is always at most the number of sharings.

When there are n agents and n — 1 identical pure goods, a fair allocation must give
each agent a fraction (n — 1)/n of a good, for any reasonable definition of fairness. This
requires sharing all n — 1 goods, so n — 1 is a worst-case lower bound on the number of
shared objects and thus also for the number of sharings. This lower bound can always
be attained.

In the case of pure goods or bads but not a mixture, Bogomolnaia et al. (2016) showed
that for any fractionally Pareto-optimal allocation z, there exists an equivalent one z*
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(in both allocations, all agents receive the same utilities) with #shar,, < n —1. A
similar result can be found in (Barman and Krishnamurthy 2018) (see Claim 2.2) for the
so-called competitive equilibrium allocations of pure goods. The following lemma shows
that z* can be constructed efficiently. It is proved in Appendix B and covers arbitrary
allocations z rather than just fractionally Pareto-optimal, and a mixture of goods and
bads. In a follow-up work (Aziz et al. 2020) this lemma was applied for computing
almost-proportional fPO allocations of such a mixture.

Lemma 2.5. For any allocation z, there is a fractionally PO allocation z* such that:
e (a) z* either Pareto dominates z or gives every agent the same utility as z.
e (b) the undirected consumption graph CG,« is acyclic.
e (c) z* has at most n — 1 sharings (hence at most n — 1 shared objects).

The allocation z* can be constructed in strongly-polynomial time using O(n*m?(n + m))
operations.

This lemma, combined with known algorithms for computing fair and fractionally PO
allocations, yields the following corollary.

Corollary 2.6. In any instance with n agents, there exists a fractionally Pareto-optimal,
envy-free (and thus proportional) division with at most n — 1 sharings. In some special
cases, such an allocation can be found in strongly-polynomial time:

e [f the fairness notion is proportionality only — using O(n?*m?*(n +m)) operations;

e If all objects are pure goods — using O((n +m)*log(n +m) + n*m?(n+m)) oper-
ations;

o [f objects are mired — using O(m"“) operations for fized n and O(nm”) for fized
m.

Proof. The existence of envy-free fPO allocations for mixed problems was proved by Bo-
gomolnaia et al. (2017). Such allocations can be obtained as competitive equilibria of
the associated Fisher market with equal incomes (CEEI); see the discussion in Section 1
ans 5. CEEI satisfies the property of Pareto-indifference: if z is a CEEI and z* gives the
same utilities to all agents, then z* is also a CEEI. This allows us to apply Lemma 2.5
and get an envy-free fPO allocation with #shar, <n — 1.

For the first claim, consider the equal-split allocation z (z;, = % for all 4,0) and
construct a fractionally Pareto-optimal dominating allocation z* by Lemma 2.5. Pareto-
improvements preserve proportionality, and thus z* is proportional, fPO, and has at most
n — 1 sharings.

Algorithms for computing Fisher market equilibria are known for pure goods with
run time O((n + m)*log(n 4+ m)) (Orlin 2010) and for a mixture with run time O (m"+?)
for fixed n and O(nm+2) for fixed m (Garg and McGlaughlin 2020). Application of
Lemma 2.5 to the computed CEEI yields the remaining claims. O]
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3 Pareto-Optimal Fair Division: Minimizing the Shar-
ing.

As we saw in Subsection 2.4, having n — 1 sharings is unavoidable in the worst case.
However, the average-case behavior is much better than the worst-case and it is likely to
find a fair and fractionally Pareto optimal allocation with fewer sharings (see (Dickerson
et al. 2014) and the discussion in Section 1). This raises the following computational
problem:

For a given instance of a fair division problem,
find a solution that minimizes the number of sharings.

We will contrast between two extreme cases: agents with identical valuations and
agents with non-degenerate valuations.

Definition 3.1. A valuation matrix v is called degenerate if there exist two agents 7, j

i o — a4y .y, Yio _ Yip j i
and two objects o,p such that v;, - vj, = v;, - v;, (or e = if denominators are

non-zero). Otherwise, it is called non-degenerate.

Note that if v is selected randomly according to a continuous probability distribution,
it is non-degenerate with probability 1.

Bogomolnaia et al. (2016) and Branzei and Sandomirskiy (2021) use a stronger def-
inition of degeneracy: the complete agent-object graph has no cycles C' with 7(C') = 1.
Their condition implies that CG, is acyclic for any fPO allocation z and that there is a
bijection between Pareto-optimal utility profiles and fPO allocations. Our definition ad-
dresses only cycles of length 4 and thus can be easily checked in O(n?-mlogm) operations
(see Subsection 3.2). For 2 agents the definitions coincide.

3.1 Warm-up: Two Agents, Pure Goods.

For n = 2, the upper bound on the number of sharings from Subsection 2.4 is 1, so
sharing-minimization boils down to finding a fair allocation with no sharings at all (if
such an allocation exists). The following “negative” result is well-known (e.g., (Lipton
et al. 2004)); we present it to contrast with the “positive” theorem after it.

Theorem 3.2. When there are n = 2 agents with identical valuations over m pure
goods, it 1s NP-hard to decide whether there exists an allocation with no sharings that is

EF (=PROP for n = 2) and fractionally-PO.

Proof. For two agents with identical valuations, all allocations are fractionally-PO. Thus,
a fair+fPO allocation exists if-and-only-if the set of goods can be partitioned into two
subsets with the same sum of values. Hence, the problem is equivalent to the NP-complete
problem PARTITION. O

The following theorem shows that, under the requirement of fractional Pareto-optimality,
the computational problem becomes easier when the valuations are different.

Theorem 3.3. For two agents with non-degenerate valuations over m pure goods, it is
possible to find in time O(m - log(m)) a division that is EF (=PROP for n = 2) and
fractionally-PO, and subject to these requirements, minimizes the number of sharings.

If the goods are pre-ordered by the ratio Z;Z’ the computation takes linear time O(m).

3
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Proof. Order the goods in descending order of the ratio vy ,/v2,, for o € {1,...,m} (this
takes O(mlog(m)) operations). By the assumption of non-degeneracy, no two ratios
coincide.

By Corollary 2.4, any fractionally PO allocation z takes one of two forms:

e “0 sharings”: there is a good o such that z gives all the prefix goods 1,...,0 to
agent 1, and all suffix goods o+ 1,...,m to agent 2.

e “1 sharing”: there is a good o which is split between the two agents, while all goods
1,...,0—1 are consumed by agent 1 and all remaining goods 0o+ 1, ..., m by agent
2.

Therefore, we have m + 1 allocation with 0 sharings and each of them can be tested for
fairness. If there are no fair allocations among them, then we look for a fair allocation
among those with one sharing. For any fixed o, this leads to solving a system of two
linear inequalities with just one variable (the amount of o consumed by agent 1). O]

Remark 3.4. If the requirement of fractional-PO is removed, we cannot escape the
hardness of Theorem 3.2 even for non-degenerate valuations. This can be demonstrated
by adding a small twist in the proof of Theorem 3.2: instead of an instance with identical
valuations, a tiny perturbation of it is considered; this eliminates degeneracy but preserves
reduction from PARTITION. Hardness of sharing-minimization without fPO is further
explored by Segal-Halevi (2019b).

