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We study a submodular maximization problem motivated by applications in online retail. A platform

displays a list of products to a user in response to a search query. The user inspects the first k items in the list

for a k chosen at random from a given distribution, and decides whether to purchase an item from that set

based on a choice model. The goal of the platform is to maximize the engagement of the shopper defined as

the probability of purchase. This problem gives rise to a less-studied variation of submodular maximization

in which we are asked to choose an ordering of a set of elements to maximize a linear combination of different

submodular functions.

First, using a reduction to maximizing submodular functions over matroids, we give an optimal (1− 1/e)-

approximation for this problem. We then consider a variant in which the platform cares not only about user

engagement, but also about diversification across various groups of users, that is, guaranteeing a certain

probability of purchase in each group. We characterize the polytope of feasible solutions and give a bi-criteria

((1 − 1/e)2, (1 − 1/e)2)-approximation for this problem by rounding an approximate solution of a linear

programming relaxation. For rounding, we rely on our reduction and the particular rounding techniques for

matroid polytopes. For the special case in which underlying submodular functions are coverage functions

– which is practically relevant in online retail – we propose an alternative LP relaxation and a simpler

randomized rounding for the problem. This approach yields to an optimal bi-criteria (1 − 1/e,1 − 1/e)-

approximation algorithm for the special case of the problem with coverage functions.

Key words : Submodular maximization, Product ranking, Online retail, Combinatorial optimization.

1. Introduction

The advents of online retailing and advertising have created new opportunities for online platforms to

incorporate algorithmic techniques to improve shoppers’ experience and drive user engagement, which

in return can help with the long-term growth of these platforms. One such opportunity is optimizing

the combinatorial configuration of displayed products or ads in response to a search query. This con-
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figuration choice can be about selecting a subset of products with certain properties, e.g., of a certain

size, or about selecting a ranked list of the products, where higher items in the list are presumably

more likely to be clicked by a user. We focus on the case where the seller aims to pick a configuration

that maximizes the probability of click (or purchase).1

As an example of the above problem, consider a seller who presents a subset of products of size k to

shoppers who may purchase one of the items. In this model, parameter k plays the role of the shopping

window’s size. As is common in the literature, shoppers’ choices are assumed to be probabilistic where

shoppers’ choice functions determine the click (or purchase) probabilities given any assortment of prod-

ucts. Under the standard substitution assumption (Kök et al. 2008), the probability of purchase from

any assortment is monotone as a function of this set and has decreasing marginal values. As a result,

picking an assortment of a given size in order to maximize this purchase probability is an instance of

this classic problem: given a monotone submodular function f : 2[n]→R+, find a subset S ⊆ [n] of cardi-

nality k that maximizes f(S). This problem has a wide range of applications in economics, operations,

and combinatorial optimization (Kempe et al. 2003, Krause and Golovin 2014). The seminal result of

Nemhauser et al. (1978) shows the greedy algorithm achieves a (1−1/e)-approximation for the problem.

Moreover, Feige (1998) proves no polynomial-time algorithm can obtain a better approximation ratio

unless P = NP.

Motivated by product ranking applications in online retail – which can range from displaying grocery

items on Amazon to displaying a list of rooms on Airbnb – we study a generalization of the above

problem. In these applications, the displayed products are not only a subset selected by the platform,

but are also ranked, typically in a vertical list. The shopper scrolls down the list – to a point depending

on his or her patience level – and potentially purchases one of those products. Again, the probability

of purchase depends on his or her choice function, which can be different for shoppers with different

patience levels. The goal of the platform is to pick a ranking to maximize the probability of purchase

1 This is in contrast to product-weighted objectives such as revenue which are more common in the revenue management

literature; see for example the line of work on cardinality constrained assortment optimization such as Rusmevichientong

et al. 2010, Gallego and Topaloglu 2014, or Désir et al. 2015).
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given the (joint) distribution over the patience levels and the choice functions. This objective is usually

referred to as user engagement.2 This problem is an instance of the following general problem:

Problem 1 (Sequential Submodular Maximization). Given monotone submodular functions

f1, . . . , fn : 2[n] → R+ and non-negative coefficients λ1, . . . , λn, find a randomized permutation

π= (π1, . . . , πn) over elements in [n] (i.e., a distribution Dπ over permutations) in order to

maximize
Dπ

Eπ∼Dπ

[
n∑
i=1

λifi({π1, . . . , πi})

]
.

A few explanations are in order. First, λi can be thought of as the proportion of users with patience

level i and fi can be thought of as the purchase probability function of users with patience level i.

The manner in which fi’s are derived from the choice functions and justification for the submodularity

assumption are discussed in Section EC.1. Second, the above optimization problem is not over subsets

of elements but over (possibly randomized) sequences. For this reason, we refer to it as a sequential

submodular maximization problem. Third, we allow randomized solutions, but the optimal solution

of the above program is always a deterministic permutation π∗. Finally, note this problem generalizes

monotone submodular maximization subject to a cardinality constraint, which is basically the special

case when λk = 1 for a given k, and λi = 0 for all i 6= k.

The platform may also want to take other considerations into account in order to improve the quality

of product ranking. One such consideration is to produce a diversified portfolio of user engagements.

This diversification can be utilized to avoid ignoring or marginalizing a group of users. More specifically,

in addition to maximizing overall user engagement, the platform aims to achieve group fairness, that is,

guaranteeing a minimum level of engagement for various (possibly overlapping) groups of users. This

problem is formulated as the following:

2 Although our focus is on the probability of purchase, in practice, the platform may take into consideration several other

objectives including the revenue or a combination of revenue and social welfare. We show the extension of one of our results

for the revenue objective in Section EC.4.1 and discuss future directions related to these objectives in Section 5.
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Problem 2 (Sequential Submodular Maximization with Group Constraints). Given monotone

submodular functions f1, . . . , fn : 2[n]→R+ and f l1, . . . , f
l
n : 2[n]→R+ for each group l ∈ [L], non-

negative coefficients λ1, . . . , λn and λl1, . . . , λ
l
n for each group l ∈ [L], and non-negative thresholds

{Tl}l∈[L], find a randomized permutation π= (π1, . . . , πn) over elements in [n] (i.e., a distribution

Dπ over permutations) in order to

maximize
Dπ

Eπ∼Dπ

[
n∑
i=1

λifi({π1, . . . , πi})

]
s.t.

Eπ∼Dπ

[
n∑
i=1

λlif
l
i ({π1, . . . , πi})

]
≥ Tl ∀l ∈ [L].

In this new formulation, f li should be thought of as the purchase probability function of users with

patience level i in group l, and fi as the aggregate purchase probability function of users with patience

level i. Similarly, λli should be thought of as the proportion of users with patience level i in group

l, and λi as the aggregate proportion of users with patience level i. Again, the formal definition of

groups (based on the user types), the manner in which f li and fi are derived form the choice functions,

and how they are mathematically connected to each other are discussed in Section EC.1. Finally, we

emphasize that (i) the optimal solution might be randomized, and (ii) the problem might be infeasible,

but becomes feasible after decreasing some of Tl’s; both of these new features are in contrast to Problem

1. (See the discussion at the beginning of Section 3.)

1.1. Overview of Technical Contributions

For the problem of maximizing a sequential submodular function (Problem 1), we present an optimal

(1− 1/e)-approximation algorithm in Section 2. Our algorithm is based on a reduction to submodular

maximization subject to a (laminar) matroid constraint. The reduction relies on two ideas. The first

is lifting the problem to a larger space where every element is copied n times, and then defining a

certain submodular function and laminar matroid in this larger space that captures maximization over

permutations in the original problem. The second is a post-processing that, given a feasible base of

the laminar matroid returns a permutation by only increasing the objective function. For the reduced
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problem, we use the known approximation algorithm for monotone submodular functions subject to

matroids (Calinescu et al. 2011). This result improves the theoretical results of Ferreira et al. (2021)

by improving the approximation factor of the offline optimization problem studied in this paper, which

is indeed a special case of (unconstrained) sequential submodular maximization.

The approximation algorithm in Calinescu et al. (2011) starts by approximately optimizing a contin-

uous relaxation of the underlying submodular function – known as the multi-linear extension (Vondrák

et al. 2011) – over the matroid polytope. This step is done by running the continuous greedy algorithm,

a variant of Franke-Wolfe algorithm used in convex and non-convex optimization (Frank et al. 1956).

The resulting approximately optimal fractional point can then be rounded to a base of the matroid by

dependent randomized rounding algorithms such as swap rounding (Chekuri et al. 2010).3

Next we switch to the problem of maximizing a sequential submodular function subject to group

constraints (Problem 2). Relaxing the exact satisfaction of the constraints to an approximation is

necessary because satisfying each group constraint on its own is an NP-hard problem. As a result, we

settle for bi-criteria approximation algorithms, which return randomized permutations that (i) obtain

an approximately optimal objective value and (ii) approximately satisfy the group constraints, both in

expectation. We highlight that randomized solutions are in particular well-motivated in our applications

domain (see Section EC.1), as the platform aims to obtain high overall user engagement and satisfy the

group constraints on average over time – which are indeed achievable by the law of large numbers.

To design bi-criteria approximation algorithms for Problem 2, it is tempting to use our previous

reduction, but this time with different submodular functions in the objective and group constraints.

Interestingly, the swap rounding algorithm does not depend on the choice of the underlying submodular

function. So, an approximately optimal and approximately feasible fractional point for the continuous

3 We highlight that while continuous greedy is a first order method and relatively fast, the gradient access requires sampling

the underlying submodular function at enough number of points and can be demanding in terms of sample complexity; stan-

dard tricks in first order optimization, e.g., using stochastic gradient instead of gradient and variance reduction (Mokhtari

et al. 2020), can help with running this algorithm on larger practical instances. This is in particular helpful in our appli-

cation, as one can easily obtain the required stochastic gradients by sampling sets and customer choices over these sets.
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relaxation of Problem 2 can be rounded using swap rounding (modulo a simple post-processing due to

our previous reduction); nevertheless, how to extend the continuous greedy algorithm to handle non-

convex constraints or multiple submodular functions in the continuous relaxation of Problem 2 after

applying our reduction is unclear. To the best of our knowledge, no continuous optimization algorithm

exists in the literature that obtains a fractional approximate point for this relaxation.

To attack the problem in a different way, we employ a three step strategy. First, we change our focus to

the underlying combinatorial structure of the problem, namely, permutations, by relaxing them into the

space of fractional solutions. We identify feasibility constraints for these fractional solutions, so that they

can be interpreted as allocation probabilities of a randomized policy that returns a valid permutation.

Then, we define a linear programming relaxation of the original problem over the polytope of fractional

feasible solutions. This relaxation entails exponentially many variables and constraints. Second, we

provide a polynomial-size linear programming relaxation of the aforementioned linear program. Third,

we show how to round the optimal fractional solution of the latter linear program using swap rounding.

The rest of this section is dedicated to a more detailed discussion of these steps. The reader can directly

refer to Section 3 for an in-depth discussion of our algorithm.

Step (i) - the polytope of implementable fractional solutions: We characterize the polytope of

feasible policies for ranking the elements sequentially in Section 3.1. More specifically, define a feasible

policy for the ranking problem to be a procedure that starts with an empty list and keeps adding

elements one by one at the end of the list until it ends up with a permutation. The choice of the

elements at every step can be deterministic or randomized. Given a randomized permutation generated

by a feasible policy, one can define a collection of probability distributions, one for each i ∈ [n], where

the probability distribution corresponding to i ∈ [n] is the induced distribution over sets of size i by

the first i elements in that permutation. Notably, not all collections of distributions are implementable

by some randomized permutation. Therefore, we first identify necessary and sufficient conditions for

the implementability of such a collection, which gives us the implementable polytope. Unfortunately,

the description of this polytope requires an exponential number of variables and (doubly) exponential

number of constraints.
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Step (ii) - relaxing the polytope and approximating the relaxation: To overcome the above

obstacle, in Section 3.2 we first introduce a simpler relaxation of the aforementioned exponential-sized

linear program that has polynomial number of constraints. In this relaxation, among all the original

constraints of the polytope, we only preserve a quadratic size subset. Roughly speaking, the constraints

of the relaxed program correspond to the vector of probabilities of elements appearing at different

positions being a feasible point in the Birkhoff-von Neumann perfect-matching polytope. We then

approximately solve this relaxation linear program using the ellipsoid method (Khachiyan 1979, Bubeck

2015) by incorporating an approximate separation oracle for its dual LP — which has polynomial

number of variables and exponential number of constraints.

Step (iii) - rounding the fractional approximate solution: For rounding, which is necessary to

obtain a randomized permutation, we consider the so called marginals of the above fractional approx-

imate solution, which correspond to the probabilities of different elements appearing in different posi-

tions. We show that these marginals provide a feasible solution in the base polytope of the laminar

matroid used in our reduction for Problem 1. Hence, we can input these marginals to the swap rounding

randomized algorithm, so as to return a base of the laminar matroid. We finally use the post-processing

step in the reduction to return a (randomized) permutation given a randomized base.

Recall the submodular function in the larger space of size n2 used in the reduction for Problem 1.

