POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE =50

PolytechniqUe Montréal D'INGENIERIE

Titre: ' Time-dependent traveling salesman problem and its application to
Title: the tardiness problem in one-machine scheduling

Auteurs:
Authors:

Date: 1977
Type: Rapport / Report

Jean-Claude Picard, & Maurice Queyranne

LEL . 'Picard, J.-C., & Queyranne, M. (1977). Time-dependent traveling salesman
Référence: ' Ao . ; . .
problem and its application to the tardiness problem in one-machine scheduling.

Citation: (Rapport technique n°® EP-R-77-12). https://publications.polymtl.ca/6094/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/6094/

Version: Version officielle de I'éditeur / Published version

Conditions d’utilisation

Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numéro de rapport: - o 55 15
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/6094/
https://publications.polymtl.ca/6094/

CA2PQ
UPL
77R12

Rapport Technique EP77-R-12

Classification: Library of Congress No.....

The Time-Dependent Traveling Salesman
Problem and its Application to the Tardiness Problem in

One-Machine Scheduling

by
Jean-Claude Picard
and
Maurice Queyranne

Revised version, February 28th, 1977

Ecole Polytechnique de Montréal

Campus de I'Université
de Montréal
Case postale 6079

Succursale A
Montréal, Québec
H3C 3A7

9 MARS 1977

The Time-Dependent Traveling Salesman
Problem and its Application to the Tardiness Problem in
One-Machine Scheduling

by

Jean-Claude Picard

Department of Systems Engineering
Federal University of Paraiba

Campina Grande, Brasil

and

Maurice Queyranne

Département de Génie Industriel
Ecole Polytechnique
de

Montréal

Revised version,... February 28th, 1977

ABSTRACT:

The time-dependent traveling salesman problem may be stated as a scheduling

problem in which n jobs have to be processed at minimum cost on a single ma-
chine. The set-up cost associated with each job depends not only on the job
which precedes it, but also on its position (time) in the sequence. The op-
timization method described here combines finding shortest paths in an asso-
ciated multipartite network with subgradient optimization and some branch and

bound enumeration.

Minimizing the tardiness costs in one-machine scheduling (in which the cost
is a non-decreasing function of the completion time of each job) is then at-
tacked by this method. A branch and bound algorithm is designed for this
problem; it uses a related time-dependent traveling salesman problem to com-
pute the required lower bounds. Computational results are given for the

weighted tardiness problem.

INTRODUCTION

This paper describes a general model for several optimum permutation and related
problems. This model, called the Time-Dependent Traveling Salesman Problem
(TDTSP) is a generalization of the Traveling Salesman (TSP) and Assignment Pro-
blems. In this problem, the coct of each transition depends not only on the

two respective locations involved, but also on their positions in the sequence

which defines the tour.

In Section 1 are given three integer programming formulations of the TDTSP, dis-
tinct from those previously given by K. Fox [10]. The relations between relaxations
of these three problems are then studied. Comparing the lower bounds provided by
these relaxations, it is shown that the shortest path relaxation is equivalent

to an extension of Hadley's TSP formulation (see [16]), and better than an assign-
ment relaxation. Consequently, the basic method used here seeks a shortest path
with specified characteristics in an associated multipartite network, using penal-
ties to enforce the additional constraints. Since a duality gap may exist a branch
and bound algorithm is constructed. A general and powerful dominance test is intro-

duced to reduce the enumeration effort.

In Section 2, general one-machine sequencing problems are shown to be related

to the TDTSP. The techniques of Section 1 are then applied to solve the class
of such problems which consists of minimizing a cost which is a non-decreasing
function of the completion time of each job. This is done by defining a multi-
partite network, in which shortest paths are used as in Section 1 for providing
lower bounds on the optimal cost. Efficient reductions in this network are des-
cribed. This bounding scheme and the dominance test are inbedded in a branch
and bound algorithm. The computational results given indicate that this algo-
rithm is an efficient one for the weighted tardiness problem in sequencing jobs

on one machine.

A final section on extensions and conclusions provides background material and
outlines the application of the TDTSP methodology to several classes of problems

in scheduling, routing and location theories.

1. THE TIME-DEPENDENT TRAVELING SALESMAN PROBLEM.

Definition:

The following one-machine sequencing problem is called the Time-Dependent
Traveling Salesman Problem (TDTSP).

Consider a set of n jobs, denoted by J ..,Jn, to be performed on a single

58
machine and set-up costs C;j occurringlwhen job Ji’ processed in the tth posi-

tion in the sequence, is followed by job Jj (processed in the (t + 1)St position).
The machine is in a given "initial state', denoted by O, before the job processing
begins. It has to be returned to a given "final state', denoted by (n + 1), after
the job processing ends, and initial and final set-up costs Cg i and Cz ntl 2Te

also given. The problem is to find a sequence Jw(l)""Jw(n) which minimizes the

total set-up cost C(w)’ defined by

0 1 n-1 n

Cony = Cowty ¥ Sy wty ¥ ¥ G-t wind T Swtn) me

(1=1)

Example 1:

n = 4 and the set-up costs are given in Table 1.

The cost of the sequence w = (0,1,2,3,4,5) is

0 1 2 3 4
= + # +
Cowy "B 1 ¥ G+ 0y 3%C3, %6, 5

33+ 2+ 6+ 15 + 22 = 78.

Remarks:
1 - The diagonal entries C; i have no meaning and therefore need not be defined.

2- Problems with unspecified initial (final) state can be formulated in the same

= 0(c® .= 0) for all i.
i nt+l

: 0
way, using C +

0i
3- When the set-up costs are not time-dependent,that is, when
¢t =c., all t,
1] 1]
for all (i,j) the problem reduces to the classical traveling salesman problem

(TSP).

4- When the set-up costs are not dependent on the second job of the
pair, that is, when

t t
Cij & Ci’

for all (i,t), the problem reduces to the classical assignment

all i,

problem (AP). By symmetry, this is also true when the set-up

costs are not dependent on the first job of the pair.

The TDTSP was defined by Kenneth R. Fox in his dissertation {10] ,
and it was illustrated with examples from the brewing industry. The
following one is a variation on a classical illustration ([7, p.53])

of the TSP.

Illustration: Consider a paint factory which produces five different

colors of paint, one per day. The machine has to be
cleaned at each color change. The changeover is accom-
plished by a night staff which works primarily on other
fixed tasks in the factory, within a given schedule.
This leaves a fixed amount of time each night for the
changeover, but this time may vary from day to day.
Because of these varying available changeover times,
production factors such as manpower and chemical pro-
ducts may be used at different levels. So the set-up
costs are dependent, not only on the color being remo-
ved and the color for which the machine is being prepared,

but also on which night the operation is performed.

Integer Programming Formulations:

In his thesis, [10] K. Fox gives five linear integer programming formulations,
and one flow-with-gains formulation for the TDTSP.

