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Abstract:

We study a pure-exchange incomplete-market economy with heterogeneous agents. In

each period, the agents choose how much to save (i.e., invest in a risk-free bond), how

much to consume, and which bundle of goods to consume while their endowments are

fluctuating. We focus on a competitive stationary equilibrium (CSE) in which the

wealth distribution is invariant, the agents maximize their expected discounted utility,

and both the prices of consumption goods and the interest rate are market-clearing.

Our main contribution is to extend some general equilibrium results to an incomplete-

market Bewley-type economy with many consumption goods. Under mild conditions

on the agents’ preferences, we show that the aggregate demand for goods depends only

on their relative prices and that the aggregate demand for savings is homogeneous of

degree in prices, and we prove the existence of a CSE. When the agents’ preferences

can be represented by a CES (constant elasticity of substitution) utility function with

an elasticity of substitution that is higher than or equal to one, we prove that the CSE

is unique. Under the same preferences, we show that a higher inequality of endowments

does not change the equilibrium prices of goods, and decreases the equilibrium interest

rate. Our results shed light on the impact of market incompleteness on the properties

of general equilibrium models.
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1 Introduction

We extend the classic Arrow-Debreu model to a dynamic incomplete- market general equilibrium

model with a continuum of agents, in which each agent has an individual state that corresponds to

his wealth level. There is an infinite number of periods and in each period agents participate in a

pure-exchange Arrow-Debreu model (as in the seminal paper by Arrow and Debreu (1954)). Each

agent has a different wealth level and different preferences over consumption bundles, and thus the

agents are heterogeneous in the static pure-exchange Arrow-Debreu model. In each period, given

the agents’ wealth levels and their preferences over consumption bundles, the agents decide how

much to spend on a bundle of goods to be consumed in that period, which bundle of goods to

consume, and how much to save for future consumption. In the tradition of the Bewley models (see

Ljungqvist and Sargent (2012) for a textbook treatment), the markets are incomplete. The agents

face uninsurable idiosyncratic risk and can transfer assets from one period to another only by saving

in a risk-free bond. In each period, the agents receive a random endowment vector. We assume

that all random shocks are idiosyncratic, ruling out aggregate random shocks that are common to

all agents. As in Arrow and Debreu (1954), the agents are price takers, that is, the agents take the

prices of the consumption goods and the risk-free bond’s rate of return as given. We focus on a

pure-exchange economy without production, and hence we extend Huggett’s model (Huggett, 1993)

to a setting with many consumption goods.1 In Huggett’s model there is only one consumption

good. In contrast, in the model presented in this paper, there are many consumption goods and

each good has a price, which is a typical feature of many economies of interest. Thus, in addition

to the standard inter-temporal consumption-savings decision, the agents also make a static decision

of how to allocate their spending between the different consumption goods. As discussed below,

this leads to several complications in the analysis because the aggregate demand for consumption

goods and the aggregate demand for savings are coupled through the consumption goods’ prices

and the interest rate.

The solution concept that we study in this paper is competitive stationary equilibrium. A

competitive stationary equilibrium (CSE) consists of a wealth distribution, prices of goods, an

interest rate, savings policy functions, and demand functions for goods, such that: (i) given the

prices of the goods and the interest rate, the agents choose a savings policy function and a demand

function for goods in order to maximize their expected discounted utility; (ii) the wealth distribution

induced by the agents’ decisions is invariant; (iii) the prices of the goods and the interest rate are

market-clearing, i.e., for each good, the aggregate supply of that good equals the aggregate demand

for that good, and the aggregate supply of savings equals the aggregate demand for savings. We

note that stationary equilibrium is a popular solution concept in Bewley type models.2

1For similar models with one consumption good see Lucas (1980), Geanakoplos et al. (2014), and
Hu and Shmaya (2019). In Bewley (1986) there are multiple consumption goods but the interest rate is fixed and is
assumed to be 0 (see also Karatzas et al. (1994)). In our paper the interest rate is determined in equilibrium as it
is in Huggett (1993).

2Computation of a non-stationary equilibrium is typically infeasible. The notion of stationary equilibrium is
conceptually similar to the notion of mean field equilibrium. In Section 3.4 we compare the solution concept used
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In this paper we mainly focus on the theoretical properties of CSE. Despite the recent popu-

larity of Bewley-type models,3 general theoretical results such as the existence of an equilibrium,

the uniqueness of an equilibrium, and analytical comparative statics results, have remained lim-

ited. Previous existence results in Bewley-type models rely on the intersection of the supply and

demand curves which can be used in an economy with one asset (see Açıkgöz (2018) and Zhu

(2020)); or on casting the heterogeneous-agent macro model as a discrete time mean field model

(see Acemoglu and Jensen (2015) and Light and Weintraub (2018)). These methods cannot be

used in our setting or more generally in an heterogeneous-agent incomplete-market setting with

more than one asset or more than one consumption good, features typical of many models that

are studied the applied literature. The paper’s main contribution is to establish some general equi-

librium results in an incomplete-market Bewley-type model with many consumption goods. We

believe that our results and methods can be extended in the future to study other Bewley-type

models with more than one asset where, to the best of our knowledge, there are no general results

that guarantee the existence or uniqueness of a stationary equilibrium. We note that proving the

existence of a competitive stationary equilibrium in this setting is challenging, as we discuss below.

Our model, which combines a Bewley-type model with the classic Arrow-Debreu model, can be

used to study the relationship between the consumption goods’ prices and other important eco-

nomic variables such as the risk-free rate and the wealth distribution4 in the popular framework of

heterogeneous-agent models. For example, how does an increase in income inequality influence the

relative prices? We provide a first result in this direction in Section 3.3.

We now explain our contributions in more detail.

Existence. One of our main theoretical contributions is to provide a proof for the existence of a

CSE under fairly general conditions on the agents’ preferences (see Theorem 1). In a Bewley model

setting, as we discussed above, previous existence results assume that there is one consumption

good (e.g., Açıkgöz (2018)) or that the interest rate is fixed and is not determined in equilibrium

(e.g., Bewley (1986)). These assumptions simplify the analysis of Bewley models considerably as

they decouple the aggregate demand for savings and the aggregate demand for consumption goods.

Without this decoupling, it is not clear that even the basic properties of the excess demand function

such as Warlas’ law and homogeneity hold. In addition, proving the needed properties of the excess

demand function that imply the existence of a CSE is challenging. Nonetheless, we show that some

well-known results that apply to the static Arrow-Debreu model also hold in the incomplete-market

Bewley-type model that we study. In Proposition 1 we show that the excess demand for savings

is homogeneous of degree one in the goods’ prices while the excess demand for each consumption

in this paper - competitive stationary equilibrium - with mean field equilibrium.
3Bewley models feature rich heterogeneity and are widely used to study many economic phenomena (see

Heathcote et al. (2009), De Nardi (2015), and Benhabib and Bisin (2016), for surveys). These include wealth dis-
tribution (Benhabib et al., 2015), monetary transmission mechanisms (Kaplan et al., 2018), aggregate demand
(Auclert and Rognlie, 2018), and many more.

4There is a vast literature on asset pricing and wealth inequality in models other than Bewley-type models (for
example, Judd et al. (2003), Blume and Easley (2006), Krueger and Lustig (2010), and Kubler and Schmedders
(2015), just to name a few).
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good is homogeneous of degree zero. This result implies that the aggregate demand for goods and

the aggregate supply of goods depend only on their relative prices, similarly to the static Arrow-

Debreu model, and thus the competitive stationary equilibrium depends only on the relative prices

of goods. We also show that the excess demand satisfies Walras’ law and some boundary conditions

that are crucial in order to establish the existence of a CSE. Using these properties of the excess

demand function and the properties of the savings policy function, we establish the existence of a

CSE. Welfare theorems (e.g., Arrow (1951)) that apply to the static Arrow-Debreu model do not

hold in our setting because of market incompleteness.5

Uniqueness. We prove the uniqueness of a CSE for the special case that the agents’ preferences

over bundles can be represented by a CES (constant elasticity of substitution) utility function with

an elasticity of substitution that is equal to or higher than one (see Theorem 2). This assumption on

the agents’ preferences implies that the consumption goods are gross substitutes, i.e., the demand

for each consumption good increases with the prices of the other consumption goods. We note that

the standard argument for proving the uniqueness of an equilibrium in the static Arrow-Debreu

model cannot be applied in our setting because of the coupling between the aggregate demand for

consumption goods and the aggregate demand for savings. The aggregate demand for consumption

goods is not necessarily increasing with the interest rate and the aggregate demand for savings is

not necessarily increasing with the prices of consumption goods. Thus, the excess demand function

does not necessarily satisfy the gross substitutes property. We overcome this difficulty by using the

properties of the CES utility function, the specific economy that we study, and the results in Light

(2020).

Comparative statics. Our main result regarding the wealth distribution’s influence on the

prices of goods and on the interest rate is Theorem 3. We prove that if the agents’ preferences

over bundles can be represented by a CES utility function with an elasticity of substitution that

is higher than one, then an increase in the risk of the random future endowments (in the sense

of the convex stochastic order) changes the CSE in the following way: the interest rate decreases,

and the prices of goods do not change. In the classic Arrow-Debreu model the result that the

prices of goods do not change when the wealth inequality is higher is intuitive because the demand

for each good is linear in wealth. Thus, the demand for each good does not change when the

wealth inequality is higher. In our setting, under a CES utility function, the marginal propensity

to consume is decreasing, so the demand for each good is concave in wealth. An increase in the

risk of the random future endowments increases the aggregate savings because of the precautionary

savings effect. Thus, the aggregate demand for each good decreases. At the same time, a decrease

in the interest rate decreases the aggregate savings because of the substitution effect. It turns out

that in general equilibrium, the precautionary savings effect and the substitution effect offset each

other exactly and the prices of goods do not change.

The rest of the paper is organized as follows. Section 2 presents the model. In Section 2.1 we

5See Davila et al. (2012), Shanker (2017), Nuno and Moll (2018), and Park (2018) for a study of welfare maxi-
mization in Bewley models.
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define the CSE. In Section 3 we present the main results of this paper. In Section 3.1 we establish

the existence of a CSE. In Section 3.2 we provide conditions that ensure the uniqueness of a CSE.

In Section 3.3 we discuss how the wealth distribution influences the prices of goods and the interest

rate. In Section 3.4 we compare the current paper to recent work on mean field games. In Section

3.5 we extend the model to ex-ante heterogeneous agents. In Section 4 we provide final remarks,

followed by an Appendix containing proofs.

2 The model

There is a continuum of agents of measure 1. Every agent has an individual state. We assume

for now that the agents are ex-ante identical. In Section 3.5 we extend the model to ex-ante

heterogeneous agents. There are n goods where n ≥ 2. Let Yi be a random variable that describes

the evolution of good i’s endowment. We assume that Yi has a finite6 support Yi and a probability

mass function ei(y) := Pr(Yi = y) for all 1 ≤ i ≤ n and y ∈ Yi. Let Y = Y1 × ... × Yn and let

e(y) = e(y1, . . . , yn) := Pr(Y1 = y1, . . . , Yn = yn) be the joint probability mass function where we

denote elements in R
n by bold letters. In each period t = 1, 2, 3 . . . the agents receive an endowment

vector y ∈ Y with probability e(y) > 0. We assume that y ≫ 0 for all y ∈ Y where y ≫ 0 means

that yi > 0 for all i = 1, . . . , n, and that there exists an element y′ in Y such that y′ − y ≫ 0 for

all y ∈ Y \ {y′}. We refer to e as the endowments process.

Denote the agents’ wealth at time t = 1 by a(1). In each period t = 1, 2, 3 . . ., after receiving

their endowment vector y(t), the agents choose a bundle of goods to consume in that period

(x(t) = (x1(t), . . . , xn(t)) ∈ R
n
+)

7 and choose how much to save in a risk-free bond for future

consumption. The price of good xi(t) is given by pi(t) > 0, so the price of a bundle x(t) is

p(t) · x(t) where p(t) · x(t) :=
∑

pi(t)xi(t) denotes the scalar product of two elements in R
n. The

agents’ savings rate of return is 1 + r(t) where r(t) is the interest rate in period t. The agents

are price takers, i.e., they take the sequence of prices {p(t), r(t)}∞t=1 as given where p(t) ≫ 0 and

r(t) > 0 for all t. If an agent’s wealth at time t is a(t), the agent’s wealth at time t + 1 when

y(t+ 1) is the realized endowment vector is

a(t+ 1) = (1 + r(t))(a(t) − p(t) · x(t)) + p(t+ 1) · y(t+ 1).