To analyze the above algorithm, we consider one such function for each of the objective and group

constraints. Also, we consider a randomized set Rind in this larger space of size n2 where the jth copy

of each element i is independently available in this set with probability equal to the corresponding

marginal. Based on the guarantee of swap rounding (Vondrák et al. 2011, Chekuri et al. 2014) and

that it is oblivious to the choice of the underlying submodular function, the expected value of each

of these submodular functions can only increase at the output randomized base, compared to the

expected value at the randomized set Rind. We then bound the final approximation factor using the

correlation gap for submodular functions (Agrawal et al. 2010), that compares the value of submodular

functions on Rind versus any other randomized set with the same marginals. This approach yields a
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bi-criteria ((1− 1/e)2, (1− 1/e)2)-approximation algorithm for Problem 2 up to an arbitrarily small

additive error.

Due to the existence of a (1−1/e)-approximation algorithm for Problem 1, it is natural to ask whether

a bi-criteria (1 − 1/e,1 − 1/e)-approximation algorithm exists for Problem 2. The main barriers in

the above approach to obtain such an approximation ratio for Problem 2 are (i) obtaining a tractable

relaxation that can be solved with no or small approximation loss and (ii) designing an exact or

approximate oblivious randomized rounding for that relaxation. In Section 4, we show how to overcome

these barriers for a practical special case of the problem. In particular, when the underlying submodular

functions in the objective and constraints are coverage functions – for example, as in the most general

scenario in Ferreira et al. (2021) – we obtain an alternative (1− 1/e)-approximation algorithm for

Problem 1 and an improved bi-criteria (1− 1/e,1− 1/e)-approximation algorithm for Problem 2. Our

algorithms rely on a different LP relaxation under coverage functions. Moreover, the new algorithms

use a simple independent randomized rounding scheme that is oblivious to the choice of submodular

functions and only loses at most 1/e fraction of the value of the sequential submodular functions

appearing in the objective and group constraints.

1.2. Related Work

From a methodological point of view, our work fits within the literature of submodular optimization

(Calinescu et al. 2011, Feige et al. 2011, Chekuri et al. 2014, Buchbinder et al. 2015, Sviridenko et al.

2017, Niazadeh et al. 2018). The main technical challenge of our work is due to selecting permutations

instead of subsets. The same challenge is also present in the line of work on maximizing “sequence

submodular functions” (Tschiatschek et al. 2017, Alaei et al. 2021, Mitrovic et al. 2018), which is

another generalization of submodular maximization to the space of permutations. In this model, a

directed acyclic graph (DAG) defined over the elements and a submodular function defined over the

edges of this DAG are given. Then, the corresponding sequence submodular function assigns a value

to each ranked subset of elements by first identifying the subset of edges of the DAG that are oriented

consistently with this ranked subset, and then inputting this subset of edges to the submodular function.
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Although marginally related, to our knowledge there is no formal mathematical connection between

this line of work and our problem, both in terms of models and algorithms. Also, our paper is related

to the literature on submodular welfare maximization (Vondrák 2008, Mirrokni et al. 2008). This

problem is a special case of submodular maximization with a partition matroid constraint. Although

our approximation algorithm for Problem 1 is also based on a reduction to submodular maximization

with a (laminar) matroid constraint, it needs to return a permutation at the end and ends up being

very different from the reduction used for submodular welfare maximization.

From an application point of view, our work is related to assortment planning, which is the study

of optimally presenting a subset of products to a user. Assortment optimization had an extensively

growing literature over recent decades. We refer the reader to related surveys and books (cf. Kök et al.

2008, Lancaster 1990, Ho and Tang 1998) for a comprehensive study. In particular, various consumer

choice models have been considered in the literature, for example, multinomial logit models (Talluri

and van Ryzin 2004, Liu and van Ryzin 2008, Topaloglu 2013), Markov chain choice models (Blanchet

et al. 2016, Feldman and Topaloglu 2017), ranked-list preference (Honhon et al. 2010, Goyal et al. 2016),

and non-parametric (data-driven) choice models (Farias et al. 2013, Jagabathula and Rusmevichientong

2017). Our work diverges from the classic assortment optimization literature in that we optimize over

the space of permutations rather than subsets.

There is also a rich literature on product ranking optimization in the revenue management litera-

ture (Abeliuk et al. 2016, Gallego et al. 2020, Aouad and Segev 2021, Sumida et al. 2021), which focus on

maximizing revenue (i.e., product-weighted objectives) or a combination of revenue and social welfare,

rather than the total purchase rate. Thus, the property of submodularity is not an “obvious” structure

in these settings and our techniques cannot be directly applied to these problems. See Section EC.4.1

for an extension of our main result to the revenue management setting.

A work closely related to ours is that of Ferreira et al. (2021) which considers the problem of ranking

assortments in the context of online retail, with the objective of maximizing user engagement. This

problem is a special case of sequential submodular optimization, where the submodular functions of
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interest are all coverage functions. Ferreira et al. (2021) provides the first constant approximation

for the model they introduce by showing greedy algorithm is 0.5-approximation, while also showing

it is (1 − 1/e)-approximation under the assumption that click probabilities and patience levels are

independent. They eventually feed greedy to a “learning-then-earning”algorithm under i.i.d. stochastic

offline learning setting to obtain vanishing approximate error bounds.

Our work is also related to display advertising and sponsored search ad auction. The platform’s

decision on which ads to show and in what order, in different pages of a website or within a given page,

is closely related to the information the platform has access to, regarding both the browsing and clicking

behavior of the users. A stream of work, both in marketing (e.g. see Anand and Shachar 2011 and

Hoban and Bucklin 2015) and in optimization (e.g. see, Ghosh et al. 2009, Balseiro et al. 2014, Aouad

and Segev 2021, and Sayedi 2018) study various aspects of this problem. In particular, the trade-off

between engagement, revenue, and ad diversity in online advertising has been a topic of investigation

(e.g. see, Lahaie and Pennock 2007, Radlinski et al. 2008 and Agrawal et al. (2018)). In case of display

advertising, Zhu et al. (2009) provide a machine learning algorithm for jointly maximizing revenue while

providing high quality ads. More recently, Ilvento et al. (2020) study the design of sponsored search ad

auctions with multi-category fairness.

The positive effects of diversification on consumers’ purchasing behavior have been empirically

observed (e.g., see Manchanda et al. 2006 and Li and Kannan 2014). From a modeling perspective,

similar optimization problems involving group constraints defined on assignment problems have been

studied in the context of display advertising by Asadpour et al. (2019). Moreover, such diversification

effects can be utilized to avoid marginalizing a subset of users. Celis et al. (2019), Mehrotra et al. (2019)

discuss this consideration, which is called group fairness, as mentioned before, in details.

Another related work to ours is Niazadeh et al. (2020), which considers the online learning version

of our problem. They show the simple greedy algorithm for sequential submodular maximization (see

Section EC.2) can be converted into an online learning algorithm. This work poses the interesting

question of whether or not our (1−1/e)-approximation algorithm can be turned into an online learning
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algorithm as well. Also important is the result of Derakhshan et al. (2018), who also study product

ranking in online platforms. Their semantics are different from ours in crucial ways; for example, they

consider a substantially different shopper behavior, which makes the two models incomparable. Finally,

the particular choice model we consider in our paper, in which a consumer first picks an attention

window of a particular size and then chooses a product, is indeed an special case of the consider-then-

choose choice model studied in Aouad et al. (2020). This paper diverges from ours as they consider

assortment optimization for maximizing revenue instead of product ranking for maximizing probability

of click, and under a more general setting.

2. Sequential Submodular Maximization for User Engagement

In this section, we study the product ranking for maximizing user engagement. As we discussed in

Section 1, this model can be cast as an instance of Problem 1, so we aim to find an optimal approx-

imation algorithm for this more general problem. As a recap, the well-studied monotone submodular

maximization subject to a cardinality constraint k is in fact a special case of Problem 1, because it can

be reduced to this problem by setting λk = 1 and λi = 0 for i 6= k. Hence, no approximation ratio better

than 1− 1/e is achievable unless P=NP.

Let F (π) denote the sequential submodular function in the objective of Problem 1 for a given per-

mutation π. A natural candidate algorithm for this problem is probably a naive greedy algorithm

that iteratively picks the element with the maximum marginal gain to F (.) as the next element in

the ordering π. See Algorithm 3 in Section EC.2. For some special cases of the sequential submodular

maximization – for example, for a special case of the product ranking problem studied in Ferreira et al.

(2021) – the approximation ratio of the greedy algorithm is known to be 1−1/e. See Remark 2. Unlike

these special cases, the approximation ratio of this algorithm for the general sequential submodular

maximization problem (and also the general product ranking with coverage choice functions, which is

also studied in Ferreira et al. (2021)) turns out to be exactly 1/2. The proof of the approximation ratio

and the tightness example are presented in Section EC.2.

The main result of this section is an optimal (1 − 1/e)-approximation algorithm for Problem 1

(Algorithm 1). We achieve this result through a reduction in Theorem 1, which allows us to study an
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equivalent submodular optimization over matroids. We emphasize that Algorithm 1 is randomized and

our approximation result in Theorem 1 holds in expectation.

Algorithm 1 An Optimal Approximation Algorithm for Maximizing User Engagement

1: Input: n,{fi(·)}i∈[n],{λi}i∈[n]; Output: a permutation π̂.

2: Consider a ground set of elements V , {ij for all i, j ∈ [n]} and a laminar collection A, {Ak}k∈[n]

of subsets of V, where ∀k ∈ [n] : Ak , {ij | i≤ k,1≤ j ≤ n}.

3: Define the laminar matroid M, (V,I), where a set Π⊆V is in I if and only if |Π∩Ak| ≤ k for all

k ∈ [n].

4: Define the monotone submodular function G : 2V→R as

G(Π), λ1f1(SΠ,1) +λ2f2(SΠ,2) + · · ·+λnfn(SΠ,n),

where for every Π⊆V and position i∈ [n], SΠ,i is defined as:

SΠ,i , {j ∈ [n] | ∃ k≤ i such that kj ∈Π}.

5: Find a (randomized) set Π̂∈ I by applying Calinescu et al.’s (1−1/e)-approximation algorithm for

maximizing monotone submodular functions over matroids (Calinescu et al. 2011) to max
Π∈I

G(Π).

6: Post-processing: For each j ∈ [n], let `(j, Π̂) be the smallest i for which ij ∈ Π̂, and n+ 1 if no

such i exists. Sort the elements in increasing order of their `(·, Π̂) values (breaking ties arbitrarily)

and call this permutation π̂.

7: Return π̂.

Theorem 1. Algorithm 1 is an (1− 1/e)-approximation algorithm for the sequential submodular max-

imization problem as defined in Problem 1. No polynomial-time algorithm can obtain a better approxi-

mation ratio unless P=NP.

2.1. Analyzing Algorithm 1

We first recap some preliminary notations and results that are needed to prove Theorem 1. We reduce

the problem to submodular maximization subject to a laminar matroid, for which we know – due to

Calinescu et al. (2011) – an optimal (1− 1/e)-approximation exists.
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(I) The laminar matroid. The underlying laminar matroid M(V,I) is as follows. Ground set V

contains n2 elements ij for all i, j ∈ [n], where each element ij corresponds to placing element j of the

original problem in position i in the permutation. The collection of independent sets I is defined by a

laminar family A and a capacity function c :A→ R+, such that a set Π⊆ V is in I (that is, Π is an

independent set of the laminar matroid) if and only if |Π∩A| ≤ c(A) for each A∈A. Here, the laminar

family A is {A1,A2, . . . ,An}, where Ak = {ij | i≤ k,1≤ j ≤ n}, and c(Ak) is equal to k.

Remark 1. Instead of defining a laminar matroid, one may be tempted to directly optimize g(·) over

the space of subsets that correspond to permutations. More specifically, we can treat each element ij ∈ V

as an edge between position i and item j and then maximize g(·) over the space of perfect matchings.

Importantly, this approach fails to obtain the optimal bound due to the impossibility of a particular

lossless rounding in the perfect matching polytope. See Section EC.3 for details.

(II) The monotone submodular function in the larger space. Given f1(·), f2(·), . . . fn(·), the function

G : 2V→R+ is defined for each Π⊆V as

G(Π), λ1f1(SΠ,1) +λ2f2(SΠ,2) + · · ·+λnfn(SΠ,n),

where SΠ,i , {j ∈ [n] | ∃ k≤ i such that kj ∈Π}.

First, we establish the main properties of function G.

Proposition 1. If {fi}i∈[n] are monotone submodular functions in the ground set [n], then the function

G(Π) =
∑

i∈[n] λifi(S
Π,i) is monotone and submodular in the ground set V.

Proof. To prove this proposition, we need to show that for any two subsets Π,Π′ ⊆ V such that

Π⊆Π′, the following two properties hold:

(i) G(Π)≤G(Π′).

(ii) G(Π∪{ij})−G(Π)≥G(Π′ ∪{ij})−G(Π′) for any ij ∈ V.

