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To study the e↵ect of congestion on the fundamental trade-o↵ between diagnostic accuracy and speed,

we empirically test the predictions of a formal sequential testing model in a setting where the gathering of

additional information can improve diagnostic accuracy, but may also take time and increase congestion as a

result. The e�cient management of such systems requires a careful balance of congestion-sensitive stopping

rules. These include diagnoses made based on very little or no diagnostic information, and the stopping

of diagnostic processes while waiting for information. We test these rules under controlled laboratory con-

ditions, and link the observed biases to system dynamics and performance. Our data shows that decision

makers (DMs) stop diagnostic processes too quickly at low congestion levels where information acquisition

is relatively cheap. But they fail to stop quickly enough when increasing congestion requires the DM to diag-

nose without testing, or diagnose while waiting for test results. Essentially, DMs are insu�ciently sensitive to

congestion. As a result of these behavioral patterns, DMs manage the system with both lower-than-optimal

diagnostic accuracy and higher-than-optimal congestion cost, underperforming on both sides of the accura-

cy/speed trade-o↵.

Key words : Congestion, Diagnostic accuracy, Experiments, Partially Observable Markov Decision Process,

Path-dependent Decision Making, Undertesting, Task Completion Bias

1. Introduction

The management of diagnostic processes drives e�ciency and quality in many manufacturing and

service settings. At the heart of most diagnostic processes is the search for, and the assessment

of, information. Such processes are di�cult to manage because they require the decision maker

(DM) to dynamically balance the benefit of acquiring more diagnostic information against the

cost of doing so. When additional and unattended diagnostic tasks build up over time, making

this trade-o↵ becomes especially challenging. Yet, congestion is pervasive in diagnostic and search

problems, including health care systems (Alizamir et al. 2013, 2019) support centers and help

desks (de Vericourt and Zhoug 2005), and research project pipelines (Loch and Terwiesch 1999)

such as drug development (Girotra et al. 2007). Congestion creates time pressure in the form

of accumulation that endogenizes the cost of acquiring more information. To account for these
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dynamic search costs, the DM needs to adjust the strategy they would apply in the absence of

congestion.

Such congestion-adjusted behavior has been the focus of a growing body of empirical studies.

Following early work of Schultz et al. (1998, 2003), this literature documents congestion-dependent

decision making and its various quality-related short- and long-term implications (Delasay et al.

2019). For instance, DMs respond to increasing congestion by working faster (Staats and Gino

2012), or changing the order of tasks (Ibanez et al. 2018). Perhaps most critical to quality impli-

cations, DMs reduce work content as system congestion increases (Batt and Terwiesch 2016). For

example, in response to increasing system congestion, DMs may respond by reducing testing or

eliminating it completely. While such reduction of work content appears troublesome, sacrificing

short-term accuracy in order to manage future congestion costs might well be desirable for the

overall system performance. In other words, a DM that begins to “cut corners” when congestion

is rising may well do so on normative grounds. In fact, the DM may not cut corners enough.

This raises important questions regarding congestion-dependent behavior. First, is behavior

appropriately sensitive to system congestion, judged against some reasonable normative standard?

Second, if bias exists, what are the underlying behavioral mechanisms? Third, if bias exists, does

it have a first-order e↵ect on system performance?

The goal of this paper is to o↵er initial answers to these questions, which poses the challenging

task of characterizing managerial bias. Because this is particularly di�cult in field settings where

the complicated dynamics of congestion-prone environments e↵ectively prevent the observer from

characterizing optimal behavior with the same precision usually provided by theory, we instead

study behavior under controlled laboratory conditions. This allows for a direct test of rigorous

decision theory that provides a sensible benchmark and makes explicit the links to the dynamics

and performance of the system at large (Allon and Kremer 2019).

We study load-dependent decision making in the context of diagnostic processes in capacitated

systems with discretionary task completion. The DM faces a stream of diagnostic tasks. Each task

consists of an elementary search problem, in which the DM sequentially runs imperfect tests to

determine whether or not an item is faulty. At any time instant, the DM needs to decide whether to

continue the search for additional diagnostic information or to stop and make a diagnosis. The DM

faces an accuracy/congestion trade-o↵. The DM incurs a cost for misdiagnosing the item, which

provides an incentive to run additional tests. But running a test takes time and new tasks might

accumulate until they are attended to, which generates congestion costs. The main implication is

that, in contrast to related search settings without congestion (Busemeyer and Rapoport 1988,

Saad and Russo 1996), stopping thresholds may dynamically adjust to system congestion.
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To assess whether behavior in this setting is appropriately sensitive to varying system conges-

tion, we first present a sequential hypothesis testing model that provides a normative benchmark.

Building on Alizamir et al. (2013), we characterize the structure of the optimal control policy for

our set-up. Optimally managing the trade-o↵ between accuracy and congestion requires the careful

balance of three congestion-dependent stopping rules. Specifically, and as notation mnemonic, the

DM can stop the diagnostic process: A after receiving a test result; B before testing at all; W while

waiting for a test result. Notably, rule A is at the heart of search in settings without congestion,

but the other two rarely (Rule B ) or never (Rule W) are. To the best of our knowledge, we are the

first to study how the latter two rules depend on congestion and a↵ect system performance.

We develop behavioral hypotheses around these rules, including their sensitivity to varying sys-

tem congestion, as well as the e↵ect of state-dependent individual-level behavior on system-level

dynamics and performance. We present the results from a series of experiments designed to test

these hypotheses. Our data provide evidence that diagnostic testing behavior is insu�ciently sen-

sitive to congestion. We observe substantial undertesting at low congestion levels, where running

diagnostic tests is cheap. DMs tend to stop after the first test result (Rule A ), and often stop

before testing at all (Rule B ). While the resulting undertesting at low congestion levels should keep

congestion low (at the expense of low diagnostic accuracy), this is not what we observe. Instead,

DMs allow the system to reach higher levels of congestion, and remain at these levels for longer

than predicted under the optimal policy. DMs achieve these high congestion levels more often

than predicted because they do not abort enough while waiting for a test result (Rule W) when

new tasks start accumulating. DMs remain at these high congestion levels longer than predicted,

because they do not diagnose enough without testing (Rule B ) at these levels.

Interestingly, these behaviors result in lower-than-optimal diagnostic accuracy despite higher-

than-optimal congestion-related search cost. This pattern is in sharp contrast to search settings

without task accumulation, for which the literature on deferred decision making and sequential

hypothesis testing (Busemeyer and Rapoport 1988, Saad and Russo 1996) provides robust evidence

that DMs search too little at the expense of decision quality (Palley and Kremer 2014). Seemingly,

the presence of congestion is detrimental to both sides of the accuracy/search cost trade-o↵, due

to decision biases that have little or no bearing in settings without congestion.

We present four sets of experiments designed to tease apart behavioral mechanisms underlying

the observed performance losses, and test managerial levers to debias behavior. Study 1 provides

the baseline, and evidence that the main observed choice and performance patterns are robust to

whether the DM operates in an environment with low or high ex ante (i.e., prior to diagnostic

testing) uncertainty about the item type. Study 2 provides the DMs with statistical support, to test

the idea that performance loss is due to DMs’ inability to correctly update their beliefs based on
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the diagnostic evidence they have collected thus far. Study 3 removes congestion and related cost

from the system, to test the idea that DMs might undertest at low congestion levels because they

overestimate future congestion-related costs of testing. Study 4 decomposes two possible sources

of performance losses, and provides evidence that the gap with the optimal policy is equally due

to the DMs’ poor choice of strategy and the poor execution of this strategy. In fact, forcing DMs

to implement their own strategies, even poor ones, improves performance.

2. Literature

Our study is related to a growing empirical literature that shows how human servers adjust pro-

cessing times in response to increasing system load (see Delasay et al. 2019 for a comprehensive

review). For example, workers tend to accelerate their work rate under high workload conditions, in

task contexts that include toll booths at bridges (Edie 1954), serial production lines (Schultz et al.

1998), grocery retail (Mas and Moretti 2009, Lu et al. 2013, Wang and Zhou 2018), intra-hospital

transport (Kc 2009), loan-processing (Staats and Gino 2012), emergency departments (Batt and

Terwiesch 2016), and restaurant service (Tan and Netessine 2014).

In contrast, we study a setting in which servers have the discretion to respond to growing

congestion levels simply by reducing the number of tasks they execute, rather than speeding up

their execution. For example, Oliva and Sterman (2001) find that bank-o�ce workers spend less

time processing loan applications when congestion increases. Powell et al. (2012), in the context of

hospital reimbursement processes, find that physicians reduce the diligence of paperwork execution

as response to increasing workload. Kc and Terwiesch (2012) study the load-dependent rationing

of bed capacity of cardiac intensive care units, and find that patients are discharged earlier in

“busy” ICUs. A number of follow-up studies provide further evidence on load-dependent task

reduction (Kuntz et al. 2015, Jaeker and Tucker 2017), although some studies do not find evidence

for load-dependent patient discharge (Keenan et al. 1998, Kim et al. 2015, Chan et al. 2019).

While speculative, part of this mixed pattern might be that these studies rely on patients’

length-of-stay (LOS) as a measure of work content. Aggregated across various activities that are

embedded in multi-stage and parallel processes operated by various resources, LOS includes less

critical activities as well as non-value-adding activities such as waiting. Indeed, in the context

of a maternity unit, Freeman et al. (2017) find that general practitioners respond to increasing

workload by cutting activities that are not central to the primary service outcome. Similarly, Long

and Mathews (2018) find LOS decreases in occupancy through a reduction in less critical boarding

time, rather than through a reduction of critical care elements. This points to the importance of

carefully opening up the construct work content, to understand what precisely it means to reduce

it, and ideally measure it at a less aggregate level. Similar to our study, Batt and Terwiesch (2016)
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directly measure “task reduction” by using the number of diagnostic tests ordered for a patient

by a physician as a proxy for the work content of a patient. The authors find no evidence of

doctors ordering fewer tests when the system is busy, which aligns qualitatively with the non-results

reported in Forster et al. (2003) and Mæstad et al. (2010). Overall, there seems to be consensus

in the literature that task reduction negatively a↵ects the quality of service, via various direct

and indirect mechanisms. On the other hand, the literature is inconclusive on whether congestion-

dependent task reduction exists, and largely silent on whether it should.