None of these formulations was found to lead to a tractable solution scheme,
and Fox reports his branch and bound algorithm being unable to solve a 10-job
problem within 12 minutes (computer not specified). We propose here three
other integer programming formulations and will study the relations between
relaxations of these problems. Our method for solving the TDTSP uses two of

these formulations.

S~ N =

46

1 2

2

28 15
15 0

12
15

1 2
41

1

8 26

10 16

The set-up costs C j

5
1 30
2 46
3 40
4 22

for example 1.

The first integer programming formulation of the TDTSP is a straight-
forward generalization of the TSP formulation given by Hadley and sim-
plified by Houck and Vemuganti [16], in which the costs (distances) have

simply been made time-dependent:

r n 0 0 n-1 n n v t n " s
ILP1 i «F B ¥ +
CERLM W 2 Sy T Yo B P Tt Y en N en
jFi
n
0 _
S s §=1 X 0j = 1
n
0o 1 -
xOj = E=l x ik 3 = Lysa sl
k¥
n n
£ t+1 _
§=1 Xij = » xjk t=1,...,n=2
i# K j=1,...,n
-1 n
P - - B
=1 "ij *in+l g = Lgwanst
i
n n-1
0 t .
oy T fe1 Bl Bay "L 3= LaeensB
i#
x =2 0
X integer

Note that the above formulation is distinct from the five integer programming

formulations of Fox, which all include a constraint with coefficients which

are not in the set {0,1,-1}, as is the case for (ILPl).

The second formulation refers to the Quadratic Assignment Problem (QAP)

(cf [20], [21]) which is defined as follows:

n n n n
AP) | Min 2 2 a, . X, X,
(QaF) A=l §=1 p=1 ¢=1 ijpq ip iq

n

s.t 2z x, =1 i = Liswwsn
p=1 “ip
n
1 Xip =1 p=1l...,n

| Xip = 0or 1 all i,p

The TDTSP may be formulated as a QAP by defining aiqu = 0 except for:
0 :
aiill = COi all i
o i sk
aijtt+1 = Cij all i,j,t (i#j and 1 £t <n-1)
n
and %iinn Ci,n+1

Before describing the third integer programming formulation, it is necessary

to introduce some definitions.

Multipartite Networks

A multipartite graph (cff24]) is a directed graph (V,A), the vertex set V of

which is partitionned into k subsets V Vk (here called phases) such

A

1,V2...,
that any arc in A having its origin in a subset Vi has its end in Vi+l°
bipartite graph is a multipartite graph with k=2. A multipartite network

N = (V,A,C) is a multipartite graph with a weight function C defined on A.

With the TDTSP is associated a multipartite network N = (V,A,C) which forms
the basis of the approach to be discussed here. Its vertex set V consists of
vertices (0),

(i,t) for i,t = 1,2,...,n, and

(n+1),

where vertex (i,t) represents the possible execution of job Ji in phase(or se-

quence position)t.

The arcs in A are:

initial arecs (0,(i,1)) with length Cg i 5

transition arcs ((i,t),(j,t+1)) with length C; ; G #),
, ; n

final arcs ((i,n), n+l) with length Ci -

The multipartite graph associated with the 4-job TDTSP of example 1 is pic-

tured in Fig. 1.

A path P in N joins O to (n+l) through n transition vertices, one in each phase.

If every job appears exactly once among the n transition vertices in a path

P, then P represents a feasible sequence w, and its length £(P) is the cost

C of this sequence. Such a path will be called a sequence path.

(w)

FIGURE 1

Denote by ag the number of occurences of vertices (i,t) (for t=1,...,n)
representing job Ji in a path P and let aP be the corresponding vector,
with n components ag (i=1,...,n). Clearly, a path P is a sequence path
if and only if aP = 1 , where 1 denotes the vector with all components

equal to one. Since a path P contains exactly n jobs, the following holds:

a? =n (1-2)

Shortest paths:

Finding a shortest path in N may be performed by the following algorithm,
which is a straightforward application of dynamic programming:

Shortest-path algorithm:

Step 1 for j=1,...,n set £(j,1) = ng
Step 2 for t=1,...,n-1 carry out the step 2a
step 2a for j=1,...,n set
£(j,t+1) = Min {£(i,t) + c'i:jl i=1,...,n}
and
m(j,t+l) = k such that f(j,t+l) = f(k,t) + Clsj
Step 3 set £ = Min {f(j,n) + C" | §=1,..,n}

j ntl

n
and m(n+l, ntl) = s such that £ = f(s,n) + (é -

After completion of this algorithm, £ is the length of the shortest-path
in N and such a shortest path may be found by backtracking using the labels

m. The time-complexity of this algorithm is 0(n3).

As an example, the above algorithm, applied to example 1, yields the path
p= (0,(4,1), (2,2), (3,3), (4,4),5) or, in a simpler notation w = (4,2,3,4)

with length 49. Since job 1 is omitted and job 4 is carried out twice, this

does not define a sequence path.

10.

If the shortest path in N is a sequence path, the corresponding sequence
is clearly an optimal solution of the TDTSP. Otherwise, the length £

of the shortest path is a lower bound on the cost of an optimal TDTSP
sequence. At this point, a naive approach would use a straightforward
branch and bound algorithm, fixing and forbidding at certain phases a
job which appear more than once. Instead of this, we prefer trying to
improve the lower bound before any separation. The motivation and

limits of such an attempt will be drawn from the following developments.

Another Integer Programming Formulation

In the following integer linear program, one Variable;xp is associated
with each path P in N.

—

(TLP2) Min 4

X
P

x =1 i=l,...,n
P

= 0, integer

£
a?
i

0]
o
Fa - O/ e~ |

p

L

Summing the n constraints, one obtains, after division by n:

by = .
¢ xp 1 (1-3)

Thus an integer solution to ILP2 has exactly one variable equal to one,
the others being at zero, and the corresponding path P must be a sequence-

path.

Hence = (ILP2) is a valid formulation for the TDTSP.

Relaxations:

Consider a mathematical programming problem

(MP) [Min £ (x)

S.t. x€EX

A problem
(MP") [:Min £'(x)

s.t. x€X'

is called a relaxation of (MP), according to [12], if and only if

X CX'" and f'(x) < f(x) for all x€X

There are three types of relaxations to be distinguised:
type 1: X = X! (T1)
type 2: f'(X) = f(x) for all x€X (T2)
type 3: neither (T1l) nor (T2)

In this paper, relaxations of these three types will be met. The implica-
tions of this taxonomy will be seen in the difference between the fathoming

tests used in the several branch and bound algorithms that can be devised

for this type of problems.

Consider first the linear programs (LP1) and (LP2) obtained from (ILP1l) and

(ILP2) by relaxing the integrality constraints. These are relaxations of

type 2. Denote by Zp1 LP?2

tions in (LP1l) and (LP2), respectively.

Turning to the QAP formulation, consider the linear assignment relaxation,

as defined by Lawler f{18].