To do this, let

G(Π) =
∑
i∈[n]

λifi(S
Π,i) , G(Π′) =

∑
i∈[n]

λifi(S
Π′,i).
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By definition, SΠ,i is indeed the set of all elements in [n] that appear at least once at a position no

later than i in Π. So we must have SΠ,i ⊆ SΠ′,i for all i ∈ [n]. Because each fi is monotone, we have

fi(S
Π,i)≤ fi(SΠ′,i) for i∈ [n]. This proves property (i). To see property (ii), note that for any ij ∈ V,

G(Π∪{ij})−G(Π) = λi
(
fi(S

Π,i ∪{j})− fi(SΠ,i)
)

+ · · ·+λn
(
fn(SΠ,n ∪{j})− fn(SΠ,n)

)
,

G(Π′ ∪{ij})−G(Π′) = λi
(
fi(S

Π′,i ∪{j})− fi(SΠ′,i)
)

+ · · ·+λn
(
fn(SΠ′,n ∪{j})− fn(SΠ′,n)

)
,

Again, because each f` is submodular, we have for each `∈ [i : n]

f`(S
Π,` ∪{j})− f`(SΠ,`)≥ f`(SΠ′,` ∪{j})− f`(SΠ′,`),

which proves the second property. �

(III) The reduction. Recall that F (π) denotes the sequential submodular function in the objective of

Problem 1 for a given permutation π. We now show that the problem of maximizing F (π) over the space

of all permutations reduces (in polynomial time) to optimizing G(Π) over the space V subject to Π be

one of the independent sets of the laminar matroidM defined earlier. We show this by first converting

any feasible solution Π ∈ I, potentially resulting from maximizing or approximately maximizing G(·)

over independent sets ofM, into a set Π̃⊆V corresponding to a permutation π such that G(Π̃)≥G(Π).

Then, we show the linear combination of fi(·)’s over π has the same value as G(Π̃), i.e., F (π) =G(Π̃),

which proves the reduction. The final approximation guarantee is proved by further showing the optimal

objective value of the former problem is no smaller than the latter problem, because any permutation

π can be naturally mapped to a set Π∈ I such that G(Π) = F (π).

Lemma 1. Given a set Π∈ I, we can create a permutation π : [n]→ [n] such that F (π)≥G(Π).

Proof. For each element j ∈ [n], we define `(j,Π) to be the smallest i ∈ [n] such that ij ∈ Π, and

n+ 1 if no such i exists. We then sort the elements in the increasing order of their `(·,Π) values (we

arbitrarily break the ties) to get a permutation π. We claim F (π) ≥ G(Π). To see this, consider an

element j. Because Π∈ I, we must have

n∑
k=1

`(j,Π)∑
i=1

I{ik ∈Π} ≤ `(j,Π)
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where I{ik ∈Π} is the indicator variable that has a value of 1 if ik ∈Π, and 0 otherwise. This inequality

implies that the position at which each element j appears in π, denoted by π−1
j , has to be less than

or equal to `(j,Π). Also, by definition, we have {π1, . . . , πi} = {j ∈ [n] : π−1
j ≤ i} and SΠ,i = {j ∈ [n] :

`(j,Π) ≤ i} for each i ∈ [n]. So we have {π1, . . . , πi} ⊇ SΠ,i, and hence fi ({π1, . . . , πi}) ≥ fi(SΠ,i), for

every i∈ [n]. Therefore, by definition, we must have F (π)≥G(Π). �

Lemma 2. Let Sn be the n-permutation group. Then max
Π∈I

G(Π)≥max
π∈Sn

F (π).

Proof. Suppose π̄ = arg max
π∈Sn

F (π). Let Π̄ = {1π̄−1
1 ,2π̄

−1
2 , . . . , nπ̄

−1
n }, where π̄−1

j is the position of

element j in permutation π̄ (or equivalently, π̄i = j if and only if i= π̄−1
j ). Note that Π̄ ∈ I, as there

are exactly i elements in positions k≤ i in Π̄. Moreover, by definition, G(Π̄) = F (π̄), which finishes the

proof. �

Note that the optimal permutation maximizing F (π) is indeed deterministic. Now we are ready to

prove Theorem 1 by putting together the preceding results.

Proof of Theorem 1. Due to Proposition 1 and Calinescu et al. (2011)’s (1− 1/e)-approximation

algorithm for maximizing a monotone submodular function subject to matroid constraints, we can find

a randomized set Π̂ ∈ I in polynomial time such that E[G(Π̂)] ≥ (1− 1/e)maxΠ∈IG(Π). Combining

this with Lemma 2 shows E[G(Π̂)]≥ (1− 1/e)maxπ∈Sn F (π). Finally, by Lemma 1, we can turn every

realization of the set Π̂ into a permutation π̂ (the same one created by Algorithm 1) such that

E[F (π̂)]≥E[G(Π̂)]≥ (1− 1/e)max
π∈Sn

F (π),

which finishes the proof of the first part of the theorem.

To prove the hardness, as mentioned earlier, note that for the special case where all the functions

fi are coverage functions, this problem reduces (in an approximation-preserving way) to a maximum

coverage problem for which a (1− 1/e)-hardness of approximation is known. Therefore, unless P=NP,

no polynomial time algorithm can achieve a better than (1− 1/e)-approximation. �

Remark 2. As stated in the proof of Theorem 1, no policy can achieve a better than (1 − 1/e)-

approximation even when fi(·)’s are coverage functions. Coverage functions have appeared in important

special cases of our problem studied in Ferreira et al. (2021). They consider the product ranking
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problem with a particular choice function and independent patience levels, which results in a sequential

submodular maximization problem for a special coverage function. For general coverage functions,

we obtain an alternative (1 − 1/e)-approximation using an LP-based approach, which might be of

independent interest. We present this result and its extension to Problem 2 in Section 4.

We end this section by two remarks. First, while the focus of our paper is on maximizing user engage-

ment (or equivalently purchase rate), the literature on assortment planning and revenue management

mostly focuses on maximizing expected revenue. Unfortunately, the submodular structure of the objec-

tive function will not hold anymore if we consider heterogeneous revenues – even for the special case of

assortment planning with cardinality constraints and under random utility models such as MNL (Désir

et al. 2015). However, in Section EC.4.1 we show how to use a simple thresholding algorithm in order to

get an approximation ratio for the revenue optimization problem by using Algorithm 1 as a black box.

Second, we briefly discuss going beyond submodularity assumption in Section EC.4.2 and comment on

the flexibility of our approach in Problem 1 — which is almost using functions f1, . . . , fn in blackbox

fashion as long as they satisfy certain properties.

3. Sequential Submodular Maximization with Group Constraints

Recall the product ranking problem with group fairness constraints: given L user groups, the goal is to

find a (randomized) permutation π over n elements to (i) maximize the overall user engagement, and

(ii) guarantee the engagement of each group l is not below a given threshold Tl. Indeed, this problem

is an instance of Problem 2, where we have L different sequential submodular group constraints, one

for each group, with lower-bounds {Tl}l∈[L].

To understand a fundamental limitation of algorithms in Problem 2 and the usefulness of randomness,

consider its (equivalent) feasibility version where there are L sequential submodular group constraints

that need to be satisfied (in expectation, if the solution is randomized).4 Now consider the following

4 The optimization and the feasibility versions of Problem 2 are equivalent, as by knowing the optimal value we can remove

the objective function and add an extra constraint asking the value of the objective function to be at least the optimal

value. The reduction is complete by searching over the optimal objective value using binary search.
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simple example: suppose we have two products i1 and i2 and two types of users u1 and u2, both with

a deterministic patience equal to one (meaning that they only look at the first item). The user type u1

only clicks on product i1 and u2 only click on product i2, i.e.,

κu1(S) = I{i1 ∈ S}, κu2(S) = I{i2 ∈ S}

Suppose we have a separate group constraint for each type with thresholds T1 = T2 = 0.5. Clearly, these

are sequential submodular group constraints, as the above functions are submodular. Note that there

is no permutation over products {i1, i2} where both types receive non zero engagement. However if we

output (i1, i2) or (i2, i1) uniformly at random, then both types will receive an engagement of 0.5 in

expectation. As this example suggests, no deterministic solution can be approximately feasible in this

problem. Recall that in our definition of Problem 2, we allow randomized solutions and they only need

to be feasible in expectation. In such a setting, to have a framework when designing approximation

algorithms, we focus on solutions that are approximately feasible in expectation, or equivalently we

consider in expectation bi-criteria (approximation) guarantees for the optimization version.

Definition 1 (Bi-criteria Approximation Ratio). Suppose Problem 2 has a feasible solution and

let D∗π denote the optimum permutation distribution for this problem. An algorithm is a bi-criteria

(α,β)-approximation if it finds a permutation distribution D̂π where

Eπ∼D̂π

[
n∑
i=1

λifi({π1, π2, . . . , πi})

]
≥ α ·Eπ∼D∗π

[
n∑
i=1

λifi({π1, π2, . . . , πi})

]

Eπ∼D̂π

[
n∑
i=1

λlif
l
i ({π1, π2, . . . , πi})

]
≥ β ·Tl ∀l ∈ [L]

The rest of this section is organized as follows. In Section 3.1, we characterize the set of feasible (ran-

domized) policies for ranking elements as a polytope with exponentially many variables and constraints.

By using a relaxation of this polytope in Section 3.2, we give a bi-criteria ((1− 1/e)2, (1− 1/e)2)-

approximation algorithm for Problem 2.

3.1. Polytope of Feasible Ranking Policies

Define a feasible policy for ranking of the elements to be a procedure that starts with an empty list and

keeps adding elements one by one to the end of the list until it ends up with a permutation. The choice
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of the elements at every step can be deterministic or randomized, and it can be adaptive or oblivious.

Note that any such policy can be identified as a distribution over the space of permutations.

For every i ∈ [n] and S ⊆ [n] with |S|= i, let xi,S represent the probability that the set of the first i

elements in the permutation is S. We say an assignment of values to ~x is implementable if a feasible

policy exists such that for every set S ⊆ [n] of size i, the probability that it places the elements in set

S in the first i positions is exactly xi,S. We next identify the necessary and sufficient conditions for

implementability of ~x in Proposition 2. See Section 3.1.1 for the proof of this proposition.

Proposition 2. The vector ~x is implementable by a feasible policy, if and only if

(i) For every i∈ [n] and S ⊆ [n] with |S|= i, we have xi,S ≥ 0.

(ii) For each 1≤ i≤ n, we have
∑

S⊆[n],|S|=i xi,S = 1.

(iii) For any collection C of subsets of [n] with size 1≤ i < n, we have:

∑
S∈C

xi,S ≤
∑

T∈N(C)

xi+1,T ,

where N(C) is the collection of subsets T ⊆ [n] of size i+ 1 such that there exists set S ∈ C (with

size i) so that S ⊂ T .

Given Proposition 2, we can define the polytope of feasible policies, denoted by P, as follows:

∑
S⊆[n],|S|=i

xi,S = 1, ∀i∈ [n] (P)

∑
S∈N(C)

xi,S −
∑
S∈C

xi−1,S ≥ 0, ∀i∈ [n],C ∈Ci

xi,S ≥ 0, x0,{∅} = 0, ∀i∈ [n], S ⊆ [n], |S|= i

where Ci is the power set of all the subsets of [n] with size i. Note that this polytope is characterized

by exponentially many variables and (doubly) exponentially many constraints.
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3.1.1. More on Implementability and the Proof of Proposition 2 We first show the easy

direction of Proposition 2, that is, if the values of the assignment {xi,S}S⊆[n] correspond to probabilities

derived from a feasible ranking policy, then it satisfies the conditions in Proposition 2. Condition (i)

is satisfied trivially, as probabilities are non-negative. Moreover, every policy by definition fills all the

positions with some element, so a set S of size exactly i exists that is placed in the first i positions. Thus,

it satisfies condition (ii). For condition (iii), consider a collection C of subsets of [n] with size i. Suppose

π is the randomized permutation of the policy. Note N(C) = {S ∪{j} : S ∈ C, j /∈ S}. Therefore,

∑
S∈C

xi,S = P [{π1, . . . , πi} ∈ C]≤ P [{π1, . . . , πi, πi+1} ∈N(C)] =
∑

T∈N(C)

xi+1,T .

For the opposite direction, suppose ~x satisfies conditions (i), (ii), and (iii). We show how to con-

struct a feasible policy with assignment probabilities equal to ~x. To do so, observe that we can check

implementability of ~x inductively, i.e., “layer by layer.” Suppose there is a feasible policy for ranking

the first i elements, such that for every S ⊆ [n] with cardinality j ≤ i, xj,S be the probability that the

set of first j elements is S. We want to check if this policy can be extended in a consistent way to

i+ 1, i.e., whether adding an additional element at position i+ 1 is possible in a way that for every

S ⊆ [n] with cardinality i+ 1, xi+1,S be the probability that the set of the first i+ 1 elements is S.

We call this property implementability of layer i+ 1. From the definition, we clearly see that if ~x is

implementable, all the layers 1≤ i≤ n are implementable as well. In addition, if all the layers 1≤ i≤ n

are implementable, then ~x is implementable.

In order to check the implementability of a layer, we use a max-flow argument. Construct a flow

network G, consisting of a node vi,S for each subset S ⊆ [n], |S|= i and a node vi+1,S for each subset

S ⊆ [n], |S|= i+1. For any two subsets S ⊂ T of size i and i+1, respectively, an edge from vi,S to vi+1,T

with capacity 1 exists. We also have a source s and a sink t. The source is connected to each node vi,S

with capacity xi,S and each node vi+1,T is connected to the sink with capacity xi+1,T . Note the sum

of the capacity of edges exiting the source and entering the sink are both 1 due to condition (i). See

Figure 1 for more details. We now have the following equivalent characterization of implementability

of a layer. Proof is postponed to Section EC.5.
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Figure 1 Network flow G for layer i+ 1 (proof of Proposition 2). Capacity of an edge from source s to node S with

|S|= i is xi,S , from node T with |T |= i+ 1 to sink t is xi+1,T , and all inner-layer capacities are equal to 1.