3.2 Main Results: n Agents, Mixed Valuations, Varying De-
generacy.

Now we come back to the full generality of mixed problems with an arbitrary number of
agents.

In order to capture instances “in between” the two extremes of non-degenerate and
identical valuations, we define the degree of degeneracy of a valuation matrix v as

D, = max max|i0€|m| : vio =71 -v;o¢| — 1.
isj€lnl i >0 {o€lml : v o}
Informally, Dy + 1 is the maximal number of objects o such that some agents i # j
have the same ratio -2 for all of them. Degree of degeneracy can be easily computed in
Vj,0

time O(n?-mlog(m)): for each pair of agents rearrange the ratios in a weakly-decreasing
order and then find the longest interval of constancy.

A valuation matrix v is non-degenerate if and only if D, = 0. In particular, Dy equals
zero with probability one for any continuous probability measure on R™*™. In the case
of identical valuations, D, attains its maximal value, which is m — 1.

Remark 3.5. By Corollary 2.4, in any fPO allocation, for each pair of agents, at most
Dy + 1 objects are shared. Hence, in any fPO allocation, the number of sharings is at
most (Dy + 1)"(" D Contrast this with Lemma 2.5: it says that, for any fPO utility
profile, there exists an fPO allocation with these utilities, in which the number of sharings
is at most n — 1.

The next theorem is our main result: it shows how increasing D, moves us grad-
ually from the easiness illustrated (for two agents) by Theorem 3.3 to the hardness of
Theorem 3.2.

13



Theorem 3.6. Fix the number of agents n > 2.

(a) Given an m-agent instance v with a mixture of goods and bads, an allocation z
that minimizes the number of sharings #shar, subject to fractional-Pareto-optimality and
proportionality (or envy-freeness) can be computed using

n(n—1 n(n—1
O<3 CDy >+2>

operations. In particular, for any fized constant C' > 0, sharing-minimization can be
performed in strongly-polynomial time for any instance v with Dy, < C - log(m).

(b) Fix arbitrary constants C > 0 and a > 0. Checking the existence of a fractional-
Pareto-optimal proportional (or envy-free) allocation z with #shar, = 0 is NP-hard for
valuations v such that D, > C' - m®.

Proof. (a) The algorithm has two phases. The first phase is to enumerate the set G, of
all fPO graphs — undirected consumption graphs of fractionally PO allocations. This
phase is the subject of Proposition 3.7 below.

The second phase is testing each G € G, :

1. Count the number of sharings in G. If it exceeds n — 1, skip G .

2. For each shared object o, and for each agent i connected to o, create a non-negative
variable z; , representing the fraction of o allocated to i. The total number of such
variables is at most 2(n — 1) — for each shared object, we have one variable for
each agent connected to it.

3. Represent the required fairness condition (EF / proportionality) as a set of linear
inequalities in these variables. Solve the resulting LP.

4. Among those graphs G where the LP has a solution, select the one with the smallest
number of sharings and return the corresponding allocation.

Step 1 is justified by Lemma 2.5: it ensures that we can restrict our attention to fPO
allocations with at most n — 1 sharings. Since all graphs of such allocations are checked,
a fair fPO allocation with the minimal #shar, will be found.

Note that a solution to the linear program from Step 3, if exists, may not be unique.
We stress that the algorithm can pick any solution to this LP, not necessary the one that
minimizes the number of sharings over the set of solutions. Indeed, if for a graph G € G,
the LP has a solution such that some variables z;, are equal to zero, such a solution
will be discovered when the algorithm faces the graph G’ € G, where the corresponding
edges (i,0) are eliminated.

For fixed n, the number of operations per fPO graph G is O(m), the time needed

to “read” it. Solving the LP takes constant time since its size does not depend on m
— it depends on n only and n is fixed: we have at most 2(n — 1) variables, at most
3(n — 1) feasibility constraints (at most 2(n — 1) of non-negativity and at most n — 1 of
full allocation), n fairness constraints for proportionality and n(n — 1) for EF. Thus, the
run time of the second phase is O(m - |Gy|) and the first phase determines the overall
complexity.
(b) We outline a reduction from PARTITION. It is slightly more complicated than the
reduction by Lipton et al. (2004) used in Theorem 3.2 since we need to construct an
instance that is not too degenerate and, in particular, we cannot rely on instances with
identical preferences.
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We present the construction for n = 2; the case n > 2 can be covered by adding
dummy agents. Given an instance aq, as, . . ., a, of PARTITION, pick a minimal m = m(p)
such that C'-m® > p—1 . Define a fair division instance with m pure goods of two types:

e p “big” goods: for each o € [p]|, the good o is equally valued by both agents:
V1,0 = V2,0 = Qo-

e m — p “small” goods: there are Q = =52 pairs (w.l.o.g., m — p is even) of goods

(qr: @i )refq) such that vy g = vag, = 5 015 = vaq, = 157
Note that the value-ratios of the p big goods are all equal to 1, while the value-ratios of
the small goods are all different (k + 1 for £ =1,2,...). Hence the degeneracy degree of
the instance is p — 1.

The sum of each pair of small goods is less than 1/m, so the sum of all small goods
is less than 1/2 for both agents, while the value of each big good is a positive integer.
Therefore, in any fair fractionally PO allocation, both agents consume some of the big
goods. Thus, by Corollary 2.4, agent 1 consumes all the g goods (since their value-ratio
is more than 1) and agent 2 all the g, goods (since their value-ratio is less than 1).

Thus, a fair fPO allocation with 0 sharings exists if and only if a4,...,a, can be
partitioned into two subsets of equal sum.

We have reduced PARTITION to an allocation problem with Dy, = p—1 < C - m®.
Since m = m(p) is bounded by a polynomial in p, the length of binary representation of
v is bounded by a polynomial of the size of PARTITION instance. O

The following proposition completes the proof of Theorem 3.6: it shows that the set
of consumption graphs of all fPO allocations can be efficiently enumerated.

Proposition 3.7. For every fixed number of agents n > 2, the set of all fPO graphs G, =
n(n—1) Dy n(n—1) +2
-m

{€S, : z is fPO for v} can be enumerated using O (3 2 2

In particular, for v with logarithmic degeneracy (Dy < C -log(m) as in Theorem 3.6),
the algorithm runs in strongly-polynomial time.
The total number of graphs in G, satisfies the upper bound

operations.

n(n—1) n(n—1)

‘gv‘ < 3D T (3.1)

Proposition 3.7 is proved by the following two lemmas. We enumerate all fPO graphs
by iteratively adding agents. We start by enumerating fPO graphs for the first two agents
(Lemma 3.8 and Figure 2). Then we show that, given all fPO graphs for agents 1,. ..k,
we can efficiently enumerate all fPO graphs for agents 1,...,k+1 (Lemma 3.9 and Figure
3).