Our study contributes to this literature for a number of reasons that relate to our ability to

control and manipulate essential aspects of the task environment experimentally (rather than

econometrically), such as arrival and service rates, population base rates, and even whether or not

tasks accumulate. While the standard arguments regarding external validity apply, the controlled

setting of our study has two main advantages. First, it allows to tease apart reasons for why DMs

may or may not engage in task reduction. Second, it allows for a rigorous benchmark against which

to assess observed behavior as biased or not. Despite such advantages, experimental research on

load-dependent server behavior remains scarce (see Hathaway et al. 2021 for a recent exception).

Our study is an attempt to fill this gap.

3. Task Setting: Model and Theory

Our goal is to study empirically the sensitivity of diagnostic decisions to system congestion, in a

setting where system congestion itself is (partially) determined by decisions. We want to study

this in a task setting that allows us to qualify whether observed behavior is appropriately sensitive

to system congestion, relative to a reasonable normative benchmark. We next present such a task

setting, and characterize optimal decision making for it.

3.1. Basic Model

We consider a discrete time version of the task setting in Alizamir et al. (2013). In this set-up,

a DM runs a diagnosis on items that arrive sequentially to the system. Items are processed on a

first-come-first-served basis and accumulate when not attended to. The DM can conduct sequential

tests on an item to determine whether or not it is faulty. Items are identical a priori with a prior

probability of being faulty equal to p0.

Discrete time. In our set-up, a time period corresponds to one unit of time. At the end of each

period, either a new item arrives with probability � or a test result is obtained with probability

1�� (if a test was ordered). This system is equivalent to a continuous time process, where items

arrive according to a Poisson process and each test takes an exponentially distributed time (see
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Bertsekas 2005a). In the following, we refer to time period t as time interval [t, t+1), which is the

time between time epochs t and t+1, with a slight abuse of notation.

Diagnostic tests. The DM can order tests to diagnose an item. Each test either succeeds or fails.

A faulty item always fails the test, and thus a successful test always reveals that the item is not

faulty. By contrast, a non-faulty item successfully passes the test only with probability � 2 (0.5,1].

We denote by pk the probability that an item is faulty after having failed k > 0 tests, and we have

from Bayes’ rule pk = pk�1/(1��+�pk�1), which increases in k.

Diagnostic costs. At any time epoch, the DM can stop the diagnostic process. When stopping

the process, the DM incurs penalty ⇢ if she makes the wrong diagnosis and the expected cost of

misdiagnosing an item after k failed tests is equal to ⇢⇥ (1� pk). However, items may accumulate

while the DM is busy running tests. The congestion cost for one period is equal to cx, where c is

the cost per item and per period and x the total number of items in the system.

Decisions and dynamics. At any time epoch t, the DM can either i) release the current item

by making a diagnosis and move to the next one, or ii) conduct a test on the current item. The

system state is given by (x,k). If a new item arrives, the system moves from state (x,k) to state

(x+1, k). If a test is completed (with x> 0), the system moves to state (x,k+1). And if the DM

decides to make a diagnosis for and release the current item, the system moves to state (x� 1,0)

and the DM starts working on a new item. Because faulty items always fail the test, it is always

optimal to diagnose the item as not faulty as soon as an item passes a test. Otherwise, the DM

needs to decide whether to stop (option i) or continue the current diagnostic process (option ii).

Accuracy/congestion trade-o↵. The DM faces a fundamental trade-o↵ between accuracy and

congestion: The more she spends time diagnosing an item, the lower the expected misdiagnosis

penalty, but the more items may accumulate in the system and thus the higher the congestion costs.

More formally, the DM’s actions at any time epoch defines their policy u(·), such that u(t) = i and

u(t) = ii if the DM chooses option i) and ii) at time epoch t, respectively. The performance of a

policy is measured as the long-run average congestion and misdiagnosis cost per diagnosed item,

gu = lim inf
T!1

1

�T
E

"
⇢M̄u(T )+ ⇢Mu(T )+

TX

t=0

cXu(t)

#
(1)

where M̄u(t) (resp. Mu(t)) is the random cumulative number of misidentified faulty (resp. non-

faulty) items up to t; and Xu(t) is the random number of items in the system at t.

In essence, the DM faces a sequential testing problem. Without congestion, this corresponds to

the elementary stopping time problem (Bertsekas 2005b), where the cost of running a test equals

c. With congestion, this cost is equal to cx and changes dynamically with the arrival of new items.

Thus, a key feature of our set-up is that the DM can stop the search (option i) under three very

distinct conditions, i.e., either after receiving a test (Rule A ), while waiting for a test’s result (Rule

W), and possibly even before ordering any test (Rule B ).
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3.2. Structure of the optimal decision rule

The problem of finding the optimal decision rule which minimizes (1) corresponds to a Partially

Observable Markov Decision Process. Alizamir et al. (2013) fully characterize this optimal rule and

the following propositions state their results in our set-up.

Proposition 1a (Diagnosis). The DM diagnoses an item as not faulty if it passes a test. Else,

she diagnoses the item as faulty if pk � 0.5 and as not faulty otherwise, when she stops the process.

Proposition 1b (Stopping Decision). A threshold p̂ on p0 exists such that

• Case p0 � p̂: thresholds k̄(x) exist such that in state (x,k), the DM i) runs an additional test

if k < k̄(x), and ii) stops otherwise. Further, threshold k̄(x) is non-increasing in congestion level x.

• Case p0 < p̂: thresholds k(x) and k̄(x) exist such that in state (x,k), the DM i) runs an

additional test if k(x)< k < k̄(x), and ii) stops otherwise. Further, thresholds k(x) and k̄(x) are

non-decreasing and non-increasing, respectively, in congestion level x.

“High uncertainty” environments. Figure 1a summarizes the key predictions for p0 � p̂. In

essence, the proposition states that the DM should continue to diagnose the current item as long

as the number of performed tests is below a stopping threshold k̄(x), which decreases in congestion

level x. When congestion grows, the DM diagnoses with less information via one of two stopping

rules. First, they stop after receiving a test (Rule A ), and do so earlier at higher levels of congestion.

Second, they stop while waiting for a test (Rule W) as congestion grows. Note that making a

diagnosis without running any test (Rule B ) is never optimal in steady state for p0 � p̂.

“Low uncertainty” environments. Figure 1b summarizes the structure of the optimal stop-

ping policy when p0 < p̂. The main di↵erence for decision making in this environment is that the

DM faces relatively low diagnostic uncertainty at p0, such that failed tests may actually increase

uncertainty early in the diagnostic process.1 As a result, the optimal policy at medium congestion

levels is conditional on how far along the diagnostic process is. Using x= 4 for illustration, the DM

should stop at k(4) = 0 because of reasonably good diagnostic odds (p0 = 0.14), continue testing at

k = 1 and k = 2 because of relatively bad odds (p1 = 0.4, p2 = 0.73), and stop at k̄(4) = 3 because

of reasonably good odds (p3 = 0.98). Importantly, while DM may occasionally sustain higher con-

gestion levels to reduce the increased diagnostic uncertainty after the first and second failed test,

she subsequently limits congestion by diagnosing items as non-faulty without testing at k(x) = 0 -

using Rule B is optimal in steady state for p0 < p̂.

1 Indeed, for the parameters of Figure 1b, pk is increasing in k such that p0 < p1 = 0.4 and hence p1 is closer to 0.5
than p0 making the decision more uncertain.
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Figure 1 Optimal policy for the parameters of our studies: � = 0.75, �= 0.5, c= $1, ⇢= $100.

(a) High uncertainty (p0 = 0.40) (b) Low uncertainty (p0 = 0.14)

Note: Thresholds k and k indicate k̄(x) and k(x), respectively; the grey areas represent the frequency (in %) at which the

system visits a state under the optimal policy with: < 1% 1-5% 5-10% 10-15% > 15% .

Path-dependence. The current congestion (x) and number of failed tests (k) fully summarize

the necessary information to make a decision. Thus, optimal behavior shows no path-dependence,

i.e., decisions only depend on state (x,k), regardless of how the system arrived in that state.

4. Hypotheses and Implementation

Against the backdrop of the task environment described in the previous section, our objective is

two-fold. First, we want to understand human stopping behavior, relative to theoretical predictions.

Whether DMs stop diagnostic processes too late or too early, and whether stopping behavior is

appropriately sensitive to congestion, essentially depends on DMs’ biases relative to the use of the

three stopping rules ( B efore, A fter, While) under the optimal policy. Second, we want to study the

link between such individual-level behavior and system-level dynamics and performance. Assessing

such a link is empirically challenging, because the decisions made in each state influence the system

dynamics, which in turn a↵ect future decisions. Towards developing empirically testable hypotheses

we next decompose this di�cult prediction problem into smaller, manageable, pieces. Figure 2

provides a summary and preview of this exercise.
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Figure 2 Predictions ( ) and Data ( ): behavioral mechanisms and hypotheses (illustration for p0 = 0.4)

(a) Theory:
Stopping thresholds k̄

(b) Hyp 1:
Under/Overtesting
Hyp 2: Sensitivity

(c) Hyp. 3 and Rule W :
Stop while waiting

(d) Hyp 4:
Cost predictions

4.1. Hypotheses

4.1.1. Stopping at low congestion levels. We first focus on stopping behavior in “unin-

terrupted” diagnostic processes, i.e. sequences of failed test results that are not interrupted by

intermittent arrivals. These sequences do not experience an increase in congestion while testing. As

such, they provide a clean mapping to sequential hypothesis testing settings without congestion.

Given this, we predict that DMs undertest at congestion levels where testing is relatively inex-

pensive (such that k̄(x)> 0). This prediction is broadly consistent with empirical early-stopping

results in related search settings without congestion, but the underlying reasons are more multi-

faceted in our relatively richer setting with congestion. To anchor the arguments, note that the

stopping decision in our context is akin to the choice between two lotteries. Stopping represents a

simple gamble between losing penalty ⇢ (with probability µ=min(pk,1� pk)2) and losing nothing

(with probability 1�µ)). In contrast, the decision to continue is a complex gamble, characterized

by the expected costs from future decisions as well as the system dynamics.

Early stopping may then arise if DMs simply do not align with the preferences that underlie

the prediction of our benchmark model. It stands to reason that DMs have a preference for the

simpler and less ambiguous stopping gamble. As a result, DMs may willingly stop the diagnostic

process at probability pk(x) < pk̄(x), even in the absence of any judgment bias with regard to pk(x).

An extreme case would be the decision to stop the process B efore ordering a test.

