MINIMIZING TOTAL COSTS IN ONE-MACHINE SCHEDULING

A.H.G. Rinnooy Kan®, B.J. Lageweg®, J.K. Lenstra*

°Graduate School of Management, Delft, The Netherlands
*Mathematisch Centrum, Amsterdam, The Netherlands

1. INTRODUCTION

Suppose we have n jobs J1s-..,J, that arrive simultaneously at time
t = 0 to be processed on a continuously available machine which can
handle only one job at a time. J; takes pj time units to be pro-
cessed; costs ci(t), non-decreasing in t, are incurred if Ji is
completed at time t. We seek to find_a schedule with associated
completion times t; that minimizes Zi=1 cy (ty).

The problem is trivial in the case of linear cost functions
ci(t) = ai(t—di), where d; can be interpreted as a due date for Ji:
the optimal schedule has J4 preceding Jy if pj/aj < px/okx- The
general problem is considerably more difficult: a special case
where c;(t) = 0 if t < 4, ci(t) =0 if t > d belongs to Karp's
list of NP-complete problems [8]. A polynomial-bounded algorithm
for this problem would lead to efficient algorithms for a number
of classic computational problems, and its existence seems highly
unlikely.

Dynamic programming has been applied to solve the general prob-
lem [7,9], but most researchers have concentrated on the weighted
tardinese function c; (t) = a; max{0,t-d;}. This problem has been
attacked by methods of implicit enumeration, notably of the branch-
and-bound type [13], supported by elimination criteria that estab-
lish precedence relations between jobs [4,14]. Comparison of some
of these methods [1] suggests that their rather poor performance
may be due to the absence of strong lower bounds. We try to fill
this gap by introducing an algorithm for the general problem, that
pexrforms satisfactorily in the special case of the weighted tardi-
ness criterion. The algorithm and the computational experiments
are described in more detail in [12].

B. Roy (ed.), Combinatorial Programming: Methods and A pplications, 343-350. All Rights Reserved.
Copyright © 1975 by D. Reidel Publishing Company, Dordrecht-Holland.

344 A. H. G. RINNOOY KANET AL.
2. DESCRIPTION OF THE ALGORITHM

In sections 2.1, 2.2 and 2.3 an enumeration scheme, elimination
eriteria and a lower bound are proposed that together define our
branch—and-bound algorithm. We include some remarks on the imple-
mentation of the elimination criteria and the lower bound.

2.1. Enumeration scheme

Since an optimal solution without machine idle time always exists
[11], the total time needed to process a set of jobs is independent
of the processing order.

We create a search tree as follows. From the root node, where
no jobs have been scheduled, n branches lead to n nodes on the
first level, each of which corresponds to a particular job being
scheduled in the n-th position. Generally, each node in the tree
corresponds to a set {Jili e s* c {1,...,n}} filling the last |s'|
positions in a given order. By successively placing each job J,

(r € s=1{1,...,n}-8') in the |S|-th position, |S| new nodes are
created. J, then runs from P(S)-p, to P(S), where P(Q) = EieQ Pi
for any Q@ < {1,...,n}.

2.2. Elimination criteria

Successive application of the theorems in this section in each node
of the tree will lead to sets {J,|h € B;} and {3,}2 € A;} that
respectively precede or follow J; in at least one optimal schedule.
We can then limit the search to schedules satisfying these preced-
ence constraints. In the following, implications for the weighted
tardiness criterion will be presented as corollaries.

THEOREM 1. At least ome optimal solution has J4 preceding Jx
(3,k € 8) if (a) cj(t)-ck(t) is non-decreasing in t on the interval
(P(By)+py,P(S-A3)); and (D) py < pk-

Proof. If in any schedule J, precedes Js, with Jp starting at
time C and J; finishing at time D, consider %he schedule obtained
by interchanging Jy and Jq. The contribution to total costs by all
jobs except Jj, does not increase, because of condition (b). as to
the joint contribution of J; and Jg, we have from condition (a)
¢4 (D) -y (D) > c4(Cpy)-cy (Cpy), and from (b) cj(c+py) 2 cy(Ctpy),
together implying cj(D)+ck(C+pk) > cj(C+pj)+ck(D). (Q.E.D.)