We note that there are several alternative approaches to enumerate fPO consump-
tion graphs. Branzei and Sandomirskiy (2021) recover a subset of fPO graphs by their
2-agent projections in order to compute the so-called competitive allocations of bads.
Devanur and Kannan (2008) use a complicated technique of cell-enumeration from com-
putational algebraic geometry for a similar problem with goods. An alternative dynamic-
programming approach for goods was outlined by D.W. (2019). That algorithm sequen-
tially adds new goods and presumably runs in time O(2"m?|G,|), however, the construc-
tion does not provide an a-priori polynomial upper bound on |G,|.
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Figure 2: Enumerating the fPO consumption graphs of allocations between two agents
(Lemma 3.8), in a non-degenerate instance with m = 3 pure goods, where the agents’
valuations are as in Figure 1/Left. There are 2m + 1 = 7 consumption-graphs of fPO
allocations between Alice and Bob. The emphasized graph at the top-right is expanded
in Figure 3 below.

Lemma 3.8. For an instance v with 2 agents and m objects: (a) the total number of
graphs in Gy is at most 3m - 3Pv. (b) If all the objects o with vy, - v, > 0, are ordered

by the ratio I Lol , then Gy can be enumerated using O ( 3D") operations.

Proof. We generalize the construction used in Theorem 3.3, from pure goods and non-
degenerate valuations, to arbitrary objects and an arbitrary degeneracy level.
We use the following notation:

e Ag={o€[m] : v, >0, vy, >0} for the set of pure goods;
e Aog={o€[m] : v, <0, vy, <0} for the set of bads,

e Ay={o€[m] : v, =uv2, =0} for zero-valued objects,

e A, for all the remaining impure goods and neutral objects;

[v1,0]

e For a given positive number ¢, we define A_(¢) := {0 € Ao U A : e = t}.

(a) By non-maliciousness, there is no flexibility in allocating objects from A.: they
are consumed by the agent with larger v;, at any fPO allocation. In contrast, objects
from Ag can be allocated arbitrarily. Such zero objects contribute |Ay| to Dy and lead to
3140l allocation possibilities (each object is consumed either by agent 1, or by agent 2, or
by both). Note that if we were only interested in final allocations, then zero objects could
be given to one of the agents arbitrarily. However, in Lemma 3.8 we count all possible
consumption graphs, which are important for the later steps of the algorithm. Therefore,
we consider all options for zero objects too.

The allocation of objects from A~q U A_q is determined by the value-ratio threshold

t12 of Corollary 2.4. Consider the set 1" = {M o€ AsgU A<0}. To cover all the fPO

[v2,0]”
allocations, it is enough to consider |T| situations, when ¢, » equals one of the elements of
T. Then objects 0 € A+ Wlth —2 > {9 are allocated to agent 1 and with - U > < t1 2 to

agent 2; symmetrically, for o € A<0, bads wit

% < t12 to agent 1. The remaining objects A; (t12) are allocated arbitrarily between

agents, resulting in 3/4=(12)l possibilities. All in all:
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Figure 3: Enumerating the fPO consumption graphs of allocations among three agents
(Lemma 3.9) in a non-degenerate instance with m = 3 pure goods. Shows some of the
consumption graphs in Gys derived from the top-right consumption graph in Figure 2.
The graphs in the top row are derived by sharing Alice’s goods (the farm and the house)
with Carl; the graphs in the second row are derived by sharing Bob’s goods (the car and
the house) with Carl.

1Gy| < 3l4ol . |T| - 3maxter l[A=(®)|

Since |T| < m and |Ao| + |A=(t)] < 1 + D, for any ¢ > 0, we get the claimed upper
bound. Note that the bound is not tight — for 2 agents and non-degenerate v, we can
get 2m + 1 instead of 3m (see the proof of Theorem 3.3).

(b) If t and ¢’ are two consecutive elements of 7', then passing from ¢ to ¢’ involves
reallocation of objects from A_(t) and A_(t') only. This leads to an overall running time
proportional to the total number of graphs |Gy|. ]

Given the valuation matrix v = (v;0)icn],0cim) and k € [n], denote by v* the valuation
of the first k agents: vF = (v;,)ic(k],ocfm). The previous lemma tells that |Gy2| < 3PvFt.m
The next lemma relates Gyx+1 to Gyk.

Lemma 3.9. For a valuation v with n > 3 agents and k such that 2 < k <n —1:
(a) The number of graphs in Gy satisfies the upper bound

‘gvkﬂ‘ < ‘gvk| . 3(D"+1)k -mF (3,2)

(b) All the graphs in Gyx+1 can be enumerated using

O (|Gue] - 37* - m?++)
operations if Gyx 1S given as the input.

Since v = v, starting from v? (covered by Lemma 3.8) and repeatedly applying

Lemma 3.9 we get both the algorithmic part of Proposition 3.7 as well as the upper
bound (3.1).

Proof of Lemma 3.9. The idea is that any graph G’ € Gyxt1 can be obtained from some
G € G, by erasing some of the edges between objects and “old” agents i € [k] and tracing
new edges to a “newcomer” k 4+ 1 in such a way that for each old agent 7, the allocation
of objects between ¢ and the newcomer is fPO in the 2-agent subproblem.

First, we check that any fPO allocation z’ among k 4+ 1 agents can be obtained from
an fPO allocation z among k by reallocating some objects to the newcomer. Indeed,
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by Lemma 2.3, there exists a vector of weights A = (\;)icx41) with strictly positive
components such that in allocation z’' each object o is consumed by agents i with a
highest A\jv;,. Giving the share z; ., , of each object o consumed by k + 1 to an agent
i € [k] with a highest \;v;, defines the desired allocation z; fPO follows from the same
Lemma 2.3 with vector (A;)icju-

Second, we describe how the reallocation looks in terms of graphs. For G € G, con-
sider the set of objects consumed by agent i: A;(G) = {o € [m] : there is an edge between i and o}.
For each i consider a 2-agent problem v®*1(A;), where i and k + 1 divide the set A;(G)
of objects between themselves. Pick a graph G***' € Guixsa(a,) for each i € [k], which
prescribes how objects in A;(G) are reallocated between ¢ and k + 1. Define the graph
G’ as follows: agent i € [k] and object o are connected by an edge if they are connected
in G%**1: an edge between k + 1 and o is traced if this edge exists in G***! for at least
one agent i € [k].

Denote by G! .. the set of graphs G’ that we get, when G ranges over Gy« and G+l
over Gyikxii(a,) for all @ € [k]. By the construction, G, contains all the consumption
graphs of fPO allocations for v¥*!, but may contain some non-fPO graphs, since the
reallocation preserves the fPO condition only for pairs of agents i,j € [k + 1]. In order
to get Gyx+1, each graph G € G, must be tested for fPO using Lemma 2.2 and those
graphs that do not pass the test must be eliminated.