Lemma 3. The layer i+ 1 is implementable if and only if a flow of 1 from source node s to sink node

t exists in the flow network G (Figure 1).

Finally, given conditions (i) and (ii), we show a flow of 1 from s to t at each layer exists if and only

if condition (iii) holds. Therefore, because of Lemma 3, all the layers are implementable. This last fact

holds because of the generalized Hall’s matching theorem for network flows (Hall 1935), or equivalent

versions of the max-flow min-cut theorem (Ford and Fulkerson 1958). To see a simple standalone proof,

in order to be able to send one unit of flow from s to t in G, all the cut sets separating s from t should

have a value of at least 1. Any cut set that crosses an edge from layer i to i+ 1 has value at least 1.

Moreover, cut sets separating s from the rest of the graph, or separating t from the rest of the graph

have values equal to 1 because of condition (ii). Now consider a cut set separating {s}∪C ∪N(C) from

the rest of the nodes in G, where C is a collection of subsets of size i. The value of such a cut set, i.e.,

total capacity of crossed forward edges (minus backward edges) is equal to

∑
S:|S|=i,S /∈C

xi,S +
∑

T∈N(C)

xi,T = 1−
∑
S∈C

xi,S +
∑

T∈N(C)

xi,T ,

where the last equality holds because of condition (ii). Therefore, if condition (iii) holds, the value of

such a cut set is at least 1, as desired.
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Given that all layers are implementable, we construct our final policy as follows. We start with an

empty sequence, and at each step, we add a new element at the end of the current sequence. If at step

i the set of added elements so far is S, at step i+ 1, we select element p̂ ∈ [n] \ S independently from

probability distribution [ψ(S,S ∪{p})/xi,S]p∈[n]\S, and add it to the end of the sequence. Here, ψ(S,S∪

{p}) is the flow going from vi,S to vi+1,S∪{p} in the graph we constructed to check implementability of

layer i+ 1. Due to implementability of all layers from 1 to n− 1, this randomized policy implements

the assignment ~x, as desired.

3.2. The Bi-criteria Approximately Optimal Policy

Recall the objective function of Problem 2. Given implementable ~x, the objective value of the policy

that implements ~x can be written as

∑
i∈[n]

∑
S⊆[n],|S|=i

λixi,Sfi(S). (1)

Now, given the polytope of feasible policies P, the LP to find a randomized policy maximizing (1) while

respecting the group constraints (i.e., keeping the generated user engagement above some threshold Tl

for each group l ∈ [L]) is

max
∑
i∈[n]

∑
S⊆[n],|S|=i

λixi,Sfi(S) s.t.

∑
i∈[n]

∑
S⊆[n],|S|=i

λlixi,Sf
l
i (S)≥ Tl, ∀l ∈ [L]

[xi,S]i∈[n],S∈Ci
∈P.

Unfortunately, the above linear program has exponentially many variables and (doubly) exponentially

many constraints, which renders finding an exact solution through this LP computationally difficult.

We are also not aware of any techniques to obtain an approximately optimal solution of this linear

program directly. To circumvent these issues, we try to find a relaxation for this program that has

exponentially many variables, but polynomially many constraints. We do so by dropping many of these

constraints and only keeping polynomially many of them. We then consider the dual of the relaxed

program that has polynomially many variables and exponentially many constraints. Finally, we find



Asadpour et al.: Sequential Submodular Maximization and Applications to Ranking an Assortment of Products
22

an approximately optimal separation oracle for the dual, and by employing the ellipsoid method, we

obtain an approximately optimal solution for the primal.

More formally, define Ci,j , {S ⊆ [n] | |S|= i, j ∈ S}. Now, we relax the program by only considering

constraints C ∈Ci that are among {Ci,1, . . . ,Ci,n}. Define yi,j ,
∑
|S|=i,S3j xi,S−

∑
|S|=i−1,S3j xi−1,S. Note

that intuitively, yi,j corresponds to the marginal probability of element j appears in position i according

to ~x. Based on this definition of yi,j, these constraints correspond to yi,j ≥ 0,∀i, j ∈ [n]. In doing so, we

obtain the following relaxation of the previous linear program, denoted by Primal:

max
∑
i∈[n]

∑
S⊆[n],|S|=i

λixi,Sfi(S) (Primal)

s.t. yi,j =
∑

|S|=i,S3j

xi,S −
∑

|S|=i−1,S3j

xi−1,S, ∀i, j ∈ [n]

∑
i∈[n]

∑
S⊆[n],|S|=i

λlixi,Sf
l
i (S)≥ Tl, ∀l ∈ [L]

∑
S⊆[n],|S|=i

xi,S = 1, ∀i∈ [n]

yi,j ≥ 0, ∀i, j ∈ [n]

xi,S ≥ 0, x0,{∅} = 0. ∀i∈ [n], S ⊆ [n], |S|= i

Note every implementable policy ~x is a feasible solution in the above LP relaxation: for such a policy,

yi,j is equal to the probability that element j is placed in position i. Therefore, the optimal objective

value of Primal is an upper-bound on the objective value of the optimal permutation distribution in

Problem 2, i.e., the overall user engagement of the optimal implementable policy satisfying the group

constraints.5 We later use this connection when designing our rounding algorithm.

In the rest of this section, we present a randomized algorithm for finding a permutation of elements

that in expectation achieves a constant fraction of Tl as its user engagement for each group l ∈L, and

a constant fraction of the optimal objective value of Primal as its overall user engagement.

5 In Section EC.6, we show by a computer-aided example that the objective value of Primal might in fact be strictly larger

than the user engagement of the optimal implementable policy.
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3.3. Detailed Steps of the Algorithm

The first step in our proposed algorithm is to find an approximately optimal fractional solution to the

relaxation linear program Primal. This linear program has exponentially many variables, but polyno-

mially many constraints. To obtain an approximately optimal solution, we start by looking at its dual

linear program, denoted by Dual:

min
∑
i∈[n]

αi−
∑
l∈[L]

γlTl (Dual)

s.t. αi +
∑
j∈S

βi+1,j −
∑
j∈S

βi,j ≥ λifi(S) +
∑
l∈[L]

γlλ
l
if
l
i (S), ∀i∈ [n− 1], S ⊆ [n], |S|= i (2)

αn−
∑
j∈[n]

βn,j ≥ λnfn([n]) +
∑
l∈[L]

γlλ
l
nf

l
n([n]),

βi,j ≥ 0 , γl ≥ 0. ∀i, j ∈ [n] , ∀l ∈ [L]

Note that in the above linear program, dual variables {βi,j} correspond to the first set of constraints in

Primal, {γl} correspond to the second set of constraints in Primal, and {αi} correspond to the third

set of constraints in Primal. Note also that this dual LP has exponentially many constraints (thanks to

its first set of constraints), but polynomially many variables. While the exact separation problem in this

LP is likely to be computationally hard,6 we show this LP is amenable to an approximate separation

oracle. By carefully using this approximate separation oracle, we show the following proposition. Before

stating proposition, we make a technical assumption regarding the boundedness of our submodular

functions, to be able to handle small additive errors required in the separation oracle. 7

Assumption 1. Submodular functions {fi, f li}i∈[n],l∈[L] are non-negative and bounded. Without loss of

generality, we assume their range is [0,1].

Proposition 3. Fix L, n, {fi(·)}i∈[n], {λi}i∈[n],{f li (.)}i∈[n],l∈[L],{λli}i∈[n],l∈[L], {Tl}l∈[L], and suppose

Problem 2 is feasible. For any ε > 0, there is an algorithm with polynomial running time in 1
ε
, n and

6 In fact, it is NP-hard for general monotone submodular functions {f li}, as it generalizes the problem of maximizing the

sum of negative linear functions and monotone submodular functions; see Sviridenko et al. (2017) for details.

7 This assumption is automatically satisfied when our submodular functions correspond to the purchase probability function

of any given consumer choice model.
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L (i.e., size of the problem instance) that generates an approximately optimal bi-criteria solution to

Primal with additive error O(ε), that is, a fractional solution (x̂, ŷ) satisfying the following properties:

1. This solution attains an objective value at least (1− 1/e) fraction of the optimal objective value of

the linear program Primal minus O(ε),

2. This solution satisfies the third constraint approximately; that is, for each group l ∈ [L] we have

∑
i∈[n]

∑
S⊆[n],|S|=i

λlix̂i,Sf
l
i (S)≥ (1− 1/e)Tl,

and satisfies all the other constraints exactly.

The proof of Proposition 3 – deferred to Section EC.7 – is rather technical and based on constructing

an algorithm; this proof relies on (i) using an approximation algorithm for a specific submodular maxi-

mization problem to play the role of the approximate separation oracle, (ii) then using this approximate

separation oracle in the ellipsoid method (or any other cutting-plane method for solving LPs that can

be endowed with an approximate separation oracle; see Bubeck (2015), Chapter 2 for details) to solve

a modified version of dual linear program Dual, and finally (iii) showing how from this solution one can

obtain an approximately optimal solution for Primal in polynomial-time.

Given access to the algorithm stated in Proposition 3, we are now ready to describe our main bi-

criteria approximation algorithm (Algorithm 2).

Theorem 2. Fix L,n,{fi(·)}i∈[n],{λi}i∈[n],{f li (.)}i∈[n],l∈[L],{λli}i∈[n],l∈[L], {Tl}l∈[L], and suppose Prob-

lem 2 has a feasible solution. Then, given ε > 0, Algorithm 2 finds a permutation π̂ with polynomial

ruuning time in 1
ε
, n, and L (i.e., size of the problem instance) such that

1. The overall user engagement generated by π is within factor (1− 1/e)2 of the objective value of

Primal minus O (ε); hence, it is at least (1 − 1/e)2 fraction (up to additive O (ε) error) of the

overall user engagement of the optimal randomized policy satisfying the lower bounds Tl on user

engagement for each group.

2. For each group l ∈ [L], the user engagement generated by π is at least (1− 1/e)2Tl.
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Algorithm 2 Approximation Algorithm for Maximizing Engagement Subject to Group Constraints

1: Input: L,n,{fi(·), λi}i∈[n],{f li (.), λli}i∈[n],l∈[L],{Tl}l∈[L], ε; Output: a permutation π̂.

2: Apply Proposition 3 with ε > 0 to return an approximate bi-criteria solution (x̂, ŷ) to Primal.

3: Consider a ground set of elements V , {ij for all i, j ∈ [n]} and a laminar collection A, {Ak}k∈[n]

of subsets of V, where ∀k ∈ [n] : Ak , {ij | i≤ k,1≤ j ≤ n}.

4: Define the laminar matroidM, (V,I), where Π⊆V is in I if and only if |Π∩Ak| ≤ k for all k ∈ [n].

5: Run the swap randomized rounding algorithm (Chekuri et al. 2010) for the laminar matroid M,

given ŷ ∈ [0,1]n
2

as the input. Let Π̂∈ I be the independent set that the algorithm returns.

6: Post-processing: For each j ∈ [n], let `(j, Π̂) be the smallest i for which ij ∈ Π̂, and n+ 1 if no

such i exists. Sort the elements in increasing order of their `(·, Π̂) values (breaking ties arbitrarily)

and call this permutation π̂.

7: Return π̂.

Therefore, it is a bi-criteria ((1− 1/e)2, (1− 1/e)2)-approximation algorithm (up to an additive error

in the order of O(ε)), where (1− 1/e)2 ≈ 0.4.

Remark 3. We emphasize that Algorithm 2 is randomized and our bi-criteria approximation result in

Theorem 2 holds in expectation, both for the objective function and the group constraints.

It is important to mention that Proposition 3 relies on an algorithm for approximately maximizing

the sum of a monotone submodular function and a negative linear function from Sviridenko et al.

(2017) as the separation oracle. As this algorithm is relying on continuous optimization methods, there

is always an small (and negligible) additive error in its approximate performance guarantee.

Remark 4. The algorithm in Sviridenko et al. (2017) suffers from a significant drawback, and that

is the need for guessing the contribution of the linear component of the objective to the optimal

solution. As explained in the follow up work Feldman (2021), this guessing can be problematic both as

a computationally demanding pre-processing step, and also during the run of the modified version of

continuous greedy algorithm in Sviridenko et al. (2017). To circumvent these issues, Feldman (2021)

proposes a clever modification to the continuous greedy algorithm that does not need the guessing step,
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and obtains exactly the same approximation guarantee as in Sviridenko et al. (2017). To avoid the

computational issues with guessing, we can instead use this algorithm in Proposition 3.