(LAR) Min T 2 b, u
J q Jq]9
s.t. 2, = 14 ¥ 2 T owwgh
q 3jq . ’
>u, =1 = 1, ,n
J 19 9
=0 11 j,q.
u, = a
iq 159
with b

e +
Jjq Jjaq Jq
linear assignment problem:

—

LAP. Min 2. a,. v,
(J,q) 1;5 qu ijpq 1p
s.t. v, =1 all i #j
P;% 1ip 4
- +
i;% vip 1 all p ¥ q
vip>0 all i # j, all p¥q.

and z the optimum values of the objective func-

U. , where qu is the optimal value of the following

13

12.

Since aiqu is zero when p # q - 1, (assuming p # q), the computation of
qu is reduced, for q 2 2, to the selection of the smallest a, |, for

1391y
i#j. If q =1, then qu = 0.

Note that LAR is a relaxation of type one. Indeed, it is well-known that
(LAR) has an optimum solution 4 which is integer, and i induces a sequence
W by defining W(t) = i if and only if u,, = L

Denote by z the optimal value of the objective function in LAR.

LAR
Theorem 1: Let C* denote the cost of an optimum TDTSP sequence.

Then
C*ZZ1p1 = Zip2 ” Piaw

Proof: The first inequality follows from the fact that (LPl) is a
relaxation of (ILP1l).
The following equality is the time-dependent version of a
theorem by Houck and Vemuganti f16]. Its validity for the
time-dependent case is a straightforward extension of
their result.
The last inequality may be obtained by proving that any

feasible solution X to (LP1) induces a feasible solution

u to (LAR), defined by

13,

Gjl - ;{Zj all j

o, = ¥ oyt all j, all ¢ 2
Jjq 174 1]
From the definition of the qu, one finds
0

bjl = ajjll = COj all j

-1
b, =Min {a,, .| i#j } = Min {c37] i# j}
iq 1jg=1 i ij 3
all j, all q with 2<q<n-1
. =a,, +Min {a,, li#4} = ¢® + Min {c™71 |1 §}
jn jjnn ijn-1n j n+ ij
Hence,
- - t -t n -n
2 b,u, <3 X, +Z. c.x.+ TC .
7.qa "iq%iq \JE oj ¥oj T t,i,j ij "ij JE j o+l jn+l (1-4)

i¥F j

<X b, u., and the required ine-
LAR j,q jq jq)

Since u is feasible for (LAR), then z
quality is proven by taking as x an optimal solution to (LP1) i
The importance of the above theorem is twofold. First, the bound Z1p1
may be obtained by solving (LP2) and this will be the object of the remai-
ning parts of this section. Secondly, the last inequality relates this

bound to classical "assignment bounds" for several applications of the

TDTSP model such as the scheduling problem in section 2 and the QAP in [18].

A Dual Problem

Since (LP2) has only n constraints, but an enormous number of variables, it
may be solved by column generation. But, for values of n 2 15, the conver-
gence of the method become too slow to make it practical. Moreover, there

is no guarantee that the optimum solution will be integer (see [20] for an

14.

exemple). When using aprimal solution method, such as column generation,
for solving (LP2) there is usually no good lower bound available before
the problem is completely solved. This is an indication that a dual
method will be better suited for obtaining good lower bounds for the

branch and bound algorithm at reasonable computation expense.

When the shortest path P in N is not a sequence path, we will try to modi-
fy the costs on the arcs in the network by adding penalties ﬂi in such a
way that (i) the length of all the sequence-paths are not changed

and (ii) the shortest path will be induced to visit the jobs pre-
viously omitted and to avoid the jobs which were previously included more
than once. The penalty ﬂi will be incurred by a path each time a node
representing job Ji is visited. These penalties may be inserted in the
network by adding ﬂi to the length of all arcs coming from all nodes (i,t)

associated with Ji:

ct.o=ch + 9. (1-5)
ij ij i
(It is also possible to add ﬂj to all edges going into (j,t) or to use a
convex combination of these two schemes). Rather than actually add on the
penalties in this way, it appears to be more efficient to modify the shor-
test path algorithm to incorporate the penalties: by adding ﬂj to £(j,1)

and f(j,t) in Step 1 and Step 2a, this is carried out at the expense of

2 : .
only n additionnal computations.

Note now that the same constant may be substracted from all penalties,
so it is possible to consider that the following relation always holds:
29, =0 (1-6)
j=1 7

P P

Using the vector a 5

of occurrences of nodes (i,t) representing job Ji in path P), the length

of P, in the network with penalties, may be written as

_ P .
zﬂ(p) = L(P) + % ay ﬂi (1-7)

If P is a sequence path, associated with w, then

Lg(P) = £(P) = C

(w)

Denoting by C* the cost of an optimal sequence, and by Pﬂ the shorthest

path in the network with penalties 9, we have:

Lo (Pg) &= C* 1-9
ﬂ(ﬂ) C (1-9)
The "best'" penalties are solutions of the following maximization pro-
blem:
(D) Max {W(DI % ﬂi = 0}

where W() =Lq(Pq) = gin @) + 3 a’ ﬂi).'

Theorem 2: Problem (D) is equivalent to the dual of LP2

Proof: (D) may be stated as the linear programming problem:
[Max W
P
B Bl W-2a. 9. <2m® all P
- i Ml
%‘ﬂi=0
L W, Y4 unrestricted.

associated with path P(recall that a, is the number

1.5

16.

The dual of this linear program is:

r Min E £(P) R
8.k E X, = 1
‘g ag Xp +y=0 i=1,2, ,n
- x 20
Since % a? =n for all P, it follows that y = 1 and that the convexity
constraint is redundant, so one obtains exactly (LP2) #

Subgradient Optimization:

A subgradient optimization approach (e.g.[6], [14], [15]) to the solution
of problem (D) is based on the following observation: for a penalty vector ﬂk,

k . k ; :
the vector § with components s, = al = 1, where P is a shortest path with

i
k
respect to § , is the projection on the set{ﬂ|§ ﬂi = 0} of a subgradient

direction for the function W at the point ﬂk.
Subgradient optimization is now a well-developed technique for obtaining an
approximate solution to problems like (D). The application of this technique

to (D) is outlined as follows:

Subgradient optimization algorithm:

0
0 - Select an initial penalty vector 9§ ;set k = O.
k
1 - Compute a shortest path P using .
2 - 1If P is a sequence-path, then Stop: P is an optimal solution

to the TDTSP.

17.

3 - 1If more iterations are desired, go to step 4, otherwise
stop.
k+1 k
4 - Define using S and the previous penalties.

Go to step 1.
Different strategies for the stopping criterion used in step 3 and the pe-
nalty transformation in step 4 are described in the literature on subgra-
dient optimization.In the experimentation described in Section 2, we used

the iteration scheme (see [14]):

© -0
ﬂkﬂ = ﬂk+t Sk
k
with
. UB-W(ﬂk)
k

where UB is an upper bound on the value of an optimal sequence (for instance
UB is the cost of a '"good" sequence, determined by an heuristic method
or another device). This scheme can be seen as an attempt to set the
length of the previous solution path to the value UB (if W(ﬂk)= UB for some

k, then UB is the value of an optimal solution to the TDTSP).