(a) Let us estimate the total number of graphs in Gyx+1. For each G € Gk, the
set Gyik+1(a,) contains at most [4;(G)| - 3Pv*! graphs (see Lemma 3.8). Therefore, the
total number of graphs G’ obtained from G is bounded by (3(DV+1))]c I, 1A(G)] <
(3(Pv D) -m)k and we get (3.2).

(b) The bound on time-complexity follows from Lemma 3.8 as well. For each G and
i € [k], computing Gyix+1(a,) takes O(m - 3P) operations if prior to that for each pair of
agents, i € [k| and k + 1, objects with non-zero values are ordered by % Thus, all G’
for a given GG are enumerated in time O <(m . 3D")k> and the time needed for reordering
the objects is absorbed by this expression. Checking fPO takes additional O(m?) for each
G' by Lemma 2.2. Thus, the overall time complexity is O (’ka| -m2th. 3D"'k). m

4 Implementation and Experiments.

4.1 Practical Considerations.

The algorithm from Theorem 3.6 was implemented in Python. The code was written
by Eliyahu Satat (an undergraduate student at Ariel University); see https://github.
com/erelsgl/fairpy/blob/master/fairpy/items/min_sharing.py.

In preliminary experiments with random instances, we found out that many instances
have fewer than the upper bound of n — 1 sharings. To take advantage of this finding,
we implemented the following variant of the algorithm:

e For s:=0,...,n—1:

— Run the algorithm of Theorem 3.6 with an upper bound of s on the number
of sharings. Il.e., a descendant of the current consumption graph is not
explored if it has more than s sharings.
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Essentially, we first look for allocations with 0 sharings, then with 1 sharing, etc. This
does not affect the worst-case runtime, but speeds up the algorithm in practice whenever
the instance admits an allocation with fewer than n — 1 sharings. Indeed, the algorithm
avoids enumerating all the fPO consumption graphs and computes only those that have
at most s sharings.

Additionally, we stop exploring the descendants of the current graph if it cannot lead
to a proportional allocation. This is easy to check: for each agent ¢, calculate the sum of
values of all goods that are adjacent to ¢ in the graph. If the sum is less than % Zoe[m] Vio,
then no descendant of this graph can result in a proportional allocation.

4.2 Experiments.

We ran our algorithm on real fair division instances with goods from spliddit.org
(Goldman and Procaccia 2015), which were kindly shared with us by Nisarg Shah. Splid-
dit can be used either in non-demo mode (users create the instance) or in demo mode
(the platform suggests an instance that can be then adjusted by users). We focused on
non-demo instances only: the database contained 717 such instances that were recorded
as of 7/2020. We restricted our analysis to 703 instances with at most 8 agents. For each
instance in this set, we computed the minimal number of sharings in an allocation that
is PROP and fPO or EF and fPO.

CEEI as a benchmark.

We compared the outcome of our algorithm with the benchmark of competitive equilib-
rium with equal incomes (CEEI), the most popular way to divide divisible goods; see
Section 1 and 5. We computed CEEI via the Eisenberg-Gale convex program (maximiza-
tion of the product of agents’ utilities). Typically, the optimum is unique and corresponds
to the unique CEEI allocation; however, for degenerate instances the set of optima may
not be a singleton, and each such optimum is a CEEI. In the case of non-uniqueness, we
selected a CEEI allocation with the minimal number of sharings. To conduct this mini-
mization, we relied the fact that, by the convexity of the Eisenberg-Gale program, all the
optima result in the same vector of utilities (w;)?,. As CEEI is fPO, the minimization
over CEEI is equivalent to the minimization over the set of allocations, where each agent
1’s utility is at least w;. The latter problem was solved by a straightforward modification
of our sharing-minimization algorithm for PROP with the lower bound %Zoe[m] V; o O
agent 4’s utility replaced by (1 — €)w;, where e = 0.001 was chosen to avoid floating-point
rounding errors.

Note that CEEI is contained in the set of fPO+4EF allocations, and the set of fPO+EF
allocations is a subset of fPO+PROP ones. The first inclusion is typically strict since,
for generic instances with goods, CEEI picks a single allocation, while fPO-+EF is not a
singleton. For n = 2, EF is equivalent to PROP, but for n > 3, the set of fPO+EF allo-
cations is typically a strict subset of fPO4+PROP. Thus the minimal number of sharings
weakly increases if we replace the requirement of fPO+PROP by fPO+EF and fPO+EF
by CEEI. For some instances, all these inequalities can be strict. Consider the following
example with three agents and four goods:

10 18 1 1
v:i=[10 18 1 1
10 10 5 5

19


spliddit.org

103 { — fPO+PROP
—— fPO+EF
—— 0.999-CEEI

102 4

101! A

100 4

Median run-time [seconds]

1071 4

# agents

Figure 4: Median runtime of our algorithm (timed out at 1000 seconds) as a function of
the number of agents.

Running the algorithm of sharing minimization under the constraint of fPO+PROP /
fPO+EF / CEEI yields allocations with 0 / 1 / 2 sharings, respectively:

1 0 0 0 1 0 0 0 0.734  0.296
ZzZPROP — 1o 1 0 0| ZFF=1]0 0556 0 0| z°FFI=1| 0 0.704
0o 0 1 1 0 0444 1 1 0.266 0

Conclusions from the Spliddit data.

We let the sharing-minimization algorithm run for up to 7' = 1000 seconds for each
instance on a laptop HP EliteBook 840 G3. For fPO+PROP and fPO+EF, almost all
instances with at most 4 agents were completed within this time frame. For instances
that did not complete in time, the algorithm output an allocation with n — 1 sharings
(the worst-case upper bound). Figure 4 shows how the runtime depends on the num-
ber of agents for different types of constraints. We observe that the runtime increases
hyper-exponentially in the number of agents since, in the Spliddit data, instances with
more agents typically have more objects. For 5 or more agents, we observe that shar-
ing minimization takes significantly more time for fPO+4EF than for fPO+PROP. The
unexpected decrease in the runtime for fPO+PROP with 7 and 8 agents is explained
below.

Figure 5 represents the percentage of instances with a given minimal numbers of
sharings, for different numbers of agents and different constraints (fPO+PROP, fPO+EF,
or CEEI). The white regions at the bottom of the bars represent the fraction of instances
that admit an allocation with 0 sharings. The adjacent light-gray regions correspond to
the fraction of instances that require 1 sharing; the next darker regions corresponds to
the fraction with 2 sharings, and so on.

