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ABSTRACT

The security market line is often flat or downward-sloping. We hypothesize that probability

weighting plays a role and that one ought to differentiate between periods in which agents

overweight extreme events and those in which they underweight them. Overweighting inflates

the probability of extremely bad events and demands greater compensation for beta risk.

Underweighting has the opposite effect. Overall, these two effects offset each other, resulting

in a flat or slightly negative return–beta relationship. Similarly, overweighting the tails

enhances the negative relationship between return and coskewness, whereas underweighting

reduces it. We support our theory through an extensive empirical study.
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The classical CAPM theory of Sharpe (1964), Lintner (1965) and Mossin (1966) asserts

that expected returns increase with beta, leading to an upward-sloping security market line.

However, empirical studies have shown that the return–beta slope is flat or even downward-

sloping; see e.g., Black, Jensen, and Scholes (1972), Fama and French (1992), and Baker,

Bradley, and Wurgler (2011). Various explanations have been offered for why beta is not or

is negatively priced, ranging from misspecification of risk (Jagannathan and Wang, 1996) to

investor sentiment (Antoniou, Doukas, and Subrahmanyam, 2015) to aggregate disagreement

(Hong and Sraer, 2016) to positive correlation with idiosyncratic volatility (Liu, Stambaugh,

and Yuan, 2018).

We approach the beta anomaly from a different perspective, one that involves probability

weighting. The central task of asset pricing is to characterize how expected returns are related

to risk and to investors’ perceptions of risk. Probability weighting affects the perception of

risk, especially in the two tails of the market returns; therefore, it is posited to play a role

in beta pricing. On the other hand, a positive/negative skewness measures the risk of large

poitive/negative realizations and can be viewed as a part of tail risk. As a result, probability

weighting is also relevant to skewness/coskewness pricing because substantially right-/left-

skewed events, such as winning a lottery (Barberis and Huang, 2008; Bordalo, Gennaioli, and

Shleifer, 2012) or encountering a catastrophe (Kelly and Jiang, 2014; Bollerslev, Todorov,

and Xu, 2015; Kozhan, Neuberger, and Schneider, 2013), are more attractive/undesirable to

an investor with probability weighting.

In this paper, we provide a theory for beta and coskewness pricing using rank-dependent

utilities (Quiggin, 1982; Quiggin, 2012; Schmeidler, 1989; Abdellaoui, 2002). The key differ-

ence between the rank-dependent utility theory (RDUT) and the classical expected utility

theory (EUT) is that in the former the utility is weighted by a probability weighting function

assigned to ranked outcomes. So RDUT nests EUT but also captures risk attitude toward

probabilities, especially those represented in the two tails of the return distributions. We

first derive an equilibrium asset pricing formula for a representative RDUT economy, and we
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then examine the signs and magnitudes of the risk premiums in covariance and coskewness.

Our results show that the pricing kernel in this economy is the product of the marginal utility

and the derivative of probability weighting, which implies that the shape of the weighting

function matters for pricing.

The dominant view in the behavioral finance literature is that individuals overweight

probabilities of both extremely good and extremely bad events, rendering an inverse S-shaped

probability weighting function (Tversky and Kahneman, 1992; Wu and Gonzalez, 1996; Pr-

elec, 1998; Hsu, Krajbich, Zhao, and Camerer, 2009; Tanaka, Camerer, and Nguyen, 2010).1

Some authors, however, have documented empirical evidence that individuals sometimes un-

derweight tail events (Hertwig, Barron, Weber, and Erev, 2004; Humphrey and Verschoor,

2004; Harrison, Humphrey, and Verschoor, 2009; Henrich, Heine, and Norenzayan, 2010),

leading to S-shaped weighting functions. Accordingly, Barberis (2013) comments that the

coexistence of overweighting and underweighting poses a challenge in the study of extreme

events. Employing the method proposed in Polkovnichenko and Zhao (2013), we use S&P

500 index option data and S&P 500 index data from January 4, 1996 to April 29, 2016 to

derive option-implied probability weighting functions, updated monthly. Among the total

244 months tested in our study, about 89.3% of the time the implied weighting functions

are either S-shaped (about 37.7%) or inverse S-shaped (about 51.6%). This observation

suggests that people tend to overweight or underweight the two tails simultaneously (Tver-

sky and Kahneman, 1992; Gonzalez and Wu, 1999; Humphrey and Verschoor, 2004). We

further use the implied weighting functions to construct a monthly probability weighting

index that reflects investors’ perceptions regarding tail events, based on which we divide the

market into two regimes: overweighting and underweighting. The ratio between the number

of months during which the market is in the overweighting regime and during which it is in

the underweighting one is around 57% to 43%. Given this empirical finding, we can sepa-

1Through functional magnetic resonance imaging (fMRI) data, Hsu et al. (2009) find that activities in the
striatum during valuation of monetary gambles are nonlinear in probabilities in a manner that is consistent
with overwheighting tail events.
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rate the overweighting and underweighting regimes and analyze the corresponding beta and

coskewness pricing separately and respectively.

Our main theoretical result is a closed-form expression of the risk premiums of the covari-

ance and coskewness of any given asset with respect to the market. These premiums depend

on the utility function, as well as on the weighting function evaluated at the probability value

of having a positive market return. During an overweighing month (in which the weighting

function is inverse S-shaped), the agent overweights both tails. Overweighting the left tail

makes the RDUT agent more risk averse toward bad states (related to the convex part of the

weighting function) than her EUT counterpart, whereas overweighting the right tail makes

her less risk averse (the concave part) toward good states. While these two effects seem to

offset each other, the empirical fact that the average probability of having a positive market

return is close to 1 for any reasonably long sample period indicates that only the convex part

of the weighting function is relevant. This results in an enhanced, positive risk premium

with respect to the covariance with the market. Symmetrically, during an underweighting

month in which the agent underweights both tails of the market return distribution, she is

less risk averse toward bad states and more risk averse toward good ones. However, only

the former behavior is relevant because the probability of having a positive market return

now falls in the concave domain of the weighting function. In this case, the agent demands

less compensation for the covariance with the market compared to an EUT maximizer, and

potentially may even be willing to pay for the risk if and when she sufficiently underweights

the bad states. Finally, for a sufficiently long sample period covering comparable runs of

overweighing and underweighting months, the elevated beta during the former periods and

the reduced beta during the latter periods may cancel each other, leading to a flat or possibly

downward-sloping security market line.

Kraus and Litzenberger (1976) and Harvey and Siddique (2000) show that a typical

EUT agent is willing to pay for the coskewness, implying a negative premium in coskewness.

Probability weighting is likely to strengthen this skewness-inclined preference during an over-
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weighting period. This can be explained as follows. When the asset has positive coskewness

with the market, the asset return has a fat right tail with respect to the market portfolio.

The hope of a larger gain relative to the market due to overwheighting further increases the

attraction of the risky asset and requires even less compensation when compared to the case

of no probability weighting. Symmetrically, when the coskewness is negative, the fear of a

larger loss, which is also amplified by the overweighting, reduces the attraction of the risky

asset and hence demands greater compensation. Combined, overweighting the tails inflates

the negative relationship between expected return and coskewness, generating a significantly

negative premium of the coskewness. When the agent underweights both tails of the market

return, the probability weighting introduces a skewness-averse preference. Underweighting

the tails deflates the negative relationship between expected return and coskewness, resulting

in an insignificant (or even potentially positive) premium.

Our empirical study confirms the above key theoretical predictions. To carry out this

study, the first important task is to identify the characteristics and level of probability

weighting for any given period. We develop several indices for this purpose, using S&P

500 option data for the period January 4, 1996 – April 29, 2016. After deriving the non-

parametric, option-implied probability weighting functions as described earlier, we propose

an “implied fear index (IFI)” and an “implied hope index (IHI)” as the average values of

the derivatives of the weighting function around 1 and 0 respectively. The two indices have

highly similar dynamics (see Figure 6), with a correlation coefficient of 0.8. Hence we use the

average of the two to define one of our probability weighting indices, PWI1, to reflect the level

of probability weighting. Moreover, to cross examine how robust PWI1 is, we introduce a

second probability weighting index, PWI2, by fitting the parametric specification of Prelec’s

weighting function.2 The summary statistics of IFI, IHI, PWI1 and PWI2 (Table II) show

that the percentages of time during which these indices indicate the presence of overweighing

are remarkably close to each other. Moreover, PWI1 and PWI2 have a correlation coefficient

2Prelec’s weighting function generates inverse S-shaped and S-shaped functions, determined by a single
parameter.
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of 0.949 (see also Figure 7 for a comparison of their dynamics). Therefore, we use PWI1

alone as the probability weighting index in our empirical study, and we use its median to

divide between the overweighting regime and the underweighting one.