If termination of the above algorithm occurs in Step 3 with the indication
that a shortest sequence path cannot be found at reasonable computation cost
with this method, then the information obtained from the solution of shor-
test paths problems in step 1 will be used within a branch and bound algo-

rithm for solving the TDTSP.

Branch and Bound algorithm:

The set of all n sequence paths in the originalproblem (P) is partitioned

18.

with respect to the last job to be processed. Denote by k_ ,k. ...,k the

1772 s
indices of the jobs for which the arcs ((kr,n), (n+l)) exist. For the
original problem, s=n and kr=r, but implicit bounds and dominance tests,
defined below, will allow to reduce the number of these jobs. Then s sub-
problems Pl’P

.,PS are defined by fixing the job Jk as the last job

g
in Pr’ for r =1,2,...,s. The problem (P) is called ther"father problem"
and the subproblems Pr are called its "sons'". The father problem being

a TDTSP of size n, the sons are also TDTSP's, of size n-1, and some in-
formation (bounds, penalties,...) obtained from the father problem may be
used to speed up the work on its sons. For instance, denoting by Y the
"best'" penalties found during the iterations of subgradient optimization
in (P), good initial penalties ﬂo for Pr may be defined by

0 |

7. =19, + kr for all j ¥k
J —_ r
n-1

Since branch and bound is a widely used optimization method, the only
features in the present algorithm which will be described here are those
which are not included in conventional branch and bound algorithms, namely

the implicit bounds and the dominance test.

Implicit Bounds:

5 n
As a by-product of the algorithm, the values b_ = f(j_,n) + C
i r kr n+l
provide lower bounds on the length of minimum sequence paths with Jk as

r
the last job. While performing the iterations in (P), it is advisable to

store in B the maximum of the br's computed for the successive penalties
T

9. These values B_are called the implicit bounds for P_

The implicit bounds allow early fathoming cf subproblem Pr if Br > UB
(UB is the length of the best known sequence path). The exploration
strategy called LIFO (or depth-first search, or backtracking) is utili-
zed, and makes use of a subsequent ranking of the remaining Pr's, accor-
ding to non-increasing order of their implicit bounds. This exploration
strategy is preferred because of its predictable storage requirement,

in contrast with the least bound strategy (jump-tracking).

Another benefit of the implicit bounds is the use of a redirected subgra-

dient. After some shortest path iterations, the values of Br are large

enough to make the shortest path in the whole network of no value in itself.

It appears more advisable to use, as a direction of modification for the
penalties, the shortest path ending at the node (kr,n) with least bound
Br. In this manner, a more specific attempt is made to improve the worst
Gmallest) implicit bound, and this could be seen as taking advantage of

a look-ahead power with respect to the sons of the current problem. The
experiments made during the design phases of the algorithms for several
applications (TSP, Tardiness Problem) showed that this modification was
especially worthwile, as much for earlier fathoming as for tightening the

bounds.

19.

1.5 Dominance Test.

In order to reduce the dmount of enumeration, a dominance test is
introduced for earlydetection of fathomable gubproblems. This test is
based on attempts to improve a current (partial) solution by inserting a

segment of the sequence between two other successive jobs.

Suppose that a subproblem is defined by fixing the (n-k) last
: ; ; ; th
jobs, say Jk+1 ’Jk+2""’Jn' Its sons will be defined by fixing the k
: th
job. Consider Jr as a possible k job. If the partial sequence

J ’Jn can be improved, without altering the k first phases,

e T T AR

then the corresponding subproblem will not contain an optimal sequence.

Improvements may be checked by inserting Jk+1 between Jk+2 and Jk+3’

then between J and J

43 K4 finally between Jn and the final state.

As soon as any improvement occurs, the corresponding subproblem is disre-

garded.

Otherwise, tigher tests may be performed by inserting the segment
. j h
Jk+l’ Jk+2 between Jk+3 and Jk+4’ and so on. The number of jobs in the

segment may be bounded by a fixed parameter or by its largest value
n-k+1 (corresponding to the insertion of the segment Jk+1""’ Jn_1
after Jn)' If the same test has been applied in the previous branching
steps and if no improvement occurs, then the partial sequence Jr’ Jk+1’
sitions k to nt+l with Jr

" Jn is a locally optimal sequence for po

fixed as the "first" job in this partial sequence.

20.

21.

These tests could be performed before the shortest path iterations in
order to reduce the number of possible kth jobs and make the shortest

path iterations and the related implicit bounds more accurate.

The value of this dominance test, which can be extended to a large num-
ber of enumeration algorithms, has been convincingly demonstrated in the
TSP and the Tardiness Cost problem applications of the model; it resulted
in a considerable reduction in the amount of enumeration and computer

time required, even to the extent that it allowed the solution of problems

which were unsolvable (in a ''reasonable'" time) without it.

The idea of improving a given solution by insertion was used by Emmons [8]

to introduce his precedence relation. A special case, where the segment

is reduced to one job and the insertion is tried just on both sides of this
job is called "adjacent pairwise interchange". See [2] for good discussion

of this method. It appears that the idea originated in the work of Reiter

and Sherman [22] , who described a general heuristic method for discrete
optimization. In particular, it provides a good heuristic method for obtai-
ning a good initial solution. It has proveﬁ its value for the specific appli-

cations to the TSP and the Weighted Tardiness problem.

Discussion:

Computational results for the general TDTSP will not be presented since it
was introduced mainly to serve as the model for a general class of optimal
permutation and related problems. Moreover, defining test data for such a
general problem by random sampling of the entries Cij has little meaning,

and it appears that specialized problems are much more difficult than ran-

dom ones.

22.

t
ij

solved usually without enumeration. It should be noted, however, that Fox

Indeed, some 10-job problems, with random values for all C,,, were easily
[10] » who used general integer programming, was unable to handle problems

of this size.

The next section adresses a general one-machine scheduling problem, for which
the TDTSP provesto be a valuable relaxation. Other applicationsof the above

methodology will be outlined in the last section.

23.

Section 2. MINIMIZING TARDINESS COSTS IN ONE-MACHINE SCHEDULING

Definitions:

The following one-machine scheduling problem is called the minimum tardi-

ness cost problem (MTCP): n jobs J .,Jn, which arrive simultaneous-

AT

ly at time t = 0, have to be processed on a continuously available machine

that can perform only one job at a time.

Associated with each job Ji are:
- the processing time p, =0

- a non-decreasing cost function Ci(T), which represents the cost incurred

if Ji finishes at time T.

Any processing schedule leads to a finishing time T for each Ji
(i =1,2,...,n); we want to find a sequence Jw(l)’ Jw(2)"""Jw(n) which

minimizes the total cost

C(w) = Cw(l) (Tw(l)) +...+ Cw(n)(Tw(n))'
Interpreting di as a due date for Ji(i=1,2,...,n) the following cost

functions have been considered in the literature:

0 if Tt <4,
18

a) C. (r) = &. otherwise
id i

This leads to an NP - complete problem, see [17] . If ai =1 for all i,

then the problem is to minimize the number of late jobs; good solution me-

thods are available for this problem (see [2]).