We assume that the agents can borrow, and the borrowing limit is given by b(t). Thus, a(t) −

p(t) · x(t) ≥ b(t) for each period t. We assume that the borrowing limit in period t is given by

b(t) = −
miny∈Y p(t)·y

r(t) . In the stationary environment that we will study in the next section, the

borrowing limit b(t) equals the natural borrowing limit (see Aiyagari (1994)).

We denote by C(a,p(t)) = [b(t)min{a,
∑n

i=1 pi (t) b/(1− r)2}] the interval from which an agent

may choose his level of savings when his wealth is a and the prices of goods are p(t).
∑n

i=1 pi(t)b/(1−

6All the results in this paper can be extended to the case that Yi has a compact support.
7As usual, the positive cone of Rn is denoted by R

n
+, i.e., R

n
+ = {x = (x1, . . . , xn) : xj ≥ 0 holds for all j =

1, . . . , n}.
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r)2 is an upper bound on savings that ensure compactness of the state space where b > 0. Because

we study a “real economy” the upper and lower bounds on savings depend on the prices. We

assume that the maximal level of savings that an agent can have is bounded to avoid technical

difficulties that arise in dynamic programming with unbounded rewards and to provide an upper

bound on savings that ensure existence when using numerical methods to find the equilibrium (see

Remark 1 for a discussion on the upper bound on savings). Using known results from the previous

literature on the income fluctuation problem, the upper bound on savings can be chosen so that it

never binds (see Remark 1).

We assume that the agents’ preferences over bundles are represented by a utility function

U : Rn
+ → R. For x,x′ ∈ R

n we write x ≥ x′ if xi ≥ x′i for all i = 1, ..., n. We say that U is

increasing if x ≥ x′ implies U(x) ≥ U(x′). We say that U is strictly increasing if x > x′ implies

U(x) > U(x′). Throughout the paper, we assume the following standard conditions on the utility

function.

Assumption 1 (i) The utility function U is strictly increasing, continuously differentiable, strictly

concave, and ∂U(0)
∂xj

= ∞ for some 1 ≤ j ≤ n.

(ii) For every p ≫ 0, the indirect utility function up(c) := U(x∗(c,p)) is continuously differen-

tiable and satisfies the following Inada conditions: limc→∞ u′
p
(c) = 0 and limc→0 u

′
p
(c) = ∞.8

Let A be the set of possible wealth levels that an agent can have, and let At := A× . . . ×A︸ ︷︷ ︸
t times

. A

strategy π for the agents is a function that assigns to every finite history at = (a(1), ..., a(t)) ∈ At

a feasible bundle x(t). A strategy π induces a probability measure over the space of all infinite

histories.9 We denote the expectation with respect to that probability measure by Eπ.

When the agents follow a strategy π and the sequence of prices is given by {p(t), r(t)}∞t=1, their

expected present discounted value is

Vπ(a) = Eπ

( ∞∑

t=1

βt−1U(π(a (1) , . . . , a (t))
)
,

where a (1) = a is the initial wealth and 1/2 < β < 1 is the agents’ discount factor. Denote

V (a) = sup
π

Vπ(a).

That is, V (a) is the maximal expected utility that an agent can have when his initial wealth is a.

We call V the value function.

8The assumption that u is continuously differentiable can be relaxed (part (i) implies that up(c) is concave so
we can replace the derivative by the right-hand-derivative).

9The probability measure on the space of all infinite histories AN is uniquely defined (see for example
Bertsekas and Shreve (1978)).
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2.1 Competitive stationary equilibrium

In this section we define a competitive stationary equilibrium (CSE). We first introduce some

notations that are necessary in order to define a CSE. In a CSE the prices of goods and the interest

rate are constant over time. For the rest of the section we assume that (p(t), r(t)) = (p, r) for all

t ∈ N.

We denote by b the agents’ savings in the next period. When the agents’ wealth is a, their next

period’s savings are b ∈ C(a,p), and the prices of goods are p, then the set of consumption bundles

available to the agents is given by X(a − b,p) = {x ∈ R
n
+ : p · x = a − b}. We sometimes change

variables and define c = a− b to the total consumption of the agents.

The minimal level of wealth that an agent can have when p ≫ 0 and r ∈ (0, 1) is

a(p, r) = (1 + r)b+min
y∈Y

p · y = −
(1 + r)miny∈Y p · y

r
+min

y∈Y
p · y = −

miny∈Y p · y

r

and the maximal level of wealth that an agent can have is

a(p, r) := (1 + r)

n∑

i=1

pib

(1− r)2
+max

y∈Y
p · y.

Hence, the set of possible wealth levels that an agent can have

A(p, r) := [a(p, r), a(p, r)]

is compact for all p ≫ 0 and r ∈ (0, 1). For the rest of the section we assume that p ≫ 0 and

r ∈ (0, 1).

Because for any p ≫ 0 and r ∈ (0, 1) the value function is bounded on the compact set A(p, r),

we can use standard dynamic programming arguments to solve the agents’ problem. Let B(A) be

the space of all bounded real-valued functions defined on a set A. For any p ≫ 0 and r ∈ (0, 1),

define the operator T : B(A(p, r)) → B(A(p, r)) by

Tf(a,p, r) = max
b∈C(a,p)

max
x∈X(a−b,p)

U(x) + β
∑

y∈Y

e(y)f((1 + r)b+ p · y,p, r).

The value function V is the unique fixed point of T , i.e., there is a unique function V ∈ B (A(p, r))

such that TV = V .10

We denote by x∗(a− b,p) the demand function of an agent, i.e.,

x∗(a− b,p) = argmax
x∈X(a−b,p)

U(x).

10The Banach-fixed point theorem (see Theorem 3.48 in Aliprantis and Border (2006)) shows that T has a
unique fixed point. Standard dynamic programming arguments (e.g., Blackwell (1965)) show that the value func-
tion V is the unique fixed point of T .
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Note that given the choice of the next’s period savings b, the decision of how to distribute the

spending a − b between the different consumption goods is a static decision. Also note that x∗ is

single-valued since U is strictly concave and continuous. We denote by g(a,p, r) the savings policy

function, i.e.,

g(a,p, r) = argmax
b∈C(a,p)

U(x∗(a− b,p)) + β
∑

y∈Y

e(y)V ((1 + r)b+ p · y,p, r). (1)

A standard dynamic programming argument (see Lemma 1 in the Appendix) shows that the savings

policy function is continuous and single-valued under Assumption 1.

Remark 1 For simplicity, we assume an exogenous upper bound on savings to prove that the

value function satisfies the Bellman equation and the savings policy function exists. Given previous

known results derived in the standard income fluctuation problem, this assumption is not, however,

necessary in order to prove that the value function satisfies the Bellman equation. Because the

decision of how to distribute consumption between the different goods is static, for a fixed vector of

positive prices p, we can reduce the single agent dynamic optimization problem to a standard income

fluctuation problem by defining the indirect utility function up(c) := U(x∗(c,p)). In this case, we

can use the Coleman operator approach to show that under mild conditions, the value function and

the savings policy function exist and the upper bound on savings can be chosen so that it never binds

(see Li and Stachurski (2014), Açıkgöz (2018), Ma et al. (2020) and references therein). Another

reason that we assume an upper bound on savings is that when using numerical methods to find the

equilibrium, we must have an upper bound on savings. In this case, we usually can’t choose ex-ante

an upper bound that does not bind. In contrast to Bewley models with one consumption good, in our

model the choice of an upper bound and a lower bound is important for guaranteeing the existence

of a CSE because it influences the properties of the excess demand function such as homogeneity

and the boundary conditions (see Remark 2).

For a set K ⊆ R
n we denote by P(K) the set of all probability measures on K and by B(K)

the Borel sigma-algebra on K. Define

Mλ(D;p, r) =

∫

A(p,r)

∑

y∈Y

e(y)1D((1 + r)g(a,p, r) + p · y)λ(da;p, r), (2)

for any D ∈ B(A(p, r)) where 1D is the indicator function of the set D ∈ B(A(p, r)). Mλ ∈

P(A(p, r)) describes the next period’s wealth distribution, given that the current wealth distribution

is λ ∈ P(A(p, r)) and the prices are (p, r). A wealth distribution µ ∈ P(A(p, r)) is called an

invariant wealth distribution if µ = Mµ.

We now define a CSE.

Definition 1 A competitive stationary equilibrium consists of prices (p, r), a savings policy func-

tion g, a demand function x∗, and a wealth distribution µ ∈ P(A(p, r)) such that

8



(i) Given the prices (p, r), the savings policy function g and the demand function x∗ are optimal

for the agents. That is, g satisfies equation (1) and

x∗(a− g(a,p, r),p) = argmax
x∈X(a−g(a,p,r),p)

U(x).

(ii) Given the prices (p, r), µ is an invariant wealth distribution. That is, µ ∈ P(A(p, r))

satisfies µ = Mµ.

(iii) For each good 1 ≤ i ≤ n, the aggregate supply of good i equals the aggregate demand for

good i: ∫

A(p,r)
x∗i (a− g(a,p, r),p)µ(da;p, r) =

∑

yi∈Yi

ei(yi)yi

(iv) The aggregate supply of savings equals the aggregate demand for savings:

∫

A(p,r)
g(a,p, r)µ(da;p, r) = 0.

The first equilibrium condition says that agents choose a demand function and a savings policy

function to maximize their expected discounted utility. The second equilibrium condition says

that the wealth distribution induced by the agents’ savings policy function is invariant. The third

equilibrium condition says that the aggregate demand for good i equals the aggregate supply of

good i. The fourth equilibrium condition says that the aggregate savings in the economy are

0, i.e., the supply of savings equals the demand for savings. The third and fourth equilibrium

conditions require that the prices (p, r) are market-clearing prices. The natural interpretation of

the stationary equilibrium prices are that the prices represent average prices (see Huggett (1993)).

An alternative to CSE is a competitive recursive equilibrium (see Miao (2006)). A competitive

recursive equilibrium is a sequence of prices (p(t), r(t)), and a sequence of measures (λ(t)) such

that the savings and consumption decisions are optimal for the agents; the prices (p(t), r(t)) are

market-clearing prices for every period t; and the wealth distribution follows the law of motion

defined by equation (2). Clearly, if the initial agents’ wealth distribution is invariant, then the CSE

is also a competitive recursive equilibrium. In this paper we focus on a CSE. The existence result

presented in the next section can be applied to the competitive recursive equilibrium case as well.11

The analysis and computation of a competitive recursive equilibrium are generally much harder

than the analysis and computation of a CSE.

We note that the model presented in this paper is closely related to Huggett’s model (Huggett,

1993) and Bewley’s model (Bewley, 1986). In Huggett’s model there is only one consumption

good and only the interest rate is determined in equilibrium. In Bewley’s model there are many

consumption goods and their prices are determined in equilibrium but the interest rate is fixed

and is not determined in equilibrium. In the model presented in this paper, however, there are

11For general existence results of a competitive recursive equilibrium with aggregate shocks see Brumm et al.
(2017).
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many consumption goods, and both their prices and the interest rate are determined in equilibrium.

Our model also generalizes the static pure-exchange Arrow-Debreu model to an incomplete-market

economy where the agents can transfer assets from one period to another only by investing in a

risk-free bond.

3 Main results

In this section we present our main results. In Section 3.1 we state our existence result. In Section

3.2 we provide conditions that ensure the uniqueness of a competitive stationary equilibrium (CSE).

In Section 3.3 we discuss how an increase in the risk of the endowments process influences the

equilibrium prices of goods and the equilibrium interest rate when the agents’ preferences can

be represented by a CES utility function. In Section 3.4 we compare our model to mean field

equilibrium models. In Section 3.5 we extend the model to include ex-ante heterogeneous agents.

3.1 Existence of a CSE

The main theorem of this section is the following:

Theorem 1 Suppose that Assumption 1 holds. Then, there exists a competitive stationary equilib-

rium.

To prove the theorem, we construct a natural excess demand function and show that the func-

tion has a zero. Under Assumption 1, the savings policy function g(a,p, r) is single-valued and

continuous. Furthermore, there exists a unique invariant wealth distribution µ(da;p, r) for all

(p, r) ∈ P where P is the non-empty and convex set defined in equation (3) below. We define an

excess demand function ζ(p, r) from P ⊆ R
n+1
+ into R

n+1, where

ζi(p, r) =

∫

A(p,r)
x∗i (a− g(a,p, r),p)µ(da;p, r) −

∑

yi∈Yi

ei(yi)yi

is the excess demand for good i, i = 1, ..., n, and

ζn+1(p, r) = −

∫

A(p,r)
g(a,p, r)µ(da;p, r)

is the excess demand for savings. The excess demand function ζ : P → R
n+1 is defined by

ζ(p, r) = (ζ1(p, r), . . . , ζn(p, r), ζn+1(p, r)).