Rule B . DMs stop before testing, at k= 0.

2 Indeed, when stopping, the DM should declare the the item as faulty if pk > 1� pk (and as not faulty otherwise),
in which case the DM is correct with probability pk. Thus, the DM makes a mistake with probability 1� pk when
pk > 1� pk, and with probability pk when pk � 1� pk, i.e. µ=min(pk,1� pk).
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But even if DMs do test (k > 0), they may stop too early A fter receiving the result from test k <

k̄(x). The judgment literature provides plenty of reasons for the DM to hold flawed posterior beliefs,

miscalculating pk, or misinterpreting pk when it is known. Importantly, DMs tend to infer too

much from small samples (of diagnostic tests, in our case), resulting in the relative underweighing

of base rate probabilities and overreaction to signals (Kahneman and Tversky 1973, Rabin 2002).

The resulting excessive adjustments of posterior beliefs in the direction of a test result may then

lead DMs to stop too early, relative to the threshold k̄(x) defined in Proposition 1b.

Rule A . DMs stop after receiving the kth test such that 0< k < k̄(x).

Early stopping may also result when a DM mistakenly stops a diagnostic process simply due

to randomness in decision-making, a notion that has recently been popularized in the operations

literature (Su 2008, Huang et al. 2013). Indeed, Bearden and Murphy (2007) demonstrate how unbi-

ased random error in stopping decisions can lead to systematically biased early stopping behavior

in search problems without congestion. Remaining agnostic (for now) about the precise underly-

ing reasons, rules A and B lead us to expect behavior qualitatively similar to the early stopping

patterns from the search literature (Pitz et al. 1969). With reference to Figure 2b, we hypothesize:

Hypothesis 1A. ( < ) DMs order and receive fewer-than-optimal tests per diagnosis on aver-

age, at each level of congestion x for which k̄(x)> 0.

4.1.2. Stopping at high congestion levels. As our ultimate interest is in stopping behavior

on average, across congestion levels, we need to predict decision making at high congestion levels

where k̄(x) = 0. Because undertesting is not possible when k̄(x) = 0, we hypothesize that DMs

occasionally stop too late. For example, the same notion of random error that may induce early

stopping when testing is optimal, can lead to late stopping when theory predicts no testing at all.

With reference to Figure 2b, we hypothesize:

Hypothesis 1B. ( 0 < ) DMs order and receive more-than-optimal tests per diagnosis on aver-

age, at each level of congestion x for which k̄(x) = 0 or k(x) = 0.

Although the under/overtesting pattern of Hypotheses 1A and 1B is compatible with stopping

decisions that are entirely insensitive to congestion, we expect these decisions to reflect that the

cost of improving diagnostic accuracy increases with congestion. This prediction aligns with the

empirical stopping literature which documents that DMs acquire less information as the cost of

doing so increases (Rapoport and Tversky 1970). The main di↵erence is that the expected search

cost in our setting derives from current and future congestion levels, i.e. the search cost is uncertain

and changes dynamically. We thus expect some sensitivity of behavior to congestion, consistent
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with the empirical literature on load-dependent service times (Delasay et al. 2019). Our theoretical

model allows us to qualify whether stopping behavior is appropriately sensitive - Hypotheses 1A

and 1B imply that it is not (Figure 2b).

Hypothesis 2. ( vs. ) DMs order and receive fewer tests at higher congestion levels - stopping

behavior is sensitive to congestion, but insu�ciently so.

4.1.3. Stopping when congestion grows. Hypotheses 1 and 2 predict stopping behavior

at di↵erent congestion levels, but remain silent on behavior as the system transitions between

congestion levels. A key property of our task environment is that DMs may need to stop a diagnostic

process when congestion grows while they are waiting to receive a test result (Figure 2c).

Rule W . DMs stop while waiting for test results.

The key question regarding this stopping rule is: are DMs doing too much of it, or too little? We

ground our expectation regarding Rule W on the idea that stopping decisions in a given system

state (x,k) are independent of how the system had transitioned into that state. Specifically, if the

DM stops after receiving a test result (Rule A : (x,k� 1)!(x,k)), she should also stop after not

receiving a test result (Rule W : (x� 1, k)!(x,k)). This principle of path-independent behavior is

normatively compelling, and provides a sensible baseline prediction for behavior.

Hypothesis 3. For any state (x,k), the stopping decision is path-independent.

Although silent on whether DMs stop too much or too little while waiting for test results, the

hypothesis ties together di↵erent stopping rules. Specifically, if the DM stops too much after receiv-

ing a test result (Rule A ), Hypothesis 3 implies that the DM also stops too much after not receiving

a test (Rule W), all else being equal (i.e., for the same system state).

Of course, the behavioral literature provides several results that would challenge Hypothesis 3

on the idea that stopping behavior is equally sensitive to additional diagnostic information as it

is to additional congestion, based on the notion of psychic wait costs that include psychological

sensations such as anxiety or stress. In contrast to the standard assumptions made in formal

queuing models (including ours), psychic wait cost need not be linear, or even monotonically

increasing, in wait time (see Allon and Kremer 2019 for a review of the related literature). On the

one hand, if psychic wait cost increase excessively while waiting for a test result, DMs might stop a

diagnostic process earlier than theoretically predicted. On the other hand, because ordering a test

triggers a wait towards the goal of receiving the result, goal theory would predict that the wait

cost might decrease as the DMs gets closer to the goal (Kivetz et al. 2006). In this case, DMs might

stop diagnostic processes later than theoretically predicted. Both psychic forces are behaviorally

plausible and could even coincide (Janakiraman et al. 2011). Whether and how they translate to

the specific task context of our study is a question that we try to answer empirically.
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4.1.4. System-level behavior. Given the hypothesized stopping behavior, and how it is

moderated by varying congestion levels, what can we expect in terms of congestion cost and diag-

nostic cost, relative to optimal decision making? Figure 2d illustrates that the answer is not clear

a priori, and requires further thought on how the system is likely to behave in light of the stopping

behavior we predict. On the one hand, for states that require testing, Hypothesis 1A predicts that

DMs undertest and hence enjoy lower-than-optimal congestion costs at the expense of higher-than-

optimal diagnostic costs. On the other hand, for states that require no testing (including states

that the optimal policy never reaches), Hypothesis 1B predicts that DMs overtest and hence enjoy

lower-than-optimal diagnostic costs at the expense of higher-than-optimal congestion costs.

Predicting system performance then depends on the relative strength of over- versus undertesting

bias in the two types of states, as well as the relative occurrence of these states, which is linked to

system dynamics. While precise predictions are elusive, our Hypotheses allow for cautious extrap-

olation regarding system behavior. Specifically, we predict undertesting at low congestion levels

(Hyp. 1A), which in itself would tend to keep congestion low. Whether the arrivals of new items

might increase congestion to levels where we predict overtesting (Hyp. 1B and 2) then depends on

the DM’s propensity to stop when she sees congestion grow while waiting for a test result (Rule W).

When DMs at low congestion levels stop quickly after a test return, the assumed path-independence

(Hyp. 3) predicts that DMs stop equally quickly when they see an increase in congestion. This

limits substantially the number of paths via which the system can reach high congestion levels.

Overall, we expect DMs to be more likely to enter states where undertesting leads to excessive

diagnostic penalty cost, than states where overtesting leads to excessive congestion cost.

Hypothesis 4 (Cost). DMs incur lower-than-optimal congestion costs, at the expense of higher-

than-optimal diagnostic penalty costs.

We briefly outline alternative cost patterns, and the likelihood of them arising in our data.

First, no behavioral pattern can lead to both lower-than-optimal congestion cost and lower-than-

optimal diagnostic cost. Second, DMs may enjoy lower-than-optimal diagnostic cost at the expense

of higher-than-optimal congestion cost, if they were to generally overtest. Given existing evidence

from the literature, we do not find such a pattern likely. Third, it is possible that DMs stop early

after they receive test results (Rule A ) but continue the diagnostic process when they wait for a

test result (Rule W). Such behavior would e↵ectively violate the path-independence property of

the optimal policy (Hypothesis 3), and be consistent with the possibility that DMs incur higher-

than-optimal diagnostic cost and higher-than-optimal congestion cost (violating Hypothesis 4).
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4.2. Design and implementation (all studies)

We present the results from four studies designed to test our research hypotheses, including a

number of tests of the behavioral mechanisms that may underlie the predicted decision patterns.

This section presents the experimental design elements that are common to all studies.

Table 1 Roadmap to studies

Study H1a H1b H2 H3 H4 Behavioral mechanism Debiasing mechanism Experimental factor(s)

1 X X X X X - -
Diagnostic uncertainty p0:

Low (0.14) vs. High (0.4)

2 X X X X X Judgment: Statistical support Access to pk:

Biased beliefs pk Show vs. Hide

3 X ⇥ ⇥ ⇥ ⇥ Overestimation of
-

Task accumulation:

congestion cost Congestion vs. No congestion

4 � � � � � Biased strategy Strategy definition Strategy elicitation: yes vs. no

Biased execution Strategy commitment Strategy commitment: yes vs. no

Notes: Xtested. � testable. ⇥ not testable

4.2.1. Task and Design. DMs in our experiments face the task described in Section 3 for

T = 400 time epochs, with the parameters of the optimal policy in Figure 1. Thus, we set per-unit

time cost c= $1, test reliability � = 0.75, diagnostic penalty cost ⇢= $100, and arrival rate �= 0.5,

which means that a test return and a new arrival both have probability 0.5. Our experimental

design varies prior p0 (0.4 vs. 0.14, in Studies 1-3), whether DMs have access to the statistical

posterior pk (Studies 2-4) or not (Study 1), and whether the system is prone to congestion (Studies

1, 2, 4) or not (Study 3). All treatments are implemented in a between-subject design.

4.2.2. Prior Information and Sample Information. We provide subjects with full knowl-

edge about the relevant parameters of the environment, which include financials (c and ⇢) as well

as stochastic elements (�, p0, �). To sharpen our statistical inferences, all experimental treatments

use the same pre-generated sets of random realizations of item types, test results and arrival events.

See Appendix EC.1.1 for more details.(All appendices are given in the e-companion to this paper.)