24,

B) €, (1) = a (T -d)

The problem is then to minimize the weighted lateness; it is solved

by WSPT sequencing (weighted shortest processing time), i.e., by a non-

decreasing order of pi/ai' See [2].

c) C,(t) =a, Max {0; T -d.} +B, T
i i i

i

The problem is then to minimize the sum of the (weighted) tardiness costs

and the flow-time costs. If all Bi = 0, this problem is called the Weighted

Tardiness Problem; if in addition all ai = 1, one obtains the Total Tardiness

Problem.

The MTCP has received much attention (21, [4],[51], [11],[23])

In the following analysis the cost functions are allowed to be arbitrary

non-decreasing functions, unless otherwise specified.

25.

The Precedence Relation:

Earlier results, originating with the work of Emmons [8], are noteworthy

for having defined a precedence relation, that is, a partial order on the

job set, such that an optimum sequence exists which satisties this prece-
dence relation. The reader is referred to sections 2-2 and 2-3 of [23]

for the definition and determination of such a precedence relation.

This relation will be denoted by R and iRj means that job Ji must be per-
formed before job Jj (not necessarily immediately before) according to R;

in this case, job J, is called a descendant of job Ji and job Ji is called

]

an ascendant of job Jj. Ai and Bi will, respectively, denote the sets of

indices of the descendants and the ascendants of job Ji (in the following,

Ai and Bi will denote the sets of indices as well as the sets of the corres-

ponding jobs).

Job Ji will be called a predecessor of job Jj if iRj and no job Jk’ dis-

tinct from Ji and Jj, satisfies iRk and kRj.

Letting S(i,j,t) be the set of sequences which satisfy the given precedence
relation and in which the tth job is Ji and the (t+1)St is Jj, we will give
conditions for S(i,j,t) ¥ @. When this set is not empty, a lower bound for tar-
diness cost incurred by job Ji in any element of S(i,j,t) will be calculated

and then used to define a TDTSP relaxation of the MTCP.

Lemma 1. For any t, S(i,j,t) = @ if

(1) 1 ij and J, is not a predecessor of J

i i

or (11) 1 GAj

Proof: (i) a job Jk included between Ji and Jj must be processed between

the tth and (t+1)St position, which is impossible.

26.

(ii) obvious. #
Defining B(i,j) = {i} U B, U Bj and denoting by | B(i,j)| the number
of its elements, we have:
Lemma 2. S(i,j,t) # @ if the relation
IB(1,i) <t (2-1)
does not hold.
Proof: all the jobs whose indices are in B(i,j) must be processed in

the t first phases. #

If (2-1) holds with equality, the set of the (t+l) first jobs is unique-

ly determined and:

t =¢)

C,. I +
15 = 3G, Pt Py
is the exact tardiness cost incurred by job Jj.

If (2-1) holds with strict inequality, then the remaining jobs to be

processed before Ji and Jj cannot be chosen among the descendants of Ji

and Jj. So, defining A(i,j) = {j} U AU Aj

and D(i,j) = {1,2,00-,11} - (B(i’j) U A(i’j))’
we have the following lemma:

Lemma 3. S(i,j,t) = @ if the relation

ID(i,5)] = t - B(i,j) (2-2)

does not hold.

27 .

Proof: obvious from the above arguments.
#
If (2-2) holds with equality, then the set of jobs to be processed

in the (t+1) first phases is exactly B(i,j) U D(i,j).

If (2-2) holds with strict inequality, then a lower bound on the com-
pletion time sz of job Jj is obtained by choosing the (t - B(i,j))
jobs in D(i,j) with least processing time. Since Cj(T) is a non de-
creasing function, we have:

Lemma 4. Ci§ = Cj(sz) is a lower bound on the tardiness cost for Jj

when Jj is processed in the (t+l)St position, just after

job Ji'

A TDTSP Relaxation.

With the lower bound Ci; of Lemma 4, a TDTSP may be used to provide a
lower bound on the total tardiness cost. Define a multipartite graph
as in Section 1, with dummy initial node (0) and final node (n+l). The
arcs ((Ji,t), (Jj, t+1)) have length Czj when these arcs are defined
(i.e., when (2-1) and (2-2) hold). The first position nodes (Ji,t) are
defined only for those jobs Ji with Bi = @, and Cgi = Ci(pi); the next

position "active' nodes are recursively defined as follows:

t
(Jj, t+l) exists if and only if there is a node (Ji’t) and Cij is defined.
The last edges ((Ji,u),n+1) are dummies and have length equal to O.

Illustration: The following example is taken from f23] with

Ci(T) = o, Max {O,T—di}.

The data are given in Table 2.

p 12 13 14 16 26 31 32
d 42 33 51 48 63 88 146

o 7 9 5 14 10 11 8

Data for illustrative MTCP example.
Table 2

The precedence graph is given in Fig.2

Precedence graph for illustrative MTCP example
FIGURE 2
The lower bounds C;j on the costs and the data for the corresponding mul-
tipartite network are given in Table 3. Note that the final node corres-

ponds to job J_ since, from the precedence graph, J_, must be processed in

7
the last position.

7

i

Cost‘Ct for the illustrative MTCP example.

1]

Position O .
Position 3
c? 3 -
i3] 1 2 a4 Cisl1 2 3 4 5 6
0 I 0 0 0 . 1 X 306 20 X 40 0
.¢;%Kk 2 {175 x 20 x 40 0
;4?}24 3] x X X 98 x X
e 4 x x 20 x 40 0
5 [175 306 X X X 0
6 1210 351 X X 220 X
C1 Position 1 C4 Position 4
ij 1 2 4 5 6 ij g 3 5 6
1 | x 0 0 x x 1 | x 585 150 350 110
2 0 x 0 x x 2 392 x 150 350 110
4 0 X 3 X X X 180 0
4 X X X 180 0
5 (392 585 150 x 110
6 1392 585 175 350 x
Position 2 Position 5 Pogition 6
qﬁ 1 2 3 4 5 6 ij| 3 5 6 Cij 7
1 X 72 0 0 0 0 1 |305 X X 3 0
2 0 X 0 0 0 0 2 |305 X X 5 0
4 0 72 x x 0 0 3 | x 490 264 6 0
84 198 x x x 0 2R X S
6 | 119 243 x x 100 «x IS 60 =
TABLE 3

29.

Theorem 3.

Proof:

If (J "Jw(n)) is a sequence satisfying the

w(1)?® Jw(2)**

given precedence relation, with tardiness cost C(w) and

(0,(Jw(l),l), (Jw(z),Z),...,(J),n), n+l) is the correspon-

w(n

ding path, with length £(w) in the multipartite graph

then L(w) £ C(w)

The theorem is justified by the above Lemmas 1 to 4.
#

Since the length of the path associated with a sequence is only a

lower bound for the tardiness cost of this sequence, it is not necessary

to solve the TDTSP.cempletely.