Note that if ζ(p, r) = 0 then (p, r) are equilibrium prices, µ(·;p, r) is the equilibrium invariant

wealth distribution, x∗(a − g(a,p, r),p) is the equilibrium demand function, and g(a,p, r) is the

equilibrium savings policy function.

To prove that the excess demand function has a zero we prove properties of the excess de-

mand function. We first extend a well-known result from the static Arrow-Debreu model to the
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incomplete-markets economy studied in this paper. We show that the aggregate demand for goods

and the aggregate supply of goods depend only on their relative prices. In particular, the next

Proposition shows that if (p, r) are equilibrium prices then (θp, r) are also equilibrium prices for all

θ > 0. This result is trivial in the standard static Arrow-Debreu model, however, in the incomplete-

market Arrow-Debreu economy this result is challenging to establish because the excess demand

function depends on the invariant wealth distribution. The key part of proving part (ii) of Propo-

sition 1 is to show that the invariant wealth distribution is homogeneous in the prices of goods for

a suitable definition of homogeneity that we introduce for probability measures.

Proposition 1 Fix p ≫ 0, 0 < r < 1, and θ > 0. Then

(i) θg(a,p, r) = g(θa, θp, r) and x∗(a− g(a,p, r),p) = x∗(θa− g(θa, θp, r), θp) for all a.

(ii) ζi(θp, r) = ζi(p, r) for 1 ≤ i ≤ n and ζn+1(θp, r) = θζn+1(p, r).

Thus, if (p, r) are equilibrium prices then (θp, r) are also equilibrium prices.

We note that the excess demand for savings is homogeneous of degree one in the prices of goods,

while the excess demand for good k is homogeneous of degree zero for all 1 ≤ k ≤ n. These results

use the fact that θC(a,p) = C(θa, θp) for all θ > 0 where

C(a,p) =

[
−
miny∈Y p · y

r
,min

{
a,

n∑

i=1

pib

(1− r)2

}]

is the interval from which an agent may choose his level of savings and θA = {θx : x ∈ A} for any

set A. That is, if the agent can save an amount b given the wealth level a and the prices p, then the

agent can save an amount θb given the wealth level θa and the prices θp. This is reasonable in our

setting since all the prices in our model are real prices (see also Remark 1). Also note that if the

aggregate savings do not equal zero in equilibrium, then it is not true that if (p, r) are equilibrium

prices then (θp, r) are also equilibrium prices for all θ > 0. This follows because the aggregate

demand for savings is homogeneous of degree one in the prices of goods. Hence, in an economy

with production Proposition 1 can fail (unless the demand for capital is also homogeneous).

From Proposition 1, if (p, r) are equilibrium prices then (θp, r) are also equilibrium prices for all

θ > 0. Thus, we can normalize the prices of the goods. More precisely, the search for equilibrium

prices can be confined to sets that contain at least one element from the half-ray {θp : θ > 0}.

We define the sets Λ = {(p, r) ∈ R
n
+ × R+ :

∑n
i=1 pi + r = 1} and

P = {(p, r) ∈ Λ : p ≫ 0, r > 0}. (3)

In order to prove the existence of a CSE, that is, to prove that there are prices (p, r) ∈ P such

that ζ(p, r) = 0, we show that the excess demand function is continuous, satisfies Walras’ law and

satisfies suitable boundness and boundary conditions (see Proposition 2 in the Appendix). We then

show that these conditions guarantee the existence of at least one vector (p, r) ∈ P that satisfies

ζ(p, r) = 0.

11



Remark 2 We prove the existence of an equilibrium with a strictly positive interest rate. An

equilibrium with a strictly positive interest rate exists since we assume that the borrowing constraint

tends to minus infinity as the interest rate tends to zero (a similar observation is made on page 673

in Aiyagari (1994)). Also note that for (p, r) ∈ P we have
∑n

i=1 pi/(1 − r)2 = 1/
∑n

i=1 pi so the

upper bound on savings tends to infinity when
∑n

i=1 pi tends to 0. These conditions are important

for proving that the excess demand function satisfies appropriate boundary conditions.

3.2 Uniqueness of a CSE

In this section we prove the uniqueness of a CSE for the special case where the utility function is

given by: U(x) =
∑n

i=1 αix
γ
i for some 0 < γ < 1, αi > 0,

∑n
i=1 αi = 1, i.e., the agents’ preferences

over bundles can be represented by a CES utility function with an elasticity of substitution that is

higher than one.

There is a vast literature that provides sufficient conditions to ensure the uniqueness of an

equilibrium in the standard static pure-exchange Arrow-Debreu model.12 The property that the

demand for each good increases with the prices of the other goods (“gross substitutes property”)

usually plays a crucial role in proving the uniqueness of an equilibrium in the static Arrow-Debreu

model. Given the gross substitutes property, an easy argument shows that the equilibrium must

be unique. This fact led most of the previous literature on the uniqueness of an equilibrium to

find conditions on agents’ preferences that ensure that the gross substitutes property holds. While

the gross substitutes property remains an important property in proving the uniqueness of an

equilibrium in the dynamic incomplete-market Arrow-Debreu model considered in this paper also,

the standard argument that proves the uniqueness of an equilibrium does not apply. The reason

is that the aggregate demand for goods does not necessarily increase with the interest rate, and

the aggregate demand for savings does not necessarily increase with the prices of goods. Thus, the

excess demand function does not necessarily have the gross substitutes property. The coupling of

the aggregate savings and the aggregate demand for goods leads to a complicated behavior of the

excess demand function. Nonetheless, we show that when the agents’ preferences are represented

by a CES utility function with an elasticity of substitution that is higher than one the CSE is

unique even when the excess demand does not have the gross substitutes property.

It is well known and easy to check that when the agents’ preferences are represented by a CES

utility function, the indirect utility function

v(a− b,p) = max
x∈X(a−b,p)

U(x)

is given by a constant relative risk aversion (CRRA) utility function. The CRRA utility function is

popular in the applied literature and is often used in numerical analysis of incomplete markets het-

erogeneous agent models. The uniqueness of an equilibrium in these models with one consumption

12For a survey of the work done on the uniqueness of equilibrium, see Arrow and Hahn (1971), Mas-Colell
(1991), and Kehoe (1998). For recent results, see Toda and Walsh (2017) and Geanakoplos and Walsh (2018), and
references therein.
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good and a CRRA utility function has recently been studied in Proehl (2018) and Light (2020).

The next theorem generalizes the results in Light (2020) to a model with many consumption goods.

Theorem 2 Assume that U(x) =
∑n

i=1 αix
γ
i for some 0 < γ < 1, αi > 0,

∑n
i=1 αi = 1. Then

there exists a unique competitive stationary equilibrium.

If the agents’ preferences can be represented by a Cobb-Douglas utility function, i.e., U(x) =
∑n

i=1 αi ln(xi) for αi > 0,
∑n

i=1 αi = 1, then the same proof as the proof of Theorem 2 shows that

there exists a unique CSE in this case, as well. Note that in this case, the indirect utility function

corresponds to a log utility function, which is often used in the quantitative literature (for example,

see Aiyagari (1994) and Krusell et al. (2010)).

The conditions on the agents’ preferences that ensure uniqueness are restrictive.13 However,

uniqueness results in Bewley models are rare, and a multiplicity of equilibria can arise even under the

standard specifications of the model (for examples of the multiplicity of equilibria see Toda (2017)

and Açıkgöz (2018)). Even in a static Arrow-Debreu model, a multiplicity of equilibria can easily

arise. Kubler and Schmedders (2010a) and Kubler and Schmedders (2010b) provide examples of

multiplicity in the case that the agents’ preferences can be represented by a CES utility function,

and also provide a general method of finding all the equilibria in semi-algebraic Arrow-Debreu

models.

3.3 The price of goods and wealth inequality

In this section we show that if the agents’ preferences are represented by a CES utility function with

an elasticity of substitution that is higher than one, then an increase in the risk of the endowments

process (in the sense of the convex stochastic order) does not change the equilibrium prices of

goods, and decreases the equilibrium interest rate.

In response to an increase in the risk of the endowments process, we show that the partial

equilibrium wealth inequality is higher in the sense of the convex stochastic order. That is, for a

fixed interest rate and fixed prices of goods, the wealth inequality is higher when the endowments

process is riskier. This follows from the facts that agents save more when the future endowment

is riskier and that the savings policy function is convex in wealth, i.e., the marginal propensity

to consume is decreasing.14 In addition, for a fixed interest rate r and prices of goods p, the

precautionary savings effect increases the aggregate savings, and thus the aggregate expenditure on

goods decreases. Since the goods are normal, the decrease in the aggregate expenditure on goods

implies that the aggregate demand for each good decreases.

We note that this is different from the static Arrow-Debreu model where riskier endowments do

not change the demand for each good. In the static Arrow-Debreu model the demand for each good

13A natural question that arises is: under what conditions is there a finite number of equilibria? (see Debreu
(1970) for an answer to this question in the static Arrow-Debreu model). A related question can be asked about
the stability of the CSE (see Arrow and Hurwicz (1958) and Arrow et al. (1959)). We did not explore these direc-
tions in the current paper.

14The convexity of the savings policy function follows from the CES assumption and is not easy to establish for
general utility functions.
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is linear in wealth while in our setting the demand for each good is concave in wealth because the

marginal propensity to consume is decreasing. Thus, in the dynamic incomplete-market Arrow-

Debreu model the equilibrium prices might change in response to an increase in the risk of the

endowments process. The prices of goods, however, do not change at all in the new CSE. While

the interest rate decreases, the negative effect of this decrease on the aggregate savings is exactly

offset by the positive effect on the aggregate savings of an increase in the risk of the endowments

process. In other words, the negative substitution effect on the aggregate savings and the positive

precautionary effect on the aggregate savings are equal.

We now introduce notations that are needed to state the main theorem of this section. For

two probability measures λ1, λ2 we define the partial order �I−CX by λ2 �I−CX λ1 if and only

if
∫
f(a)λ2(da) ≥

∫
f(a)λ1(da) for every convex and increasing function f . Similarly, we write

λ2 �CX λ1 if and only if
∫
f(a)λ2(da) ≥

∫
f(a)λ1(da) for every convex function f . We say that

the endowments process e is riskier than the endowments process e′ if e �CX e′. With slight abuse

of notation, we add the argument e to the functions defined above, when e(y) is the probability of

receiving the endowment vector y ∈ Y. For example, we write µ(·;p, r, e) for the invariant wealth

distribution, g(a,p, r, e) for the savings policy function, and x∗(a− g(a,p, r, e),p) for the demand

function.

Theorem 3 Assume that U(x) =
∑n

i=1 αix
γ
i for some 0 < γ < 1, αi > 0,

∑n
i=1 αi = 1. Assume

that the endowments process e is riskier than the endowments process e′. Then

(i) The partial equilibrium wealth inequality is higher under e than under e′, i.e., µ(·;p, r, e) �I−CX

µ(·;p, r, e′) for all (p, r) ∈ P . In addition, if (p(e), r(e)) are equilibrium prices under the endow-

ments process e then µ(·;p(e), r(e), e) �CX µ(·;p(e), r(e), e′).

(ii) The equilibrium prices of goods do not change, i.e., p(e) = p(e′). The equilibrium interest

rate is lower under e than under e′, i.e., r(e′) ≥ r(e).

We note that when the endowments process e is riskier than the endowments process e′ then

the total supply of each consumption good does not change and the relative total supply of each

consumption good does not change either (see more details in the proof of Theorem 3). This fact

plays a major rule in the proof of Theorem 3, in particular, in proving that the prices of consumption

goods do not change.

When the agents’ preferences are not represented by a CES utility function, Theorem 3 does

not necessarily hold. In future research, it would be interesting to explore the connection between

the prices of the consumption goods and the risk of the endowment process for different utility

functions.