4.2.3. Data structure. Figure 3 illustrates the nature of our data, using a small sample from

Study 2, plotting congestion level x over time epoch t. At the most granular level, for each subject

i (we will suppress i in the following), the data comprises a sequence of states (x,k). The states

are linked through exogenous events at time epoch t, and through decisions made over time period

t (recall that time period t is defined as time interval [t, t+1)). An event (et) either corresponds to

an arrival (et = 1) that increases system congestion xt without changing the number of failed tests

k, or a test return (et = 0) that changes k without changing congestion xt. A decision corresponds
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to either the continuation of the diagnostic testing process, which triggers the next exogenous event

et or a diagnosis that reduces system congestion and resets k= 0 for the next item in the queue.

Figure 3 Data and System Dynamics

(a) Subject i= 2 (b) Subject i= 3 (c) Subject i= 6 (d) Subject i= 7

(e) Subject i=2, t= 50� 100

Importantly, because the DM can diagnose multiple successive items without testing (Rule B )

between events et and et+1, we let y⌧ denote the ⌧ th decision of the subject, and s⌧ = (x⌧ , k⌧ ) the

corresponding system state. If the subject stops (y⌧ = 1), she incurs a penalty of ⇢⌧ = ⇢ if the

diagnosis is incorrect, and ⇢⌧ = 0 if it is correct. If the subject continues to test (y⌧ = 0), which

triggers the next event et+1, she incurs congestion cost cxt, where xt is the congestion level at

the end of period t. Specifically, congestion level xt associated with period t is equal to x⌧̃ with

⌧̃ =max(⌧ : t⌧ = t), and where t⌧ is the time period during which the ⌧ ’s decision occurs.

4.2.4. Performance metrics and aggregation. Our ultimate interest is in how decisions

a↵ect system performance. Towards this objective, we define the total number of diagnoses made

until time epoch t as Dt =
P

⌧ :t⌧t
y⌧ . The number of tests ordered, Ot, and the number of tests

received, Rt, are calculated in a similar way. Consistent with our theoretical model from Section

3, we calculate total congestion cost until time epoch t as Ct =
P

zt
cxz, and total diagnostic

penalty cost until time epoch t as Pt =
P

⌧ :t⌧t
⇢⌧ . We express all key metrics in per diagnosis

terms: average congestion costs C̄ =CT/DT , average diagnostic costs P̄ = PT/DT , average number

of tests ordered Ō=OT/DT , and average number of tests received R̄=RT/DT .
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Defined at the subject level (we had dropped i), these metrics require further aggregation to the

population level at which we wish to draw and report our conclusions. This requires some care,

given that our experiments embrace the full dynamics of the system, which unfold as a function of

exogenous stochastic events and each DM’s own decisions. Essentially, our statistical tests rest on

simple (as opposed to weighted) averages, to account for the fact that DMs generally contribute a

di↵erent number of observations towards di↵erent population averages of interest.3

4.2.5. Benchmark. Our interest in assessing behavioral bias requires the comparison of our

data with the “unbiased” predictions from Section 3. We can benchmark stopping behavior against

optimal decision making on two levels. At the level of individual decisions, we compare average

stopping (between 0 and 1) at every system state s⌧ = (x⌧ , k⌧ ) observed in our data, with the

optimal policy (either 0 or 1). At the level of aggregate performance metrics (C̄, P̄ , Ō, R̄), we

calculate the corresponding benchmarks by applying the optimal policy on the same set of scenarios

(i.e. realizations of the stochastic processes) as the ones we implement in our studies.

4.2.6. Software, Recruitment and Payment (Studies 1-3). We recruited subjects from

an experimental subject pool associated with the Laboratory for Economic Management and Auc-

tions (LEMA) at Pennsylvania State University. After arriving at the laboratory, participants read

written instructions (see Appendices EC.1.2 and EC.1.3 for samples). The experiment was imple-

mented in the software zTree (Fischbacher 2007). Subjects first played 20 time epochs to familiarize

themselves with the software and the task. They then performed the task for T = 400 time epochs

under incentive-compatible conditions. Subjects were told that the task would last between 350

and 450 time epochs, to mitigate possible (but unlikely) end game e↵ects - note also that, given

the incentive structure of our task setting, DMs cannot improve performance by changing their

behavior towards T . Each session lasted about 45 minutes. Subjects were compensated based on

the total cost averaged across all items diagnosed over the 400 time epochs. Specifically, subjects

earn according to B� v ⇤ (P̄ + C̄), where the fixed base payment B and the conversion rate v were

set such that the earnings per hour of lab time were kept reasonably similar across experimental

conditions. The average compensation was $13 and participants were paid in private at the end of

the session; cash was the only incentive o↵ered.

3 E.g., the number of diagnoses made (Dt) varies across DMs. Consider a simple illustrative example: DM A made
DA = 1 diagnosis based on RA = 2 tests received. In contrast, DM B made DB = 2 diagnoses, each based on a single
test received (hence, RB = 2). At the aggregate population level, we hence have a total of 3 (1+2) diagnoses made
based on a total of 4 (2+1+1) tests, yielding an average of 1.33 (= 4

3 ) tests received per diagnosis made. However,
this calculation gives undue weight to DM B’s lower number of tests per diagnosis, given that DM B made more
diagnoses. Correcting for such a bias, the population-level average number of tests per diagnosis is in fact 1.5 (= 2+1

2 ),
i.e., the simple (not weighted by subject-level sample size) average of DMs’ average number of tests received.
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5. Study 1: Managing diagnostic processes and the role of p0.

5.1. Design and Implementation

We implement two conditions that correspond to the two cases of Proposition 1b: High (with

p0 = 0.40) and Low (with p0 = 0.14). Recall that in High, uncertainty decreases as the diagnostic

process progresses, i.e., pk increases above and away from 0.5 in k. In contrast, uncertainty increases

in the beginning of the process in Low, i.e., pk increases towards 0.5 for small values of k.

DMs should benefit from being in a Low uncertainty environment. For the parameters of our

study, theory predicts a decrease in the number of tests ordered (Low: 1.10 vs. High: 1.30) and

received (0.67 vs. 0.93), as well as a decrease in both congestion cost (1.91 vs. 3.65) and diagnostic

cost (9.17 vs. 17.29). The reason is threefold. First, the lower prior makes it more likely that an item

passes the first test, which stops the diagnostic process and provides perfect accuracy. Second, while

the optimal policy in Low allows for substantial increases in congestion at k = 1 and k = 2, such

increases are unlikely (shaded areas in Figure 1b). Third, even if congestion increases substantially,

the DM should make a series of diagnoses without testing at all (at reasonably good odds p0) to

quickly lower congestion to x= 1. The extent to which the DM can reap these benefits of the Low

uncertainty environment depends on the existence and magnitude of decision bias regarding the

three stopping rules ( B efore, A fter, While) and the cost of such biases in the two environments.

5.2. Results

Table 2 Study 1: Results

Tests ordered Ō Tests received R̄ Wait Cost C̄ Diagnostic Cost P̄ Total Cost C̄+ P̄

Condition N Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs.

High 23 1.30 >⇤ .96 .93 >† .82 3.65 <⇤ 8.61 17.29 <⇤ 22.91 20.94 <⇤ 31.52

Low 29 1.10 >⇤ .65 .67 >⇤ .55 1.91 <⇤ 3.71 9.17 <⇤ 13.59 11.08 <⇤ 17.29

Notes: ⇤p < 0.01;� p < 0.05;† p < 0.1. Two-sided Wilcoxon signed-rank test.

Cost (Hyp. 4). Table 2 presents the aggregate results. Using subject-level averages as the unit of

analysis we observe that the total cost is 51% higher than optimal in High (31.52 vs. 20.94), and

56% higher than optimal in Low (17.29 vs. 11.08). The data show that DMs order fewer tests than

theoretically optimal and as a result incur higher-than-optimal diagnostic costs, in High (P̄ : 22.91

vs. 17.29) and Low (P̄ : 13.59 vs. 9.17). However, they simultaneously incur higher-than-optimal

congestion cost, in High (C̄ : 8.61 vs. 3.65) and Low (C̄ : 3.71 vs. 1.91). We next study the reasons

for this partial lack of support for Hypothesis 4.

Undertesting (Hyp. 1A - Rule B ). We observe the predicted higher-than-optimal diagnostic

costs because of undertesting at low congestion levels where testing is relatively inexpensive. For
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example, when the system is not congested at x= 1, DMs receive on average 0.89 tests in High and

0.33 tests in Low (Figure 4), which is significantly below the respective optimal stopping thresholds

k̄(1) = 3 and k̄(1) = 4. To further study the mechanisms underlying the observed early stopping

behavior at x= 1, Table 3 displays stopping decisions at di↵erent times of the diagnostic process.

The data shows that DMs make a large fraction of these diagnoses without testing at all (Rule

B ). In High, 15% of diagnoses at x= 1 are made without testing. The performance implication of

such pre-mature stopping is substantial. The expected diagnostic penalty cost of diagnoses without

testing is $40 (and $60 if the DM mistakenly diagnoses “faulty”), which compares quite unfavorably

with the optimal total expected cost of $20.95 from Table 2. Similarly, in Low, 47% of diagnoses

at x= 1 are made without testing. The expected diagnostic penalty cost of such diagnoses is $14

(and $86 if the DM mistakenly diagnoses “faulty”), which again compares unfavorably with the

optimal total expected cost of $11.01.

Undertesting (Hyp. 1A - Rule A ). Table 3 documents how pre-mature stopping after receiving

a test result contributes further to the overall undertesting pattern at x = 1. DMs in High are

likely to stop after failing one (56%) or two tests (88%), short of the optimal k̄(1) = 3. Similarly,

DMs in Low are likely to stop after failing one (40%), two (70%), or three tests (100%), short of

the optimal k̄(1) = 4. This early stopping after test receipts is particularly hurtful to performance

in Low (p0 = 0.14), where failed tests early in the diagnostic process actually increase diagnostic

uncertainty (p1 = 0.4, p2 = 0.73).

Table 3 Stopping after receiving test result k at x= 1.

pk

Condition 0.14 0.4 0.73 0.91 0.98

k= 0 . . . k= 1 . . . k= 2 . . . k̄= 3 . . .

High
observations 1,745 305 44 4

stop (in %) 15% 56% 88% 100%

k= 0 . . . k= 1 . . . k= 2 . . . k= 3 . . . k̄= 4 . . .

Low
observations 3,579 251 67 8

stop (in %) 47% 40% 70% 100%

Notes: ‘. . . ’ indicates processes that transition to x> 1 between test results k and k+1.