We observe several phenomena. Most of the instances admit a fair fPO allocation
with fewer sharings than the worst-case bound of n — 1. For example, approximately 50%
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Figure 5: Results of experiments with Spliddit instances. See explanations in text.
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Fewer sharings than worst-case | Fewer sharings than CEEI
fPO+PROP 475/703=67=67.6% 255/703=36.2%
fPO+EF 416/703=59.1% 166,/703=23.6%

Table 1: Percentage of Spliddit instances (with at most 8 agents) in which the minimal
number of sharings in an fPO+PROP or fPO+EF allocation is smaller than in the worst-
case (n — 1) or in CEEL

instances with n = 2 agents have a proportional allocation with no sharings at all; for
n = 3 and n = 4, the fraction of instances requiring n — 1 sharings is below 20% and 5%,
respectively. Moreover, the minimal number of sharings in an fPO+PROP and fPO+EF
allocations are often smaller than in CEEI; see Table 1 for the exact numbers. Interest-
ingly, many Spliddit instances with 7 or more agents admit an fPO+PROP allocation
with no sharings at all. Because of this, the algorithm does not explore allocations with
several sharings and terminates fast, which explains the counter-intuitive decrease in the
runtime for fPO+PROP in Figure 4.

We conclude that real fair division instances often require much fewer sharings than
in the worst case. This opens room for optimization. CEEI improves upon the worst
case, and further improvements are attained by our sharing-minimization approach. This
indicates the potential of sharing minimization for increasing participants’ satisfaction in
practice.

5 Related Work.

The classic economic approach to fair division assumes that resources are divisible, pref-
erences are general (e.g., arbitrary convex as in the theory of general equilibrium), and
aims to identify division rules that satisfy a family of requirements known as axioms
(Thomson 2011); this approach often leads to impossibility results as the axioms turn
out to be incompatible. A recent trend largely inspired by researchers with CS and Al
background is to escape impossibilities by narrowing down the preference domain (most
papers deal with additive utilities) and substituting the exact axioms by their quanti-
tative relaxation, thus replacing the question of the existence of an ideal rule by the
problem of finding the best approximation to the ideal (Brandt et al. 2016). Our paper
follows this modern methodology. A survey by Moulin (2019) touches both approaches,
discusses the role of market equilibria in fair division, contrasts divisible resources with
indivisible objects, and goods with bads. We recommend it as a short but comprehensive
introduction to modern fair division. Below, we describe several strains of the literature
closest to our results and focus primarily on the case of additive utilities.

5.1 Fisher markets, CEEI, and the Eisenberg-Gale program for
goods and bads

Since the seminal paper by Varian (1974), fair division has been closely connected to the

theory of competitive equilibria (CE) of exchange economies known in computer science

literature as Fisher markets. Varian demonstrated that a CE in the economy where all the
agents have equal endowments (CE with equal incomes or simply CEEI) is both envy-free
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and fractionally Pareto-optimal. Therefore, the existence of CE — known in the theory
of general equilibrium under relatively weak assumptions of continuity, convexity, and
monotonicity of preferences (Arrow and Debreu 1954) — translated into the existence of
fair and efficient allocations.

Under the additional assumption that the utilities are homogeneous (e.g., additive,
Leontief, CES, or Cobb-Douglas), Eisenberg and Gale (1959) showed that CEEI maxi-
mizes the product of agents’ utilities, the so-called Nash product; see also (Nisan et al.
2007, Chapters 5 and 6). The convexity of this optimization problem implies the unique-
ness of CEEI in the space of utilities as well as the approximate algorithm for computing
CEEI via standard gradient methods. For additive utilities, Orlin (2010) and Garg and
Végh (2019) developed exact combinatorial algorithms running in strongly polynomial
time; their constructions implicitly use the convexity of the problem. These algorithms
can also be seen as algorithms for computing envy-free fractionally Pareto optimal alloca-
tions, and, surprisingly, no algorithms except market-based are known for this problem.

Bogomolnaia et al. (2017) considered CEEI for preferences that are homogeneous and
continuous but not necessarily monotone, which includes the case of a mixture of goods
and bads under additive utilities. CEEI exists and remains envy-free and fractionally
Pareto-optimal. It is still related to the Nash product of the absolute values of utilities,
but this connection becomes more subtle; we explain this subtlety in the case of pure bads
and additive utilities. Global extrema of the product do not correspond to equilibrium
allocations — the minimum is attained at an unfair allocation, where one of the agents
gets no bads, while the maximum lies on the anti-Pareto frontier. It turns out that CEEI
coincides with the local critical points of the Nash product on the Pareto frontier (local
minima, maxima, and saddle points). In particular, CEEI for bads does not solve a
convex optimization problem, and there can be an exponential number of distinct CEEI.
Despite this obstacle, CEEI for bads can be computed in strongly polynomial time if
either the number of agents or the number of bads is fixed (Branzei and Sandomirskiy
2021). The result extends to a mixture of goods and bads (Garg and McGlaughlin 2020)
and to some classes of non-additive utilities (Chaudhury et al. 2021).

Usefulness of agent-object graphs — directed bipartite graphs in which the nodes one
one side are the agents and the nodes on the other side are the objects — was recognized
by many algorithmic and economic applications. See for example Cole et al. (2016),
Barman and Krishnamurthy (2018).

5.2 Known Worst-case and Average-case Bounds on Sharing.

The idea of finding fair allocations with a bounded number of shared goods originated
from Brams and Taylor (Brams and Taylor 1996, 2000). They suggested the Adjusted
Winner (AW) procedure, which finds fair and fractionally Pareto-optimal allocation of
goods between two agents with additive utilities and at most 1 sharing, i.e., with the
worst-case optimal number. The AW procedure was applied (at least theoretically) to
division problems in divorce cases and international disputes (Brams and Togman 1996,
Massoud 2000) and was studied empirically (Schneider and Krdmer 2004, Daniel and
Parco 2005). The AW procedure heavily relies on the simple structure of fPO allocations
for two agents (see the proof of Theorem 3.3 and Moulin (2004), Example 7.11a). Brams
and Taylor do not extend their AW procedure to three or more agents.

For n > 3 agents, the number of sharings was studied in an unpublished manuscript of
Wilson (1998). He proved worst-case bounds on sharing for fairness criteria that may be
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incompatible with fractional Pareto-efficiency. For example, he proved the existence of an
egalitarian allocation of goods — an allocation in which all agents have a largest possible
equal utility (Pazner and Schmeidler 1978) — with n— 1 sharings. Egalitarian allocations
of goods are proportional but not necessary envy-free, and may violate efficiency if the
valuation matrix has zeros. For such criteria, the approach based on our Lemma 2.5
becomes inapplicable; Wilson uses a different technique based on linear programming.

Recently, Goldberg et al. (2020) studied the problem of minimizing sharing in consen-
sus halving — a partition of objects into two subsets each of which has a value of exactly
half for all agents.

There is a significant gap between worst-case and average-case numbers of sharings;
this further stresses the importance of sharing minimization. Dickerson et al. (2014)
considered random instances and demonstrated that the minimal number of sharings for
an envy-free fPO allocation is zero with high probability, if the number of goods is large
and values are independent and identically distributed. Manurangsi and Suksompong
(2017) extended the result to allocations among agent groups.