3.4 Comparison to mean field equilibrium models

Mean field equilibrium models have been popularized in the recent literature in operations research,

economics, and optimal control (e.g., see Lasry and Lions (2007), Weintraub et al. (2008)). In a

mean field model, the agents’ utility functions and the evolution of the agents’ states depend on
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the distribution of the other agents’ states. In a mean field equilibrium, each agent maximizes his

expected discounted payoff, assuming that the distribution of the other agents’ states is fixed. Given

the agents’ strategy, the distribution of the agents’ states is an invariant distribution of the Markov

process that governs the dynamics of the agents’ states. While the notion of a mean field equilibrium

is conceptually similar to the notion of a CSE, we cannot write the dynamic incomplete markets

model studied in this paper as a discrete-time mean field model. This is because the market-clearing

conditions (see conditions (iii) and (iv) in Definition 1) are not consistent with the definition of a

mean field equilibrium as the prices and the interest rate cannot be written as a function of the

agents’ states distribution (the wealth distribution in our setting).15 Thus, we cannot apply the

recent existence, uniqueness and comparative statics results developed for discrete-time mean field

equilibrium models (e.g., Acemoglu and Jensen (2015), and Light and Weintraub (2018)).

3.5 Ex-ante heterogeneous agents

In this section we extend the model described in Section 2 to the case of ex-ante heterogeneous

agents. We assume that the agents are heterogeneous in their preferences over consumption bundles

as well as in their endowments. Assume that before the process starts, each agent has a type θ ∈ Θ.

For simplicity we assume that Θ is a finite set. Each agent’s type is fixed throughout the horizon.

An agent with type θ ∈ Θ has preferences that are represented by a utility function U(x, θ) and

receives an endowment y(θ) with probability e(y(θ)) in each period. Let φ be the probability

mass function over the type space; φ(θ) is the mass of agents whose types are θ ∈ Θ. Adding the

argument θ ∈ Θ to the functions defined in Section 2, we can modify the definitions of Section 2 to

include the ex-ante heterogeneity of agents. For example, g(a,p, r, θ) is the savings policy function

of type θ agents and x∗(a− g(a,p, r, θ),p, θ) is the demand function of type θ agents.

Let Ah = R × Θ be an extended state space for the model with ex-ante heterogeneous agents.

If an agent’s extended state is ah = (a, θ) ∈ Ah then the agent’s wealth is a and his type is θ. Let

λh be a probability measure over the extended state space, i.e., λh ∈ P(Ah).

Define the Markov kernel

Qh((a, θ),D × E) =
∑

y∈Y

e(y(θ))1D((1 + r)g(a,p, r, θ) + p · y(θ))1E (θ)

for any D × E ∈ B(R)× 2Θ. The Markov kernel Qh describes the evolution of the extended state.

That is, when the agent’s wealth is a and his type is θ, the probability that the next period’s pair

of wealth-type will lie in D × E ∈ B(R)× 2Θ is given by Qh((a, θ),D × E).

Define

Mλh(D × E;p, r) =

∫ ∑

y∈Y

e(y(θ))1D((1 + r)g(a,p, r, θ) + p · y(θ))1E (θ)λh(d(a, θ);p, r),

15Note that other heterogeneous agent macro models can be written as a discrete-time mean field model (see
Acemoglu and Jensen (2015) and Light and Weintraub (2018)). In particular, the model in Aiyagari (1994) can be
written as a discrete-time mean field model.
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for any D × E ∈ B(R)× 2Θ. Mλh ∈ P(Ah) describes the next period’s wealth-types distribution,

given that the current wealth-types distribution is λh ∈ P(Ah) and the prices are (p, r). A wealth-

types distribution µh ∈ P(Ah) is called an invariant wealth-types distribution if µh = Mµh.

These definitions map the model with ex-ante heterogeneous agents to the model with ex-

ante homogeneous agents that we considered in Section 2. We can define a competitive stationary

equilibrium as in Definition 1. A competitive stationary equilibrium consists of prices (p, r), savings

policy functions g, demand functions x∗, and a wealth-types distribution µh ∈ P(Ah) such that the

savings policy function g and the demand function x∗ are optimal for each type θ, the wealth-types

distribution µh is invariant, and the prices of goods and the interest rate are market-clearing (see

conditions (iii) and (iv) in Definition 1).

We note that if U(x, θ) satisfies Assumption 1 for each θ, then Theorem 1 holds and there exists

a CSE. The proof is similar to the proof of Theorem 1 so we omit the details.

4 Final remarks

In this paper we study a dynamic incomplete-market Arrow-Debreu economy which combines a

Huggett-Bewley economy with the classic static pure-exchange Arrow-Debreu economy. We study

a competitive stationary equilibrium where the prices of consumption goods and the interest rate

are market clearing and the wealth distribution is invariant. Under mild conditions on the agents’

preferences, we prove that the aggregate demand for consumption goods is homogeneous of degree

0, while the aggregate demand for savings is homogeneous of degree 1 (see Proposition 1), and we

prove the existence of a competitive stationary equilibrium (CSE) (see Theorem 1). Under a CES

utility function, we discuss how a riskier endowments process affects wealth inequality, the prices

of goods and the interest rate. We prove that if the agents’ preferences can be represented by a

CES utility function with an elasticity of substitution that is equal to or higher than one, then

there exists a unique CSE (see Theorem 2), and that a riskier endowments process increases the

partial equilibrium wealth inequality, decreases the equilibrium interest rate, and does not change

the equilibrium prices of goods (see Theorem 3). It remains an open question whether Theorem 2

and Theorem 3 can be extended to different utility functions. Many other open questions remain

concerning the CSE. For example, studying the stability of a CSE awaits future research.

A Appendix

A.1 Homogeneity of the excess demand function

In this section we prove Proposition 1.

Recall that for a set K we denote by P(K) the set of all probability measures defined on K.

We endow P(R) with the topology of weak convergence. We say that λn ∈ P(R) converges weakly
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to λ ∈ P(R) if for all bounded and continuous functions f : R → R we have

lim
n→∞

∫

R

f(a)λn(da) =

∫

R

f(a)λ(da).

Proposition 1. Fix p ≫ 0, 0 < r < 1, and θ > 0. Then

(i) θg(a,p, r) = g(θa, θp, r) and x∗(a− g(a,p, r),p) = x∗(θa− g(θa, θp, r), θp) for all a.

(ii) ζi(θp, r) = ζi(p, r) for 1 ≤ i ≤ n and ζn+1(θp, r) = θζn+1(p, r).

Thus, if (p, r) are equilibrium prices then (θp, r) are also equilibrium prices.

Proof. (i) Recall that a function f(a,p, r) is homogeneous of degree l ≥ 0 in (a,p) if f(θa, θp, r) =

θlf(a,p, r) for all θ > 0. We now show that g is homogeneous of degree 1 in (a,p).

Fix p ≫ 0, θ > 0, a ∈ R, and 0 < r < 1.

Assume that f(a,p, r) is homogeneous of degree 0 in (a,p). We have

Tf(a,p, r) = max
b∈C(a,p)

max
x∈X(a−b,p)

U(x) + β
∑

y∈Y

e(y)f((1 + r)b+ p · y,p, r)

= max
θb∈C(θa,θp)

max
x∈X(θa−θb,θp)

U(x) + β
∑

y∈Y

e(y)f((1 + r)θb+ θp · y, θp, r)

= max
z∈C(θa,θp)

max
x∈X(θa−z,θp)

U(x) + β
∑

y∈Y

e(y)f((1 + r)z + θp · y, θp, r)

= Tf(θa, θp, r).

Thus, Tf(a,p, r) is homogeneous of degree 0 in (a,p). The first and fourth equalities follow from

the definition of Tf . The second equality follows from the facts that X(a− b,p) = X(θa− θb, θp),

b ∈ C(a,p) if and only if θb ∈ C(θa, θp),16 and f((1 + r)θb+ θp · y, θp, r) = f((1 + r)b+ p · y,p, r)

for θ > 0.

We conclude that for all n = 1, 2, 3 . . ., T nf is homogeneous of degree 0. From standard

dynamic programming arguments, T nf converges to V uniformly. Since the set of functions that

are homogeneous of degree 0 is closed under uniform convergence, V is homogeneous of degree zero.

Let

h(a, b,p, r, f) := v(a− b,p) + β
∑

y∈Y

e(y)f((1 + r)b+ p · y,p, r),

where v(a− b,p) = maxx∈X(a−b,p) U(x).

Note that v is homogeneous of degree 0 in (a, b,p) since X(a − b,p) = X(θa − θb, θp). Thus,

h(a, b,p, r, f) is homogeneous of degree 0 in (a, b,p) whenever f is homogeneous of degree 0 in (a,p).

Since V is homogeneous of degree zero in (a,p) we conclude that h(a, b,p, r, V ) is homogeneous of

16Recall that C(a,p) = [−
miny∈Y p·y

r
,min

{

a,
∑n

i=1
pib

(1−r)2

}

].
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degree 0 in (a, b,p). We have

h(θa, θg(a,p, r), θp, r, V ) = h(a, g(a,p, r),p, r, V )

= max
b∈C(a,p)

h(a, b,p, r, V )

= v(a− p, r)

= V (θa, θp, r)

= h(θa, g(θa, θp, r), θp, r, V ).

The single-valuedness of the savings policy function g (see Lemma 1 below) implies that g(θa, θp, r) =

θg(a,p, r). We conclude that g is homogeneous of degree 1 in (a,p).

The following equalities show that the demand function x∗ is homogeneous of degree 0 in (a,p):

x∗(a− g(a,p, r),p) = argmax
x∈X(a−g(a,p,r),p)

U(x)

= argmax
x∈X(θa−θg(a,p,r),θp)

U(x)

= argmax
x∈X(θa−g(θa,θp,r),θp)

U(x)

= x∗ (θa− g(θa, θp, r), θp) .

(ii) Let 0 < r < 1 be fixed. Then A(p, r) is compact for all p ≫ 0. We start with the following

definitions:

We say that a function f(a,p) is bounded in a if for every p ≫ 0, there exists an M > 0 such

that |f(a,p)| ≤ M for all a ∈ A(p, r).

We say that a probability measure λ(·;p, r) ∈ P(A(p, r)) is homogeneous of degree l ≥ 0 in p

if for every continuous function f(a,p) that is homogeneous of degree l in (a,p), and bounded in

a, and all θ > 0 we have

∫
f(a, θp)λ(da; θp, r) = θl

∫
f(a,p)λ(da;p, r). (4)

We now show that the invariant wealth distribution µ is homogeneous of degree l ≥ 0 in p.

Assume that the probability measure λ(·;p, r) ∈ P(A(p, r)) is homogeneous of degree l in p.

Let f(a,p) be a continuous function that is homogeneous of degree l in (a,p) and bounded in a,

18



and let θ > 0, p ≫ 0, and 0 < r < 1. We have

θl
∫

f(a,p)Mλ(da;p, r) = θl
∫ ∑

y∈Y

e(y)f((1 + r)g(a,p, r) + p · y,p)λ(da;p, r)

=

∫ ∑

y∈Y

e(y)f((1 + r)g(a, θp, r) + θp · y, θp)λ(da; θp, r)

=

∫
f(a, θp)Mλ(da; θp, r).

The first and last equalities follow from Equation (5) (see Lemma 4 below). The second equality

follows from the facts that f̃(a,p) :=
∑
y∈Y

e(y)f((1+ r)g(a,p, r)+p ·y,p) is homogeneous of degree

l in (a,p) and λ is homogeneous of degree l in p. We conclude that for all k, Mkλ is homogeneous

of degree l in p.

From Lemma 2 (see below), Mkλ converges weakly to µ for all (p, r) such that p ≫ 0, and

0 < r < 1. For every continuous function f(a,p) that is homogeneous of degree l in (a,p) and

bounded in a, we have

∫
f(a, θp)µ(da; θp, r) = lim

k→∞

∫
f(a, θp)Mkλ(da; θp, r)

= lim
k→∞

θl
∫

f(a,p)Mkλ(da;p, r)

= θl
∫

f(a,p)µ(da;p, r).

Thus, µ is homogeneous of degree l in p.

The facts that g(a,p, r) is a continuous function on R × R
n
++ × (0, 1) (see Lemma 1) and that

A(p, r) is compact for all p ≫ 0, r ∈ (0, 1) imply that g is bounded in a. We established in part (i)

that g is homogeneous of degree 1 in (a,p). Thus, using the fact that µ is homogeneous of degree

1 in p yields

ζn+1(θp, r) =

∫
g(a, θp, r)µ(da; θp, r) = θ

∫
g(a,p, r)µ(da;p, r) = θζn+1(p, r).