We then perform portfolio analysis to study the impact of probability weighting on the

mean-covariance and mean-coskewness relationships, respectively. We use all the common

stocks listed on NYSE, AMEX and NASDAQ for the period January 1991 – April 2016.

The one-way sort portfolio analysis (Table III) shows that the spread covariance-sorted

portfolio has a significantly positive return during overweighting months, a significantly

negative return during underweighting months, and a slightly positive (but insignificant)

average return for the entire period. The spread coskewness-sorted portfolio, on the other

hand, has a significantly negative return during overweighting months, an insignificantly

negative return during underweighting months, and a notably negative average return for

the entire period. Moreover, the two-way sort portfolio analysis (used to separate the effects

of covariance and coskewness) yields similar results (Table IV and Table V). Finally, a Fama–

MacBeth cross-sectional regression analysis (Fama and MacBeth, 1973) further confirms all

the results (Table VI).

The paper proceeds as follows. We present and solve the portfolio selection problem

under RDUT in Section I. We derive the equilibrium asset pricing formula and the three-

moment CAPM model in Section II. We present the empirical analysis in Section III. We

conclude in Section IV. All proofs are presented in the Appendix.

I. Portfolio Selection under Rank-dependent Utility

A. Basic Setting

Consider a one-period-two-date market. The set of possible states of nature at date 1 is

Ω and the set of events at date 1 is a σ-algebra F of subsets of Ω. There are n assets (one

risk-free asset and n− 1 risky assets), whose prices at time t are Pt1, Pt2, · · · , Ptn, t = 0, 1.
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These assets are priced by

P0i = E[m̃P1i], i = 1, 2, · · · , n,

where m̃ is the pricing kernel, which is an F -measurable random variable such that P(m̃ >

0) = 1, E[m̃] <∞ and E[m̃P1i] <∞ (i = 1, 2, · · · , n).

The representative agent in the market has an RDUT preference given by

U(X̃) =

∫
u(x)w′(1− FX̃(x))dFX̃(x),

where u(·) is an (outcome) utility function, w(·) a probability weighting function, and FX̃(·)

the cumulative distribution function (CDF) of the random payoff X̃. Specific parametric

classes of probability weighting functions proposed in the literature include those by Tversky

and Kahneman (1992)

w(p) =
pα

(pα + (1− p)α)1/α
,

and by Prelec (1998)

w(p) = exp(−(− log(p))α),

where, in both cases, 0 < α < 1 corresponds to inverse S-shaped weighting functions (i.e.,

first concave and then convex; hence overweighting both tails) and α > 1 corresponds to

S-shaped one (i.e., first concex and then concave; hence underweighting both tails). In this

paper, we will use Prelec’s weighting functions, which are plotted in Figure 1 with different

α’s. The smaller the α(< 1), the higher degree of overweighting, and the larger the α(> 1),

the higher degree of underweighting.

[Insert Figure 1 here]
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We make the following assumptions on the market.

ASSUMPTION 1: (i) The probability space (Ω,F ,P) admits no atom.

(ii) u is strictly increasing, strictly concave, continuously differentiable on (0,∞), and satis-

fies the Inada condition: u′(0+) =∞, u′(∞) = 0. Moreover, without loss of generality,

u(∞) > 0. The asymptotic elasticity of u is strictly less than one: limx→∞
xu′(x)
u(x)

< 1.

(iii) w is strictly increasing and continuously differentiable on [0, 1] and satisfies w(0) = 0,

w(1) = 1.

B. Portfolio Selection

Use xi to denote the portfolio weight in asset i and let shorting be disallowed. Then, the

representative investor faces a one-period portfolio selection problem:

(P ) max
{xi}

∫
u(x)w′(1− FR̃P (x))dFR̃P (x),

s.t. R̃P =
∑n

i=1 xiR̃i,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, · · · , n,

(1)

where R̃P is the total return of the portfolio and R̃i is the total return of asset i.

Noting P0i = E[m̃P1i], we have E[m̃R̃i] = 1. Thus, problem (P ) is, equivalently,

(P ′) max
R̃P∈F

∫
u(x)w′(1− FR̃P (x))dFR̃P (x),

s.t. E[m̃R̃P ] = 1,

P(R̃P ≥ 0) = 1.

(2)
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This problem specializes to the one solved by Xia and Zhou (2016).3 Define a function N by

N(q) = −
∫ 1−

w̄−1(q)

Q−m̃(1− p)dp, q ∈ [0, 1],

where Q−m̃(p)
∆
= sup{x ∈ R | Fm̃(x) < p}, p ∈ (0, 1], is the lower quantile function of m, and

w̄ is the dual of w: w̄(p) = 1− w(1− p).

Applying Theorem 3.3 of Xia and Zhou (2016), we have the following result.

THEOREM 1: Assume m̃ has a continuous CDF Fm̃, and

∫ 1−

0

(u′)−1(µN̂ ′(w̄(p)))Q−m̃(1− p)dp <∞

for all µ > 0, where N̂ is the concave envelope of N and N̂ ′ the right derivative of N̂ . Then

the total return of the optimal portfolio is

R̃∗P = (u′)−1
(
λ∗N̂ ′ (1− w(Fm̃(m̃)))

)
,

where the Lagrange multiplier λ∗ is determined by

E
[
m̃(u′)−1

(
λ∗N̂ ′ (1− w(Fm̃(m̃)))

)]
= 1.

3In Problem (2.2) of Xia and Zhou (2016), setting I = 1, u0i(·) = 0, u1i(·) = u(·), wi(·) = w(·), βi = 1,

E[ρ̃ẽ1i] = 1, e0i = 0, and c̃1i = R̃P , we recover our Problem (P’).
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II. Equilibrium Asset Pricing and Three-Moment

CAPM

A. Equilibrium Asset Pricing Formula

Denote by

R̃M =
n∑
i=1

xMi R̃i

the total return of the market portfolio where xMi is the market capitalization weight of asset

i with
∑n

i=1 x
M
i = 1, and by r̃M , r̃i and rf the return rates of the market portfolio, the asset

i, and the risk-free asset, respectively. Define a function m by

m(x) =
w′(1− FR̃M (x))u′(x)

(1 + rf )E
[
w′(1− FR̃M (R̃M))u′(R̃M)

] , x > 0. (3)

THEOREM 2: When the market is in equilibrium with R̃M having a continuous CDF FR̃M ,

the pricing kernel is given by

m̃ = m(R̃M) ≡
w′(1− FR̃M (R̃M))u′(R̃M)

(1 + rf )E
[
w′(1− FR̃M (R̃M))u′(R̃M)

] . (4)

Moreover, if R̃M has a continuously differentiable density function fR̃M , then, for any risky

asset i, we have the three-moment CAPM:

E[r̃i] = rf + ACov(r̃i, r̃M) +
1

2
BCov(r̃i, r̃

2
M) + o(r̃2

M), (5)
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where the risk premiums A and B are given as

A =− (1 + rf )m
′(1)

=− E−1[w′(1− FR̃M (R̃M))u′(R̃M)]

·
[
w′(1− FR̃M (1))u′′(1)− w′′(1− FR̃M (1))u′(1)fR̃M (1)

]
, (6)

B =− (1 + rf )m
′′(1)

=− E−1[w′(1− FR̃M (R̃M))u′(R̃M)]

·
[
w′(1− FR̃M (1))u′′′(1) + w′′′(1− FR̃M (1))u′(1)f 2

R̃M
(1)

− w′′(1− FR̃M (1))[2u′′(1)fR̃M (1) + u′(1)f ′
R̃M

(1)]
]
. (7)

The expression (4) indicates that the equilibrium pricing kernel m̃ is not only influenced

by the utility function u, but also by the probability weighting function w evaluated at

1 − FR̃M (R̃M) and, consequently, by the market return distribution. To illustrate, we use

Figure 2. There, we consider Prelec’s probability weighting function, the CRRA utility

function and two types of market scenarios:

• Market I: 1−FR̃M (1) > e−1, i.e., 1−FR̃M (1) lies in the convex domain (concave domain)

of w(·) when α < 1 (α > 1).4

• Market II: 1 − FR̃M (1) < e−1, i.e., 1 − FR̃M (1) lies in the concave domain (convex

domain) of w(·) when α < 1 (α > 1).