A procedure providing a good lower bound on

its solution is sufficient and this is performed by the subgradient techni-

que described in Section 1.

Theorem 4.

Proof:

If, for some penalty vector 1, the shortest path P* satisfies

the two following relations:

(1) it contains exactly one node (Ji’t) associated with
every job Jj , defining the permutation w (by w(t)=i)

(ii) £(w) = C(

w) °

then the sequence defined by w is a minimum cost sequence.

Since P* is the shortest path for the penalty vector T, we

have, for all paths P,

5 p* P
L(w) + L ay ﬂi-éf(P)+ P a;
i i

g. .
i

30.

31.

All feasible sequences S (including P#*) satisfy ag = 1 for all 1.
Therefore £(w) < £(S) for all sequences S. From (ii) it follows that

C(w) < C

(s) for all sequences S.)

If only condition (i) is satisfied, then the corresponding sequence w
is a '"'good" solution to the MTCP and the value of an optimal solution S*

must satisfy:

Lw) < C(S*) < C(w)'

If condition (i) is not satisfied, a stopping criterion, as defined in
Section 1, is used, and the maximum length ﬂ(ﬂe) of a shortest path is then

a lower bound on C(S*), i.e.,

e
L1 < g,y -

Before describing a branch and bound algorithm for the MTCP it is interes-
ting to discuss the value of the lower bound obtained by this approach by

comparing it with the lower bound obtained in [23].

Since no attempt is made to solve the TDTSP exactly, the subgradient iterations
aim at solving problem (LP2). Here we have a relaxation of the MTCP which
is of type 3, the 'weakest'" form of relaxation. Note that the assignment

relaxation described in [23] is of type 1 and may appear tighter.

It is a simple matter to verify that this assignment problem is exactly the

relaxation (LAR) of the TDTSP relaxation of the MTICP. Denoting by zLP2 the

value of an optimum solution to the relaxation (LP2) of MTCP, by Z1 AR the

assignment bound as defined in [23] and by Z* the cost of an optimum solution
to the MTCP, it fellows from Theorem 1 that

< < 7%
ZiaR © ZLp2 S

Note that the exact value Z pp Can be obtained only with optimal penal-
ties, and that subgradient iterations usually stop without providing
optimality. But the bound obtained is usually close enough to its op-

timum value to be likely better than z (it is possible to derive a

LAR
bound better than zLAR by using penalties derived from the optimal

dual variables for LAR, but we did not attempt to use this result).
Moreover, the smallest implicit bound is usually a tighter bound than
the maximum length of a shortest path, and it is this smallest implicit

bound which is actually used for possible fathoming. Additional features

for tightening the bound are described below.

Reductions:
In order to obtain tigher lower bounds for the MTCP, some reductions will

be performed in the TDTSP multipartite network associated with it.

The reductions will be performed by deleting one of the two arcs defined
by the costs ng and C§i’ depending on which of two conditions to be des-

cribed below holds.

Consider Ji and Jj such that no precedence relation holds between them.
Denote by eij a lower bound on the total processing time of the (t-1)

first jobs in a feasible sequence in which Ji and Jj are prdcessed respec-

tively in the tth and (t+1)th positions. Note that

+ P, F Pus
. Pi PJ

32.

33

t
Denote by eij an upper bound on the same value (of course

6t = Ot and ét = 5t

iy~ %51 3 945 7 0500

Theorem 5: If, for all GFIGt;, 8t 1
Sl ij ij

- < -
we have Cj (6+pie+pj) Cj (6+pj) Ci (6+pi+pj) Ci(8+pi),
(2-3)

then the arc defined by the cost C;i can be deleted.

Proof: In any feasible sequence with Jj as the tth job and Ji as the
th | 2 th . :
(t+1) job, the completion time of the (t-1) job is some
ee[ezj, égj] (if t =1, the interval is reduced to the single point
0). Then, the improvement obtained by exchanging Ji and Jj is
B4p.) + +p, + - + + < 0.
(C, (B4p,) + C,(84p; + p,)) = (C,(B4p)) + C, (B4p+p,)) <O
Thus, any feasible sequence in which Jj is the tth job and Ji

the (t+l)St may be improved by this exchange. #

Of course, if the above relation holds with equality, only one of the two
arcs defined by Czj and C;i is deleted. The power of these reductions will

be illustrated for the illustrative example in a following subsection.

34.

The Branch and Bound Algorithm:

The branch and bound algorithm for the MTCP is based on the framework
defined in Section 1. The main difference comes from the fact that,

for any sequence, its leng*h in the multipartite network is only a lower
bound on its cost. When a shortest path happens to be a sequence-path,
its length is the best possible bound obtainable in the corresponding
subproblem. It is necessary to compute the cost of this sequence: if
this cost equals the length of the path, then the optimal sequence is ob-

tained for the subproblem, and backtracking is performed.

But, in the other case, when the cost is greater than the length of the
path, it is necessary to branch from this subproblem for further tighte-
ning of the bound. This behavior comes from the fact that we have here

a relaxation of type 3 for the MTCP, while for the TDTSP the relaxation
was of type 2.

The dominance test may also be performed in a more efficient way. Indeed,
the cost of assigning job Jr to the kth position does not depend on which
job is processed just before, but only on the total processing time of the
(k-1) first jobs. So the insertions may be checked with Jr as the first

job in the segment.

The Weighted Tardiness Problem:

For application to the weighted tardiness problem, in which

Ci(T) = &, Max {0; T—di} , some additional specifications will be used.

The branch and bound algorithm makes use of the Elmaghraby test (i.e., if
the due date of a job Ji is not less than the total processing time, then
process Ji as the last job) as the first operation when defining any subpro-

blem.

The precedence relation is not recomputed, but only copied from the

one in the original subproblem. The reduced multipartite network is

then defined from the precedence relation.

t
The lower bounds eij (providing sz) are obtained by simply selecting

the jobs in D(i,j) with least processing time. In the same way, the

upper bounds ézj are obtained by selecting the jobs in D(i,j) with

greatest processing time.

For the reductions, two more precise statements of theorem 5 hold.

Corollary 1. 1If (i) di <§dj
_t
P < 2 - -
and (ii) eij Min (di’ dj pj) Py

then delete the arc defined by C§i.

Proof: Condition (ii) implies 6+p, < 8,, +p, Sd,

st
+p, +p, =6, + +p, S
and O+p, Py gy Fuy * 0 \‘dj’

so the two jobs are processed before their due-date if this is

done according the EDD (earliest due-date) order defined by con-

dition (i).

Corollary 2. If (i) pi/wi‘< pj/wj

t
iq = - d, -
and (ii) eij Max (di P> Pj),
t

then delete the arc defined by Cji'

Proof: Condition (ii) implies

6+ p. = d, and B+p, = d..
i i]]

395

So Ji and Jj are late jobs as soon as one of them is processed in the

tth position. Then the WSPT order is the best one, since the costs

are reduced to those for weighted lateness.