Similarly, in part (i) we established that for all 1 ≤ i ≤ n the demand function x∗i (a− g(a,p, r),p)

is homogeneous of degree 0 in (a,p). The demand function is continuous (see Lemma 1 below) and

bounded in a. Hence, using the fact that µ is homogeneous of degree 0 in p yields

ζi(θp, r) =

∫
x∗i (a− g(a, θp, r), θp)µ(da; θp, r)−

∑

yi∈Yi

ei(yi)yi

=

∫
x∗i (a− g(a,p, r),p)µ(da;p, r) −

∑

yi∈Yi

ei(yi)yi = ζi(p, r).

Thus, if (p, r) are equilibrium prices, i.e., ζ(p, r) = 0, then ζ(θp, r) = 0; and so (θp, r) are also
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equilibrium prices.

A.2 The existence of a competitive stationary equilibrium

In this section we prove the existence of a competitive stationary equilibrium.

Theorem 1. Suppose that Assumption 1 holds. Then, there exists a competitive stationary equi-

librium.

Recall that the sets Λ and P are given by Λ = {(p, r) ∈ R
n
+ × R+ :

∑n
i=1 pi + r = 1} and

P = {(p, r) ∈ Λ : p ≫ 0, r > 0}.

The excess demand function ζ : P → R
n+1 is given by

ζ(p, r) = (ζ1(p, r), . . . , ζn(p, r), ζn+1(p, r))

where for i = 1, . . . , n,

ζi(p, r) =

∫

A(p,r)
x∗i (a− g(a,p, r),p)µ(da;p, r) −

∑

yi∈Yi

ei(yi)yi

is the excess demand for good i, and

ζn+1(p, r) = −

∫

A(p,r)
g(a,p, r)µ(da;p, r)

is the excess demand for savings. Note that if ζ(p, r) = 0 then (p, r) are equilibrium prices, µ(·;p, r)

is the equilibrium wealth distribution, x∗(a− g(a,p, r),p) is the equilibrium demand function, and

g(a,p, r) is the equilibrium savings policy function.

In the next Proposition we show that the excess demand function is continuous, satisfies Walras’

law and some boundary and boundness conditions. For x ∈ R
n we write ‖x‖1 =

n∑
j=1

|xi|.

Proposition 2 The excess demand function ζ : P → R
n+1 satisfies the following properties.

(i) The function ζ is continuous.

(ii) The function ζ satisfies Walras’ law, i.e., (p, r) · ζ(p, r) = 0 for all (p, r) ∈ P .

(iii) If (pq, rq) → (p, r) = (p1, . . . , pn, r) ∈ Λ\P with {pq, rq} ⊆ P and pk > 0 for some

1 ≤ k ≤ n, then limq→∞ ‖ζ(pq, rq)‖1 = ∞.

(iv) If {pq, rq} ⊆ P , (pq, rq) → (p, r) = (p1, . . . , pn, r) and pk > 0, then the sequence {ζk(pq, rq)}

of the kth components of {ζ(pq, rq)} is bounded. Similarly, r ∈ (0, 1) implies that the sequence

{ζn+1(pq, rq)} is bounded.

(v) There exists ξ > 0 such that ζi(p, r) ≥ −ξ for all 1 ≤ i ≤ n and all (p, r) ∈ P , and

ζn+1(p, r) ≥ −ξ for all (p, r) ∈ P such that r ≤ δ < 1 for some δ ∈ (0, 1).
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Remark 3 Note that the standard boundary conditions that imply the existence of a competitive

equilibrium in the static Arrow-Debreu model (see Debreu (1982) and Hildenbrand and Kirman

(2014)) are not satisfied in our setting. This is because conditions (iii) of Proposition 2 holds only

for sequences {pq, rq} such that (pq, rq) → (p, r) = (p1, . . . , pn, r) ∈ Λ\P with pk > 0 for some

1 ≤ k ≤ n and condition (v) does not imply that the excess demand is bounded over P as required

in Debreu (1982)). In proving the existence of a CSE, we are able to overcome this difficulty by

using the properties of the savings policy function.

The idea of the proof of Theorem 1 is to show that the conditions of Proposition 2 hold and then

to prove that these conditions together with the properties of savings policy function imply the

existence of a CSE. Lemmas 1 and 2 show that the excess demand function ζ(p, r) is a well-defined

function. In Lemmas 4 and 5 we prove that the excess demand function is continuous. In Lemma

6 we prove that the excess demand function satisfies Walras’ law. In Lemma 7 and Lemma 8 we

prove that the excess demand function satisfies the boundness and boundary conditions (conditions

(iii), (iv) and (v) of Proposition 2).

Lemma 1 The savings policy function g(a,p, r) is single-valued and continuous in (a,p, r) on

R × R
n
++ × (0, 1). The value function V (a,p, r) is continuous in (a,p, r) on R × R

n
++ × (0, 1),

increasing in a, and strictly concave in a.

Proof. Note that v(a − b,p) = maxx∈X(a−b,p) U(x) is strictly concave in (a, b). To see this, let

(a1, b1) ∈ R
2, (a2, b2) ∈ R

2, γ ∈ [0, 1], aγ = γa1 + (1− γ)a2, and bγ = γb1 + (1− γ)b2.

We have

v(aγ − bγ ,p) = max
x∈X(aγ−bγ ,p)

U(x)

≥ U(γx∗(a1 − b1,p) + (1− γ)x∗(a2 − b2,p))

> γU(x∗(a1 − b1,p)) + (1− γ)U(x∗(a2 − b2,p))

= γv(a1 − b1,p) + (1− γ)v(a2 − b2,p).

The first inequality follows from the fact that γx∗(a1−b1,p)+(1−γ)x∗(a2−b2,p) ∈ X(aγ−bγ ,p).

The second inequality follows from the fact that U is strictly concave. We conclude that v is strictly

concave in (a, b). Furthermore, since U is continuous andX(a−b,p) is a continuous correspondence,

i.e., X is upper hemicontinuous and lower hemicontinuous, the maximum theorem (see Theorem

17.31 in Aliprantis and Border (2006)) implies that v(a − b,p) is continuous. Because U is an

increasing function, v is increasing in a. Now standard dynamic programming arguments show

that g(a,p, r) is single-valued and continuous in (a,p, r) and that V (a,p, r) is continuous, as well

as strictly concave and increasing in a (see Chapter 9 in Stokey and Lucas (1989)).

Lemma 2 For every (p, r) ∈ P there exists a unique invariant wealth distribution µ(·;p, r) ∈

P(A(p, r)). Furthermore, for all λ(·;p, r) ∈ P(A(p, r)), the sequence of measures {Mnλ} converges

weakly to µ(·;p, r) ∈ P(A(p, r)).
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Proof. Fix (p, r) ∈ P . Define the Markov chain

Q(a,D) =
∑

y∈Y

e(y)1D((1 + r)g(a,p, r) + p · y).

for any D ∈ B(A(p, r)) where 1D is the indicator function of the set D ∈ B(A(p, r)).

We prove a more general result than the result stated in Lemma 2: we show that the Markov

chain Q is uniformly ergodic.17 The proof follows a similar line to the proofs in Rabault (2002)

and in Benhabib et al. (2015), so we only provide a sketch of the proof.18

The Markov chain Q is said to satisfy the Doeblin condition if there exists a positive integer

n0, ǫ > 0 and a probability measure υ on A(p, r) such that Qn0(a,D) ≥ ǫυ(D) for all a ∈ A(p, r)

and all D ∈ B(A(p, r)).

Assume that (1 + r)β < 1. Under Assumption 1, the arguments in Proposition 3.1 in Rabault

(2002) show that the borrowing constraint binds with positive probability after a finite number

of periods for any initial wealth level a ∈ A(p, r). In other words, for any initial wealth level

a ∈ A(p, r), we have g(a,p, r) = b with a positive probability after a finite number of periods. Thus,

if we define the probability measure υ(D) =
∑

y∈Y e(y)1D((1 + r)b+ p · y), we can find a positive

integer n0 and ǫ > 0 such that Qn0(a,D) ≥ ǫυ(D) for all a ∈ A(p, r) and all D ∈ B(A(p, r)).

We conclude that Q satisfies the Doeblin condition. From the facts that M : P(A(p, r)) →

P(A(p, r)) is continuous (see a more general result in Lemma 4) and P(A(p, r)) is compact in

the weak topology (since A(p, r) is compact), Schauder’s fixed-point theorem (see Corollary 17.56

in Aliprantis and Border (2006)) implies that M has at least one fixed point. That is, Q has at

least one invariant distribution. A Markov chain that has an invariant distribution and satisfies

the Doeblin condition is uniformly ergodic (see Theorem 8 in Roberts et al. (2004)).

If (1 + r)β ≥ 1 then the results in Chamberlain and Wilson (2000) show that the upper bound

on savings binds with positive probability after a finite number of periods for any initial state. A

similar argument to the argument above proves that Q is uniformly ergodic. This completes the

proof the Lemma.

We say that wn : R → R converges continuously to w if wn(an) → w(a) whenever an → a.

Lemma 3 provides a bounded convergence theorem with varying measures. For a proof, see Theorem

3.3 in Serfozo (1982).19 We will use this Lemma to prove the continuity of the excess demand

function.

Lemma 3 Assume that wn : R → R is a uniformly bounded sequence of functions. If wn : R → R

converges continuously to w and λn ∈ P(R) converges weakly to λ ∈ P(R) then

lim
n→∞

∫
wn(a)λn(da) =

∫
w(a)λ(da).

17Recall that the Markov chain Q is called uniformly ergodic if it has an invariant distribution µ and
supD∈B(A(p,r)) |Q

n(a,D) − µ(D)| ≤ Mρn for some ρ < 1, M < ∞ and for all n ∈ N, a ∈ A(p, r). Clearly, if Q
is uniformly ergodic then Lemma 2 holds.

18See also Schechtman and Escudero (1977), Ma et al. (2020), and Foss et al. (2018).
19See Feinberg et al. (2019) for a more general result of this type.
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Lemma 4 The unique invariant wealth distribution µ is continuous in (p, r) on P , i.e., if {pn, rn}

converges to (p, r), then µ(pn, rn) converges weakly to µ(p, r).

Proof. First note that for every bounded and measurable function f : R → R and for all (p, r)

such that p ≫ 0 and r ∈ (0, 1) we have

∫
f(a)Mλ(da;p, r) =

∫ ∑

y∈Y

e(y)f((1 + r)g(a,p, r) + p · y)λ(da;p, r). (5)

To see this, note that if f = 1D then Equality (5) holds from the definition of M . A standard

argument shows that Equality (5) holds for any bounded and measurable f .

Assume that {pn, rn} ⊆ P converges to (p, r) ∈ P . Let {µ(pk, rk)} be a subsequence of

{µ(pn, rn)} that converges weakly to µ(p, r). Let f : R → R be a bounded and continuous function.

From the continuity of the savings policy function g, we have

lim
k→∞

f((1 + rk)g(ak,pk, rk) + pk · y) = f((1 + r)g(a,p, r) + p · y)

whenever limk→∞(ak,pk, rk) = (a,p, r).

Let us define

wk(a) =
∑

y∈Y

e(y)f((1 + rk)g(a,pk, rk) + pk · y) and w(a) =
∑

y∈Y

e(y)f((1 + r)g(a,p, r) + p · y).

Then, wk(a) is a uniformly bounded sequence of functions that converges continuously to w(a).

Applying Lemma 3 and using Equality (5) twice yield

lim
k→∞

∫
f(a)µ(da;pk, rk) = lim

k→∞

∫ ∑

y∈Y

e(y)f((1 + rk)g(a,pk, rk) + pk · y)µ(da;pk, rk)

= lim
k→∞

∫
wk(a)µ(da;pk, rk)

=

∫
w(a)µ(da;p, r)

=

∫
f(a)Mµ(da;p, r).

Because µ(pk, rk) converges weakly to µ(p, r), we also have

lim
k→∞

∫
f(a)µ(da;pk, rk) =

∫
f(a)µ(da;p, r).

Thus, ∫
f(a)Mµ(da;p, r) =

∫
f(a)µ(da;p, r)

which implies that µ = Mµ, since µ and Mµ are Borel probability measures that agree on all open

sets. From Lemma 2, µ is the unique fixed point of M , and thus, µ = µ.
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We conclude that each subsequence of {µ(pn, rn)} that converges weakly at all converges weakly

to µ(p, r). Furthermore, since A(p, r) is compact, for all (p, r) ∈ P we can assume that the

supports of µ(pn, rn) and µ(p, r) are contained in a compact set so the sequence {µ(pn, rn)} is

a tight sequence of probability measures. Thus, µ(pn, rn) converges weakly to µ(p, r) (see the

Corollary after Theorem 25.10 in Billingsley (2008)).