In Figure 2, both market scenarios are considered. Take r̃M to be skew-normal with mean

7.6%, standard deviation 15.8% and skewness -0.339, which can be easily verified to be a

case of Market I. For Market II we take r̃M to be skew-normal with mean -7.6%, standard

deviation 15.8% and skewness -0.339. Figures 2(a) and 2(d) show the plots of the pricing

kernel against the market return. They show that, in both market scenarios, the RDUT agent

overweighting both tails pays higher prices in the extreme states, resulting in a U-shaped

4p∗ = e−1 is the solution of the equation exp(−(− log(p))α) = p for any α; hence it is the reflection point
separating the convex and concave domains of Prelec’s weighting function.
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pricing kernel.5 The case of underweighting both tails has the opposite characteristics, with

a bell-shaped pricing kernel.

Figures 2(b) and 2(e) show the implied relative risk aversion, −m′(R̃M) · R̃M/m(R̃M), as

a function of the market return R̃M . These plots exhibit consistent qualitative behaviors in

the two market scenarios. Overweighting (underweighting) both tails decreases (increases)

risk aversion as market return improves; so the agent takes more (less) risk when the return

is higher. The classical CRRA case has a flat relative risk aversion, as expected.

Figures 2(c) and 2(f) depict the implied relative risk aversion as a function of α when

the market return is fixed at R̃M = 1, which has the same sign of the parameter A (see

(6). In Market I, it is a decreasing function of α; so a higher level of overweighting the tails

leads to a larger relative risk aversion and hence demands a higher risk compensation. In

particular, the risk aversion is negative when one sufficiently underweights, yielding a risk-

seeking behavior. In Market II, the implied relative risk aversion is increasing in α, which

implies that the more (less) overweighting (underweighting) the tails the less risk aversion

is entailed.

[Insert Figure 2 here]

B. Risk Premiums

In the three-moment CAPM model, the terms A and B are the risk premiums of the

covariance and the coskewness, respectively. The signs of the two parameters determine

the risk preference with respect to covariance and coskewness. As A and B depend on

the utility function, the weighting function, and the distribution of the market return in a

complex way, it is difficult to analytically study their signs in general. However, if we choose

5U-shaped pricing kernels have been presented in literature under various settings. For example, Shefrin
(2008) finds that the pricing kernel has a U-shape when agents have heterogeneous risk tolerance. Baele,
Driessen, Ebert, Londono, and Spalt (2018) observe that pricing kernels under the cumulative prospect
theory (CPT) are U-shaped.
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a specific weighting function - in this case, Prelec’s - then an analytical examination of the

signs becomes possible.

As noted earlier, the market return distribution also impacts pricing and risk premiums.

For Prelec’s weighting function w, we have introduced two scenarios, Market I and Market

II, depending on whether 1−FR̃M (1) lies in the convex or concave domain of w. Notice that

1−FR̃M (1) = P(R̃M > 1), i.e., the probability that the market has a positive return rate. So

this quantity reflects the trend of the overall economy/market. Let us first examine which

type of Market is more plausible for the S&P 500. Following De Giorgi and Legg (2012),

we assume that the S&P 500 annual return rate, r̃M , follows either a normal distribution,

a skew-normal distribution, or a log-normal distribution. Based on the annual historical

data of the S&P 500 from January 1946 to January 2009, the annual return rate, r̃M , has

a mean of 7.6% and a standard deviation of 15.8%. Moreover, in the case of skew-normal,

its skewness is estimated to be -0.339. Based on these values, assuming r̃M is respectively

normal, skew-normal, and log-normal, we can estimate the corresponding value of 1−FR̃M (1)

to be respectively 0.6847, 0.6980, and 0.6543, all greater than e−1. Next, we consider the

S&P 500 monthly return. Following Polkovnichenko and Zhao (2013), we use the daily

historical data of the S&P 500 from January 4, 1996 to April 29, 2016 and estimate an

EGARCH model for the S&P 500 with 1250 daily index return data up to the end of each

month. Then, we simulate 100,000 samples based on the EGARCH model and compute the

nonparametric probability density function for the monthly return of the S&P 500. We find

that 1− FR̃M (1) > e−1 holds for all the months tested. Therefore, we conclude that Market

I is a more likely scenario for the S&P 500, and hence we focus on this case in the following

discussion.6

Let us now examine first the sign of A. From its expression on the right hand side of

(6), it follows that the first term (including the factor in front of the brackets) is positive,

representing the part of the risk aversion arising from the outcome utility function u. The

6Essentially, Market I is the case when the economy grows most of the time, which has historically been
the case for US markets.
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second term is more complicated, representing the part of the risk aversion arising from the

probability weighting, whose sign depends on whether the quantity 1 − FR̃M (1) lies in the

convex or concave domain of the weighting function w.

PROPOSITION 1: Assume that the market is in equilibrium with R̃M having a density

function fR̃M , and that w(p) = exp(−(− log(p))α) and 1− FR̃M (1) > e−1. Then,

(i) A > 0 if 0 < α < 1.

(ii) A < 0 if α > α∗ for some α∗ > 1.

To interpret Proposition 1, consider first the case 0 < α < 1 when w is inverse S-shaped

and the agent overweights both extremely good and extremely bad states. Overweighting

the left tail makes the RDUT agent more risk averse toward bad states than her CRRA

counterpart, and overweighting the right tail makes her less risk averse toward good states.

While these two effects seem to offset each other, the condition 1− FR̃M (1) > e−1, which is

consistent with the empirical observation for the S&P 500, as discussed earlier, dictates that

only the former effect is relevant. This results in a positive risk premium with respect to the

covariance with the market; see the solid red line in Figure 3.

There is more to it. Write

A =
w′(1− FR̃M (1))u′(1)

E[w′(1− FR̃M (R̃M))u′(R̃M)]

[
−u

′′(1)

u′(1)
+
w′′(1− FR̃M (1))

w′(1− FR̃M (1))
fR̃M (1)

]
. (8)

The first term inside the brackets, −u′′(1)
u′(1)

> 0, measures the risk aversion arising from the out-

come utility function u in the classical EUT framework. The second term,
w′′(1−F

R̃M
(1))

w′(1−F
R̃M

(1))
fR̃M (1),

which arises from the probability weighting independent of the outcome utility function, is

also positive when 0 < α < 1. This second term elevates the level of risk aversion. This

may shed light on the equity premium puzzle (Mehra and Prescott, 1985): the reason the

empirical data of the S&P 500 implies an extremely implausibly high level of risk aversion

within the classical EUT framework is that the latter has not accounted for the part of the

risk aversion emanating from probability weighting.
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When α > 1, w is S-shaped and the agent underweights the two tails of the market return

distribution. This entails less risk aversion toward bad states and more risk aversion toward

good states. However, the condition 1−FR̃M (1) > e−1 implies that 1−FR̃M (1) is now in the

concave domain of w and hence only the former behavior is relevant. In this case, the agent

demands less compensation for the beta risk compared with a classical utility maximizer,

and, indeed, even becomes willing to pay for the risk (i.e., A < 0) when she sufficiently

underweights bad states (i.e., when α is sufficiently large). This case is illustrated by the

dashed blue line in Figure 3.7

[Insert Figure 3 here]

Next we investigate the sign of B. First, when there is no probability weighting, we have

B = −E−1[u′(R̃M)]u′′′(1) < 0 assuming that u′′′ > 0, which is satisfied by most commonly

used utility functions.8 This implies that a typical EUT agent is willing to pay for the

coskewness; see also Harvey and Siddique (2000). In the presence of probability weighting,

the first term of B (see (7)) is negative if, again, u′′′ > 0. The second and third terms are

more complicated, in that their signs depend on the utility function, the weighting function,

and the market return distribution, all intertwined. However, as in the case of A, whether

1 − FR̃M (1) lies in the convex or concave domain of w is also critical for the sign of B. We

provide several sufficient conditions for B to be positive or negative.