COROLLARY 1. At least one optimal schedule has Jj preceding Jy
(3,k € s) 2f a4 < max{d; ,P (By) +px!, ay 2 oy, and Py < Pk

THEOREM 2. At least one optimal schedule has Jy preceding Jy
(3,k € 8) if (a) cyp(P(B)+pk) = ck (P(S-A5)-py); and (b) cy(t)-ck(t)
is non—-decreasing in t on the interval (P(S—Aj)—pk,P(S-Aj).

MINIMIZING TOTAL COSTS IN ONE-MACHINE SCHEDULING 345

Proof. If psy < px, we can apply Theorem 1. If Pj > Pk and Jy
precedes J., witg J) starting at C and J. finishing at D, consider
the scheduie obtained by putting J) direttly after Jj. The contri-
bution to total costs by all jobs except J) does not increase. As
to the costs of Js and Jy, we have from (a) cy(D-px) = cy(Ctpy),
and from (b) c-(D;—ck(D) 2 ¢ (D-py) -cy (D-py), together implying

cj(D)+ck(C+pk)JZ cj(D—pk)+ck%D). (Q.E.D.)

COROLLARY 2. At least one optimal schedule has I preceding Jy
(3:k € 8) if dc = P(S-Aj)-py, dy < dg, and oy = &

THEOREM 3. At least one optimal schedule has Jj preceding Jy
(3.k € 8) ©f cx(P(Bg)+pg) = cp(P(S-A5)).

COROLLARY 3. At least one optimal schedule has J4 preceding Jy
(i,k € s) ©f d = P(S-Aj).

THEOREM 4. In at least one optimal schedule Jy (k € S) comes last
among {lej € s} if cp(py) = ¢ (P(S)).

COROLLARY 4. In at least one optimal schedule Jy (k € S) comes last
among {lej € s} if g = P(S).

Theorems 3 and 4 are special cases of Theorem 2. Corollary 1 is
given in [13]. Corollaries 1, 2 and 3 are extended versions of
Theorems 1, 2 and 3 in [4]. Our proofs, however, are more general
and considerably simpler than the original ones. Corollary 4 is
also known as Elmaghraby's Lemma [3].

The only problem arising with the Zmplementation of these
elimination criteria is the possible creation of precedence cycles
whenever two theorems seemingly contradict each other. These cycles
are avoided by constructing the transitive closure of the set of
known precedence relations immediately after a new relation has been
found and by only examining pairs (J;,Jy) that are not yet related.

For a general cost function Theorems 1 to 4 can be applied in
every node. In testing the algorithm on the weighted tardiness cost
function, however, we applied Corollaries 1, 3 and 2 only in the
root node, repeatedly running through them in the above order until
no improvement was possible. Corollary 4 was checked in every node.

Precedence relations that are a priori given can be handled
by the algorithm in an obvious way.

2.3. Lower bound

The lower bound LB on the costs of all possible schedules in a node
has the form LB = c(S')+LB*. Here c(S') denotes the costs incurred
by {Jj}jeg'., and LB* is a lower bound on the costs c* of an optimal
schedule 7* = (#%(1),...,7°(m)) for the jobs in {J;}iegs which are
renumbered from 1 tom (= [S]).

346 A. H. G. RINNOOY KAN ET AL.

If all p; are equal, then the costs of putting J; in position
j are cj4 = ¢;(jpg), and n* is obtained from the solutlon (x*) to
the follow1ng " linear assignment problem (cf. [91):
1""Im)l

1,...,m), (1)

mJ.n{z:L 1 2] =1 Ci§%i4 I ZJ 1 ¥y = 1 (1

Xj5 2 0 (i,5=1,...,m}.