Illustration: Corollaries 1 and 2 are applied to the illustrative 7-job

example, yielding the reduced network pictured in Fig.3 Note that seve-
ral arcs and nodes become meaningless: for example, node (2,2) and the

arcs issueing from this node may be deleted (no path from the origin to

the end may use them). After the deletion of such elements, the network
is then reduced to the single sequence-path 2-1-4-5-3-6 with length 454.
Clearly the TDTSP problem is then solved in one (trivial) shortest path

iteration, and, since condition (ii) of Theorem 4 is satisfied, the

MTCP is also solved without branching.

36.

38.

Computational Results

The algorithm was coded in FORTRAN for the weighted tardiness problem
using a heuristic method based on adjacent pairwise exchanges [2], [22]
for computing the initial upper bound UB. It was run on the CDC Cyber
74-18 of the Université de Montréal on 84 test problems, with 15 and

20 jobs. The data for the first set of 42 problems are those of Rinnooy
Kan et al. [23], and tests were performed on the 15-job problems with
tardiness factor t of 0.6 and 0.8, and the 20-job problems with t= 0.4,
0.6 and 0.8 The solution time and number of nodes in the enumeration are

summarized in Tables 4 and 5.

The mean solution times (respectively, numbers of nodes) are given for
each set of problems with fixed size and tardiness factor. In order to
provide comparisons with the algorithm of Rinnooy Kan et al., the median

and maximum of the solution times and the numbers of nodes are also given.

The second set of 42 problems adresses the total tardiness problem, and

was solved with the same algorithm. While some simplifications are possi-
ble in the case where ai =1 for all i, for instance a reduction of about
one third in the execution time of the heuristic, no such modification was
attempted in order to study the behavior of our algorithm for this special
case. The test data are those of the first set, except that the weights
are uniformly set to 1. The mean and maximum of the solution times and the

numbers of nodes are given in table 6.

Considering that the CYBER 74 is reported to be from 2.5 to 3.5 faster than
the CYBER 73 used by Rinnooy Kan et al. (hereafter RKLL), the results given

In Table 4 show a substantiel improvement.

39.

It appears that the improvement over RKKL is about of the same order
of magnitude as the improvement of RKLL over the previous existing
methods. The comparisons for small n and t have less meaning due to
the low computation times involved, and the fact that our algorithm is
preceded by the heuristic method which requires a fairly constant time

of 0.5 second for n = 15 and 1.1 seconds for n = 20.

For the total tardiness problem no direct comparison with the work of
Fisher [9] was made. Fisher reports some comparison between his algo-
rithm running on a IMB 360 - 67 and RKLL on a CDC Cyber 73-38 and comments:
"generally their solution times were about equal to ours (Fisher) for

the 20-job problems'". It seems that, at least for the 20-job problems,

our algorithm will perform better than Fisher's.

In a private communication with the authors, Prof. K.R. Baker reports on
computational work with L.Schrague, applying their '"Chain Algorithm"

([3], [4]) to the same first set of 42 problems, each one being solved
within 1.2 seconds on an I.B.M. 370/168. This version of dynamic program-
ming seems to be currently the best way to exploit the precedence relation

in the weighted tardiness problem.

TABLE 4.

RESULTS FOR THE WEIGHTED TARDINESS PROBLEM

SOLUTION TIME (CPlI Seconds)

= Rinnooy Kan
Number of New algorithm” Lageweg Lenstra
n t problems T Sk
Averape Median Maximum |[Median Max imum
SIS e L] S
15 0.6 12 1.9 1.6) 6+3 121 .8
0.8 12 1s 1.6 3.4 45.6 85.6
20 0.4 6 2.7 1.5 6.4 1.1 20.3
0.6 6 1346 645 30.7 180.8 >300
0.8 6 12 11.0 20.8 >300 >300
*

CDC Cyber 74-18

$ CDC Cyber 73-28

TABLE 5.

RESULTS FOR THE WEIGHTED TARDINESS PROBLEM

Number of Nodesin the enumeration tree

40.

Rinnooy Kan
Number of New algorithm
5 t Lageweg Lenstra
problems
Average | Median Maximum [Median Maximum
15 0.6 12 29.5 17 121 647 9564
0.8 12 28.0 24 57 4532 9952
20 0.4 6 11.3 1 34 25 1206
0.6 6 118.8 48 302 11105 -
0.8 6 136.6 120 327 - ——

TABLE 6. RESULTS FOR THE TOTAL TARDINESS PROBLEM.
e
Number of Solution Time , | Number of Nodes
n t spablems . _(CPU sccon@s)
Average | Maximum | Average Maximum
L5 0.6 12 0.8 1.0 9.0 15
0.8 12 " 1.0 12.4 43
|
|
20 b 6 1.1 1.6 | 5.5 14
0.6 6 2,7 5.7 21.0 52
0.8 6 3.7 12.8 38.8 168

* CDC Cyber 74-18

Possible Improvements:

Some improvements to the existing algorithm are possible. First, attempts

to refine the precedence relation could be performed at each node in the

41.

. t . .
enumeration. Second, the arc lengths Cij in the multipartite network should

7 : t
provide better bounds if the values of eij were computed in a more accurate

way than by just considering the jobs with least processing time in R(i,j).

For instance, for t |B(i,j)| + 1, it is more advisable to select, among

the jobs in R(i,j) which are preceded by no other job in R(i,j), the one
with least processing time. For greater values of t, this selection turns
out to become a very difficult problem in itself, but it is likely that ti-

gher bounds could be obtained at a small additional expense. Reductions

using Thoerem 3 could be extended for the weighted tardiness problem to
cases in which Corollaries 1 and 2 do not apply, that is, in the "middle
part" of the network. Finally, the shortest path algorithm could be re-
placed by an algorithm which would reject paths including segments such
as (i,t), (j,t+1l), (i,t+2). This shortest path algorithm is described in
[21], and works in an average running time less than twice the time of the

simple dynamic programming algorithm.

Besides these attempts to refine the lower bounds, the branch and bound al-
gorithm itself could be improved. Considering that the costs C;;l of the
last transitions are exact, and that the best permutation of the two last
jobs is simply determined, one could extend the implicit bounds and the
branching. scheme to pairs of jobs in the two last positions. The branch
and bound algorithm would thus work implicitly two levels down. Of course,
this may be extended to triples of jobs in the three last positions, and
generally to r-tuples of jobs in the r last positions. It is likely that
there is a threshold value for r, after which it becomes much too difficult

to handle the r-tuples for larger values of r. However, it is not obvious

that the best value of r is 1, the value which is currently used.

42.

43.
3. EXTENSIONS AND CONCLUSIONS

The TDTSP, which was described in Section 1 and applied to the tardiness
cost problem in Section 2, may be useful in solving other optimum permu-

tation and related problems.

The first obvious application is to the Traveling Salesman Problem. Actual-
ly, this provided the basic impetus for devellopping the general modéil.