3.4. Analyzing Algorithm 2

As for the running time, all steps of Algorithm 2 are polynomial-time, and the algorithm used in

Proposition 3 has a polynomial running time in 1
ε
, n, and L – hence the desired running time. Now let

(x̂, ŷ) be the solution obtained by Proposition 3 and let T̂l be the user engagement generated by this

solution for each group l ∈ [L]. Suppose there exists a policy that would show a permutation π to users

randomly, such that

P[{π1, . . . , πi}= S] = x̂i,S ∀i∈ [n], S ⊆ [n], |S|= i

Such a policy, if exists, would achieve (1−1/e) fraction of the optimal objective of Primal in expectation

and would satisfy the lower-bound on the engagement of each group by a factor of (1− 1/e). However,

the vector ~̂x= {x̂i,S} is not necessarily a feasible point in the polytope P of feasible policies (as it is

only a feasible point in a relaxation of P); therefore, the above policy might not exist.

In the rest of our analysis we show how to devise a feasible policy that achieves an approximation to

~̂x. As in the proof of Theorem 1, we first define the laminar matroid M= (V,I) such that

V = {ij for all i, j ∈ [n]} , ∀k ∈ [n] : Ak = {ij | i≤ k,1≤ j ≤ n}

and a set Π⊆ V is in I if and only if Π∩Ak ≤ k for all k ∈ [n]. Similarly, given submodular functions

f1, f2, . . . , fn in the objective of Problem 2, the function G : 2V→R is defined for each Π⊆V as

G(Π), λ1f1(SΠ,1) +λ2f2(SΠ,2) + · · ·+λnfn(SΠ,n),

where for every Π⊆V and position i∈ [n], SΠ,i is defined as:

SΠ,i , {j ∈ [n] | ∃ k≤ i such that kj ∈Π}.

Moreover, for each l ∈ [L] and submodular functions f l1, f
l
2, . . . , f

l
n, the function Gl : 2V → R is defined

for each Π⊆V as

Gl(Π), λl1f
l
1(SΠ,1) +λl2f

l
2(SΠ,2) + · · ·+λlnf

l
n(SΠ,n).
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Note that functions G and {Gl}l∈[L] are all non-negative monotone submodular functions from subsets

of V to R, thanks to Proposition 1. To move forward, we also need to use the following result due to

Agrawal et al. (2010), which bounds the correlation gap of monotone submodular functions.

Proposition 4 (Agrawal et al. 2010). Consider a monotone submodular function f and a distri-

bution D over subsets S ⊆ [n] such that PS∼D[i∈ S] = pi. We have

ES∼Dind(~p)[f(S)]

ES∼D[f(S)]
≥ 1− 1/e

where Dind(~p) is the independent distribution with marginals ~y, for which the probability of drawing a

subset S ⊆ [n] is Π
i∈S
pi Π
i/∈S

(1− pi).

Now suppose OPT denotes the optimal objective value of Primal. Inspired by Proposition 4, pick

a randomized subset Πind(ŷ)⊆V such that each element ij ∈ V appears in Πind(ŷ) independently with

probability ŷi,j. Because each variable ŷi,j corresponds to the marginal probability of element j appear-

ing in position i under the assignment {x̂i,S}, due to Proposition 4, we have:

E
[
G
(
Πind(ŷ)

)]
≥ (1− 1/e)

∑
i∈[n]

∑
S⊆[n],|S|=i

λix̂i,Sfi(S)≥ (1− 1/e)2OPT−O(ε) , (3)

where the last inequality holds because of Proposition 3. Also, for each l ∈ [L] we have:

E
[
Gl
(
Πind(ŷ)

)]
≥ (1− 1/e)

∑
i∈[n]

∑
S⊆[n],|S|=i

λlix̂i,Sf
l
i (S) = (1− 1/e)T̂l ≥ (1− 1/e)2Tl , (4)

where again the last inequality holds because of Proposition 3. Next, we claim for the randomized

permutation π returned by Algorithm 2, the expected overall user engagement generated by π is at

least E [G (Πind(ŷ))] and the expected user engagement generated by π for each group l ∈ [L] is at least

E [Gl (Πind(ŷ))]. This claim, together with (3) and (4), finishes the proof of Theorem 2.

To see why the above claim holds, we need to present two lemmas.

Lemma 4. The point {ŷi,j} ∈ [0,1]n
2

is in the matroid polytope, defined as the convex hull of all the

independents sets I, corresponding to the laminar matroid M= (V,I) in Algorithm 2.
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Proof. To prove this, we must show
∑

i∈[k]

∑
j∈[n] ŷi,j ≤ k, ∀k ∈ [n]. To see why this holds, note the

solution {ŷi,j} satisfies the first two constraints of Primal, and therefore we must have

∑
i∈[k]

∑
j∈[n]

ŷi,j ≤
∑
i∈[k]

∑
j∈[n]

 ∑
|S|=i,S3j

x̂i,S −
∑

|S|=i−1,S3j

x̂i−1,S


=
∑
j∈[n]

∑
i∈[k]

 ∑
|S|=i,S3j

x̂i,S −
∑

|S|=i−1,S3j

x̂i−1,S


=
∑
j∈[n]

 ∑
|S|=k,S3j

x̂i,S

≤ k ∑
|S|=k

x̂i,S ≤ k.

Therefore, {ŷi,j}i,j∈[n] satisfy the constraints of the matroid polytope of the laminar matroid M. �

The next lemma is the main guarantee of the swap rounding algorithm introduced in Chekuri et al.

(2010), which is a fundamental property useful for the maximization of monotone submodular functions

over matroids.

Lemma 5 (Chekuri et al. (2010)). Consider a monotone submodular function f : 2V → R+, and a

matroid M= (V,I). Suppose ~y ∈ [0,1]V is a feasible point in the matroid polytope PI of M, and Ŝ ∈ I

is the output of the swap rounding algorithm with the input ~y. Then:

E
[
f(Ŝ)

]
≥ES∼Dind(~y) [f(S)] ,

where Dind(~y) is the independent distribution with marginals ~y, for which the probability of drawing a

subset S ⊆ V is Π
i∈S
yi Π
i/∈S

(1− yi).

Given Lemma 4 and Lemma 5, we have E
[
G(Π̂)

]
≥E [G (Πind(ŷ))]. Moreover, for each l ∈ [L] we have

E
[
Gl(Π̂)

]
≥ E [Gl (Πind(ŷ))], where Π̂ ∈ I is an independent set (in fact base) of the laminar matroid

returned by the swap rounding algorithm in Algorithm 2. The proof of our claim is then immediate as

the post-processing step, i.e., returning a permutation π over [n] given a base Π̂ of the laminar matroid

M, can only increase the value of sequential submodular functions appearing in the objective and in

the group constraints of Problem 2 – thanks to Lemma 1. �
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4. An Improved Approximation for Coverage Choice Model

In Section 3, we studied a rounding algorithm that achieved a bi-criteria ((1− 1/e)2, (1− 1/e)2)-

approximation for Problem 2. In this section, we focus on a special case of that problem where the

submodular functions of interest are the coverage function. For the practical relevance of this problem,

we refer the reader to Ferreira et al. (2021). We provide a different LP formulation for this problem

and present an oblivious rounding algorithm for this LP, that is, a rounding algorithm that only works

with the values of the LP solution and is oblivious to the coverage functions we work with (and sub-

sequently, oblivious to the LP coefficients). This allows us to improve over the result of Problem 2

for coverage choice models and get a (1− 1/e,1− 1/e)-approximate solution. It also provides a simple

(1− 1/e)-approximation algorithm for Problem 1 under coverage choice models.

4.1. Model and the LP relaxation

Consider a special case of the product ranking problem described in Section EC.1, where each user

of type u ∈ U has a patience level θu and an interest set Pu ⊆ [n]. For simplicity of notations, we

further assume U is finite. If the products are shown in an order imposed by some permutation π, the

consideration set of a user of type u is the set of the first θu items of the permutation. A user of type u

is said to be engaged with permutation π if and only if Pu∩{π1, . . . , πθu} 6= ∅. In other words, a user of

type u will click on a product if and only if there exists at least one item in their interest set Pu that

appears in the first θu positions; that is,

κu({π1, π2, . . . , πθu}) = I{Pu ∩{π1, . . . , πθu} 6= ∅}

Note the function κu(·) above is monotone and submodular; therefore, any convex combination of this

function is also monotone and submodular. Finally, let qu denote the proportion of users of type u and

let qlu denote the proportion of users of type u among users in group l.

We start by the IP formulation of the problem. For a given permutation π, let x ∈ {0,1}n×n be the

indicator matrix where xi,j corresponds to product j appearing in position i. Note a user of type u will

engage with the permutation corresponding to the indicator matrix x if and only if
∑θu

i=1

∑
j∈Pu xi,j ≥ 1.
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This allows us to introduce another vector y ∈ {0,1}m, where yu ∈ {0,1} is indicating whether a user

with type u is engaged with the ranking. Hence, a constraint
∑θu

i=1

∑
j∈Pu xi,j ≥ yu is established.

Finally, to achieve the linear programming formulation of the model, we relax all the indicator

variables to assume values in [0,1], thus leading to the following LP for Problem 2. Note the LP

formulation is the same for Problem 1, but with no group constraints.

max
∑
u∈U

quyu (Coverage-Choice-Model-LP)

s.t.
∑
u∈U

qluyu ≥ Tl, ∀l ∈ [L]

θu∑
i=1

∑
j∈Pu

xi,j ≥ yu, ∀u∈ U

∑
i∈[n]

xi,j = 1, ∀j ∈ [n]

∑
j∈[n]

xi,j = 1, ∀i∈ [n]

0≤ yu ≤ 1, 0≤ xi,j ≤ 1 ∀u∈ U ,∀i, j ∈ [n]

As we discussed, the matrix x imposed by any given permutation π and the vector y corresponding

to the users attracted by π form a feasible (integral) solution of Coverage-Choice-Model-LP. This

includes the optimal permutation π∗, too. Therefore, the optimal value of this LP is an upper bound

on the maximum user engagement achievable with respect to the group fairness constraints.

4.2. Rounding the LP Solution

At the heart of our algorithm for an improved bi-criteria approximation for Problem 2 under coverage

choice models lies a randomized rounding of the optimal solution of Coverage-Choice-Model-LP. Our

rounding guarantees that no combination of patience level θu and interest set Pu is far worse than how

they were in the fractional solution. This is formalized in the following proposition.

Proposition 5. For any given feasible solution (x, y) of Coverage-Choice-Model-LP, it is possi-

ble to construct a randomized integral solution (x̃, ỹ) such that all but the first set of constraints of

Coverage-Choice-Model-LP are satisfied, and moreover, E[ỹu]≥ (1−1/e)yu, for every u∈ U . This can

be done in polynomial time.
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Note any integral solution corresponds to a permutation of products. Therefore, the following theorem

is an immediate corollary of Proposition 5 if we consider the optimal LP solution (x∗, y∗). Note also

that the consideration of Theorem 1 regarding the randomness of our result still holds.

Theorem 3. The randomized rounding of Proposition 5 performed over the optimal solution (x∗, y∗)

of Coverage-Choice-Model-LP provides a (1 − 1/e)-approximation for Problem 1 and a bi-criteria

(1− 1/e,1− 1/e)-approximation for Problem 2 under coverage choice models.

In order to prove Proposition 5, we will provide a (dependent) randomized rounding method that

achieves (1− 1/e) approximation in expectation first. A standard transformation from Las Vegas to

Monte Carlo algorithms can then be used to achieve an actual (1− 1/e) approximation. We defer the

proof of Proposition 5 and the details on the randomized rounding in this proof to Section EC.8.

5. Conclusion and Open Problems

In this paper, we introduced the class of sequential submodular maximization problems and studied two

applications of such problems in the context of online retailing, namely, the problem of maximizing user

engagement with and without group constraints. For maximizing user engagement, we presented an

optimal (1−1/e)-approximation algorithm. For the same problem with group constraints, we provided

a bi-criteria ((1− 1/e)2, (1− 1/e)2)-approximation algorithm. For the special case of coverage functions,

we provided an optimal bi-criteria ((1− 1/e), (1− 1/e))-approximation algorithm.

Future Directions. Our main motivating application in this paper was online retail. However, identi-

fying other applications for our sequential submodular framework would be interesting. In particular, a

possible application of Problem 2 is in rank aggregation given a set of options. In a candidate model for

this problem, one can consider different subgroups of the society, where each subgroup is a mixture of n

different types. Type i only has preferences over the first i options. We assume their valuation function

over the first i options is monotone with decreasing marginal values (which is a meaningful assumption

in the context of valuation functions). Now the question is how to pick a universal ranking, so that all

subgroups’ social welfare are maximized at the same time (up to approximations). This simple model

is clearly an instance of Problem 2. Note that rank aggregation also has applies to the setting when a
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search engine combines rankings from different sources (Dwork et al. 2001). We pose generalizing and

studying the applicability of this model, as well as finding other applications for sequential submodular

maximization, as future directions.

In the context of online retail, we focused on maximizing the probability of purchase. This objective

function is reasonable in practice where platforms tend to optimize for long-term revenue and have a

strong incentive to create customer loyalty. At the same time, one can consider other objective functions

such as maximizing customer surplus (defined as the difference between the user’s value for the item

and the price) or the total revenue (defined as the expected price paid to the platform). These questions

introduce new challenges, mostly due to the fact that these functions are not submodular, as opposed to

the probability of purchase function, which is submodular for choice models with substitution property.

We leave the question of optimizing these objectives and understanding their trade-offs, similar to our

results in Section EC.4.1, as open questions.