1X

If not all p; are equal, this idea can be used to compute a lower
bound, in two ways. Assuming all p; are integers, we can treat each
job J; as pl/g new jobs, where g = g.c.d. (pys-..+p,), thus turning
(1) into a (P(S) /g) *m linear transportation problem. However, it
seems difficult to define effective cost coefficients for a general
cost function (see [6] for a special case). Since job splitting can
occur and the problem will often be large, we prefer a different
approach. We define:

Ry (k) = minQ{P(Q)lQ c {1,...,m}-(Byu{ituay), ol

- {c (t J) for |B;l < 3 < [{1,...,m}-n,1,
1] otherwise.

Solution of (1) now gives the desired lower bound LB*, since Cj4
is a lower bound on the costs of putting J; in position j and since

1* is a feasible solution to (1) :

* m *
c* 2)5 ¢ T*(3)9 > LB

We now turn to the implementation of this lower bound. In any node,
the solution to (1) can also be evaluated as a schedule, which may
lead to a decrease in the value UB of the best schedule found so
far. If LB 2 UB, the node can be eliminated. Otherwise, the jobs

in {Jlll € S,SnA; = P} are candidates for position m. A complete
solution of the assignment problems in these descendant nodes may
be avoided by exploiting the solution (x) to (1) and the soltuion
(ul,v*) to its dual:

m .
max{zi=1 u; + Zj:l vy | ui+vj < Ci 5 (i,j = 1,...,m)}.
Observing that (ul,v)l . is a feasible dual solution to the
assignment problem, obtainagd from (1) by deleting row r and column
m, we see that a simple lower bound on the costs of scheduling Jy
in position m is given by:
- *_ Kk ky _ak_ %
LB, = c(S'u{xr}) + (LB™~uy-vp) = LB + (c,-uy-vy) > LB.
Branches for which LB, > UB can be pruned immediately. From the
remaining candidates, a job J, with minimal LB, is scheduled in

MINIMIZING TOTAL COSTS IN ONE-MACHINE SCHEDULING 347

position m. If application of elimination criteria does not further
increase LB,, we have to solve a new (m-1)x(m-1) assignment prob-
lem. Here we can still profit from (x;-) and (u;,v*), in two ways.

(a) The earliest possible finishing times t;: will not de-
crease, neither will the cost coefficients cjs. SO (ui,vg) pro-
vides a feasible dual solution to the new problem.

(b) (x%¥3) provides a partial primal solution to the new prob-
lem, that can be made orthogonal to the given dual solution by re-
setting x¥; = 0 if uf+v} < cj5.

Remarﬁ (a) suggests an aiternative bounding mechanism, whereby
the assignment problem is solved only in the root node and provides
bounds throughout the whole search tree by sums of appropriate dual
variables (cf. [6]). Although we obtained reasonable computational
results with this approach, we preferred the stronger bound; even
then the trees may become quite large for moderate size problems.

In selecting a method for solving the assignment problems,
ideally we would like to have a fast algorithm, not requiring an
initial basic solution and producing a sequence of non-decreasing
feasible dual solutions each of which may lead to early elimination
of the current node. Dorhout's dual method [2] turned out to be
more suitable than primal methods such as the stepping-stone algo-
rithm or primal-dual ones such as the Hungarian method.

Dorhout's algorithm works on a complete bipartite graph G =
(S,T,E) where S and T correspond to unscheduled jobs and unfilled
positions; edge e;; € E has weight Wiy = Cjs~uy~Vi- A partial pri-
mal solution (x::), orthogonal to a feasiblé dual” solution (ui,v-),
defines a matching on G. The algorithm constructs the shortest aug-
menting path from any exposed vertex in S to the nearest exposed
vertex in T, augments the matching and restores the orthogonality
while the dual feasibility is maintained.

3. COMPUTATIONAL EXPERIMENTS
3.1. Tested algorithms

Our algorithm was tested on the weighted tardiness criterion and
compared with Shwimer's algorithm [13] and a simple lexicographic
method [10]. Both of them use the enumeration scheme described in
section 2.1 and a lower bound corresponding to our LB..