PROPOSITION 2: Assume that the market is in equilibrium with R̃M having a continu-

ously differentiable density function fR̃M , and that u(x) = 1
1−γx

1−γ where γ > 0, w(p) =

exp(−(− log(p))α) where α > 0, and 1− FR̃M (1) > e−1. Then,

(i) B < 0 if 0 < α < 1 and γ ≥ γ∗ :=
f ′
R̃M

(1)

2fR̃M
(1)

.

(ii) B < 0 if α > 1 and γ > γ(α) where γ(α) is a threshold depending on α.

7Figure 3 is completely consistent with Figure 2(c).
8Brockett and Golden (1987) refer to the class of increasing utility functions with derivatives that alternate

in sign as the class that contains “all commonly used utility functions.” In particular, u′′′ > 0 implies that
the utility function has nonincreasing absolute risk aversion, which is one of the essential properties of a
risk-averse individual; see Harvey and Siddique (2000).
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(iii) B > 0 if α > 1 and γ∗ ≤ γ < γ(α), where γ(α) is a threshold depending on α.

We have noted earlier that in the absence of probability weighting, B < 0 for “most

commonly used utility functions,” suggesting an inherent skewness-inclined preference in

the classical EUT framework. Now, when the agent overweights both tails of the mar-

ket return (the case of 0 < α < 1), the proof of Proposition 2 (Appendix C) shows that

w′′′(1− FR̃M (1)) > 0. Thus probability weighting is likely to enhance the skewness-inclined

preference when overweighting occurs. This enhancement can be explained intuitively as

follows. When the asset has positive coskewness with the market, the asset return has a

fat right tail with respect to the market portfolio. The hope of a larger gain relative to

the market, which is strengthened by overwheighting, further increases the attraction of the

risky asset and requires even less compensation when compared to the case of no probability

weighting. Symmetrically, when the coskewness is negative, the fear of a larger loss, which

is also amplified by the overweighting, reduces the attraction of the risky asset and hence

demands greater compensation. Combined, overweighting the tails inflates the negative re-

lationship between expected return and coskewness, generating a significantly negative B.

This enhancement is confirmed by comparing the empirical results across Panels A and B in

Table I.9

When the agent underweights both tails of the market return (i.e., α > 1), w′′′(1−FR̃M (1))

becomes negative, which implies that the probability weighting introduces a skewness-averse

preference. Underweighting the tails deflates the negative relationship between expected

return and coskewness. Whether B is eventually positive or negative depends on which one

dominates: the skewness-inclination inherent in u or the skewness-aversion in w. Proposition

2-(ii) and -(iii) provide sufficient conditions under which one of these is the case. These results

are illustrated by the dashed blue line in Figure 4 and by the values of B in Panel C of Table

9The additional condition γ > γ∗ in Proposition 2-(i) is purely technical, as it is used to control the
product term u′′w′′ in the proof (Appendix C). Indeed, from that proof it is clear that this condition is
sufficient, but by no means necessary. In Panel A of Table I, all the B values are negative even if the
condition is violated. Moreover, a numerical plot when α = 0.5 shows that B < 0 for any γ > 0; see Figure
4(a).
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I.10

[Insert Table I here]

[Insert Figure 4 here]

III. Empirical Analysis

Our empirical analysis tests our preceding theory regarding how probability weighting

impacts the risk premiums on covariance and coskewness. To this end, we first identify the

characteristics and level of probability weighting from option data. Then, we provide one-

way sort and two-way sort portfolio analyse to study the effect of probability weighting on the

mean-covariance and mean-coskewness relationships, respectively. Finally, we run a Fama-

MacBeth regression to investigate the impact of probability weighting on cross-sectional asset

pricing.

A. Option-implied Probability Weighting Functions and Indices

Option data have been used to estimate empirical pricing kernels (see, e.g., Rosenberg

and Engle, 2002). As the pricing kernel under RDUT is the product of the marginal utility

and the derivative of probability weighting (Theorem 3.1), upon specifying a suitable utility

function we can obtain implied probability weighting functions from option price data.

We use S&P 500 index option data and S&P 500 index data to derive the option-implied

probability weighting functions and to construct the corresponding probability weighting

indices for any given period of time (monthly in this paper). These indices are then used to

gauge the overall probability weighting level in the market for the period concerned. The

10Again, the condition γ ≥ γ∗ in Proposition 2-(iii) is only a technical condition used in the proof. In
Panel C of Table I we observe positive B when γ < γ∗.
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option data and index data are obtained from the OptionMetrics daily files, with a time

window from January 4, 1996 to April 29, 2016.11

More specifically, following the procedure of Polkovnichenko and Zhao (2013), with some

variations, we derive implied probability weighting functions in three steps. First, at the

end of each month during the period January 4, 1996 to April 29, 2016, we use both the

S&P 500 index and index option data to construct the implied volatility curves for the

options with the nearest maturity and the second nearest maturity. We then compute the

implied volatility curve for the options with one-month maturity by spline interpolation.

Next, compute the one-month maturity option prices based on the implied volatility curve

and extract the nonparametric risk-neutral probability density function for the one-month

return of the S&P 500 index, fQ
R̃M

, by taking the second-order derivative of the one-month

maturity option prices with respect to the strike prices (see Bliss and Panigirtzoglou, 2002

and Kostakis, Panigirtzoglou, and Skiadopoulos, 2011 for details).12 Second, at the end of

each month, we estimate an EGARCH model for the S&P 500 index with 1250 daily S&P

500 index return data up to the end of the month. Then, simulate 100,000 samples based on

the EGARCH model and compute the nonparametric real-world probability density function

for the one-month return of the S&P 500 index, fR̃M . Third, we estimate the probability

11OptionMetrics is a provider of historical options data for empirical and econometric research. We access
OptionMetrics via Wharton Research Data Services (WRDS) at http://www.whartonwrds.com.

12Different from Polkovnichenko and Zhao (2013), who directly select monthly option quotes closest to
28, 45, and 56 days from expiration and compute the risk-neutral probability density function for the 28,
45, and 56-day returns, we focus on the last trading day of each month. As there are no traded options
with one-month maturity at the end of each month in our experiments, we need to numerically compute the
prices of one-month maturity options based on the options with other maturities. Therefore, we apply the
nonparametric method in Bliss and Panigirtzoglou (2002) and Kostakis et al. (2011) to derive the risk-neutral
probability density function, which is more suitable for our analysis.
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weighting function according to the following equation:

w(1− p) =

∫ 1

p

w′(1− y)dy =

∫ +∞

F−1

R̃M
(p)

w′(1− FR̃M (x))fR̃M (x)dx

=

∫ +∞

F−1

R̃M
(p)

m(x)

(1 + rf )E
[
w′(1− FR̃M (R̃M))u′(R̃M)

]
u′(x)

fR̃M (x)dx (9)

=c

∫ +∞

F−1

R̃M
(p)

fQ
R̃M

(x)

u′(x)
dx,

where the function m is defined in (3). The constant c can be determined, by noticing

w(1) = 1, as

c =

(∫ +∞

0

fQ
R̃M

(x)

u′(x)
dx

)−1

.

Based on this we derive w numerically by specifying the utility function to be CRRA with

γ = 2.13 The solid red lines in Figure 5 show two typical types of implied probability

weighting functions derived in our study, an inverse S-shaped one (overweighting both tails)

and an S-shaped one (underweighting both tails). Among the total 244 months tested in our

study, most of the time (about 89.3%) the implied weighting functions are either S-shaped

or inverse S-shaped, an observation that reconciles with the well-documented result that

individuals tend to underweight or overweight the two tails simultaneously.

[Insert Figure 5 here]

Probability weighting is captured by the derivative of the weighting function w, mainly

around the two ends of its domain, p = 1 and p = 0. We propose two indices, those of “im-

plied fear” and “implied hope”, capture the representative agent’s biases toward extremely

13Equation (9) is similar to equation (24) in Polkovnichenko and Zhao (2013), where the same utility
function is taken.
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good and bad events:

Implied fear index (IFI) =
∑99

i=95 0.2w′(0.01i),

Implied hope index (IHI) =
∑5

i=1 0.2w′(0.01i),

which are the average values of the derivatives of the probability weighting function around

1 and 0, respectively. When IFI > 1 (IHI > 1), the agent overweights extreme bad (good)

events. Figure 6 shows the monthly time series of these indices. Evidently, the two indices

have very similar dynamics and move together most of the time (their correlation coefficient

is 0.8). This reiterates the aforementioned simultaneous underweighting/overweighting of

the two tails.