Undertesting and over-congestion. Because systematic undertesting at low congestion levels in

itself would keep system congestion low, the observed higher-than-optimal congestion cost suggests

that DMs reach high and theoretically infeasible congestion levels more often, and stay there for

longer, than permitted under the optimal policy. This pattern would arise if DMs propensity to stop

before ordering or after receiving a test (Rules B and A ) does not increase at higher congestion

x, or if DMs fail to abort as x increases while waiting for a test result (Rule W). Essentially,
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the observed higher-than-optimal congestion cost must be the result of insu�cient sensitivity to

congestion, which can manifest itself in the violation of Hypothesis 2 (Sensitivity) or Hypothesis 3

(Path Independence), or both.

Congestion Sensitivity (Hyp. 2). We predicted that DMs stop too early (Hypothesis 1A) at

low congestion levels that require testing, but are generally sensitive to congestion (Hypothesis

2), for diagnostic processes that do not include passed tests or intermittent arrivals. For such

“uninterrupted” (by congestion increases) processes in the data of conditionHigh, Figure 4 displays

the average number of tests received for diagnoses made at each congestion level x. A visual

inspection suggests that stopping behavior is insu�ciently sensitive to congestion.

Figure 4 Tests received (R̄) for sequences without intermittent arrivals: Predictions ( ) and Data ( )

(a) High uncertainty (p0 = 0.40) (b) Low uncertainty (p0 = 0.14)

Overtesting (Hyp. 1B). When DMs do not adjust their stopping policy (much) to varying levels

of congestion, the immediate implication is that they overtest at congestion levels where they

should not test at all. For condition High, Figure 4 shows that the average number of tests received

is larger for any congestion level x� 4, where k̄(x) = 0. Similarly, in Low, DMs incorrectly start or

continue about 30-40% of diagnostic processes when the optimal policy predicts the DM stops the

process before receiving any test result, k(x) = 0. Overall, in support of Hypothesis 1B, the data

shows that DMs overtest in states with high congestion levels for which the optimal policy predicts

no testing at all (k(x) = 0 for x > 1 in Low, k̄(x) = 0 for x > 3 in High). Because the optimal

policy leaves room only for overtesting in such states, the more important question concerns the

mechanisms that grow congestion to these levels in the first place, given that most of these states

cannot be reached often (Low) or at all (High) under the optimal policy (see Figure 1).
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Path-Dependence (Hyp. 3 - Rule W). A plausible explanation is that DMs are insu�ciently

sensitive to (increases in) congestion, and fail to abort diagnostic processes as the system is transi-

tioning to higher congestion levels. In violation of Hypothesis 3, DMs may continue the search when

they see congestion increase from (x� 1, k) to (x,k) while waiting for a test result (Rule W), even

though they may stop in the same state after receiving a test result (Rule A (x,k�1)!(x,k)). To

formally test this idea, we next estimate a probit regression model with the ⌧ ’s decision by subject

i as the dependent variable (yi⌧=1 if stop and diagnose, 0 else),

Pr(yi⌧ = 1) = �(Constant+↵xxi⌧ +↵kKi⌧ +↵xkxi⌧Ki⌧ +↵PPathi⌧ + �c), (2)

which includes a random e↵ect �c to account for subject-level heterogeneity in stopping behavior.

We let xi⌧ denote the congestion level in state si⌧ = (xi⌧ , ki⌧ ). Because the e↵ect of k on stopping

behavior is unlikely to be linear, we use a set of dummy variables Ki⌧ that capture the number of

(positive or negative) tests received for the item under service. For example, with the Constant

providing the baseline at k= 0, K1 = 1 if an item has failed exactly one test. Together, xi⌧ and Ki⌧

fully describe the system at subject i’s decision epoch ⌧ . The main variable of interest is Pathi⌧ ,

which is 1 if the system transitioned into state s by arrival while waiting for a test result (x⌧ = x⌧�1+

1 for x⌧�1 > 0), and 0 else. Hypothesis 3 predicts that Pathi⌧ has no e↵ect on stopping behavior. We

also include an interaction term xi⌧Ki⌧ , mainly to assess whether Pathi⌧ has descriptive validity

even after controlling for (non-hypothesized) e↵ects such as k moderating a DM’s sensitivity to

congestion x.

Table 4 presents the results of estimating Model (2) on the data of each condition, including

nested versions that exclude Pathi⌧ or the interaction term. We also carried out the same esti-

mations for the second half (t= 201� 400), to assess whether e↵ects are robust to learning. The

variables Ki⌧ organize the data sensibly, indicating that the stopping probability is highest when

DMs have received a passed test (for which pk=0), or when two (High) or three (Low) successive

failed test have moved the posterior to pk=0.91. The positive estimates for x indicate that decision

making is not entirely insensitive to congestion (Hypothesis 2), with the e↵ect growing stronger

when we constrain ourselves to the data from the second half (t= 201�400). Importantly, the neg-

ative estimates for Pathi⌧ show path-dependent behavior in violation of Hypothesis 3. Essentially,

DMs are less likely to stop in a given state (x,k) when they are waiting for a test result (Rule W),

as opposed to when they entered the state after receiving a test result (Rule A ).
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Table 4 Study 1: Estimation Results

DV: yis t= 1� 400 t= 201� 400

Low High Low High

IV (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Constant .06 .20 .15 �1.84⇤ �1.67⇤ �1.71⇤ �.01 .04 .07 �2.20⇤ �1.97⇤ �1.93⇤

Path � �1.24⇤ �1.26⇤ � �.66� �.64� � �1.51⇤ �1.50⇤ � �.94⇤ �.93⇤

K<0 2.66⇤ 2.39⇤ 2.84⇤ 4.08⇤ 3.89⇤ 3.12⇤ 2.85⇤ 2.59⇤ 2.51⇤ 4.33⇤ 4.06⇤ 3.32⇤

K1 �.47† �.53� �.65� 2.12⇤ 2.01⇤ 2.29⇤ �.98⇤ �1.05⇤ �1.53⇤ 2.27⇤ 2.13⇤ 2.05⇤

K2 1.29⇤ 1.14⇤ 1.23⇤ 4.07⇤ 3.86⇤ 4.22⇤ 1.09⇤ .98⇤ 1.27⇤ 4.91⇤ 4.60⇤ 5.01⇤

K3 4.21⇤ 3.88⇤ 2.90� � � � 4.09⇤ 3.86⇤ 3.46⇤ � � �
x �.055 .002 .02 .06� .07⇤ .08� .10� .21⇤ .20⇤ .11⇤ .13⇤ .12⇤

x ·K No No Y es No No Y es No No Y es No No Y es

LPL -6,190 -5,955 -5,939 -5,137 -5,075 -5,042 -2,831 -2,682 -2,677 -2,561 -2,501 -2,493

Obs. 11,669 11,407 5,756 5,859

Notes: ⇤p < 0.01;� p < 0.05;† p < 0.1

5.3. Discussion

The data exhibit qualitatively similar decision biases and performance loss in both conditions.

Contrary to Hypothesis 4, we find that DMs accumulate higher-than-optimal cost on both dimen-

sions of the accuracy/congestion trade-o↵. Our analyses shed light on the mechanisms behind this

result, and allow for a cautious attempt at predicting the e↵ect of observed individual-level bias

on how the system occasionally cycles between low and high congestion regimes.

At low system congestion, we find that DMs settle for too few tests, in support of Hypothesis

1A. Because undertesting at low congestion levels in itself should keep congestion low, why then

do DMs incur substantially higher-than-optimal congestion cost? Our results point to two related

mechanisms. First, in support of Hypothesis 2, stopping behavior is insu�ciently sensitive to con-

gestion level. The implication is that DMs continue testing at congestion levels where it is optimal

to diagnose without a test, at the risk of increasing congestion further. Notably, this includes

congestion levels that the system would never reach under the optimal policy. Second, contrary

to Hypothesis 3, DMs are less likely to stop the diagnostic process when they see an increase in

congestion level while waiting for a test result (Rule W) than after they receive a test result (Rule

A ). This violation of the path-independent property of the optimal dynamic decision rule allows

congestion to grow to levels that should remain inaccessible at optimality. Once these biases have

contributed to taking the system to higher congestion levels, DMs struggle with reducing it. On

the one hand, path-dependent behavior creates a tendency for further congestion increases. On the

other hand, once the system has reached congestion levels not predicted by theory, DMs do not

make enough use of rule B (Stop before testing) as the most e↵ective lever to reduce congestion.

Ironically, the same behavior that tends to keep the system at low congestion levels may prevent
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the system from going back to low congestion levels. As a result, system performance may su↵er

on both dimensions of the accuracy/congestion trade-o↵. We next study the underlying behavioral

reasons and what can be done to improve performance.

6. Study 2: Providing statistical support.

The high diagnostic costs observed in Study 1 result because DMs settle for too few tests at low

congestion levels. We predicted this pattern in part because excessive belief adjustments in the

direction of a test result may prompt DMs to stop too early with too little diagnostic information.

The data from Study 1 lends support for this behavioral driver behind Rule A (Stop after testing).

Because we design the two experimental conditions such that pLow

k
= pHigh

k�1
, we can directly compare

stopping behavior at a particular probability pk. For example, Table 3 shows that DMs are con-

ditionally more likely to stop after the first test in condition Low (p1 = 0.4) than to stop without

test in condition High (p0 = 0.4), even though diagnostic information is the same in both cases.

Arguably, DMs overweigh the signal and quickly stop on the too few test results, and it stands

to reason that they perform poorly simply because they cannot correctly calculate the posterior

based on the tests they have received.

Study 2 provides a direct test of this conjecture. We implement a treatment that is identical

to Study 1, with the only di↵erence that we show DMs the correct posterior pk throughout the

task, readily displayed in the diagnostic decision buttons “Faulty. Probability: [pk%]” and “Good:

Probability: [1 � pk%]”, respectively (see Appendix EC.1.4). We implement the new treatment

Show for both Low and High uncertainty conditions, and we use the label Hide to refer to the

Study 1 treatments where DMs were not able to see the correct posteriors.

6.1. Results

Performance. Table 5 presents the results from Study 2 (Show) and includes the results from

Study 1 (Hide) for easy comparison. Our main observation is that performance does not improve

when DMs have access to the correct posterior, with no significant performance di↵erences between

Hide and Show (Mann-Whitney-U tests for C̄, P̄, C̄+ P̄ ). To study the reasons for this no-e↵ect,

note that overall performance depends on the diagnostic decisions conditional on stopping the

process (Proposition 1a) as well as the stopping decisions themselves (Proposition 1b).
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Table 5 The impact of statistical support on performance

Tests ordered Ō Tests received R̄ Wait Cost C̄ Diagnostic Cost P̄ Total Cost C̄+ P̄

Cond. Treat. N Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs.