5.3 Fairness with Indivisible Objects.

With indivisible objects, envy-free and even proportional allocations may not exist. The
most commonly studied relaxations of these two concepts are Envy-freeness up to one
good (EF1) and Mazimin share guarantee (MMS).

EF1 was introduced by Budish (2011); a closely related concept was presented earlier
by Lipton et al. (2004). EF1 is widely studied, for example by Aleksandrov et al. (2015),
Oh et al. (2019) and others. A strengthening of EF1 to a global fairness notion, based
on information withholding, was recently studied by Hosseini et al. (2020). Existence of
EF1 indivisible Pareto Optimal allocations was proved by Caragiannis et al. (2019b) and
Barman et al. (2018) strengthened the result to fractional PO.

Budish (2011) defined MMS, demonstrated existence under large-market assumption
and applied the concept in practice for course allocation in (Budish et al. 2016). For
“small markets”, Procaccia et al. (2018) showed that MMS allocations may not exist
for some knife-edge instances and hence all the results about MMS consider a certain
approximation to MMS itself, e.g., (Aziz et al. 2016, Amanatidis et al. 2017, Barman
and Krishnamurthy 2017, Ghodsi et al. 2018, Garg et al. 2018, Babaioff et al. 2019,
Segal-Halevi 2020, Babaioff et al. 2021).

Classic microeconomics mostly works with divisible resources and handles indivisible
objects by making them “divisible” via a lottery. This approach results in weaker fairness:
an allocation is fair ex-ante, i.e., in expectation before the lottery is implemented. Ex-
ante fairness was analyzed in many different contexts. Just to name a few: Hylland
and Zeckhauser (1979), Abdulkadiroglu and Sonmez (1998), Bogomolnaia and Moulin
(2001) considered the problem of fair assignment and Budish et al. (2013) considered its
multi-unit constrained modifications; Kesten and Unver (2015) evaluated fairness of tie-
breaking in matching markets; Bogomolnaia et al. (2021) studied ex-ante fairness under
additional randomness in preferences.

Brams et al. (2013) observed that exact envy-freeness with indivisible goods can be
achieved by leaving some of them unallocated while keeping some efficiency guarantees:
their AL procedure constructs an allocation that is not Pareto-dominated by another
envy-free allocation, see also Aziz (2015a). Recently, Caragiannis et al. (2019a) showed
that, by leaving some items unallocated, it is possible to construct an allocation that is
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“Envy-free up to any good” (also known as EFx, an approximate fairness notion which
strengthens EF1 (Caragiannis et al. 2019b)).

Bei et al. (2020) studied an allocation problem where some goods are divisible, and
some are indivisible. In contrast to our setting, in their paper, the partition of the set of
objects into divisible and indivisible is given in advance — the algorithm can only divide
objects that are predetermined as divisible.

Halpern and Shah (2019) suggested a novel approach to achieve exact fairness with
indivisible goods: introduce a monetary subsidy by a third party, while minimizing the
transfers. This approach is further developed in the follow-up papers (Brustle et al. 2019,
Caragiannis and Toannidis 2020). Minimization makes it methodologically similar to our
approach and distinguishes it from other results on fair allocation of indivisible goods
with monetary transfers, e.g., the rent-division problem (Su 1999, Gal et al. 2017). In
practical cases of real-estate allocation, it is common to allow both sharing and side-
payments, and the goal is to minimize both of them (Nizri 2021). No efficient solution
to this problem seems to be currently known.

Another way of bridging the literature on divisible and indivisible objects was pro-
posed by Freeman et al. (2020) and Aziz (2020). They interpret fractional allocations as
randomization over integral ones and distinguish ex-ante fairness of a fractional allocation
and ex-post fairness of an indivisible allocations from the support of the lottery. The pa-
pers provide algorithms for computing an allocation that is ex-ante envy-free and ex-post
envy-free up to one good (without any guarantees of economic efficiency). The fractional
allocation generated by our algorithm can naturally be interpreted as a probabilistic al-
location. Viewed like that, minimizing the number of shared objects is equivalent to
minimizing the number of objects whose allocation is affected by randomization, subject
to being ex-ante fair and fPO. However, the resulting allocations may not be ex-post fair.
Minimization of the number of randomized objects subject to both ex-ante and ex-post
fairness is an interesting open problem.

5.4 Checking Existence of Fair Allocations of Indivisible Ob-
jects.

Fair allocation of indivisible goods might not exist in all cases, but may exist in some. A
natural question is how to decide whether it exists in a given instance. It was studied by
Lipton et al. (2004), de Keijzer et al. (2009), Bouveret and Lemaitre (2016) for various
fairness and efficiency notions, showing that it is computationally hard in general (with
some exceptions). The undercut procedure of Brams et al. (2012) finds an envy-free
allocation of indivisible goods among two agents with monotone (not necessarily additive)
valuations, if-and-only-if it exists (see also Aziz (2015b)).

5.5 Cake-cutting with Few Cuts.

The goal of minimizing the number of “cuts” has also been studied in the context of fair
cake-cutting — dividing a heterogeneous continuous resource, see Webb (1997), Shishido
and Zeng (1999), Barbanel and Brams (2004, 2014), Alijani et al. (2017), Seddighin et al.
(2018), Segal-Halevi (2019a), Crew et al. (2019). Since the resource is continuous, the
techniques and results are quite different.
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5.6 Fair Division with Mixed Valuations.

Most of the literature on fair division deals with either goods or bads. Recently, some
papers have studied mixed valuations, where objects can be good for some agents and
bad for others. This setting was first studied by Bogomolnaia et al. (2017) for divisible
objects and quite general class of utilities. It was later investigated by Segal-Halevi (2018),
Meunier and Zerbib (2019), Avvakumov and Karasev (2019) for a heterogeneous divisible
“cake”, and by Aziz et al. (2018), Aleksandrov (2020), Aziz et al. (2020), Aleksandrov
and Walsh (2020) for indivisible objects and approximate fairness.

6 Extensions and Future Work

The sharing-minimization approach introduced in this paper provides a compelling alter-
native to existing approaches for those fair division problems, where objects can techni-
cally be shared, but this sharing is unwanted as happens in many practical cases. Our
approach guarantees exact fairness and hence improves upon approximate fairness (un-
avoidable if objects are treated as indivisible) and often produces fewer sharings than
benchmark rules for divisible objects such as CEEL

The idea behind our sharing-minimization algorithm from Theorem 3.6 is quite gen-
eral. The algorithm can easily be adapted for optimizing other objectives over the set of
fPO allocations provided that, for a given consumption graph, the optimization reduces
to an LP. For example, one can minimize the number of shared objects, the number of
sharings in a given subset of objects S C [m] (where S is a subset of objects that are
particularly “hard to share”), the total value of shared objects 3 _,c i1 22, shared by i |Viols
or the maximum number of agents who share a single object. For these objectives, step 1
in the algorithm is to be skipped (i.e., fPO graphs with more than n — 1 sharings cannot
be discarded). Still, by Remark 3.5, the number of sharings in any fPO allocation is at
most @(DV +1). Hence, the total number of variables and constraints in the LP from
step 3 is independent of m, the LP is solvable in constant time (when 7 is fixed), and the
complexity is dictated by the time needed to enumerate all fPO graphs, i.e., the bound
on the run time from item (a) of Theorem 3.6 holds.