Another natural open question arising here would be to improve the approximation ratio for

the bi-criteria approximation algorithms of Section 3.2. This improvement may be achievable via a

more nuanced combination of the modification of our exponential-size LP with contention resolutions

schemes (Chekuri et al. 2014). Another possible idea (requiring a much stronger result) would be to

extend the continuous greedy approach of Calinescu et al. (2011) to incorporate submodular constraints.

As another direction, our particular choice model for the ranking problem is indeed an special case

of consider-then-choose choice model studied in Aouad et al. (2020). Extending our approximation

algorithms to this general setting under relevant assumptions (e.g., laminarity of considerations sets,

similar to ours) is another interesting open problem. Finally, in the vein of Section 4, one may be able

to achieve better results for other submodular functions of interest with specific structures.
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Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine

Learning, 8(3-4):231–357, 2015.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-approximation for

unconstrained submodular maximization. SIAM Journal on Computing, 44(5):1384–1402, 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function
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Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the multilinear

relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831–1879, 2014.



Asadpour et al.: Sequential Submodular Maximization and Applications to Ranking an Assortment of Products
34

Abhimanyu Das and David Kempe. Approximate submodularity and its applications: Subset selection, sparse

approximation and dictionary selection. The Journal of Machine Learning Research, 19(1):74–107, 2018.

Mahsa Derakhshan, Negin Golrezaei, Vahideh Manshadi, and Vahab Mirrokni. Product ranking on online plat-

forms. Available at SSRN 3130378, 2018.

Antoine Désir, Vineet Goyal, Danny Segev, and Chun Ye. Capacity constrained assortment optimization under

the markov chain based choice model. Operations Research, Forthcoming, 2015.

Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation methods for the web. In

Proceedings of the 10th international conference on World Wide Web, pages 613–622, 2001.

Vivek F Farias, Srikanth Jagabathula, and Devavrat Shah. A nonparametric approach to modeling choice with

limited data. Management science, 59(2):305–322, 2013.

Uriel Feige. A threshold of lnn for approximating set cover. Journal of ACM, 45(4):634–652, 1998.
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Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via the multilinear

relaxation and contention resolution schemes. In Proceedings of the forty-third annual ACM symposium on

Theory of computing, pages 783–792, 2011.

Yunzhang Zhu, Gang Wang, Junli Yang, Dakan Wang, Jun Yan, and Zheng Chen. Revenue optimization with

relevance constraint in sponsored search. In Proceedings of the 3rd ACM SIGKDD Workshop on Data Mining

and Audience Intelligence for Advertising, pages 55–60, 2009.



e-companion to Asadpour et al.: Sequential Submodular Maximization and Applications to Ranking an Assortment of Products ec1

This page is intentionally blank. Proper e-companion title page,

with INFORMS branding and exact metadata of the main

paper, will be produced by the INFORMS office when the issue

is being assembled.



ec2 e-companion to Asadpour et al.: Sequential Submodular Maximization and Applications to Ranking an Assortment of Products

EC.1. Connections to Product Ranking for Online Retail

In our setting, the platform chooses a permutation π to rank the products [n] presented to a user u∈ U ,

where U is the space of user types. The user type u is specified by a pair (θu, κu(·)). He or she considers

the first θu products in the list and selects a product with probability κu({π1, π2 · · ·πθu}). The platform

does not know the exact type of the user but knows the type distribution D, which induces a joint

distribution over (θu, κu(·)). Note that we allow for arbitrary correlations between θu and κu.

We assume κu(·) is a monotone non-decreasing and submodular set function for every u. This assump-

tion can be justified in several ways. For example, suppose the value of user u for product i is a random

variable Vui. After considering a subset S, u chooses the item with the highest value from the con-

sideration subset S, but only if the value of that item is at least R, namely, the value of the outside

option. In that case, κu(S) = P[maxi∈S(Vui)>R] is monotone submodular, even for possibly correlated

values of {Vui}. Furthermore, the choice functions used in the assortment-planning literature such as

multinomial logit (MNL), mixed MNL, and their variations, satisfy the substitution property, and hence

their corresponding probability of purchase function is monotone submodular (see Kök et al. (2008) for

definitions of these models and how they are used in practice.).8 Importantly, another choice function

that is monotone non-decreasing and submodular is the coverage choice function introduced in Ferreira

et al. (2021). We study this choice function in Section 4.

Now, we can show how to cast the problem of maximizing user engagement as a sequential submodular

maximization stated in Problem 1. Recall the goal is to pick ordering π to maximize the probability of

selection of a product, Eu∼D[κu(·)]. For each i∈ [n], define fi(·),Eu∼D[κu(·)|θu = i] and λi , P(u)∼D[θu =

i]. The probability that the user makes a purchase is the same as the objective function of Problem 1,

where fi(·)’s are monotone submodular functions and λi’s are non-negative. We can define f li ’s similarly

for Problem 2, where each group has its own conditional distribution of types. More formally, each group

l ∈ [L] is associated with a subset of types Gl ⊆U . For example, one can think of these subsets as various

minority groups of users defined by specific sensitive features (e.g., race, gender, or age) in display ads,

or shoppers with different behaviours (e.g., frequent shoppers, new shoppers, or shoppers interested in

a specific brand) in the online shopping application of product ranking. We highlight that our groups

G1,G2, . . . ,GL can be overlapping subsets. Given these subsets, we define f li (·),Eu∼D[κu(·)|θu = i, u∈ Gl]

and λli , Pu∼D[θu = i|u ∈ Gl] for every l ∈ [L]. Note that in the special case where the groups are

non-overlapping and form a portion of U , fi’s are basically convex combinations of f li ’s for l ∈ [L].

EC.2. Analysis of The Greedy Algorithm for Problem 1

Consider the following greedy algorithm.

8 Notably, all of these choices functions with substitution property are special cases of the random utility model.
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Algorithm 3 Greedy Algorithm

1: Input: n,{fi(·)}i∈[n],{λi}i∈[n].

2: Output: permutation π approximately maximizing
∑

i∈[n] λifi({π1, . . . , πi}).

3: π← ().

4: For i= 1 to n,

5: p← arg maxp∈[n]

∑n

j=i λjfj({π1, . . . , πi−1, p})−
∑n

j=i λjfj({π1, . . . , πi−1}).

6: π← (π1, . . . , πi−1, p)

7: return π.

Proposition EC.1. The greedy algorithm (Algorithm 3) is a 1/2 approximation algorithm for Prob-

lem 1.

Proof. Suppose the optimal permutation is (y1, y2, . . . , yn). For any partial ordered list of elements

given by the sequence π1, π2, . . . , πi ∈ [n], let F (π1, π2, . . . , πi) denote the mapping that maps this

sequence to the value ∑
j∈[i−1]

λjfj({π1, . . . , πj}) +
n∑
j=i

λjfj({π1, . . . , πi})

Based on the greedy selection rule, we have:

F (π1, π2, . . . , πi)−F (π1, π2, . . . , πi−1)≥ F (π1, π2, . . . , πi−1, yi)−F (π1, π2, . . . , πi−1) . (EC.1)

Now consider the following sum:∑
1≤i≤n

(F (π1, . . . , πi)−F (π1, . . . , πi−1)) +
∑

1≤i≤n

(F (π1, . . . , πi−1, yi)−F (π1, . . . , πi−1)) , (EC.2)

We claim the value of eq. (EC.2) is at least F (y1, . . . , yn). The reason is that each function fj is monotone

submodular and the value added to (EC.2) by function fj is:

λj

j∑
i=1

fj({π1, π2, . . . , πi})− fj({π1, π2, . . . , πi−1}) +λj

j∑
i=1

fj({π1, π2, . . . , πi−1, yi})− fj({π1, π2, . . . , πi−1})

≥ λj
j∑
i=1

fj({π[1:i−1], y[1:i−1], πi})− fj(π[1:i−1], y[1:i−1]) +λj

j∑
i=1

fj(π[1:i−1], y[1:i−1], πi, yi})− fj(π[1:i−1], y[1:i−1], πi)

= λj

j∑
i=1

fj({π[1:i−1], y[1:i−1], πi, yi})− fj(π[1:i−1], y[1:i−1])

= λjfj({π1, π2, . . . , πj, y1, y2, . . . , yj})

≥ λjfj({y1, y2, . . . , yj}),

where the first inequality follows by submodularity and the second inequality follows by monotonicity.

Summing above inequalities for j = 1, . . . , n proves the claim. Therefore, by (EC.1), we have:

2F (π1, . . . , πn) = 2
∑

1≤i≤n

(F (π1, π2, . . . , πi)−F (π1, π2, . . . , πi−1))
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≥
∑

1≤i≤n

(F (π1, π2, . . . , πi)−F (π1, π2, . . . , πi−1)) +
∑

1≤i≤n

(F (π1, . . . , πi−1, yi)−F (π1, . . . , πi−1))

≥ F (y1, y2, . . . , yn) ,

which shows the approximation ratio of 1/2. �

We next show this approximation ratio is the best possible for Algorithm 3, even in the special case of

the product ranking problem described in Section EC.1.

Example EC.1. Consider an instance of the product ranking problem where we have two products 1

and 2, and two users 1 and 2 that each appear with probability 1
2
. We assume the selection probability

functions of the users κ1(·) and κ2(·) are linear, and the probability of click on product 1 is 1 for user 1

and 0 for user 2, and the probability of clicking on product 2 is 0 for user 1 and 1 + ε for user 2. In this

case, the greedy algorithm will pick the ordering (2,1), which achieves an expected user engagement of

1 + ε, whereas picking the order (1,2) would achieve an expected user engagement of 2 + ε.

EC.3. An Alternative Approach to Problem 1

Another natural approach to maximize user engagement would have been to maximize G(.) directly

over the space of subsets of V that correspond to permutations. To approximately find such a set, we

can treat a permutation as a perfect matching between products and positions and then, approximately

maximizing the multi-linear extension of monotone submodular function G(.) defined as

GMLE(x) =
∑
S⊆V

G(S)Πij∈Sx
j
iΠij∈V \S(1−xji )

over the polytope of perfect matchings characterized by the following constraints:

∑
i∈[n]

xji = 1 ∀j ∈ [n],∑
j∈[n]

xji = 1 ∀i∈ [n] ,

where xji corresponds to ij getting (fractionally) picked. One can use the continuous greedy algorithm

of Calinescu et al. (2011) to obtain a (1 − 1/e) approximation to this continuous relaxation of the

actual problem. Interestingly, as we show in the following example, we can no longer round a fractional

solution x in the perfect matching polytope to an integral matching without any loss in the value of

GMLE(X), as opposed to the matroid polytope where loss-less rounding methods exist.

Example EC.2. Suppose n= 4 and consider functions f1, · · · , f4. In addition, we assume λi = 1/4 for

all 1≤ i≤ 4. Let f1, f3, and f4 always be zero. For f2, we assume a coverage function on {a, b} where

element 1 and 3 cover a and elements 2 and 4 cover b.
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Now consider the following assignment probabilities:

x =

 0.5 0 0.5 0
0 0.5 0.5 0
0 0.5 0 0.5

0.5 0 0 0.5


where the value in row i and column j corresponds to xji . This can be uniquely written as 0.5M1 +

0.5M2, where M1 and M2 are two perfect matchings (corresponding to permuations (1,3,2,4) and

(3,2,4,1). Our multi-linear extension GMLE(.) achieves a higher value on 0.5M1 +0.5M2 compared with

either M1 or M2, thus proving that we cannot round losslessly in the matching polytope.

However, following the same logic as Theorem 1, because any fractional perfect matching is in the

matroid polytope of M , we can always losslessly round any fractional perfect matching to an indepen-

dent set in matroid M . For this example, we can, for instance, round x above to:

Π̂ =

1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,

which is an independent set of the matroid M . This rounding can be achieved through the Pipage

rounding of Ageev and Sviridenko (2004), as used by Calinescu et al. (2011). Then, through our post-

processing step in Algorithm 1, this matrix becomes1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

simply because the repetition of the first item is removed and the last item moves one position back.

Then, we add the remaining items (third item) at the end. The value of the G(.) on this perfect matching

is no less than the initial point.

EC.4. Extensions: Other Objectives and Beyond Submodularity

EC.4.1. Product Ranking for Maximizing Revenue

In order to define the revenue optimization problem, let rj be the price of item j. Also, let Pi(j,S)

denote the probability of an arriving customer with patience level i choosing item j when observing an

assortment of items S, where |S| ≤ i. Finally, in this section we consider offering truncated permutations

of any length in order to accommodate the possibility of achieving higher revenues by offering a smaller

set of items. The revenue generated by offering a truncated permutation of items π = (π1, π2, · · · , πk)

where k≤ n is defined as follows.

Rev(π) =
n∑
i=1

λi

(
min(i,k)∑
j=1

rπj ·Pi
(
πj,{π1, · · · , πmin(i,k)}

))
(EC.3)
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We make the following standard assumptions regarding the purchase probabilities for all i∈ [n]. Note

that these assumptions hold for all random utility models, e.g., see Désir et al. (2015).

Assumption EC.1. The probability of purchasing some item (in other words the user engagement)

cannot decrease if we offer a larger set of items, i.e., if S ⊆ T then
∑

j∈S Pi(j,S)≤
∑

j∈T Pi(j,T ).