Lemma 5 The excess demand function ζ(p, r) is continuous on P .

Proof. Assume that the sequence {pn, rn} ⊆ P converges to (p, r) ∈ P . Fix i such that 1 ≤ i ≤ n.

Define wn(a) = x∗i (a−g(a,pn, rn),pn) and w(a) = x∗i (a−g(a,p, r),p). The continuity of x∗i and of

g imply that wn converges continuously to w, i.e., wn(an) → w(a) whenever an → a. The sequence

of functions {wn(a)} is bounded (see Lemma 8). Using Lemma 3 and the fact that µ(pn, rn)

converges weakly to µ(p, r) (see Lemma 4) yield

lim
n→∞

ζi(pn, rn) = lim
n→∞

∫
wn(a)µ(da;pn, rn)−

∑

yi∈Yi

ei(yi)yi

=

∫
w(a)µ(da;p, r) −

∑

yi∈Yi

ei(yi)yi

= ζi(p, r).

Thus, ζi(p, r) is continuous for 1 ≤ i ≤ n. A similar argument shows that ζn+1(p, r) is continuous.

We conclude that ζ(p, r) is continuous.

Lemma 6 The excess demand function ζ(p, r) satisfies Walras’ law, i.e., (p, r) · ζ(p, r) = 0 for all

(p, r) ∈ P .

Proof. Fix (p, r) ∈ P . Equation (5) implies that

∫
aµ(da;p, r) =

∫ ∑

y∈Y

e(y)((1 + r)g(a,p, r) + p · y)µ(da;p, r)

= (1 + r)

∫
g(a,p, r)µ(da;p, r) +

∑

y∈Y

e(y)p · y.

Note that
∑
y∈Y

e(y)p · y =
n∑

i=1
pi
∑

yi∈Yi
ei(yi)yi. To see this, let Y = {y1, . . . ,yl} and reason as

follows:

∑

y∈Y

e(y)p · y = e(y1)p · y1 + . . . + e(yl)p · yl =

n∑

i=1

pi

l∑

j=1

e(yj)yji =

n∑

i=1

pi
∑

yi∈Yi

ei(yi)yi.

From the agents’ budget constraints, we have p · x∗(a− g(a,p, r),p) = a− g(a,p, r).
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The last equation implies

n∑

i=1

pi

∫
x∗i (a− g(a,p, r),p)µ(da;p, r) =

∫
(a− g(a,p, r))µ(da;p, r).

Thus,

(p, r) · ζ(p, r) =

n∑

i=1

pi

∫
x∗i (a− g(a,p, r),p)µ(da;p, r) −

n∑

i=1

pi
∑

yi∈Yi

ei(yi)yi − r

∫
g(a,p, r)µ(da;p, r)

=

∫
(a− g(a,p, r))µ(da;p, r) −

n∑

i=1

pi
∑

yi∈Yi

ei(yi)yi − r

∫
g(a,p, r)µ(da;p, r)

=

∫
aµ(da;p, r)− (1 + r)

∫
g(a,p, r)µ(da;p, r) −

∑

y∈Y

e(y)p · y = 0,

which proves that ζ(p, r) satisfies Walras’ law.

Lemma 7 There exists ξ > 0 such that ζi(p, r) ≥ −ξ for all 1 ≤ i ≤ n and all (p, r) ∈ P , and

ζn+1(p, r) ≥ −ξ for all (p, r) ∈ P such that r ≤ δ < 1 for some δ ∈ (0, 1).

Proof. We have ζi(p, r) ≥ −
∑

yi∈Yi
ei(yi)yi for all 1 ≤ i ≤ n and all (p, r) ∈ P . Thus, ζi is

bounded from below for all 1 ≤ i ≤ n.

Since g (a,p, r) is bounded from above by
n∑

i=1
pib/(1− r)2 we have

∫
g (a,p, r)µ (da;p, r) ≤

n∑

i=1

pib/(1− r)2,

so

ζn+1 (p, r) = −

∫
g (a,p, r)µ (da;p, r) ≥ −

n∑
i=1

pib

(1− r)2
≥ −

b

(1− δ)2

for all (p, r) ∈ P such that r ≤ δ < 1.

Lemma 8 (i) If (pq, rq) → (p, r) = (p1, . . . , pn, r) ∈ Λ\P with {pq, rq} ⊆ P and pk > 0 for some

1 ≤ k ≤ n, then limq→∞ ‖ζ(pq, rq)‖1 = ∞.

(ii) If {pq, rq} ⊆ P , (pq, rq) → (p, r) = (p1, . . . , pn, r) and pk > 0, then the sequence {ζk(pq, rq)}

of the kth components of {ζ(pq, rq)} is bounded. Similarly, r ∈ (0, 1) implies that the sequence

{ζn+1(pq, rq)} is bounded.

Proof. (i) Suppose that (pq, rq) → (p, r) = (p1, . . . , pn, r) where (p, r) ∈ Λ\P and pk > 0. We

consider two different cases.

Case I: We have rq → r = 0. In this case the borrowing constraint tends to minus infinity and
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it follows from the same arguments as the arguments on page 673 in Aiyagari (1994) that

lim
q→∞

∫
g(a,pq , rq)µ(da;pq, rq) = −∞.

Thus, we have lim
q→∞

ζn+1(pq, rq) = ∞ which implies that lim
q→∞

‖ζ(pq, rq)‖1 = ∞.

Case II: We have 0 < r < 1. In this case (p, r) ∈ Λ\P implies that pj = 0 and pk > 0 for some

1 ≤ k ≤ n and 1 ≤ j ≤ n.

The fact that pk > 0 (and hence, pq · y is bounded away from 0) implies that the measurable

set Dǫ(pq, rq) ⊆ A(pq, rq) given by

Dǫ(pq, rq) := {a ∈ A(pq, rq) : a− g(a,pq, rq) ≥ ǫ}

satisfies infq≥N µ(Dǫ;pq, rq) ≥ δ′ for some ǫ > 0, δ′ > 0 and N > 0. To see this, assume in

contradiction that this is not true. Then for all ǫ > 0, δ′ > 0, and N > 0 we can find a q ≥ N such

that µ(Dǫ;pq, rq) < δ′.

Let y′ ∈ Y satisfies y′ > y for all y ∈ Y. Then because pk > 0 we can choose a large N > 0

such that e(y′)(pq · y
′ −miny∈Y pq · y) ≥ δ for some δ > 0 that does not depend on q and for all

q ≥ N . Let M ∈ R be such that M ≥ a − g(a,pq, rq) for all q ≥ N (because r ∈ (0, 1) we have

A(pq, rq) ⊆ A for some compact set A and all q ≥ N , so M exists).

We can choose ǫ and δ′ such that 0 < ǫ+ δ′M < δ.

Let q ≥ N and assume in contradiction that µ(Dǫ;pq, rq) < δ′. Note that

∫

A(pq,rq)
(a− g(a,pq, rq))µ(da;pq, rq) =

∫

Dǫ(pq,rq)
(a− g(a,pq, rq))µ(da;pq, rq)

+

∫

A(pq ,rq)\Dǫ(pq ,rq)
(a− g(a,pq, rq))µ(da;pq , rq)

≤ Mδ′ + ǫ < δ.
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On the other hand, we have

∫

A(pq,rq)
(a− g(a,pq, rq))µ(da;pq , rq) =

∫

A(pq ,rq)
rqg (a,pq, rq)µ (da;pq, rq) +

∑

y∈Y

e (y)pq · y

≥ −

∫

A(pq,rq)
min
y∈Y

pq · y µ (da;pq, rq) +
∑

y∈Y

e (y)pq · y

= −min
y∈Y

pq · y +
∑

y∈Y

e (y)pq · y

= −min
y∈Y

pq · y + e(y′)pq · y
′ +

∑

y∈Y\{y′}

e (y)pq · y

≥ −min
y∈Y

pq · y + e(y′)pq · y
′ + (1− e(y′))min

y∈Y
pq · y

= e(y′)(pq · y
′ −min

y∈Y
pq · y) ≥ δ > 0

which is a contradiction. The first equality follows from Equation (5). The second inequality follows

from the borrowing constraint.

Now assume in contradiction that {x∗(a− g(a,pq , rq),pq)} has a bounded subsequence.

Let a ∈ Dǫ(pq, rq) where infq≥N µ(Dǫ;pq, rq) ≥ δ for some ǫ > 0, δ > 0, and N > 0. Be-

cause {x∗(a− g(a,pq , rq),pq)} has a bounded subsequence, then by passing to a subsequence (and

relabelling if needed), we can assume that x∗(a− g(a,pq, rq),pq) → x holds in R
n
+.

With slight abuse of notation we extend the savings policy function and let g(a,p, r) :=

lim sup g(a,pq , rq). Because r ∈ (0, 1), the function g(a,p, r) is finite.

We claim that x = x∗(a − g(a,p, r),p). The fact that a − g(a,pq, rq) ≥ ǫ implies that a −

g(a,p, r) ≥ ǫ. Furthermore,

p · x = lim
q→∞

pq · x
∗(a− g(a,pq , rq),pq) = lim sup

q→∞
(a− g(a,pq , rq)) = a− g(a,p, r)

which implies that x ∈ X(a− g(a,p, r),p) (and that limq→∞(a− g(a,pq, rq)) exists). Now let x′ ∈

X(a− g(a,p, r),p). Because a− g(a,p, r) > 0 for every λ ∈ (0, 1) we have p · (λx′) < a− g(a,p, r).

Hence, there exists a number N0 such that for every q > N0 we have

pq · (λx
′) < a− g(a,pq, rq) = pq · x

∗(a− g(a,pq, rq),pq).

Using the monotonicity of the utility function we conclude that the consumption bundle x∗(a −

g(a,pq, rq),pq) is preferred to the consumption bundle λx′ for all λ ∈ (0, 1). Continuity of U implies

that U(x) ≥ U(x′). Thus, x = x∗(a− g(a,p, r),p), i.e., x maximizes U on X(a− g(a,p, r),p)

Let x′′ be a consumption bundle such that x′′i = xi for all i 6= j and x′′j = xj + 1. Then x′′ is

feasible in X(a − g(a,p, r),p) (recall that pj = 0). From the strict monotonicity of U , x′′ yields

strictly more utility than x. This contradicts that x maximizes U on X(a− g(a,p, r),p).
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We conclude that the sequence {x∗(a− g(a,pq , rq),pq)} diverges. Hence,

lim
q→∞

n∑

i=1

x∗i (a− g (a,pq, rq) ,pq) = ∞

for all a ∈ Dǫ(pq, rq) := Dq
ǫ . We have

lim
q→∞

∫

A(pq,rq)

n∑

i=1

x∗i (a− g(a,pq, rq),pq)µ(da;pq, rq) = lim
q→∞

∫

D
q
ǫ

n∑

i=1

x∗i (a− g(a,pq , rq),pq)µ(da;pq, rq)

+ lim
q→∞

∫

A(pq ,rq)\D
q
ǫ

n∑

i=1

x∗i (a− g(a,pq, rq),pq)µ(da;pq, rq)

= ∞

i.e., lim
q→∞

‖ζ(pq, rq)‖1 = ∞.

(ii) Assume that {pq, rq} is a sequence of strictly positive prices satisfying the conditions of

the Lemma where pq = (pq1, . . . , p
q
n). Since pk > 0 for some 1 ≤ k ≤ n and (pq, rq) → (p, r),

we can assume that there exists some ǫ > 0 such that pqk > ǫ for all q. Let M be such that
∑

y∈Y e (y)pq · y ≤ M for all q.

From the budget constraint we have

pqk

∫

A(pq ,rq)
x∗k(a− g(a,pq, rq),pq)µ(da;pq, rq) ≤

∫

A(pq,rq)
(a− g(a,pq, rq))µ(da;pq, rq).

The last inequality implies that

∫

A(pq,rq)
x∗k(a− g(a,pq, rq),pq)µ(da;pq, rq) ≤

∫
A(pq ,rq)

(a− g(a,pq, rq))µ(da;pq, rq)

pqk

=

∫
A(pq ,rq)

rqg (a,pq, rq)µ (da;pq, rq) +
∑

y∈Y e (y)pq · y

pqk

≤
rq

∑n
i=1 p

q
i b/(1− rq)

2 +
∑

y∈Y e (y)pq · y

pqk
≤

b/(1 − ǫ)2 +M

ǫ
.