[Insert Figure 6 here]

Given the highly correlated dynamics of IFI and IHI, we use their average as an option-

implied probability weighting index to reflect the level of probability weighting:

PWI1 =
IFI + IHI

2
. (10)

Figure 7(a) depicts the movement of PWI1 during the testing period.

To cross examine how robustly PWI1 captures the degree of probability weighting in the

market over time, we introduce a second probability weighting index by fitting the parametric

specification of Prelec’s weighting function. Specifically, we calibrate Prelec’s parameter α

by minimizing the Euclidean distance between Prelec’s weighting function and the obtained

nonparametric weighting function:

α̂ = arg min
α

99∑
i=1

|w(0.01i)− exp(−(− log(0.01i))α)|2,

which we call the implied α. Note that for Prelec’s weighting function, 0 < α < 1 corresponds
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to inverse S-shaped (overweighting) and α > 1 to S-shaped (underweighting), with α = 1

dividing the two; see also Figure 1. The greater (smaller) α, the greater the degree of

overweighting (underweighting). This suggests that the following index, PWI2, also reflects

the level of probability weighting:

PWI2 =
1

α̂
. (11)

[Insert Table II here]

Table II reports the summary statistics of IFI, IHI, α̂, PWI1 and PWI2. The percentages

of time when these indices indicate the occurrence of overwheighting are remarkably close

to each other: investors overweight extreme events 56%-59% of the time and underweight

extreme events 41%-44% of the time. Moreover, Figure 7 shows that PWI1 and PWI2

have very similar dynamics. Indeed, they have a correlation coefficient 0.949. Thus, in

the following analysis, we focus on PWI1, and we use it to separate the whole sample

period (from January 1996 to April 2016) into two categories: overweighting periods and

underweighting periods. Specifically, we calculate the median level of PWI1 over the entire

period. When the PWI1 value at the end of month t is above its median level, the next

month t + 1 is labelled as an overweighting period; otherwise, t + 1 is an underweighting

period.14

[Insert Figure 7 here]

14Given that the percentages of overweighting periods and underweighting periods are 56%-59% and 41%-
44% respectively as shown in Table II, it is reasonable to use the median as the separating point. We have
also used the value 1 to separate these periods, and we found the main results to be the same.
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B. One-way Sort Portfolio Analysis

We now conduct one-way sort portfolio empirical analysis to test the mean-covariance

and mean-coskewness relationships during different probability weighting periods. In our

study, we use all the common stocks listed on the NYSE, AMEX, and NASDAQ to perform

cross-sectional analysis. Data on prices, returns, and shares outstanding are obtained from

the Centre for Research in Security Prices (CRSP) monthly files, which range from January

1991 to April 2016.15

At the end of each month t from January 1991 to April 2016, we use the immediate prior

60-month sample covariance and sample coskewness to estimate the pre-ranking covariance

and coskewness in month t,

covari,t =
1

59

59∑
j=0

(r̃i,t−j − r̄i)(r̃M,t−j − r̄M),

coskewi,t =
1

59

59∑
j=0

(r̃i,t−j − r̄i)(r̃2
M,t−j − r2

M),

where r̃i,t−j is the monthly return rate of stock i in month t− j, r̃M,t−j is the monthly return

rate of the value-weighted market portfolio in month t− j, and r̄i, r̄M and r2
M are the sample

means of r̃i,t, r̃M,t, and r̃2
M,t, respectively.

At each t, we classify stocks into 10 covariance-sorted groups based on their pre-ranking

covariance. Group 1 (10) contains stocks with the lowest (highest) covariance. For each

group, we build an equal-weighted portfolio. Then, we construct a spread portfolio (10-1)

that longs Portfolio 10 and shorts Portfolio 1. We then calculate the next month (t + 1)’s

post-ranking portfolio returns for these portfolios and repeat the procedure for the next

month. Similarly, we construct the coskewness-sorted portfolios.

Table III reports the average next month’s returns of covariance-sorted portfolios and

coskewness-sorted portfolios for the entire period, overweighting periods and underweighting

15CRSP is a provider of historical options data for use in empirical research and econometric studies. We
access CRSP via Wharton Research Data Services (WRDS) at http://www.whartonwrds.com.
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periods, respectively, where the overweighting periods and underweighting periods are deter-

mined by the index PWI1, as described earlier. We observe that the spread covariance-sorted

portfolio (10-1) has a significantly positive monthly return during the overweighting periods

and a significantly negative monthly return during the underweighting periods. Meanwhile,

the spread coskewness-sorted portfolio (10-1) has a significantly negative monthly return

during the overweighting periods and an insignificantly negative monthly return during the

underweighting periods. Moreover, the negative return of this spread portfolio nearly dou-

bles its size from an average of -1.01% monthly over the entire period to an average of -1.81%

monthly during the overweighting periods.

[Insert Table III here]

Figures 8 (a) and (b) plot the regression lines of the average next month’s returns on the

average covariance and on the average coskewness, respectively. The return–covariance line

has a steep upward (downward) slope during the overweighting (underweighting) periods.

The return–coskewness line has a steep downward slope during the overweighting periods

and a nearly flat slope during the underweighting periods. These findings are consistent

with our theoretical predictions in Section II.B. Finally, for the entire sample period, the

return–covariance line is almost flat, reconciling with the beta anomaly, and the return–

coskewness line is downward-sloping, conforming to the skewness-inclined preference that is

well documented in the literature.

[Insert Figure 8 here]

C. Two-way Sort Portfolio Analysis

Next, we conduct two-way sort portfolio analysis to separate the effects of covariance

and coskewness. For each month t from January 1996 to April 2016, we classify all the

stocks into five coskewness-sorted groups based on their pre-ranking coskewness. Then, in
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each coskewness-sorted group, we further group the stocks into five covariance-sorted groups

based on their pre-ranking covariance. Thus, there are now a total of 25 groups. For each

group, we construct the equal-weighted portfolio, calculate next month (t+1)’s post-ranking

portfolio returns, and repeat the procedure from the next month onwards. As the stocks have

similar values of coskewness within the same coskewness-sorted group, we can thereby control

the influence of the coskewness and compare the performance of the five covariance-sorted

portfolios.

Table IV reports the average next month’s returns for the entire period, overweight-

ing periods and underweighting periods, respectively, where the overweighting periods and

underweighting periods are determined by PWI1. We can see that with the coskewness con-

trolled, the spread portfolios (5-1) still have significantly positive monthly returns during the

overweighting periods and significantly negative monthly returns during the underweighting

periods.

[Insert Table IV here]

Similarly, we analyze the 25 covariance-coskewness-sorted portfolios based first on their

pre-ranking covariance and then on their pre-ranking coskewness, and report the results in

Table V. Again, with covariance controlled, the spread portfolios (5-1) have significantly neg-

ative monthly returns during the overweighting periods and insignificantly monthly returns

during the underweighting periods.

[Insert Table V here]

Our sort portfolio analysis suggests that one can significantly improve the performance

of the long-short covariance-sorted and coskewness-sorted strategies by making use of the

additional information from the probability weighting indices proposed in this paper. It

confirms that probability weighting is an important factor for pricing securities and building

profitable portfolios.
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D. Fama-MacBeth Cross-Sectional Regression

We conduct a Fama-MacBeth regression (Fama and MacBeth, 1973) to investigate the

impact of probability weighting on cross-sectional asset pricing. Following Bali, Engle, and

Murray (2016), we first compute the covariance and coskewness of risky stock i for each

month t from January 1996 to April 2016, by means of a 60-month-window regression:

r̃i,τ = ki,t + covariancei,tr̃M,τ + coskewnessi,tr̃
2
M,τ + εi,τ , τ = t− 59, · · · , t,

where ki,t is the intercept and εi,τ the residual. In contrast to computing the covariance and

coskewness from the samples directly, as in Subsection III.B and III.C, the above regression

rules out interactions between covariance and coskewness. Next, for each t, we consider the

following cross-sectional regression:

r̃i,t+1 = kt + Atcovariancei,t +Btcoskewnessi,t, i = 1, · · · , n.