Shwimer applies Corollary 4 and the static part of Corollary 1
(i.e. dj < dy). His lower bound is given by:

LB} = c(S'u{r}D + minj.g (,}{o; max{0,p(s-{rh-d;} +

+ minhes—{r,i}{ah}'Tmax(s_{r'i})}'

where T .. (Q) is the minimal maximal tardiness over all schedules
of {Jy}theor found by ordering the jobs according to increasing ay,
(see ?lli?. This bound can be computed very quickly, but depends

explicitly on a property of the tardiness function.

348 A. H. G. RINNOOY KAN ET AL.

The lexicographic method always chooses from the remaining
candidates a job J_. with maximal d,, applies Corollary 4 and uses
a lower bound LB} = c(S'u{r}).

3.2. Test problems

Each test problem with n jobs is specified by n integer triples
(pi,di,ai). Their distribution is determined by four parameters:

p (correlation between processing times and due dates), s (relative
variation of processing times), t (average tardiness factor), and

r (relative range of due dates).

The a; are generated from a uniform distribution over the in-
terval (4.5,15.5). The Ppj are generated from a normal distribution
with mean p = 100 and variance sp. If p = 0, the d; are generated
from a uniform distribution with mean (1-t)nu and variance
(rnp)2/12. 1f p > 0, each d; is generated in a similar way by re-
placing u by p;j; this leads to p = (1-t)/V{(1+1/82)r2/12 + (1-t)2}.

The parameters p, t and r were found to influence the perfor-
mance of other tardiness algorithms [1]; s was introduced because
of its possible influence on our lower bound. We would expect a
priori problems with positive p (see [4, Corollary 1.3]), small s,
very small or very large t (see [14]) and large r to be relatively
easy for our method.

3.3. Computational results

We generated problems with 15 and 20 jobs, setting the parameters
defined above to various values. The three algorithms were coded
in ALGOL 60 and run on the CD 73-28 of the SARA Computing Centre
in Amsterdam. The computational results can be found in Table 1.

The parameter t has a major influence on the performance of
the algorithms, problems with t=.2 or t=.4 being "easy" and prob-
lems with t=.6 or t=.8 being "difficult". As to the other param-
eters, p has no detectable influence, and problems with s=.05 and
r=.95 are indeed easier than problems with s=.25 and r=.20.

On the easy problems, the lexicographic method runs quickly
through large search trees; Shwimer's algorithm also performs well.
Our algorithm creates very small trees, but it seems hardly worth
while to compute sophisticated lower bounds for these problems.

On the difficult problems, however, our algorithm is by far
superior to the other methods. Both of them fail on all twelve
problems with 20 jobs; our method finishes seven of them, while
the best solutions to the remaining five are better than Shwimer's.

Recently, Fisher [5] developed a dual average tardiness algo-
rithm that uses a subgradient approach to produce strong lower
bounds. Our algorithm performs very well on his test problems.
However, they are easy ones with t=.5 and r=1, and both methods
cannot be compared from these data alone.

MINIMIZING TOTAL COSTS IN ONE-MACHINE SCHEDULING 349
4. CONCLUDING REMARKS

Our main conclusion has to be that, although our elimination cri-
teria and our lower bound turn out to be useful, this one-machine
problem remains a very difficult one.

An easy extension of our algorithm would be to check all elim-
ination criteria anew in every node. More criteria might be found
by considering the effects of moving three or more jobs at a time.

Our lower bound could be strengthened by explicitly respecting
known precedence relations in solving the assignment problem. It
is difficult to predict the effectiveness of this approach.

The idea of computing lower bounds by solving assignment prob-
lems whose coefficients c; s underestimate the costs of putting job
J;j in position j, can be applied to a wider set of problems, e.qg.
to minimizing total costs in an m-machine flow shop. This seems an
interesting topic for future research.

We think that it would be worth while to develop very sharp
bounds for the upper levels of the search tree and gradually sim-
pler ones as we move down the tree and more extensive enumeration
becomes attractive. Although our first experiments with such a
gliding lower bound were disappointing, the idea could become use-
ful in the future.