The equality follows from Equation (5). The second inequality follows since g (a,pq, rq)≤
∑

pqi b/(1−

rq)
2 for all a ∈ A(pq, rq). Therefore, the sequence {ζk(pq, rq)} is bounded for 1 ≤ k ≤ n.

Now assume that r ∈ (0, 1). In this case, we can assume that there exists δ > 0 such that rq > δ

for all q. We can also assume that miny∈Y pq · y ≤ M for all q.

Using the borrowing constraint, we have

−

∫

A(pq,rq)
g (a,pq, rq)µ (da;pq, rq) ≤

miny∈Y pqy

rq
≤

M

δ
.

Therefore the sequence {ζn+1(pq, rq)} is bounded from above. From Lemma 7, {ζn+1(pq, rq)} is
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bounded from below. The proof of the Lemma is completed.

We now prove that a CSE exists. The proof follows similar arguments to the proof of Theorem

1.4.8 in Aliprantis et al. (1990)). However, as discussed in Remark 3, we cannot use this result

directly because the standard boundary and boundness conditions do not hold in our setting.

Let ζ(·) = (ζ1(·), . . . , ζn+1(·)) from P into R
n+1 be a function that satisfies the properties of

Proposition 2. For notation simplicity, we will write pn+1 := r and p = (p1, . . . , pn+1) for the rest

of the proof. Define

W (p) = {k ∈ {1, . . . , n+ 1} : ζk(p) = max{ζi(p) : i = 1, . . . , n+ 1} }

for each p ∈ P and

W (p) = {k ∈ {1, . . . , n+ 1} : pk = 0 }

for each p ∈ Λ \P .

We also define the correspondence Φ : Λ → 2Λ where 2Λ is the set of all subsets of Λ

Φ(p) = {z ∈ Λ : zk = 0 for all k /∈ W (p)}.

It is immediate to establish that Φ(p) is a non-empty, convex and compact subset of Λ. We claim

that Φ has a closed graph.20 Assume that pq → p in Λ, πq → π in Λ, and πq ∈ Φ(pq) for each q.

We have to show that π ∈ Φ(p).

The case that p ∈ P is easy to establish and does not depend on the boundary and boundness

conditions (see the proof of Theorem 1.4.8 in Aliprantis et al. (1990)).

Let p ∈ Λ \ P . We consider two cases.

(i) There exists a subsequence of {pq} (by relabelling if needed, we can assume it to be {pq})

in P .

First assume that pn+1 = 1 (i.e., r = 1). Then pqn+1 = rq > 1/β − 1 for all q > N and

some N > 0. Combining the results in Chamberlain and Wilson (2000) and Açıkgöz (2018) that

show that the agents’ reach the maximal wealth they can have with probability 1 for any initial

wealth level and the fact that the upper bound on savings tends to infinity21 when pqi → 0 for all

i = 1, . . . , n imply that ζn+1(p
q) < 0 for all q > N . Walrals’ law implies that ζi(p

q) > 0 for some

1 ≤ i ≤ n. Therefore, W (pq) ⊆ {1, . . . , n} = W (p) for all q > N . From πq ∈ Φ(pq) it follows that

πq
k = 0 for all k /∈ W (pq) and for all q > N . Hence, limq→∞ πq

k = πk = 0 for all k /∈ W (p). We

conclude that π ∈ Φ(p).

Now assume that pn+1 ≤ δ < 1 for some δ < 1. We can assume that pqn+1 ≤ δ < 1 for all

q. We have pk > 0 for some 1 ≤ k ≤ n. From Proposition 2 part (iv) the sequence {ζi(p
q)}

20Recall that Φ has a closed graph whenever the graph of Φ

Gφ = {(p,p′) ∈ Λ× Λ : p ∈ Λ p
′ ∈ Φ(p)}

is a closed subset of Λ× Λ.
21Note that for (p, r) ∈ P we have

∑n

i=1 pi/(1− r)2 = 1/
∑n

i=1 pi so the upper bound on savings tends to infinity
when

∑n

i=1 pi tends to 0.
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is bounded for each i /∈ W (p). From Proposition 2 part (iii) we have limq→∞ ‖ζ(pq)‖1 = ∞.

Because ζi(p
q) is bounded from below for i = 1, . . . , n + 1 when pqn+1 ≤ δ < 1, we conclude that

max{ζi(p
q) : i = 1, . . . , n + 1} is an element of W (p) for all q > N and some N > 0. Thus,

there exists some N such that W (pq) ⊆ W (p) for all q > N . Combining this and the fact that

πq ∈ Φ(pq) implies πq ∈ Φ(p) for all q > N . Hence, π ∈ Φ(p).

(ii) No subsequence of {pq} lies in P . Then pqi → pi for all i immediately implies that W (pq) ⊆

W (p). From the argument above we have π ∈ Φ(p).

Thus, we have established that φ has a closed graph. The rest of the proof follows the proof of

Theorem 1.4.8 in Aliprantis et al. (1990)). We provide it here for completeness.

From Kakutani’s fixed point theorem (see Theorem 1.4.7 in Aliprantis et al. (1990)), φ has a

fixed point, say p, i.e., p ∈ φ(p). We claim that p is a CSE. First note that p ≫ 0. To see this

assume in contradiction that pk = 0 for some k. Then, pj = 0 for all j ∈ W (p). Furthermore,

p ∈ φ(p) implies that pj = 0 for all j /∈ W (p). We conclude that pk = 0 for all k = 1, . . . , n + 1

which contradict the fact that p ∈ Λ. Hence, p ≫ 0.

Now, let γ = max{ζi(p, r) : i = 1, . . . , n + 1}. Note that p ∈ φ(p) and p ≫ 0 imply i ∈ W (p)

for i = 1, . . . , n+ 1. Hence, γ = ζi(p) for i = 1, . . . , n+ 1. From Warlas’ law we have

γ =

n+1∑

i=1

pim =

n+1∑

i=1

piζi(p) = 0

which implies ζ(p) = 0 because p ≫ 0. Thus, p is a CSE.

A.3 The uniqueness of a competitive stationary equilibrium

In this section we prove Theorem 2.

Theorem 2. Assume that U(x) =
∑n

i=1 αix
γ
i for some 0 < γ < 1, αi > 0,

∑n
i=1 αi = 1. Then

there exists a unique competitive stationary equilibrium.

Proof. Since the savings policy function g, the demand function x∗, and the invariant wealth

distribution µ are unique given fixed prices (p, r), it is enough to show that the prices (p, r) that

clear the market are unique in order to prove the uniqueness of a CSE. The proof involves a number

of steps.

Step 1. If (p, r) and (p′, r′) are equilibrium prices, then p = p′. Suppose, in contradiction,

that there are equilibrium prices (p, r) and (p′, r′) such that p′ 6= p, and p and p′ are not linearly

independent. From Proposition 1, we can normalize the prices such that p ≥ p′ and p′k = pk = 1

for some 1 ≤ k ≤ n. We have

∫
aµ(da;p, r) =

∑

y∈Y

e(y)((1 + r)

∫
g(a,p, r)µ(da;p, r) + p · y) =

∑

y∈Y

e(y)p · y.

The first equality follows from Equation (5). The second equality follows from the fact that (p, r)

are equilibrium prices.
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Similarly,
∫
aµ(da;p′, r′) =

∑
y∈Y

e(y)p′ · y. Since y ≫ 0 we conclude that
∫
aµ(da;p′, r′) <

∫
aµ(da;p, r).

Using the fact that
∫
g(a,p′, r′)µ(da;p′, r′) =

∫
g(a,p, r)µ(da;p, r) = 0 we have

∫
(a− g(a,p′, r′))µ(da;p′, r′) <

∫
(a− g(a,p, r))µ(da;p, r).

Since the utility function is in the constant elasticity of substitution class, it is well known and

easy to check that x∗(a− g(a,p, r),p) = (z1(p)(a− g(a,p, r)), ..., zn(p)(a− g(a,p, r)) where zi(p)

is a positive function for each i = 1, . . . , n. Thus, x∗i is linear in the total expenditure a− g(a,p, r)

for all i. From the assumption that the elasticity of substitution is higher than one, the demand

for each good increases with the prices of the other goods. Since p ≥ p′ and p′k = pk = 1 we have

zk(p) ≥ zk(p
′).

We have

∫
x∗k(a− g(a,p, r),p)µ(da;p, r) =

∫
zk(p)(a− g(a,p, r))µ(da;p, r)

>

∫
zk(p

′)(a− g(a,p′, r′))µ(da;p′, r′)

=

∫
x∗k(a− g(a,p′, r′),p′)µ(da;p′, r′),

which leads to the contradiction 0 = ζk(p, r) > ζk(p
′, r′) = 0.

Step 2. g(a,p, r) is increasing and convex in a for all (p, r) ∈ P . It is easy to check that the

indirect utility function v(a − b,p) = maxx∈X(a−b,p) U(x) is given by v(a − b,p) = (a − b)γz(p)

where z(p) is a positive function. The indirect utility function is a constant relative risk aversion

utility function and thus the savings policy function is convex in a (for example, we can apply

Theorem 4 in Jensen (2017) or the results in Huggett (2004)).

To show that g is increasing in a, note that v(a− b,p) has increasing differences in (a, b) (recall

that a function v is said to have increasing differences in (a, b) if for all a2 ≥ a1 and b2 ≥ b1 we

have v(a2 − b2,p)− v(a2 − b1,p) ≥ v(a1 − b2,p)− v(a1 − b1,p)). Thus, the function

v(a− b,p) + β
∑

y∈Y

e(y)V ((1 + r)b+ p · y,p, r)

has increasing differences in (a, b) as the sum of functions with increasing differences. Now Theorem

6.1 in Topkis (1978) implies that g(a,p, r) is increasing in a.

Step 3. g(a,p, r) is increasing in r for all (a,p). The proof of this result follows from similar

arguments to the arguments in the proof of Theorem 1 in Light (2020). Since the current setting

is different from the setting in Light (2020) we provide the proof here.

Assume that f(a,p, r) is a bounded function that is increasing, concave and continuously differ-

entiable in a with the following properties: (i) f has increasing differences in (a, r); (ii) afa(a,p, r) is

increasing in a on R+ (for a function f we denote by fa the derivative of f with respect to a). Let
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1 > r > r′ > 0. We have

(1 + r)fa((1 + r)b+ p · y,p, r) ≥ (1 + r′)fa((1 + r′)b+ p · y,p, r)

≥ (1 + r′)fa((1 + r′)b+ p · y,p, r′).

The first inequality follows from property (ii) if22 b > 0, and from the concavity of f if b ≤ 0. The

second inequality follows from property (i). Thus, the derivative of the function f((1+r)b+p·y,p, r)

with respect to b is increasing in r. We conclude that f((1+r)b+p·y,p, r) has increasing differences

in (b, r). Thus, the function

v(a− b,p) + β
∑

y∈Y

e(y)f((1 + r)b+ p · y,p, r)

has increasing differences in (b, r) as the sum of functions with increasing differences. Recall that

C(a,p, r) = [−miny∈Y p · y/r,min{a,
∑n

i=1 pib/(1 − r)2}] is the interval from which an agent may

choose his level of savings. Note that C is ascending in r (i.e., r2 ≥ r1, b ∈ C(a,p, r1), and

b′ ∈ C(a,p, r2) imply max{b, b′} ∈ C(a,p, r2) and min{b, b′} ∈ C(a,p, r1)). Theorem 6.1 in Topkis

(1978) implies that

gf (a,p, r) := argmax
b∈C(a,p,r)

v(a− b,p) + β
∑

y∈Y

e(y)f((1 + r)b+ p · y,p, r)

is increasing in r. The envelope theorem (see Benveniste and Scheinkman (1979)) implies that Tf

is differentiable and (Tf)a(a,p, r) = va(a − gf (a,p, r),p) when a − g(a,p, r) > 0 (which always

holds in our case, because of Assumption 1).

Using the facts that v has increasing differences in (a, b) and that gf (a,p, r) ≥ gf (a,p, r′) yield

(Tf)a(a,p, r) = va(a− gf (a,p, r),p) ≥ va(a− gf (a,p, r′),p) = (Tf)a(a,p, r
′).

Thus, Tf has increasing differences in (a, r). Let a ≥ 0. We have

a(Tf)a(a,p, r) = ava(a− gf (a,p, r),p)

= aγ(a− gf (a,p, r))γ−1z(p)

=
a

a− gf (a,p, r)
γ(a− gf (a,p, r)γz(p).