The significance of the risk premiums A and B is determined by a t-test on the time series

{At} and {Bt}.16

Table VI reports the Fama-MacBeth regression results, in which the market overweight-

ing and underweighting periods are divided by the index PWI1. If we do not separate the

time periods based on probability weighting, the overall risk premium of covariance, A, is

not significant and the risk premium of coskewness, B, is modestly negative. These are con-

sistent with the empirical findings in the literature. When we do separate the whole period

16Besides Bali et al. (2016)’s approach, Harvey and Siddique (2000) propose to compute covariancei,t and
coskewnessi,t by the following:

r̃i,τ = ki,t + covariancei,tr̃M,τ + εi,τ , τ = t− 59, · · · , t,

coskewnessi,t =
1
59

∑59
j=0(εi,t−j)(r̃

2
M,t−j − r2M )√

1
60

∑59
j=0 ε

2
i,t−j · 1

59

∑59
j=0(r̃M,t−j − r̄M )2

,

where r̄M and r2M are the sample means of r̃M,τ and r̃2M,τ , respectively. We obtain the same results based
on this method (omitted here due to space).
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into two regimes (overweighting and underweighting), however, A becomes significantly pos-

itive during overweighting periods and significantly negative during underweighting periods,

and B almost doubles its overall value during overweighting periods yet becomes insignifi-

cant during underweighting periods. Again, these results reaffirm our theoretical and prior

empirical findings.

[Insert Table VI here]

Finally, we note that during overweighting periods, the mean-covariance tradeoff and

mean-coskewness tradeoff are statistically significant. Indeed, Table VII shows that the

standard deviation of covariance is 0.8586 and that of coskewness is 10.8123. Thus, during

an overweighting period, a one-standard-deviation increase in covariance is associated with

a roughly 0.76% (the standard deviation of covariance times the coefficient A, i.e., 0.8586×

8.888×10−3) increase in expected monthly return, and a one-standard-deviation decrease in

coskewness is associated with a roughly 0.89% (the standard deviation of coskewness times

the coefficient B, i.e., (−10.8123) × (−0.823) × 10−3) increase in expected monthly return.

This finding strengthens the notion that probability weighting has important implications

in pricing and investment.

[Insert Table VII here]

E. Robustness of Results with Other Control Variables

Finally, we conduct a Fama-MacBeth regression to test the robustness of our main find-

ings after controlling six other variables. These control variables are Size (Size), Book-to-

market ratio (BM), Momentum (Mom), Short-term reversal (Rev), Idiosyncratic volatility

(IV ol), and Idiosyncratic skewness (ISkew). Among them, the first four are well-studied

factors long known to be relevant in asset pricing, and the last two are relatively new in the

literature. Liu et al. (2018) argue that the beta anomaly arises from beta’s positive correla-
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tion with idiosyncratic volatility (IVol). Barberis and Huang (2008) find that CPT investors

are willing to pay more for lottery-like stocks. This type of stocks has high idiosyncratic

skewness, which could be largely independent of the co-skewness with the market. If proba-

bility weighting has an impact on the latter, as we have demonstrated, then, very likely, it

has an impact on the former as well.

Following Bali et al. (2016), these control variables are computed as follows

Sizei,t = log

(
PRCi,t · SHROUTi,t

1000

)
,

BMi,t = log

(
1000 ·BEi,y

PRCi,y · SHROUTi,y

)
,

Momi,t = 100

[
11∏
j=1

(r̃i,t−j + 1)− 1

]
,

Revi,t = 100 · r̃i,t,

IV oli,t = 100 ·
√

1

56

∑59
j=0 ε

2
i,t−j ·

√
12,

ISkewi,t =
1
60

∑59
j=0 ε

3
i,t−j(

1
60

∑59
j=0 ε

2
i,t−j

)3/2
,

where y is the end of a fiscal year, t is the end of a month between June of year y + 1, and

May of year y + 2, PRCi,t is the price of stock i at t, SHROUTi,t is the number of shares

outstanding of stock i at t, BEi,y is the book value of common equity of stock i at y, PRCi,y

is the price of stock i at y, SHROUTi,y is the number of shares outstanding of stock i at

y, r̃i,t−j is the return rate of stock i during month t − j, and εi,t−j, j = 0, · · · , 59, are the

residuals of the following regression:

r̃i,τ = ki,t + δ1
i,tMKTτ + δ2

i,tSMBτ + δ3
i,tHMLτ + εi,τ , τ = t− 59, · · · , t,

where MKTτ is the return of the market factor during month τ and SMBτ and HMLτ are

the returns of the size and value factor mimicking portfolios, respectively, during month τ .
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We consider three Fama-MacBeth regressions, i = 1, · · · , n,

I : r̃i,t+1 = δ0,t + Atcovariancei,t +Btcoskewnessi,t + δ3,tIV oli,t + δ4,tISkewi,t,

II : r̃i,t+1 = δ0,t + Atcovariancei,t +Btcoskewnessi,t + δ3,tIV oli,t + δ4,tISkewi,t

+ δ5,tSizei,t + δ6,tBMi,t,

III : r̃i,t+1 = δ0,t + Atcovariancei,t +Btcoskewnessi,t + δ3,tIV oli,t + δ4,tISkewi,t

+ δ5,tSizei,t + δ6,tBMi,t + δ7,tMomi,t + δ8,tRevi,t.

The regression results, including the ones without these control variables, are reported in

Table VIII. They show that even with the commonly used variables controlled in a cross-

sectional analysis, our main empirical finding that the risk premium of covariance (coskew-

ness) is significantly positive (negative) during overweighting periods and significantly neg-

ative (insignificant) during underweighting periods still stands.

It is interesting to note that, in Table VIII, IVol exhibits a significantly negative re-

lationship with expected return only during underweighting periods. In other words, the

mispricing (the negative risk premiums for beta and idiosyncratic volatility) only appears

when investors underweight the tail risk, which echoes the finding in Liu et al. (2018). On

the other hand, similar to coskewness, ISkew shows a significantly negative relation with ex-

pected return only during overweighting periods. This implies that overweighting both tails

leads to RDUT investors developing a strong taste for both coskewness and idiosyncratic

skewness.

[Insert Table VIII here]
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IV. Conclusion

We show that probability weighting is a key driver in beta and coskewness pricing. Indi-

viduals tend to overweight or underweight the two tails simultaneously. Whether they over-

weight or underweight changes dynamically over time, but the total length of overweighting

periods is comparable to that of underweighting periods. If we analyze a sufficiently long

sample period, the aggregate effects of overweighting and underweighting may cancel out,

potentially deceiving us into overlooking the significance of probability weighting. It is,

therefore, important to separate out the overweighting and underweighting periods and to

study them individually and respectively. In doing so, as demonstrated in this paper, we

are able to understand the significant role that probability weighting plays in pricing and in

building profitable portfolios.

We carry out the theoretical analysis using an RDUT model, and confirm its implications

with empirical tests. We believe that our model offers a partial explanation of the beta

anomaly and hints at a viable way to potentially resolve other puzzles in asset pricing.

Appendix A. Proof of Theorem 2

When the market is in equilibrium, the total return of the optimal portfolio of the repre-

sentative investor equals the total return of the market portfolio, i.e., R̃∗P = R̃M . Applying

Theorem 5.2 of Xia and Zhou (2016), we obtain

m̃ = (λ∗)−1w′(1− FR̃M (R̃M))u′(R̃M).

However, the pricing formula of the risk-free asset yields

1 = E[m̃(1 + rf )] = E[m̃](1 + rf ),
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which in turn implies

λ∗ = (1 + rf )E
[
w′(1− FR̃M (R̃M))u′(R̃M)

]
. (A1)

This establishes (4).

Next we rewrite

m̃ = (λ∗)−1w′(1− FR̃M (1 + r̃M))u′(1 + r̃M).