Assumption EC.2. The probability of purchasing some item (in other words the user engagement), is

submodular, i.e., if fi(S) =
∑

j∈S Pi(j,S), then for all j ∈ and S ⊂ T we have:

fi(S ∪{j})− fi(S)≥ fi(T ∪{j})− fi(T )

The revenue maximization problem is defined as finding a distribution Dπ over (possibly truncated)

permutations that achieves the highest possible expected revenue, i.e.,

maximize
Dπ

Eπ∼DπRev(π) (EC.4)

Note that similar to Problem 1, we allow randomized solutions yet the optimal solution of the program

is always a deterministic truncated permutation π∗. Let rmax and rmin respectively denote the highest

and lowest price among all the items.

In order to provide an approximate solution to the revenue optimization problem, we partition the

items into smaller subsets where the price of items in each subset are within a constant factor of each

other. Then, we solve the user engagement/purchase rate problem separately for each subset and find the

corresponding permutation over the items in the subset. We then report the permutation that generates

the highest revenue. The details can be found in Algorithm 4. Note that due to Assumptions EC.1 and

Algorithm 4 An Approximation Algorithm for Maximizing Revenue

1: Input: n,{Pi(·, ·)}i∈[n],{λi}i∈[n],{rj}j∈[n]; Output: a (possibly truncated) permutation π.

2: Partition items 1,2, · · · , n into C = bln(rmax/rmin))c subsets, namely, S0, S1, · · · , and SC , where for

any item j ∈ Sl we have rmin · el ≤ rj < rmin · el+1.

3: For every i∈ [n] and S ⊆ [n] with |S| ≤ i, define fi(S) =
∑

j∈S Pi(j,S).

4: For each 0≤ l≤C, let π(l) denote the output of Algorithm 1 for finding an approximately optimal

solution for maximizing user engagement according to submodular functions fi when performed on

the ground set Sl.

5: Let l̂= arg max
l

Rev(π(l)).

6: Return π(l̂).

EC.2, the functions fi defined in Step 3 of the algorithm can be properly used to feed to the input of

Algorithm 1 at Step 4.
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Theorem EC.1. Algorithm 4 provides an O(ln(rmax/rmin))-approximation algorithm for the revenue

maximization Problem (EC.4).

Proof of Theorem EC.1. Let π∗ = (π∗1 , π
∗
2 , · · · , π∗k) denote the (truncated) permutation correspond-

ing to the optimal solution of Problem (EC.4). We have

Rev(π∗) =
n∑
i=1

λi

(
min(i,k)∑
j=1

rπ∗j ·Pi
(
π∗j ,{π∗1 , · · · , π∗min(i,k)}

))

=
C∑
l=0

(
n∑
i=1

λi

(
min(i,k)∑
j=1

1(π∗j ∈ Sl) · rπ∗j ·Pi
(
π∗j ,{π∗1 , · · · , π∗min(i,k)}

)))

≤
C∑
l=0

(
n∑
i=1

λi

(
min(i,k)∑
j=1

1(π∗j ∈ Sl) · rπ∗j ·Pi
(
π∗j ,{π∗1 , · · · , π∗min(i,k)}∩Sl

)))
.

The inequality holds as a result of Assumption EC.2. Note that by definition, any item in Sl has a price

less than rmin · el+1. Hence, we derive the following.

Rev(π∗) ≤
C∑
l=0

rmin · el+1

(
n∑
i=1

λi

(
min(i,k)∑
j=1

1(π∗j ∈ Sl) ·Pi
(
π∗j ,{π∗1 , · · · , π∗min(i,k)}∩Sl

)))

=
C∑
l=0

rmin · el+1

(
n∑
i=1

λifi({π∗1 , · · · , π∗min(i,k)}∩Sl)

)

Fix any 0≤ l≤C. Let π̃(l) denote a permutation of the items in Sl starting by the subsequence of the

items in Sl that appear in π∗, and appending the rest of the elements Sl\{π∗1 , π∗2 , · · · , π∗k} to the end in

an arbitrary order. By definition, we have {π∗1 , · · · , π∗min(i,k)}∩Sl ⊆ {π̃1, · · · , π̃min(i,|Sl|)} for every i∈ [n].

Due to the monotonicity of fi’s, we derive that fi({π∗1 , · · · , π∗min(i,k)}∩Sl)≤ fi({π̃1, · · · , π̃min(i,|Sl|)}).

Since π(l) is the output of Algorithm 1 over Sl, Theorem 1 maintains that it is a (1 − 1/e)-

approximation for the user engagement problem. Thus,

Rev(π∗)≤
C∑
l=0

rmin · el+1 ·
(
e− 1

e

)
·

(
n∑
i=1

λifi({π(l)
1 , · · · , π(l)

min(i,|Sl|)
})

)
.

However, note that all the elements in Sl have prices of at least rmin · el. Consequently, by plugging in

the revenue definition of (EC.3), we get the following.

Rev(π∗) ≤ (e− 1) ·
C∑
l=0

rmin · el ·

(
n∑
i=1

λifi({π(l)
1 , · · · , π(l)

min(i,|Sl|)
})

)

≤ (e− 1) ·
C∑
l=0

Rev(π(l)).

Hence, the (truncated) permutation π(l̂) with the highest revenue among π(l)’s will provide at least a

fraction 1/ ((e− 1) ·C) of the optimal revenue. Noting that C = bln(rmax/rmin)c completes the proof.

�
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EC.4.2. Discussions on Beyond Submodularity: A Blackbox Approach

As we will sketch in this subsection, our approach in Section 2.1 is flexible to be extended to settings

beyond submodularity, as long as certain assumptions remain to be valid in such a generalized setting.

Recall the proof of Theorem 1, and in particular the reduction we used in this proof (detailed in

Section 2.1, part (III) of the analysis). Suppose we have set functions f1, . . . , fn that are not necessarily

submodular. We would like to remark that once we can identify a certain general property over set

functions, which we refer to as “Property (∗)” in this discussion, so that:

(i) This property is satisfied by the function G(Π) =
∑

i∈[n] λifi (S
Π,i), defined over the lifted space V

in our earlier reduction,

(ii) Under Property (∗) the function G(Π) can be approximately maximized over any laminar matroid

defined over V, or at least it can only be maximized over the particular laminar matroid M we

use in the proof of Theorem 1,

then exactly the same approximation ratio, whether a constant term or a super constant term, carries

over to the corresponding sequential functions maximization problem, i.e., picking a permutations distri-

butions Dπ maximizing Eπ∼Dπ [
∑n

i=1 λifi({π1, . . . , πi})], as long as fi(.)’s are monotone non-decreasing.

This observation simply holds, as the proof of Lemma 1 only relies on monotonicity of fi’s and the

nested property of laminar sets [1, . . . , i] for i= 1, . . . , n. These two properties guarantee that in the post-

processing step, given a base of the laminar matroid Π̂, we return a permutation π̂ so that F (π̂)≥G(Π̂),

as desired. Given this observation, we can now ask the following question:

Besides submodularity, can we think of other natural candidates as Property (∗), so that this prop-

erties satisfies the two conditions (i) and (ii) above, and also if fi’s satisfy Property (∗) then we

can conclude that G also satisfies Property (∗) in the lifted space V?

Again, by looking at the proof of Proposition 1, we can make the following informal claim: if Prop-

erty (∗) can be described by a group of inequalities, where in each inequality both sides are linear

combination of function values at different sets, e.g., similar to the definition of submodularity, then

Property (∗) holds for G if it holds for fi’s. To formalize this statement further, we consider the follow-

ing notion of approximate submodularity as an example, defined in Das and Kempe (2018). A function

f : 2[n]→R+ is γ-approximate submodular if for every S,T ⊆ [n], S ∩T = ∅, we have:

γ · (f(S ∪T )− f(S))≤
∑
x∈T

f(S ∪{x})− f(S)

Note that it can be easily shown that special case of γ = 1 is equivalent to the original definition of

submodularity (Das and Kempe 2018). Now we have the following proposition, whose proof follows

exactly the same lines as in the proof of Proposition 5 (omitted for brevity).
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Proposition EC.2. If set functions f1, . . . , fn : 2[n]→R+ are γ-approximate submodular for γ ∈ [0,1],

then G(Π) =
∑

i∈[n] λifi (S
Π,i) is γ-approximate submodular over V for all λ1, . . . , λn ∈R+.

Maybe more interestingly, as shown in Das and Kempe (2018), the classic greedy algorithm for

maximizing monotone submodular functions still remains approximately optimal when maximizing γ-

approximate submodular functions. In particular, for maximizing monotone γ-approximate submodular

functions subject to the cardinality constraint, greedy is a 1− e−γ approximation algorithm, and for

maximizing γ-approximate submodular functions subject to general matroid constraints greedy is a

1− 2−γ approximation algorithm (Das and Kempe 2018, Ajayi et al. 2019).9

Putting all the pieces together, this latter result, together with Proposition EC.2, implies that

we can obtain a 1− 2−γ approximation for sequential function maximization problem when fi’s are

γ-approximate submodular. We leave the possibility of using the continuous greedy algorithm and

swap rounding for maximizing γ-approximate submodular functions, and hence possibly obtaining an

improved approximation factor of 1− e−γ for this problem as an interesting open question for future

work. Such an approximation factor, if exists, will carry over to the sequential function maximization

version of the problem as we described above.

EC.5. Proof of Lemma 3

To see the “if” direction, assume a flow of 1 from the source to the sink exists. We can implement layer

i+ 1 as follows. Fix the set of the first i elements is S ⊆ [n]. We add element p∈ [n]\S in position i+ 1

with probability `(S,S∪{p})/xi,S where `(S,S∪{p}) is the flow going from vi,S to vi+1,S∪{p}. By doing

so, the probability of any set T ⊆ [n] of size i+ 1 appearing in the first i+ 1 positions is

=
∑

S⊂T :|S|=i

P [S appears in the first i positions and element T \S is at position i+ 1]

=
∑

S⊂T,|S|=i

xi,S ·
`(S,T )

xi,S
=

∑
S⊂T,|S|=i

`(S,T ) = xi+1,T .

To see the “only if” direction, suppose layer i+ 1 is implementable. Let Pp,S be the probability that

the policy implementing layer i+ 1 places element p∈ [n]\S at position i+ 1, conditioned on the first i

elements being set S. We define a feasible flow of 1 as follows. Let the flow from s to each node vi,S be

xi,S. Similarly, let the flow from each node vi+1,T to t be xi+1,T . For any node vi,S and any p ∈ [n] \S,

let the flow from vi,S to vi+1,S∪{p} be xi,S · Pp,S. Note we have
∑

p∈S Pp,S = 1, and therefore the inflow

and outflow for each node vi,S are equal. In addition, due to implementability, we must have for any

T ⊆ [n] with |T |= i+ 1,
∑

p∈T xi,S\{p} ·Pp,T\{p} = xi+1,T , and therefore the inflow and outflow for each

node vi+1,T are equal. So, we have a feasible flow of 1 from s to t. �

9 To the best of our knowledge, there is no improved approximation factor in the literature for maximizing γ-approximate
submodular functions subject to a general matroid (e.g., by using an approach based on the continuous greedy algorithm
and swap rounding); however we conjecture that such an improvement is possible and pose it as an open problem.
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EC.6. Optimal Value of Primal Relaxation vs. Optimal Policy

We have seen in Section 3.2 that linear program Primal is a relaxation to the optimal policy. Below we

show by an example that the objective value of Primal might in fact be strictly more than the total

engagement generated by the optimal policy.

Example EC.3. Consider a setting where we only have one group of users (we therefore drop the

indices corresponding to groups). Let T = 0, λi = 1/n for all 1≤ i≤ n. Also suppose all the users share

the same choice function; that is, all the functions fi are identical for all 1≤ i≤ n.

Suppose we have four products 1,2,3,4. We define sets and their produced engagement as follows:

{1,2,3,4} : (0.74 : 19/100,19/100,18/100,18/100) {1,2,3} : (0.58 : 20/100,19/100,19/100)

{1,2,4} : (0.57 : 19/100,19/100,19/100) {1,3,4} : (0.57 : 19/100,19/100,19/100)

{2,3,4} : (0.58 : 20/100,19/100,19/100) {1,2} : (0.39 : 20/100,19/100)

{1,3} : (0.39 : 20/100,19/100) {1,4} : (0.40 : 20/100,20/100)

{2,3} : (0.39 : 20/100,19/100) {2,4} : (0.39 : 20/100,19/100)

{3,4} : (0.39 : 20/100,19/100) {1},{2},{3},{4} : (0.20 : 20/100)

Each entry above specifies the set presented to the user, the value of the solution, and the probability

of each product getting picked by the user. For example, the first entry says if the user looks at all four

products, the expected value of the objective function would be 74 and the user would pick the first

two products with probability 19/100 and the last two products with probability 18/100. A feasible

solution to Primal for this problem is

x1,{1} = x1,{2} = 1/2, x2,{1,4} = x2,{2,3} = 1/2

x3,{1,2,3} = x3,{2,3,4} = 1/2, x4,{1,2,3,4} = 1

where xi,S = 0 for everything else. The expected value of this solution is 191.5/4, whereas feasible policy

can achieve anything better than 191/4. We should note we have used computer-aided methods to find

this example.