Since Tf is concave in a (see Lemma 1) for a ≥ a′ we have

γ(a− gf (a,p, r))γ−1z(p) = (Tf)a(a,p, r) ≤ (Tf)a(a
′,p, r) = γ(a′ − gf (a′,p, r))γ−1z(p)

22To see this, let a = (1+z)b+p ·y. Then afa(a,p, r) = b(1+z)fa((1+z)b+p ·y,p, r)+p ·yfa((1+z)b+p ·y,p, r).
The facts that afa(a,p, r) is increasing in a on R+ and fa is decreasing in a imply that (1+z)fa((1+z)b+p·y,p, r)
is increasing in z on I . Note that if fa is strictly decreasing, then (1+ r)fa((1+ r)b+p ·y,p, r) is strictly increasing
in r.
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which implies that the function a − gf (a,p, r) is increasing in a. We conclude that the function

(a−gf (a,p, r))γ is increasing in a. Furthermore, the function a
a−gf (a,p,r)

is increasing in a on R+.
23

Thus, a(Tf)a(a,p, r) is increasing on R+ as the product of two positive increasing functions.

Define fn = T nf := T (T n−1f) for n = 1, 2, ... where T 0f := f . We conclude that fn(a,p, r)

is bounded, concave, increasing, and differentiable in a with increasing differences in (a, r), and

that afn
a (a,p, r) is increasing in a on R+ for all n. The argument above shows that gfn(a,p, r) is

increasing in r for all n. Theorem 3.8 and Theorem 9.9 in Stokey and Lucas (1989) show that gfn

converges pointwise to g. Thus, the savings policy function g is increasing in r. Furthermore,

lim
n→∞

fn
a (a,p, r) = lim

n→∞
γ(a− gfn(a,p, r))γ−1z(p) = γ(a− g(a,p, r))γ−1z(p) = Va(a,p, r).

Thus, aVa(a,p, r) is increasing in a on R+ and has increasing differences in (a, r). The same

argument as the argument above shows that the savings policy function g is increasing in r.

Step 4. If (p, r) and (p, r′) are equilibrium prices with r > r′ then
∫
g(a,p, r)µ(da;p, r) >∫

g(a,p, r′)µ(da;p, r′).

Let r > r′. We first show that g(a,p, r) > g(a,p, r′) for all a ∈ Ã, and all p ≫ 0 where

Ã = {a : g(a,p, r′) ∈ intC(a,p, r′)} is the set of wealth levels such that the optimal savings

decision is interior. Suppose, in contradiction, that g(a,p, r′) = g(a,p, r) for some a ∈ Ã. Since V

is differentiable and strictly concave in a (see Lemma 1), the arguments in Step 3 imply that the

function (1 + r)Va((1 + r)b+ p · y,p, r) is strictly increasing in r. The first order condition implies

that

0 = −z(p)γ(a− g(a,p, r′))γ−1 + β(1 + r′)
∑

y∈Y

e(y)Va((1 + r′)g(a,p, r′) + p · y,p, r′)

< −z(p)γ(a− g(a,p, r))γ−1 + β(1 + r)
∑

y∈Y

e(y)Va((1 + r)g(a,p, r) + p · y,p, r) ≤ 0

which is a contradiction.

For λ̃1, λ̃2 ∈ P(R) we define the partial order �I by λ̃2 �I λ̃1 if and only if
∫
f(a)λ2(da) ≥∫

f(a)λ1(da) for every increasing function f .

23To see this, note that a− gf (a,p, r) := k(a) is concave since gf is convex in a. Thus, for a′ > a ≥ 0 we have

k(a′)− k(a)

a′ − a
≤

k(a′)− k(0)

a′ − 0
.

Rearranging and using the fact that k(0) > 0 yield

a′

k(a′)
≥

a

k(a)
.
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Assume that λ(·,p, r) �I λ(·,p, r
′). Then, for every increasing function f we have

∫
f(a)Mλ(da;p, r) =

∫ ∑

y∈Y

e(y)f((1 + r)g(a,p, r) + p · y)λ(da;p, r)

≥

∫ ∑

y∈Y

e(y)f((1 + r′)g(a,p, r′) + p · y)λ(da;p, r)

≥

∫ ∑

y∈Y

e(y)f((1 + r′)g(a,p, r′) + p · y)λ(da;p, r′)

=

∫
f(a)Mλ(da;p, r′).

The equalities follow from Equation (5) (see Lemma 4). The first inequality follows from the fact

that g is increasing in r. The second inequality follows from the facts that g is increasing in a and

λ(·;p, r) �I λ(·;p, r′). We conclude that Mkλ(·;p, r) �I Mkλ(·;p, r′) for all k = 1, 2, .... From

Lemma 2, the sequence {Mkλ} converges weakly to µ for all (p, r). Since �I is closed under weak

convergence, we conclude that µ(·;p, r) �I µ(·;p, r
′).

Suppose that (p, r) and (p, r′) are equilibrium prices with r > r′. We have

∫
g(a,p, r)µ(da;p, r) >

∫
g(a,p, r′)µ(da;p, r) ≥

∫
g(a,p, r′)µ(da;p, r′).

The first inequality follows from the fact that g is strictly increasing in r on Ã (and we have

µ(Ã;p, r) > 0 since (p, r) are equilibrium prices). The second inequality follows from the facts that

g is increasing in a and µ(·;p, r) �I µ(·;p, r
′).

Step 5. Suppose that (p, r) and (p′, r′) are equilibrium prices. From Step 1, we know that

p′ = p. From Step 4, if r > r′ then 0 =
∫
g(a,p, r)µ(da;p, r) >

∫
g(a,p, r′)µ(da;p, r′) = 0 which

is a contradiction. We conclude that (p, r)= (p′, r′). Thus, there is at most one CSE. It easy to

see that Assumptions 1 is satisfied so Theorem 1 implies that there exists at least one CSE. We

conclude that there is a unique CSE.

A.4 Proof of Theorem 3

In this section we prove Theorem 3.

Theorem 3 Assume that U(x) =
∑n

i=1 αix
γ
i for some 0 < γ < 1, αi > 0,

∑n
i=1 αi = 1. Assume

that the endowments process e is riskier than the endowments process e′. Then

(i) The partial equilibrium wealth inequality is higher under e than under e′, i.e., µ(·;p, r, e) �I−CX

µ(·;p, r, e′) for all (p, r) ∈ P . In addition, if (p(e), r(e)) are equilibrium prices under the endow-

ments process e then µ(·;p(e), r(e), e) �CX µ(·;p(e), r(e), e′).

(ii) The equilibrium prices of goods do not change, i.e., p(e) = p(e′). The equilibrium interest rate

is lower under q than under e′, i.e., r(e′) ≥ r(e).

Proof. (i) Fix (p, r) ∈ P . Assume that the endowments process e is riskier than the endowments

process e′. From Theorem 2 in Light (2018), we can show that g(a,p, r, e) ≥ g(a,p, r, e′) for all
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(a,p, r).

Suppose that λ(·;p, r, e) �I−CX λ(·;p, r, e′). Then for every convex and increasing function f

we have

∫
f(a)Mλ(da;p, r, e) =

∫ ∑

y∈Y

e(y)f((1 + r)g(a,p, r, e) + p · y)λ(da;p, r, e)

≥

∫ ∑

y∈Y

e′(y)f((1 + r)g(a,p, r, e) + p · y)λ(da;p, r, e)

≥

∫ ∑

y∈Y

e′(y)f((1 + r)g(a,p, r, e′) + p · y)λ(da;p, r, e)

≥

∫ ∑

y∈Y

e′(y)f((1 + r)g(a,p, r, e′) + p · y)λ(da;p, r, e′)

=

∫
f(a)Mλ(da; p, r, e′).

The equalities follow from Equation (5) (see Lemma 4). The first inequality follows from the fact

that f((1+r)g(a,p, r, e)+p·y) is convex in y as the composition of a convex and increasing function

with a convex function. The second inequality follows from the facts that g(a,p, r, e) ≥ g(a,p, r, e′)

and f is increasing. The third inequality follows from the fact that g is convex and increasing in a

(see Step 2 in the proof of Theorem 2), which implies that f((1+ r)g(a,p, r) +p · y) is convex and

increasing in a, and from the fact that λ(·;p, r, e) �I−CX λ(·;p, r, e′).

We conclude that Mkλ(·;p, r, e) �I−CX Mkλ(·;p, r, e′) for all k = 1, 2, .... From Lemma 2, the

sequence {Mkλ} converges weakly to µ for all (p, r). Since under our assumptions (see Theorem

1.5.9 in Müller and Stoyan (2002)) �I−CX is closed under weak convergence, we conclude that

µ(·;p, r, e) �I−CX µ(·;p, r, e′).

Now assume that (p(e), r(e)) are equilibrium prices under the endowment process e, so

∫
g(a,p(e), r(e))µ(da;p(e), r(e), e) = 0.

e �CX e′ and the linearity of the function p ·y imply that
∑

e(y)p ·y =
∑

e′(y)p ·y. We have

∫
aµ(da;p(e), r(e), e) =

∑

y∈Y

e(y)((1 + r(e))

∫
g(a,p(e), r(e))µ(da;p(e), r(e), e) + p(e) · y)

=
∑

y∈Y

e(y)p(e) · y

=
∑

y∈Y

e′(y)p(e) · y

=

∫
aµ(da;p(e), r(e), e′).

We proved that µ(·;p(e), r(e), e) �I−CX µ(·;p(e), r(e), e′) and
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∫
aµ(da;p(e), r(e), e) =

∫
aµ(da;p(e), r(e), e′).

This implies that µ(·;p(e), r(e), e) �CX µ(·;p(e), r(e), e′) (see Theorem 1.5.3 in Müller and Stoyan

(2002)).

(ii) Assume that (p(e), r(e)) and (p(e′), r(e′)) are equilibrium prices. Suppose, in contradiction,

that p(e′) 6= p(e). From Proposition 1 we can normalize the prices and set p(e) ≥ p(e′) and

p′k = pk = 1 for some 1 ≤ k ≤ n.

We have x∗(a − g(a,p, r, e),p) = (z1(p)(a − g(a,p, r, e)), ..., zn(p)(a − g(a,p, r, e)) where zi(p)

is a positive function and z1(p) ≥ z1(p
′) (see Step 1 of the Proof of Theorem 2).

Since
∫
aµ(da;p(e), r(e), e) =

∫
aµ(da;p(e), r(e), e′) we have

∫
x∗k(a− g(a,p(e), r(e), e)),p)µ(da;p(e), r(e), e) = zk(p(e))

∫
(a− g(a,p(e), r(e), e))µ(da;p(e), r(e), e)

= zk(p(e))

∫
aµ(da;p(e), r(e), e)

= zk(p(e))

∫
aµ(da;p(e), r(e), e′)

> zk(p(e
′))

∫
aµ(da;p(e′), r(e′), e′)

=

∫
x∗k(a− g(a,p(e′), r(e′), e′))µ(da;p(e′), r(e′), e′).

The inequality follows from the same argument as in Step 1 of the proof of Theorem 2. Since

e �CX e′, we have ei �CX e′i for all 1 ≤ i ≤ n (see Theorem 3.4.4. In Müller and Stoyan

(2002)). Recall that ei �CX e′i implies that
∑

e′i(yi)yi =
∑

ei(yi)yi. Thus, 0 = ζk(p(e), r(e), e) >

ζk(p(e
′), r(e′), e′) = 0 which is a contradiction. We conclude that p(e) = p(e′).

Now assume, in contradiction, that r(e) > r(e′). We have

0 =

∫
g(a,p(e), r(e), e)µ(da;p(e), r(e), e) >

∫
g(a,p(e), r(e′), e)µ(da;p(e), r(e′), e)

≥

∫
g(a,p(e), r(e′), e)µ(da;p(e), r(e′), e′)

≥

∫
g(a,p(e′), r(e′), e′)µ(da;p(e′), r(e′), e′) = 0

which is a contradiction. The first (strict) inequality follows from Step 4 of the proof of Theorem 2.

The second inequality follows from the facts that g is convex in a and µ(·;p, r, e) �CX µ(·;p, r, e′).

The third inequality follows from the facts that g(a,p, r, e) ≥ g(a,p, r, e′) and p(e) = p(e′). We

conclude that r(e′) ≥ r(e).

References

Acemoglu, D. and M. K. Jensen (2015): “Robust Comparative Statics in Large Dynamic

Economies,” Journal of Political Economy, 587–640.

36
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