Applying the Taylor expansion up to the second order of r̃M , we can express the pricing

kernel as follows:17

m̃ =(λ∗)−1w′(1− FR̃M (1))u′(1)

+ (λ∗)−1
[
w′(1− FR̃M (1))u′′(1)− w′′(1− FR̃M (1))u′(1)fR̃M (1)

]
r̃M

+
1

2
(λ∗)−1

{
w′(1− FR̃M (1))u′′′(1)− w′′(1− FR̃M (1))[2u′′(1)fR̃M (1) + u′(1)f ′

R̃M
(1)]

+ w′′′(1− FR̃M (1))u′(1)f 2
R̃M

(1)
}
r̃2
M + o(r̃2

M). (A2)

Applying the pricing formula to the risky assets, we have

E[m̃(1 + r̃i)] = 1, i = 2, 3, · · · , n.

Hence,

Cov(m̃, (1 + r̃i)) + E[1 + r̃i]E[m̃] = 1,

17Here, we Taylor expand FR̃M
(1 + r̃M ) around 1, then expand w′(1−FR̃M

(1 + r̃M )) around 1−FR̃M
(1),

and expand u′(1 + r̃M ) around 1.
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or

E[r̃i] =
1− Cov(m̃, r̃i)

E[m̃]
− 1 = rf + ACov(r̃i, r̃M) +

1

2
BCov(r̃i, r̃

2
M) + o(r̃2

M),

thanks to (A1) and (A2).

Appendix B. Proof of Proposition 1

i) When α < 1, w is inverse S-shaped. Hence, 1− FR̃M (1) lies within the convex domain

of w under the assumptions of the proposition. Therefore, the two terms inside the brackets

of (6) are both negative. This implies A > 0.18

ii) When α > 1, w is S-shaped, and 1 − FR̃M (1) lies within the concave domain of w.

With w(p) = exp(−(− log(p))α), we have

A ≡−
w′(1− FR̃M (1))

E[w′(1− FR̃M (R̃M))u′(R̃M)]

[
u′′(1)−

w′′(1− FR̃M (1))

w′(1− FR̃M (1))
u′(1)fR̃M (1)

]

=−
w′(1− FR̃M (1))

E[w′(1− FR̃M (R̃M))u′(R̃M)]

[
u′′(1)− αyα0 − α + 1− y0

(1− FR̃M (1))y0

u′(1)fR̃M (1)

]
,

where y0 = − log(1 − FR̃M (1)). It follows from the assumptions of the proposition that

0 ≤ y0 < 1, which implies limα→+∞ αy
α
0 − α = −∞. Hence,

lim
α→+∞

−αy
α
0 − α + 1− y0

(1− FR̃M (1))y0

u′(1)fR̃M (1) = +∞.

Thus, there must exist α∗ > 1 such that when α > α∗, − αyα0−α+1−y0
(1−F

R̃M
(1))y0

u′(1)fR̃M (1) > −u′′(1),

implying A < 0.

18This part of the proof does not depend on the specific form of w; it only requires 1 − FR̃M
(1) to be in

the convex domain of w.
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Appendix C. Proof of Proposition 2

With w(p) = exp(−(− log(p))α), we have

B =−
w′(1− FR̃M (1))u′(1)

E[w′(1− FR̃M (R̃M))u′(R̃M)]

[
γ(γ + 1)

− αyα0 − α + 1− y0

(1− FR̃M (1))y0

(−2γfR̃M (1) + f ′
R̃M

(1))

+
(αyα0 − α + 1− y0)2 + (1− α) + (1− α− y0)(αyα0 − y0)

(1− FR̃M (1))2y2
0

f 2
R̃M

(1)

]

:=−
w′(1− FR̃M (1))u′(1)

E[w′(1− FR̃M (R̃M))u′(R̃M)]
[B1 +B2 +B3],

where B1, B2, B3 denote the three terms in the brackets, and y0 = − log(1 − FR̃M (1)).

Clearly, B1 > 0.

i) When 0 < α < 1 and γ ≥
f ′
R̃M

(1)

2fR̃M
(1)

, we have B2 ≥ 0. We now examine B3. It follows

from 1− FR̃M (1) > e−1 that 0 ≤ y0 < 1. On the other hand, the first-order condition of the

function (αyα0 − y0) is

∂

∂y0

(αyα0 − y0) = α2yα−1
0 − 1 = 0,

whose solution is y∗0 = α
2

1−α ∈ (0, 1). Then, the extreme values of this function on y0 ∈ [0, 1]

are

max
y0∈[0,1]

(αyα0 − y0) = max {α0α − 0, α1α − 1, α
1+α
1−α − α

2
1−α} = α

1+α
1−α − α

2
1−α > 0,

min
y0∈[0,1]

(αyα0 − y0) = min {α0α − 0, α1α − 1, α
1+α
1−α − α

2
1−α} = α− 1 < 0.

When 1− α− y0 > 0, we have

(1− α) + (1− α− y0)(αyα0 − y0) ≥ (1− α) + (1− α− 0)(α− 1) = (1− α)α > 0.
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When 1− α− y0 < 0, we have

(1− α) + (1− α− y0)(αyα0 − y0)

≥(1− α) + (1− α− 1)(α
1+α
1−α − α

2
1−α )

=(1− α
2

1−α )(1− α)

>0.

When 1− α− y0 = 0, we have

(1− α) + (1− α− y0)(αyα0 − y0) = (1− α) > 0.

This establishes that B3 > 0, leading to B < 0. (Here we have actually proved that, in this

case, w′′′(1− FR̃M (1)) > 0.)

ii) When α > 1, we consider B1 +B2 +B3 as a function of γ and α:

B1 +B2 +B3 = γ2 + (1 + 2g1(α)fR̃M (1))γ − g1(α)f ′
R̃M

(1) + g2(α)f 2
R̃M

(1),

where g1(α) and g2(α) are continuous functions of α:

g1(α) :=
αyα0 − α + 1− y0

(1− FR̃M (1))y0

,

g2(α) :=
(αyα0 − α + 1− y0)2 + (1− α) + (1− α− y0)(αyα0 − y0)

(1− FR̃M (1))2y2
0

.

It is easy to show that, for any given finite α > 1, there exists a threshold

γ(α) :=


−(1+2g1(α)f

R̃M
(1))+

√
(1+2g1(α)f

R̃M
(1))2−4(−g1(α)f ′

R̃M
(1)+g2(α)f2

R̃M
(1))

2
,

if (1 + 2g1(α)fR̃M (1))2 − 4(−g1(α)f ′
R̃M

(1) + g2(α)f 2
R̃M

(1)) ≥ 0,

0, if (1 + 2g1(α)fR̃M (1))2 − 4(−g1(α)f ′
R̃M

(1) + g2(α)f 2
R̃M

(1)) < 0,
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such that B1 +B2 +B3 > 0 (and, hence, B < 0) whenever γ > γ(α).

iii) As 0 ≤ y0 < 1 and 1− FR̃M (1) lies within the concave domain of w, we have

αyα0 − α + 1− y0 ≤ 0.

Thus, B2 ≤ 0 when γ ≥ γ∗. Now,

B1 +B3 = γ(γ + 1) + g2(α)f 2
R̃M

(1).

It is easy to prove that, for any given finite α > 1, there must exist a threshold

γ(α) :=


√

1−g2(α)f2
R̃M

(1)−1

2
, if g2(α) ≤ 0,

0, if g2(α) > 0,

such that B1 +B3 < 0 when 0 ≤ γ < γ(α). This completes the proof.
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Table II Summary statistics of IFI, IHI, implied α, PWI1, and PWI2. For implied α, the
percentage of overweighting is that of the index being less than 1. For all the other indices,
the percentage of overweighting is that of the corresponding index being greater than 1.

Minimum
25th

percentile
Median

75th
percentile

Maximum
Percentage of
overweighting

IFI 0.000 0.388 1.319 2.600 5.865 56.6
IHI 0.000 0.312 1.233 2.256 4.703 57.4

Implied α 0.375 0.698 0.895 1.203 2.470 58.6
PWI1 0.000 0.401 1.512 2.447 5.103 56.5
PWI2 0.405 0.831 1.166 1.434 2.667 58.6
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Table III Average next month’s returns of covariance-sorted portfolios and coskewness-sorted portfolios. The overweighting
periods and underweighting periods are separated by the index PWI1. All periods (All), overweighting periods (Over), and
underweighting periods (Under) include 244 months, 122 months, and 122 months, respectively. The spread portfolio (10-1) is
constructed by longing the 10th portfolio and shorting the 1st portfolio. The t-statistics of the returns of the spread portfolios
are reported. ***, ** , and * denote significance at the 1%, 5%, and 10% levels, respectively.