In spite of all the work done so far, the problem of mini-
mizing total costs on one machine is likely to remain a challenge
to researchers for a long time to come.

number of jobs n 15 20

tardiness t .2 .4 .6 | .8 .2 .4 .6 .8

number of problems 12 | 12 12 12 6 6 6 6

median |Our Alg. .0 .8 6.3 45.6] .8| 1.1]180.8|300 =
solution |Shwimer .0 6| 76.7|300 * .2| 2.2|300 %300 =
time Lex.Alg.] .0 .2| 60 x| 60 * .1| 1.8] 60 *| 60 *
maximum |Our Alg. .6| 8.2(121.8] 85.6 1.2] 20.3| (2)*| (3)=*
solution |Shwimer 31 3.9 (3)x|(12) % .31 10.2| (6)%| (B)*
time Lex.Alg. -3 14.8((10)* | (12)« 221 21.6| (6)*| (6)*
median Our Alg. 1 44| 647 4532 9 25111105 -
number Shwimer 1 86 (13066 - 12 281 - -
of nodes |Lex.alg. 1 305 - - 105 | 3564 - -
maximum |Our Alg. 28| 541| 9564| 9952 29| 1206 - -
number Shwimer 69 586 - - 29| 1130 - -
of nodes |Lex.Alg. 572 (36231 - - 580 [57671 - -

Table 1. Computational results: solution time (in CPU seconds) and
number of nodes (including eliminated nodes).

2 * : the median solution time exceeds the time limit .

(k)* : the time limit is exceeded k times.

350 A. H. G. RINNOOY KAN ET AL.
ACKNOWLEDGEMENT

B. Dorhout's cooperation in making available his assignment code
is gratefully acknowledged.

REFERENCES

1. K.R. BAKER, J.B. MARTIN, An Experimental Comparison of Solution
Algorithms for the Single-Machine Tardiness Problem, Nav.Res.
Log.Quart. 21(1974)187-199.

2. B. DORHOUT, Experiments with Some Algorithms for the Linear
Assignment Problem, Report BW 39, Mathematisch Centrum, Am-
sterdam, 1974.

3. S.E. ELMAGHRABY, The One~Machine Sequencing Problem with Delay
Costs, J.Ind.Eng. 19(1968)105-108.

4. H. EMMONS, One-Machine Sequencing to Minimize Certain Functions
of Job Tardiness, Opns.Res. 17(1969)701-715.

5. M.L. FISHER, A Dual Algorithm for the One-Machine Scheduling
Problem, Report 7403, Graduate School of Business, University
of Chicago, 1974.

6. L. GELDERS, P.R. KLEINDORFER, Coordinating Aggregate and De-
tailed Scheduling Decisions in the One-Machine Job Shop: Part
I. Theory, Opns.Res. 22(1974)46-60.

7. M. HELD, R.M. KARP, A Dynamic Programming Approach to Sequen-
cing Problems, J.SIAM 10(1962)196-210.

8. R.M. KARP, Reducibility among Combinatorial Problems, pp.85-103
in R.E. MILLER, J.W. THATCHER (eds.), Complexity of Computer
Computations, Plenum Press, New York-London, 1972.

9. E.L. LAWLER, On Scheduling Problems with Deferral Costs, Man.
Sei. 11(1964)280-288.

10. J.K. LENSTRA, Recursive Algorithms for Enumerating Subsets,
Lattice-Points, Combinations and Permutations, Report BW 28,
Mathematisch Centrum, Amsterdam, 1973.

11. A.H.G. RINNOOY KAN, The Machine Scheduling Problem, Report
BW 27, Mathematisch Centrum, Amsterdam, 1973; Report R/73/4,
Graduate School of Management, Delft, 1973.

12. A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA, Minimizing
Total Costs in One-Machine Scheduling, Opns.Res. (to appear).

13. J. SHWIMER, On the N-Job, One-Machine, Sequence-Independent
Scheduling Problem with Tardiness Penalties: a Branch-and-
Bound Solution, Man. Sei. 18(1972)B301-313.

14. V. SRINIVASAN, A Hybrid Algorithm for the One-Machine Sequen-
cing Problem to Minimize Total Tardiness, Nav.Res.Log.Quart.
18(1971) 317-327.