High Show 26 1.30 >⇤ .95 .93 >� .81 3.65 <⇤ 12.90 17.29 <⇤ 21.19 20.94 <⇤ 34.09

High Hide 23 1.30 >⇤ .96 .93 >† .82 3.65 <⇤ 8.61 17.29 <⇤ 22.91 20.94 <⇤ 31.52

Low Show 23 1.11 >⇤ .64 .67 >⇤ .52 1.91 <† 3.67 9.09 <⇤ 12.18 11.01 <⇤ 15.86

Low Hide 29 1.10 >⇤ .65 .67 >⇤ .55 1.91 <⇤ 3.71 9.17 <⇤ 13.59 11.08 <⇤ 17.29

Notes: ⇤p < 0.01;� p < 0.05;† p < 0.1. Two-sided Wilcoxon signed-rank test. Hide treatments from Study 1.

Diagnostic Decisions. For each diagnosis di⌧ made by subject i with decision ⌧ , we count a

diagnosis as correct (d⇤
i⌧
= 1) if it coincides with the optimal diagnosis according to Proposition

1a, and as incorrect otherwise (d⇤
i⌧
= 0). We calculate the fraction of correct diagnosis conditional

on stopping at pk. For the High uncertainty environment, diagnostic accuracy appears to be

marginally higher in Show than in Hide, at p1 = 0.73 (0.94 vs. 0.92), and p2 = 0.91 (1 vs. 0.95). For

the Low uncertainty environment, diagnostic accuracy is higher in Show than in Hide at p1 = 0.40

(0.42 vs. 0.24), but not at p2 = 0.73 (1 vs. 1). To formally test these descriptive observations, we

estimate for each condition (Low, High) a probit regression model,

Pr(d⇤
i⌧
= 1) = �(↵0 +↵1Ki⌧ +↵2Showi +↵3t+ �c), (3)

where the set of dummy variables Ki⌧ controls for the posterior pk at which the diagnosis is made,

and t captures possible learning e↵ects. The main estimate of interest is for the variable Showi. The

results show that access to the statistical posterior has no material impact on the conditional (on

pk at the point of stopping) quality of diagnostic decisions, on average, in Low (↵2 = .01, p= .91)

and in High (↵2 = .20, p= .16). In light of these results, it is not surprising that DMs do not overall

incur lower diagnostic cost P̄ when they have direct access to the correct posterior in treatments

Show than when left to their own cognitive devices in treatments Hide.

Stopping Decisions. A cursory investigation of stopping decisions in di↵erent system states shows

no systematic di↵erences between the Hide and Show treatments, with one notable exception

for Low uncertainty environments: when initial test results have e↵ectively pushed the diagnostic

process into system states with higher diagnostic uncertainty (compared to p0 = 0.14), DMs are

less likely to mistakenly stop the diagnostic process in Show. For example, looking only at stopping

decision when congestion is x= 1 (Table EC.3 in Appendix B), we observe that DMs in the Low

uncertainty condition are less likely to mistakenly stop when they see the correct posterior (Show)

than when they do not (Hide), both at p1 = 0.40 (21% vs. 40%) and at p2 = 0.73 (54% vs. 70%).
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6.2. Discussion.

We observe that access to the correct statistical posterior may help DMs when initial diagnostic

information has pushed the system into states where diagnostic uncertainty is high and judgment

bias is likely to lead the DM to mistakenly stop and (conditional on stopping) make incorrect

diagnoses. However, the benefit does not show up in the aggregate results, where we register a

performance loss of 44% in Low (total cost: 15.86 vs. 11.01) and 63% in High (34.09 vs. 20.94).

The likely reason is that DMs rarely enter system states where access to the correct statistical

posterior can help them make better diagnostic decisions. Overall, Study 2 shows that providing

access to the correct posterior does not help DMs manage congestion better in the environments

we implemented. Study 2 (Show) further corroborates the key results from Study 1 (Hide). We

observe again that DMs incur both higher-than-optimal diagnostic cost and higher-than-optimal

congestion cost (Table 5). And we again observe path-dependent behavior under which DMs are

more likely to stop after receiving a test result than after experiencing an increase in system

congestion (see Table EC.2 in Appendix B for details).

7. Study 3: Managing Diagnostic Processes without Congestion.

Study 3 sheds light on how the mere presence of congestion may (or may not) change the way

DMs approach the fundamental sequential search and hypothesis testing problem underlying the

diagnostic task. A striking result from Studies 1 and 2 is that DMs severely undertest even when

testing is cheap at low congestion levels such as x= 1. Our results thus far show that DMs undertest

because they may like the odds at p0 (Rule B ), or because they may excessively update p0 based

on few test results (Rule A ). That is, they may undertest for reasons that are not directly linked

to the cost of future congestion. As a complementary reason, we posit that DMs may overesti-

mate the future congestion-related cost of testing. Testing this conjecture would require either the

manipulation of the decision biases that drive costs as system congestion grows, or to manipulate

these costs directly. Because the controlled elimination of decision bias at x> 1 is impractical, we

instead decrease the expected congestion-related cost of testing at x= 1 directly.

7.1. Design and Implementation.

For the Low andHigh uncertainty conditions from Study 2 (henceforth, Congestion), we implement

a No Congestion treatment that removes congestion entirely. DMs in No Congestion never see a

queue build up during the diagnostic process and only incur costs for the current item. Specifically,

we run the same algorithm and display the same interface in all our studies, with the only di↵erences

that in Study 3, new arrivals are not displayed and their impact on cost not accounted for. In this

study, DMs are only told that an ordered test result returns with probability 1/2 at each time
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epoch. As a result, DMs experience the exact same sequence of time epochs, and are presented the

same choices at each time epoch in all our studies, whether congestion is present or not.

As a result, DMs incur search cost c= $1 each time they decide to either order a new test, or

continue to wait for a test that they had ordered, such that the total search cost until time epoch

t reduces to Ct = ct. The expected number of time epochs for a test’s result to come back is equal

to 1/(1��), which yields the expected cost per test c/(1��) = $2 for our parameter values.

Optimal stopping in the absence of congestion follows a simple threshold policy, under which

the DM should run tests as long as the tests fail and the number of failed tests is less or equal to

threshold k̄ (Section 3). Because the system without congestion is equivalent to a congested system

at x= 1 with no new arrivals, we would not predict any between-treatment di↵erences in stopping

behavior under the optimal policy. Importantly, we would also not predict any between-treatment

di↵erences based on any judgment and decision-making biases that are not inherently linked to

future congestion, such as the excessive updating of pk.

7.2. Results

Performance. We had predicted that undertesting would lead to lower-than-optimal search cost

at the expense of higher-than-optimal diagnostic cost in settings with congestion (Hypothesis 4),

in parts because of results from related search settings without congestion. Although a rational

DM cannot su↵er on both dimensions of the accuracy/search cost trade-o↵ in search settings with-

out congestion, the results from Studies 1 and 2 suggest it is possible that a boundedly rational

DM might. The No congestion treatment o↵ers a direct test of this (Table 6). For both uncer-

tainty conditions, DMs tend to order (Ō) and receive (R̄) fewer tests than optimal, in support

of Hypothesis 1A. This undertesting pattern translates into higher-than-optimal diagnostic cost

P̄ and lower-than-optimal search cost C̄, which corroborates the early stopping results from the

empirical literature on search problems without congestion.

Table 6 The impact of congestion on performance

Tests ordered Ō Tests received R̄ Wait Cost C̄ Diagnostic Cost P̄ Total Cost C̄+ P̄

Cond. Treatment N Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs.

High No congestion 13 1.95 > 1.78 1.95 >† 1.72 3.83 >† 3.38 .97 <⇤ 6.20 4.80 <⇤ 9.57

High Congestion 26 1.30 >⇤ .95 .93 >� .81 3.65 <⇤ 12.90 17.29 <⇤ 21.19 20.94 <⇤ 34.09

Low No congestion 25 1.62 >⇤ 1.14 1.62 >⇤ 1.06 3.19 >⇤ 2.07 0 <⇤ 6.60 3.19 <⇤ 8.68

Low Congestion 23 1.11 >⇤ .64 .67 >⇤ .52 1.91 <† 3.67 9.09 <⇤ 12.18 11.01 <⇤ 15.86

Notes: ⇤p < 0.01;� p < 0.05;† p < 0.1. Two-sided Wilcoxon signed-rank test. Congestion treatments from Study 2. For Ō and R̄,

all di↵erences between Congestion and No Congestion are significant (Mann-Whitney-U, p < 0.01).

Stopping rules. Table 7 illustrates how the overall undertesting pattern arises. First, DMs stop

the diagnostic process before testing at all (Rule B ), and more so at the relatively better diagnostic
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prior odds of the Low environment. Second, DMs stop after having received too little test informa-

tion (Rule A ). The data lends further support to the idea that DMs overreact to, and overweigh,

small samples of test results. For example, DMs are more likely to stop based on a single test in

Low than without any test in High (22% vs. 1%), even though pk = 0.4 in both cases. In fact,

Table 7 suggests that the number of test results itself (k) is a better predictor of stopping than

the probability pk that the item is faulty, despite the fact that DMs have access to pk throughout

the experiment. Third, DMs sometimes prematurely stop while waiting for a test to return (Rule

W), which is never optimal in No congestion settings, and necessary only at x > 1 in Congestion

settings where waiting for a test implies an increase in congestion.

Table 7 Stopping after test result k and while waiting (...) at x= 1

pk

0.14 0.4 0.73 0.91 0.98 0.99

Cond. Treatment k= 0 . . . k= 1 . . . k= 2 . . . k= 3 . . . k= 4 . . .

High No congestion
observations 1,525 1,391 750 641 526 320 294 55 51 3

stop (in %) 1% 4% 12% 2% 30% 15% 85% 39% 97% 33%

High Congestion
observations 2,019 330 39 1 -

stop (in %) 20% 65% 82% 100% -

k= 0 . . . k= 1 . . . k= 2 . . . k= 3 . . . k= 4 . . . k= 5 . . .