The first work in this area was described in two earlier research reports
[20],[21] . D. Houck and R. Vemuganti [16] have independently discovered
the same approach to the TSP and considered experimental comparisons with
the "l-arborescence" approach suggested by Held and Karp [13], for the
asymetric problem. A joint publication is currently in preparation. The
approach may be extended to several routing problems, for instance to the
multiple TSP in which the salesmen have to visit the same number of custo-
mers. The reader is referred to [21] for a further description of the rou-

ting applications.

Some extensions of the scheduling applications for the one-machine problem
were outlined at the end of Section 2. It appears that the method could
be extended to problems involving several machines, such as flow-shop and

job shop problems, but this will require further examination.

The algorithm may be simply adapted to handle more difficult problems than

the tardiness problem. Set-up costs di » occuring when job J, is followed

h| i

by job Jj on the machine, are easily handled in this model, by simply adding

j? for all t such that C;j is defined. More general-

ly, these set-up costs may be time-dependent exactly in the sense described in

t
dij to the arc length Ci

Section 1. It should be noted that the bounds C;j become tighter as the set-up

part of the costs become more important. It appears that the method could
be extended to problems involving several machines, such as flow-shop and

job shop problems, but this will require further examination.

Another optimum permutation problem, somewhat related to one-machine
scheduling problems, is the Linear Ordering Problem(see Adolphson and

Hu [1]). This problem may be handled as was the weighted tardiness pro-
plem described in Section 2. The main difference lies in the way the

bounds defining the multipartite network are computed.

Turning to more general optimum permutation problems, one obtains the Qua-

dratic Assignment Problem (QAP), of which the TDTSP is a special case.
The QAP appears to be a very general model as it provides a way to formu-
late several different optimization problems; it turns out to be a very
difficult problem however. At the present time exact solution methods
are tractable only for small problems (see [19]). In an application of
the TDTSP model to solving the QAP the computation of the bounds used

to defined the multipartite network is performed through the solution

of related linear assignment problems. These last two applications the
(Linear Ordering and Quadratic Assignment Problems) are currently under

study.

It appears that much work remains to be done, both on improving the pre-

sent approach and on applying it to several existing difficult problems.

ACKNOWLEDGEMENTS

The authors would like to thank Jean-Claude Nadeau and Ben T. Smith for

44,

their helpful assistance. They are also indebted to Richard Soland, Alexan-

der Rinnooy Kan and to anonymous referees for their careful reading and their

helpful comments on a first version of this paper. This research was sup-

ported by The National Research Council of Canada, Grants CNRC A8528 and

RD804.

[2]

[3l

[4]

[5]

[6]

(7

[8]

[9]

[10]

[11]

[12]

D. ADOLPHSON and
T.C. HU,

K.R. BAKER,

K.R. BAKER,

K.R. BAKER,

K.R. BAKER and

J.B. MARTIN

M.L. BALINSKI and

P. WOLFE eds.,

R.W. CONWAY
W.L. MAXWELL and
L.W. MILLER

H. EMMONS,

M.L. FISHER,

K.R. FOX,

L.GELDERS and

P.R. KLEINDORFER

A.M. GEOFFRION,

45.

REFERENCES

"Optimal Linear Ordering," STAM J. Appl. Math.
25, 403-423 (1973).

Introduction to Sequencing and Scheduling, John
Wiley and Sons, New York (1974).

"Finding an Optimal Sequence by Dynamic Program-
ming: An Extension to Task Chains,'" GSBA Paper

145, Graduate School of Business Administration,
Duke University, Durham NC (1975).

"Computational Experience with @ Sequencing Al-
gorithm Adapted to the Tardiness Problem," GSBA

Paper 163, Graduate School of Business Adminis-

tration, Duke University, Durham NC (1976).

"An Experimental Comparison of Solution Algorithms
for the Single-Machine Tardiness Problem," Naval
Res. Log. Quant. 21, 187-199 (1974).

"Nondiffentiable Optimization," Math. Proghamming
Study 3 (1975).

Theory of Scheduling, Addison-Wesley, Reading, Mass.
(1967).

"One-Machine Sequencing to Minimize Certain Functions
of Job Tardiness," Operations Research 17, 701-715,
(1969).

"A Dual Algorithm for the One-Machine Scheduling
Problem," 0.R. Tech.Rep. 243, Cornell University,
Ithaca, N.Y. (1974), (to appear in Math.Programming).

"Production Scheduling on Parallel Lines with Depen-
dencies,'" Ph.D. Dissertation, The Johns Hopkins
University, Baltimore, Md. (1973).

"Coordinating Aggregate and Detailed Scheduling
Decisions in the One-Machine Job Shop: Part I.
Theory," Operations Research 22, 46-60 (1974).

"Lagrangian Relaxation for Integer Programming,"

Math. Proghamming Study 2, 82-114 (1974).

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. HELD and
R.M. KARP,

M. HELD and
R.M. KARP,

M. HELD, P. WOLFE
and H. CROWDER,

D.J. HOUCK and
R.R. VEMUGANTI,

R.M. KARP

=

.L. LAWLER,

M.LOS.

.C. PICARD and
. QUEYRANNE

24

J.C. PICARD and
M. QUEYRANNE

REITER and
. SHERMAN

QW

.H.G. RINNOOY KAN
.J. LAGEWEG and
.K. LENSTRA,

[T -l

B.ROY,

46.

"The Traveling-Salesman Problem and Minimum Spanning
Trees," Operations Research 18,
1138-1162 (1970).

"The Traveling-Salesman Problem and Minimum Spanning
Trees," Part II, Math.Programming 1, 6-25 (1971).

"Validation of Subgradient Optimization,"
Math. Progrhamming 6, 62-88 (1974).

"The Traveling Salesman Problem and Shortest
n-Paths," presented at ORSA-TIMS Meeting, Phila-
delphia, Pa. May (1976).

"Reducibility among Combinatorial Problems,"
pp.85-103 in Complexity of Computer Computations
R.E. MILLER AND J.W. THATCHER (eds), Plenum Press,
New York (1972).

"The Quadratic Assignment Problem," Management
Sceience 19, 586-599 (1963).

"Experimental Comparison and Evaluation of Several
Exact and Heuristic Algorithms to Solve Quadratic
Assignment Problems of the Koopmans-Beckmann Type,"
Centre de Recherches sur les Transports, Université
de Montréal (1976).

"Le Probléme du Voyageur de Commerce: une Formula-
tion par la Programmation Linéaire," Rapport Techni-
que EP75-7, Ecole Polytechnique, Montréal (1975).

"Le probléme du Voyageur de Commerce: Plus-Courts
Chemins et Optimisation par Sous-Gradients," Rapport
Technique EP76-7, Ecole Polytechnique, Montréal
(1976).

"Discrete Optimizing," STAM J.13, 864-889 (1965).

"Minizing Total Costs in One-Machine Scheduling,"
Operations Research 23, 908-927 (1975).

Algébre Moderne et Théonie des Graphes, Dunod,
Paris (1970).

ACONSULTER
SURPLAC:

R — ————
—— s —

[l

I

Il

r(l(mﬂlUE DE MONTREAL
3 9334 002

1|

JAll

I