Similarly, instead of envy-freeness one can use other fairness notions, such as weighted
envy-freeness (Reijnierse and Potters 1998, Branzei and Sandomirskiy 2021) or weighted
proportionality capturing different entitlements, or any other fairness notion that can
be represented by a constant (independent of m) number of linear inequalities on the
allocation matrix. If there exists an fPO allocation satisfying the chosen fairness notion,
our algorithm will find it. Otherwise, the algorithm will indicate that such an allocation
does not exist.

Some directions for future research that we find promising:

e We expect that there is room for substantial improvement of the algorithm’s run
time in practice. Presumably, the theoretical exponent in the run time can also
be improved by replacing the exhaustive enumeration of the Pareto frontier by a
more clever procedure not exploring regions that cannot contain the optimum; see
Section 4.1 for some ideas along these lines. Understanding such improvements
can make the algorithm more practical for many-agent problems. If the number
of agents exceeds the number of objects, an efficient algorithm can presumably be
obtained by invoking agent-object parity from (Branzei and Sandomirskiy 2021).
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e When sharing is especially problematic, further improvement in the number of shar-
ings can be achieved by tweaking the efficiency requirement of fPO. For example,
one can allow for allocations with bounded inefficiency quantified using the loss in
utilitarian or Nash social welfare, or by replacing the requirement of fractional PO
by discrete PO. For most of such modifications, sharing minimization is likely to
becomes computationally hard, and it is especially interesting to find modifications
for which it does not. A related direction is finding domains of preferences beyond
additive valuations, where sharing minimization remains tractable and/or there is
a non-trivial worst-case bound on the number of sharings.

e An alternative more economic approach to sharing-minimization would be to as-
sume that sharing causes disutility to agents, thus making the sharing-minimization
objective hardwired in economic efficiency. The biggest challenge is to find a do-
main of sharing-averse preferences, where the existence of a fair efficient allocation
is guaranteed.
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A Characterization of Fractional Pareto-Optimality.

In this section we prove Lemma 2.1 and Lemma 2.3 together:

e An allocation z is fractionally Pareto-optimal if-and-only-if it is non-malicious and
its directed consumption graph CG, has no cycle C with w(C') < 1.

e An allocation z is fractionally Pareto-optimal if and only if there is a vector of
weights A = (X;)iepn) with X; > 0 such that for all agents i € [n] and objects o € [m):

Zio > 0 implies A\wv;, > A\ju;, for any agent j € [n]. (A1)

Proof that fPO = no C' and no maliciousness. If an allocation is malicious, then re-
allocating objects in a non-malicious way strictly improves the utilities of some agents
without harming the others. Thus, an fPO allocation z must be non-malicious.

We now show that there are no directed cycles C' = (iy — 01 = ia — 09 — ... —
i, = o =iy =1p) in @Z with 7(C') < 1. Assume, by contradiction, that C' is such a
cycle. We show how to construct an exchange of objects among the agents in C' such that
their utility strictly increases without affecting the other agents. This will contradict the
Pareto-optimality of z.

Define R := 7(C)Y%; by assumption, R < 1.

%)r each k € [L], there is an edge from agent i) to object o,. Hence, by the definition
of GG,

e cither 75 consumes a positive amount of o, and both 7, and 7,1 agree that o, is a
good (vj, 0, > 0 and v;,,, 0, > 0),

e or 7,41 has a positive amount of o, and both i, and i, agree that o is a bad
(Vig,or, <0 and vj,,, o, <0).

Suppose each i gives a small positive amount e of o to g in the case of a good or
ik+1 gives g fraction of of to iy in the case of a bad (e € (0, hy| where hy = z;, o, for
a good and hy = z;,,, 0, for a bad). Then, agent i; loses a utility of e - |v;, ,,[, but
gains €1 - v, 0,_,| from the previous agent, so the net change in the utility of iy is
€k—1|Viy 0p_1| — €k |Viy 0, | (Where the arithmetic on the indices k is done modulo L in a way
that the index is always in {1,...,L}). To guarantee that all agents in C' strictly gain
from the exchange, it is sufficient to choose ¢4, ..., such that the following inequalities
hold for all k € [L]:

€k |v; Ok — |
5k_1|vik7ok_1| — z—:k|vik7ok| >0 <— < Uk Ok—1 . (AQ)
Ek-1  |Vipol

For any 1 > 0, define ¢, = ¢,_1 - R - Pion il gor € {2,...,L}. Since R < 1, the

|'Uik.,ok|

inequality (A.2) is satisfied for each k € {2,..., L}. It remains to show that it is satisfied
for k =1, too (note that in this case k — 1 = L). Indeed:

L L _
e = 61-RL71' |Uik,0k—1| _ 51'RL71- |Uz‘1,ol| |Uik70k—1| — e RL 1. ’%’1,01' _ 51R71 |U¢1701| '
k=2 ’Uik70k| |vi1,0L’ =1 |Uik70k’ W(C) ’Uh,oLl |vi170L|
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Thus

i _ |vi1,0L’ |Ui170L|
€L ’Uz'l,ol’ |Ui1,01| '

By choosing ; sufficiently small, we guarantee e, < hy for all k € [L], so this trade is
possible. 0

Proof that no C' and no maliciousness = existence of \. We assume that €3, contains
no directed cycles C' with m(C') < 1 and z is non-malicious. We prove the existence of
weights A; > 0 from Lemma 3.8.

Add directed edges i — j between each pair of distinct agents i, j € [n]. All the new
edges have the same large positive weight in order to ensure that the new graph G has
no cycles C' = (v = vg — +-+ — vy = vp) with multiplicative weight 7(C) < 1. It is
enough to pick

1 2(n—1)
Wiy = (max{l, [Vkol, —— 1k €n], o€ [ml], v, # O}) :

|Uk,0|

Indeed, any simple cycle C' containing a new edge has at most 2(n — 1) old edges; if
none of the old edges has weight zero, then 7(C') > 1 by the definition of w;_,;. Edges

k — o with wy_,, = 0 cannot be a part of any cycle: by the definition of @z such edges
are possible only if k£ consumes o and v, = 0. Since z is non-malicious, such o has no
outgoing edges.

Fix an arbitrary agent, say, agent 1. For every other agent j € [n], let P,  be a
directed path from 1 to j in é, for which the product (P, ;) is minimal. The minimum
is well-defined and is attained on an acyclic path, since by the construction there are no
cycles with a product smaller than 1, so adding cycles to a path cannot make its product
smaller.