EC.7. Proof of Proposition 3

We begin the proof by recalling the linear program Primal:

max
∑
i∈[n]

∑
S⊆[n],|S|=i

λixi,Sfi(S) (Primal)

s.t. yi,j =
∑

|S|=i,S3j

xi,S −
∑

|S|=i−1,S3j

xi−1,S, ∀i, j ∈ [n]∑
i∈[n]

∑
S⊆[n],|S|=i

λlixi,Sf
l
i (S)≥ Tl, ∀l ∈ [L]
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S⊆[n],|S|=i

xi,S = 1, ∀i∈ [n]

yi,j ≥ 0, ∀i, j ∈ [n]

xi,S ≥ 0, x0,{∅} = 0. ∀i∈ [n], S ⊆ [n], |S|= i

and its dual linear program Dual:

min
∑
i∈[n]

αi−
∑
l∈[L]

γlTl (Dual)

s.t. αi +
∑
j∈S

βi+1,j −
∑
j∈S

βi,j ≥ λifi(S) +
∑
l∈[L]

γlλ
l
if
l
i (S), ∀i∈ [n− 1], S ⊆ [n], |S|= i (EC.5)

αn−
∑
j∈[n]

βn,j ≥ λnfn([n]) +
∑
l∈[L]

γlλ
l
nf

l
n([n]),

βi,j ≥ 0 , γl ≥ 0. ∀i, j ∈ [n] , ∀l ∈ [L]

We first show a polynomial-time algorithm that approximately optimizes a linear program slightly

different from Primal, and then show how the obtained solution of this modified LP relates to the

solution of the original linear program, Primal, to finish the proof.

Define the linear program Modified-Primal to be the same as Primal, with the exception that the

third set of constraints is replaced with

∑
S⊆[n],|S|=i

xi,S =
e

e− 1
∀i∈ [n]. (Modified-Primal)

Also let Modified-Dual be the dual of Modified-Primal. Therefore, Modified-Dual must be the same

as Dual but the objective value is replaced with

∑
i∈[n]

e

e− 1
αi−

∑
l∈[L]

γlTl. (Modified-Dual)

Remember the form of the feasibility polytope in the linear program Dual (Section 3.3), which is the

same as Modified-Dual. We can separate all of the constraints of the linear program Modified-Dual

in polynomial time except the first one. To get around this issue, we use the following result due to

Sviridenko et al. (2017).

Proposition EC.3 (Sviridenko et al. 2017). For every δ > 0, there exists an algorithm with poly-

nomial running time in n and 1
δ

that given a monotone increasing submodular function g : 2X →R≥0,

a linear function l : 2X→R, and a matroid M, it produces a set S ∈B(M), satisfying

g(S) + l(S)≥ (1− 1/e)g(O) + l(O) + v̂ ·O(δ) ∀O ∈B(M),

where v̂= max
e∈X

g({e}).
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To apply this result in our context, for any i∈ [n− 1], let:

g(S) = λifi(S) +
∑
l∈[L]

γlλ
l
if
l
i (S)

l(S) =−αi−
∑
j∈S

βi+1,j +
∑
j∈S

βi,j

M= ([n],I = {S ⊆ [n] | |S| ≤ i}),

where M is the i-uniform matroid. Using Proposition EC.3 by setting δ = ε
n

, we can approximately

separate the first set of constraints for any i. Now, we run the ellipsoid algorithm to solve the dual,

but instead of using an exact separation oracle for all the dual constraints, we use the algorithm in

Proposition EC.3 for the first set of constraints. For details of how to run ellipsoid using separation

oracles with (multiplicative and additive) approximate guarantees, we refer the reader to Bubeck (2015),

Chapter 2. In a nutshell, the algorithms first focuses on the feasibility version of the same optimization

problem. It then iteratively gets closer to the approximately optimal solution by restricting the polytope

of approximately feasible points. This is done by sending a query call to the approximate separation

oracle to identify a new important constraint and using the resulting hyper-plane to update to the

next Löwner-John ellipsoid. It finally terminates when the volume of the ellipsoid is small enough.

We run the ellipsoid method until termination. Let the solution of Modified-Dual obtained by the

ellipsoid method using the approximate separation oracle be {α0
i }i∈[n],{γ0}l∈[L],{β0

i,j}i,j∈[n], and the list

of important constraints it identifies be L. The obtained dual variables must satisfy the guarantee of

Proposition EC.3 upon termination, i.e.,

α0
i +
∑
j∈S

β0
i+1,j−

∑
j∈S

β0
i,j ≥ (1−1/e)

λifi(S) +
∑
l∈[L]

γ0
l λ

l
if
l
i (S)

− c · ε
n
, ∀i∈ [n−1], S ⊆ [n], |S|= i ,

(EC.6)

where c is the constant in the O(ε) term used in Assumption EC.3. Note that due to Assumption 1,

the submodular function g(S) above is bounded by a constant and hence the additive term in Propo-

sition EC.3 is of order O(ε). Now we define

α1
i =

e

e− 1
(α0

i + c · ε
n

), ∀i∈ [n]

γ1
l = γ0

l , ∀l ∈ [L]

β1
i,j =

e

e− 1
β0
i,j, ∀i, j ∈ [n].

Let OPT(Dual) denote the value of the objective function of the optimal solution to linear pro-

gram Dual and let ˆOPT(Modified-Dual) be the objective value of the solution obtained by the

ellipsoid method (when using our approximate separation oracle to solve Modified-Dual). Note that

{α1
i }i∈[n],{γ1

l }l∈[L],{β1
i,j}i,j∈[n] are feasible in the linear program Dual; therefore, we must have

ˆOPT(Modified-Dual) =
∑
i∈[n]

e

e− 1
α0
i −

∑
l∈[L]

γ0
l Tl =

∑
i∈[n]

α1
i −

∑
l∈[L]

γ1
l Tl−

c · e
e− 1

· ε≥OPT(Dual)−O(ε).

(EC.7)
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Note that as we run the ellipsoid method using the approximate separation oracle, as described in

Chapter 2 of Bubeck (2015) and we sketched earlier, we send a query call to the separation oracle at each

iteration to identify the current iteration’s approximate separating hyperplane (which helps with finding

the next iteration’s ellipsoid). Therefore, the algorithm essentially detects a polynomial size subset of

dual constraints throughout its run until termination, one for each iteration, that are important (i.e.,

ignoring the rest of the constraints does not change the optimal dual solution up to the approximation

factor used in the separation oracle – see Bubeck (2015) for more details). Now consider the set L of all

the constraints detected by the ellipsoid method while solving Modified-Dual using our approximate

separation oracle. Define Restricted-Dual to be the same as Modified-Dual but only restricted to

these constraints. Similarly, define Restricted-Primal to be the dual of Restricted-Dual. Both of

these linear programs have polynomial size, since the ellipsoid method detects a polynomial number of

constraints while solving Modified-Dual. Note that because of LP duality, we simply have:

OPT(Restricted-Primal) = OPT(Restricted-Dual). (EC.8)

Next, we aim to compare OPT(Restricted-Dual) with ˆOPT(Modified-Dual). Note that the solution

found by ellipsoid with the approximate separation oracle used in Proposition EC.3, which gives the

objective value of ˆOPT(Modified-Dual), is essentially the optimal solution of an adapted version of

Modified-Dual program where (i) we only keep constraints corresponding to those detected by the

ellipsoid algorithm in Modified-Dual and restrict the linear program to only these constraints (exactly

as in Restricted-Dual), and (ii) the RHS of first set of constraints is multiplied by 1−1/e and relaxed

further by subtracting a c · ε
n

term (as in Equation (EC.6)); so the optimal solution of Restricted-Dual

forms a feasible solution for this adapted version of Modified-Dual, and hence we should have:

OPT(Restricted-Dual)≥ ˆOPT(Modified-Dual). (EC.9)

By combining (EC.7), (EC.8), and (EC.9), we get

OPT(Restricted-Primal)≥OPT(Dual)−O(ε) = OPT(Primal)−O(ε).

To obtain our final approximate feasible and approximate optimal solution to Primal, we first

solve Restricted-Primal optimally in polynomial time in n, L and 1
ε

(which is the size of

such a linear program, given the running time of the ellipsoid method). This approach obtains

{y∗i,j}i,j∈[n],{x∗i,S}i∈[n],S⊆[n],|S|=i, which achieves an objective value at least equal to OPT(Primal) −

O(ε). However, this solution violates the third constraint of Primal; yet, it is actually feasible in the

Modified-Primal and hence: ∑
S⊆[n],|S|=i

x∗i,S =
e

e− 1
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To make it satisfy the third constraint in Primal and approximately satisfy the second constraint,

we simply multiply the solution by 1− 1/e to obtain {ŷi,j}i,j∈[n],{x̂i,S}i∈[n],S⊆[n],|S|=i, which will lower

our objective value by a factor of 1− 1/e but will make all the constraints satisfied except the second

constraint. For the second constraint, for each l ∈ [L] we have
∑

i∈[n]

∑
S⊆[n],|S|=i λ

l
ix̂i,Sf

l
i (S) ≥ (1 −

1/e)Tl, which finishes the proof of Proposition 3. �

EC.8. Proof of Proposition 5

Suppose we wanted to produce a (potentially infeasible) solution (x̂, ŷ) that satisfied all the LP con-

straints except possibly the third constraint, which states that each product appears in one position in

the permutation. In this scenario, for each position i∈ [n], we could choose exactly one product j(i) at

random, according to the probabilities {xi,j : j ∈ [n]}. Note this is well defined, because
∑

j∈[n] xi,j = 1

for any given position i ∈ [n]. We let x̂i,j(i) = 1 and also x̂i,j = 0 for all j 6= j(i). We repeat this process

independently at random for all values of i ∈ [n]. (Note this may violate the second LP constraint

because one product may appear in multiple positions. We address this issue later.) Finally, we let

ŷu = 1 if and only if
∑

i≤θu

∑
j∈Pu x̂i,j ≥ 1.

Note E[ŷu] = P[ŷu = 1] = 1−P[ŷu = 0]. However,

P[ŷu = 0] = P[
∑
i≤θu

∑
j∈Pu

x̂i,j = 0] = P[i≤ θu :
∑
j∈Pu

x̂i,j = 0] = Πi≤θuP[
∑
j∈Pu

x̂i,j = 0],

where the last equality is a result of our rounding process being independent for all u∈ [n]. Recall that

according to our rounding process P[
∑

j∈Pu x̂i,j = 0] = P[j(i) /∈ Pu] = 1−
∑

j∈Pu xi,j. Hence,

P[ŷu = 0] = Πi≤θu(1−
∑
j∈Pu

xi,j).

However, due to the feasibility of (x, y) and the second constraint in Coverage-Choice-Model-LP, we

have
∑

i≤θu

∑
j∈Pu xi,j ≥ yu. Therefore, according to the inequality of arithmetic geometric means, we

have P[ŷu = 0]≤ (1−yu/θu)θu . Consequently, due to the fact that 0≤ yu ≤ 1 and θu ≥ 1, we have

E[yu] = P[ŷu = 1]≥ 1− (1− yu/θu)θu ≥ (1− 1/e)yu. (EC.10)

As the last step of the proof, we exchange the solution such that it satisfies the third constraint of

Coverage-Choice-Model-LP without compromising the bound in Equation (EC.10). To do so, for the

items that appear multiple times according to x̂, we only show them at the first position at which they

appear. This will possibly leave some positions in the permutation empty. We arbitrarily assign all

other items (the ones that have not appeared in any position) to the remaining positions. To make this

process rigorous, for each item j let first(j) be the first rank where item j is shown according to x̂; that

is. first(j) = min{i : x̂i,j = 1}. If item j is not shown anywhere according to x̂, we define first(j) = 0.
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Let U = {j : first(j) = 0} be the set of items not shown. Also, let V = [n] \ {first(j) : j ∈ [n]} be the set

of all positions that offer a previously shown item (i.e., not for the first time). Clearly, |U |= |V |= n′

for some n′ ∈ [n]. We index the elements of U arbitrarily so that U = {j1, j2, . . . , jn′}. Similarly, let

V = {i1, i2, . . . , in′}.

For every j /∈ U , we define x̃first(j),j = 1 and x̃i,j = 0 for all i 6= first(j). Also, for every jk ∈ U where

k ∈ [n′], we define x̃ik,jk = 1 and x̃i,jk = 0 for all i 6= ik. By construction, x̃ defines an integral match-

ing corresponding to a permutation. We also define ỹ = ŷ. Note that for every given u ∈ U , we have∑
i≤θu

∑
j∈Pu x̃i,j =

∑
j∈Pu I{first(j)≤ θu}. Hence, if

∑
i≤θu

∑
j∈Pu x̃i,j = 0, first(j) > θu for all j ∈ Pu.

Therefore
∑

i≤θu

∑
j∈Pu x̂i,j = 0 too. Therefore, if ŷu = 1, then

∑
i≤θu

∑
j∈Pu x̃u,j ≥ 1 and subsequently,

ỹu = ŷu ≤ 1≤
∑

i≤θu

∑
j∈Pu x̃i,j. Thus, (x̃, ỹ) is an integral solution that satisfies all (except possibly the

first) constraints of Coverage-Choice-Model-LP. Also, because ỹ = ŷ, by using Equation (EC.10) we

have E[ỹu]≥ (1− 1/e)yu for every u∈ U , which completes the proof. �
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