Low No congestion
observations 3,999 2,583 862 706 454 324 231 49 53 9 - -

stop (in %) 21% 20% 22% 6% 27% 2% 75% 38% 86% 50%

Low Congestion
observations 2,988 218 57 11 - -

stop (in %) 48% 21% 54% 100% - -

Notes: Congestion treatments from Study 2. In Congestion, waiting (...) implies an increase in congestion (x> 1)

(Anticipated) congestion matters. In the absence of congestion and related congestion cost,

Table 6 shows that DMs test more (Obs. Ō and R̄), as they should (Pred. Ō and R̄). To draw

a sharper contrast, we leverage the fact that theory predicts the same stopping behavior for No

congestion as it does for a Congestion-prone environment that is at x= 1. The data is at odds with

this prediction (Table 7) - DMs are more likely to stop in the presence of congestion than in its

absence, at almost any level of k. The implication is that DMs in Congestion-prone environments

undertest at low congestion levels (here, x= 1) in part because of the same judgment and decision

biases one can expect in No congestion, and in part because of the anticipation of congestion-related

cost caused by their own inability to manage the system well at higher congestion level.

8. Study 4: Distinguishing & debiasing performance loss drivers

To further our understanding of the reasons for the substantial performance loss observed in our

studies, and towards the design of debiasing mechanisms, we note that sub-optimal performance

has roots in two broad classes of bias.
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Poor strategy. Our results thus far show that stopping thresholds are on average insu�ciently

sensitive to congestion (illustrated in Figure 4), with the implication that DMs do not test enough,

while still allowing the system to reach congestion levels that are infeasible under the optimal

policy. In other words, performance may su↵er from poor choice of stopping thresholds.

Poor execution. Performance may also su↵er when DMs fail to make consistent decisions, i.e.,

when they do not always make the same decision in a given system state (x,k). One example

for such variability in decision making is the systematic path-dependency that we observe in our

data. Note that even a poor strategy, if executed consistently, would adhere to the normatively

compelling principle of path-independence in decisions. Variability in choices can also result from

randomness in the decision making process. Indeed, the prediction of Hypothesis 1A (Undertesting

at low congestion) builds on prior evidence that random choice can account for costly early-stopping

bias observed in search settings without congestion (Bearden and Murphy 2007), and we made a

similar argument with regard to Hypothesis 1B (Overtesting at high congestion levels).

Understanding whether performance loss is due to poor strategy or due to poor execution is

important because each category of bias is likely to require di↵erent debiasing techniques (Arkes

1991). Since it is di�cult to distinguish poor strategy from poor execution based on the data from

Studies 1 and 2 alone (without relying on econometric exercises and the assumptions that typically

go along), Study 4 makes an attempt to answer the question experimentally.

8.1. Design and Implementation

To address the question of poor strategy, we directly elicit the DM’s stopping thresholds, rather

than estimating them from our choice data (e.g., using Equation 2). To address the question of

poor execution, we constrain the DM’s tendency to exhibit variability in the execution of their

strategy.

We implement three treatments in the High uncertainty condition with the statistical posteriors

being shown throughout (Show treatments from Studies 2 and 3). Each treatment has three parts

(Table 8). Part A is identical for all three treatments, and DMs perform the diagnostic task from

Studies 1 and 2 for T = 100 time epochs. Parts B and C implement our key interventions.

Table 8 Study 4 Design

Treatment N Part A: t= 1� 100 Part B Part C: t= 1� 300

Base 59 Diagnostic task Neutral filler task Diagnostic task

Recommend 59 Diagnostic task Strategy elicitation Diagnostic task with own strategy as recommendation

Commit 61 Diagnostic task Strategy elicitation Diagnostic task with own strategy as commitment
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Strategy elicitation (Part B). In treatments Recommend and Commit, we elicit from sub-

jects their diagnostic testing strategy, defined as a set of stopping thresholds Si ⌘ {k̄i(1), k̄i(2), ...}.
In short, with more procedural details relegated to Appendix EC.1.5, DMs were first prompted

to indicate the maximum number of items x̄ that they would allow in the system. Next, at each

congestion level from x= 1 to x̄� 1, subjects indicated the number of failed tests k̄(x) after which

they would stop the process and diagnose the item. The strategy elicitation in part B provides for

each subject i a strategy Si ⌘ {k̄i(1)...k̄i(x̄i)}. To replicate the cognitive e↵orts that the other two

treatments impose on the DMs in part B, treatment Base implements a simple but tedious filler

task that requires DMs to count the number of items on the screen.

Strategy implementation (Part C). DMs perform the same diagnostic task from part A,

for T = 300 time epochs. In treatment Base, the system ran exactly as in Studies 1 & 2, without

any intervention. In treatment Recommend, the system displayed the DM’s own strategy k̄i(x)

as a recommendation for the current state (x,k), but DMs were allowed to deviate from the

recommendation. In treatment Commit, the system would implement the strategy from part B,

without the option to deviate from it. In order to keep the overall time spent similar across

treatments, DMs in Commit still have to “click through” part C.

Distinguishing and debiasing loss drivers. A comparison between Commit/Recommend

and Base allows us to assess the impact of providing DMs with the incentive and time to carefully

think through a strategy after having gained some task experience in part A. Furthermore, our

treatments are designed to distinguish performance loss due to poor strategy from performance

loss due to poor execution. Treatment Commit allows assessing the magnitude of performance

loss due to poor strategy (biased k̄i 6= k̄). Because Commit eliminates poor strategy execution

by design, any performance loss would be entirely due to poor stopping strategies defined in

part B. In contrast, treatment Recommend allows assessing the magnitude of performance loss

due to poor strategy execution, by comparing the observed performance of Recommend with the

counterfactual performance had DMs perfectly executed their own strategy Si from part B. Indeed,

DMs may perform worse than their own strategy Si when they subsequently fail to apply their

stopping thresholds consistently, or when they make incorrect diagnostic decisions conditional on

having stopped the diagnostic process. Treatment Recommend further provides a window into the

di�culties DMs may experience when trying to execute a diagnostic testing strategy consistently,

in an environment that is everything but (consistent).

Implementation. We recruited participants from the regular subject pool associated with the

experimental laboratory at the University of Hamburg, Germany. The experiment was implemented

in SoPHIE (Hendriks 2012) and conducted online (see Appendix EC.1.4 for a screenshot of the user

interface). Upon arrival, subjects entered a virtual wait room and were allocated randomly to one
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of the three treatments. As in Studies 1-3, subjects were compensated based on their performance

over T = 400 time epochs, measured by the average cost per diagnosed item in parts A and C.

8.2. Results

Figure 5 displays the treatment level averages of per-diagnosis total cost. We include the optimal

cost as a benchmark, derived from applying the optimal policy (Figure 1a) to the same sample paths

of random events faced by the DMs. Note that the distribution of sample paths is not perfectly

balanced across the three treatments, and the optimal benchmarks di↵er slightly as a result. To

control for this, we define LossCi = (C̄i+ P̄i)� (C̄(S̄,�i)+ P̄ (S̄,�i)) as the di↵erence between DM

i’s observed total cost in part C and the counterfactual total cost from applying the optimal policy

S̄ on the same sample path �i played by the DM. To formally test the following observations, we

then estimate a simple regression model,

LossCi = ↵0 +↵1Recommendi +↵2Commiti +↵3⌃+↵4LossAi, (4)

which uses treatment Base as the baseline, and includes a set of dummy variables ⌃ to control

for sample path �i. We also include LossAi (defined similar to LossCi) to control for a DM’s

performance in part A.

Does strategy elicitation help? We find that total cost in Commit is significantly lower than

in Base (27.54 vs. 32.14, p < .01). While total cost in Base is about 43% higher than optimal

(32.14 vs. 22.43, p < .01), it is about 25% higher than optimal (27.54 vs. 22.00, p < .01) in Commit.

This captures the value of defining a strategy and consistently applying it. However, total cost

in Recommend is larger than in Commit (31.22 vs. 27.54, p < .01) and not much lower than in

Base (31.22 vs. 32.14, p= 0.69). Given our experimental design, the reason for this non-e↵ect of

Recommend must either be poor strategy definition or poor strategy execution, or both.

Figure 5 Part C (t= 1� 300): Per-diagnosis total cost C̄ + P̄ and performance loss decomposition
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Strategy definition. It is possible that DMs define better strategies in part B of Commit than

in Recommend for a simple incentive reason - while DMs in Commit know that their strategy

from part B will directly a↵ect their earnings from part C, DMs in Recommend know that they

will be able to freely overwrite their own strategy. To directly test this conjecture, and tease apart

performance loss from a poor strategy and performance loss from not implementing the (poor)

strategy consistently, we next calculate the counterfactual performance of the strategies we elicited

in part B. Specifically, we apply each subject i’s strategy Si from part B to the sample path �i. This

yields for treatment Recommend the counterfactual total cost C̄i(Si,�i)+P̄i(Si,�i). For Commit,

by construction of the treatment, the counterfactual performance of Si is the actual performance

of subject i in part C. Based on these calculations, we can precisely measure the loss from poor

strategy as LossC(Si) = (C̄i(Si,�i)+ P̄i(Si,�i))� (C̄(S̄,�i)+ P̄ (S̄,�i)).

We find that the counterfactual total cost of DMs’ strategies Si is substantially lower in

Recommend than in Base (4.51+21.77=26.28 vs. 32.14, p < .01), and also lower in Commit than

in Base (27.54 vs. 32.14, p < .01). However, the counterfactual total cost are higher than optimal in

both cases (Recommend: 26.28 vs. 21.77, p < .01; Commit: 27.54 vs. 22.00, p < .01). Importantly,

the data shows no di↵erence in counterfactual costs between Recommend and Commit (26.28 vs.

27.54, p= .45). We could probably remove the rest of this paragraph. For robustness, we repeat this

exercise and calculate the counterfactual performance of each elicited strategy Si from treatments

Recommend and Commit, by applying each Si to all sample paths used in our experiment. Specif-

ically, we apply each subject i’s strategy Si to each of the �= 1..⌃ sample paths of pre-generated

stochastic outcomes used in part C of the experiment. This yields counterfactual performance

measures for congestion cost C̄s(Si), penalty cost P̄s(Si) and total cost C̄s(Si)+P̄s(Si). We then

calculate the average performance across all sample paths, e.g., C̄(Si) =
1

⌃

P
⌃

�=1
C̄�(Si). Based on

these subject-level means, we observe that treatment-level total cost is substantially higher than

optimal (C̄⇤ + P̄ ⇤ = 22.25) in Recommend (mean: 26.63, median: 24.04) and in Commit (mean:

27.62, median: 25.27). Importantly, the data shows no performance di↵erence between Recommend

and Commit.