Set the weight of each agent j as \; := (P, ;) (in particular \; = 1). We now show
that these weights satisfy the conditions (A.1), namely: z; , > 0 implies \jv; , > Ajv;, for
all j € [n]. W.l.o.g., we can assume that i # j and both agents agree whether o is a good
or a bad, i.e., v, v, > 0. Indeed, if agents disagree, then by the non-maliciousness,
(A.1) is satisfied with any X;, A; > 0.

In the case of a good (v;, > 0 and v;, > 0), there is an edge i — o (since ¢ consumes o)
and o — j (since v;, > 0 and z;, # 1). Consider the optimal path P;; and the
concatenated path @ ; = P1; — o — j. The path P;; has the minimal product among
all paths from 1 to j. Therefore,

Ui,o
T(Q1) = m(Pry) <= 7(Pry) - —= = m(P1) <= Aivio = Ajvjo.
7,0
The mirror argument for a bad (both v;, and v;, are negative) is as follows. There is an
edge j — o (because v;, < 0 and z;, # 1) and 0 — i (since ¢ consumes o and o is a bad).
We define ()1, as P, ; — o — ¢ and get

V)0l

m(Qr) > m(Pr;) <= 7(P1;) - BN

> 7T(P17i) < Aj’?}j,ol > )\i\viyol < )\iUz’,o > )\jvj,o.

]
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Proof that existence of A = fPO. If in an allocation z each object o is consumed by
agents ¢ with highest \;v; ,, then z itself maximizes the weighted sum of utilities Zie[n} Aii(z;)
over all allocations. Since all \; are positive, z is fPO because any Pareto-improvement
must increase the weighted sum of utilities as well. O]

Lemma 2.1 has a useful computational implication, Lemma 2.2: [t is possible to decide
in time O(nm(n + m)) whether a given allocation z is fractionally Pareto-optimal.

Proof. The idea is the following: construct the graph @z, replace each weight with its log-
arithm, and look for a negative cycle using one of many existing algorithms (Cherkassky
and Goldberg 1999) (e.g., Bellman-Ford). If there is a cycle C' in which the sum of log-
weights is negative, then 7(C') < 1, so by Lemma 2.1, z is not fractionally PO. Otherwise,
z is fractionally PO. A negative cycle can be found in time O(|V|-|E|). Here |V| = m+n
and |E| < mn.

Because of irrationality, logarithms can be computed only approximately and thus,
to ensure the correctness of the algorithm, one has to adjust the quality of approxima-
tion depending on the input. However, these difficulties are easy to avoid by using a
multiplicative version of any of the algorithms of Cherkassky and Goldberg (1999): mul-
tiplication replaces addition, division is used instead of subtraction, and one instead of
Zero.

This allows one to avoid logarithms and keep the same bound of O(nm(n + m)) on
runtime. O

B Worst-case Bound on Sharing.
In this section we prove Lemma 2.5: For any allocation z, there exists a fractionally
Pareto-optimal allocation z* such that:

e (a) z* weakly Pareto dominates z, i.e., for any agent i, w;(z) > u;(z;).

e (b) the non-directed consumption graph CSG,« is acyclic.

e (c)z* has at most n — 1 sharings (hence at most n — 1 shared objects).

Such allocation z* can be constructed in time O(n*m?(n + m)).

Proof. If z is malicious, reallocate the objects:

e for each o € [m] with max;cp, v;, > 0, reallocate the shares of agents j with v;, <0
to an agent ¢ with v; , > 0;

e for each o € [m] with max;cp,) v, = 0, reallocate the shares of agents j with v;, <0
to an agent ¢ with v; , = 0.
Denote the resulting non-malicious allocation by z’.
Let’s call a cycle C' = (it — 01 — i3 = 03 — ... = iy — 0, — ir41 = i1) in the
directed graph @z/ simple if each node is visited at most once and for any i € [n| and
0 € [m] only one of the edges i — o or 0 — i is contained in the cycle.

If there is a simple cycle C' in @Z/ with 7(C') < 1, then C can be eliminated by the
cyclic trade making all the agents weakly better off (similarly to the proof of Lemma 2.1

in Appendix A). Since both edges i, — o and o — i1 exist in CG,, the values v;, ,,
and v;, , | o, are both non-zero and have the same sign. We conduct the following transfers:

31



o if v;, o, > 0and vy, , >0 (ie., o is a good for i), and i), then take £, amount
of oy from ), and give it to ix11 (0 < e < hy, where hy = 2;, o, );

o if v;, o, <0andwv, o <0 (i.e., o is a bad), then transfer e of oy from i yq to iy
(0 <er < hie = 2iys.0)

The amounts €, are selected in such a way that e |v;, o, | = €rt1|Vig a5, | for k € [L —1].
Hence, each agent i, £ = 2,..., L, remains indifferent between the old and the new
allocations while agent i; is weakly better off because of the condition 7(C) < 1. We
select epsilons as big as possible:

Hk—l |'Uiq,aq |

q=1 I’Uiq’aq+1 |

. 1 -1 |vi ,a I ’
minez <h_lH —td )

q=1 |Uiq,aq+1 |

€ = kE[LL

thus eliminating one of the edges i, — oy in @z/:

Repeat this procedure again and again until there are no simple cycles with 7(C') < 1.
Note that we need at most (n— 1)m repetitions since each time at least one edge is deleted
in the undirected graph CG, and the total number of edges is at most n - m. Denote the
resulting allocation by z*.

(a) By construction, z* weakly improves the utility of each agent, is non-malicious,
and has no cycles with 7(C') < 1. Thus, z* is fractionally Pareto-optimal by Lemma 2.1.

(b) The undirected consumption graph of z* is acyclic. Assume by contradiction that

there is a cycle C' in €G,-. Then in the directed graph G? « there are two cycles: C passed
in one direction and in the opposite. Denote them by C and C'. Since 7n(C') = Rlc:)’
by fractional-Pareto-optimality we get 7'('(8) = 7r(<5) = 1; however all such cycles were
eliminated in the previous stages of the algorithm.

(c) Since any acyclic graph on m + n nodes has at most m + n — 1 edges, and the
number of sharings equals the number of edges in €G,« minus m, the number of sharings
at z* is at most n — 1.

It remains to estimate the complexity of the algorithm. Constructing the non-
malicious allocation z’ takes O(n - m) and the overall complexity is determined by the
time needed to perform cyclic trades. Cycles with 7(C') < 1 can be found using the mul-
tiplicative modification of the Bellman-Ford algorithm, as in Lemma 2.1 which results
in O(nm(n 4+ m)) operations per cycle. For a given cycle C' of length L transfers are
conducted in O(L) = O(min{n, m}) since no simple cycle is longer than 2 min{m,n}.

When all cycles C' with 7(C') < 1 have been eliminated, it remains to delete all the
cycles in the undirected consumption graph if any (note that all such cycles have 7(C') =
1). Such cycles can be found using a depth-first search which needs O(|V'|+|E|) = O(n-m)
operations per cycle.

The total number of cycles to be eliminated is at most (n — 1)m and we get the upper
bound O(n?*m?(n + m)) for the overall time-complexity. O
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