Panel A: covariance-sorted portfolios

1 2 3 4 5 6 7 8 9 10 (10-1)
t-statistic
of (10-1)

All 1.05% 1.16% 1.18% 1.21% 1.34% 1.27% 1.21% 1.33% 1.18% 1.18% 0.13% (0.23)
Over 1.09% 1.16% 1.21% 1.25% 1.47% 1.63% 1.63% 2.08% 2.24% 2.75% 1.65%* (1.77)
Under 1.01% 1.16% 1.16% 1.16% 1.22% 0.91% 0.80% 0.58% 0.12% -0.40% -1.40%** (-2.48)

Panel B: coskewness-sorted portfolios

1 2 3 4 5 6 7 8 9 10 (10-1)
t-statistic
of (10-1)

All 1.73% 1.46% 1.42% 1.40% 1.20% 1.14% 1.20% 0.93% 0.91% 0.72% -1.01%*** (-3.04)
Over 2.85% 2.24% 1.97% 1.79% 1.47% 1.49% 1.53% 1.07% 1.05% 1.04% -1.81%*** (-3.01)
Under 0.61% 0.67% 0.87% 1.01% 0.93% 0.79% 0.87% 0.80% 0.78% 0.39% -0.21% (-0.79)
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Table IV Average next month’s returns of coskewness-covariance-sorted portfolios. The
overweighting periods (Over) and underweighting periods (Under) are separated by PWI1.
The spread portfolio (5-1) is constructed by longing the 5th portfolio and shorting the 1st
portfolio. The t-statistics of the returns of the spread portfolios are reported. ***, **, and
* denote significance at the 1%, 5%, and 10% levels, respectively.

Periods coskewness
covariance

1 2 3 4 5 (5-1)
t-statistic
of (5-1)

All

1 1.12% 1.27% 1.33% 1.55% 1.43% 0.32% (0.76)
2 1.17% 1.27% 1.26% 1.35% 1.19% 0.01% (0.03)
3 1.30% 1.33% 1.37% 1.09% 1.03% -0.27% (-0.57)
4 1.22% 1.18% 1.28% 1.19% 1.38% 0.17% (0.32)
5 1.00% 0.77% 1.10% 1.07% 1.02% 0.02% (0.03)

Over

1 1.28% 1.38% 1.72% 2.19% 2.63% 1.34%* (1.87)
2 1.23% 1.18% 1.45% 2.16% 2.67% 1.44%* (1.87)
3 1.26% 1.43% 1.57% 1.61% 2.28% 1.02% (1.32)
4 1.21% 1.20% 1.46% 1.91% 2.79% 1.58%* (1.83)
5 0.87% 0.71% 1.34% 1.49% 2.23% 1.36%* (1.81)

Under

1 0.95% 1.16% 0.95% 0.91% 0.24% -0.71%* (-1.77)
2 1.12% 1.35% 1.07% 0.53% -0.29% -1.41%*** (-3.05)
3 1.33% 1.23% 1.17% 0.57% -0.23% -1.56%*** (-2.91)
4 1.22% 1.16% 1.11% 0.47% -0.03% -1.25%** (-2.43)
5 1.14% 0.83% 0.86% 0.65% -0.20% -1.33%** (-2.58)
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Table V Average next month’s returns of covariance-coskewness-sorted portfolios. The
overweighting periods (Over) and underweighting periods (Under) are separated by PWI1.
The spread portfolio (5-1) is constructed by longing the 5th portfolio and shorting the 1st
portfolio. The t-statistics of the returns of the spread portfolios are reported. ***, **, and
* denote significance at the 1%, 5%, and 10% levels, respectively.

Periods covariance
coskewness

1 2 3 4 5 (5-1)
t-statistic
of (5-1)

All

1 1.30% 1.16% 1.14% 1.05% 0.87% -0.42% (-1.44)
2 1.46% 1.25% 1.23% 1.04% 1.00% -0.46%** (-2.32)
3 1.61% 1.32% 1.29% 1.21% 1.09% -0.52%** (-2.45)
4 1.61% 1.19% 1.32% 1.13% 1.10% -0.51%** (-2.31)
5 1.41% 1.14% 1.25% 1.07% 1.02% -0.39% (-1.33)

Over

1 1.80% 1.17% 1.12% 0.85% 0.68% -1.12%** (-2.10)
2 1.61% 1.30% 1.16% 1.08% 0.99% -0.62%* (-1.83)
3 2.13% 1.53% 1.37% 1.37% 1.33% -0.80%** (-2.33)
4 2.48% 1.88% 1.81% 1.57% 1.52% -0.96%*** (-2.70)
5 2.93% 2.35% 2.54% 2.43% 2.21% -0.72% (-1.36)

Under

1 0.80% 1.16% 1.15% 1.25% 1.07% 0.27% (1.16)
2 1.31% 1.20% 1.31% 1.00% 1.00% -0.31% (-1.46)
3 1.09% 1.11% 1.21% 1.04% 0.86% -0.23% (-0.95)
4 0.75% 0.49% 0.83% 0.68% 0.68% -0.07% (-0.25)
5 -0.11% -0.07% -0.04% -0.29% -0.18% -0.07% (-0.25)
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Table VI Fama-MacBeth regressions. All period (All), underweighting periods (Under), and
overweighting periods (Over) are identified by PWI1 index. The data cover January 1996
to April 2016. The average values of the coefficients A and B, which are multiplied by 1000,
are reported above, and the corresponding t-statistics are reported below, in parentheses.
***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

A B A B A B

All
1.507 -0.438***
(0.65) (-2.87)

Over
8.888** -0.823***

(2.20) (-2.89)

Under
-5.873*** -0.053

(-2.74) (-0.53)
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Table VII Summary statistics of the covariance and coskewness in Fama-MacBeth regres-
sion. The covariance and coskewness of risky stock i for each month t from Jan. 1996 to Apr.
2016, by the 60-month-window regression, r̃i,τ = ki,t+ covariancei,tr̃M,τ + coskewnessi,tr̃

2
M,τ +

εi,τ , τ = t− 59, · · · , t.

Minimum
25th

percentile
Median

75th
percentile

Maximum
Standard
Deviation

covariance -7.9545 0.5770 1.0239 1.5692 15.2319 0.8586
coskewness -141.0023 -4.9601 -0.6000 3.3440 320.0555 10.8123
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Figure 1. Prelec’s probability weighting functions with different α’s. When α < 1, it has
an inverse S-shape (i.e., overweighting both tails). When α > 1, it has an S-shape (i.e.,
underweighting both tails). The point p∗ = e−1 separates the convex and concave domains
of the probability weighting functions.
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Figure 3. Relationship between A and α. The probability weighting function is that of
Prelec with parameter α and the utility is CRRA with relative risk aversion γ = 2. The
market return follows a skew-normal distribution with mean 7.6%, standard deviation 15.8%,
and skewness -0.339.
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Figure 4. Relationship between B and γ. The probability weighting function is that of
Prelec with α = 0.5 or α = 1.5 and the utility is CRRA with relative risk aversion γ. The
market return follows a skew-normal distribution with mean 7.6%, standard deviation 15.8%,
and skewness -0.339.
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Figure 5. Two typical option-implied probability weighting functions from our empirical
study. The weighting function on September 30, 2008 is inverse S-shaped, implying over-
weighting of both tails. Among the 244 months tested, there are 126 months (about 51.6%)
in which the implied weighting functions are inverse S-shaped. The weighting function on De-
cember 30, 2006 is S-shaped, yielding underweighting of both tails. Among the 244 months,
there are 92 months (about 37.7%) in which the implied weighting functions are S-shaped.
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Figure 6. Implied fear index (the solid blue line) and implied hope index (the dotted red
line). The dashed black line separates overweighting and underweighting.
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Figure 7. Option implied probability weighting indices PWI1 and PWI2 (the solid red
lines). The dashed blue line is the median of each index.
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Figure 8. The relationship between the average next month’s returns and the average
covariance (coskewness) of the ten covariance-sorted portfolios (ten coskewness-sorted port-
folios).

(a) Covariance-sorted portfolios

(b) Coskewness-sorted portfolios
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