Strategy execution - Diagnostic Decisions. Because the strategies Si in Recommend are at

least as good as those defined in Commit, the observed poor overall performance in Recommend

implies that DMs do not execute their strategies without mistakes. One possible source of bias are

incorrect diagnoses after the decision maker has stopped (correctly or not) the diagnostic process.

Indeed, while the design of Commit eliminates judgment errors such as a “faulty” diagnosis without

a test (at p0 = 40%) or a “good” diagnosis after a failed first test (at p1 = 73%), these diagnostic

mistakes contribute 1.30 to the performance loss in Base and 0.85 in Recommend.
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Strategy execution - Stopping Decisions. Performance may also su↵er from stopping deci-

sions that deviate, systematically or randomly, from the DM’s strategy Si. Although performance-

improving deviations are generally possible if the DM had defined a poor strategy to begin with,

we had predicted a performance loss because of variability in decision making. The data from

Recommend allows us to quantify this source of performance loss, by comparing the observed cost

(after rectifying incorrect diagnoses in the data) with the counterfactual cost that would result

from a flawless execution of the DM’s strategy Si. Figure 5 shows that the cost of inconsistent

stopping decisions (Poor execution: 4.09) makes up 43% of the total performance loss of 9.45 (31.22

vs. 21.77), which is nearly as high as the cost of defining suboptimal stopping thresholds (Poor

strategy: 4.51). Finally, the cost of defining suboptimal stopping thresholds is not di↵erent between

Recommend and Commit (4.51 vs. 5.54, p= 0.34).

Task experience and learning. To assess whether DMs learn to improve as they gain experience

with the task, we can simply compare performance in part A (t= 1�100) and part C (t= 1�100)

of treatment Base which has no intervention in part B. We find that DMs do not make better

decision as they gain experience with the task (total cost: 29.70 vs. 28.42, p= .34), but they do

appear to change how they solve the fundamental trade o↵, with congestion cost increasing (5.24

vs. 7.58, p < .01) and diagnostic penalty cost decreasing (24.46 vs. 20.84, p < .01) in part C.

8.3. Discussion

DMs incur significant losses compared to the optimal policy in Study 4 (yielding a 43% increase

in total costs in Base), which is in line with the findings of Studies 1 and 2. The counterfactual

approach we implement in Study 4 reveals that this performance loss is equally due to a poor choice

of strategy (i.e. of the stopping thresholds) and the misapplication of this strategy. Specifically, in

Recommend, poor strategy and poor execution account for about 43% and 48% of the loss, respec-

tively, while the remaining 10% are due to errors in the diagnoses. These findings also highlight

the di�culty of debiasing DMs in our context. In particular, Recommend does not significantly

improve performance compared to Base, which indicates that simply making people think about

their strategy does not help. One reason for this is that DMs are not consistent with their own

strategy as the di↵erence in total costs between Recommend and Commit reveals. This suggests

that forcing DMs to implement their own strategies, even poor ones, can improve performance

significantly (by about 14% in our study).

9. Discussion and Conclusion

We study judgment and decision making in diagnostic systems that are prone to costly congestion.

Our main finding is that DMs incur lower-than-optimal search cost at the expense of lower-than-

optimal diagnostic accuracy in the absence of congestion, but accumulate higher-than-optimal cost
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on both dimensions of the accuracy/congestion trade-o↵ in the presence of congestion. Notably,

this is not merely an artefact of aggregating across DMs who either keep congestion cost low at the

expense of diagnostic cost, or keep diagnostic cost low at the expense of congestion cost. Indeed,

about 50% of DMs in our studies underperform on both accuracy and congestion costs (Figure 6

illustrates this for the Base treatment of Study 4). These e↵ects are robust to environments with

High and Low levels of uncertainty, regardless of DMs’ access to statistical support.

Figure 6 Performance: Theory - Treatment avg., Data - Treatment avg., Data - Individual

9.1. Decision Bias: Task Accumulation and Mistake Accumulation

Our results shed light on how this double-sided performance loss relates to individual level bias.

We observe substantial undertesting at low congestion levels where, due to the relatively small cost

of testing, optimal policy dictates the DM tests until she reaches high levels of diagnostic certainty.

Although generally consistent with early stopping results from the literature on search without

congestion, the underlying mechanisms di↵er.

At low congestion levels, our data reveals that DMs make too many diagnoses without testing,

or on the basis of a very small sample of test results. As a result, we observe higher-than-optimal

diagnostic cost for diagnostic processes that remain at low congestion levels. Sacrificing diagnostic

accuracy helps lower the cost of diagnostic testing in the absence of congestion (Study 3). But

our results show that this trade-o↵ does not translate to diagnostic processes under congestion

(Studies 1, 2 and 4). Instead, we observe an over-/undertesting pattern, relative to the theoretical

benchmark that would warrant stopping on less diagnostic information as congestion increases.

Essentially, DMs are insu�ciently sensitive towards congestion.

The observed (mis)behaviors are costly, but psychologically sensible, given that the task envi-

ronment poses taxing demands on optimal decision making. On the one hand, one key structural
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property of optimal decision making is intuitive: as the cost of testing increases in congestion,

the DM should do less of it, on average. On the other hand, the optimal policy is complicated

and includes rules that may run counter to human intuition and preferences. Optimal decision

making in our setting includes the assessment of how current decisions a↵ect future decisions and

congestion levels, and hence requires the kind of consequential reasoning that DMs are notoriously

bad at (Shafir and Tversky 1992). Because future congestion is hard to evaluate, and hence easy

to pay insu�cient attention to, decision myopia is likely to have a detrimental impact on future

performance. Further, the optimal policy requires the abortion of ongoing test procedures as con-

gestion grows (Rule W), which may run against the DM’s inclination to complete a task that has

already started. And once such “task completion bias” has allowed the system to reach excessive

congestion levels, reducing congestion requires the DM to diagnose without testing (Rule B ) more

than they might be willing to. It is in this sense that diagnostic systems under dynamic task

accumulation are unforgiving to (accumulating) mistakes, much unlike single-shot environments

such as the classic newsvendor (Schweitzer and Cachon 2000, Kremer et al. 2010).

9.2. Implications for System Behavior and Performance.

The e↵ect of these biases on system behavior and performance is substantial, resulting in total

costs that are between 44% to 63% higher than optimal (Tables 2 and 5). Our data also exhibits

more variability in congestion than theoretically predicted (Figure 7).

Figure 7 Variability in system congestion: Theory ( ) vs. Data ( ) from Studies 1 and 2.

(a) High (p0 = 0.4) Show (b) High (p0 = 0.4) Hide (c) Low (p0 = 0.14) Show (d) Low (p0 = 0.14) Hide

While spending a larger-than-predicted amount of time at very low congestion levels, DMs at the

same time spend a larger-than-predicted amount of time at congestion levels that the system would

(almost) never reach under optimal decision making. Related to the high variability in congestion

levels, the data shows that the system is idle significantly more often than predicted. In particular,

the system is 12-13% idle (vs. predicted 5%) in the High conditions, and 24-26% idle (vs. predicted

18%) in the Low conditions. When extrapolated beyond the scope of our model and experiments,
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which neither explicitly penalize or reward the DM for being idle, the observed underutilization

may well warrant management intervention.

9.3. Managerial Implications.

What can management do to debias the behavior we observe, and improve system performance?

Our results suggest directions for debiasing mechanisms. In particular, we systematically vary DMs

access to the correct posteriors on the item in service, and find that the provision of such statistical

information does not significantly a↵ect overall system performance. We also find that providing

DMs with incentives and time to carefully think about their strategy does not improve performance

either, unless one provides a mechanism that helps DMs stick to their own strategy. In view of the

emergence of statistical AI-based systems to help or replace human diagnostic judgments, these

findings further suggest the need to debias stopping decisions rather than the diagnostic decisions.

9.4. Contribution and methodological notes.

Our study contributes to the broader discussion about load-dependent server behavior, by studying

such behavior in a setting that combines the strengths of experimental, empirical, and theoretical

studies. While the standard arguments regarding external validity apply, the controlled design of

our study has three main advantages regarding behavioral mechanisms, their qualification as bias,

and their links to system-level performance.

First, experimental control helps tease apart reasons for why DMs may or may not engage in

task reduction. For example, Batt and Terwiesch (2016) provide anecdotal evidence that doctors

may not cut corners (i.e., order fewer tests) when the system is busy, out of ritual, or for “covering

the bases”. We find the same result, after removing rituals and incentives to cover the bases.

Second, building our experiments tightly around the structure and predictions of a formal deci-

sion making model, we can qualify whether load-dependency is too much, too little, or just right.

In the setting of our study, not only is “task reduction [..] an operational lever that doctors and

managers should at least consider” (Batt and Terwiesch 2016), but we can control precisely how

much they should consider it. Our results show that DMs are insu�ciently sensitive to congestion,

and do not cut corners enough as congestion increases.

Third, while generally taking advantage of experimental control, our study embraces (rather

than control away) the complexity of the systems that we want to study behavior in. While this

complexity introduces empirical challenges reminiscent of field settings, our approach allows us to

directly observe system behavior as opposed to making intricate extrapolations from individual

decisions observed in isolated system snapshots. In particular, we observe directly how decisions
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depend on the dynamics that characterize queuing systems. 4 Indeed, a key contribution of our

study is a test of path-dependency in stopping behavior. DMs in our experiment systematically

violate path-independence, which is a fundamental and compelling property for decision making

in dynamic systems. This could inform future behavioral modeling work as well as econometric

specifications of field studies.
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4 To illustrate the point, imagine a simple alternative (to our) experiment to test congestion-dependent behavior with
two treatments: Low with only 1 item in the system, and High with 9 items. Imagine that DMs in such a design stop
diagnostic processes after 4 (2) tests in Low (High). Although such data aligns with the idea that testing decreases
in congestion, it is unclear what we can infer about the behavior of dynamic systems. Average congestion is unlikely
1+9
2 = 5, and the average number of tests is unlikely 4+2

2 = 3, unless we are willing to assume the system alternates
between the two states evenly. In fact, the experimental design may miss (a) that decisions at High congestion levels
may not matter (much) if the system (almost) never reaches such levels because of decisions at Low congestion levels,
and (b) that diagnostic behavior at High congestion levels may change depending on how the system arrived at that
level.
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