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We consider the bin-packing problem with the constraint that the 
elements are in the plane, and only elements within an oriented unit 
square can be placed within a single bin. The elements are of given 
weights, and the bins have unit capacities. The problem is to minimize 
the number of bins used. Since the problem is obviously NP-hard, 
no algorithm is likely to solve the problem optimally in better than 
exponential time. We consider an obvious suboptimal algorithm and 
analyze its worst-case behavior. It is shown that the algorithm 
guarantees a solution requiring no more than 3.8 times the minimal 
number of bins. We can show, however, a lower bound of 3.75 in the 
worst case. We then generalize the problem to arbitrary convex 
figures and analyze a class of algorithms in this case. We also con- 
sider a generalization to multidimensional "bins," i.e., the weights 
of points in the plane are vectors, and the capacities of bins are 
unit vectors. 

THE classical bin-packing problem can be stated as follows: Given n 
numbers between 0 and 1, pack them into "bins" such that the sum 

of numbers in a bin does not exceed 1 and the number of bins used is 
minimized. This problem has been studied thoroughly (see, e.g., [7-9, 
11-14, 16]) and has applications in operations research [2, 4, 6, 10], com- 
puter operating system design and memory allocation [7-9, 11, 16]. More 
recently, the multi-weight bin-packing problem has also been studied by 
various authors [8, 16]. 

Now all these problems find yet another application in the area of com- 
puter network design [3]. In the design of a distributed computer system, 
three design problems are of major importance: 
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Bin Packing in Computer Network Design 761 

(i) Processors are to be allocated so that processing requirements 
from terminal stations can be satisfied. 

(ii) Files and application functions are to be distributed to the various 
processors so that all transactions can be processed efficiently. 

(iii) Data communication lines are to be installed connecting terminal 
stations to processors. 

The three design problems are interrelated, and a successful overall 
design should carefully consider all three aspects. However, in order to 
develop tools and algorithms for designing a distributed computer system, 
these design problems, although interrelated, can be investigated sepa- 
rately. The special techniques and insights obtained from such investiga- 
tions can later be combined for the solution of the overall design problem. 

Reference 3 studies problem (i). It also contains extensive references to 
publications related to problems (ii) and (iii). 

Problem (i) can be formulated in terms of a bin-packing problem as 
follows: Let pi, O<p<l, i=<1,--, n, be the (normalized) processing 
requirements of the n stations and 1 be the (normalized) processing 
capacity of a processor. Then problem (i) is to group stations into clusters 
and allocate one processor to each cluster, such that the total processing 
requirement for each cluster does not exceed the processing capacity and 
the number of clusters is minimized. If each station has multiple require- 
ments, such as processing requirement, file requirement, traffic require- 
ment, they can be represented by a vector pi= (Pil, * *, pi,) O <pij< 1; 
the capacity of a processor is (1, 1, *---, 1). Then problem (i) is to al- 
locate processors to clusters of stations so that in each cluster the require- 
ments do not exceed the capacity of a processor. We then have the multi- 
weight bin-packing problem. 

In [3] experimental and statistical studies were carried out on several 
simple heuristic methods. It also points out the need of some notions of 
geographic constraints to reflect more accurately the practical situation. 
For example, grouping two stations thousands of miles apart into one 
cluster is highly undesirable. 

In this paper we propose a model for the processor allocation problem 
with geographic constraints in terms of a bin-packing problem with geo- 
metric constraints; i.e., stations can be grouped into a cluster only when 
they are "close" enough. 

Formally, we assume that the stations are points in a plane with weight 
vectors and that clusters can be formed only when the points are within a 
certain neighborhood. A neighborhood is a preassigned convex figure. 
Thus, we have the following constrained bin-packing problem: Given n 
points ai, i=-1, , n, in a plane with associated weight vectors pi, and 
a bounded convex figure G, pack the points into bins such that 
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762 Chandra et al. 

(i) the points in each bin can be contained in a G-figure; 
(ii) the total sum of each weight component in a bin does not exceed 1; 

and 
(iii) the number of bins used is minimized. 

Of course, the G-figures of two bins may overlap. Note that by a figure 
G we mean the boundary of G is included and the orientation of G may be 
part of the definition. 

Our model is only a first attempt to attack the geographic constraint 
problem. Obviously, many other models are possible. We choose the 
present model for its simplicity. 

Clearly, our bin-packing problem with geometric constraints is NP- 
hard. Thus, efficient algorithms for optimal solutions are very unlikely. In 
this paper we propose a simple heuristic and compare its worst-case per- 
formance with optimal packings. 

Let H(G, a, p) denote the number of bins used by a heuristic H for the 
points a and weight vectors p. Let M(G, a, p) be the minimum number of 
bins needed for (a, p). Define rH(G) - lub(a,p) H(G, a, p)/M(G, a, p), 
where lub means "least upper bound." The subscript H in TH(G) will 
be omitted where it is obvious. We shall derive upper and lower bounds for 
r(G). The case s - 1 will be considered first and for G to be a unit square 
with sides parallel to the x- and y-axes, we shall show that the heuristic 
uses at most 3.8 times more bins than the minimum number. Furthermore, 
we shall construct a family of sequences (a, p) such that H(G, a, p)/ 
M(G, a, p) approaches 3.75. Thus, 3.75?r(G) ?3.8 for this specific G. 

Next we shall generalize these results to arbitrary convex figure G and 
then to the case of s> 1. 

1. THE HEURISTIC 

In this section we shall assume s= 1 and G is a unit square with sides 
parallel to the x- and y-axes. We define a heuristic Hi below. 

Let xi, yi be the coordinates of point ai with weight pi. In the proposed 
heuristic, the points will be processed from y = -o to y -oo For two 
points with the same y-coordinates, the one with smaller x-coordinate 
will be processed first. Therefore, we start with the point having the largest 
y-coordinate. In case of tie, the one with the smallest x-coordinate is the 
choice. 

(i) For point a, we construct two G-figures such that they have one 
vertical edge in common and point a is located at the top of this edge. 
(See Figure 1.) For definiteness, the left figure includes all its four edges 
and the point a, and the right figure includes all its edges except a. 

(ii) Remove from further consideration the area covered by all the 
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G-figures (including boundaries) so far. Repeat (i) except that the two 
figures constructed will cover only the part of plane uncovered so far. 

The points chosen to construct pairs of figures will be referred to as 
pivot points, and the figures constructed will be referred to as resultant 
figures. (For example, in Figure 1 a' is another pivot point and the shaded 
figures are its resultant figures.) Note that the resultant figures are dis- 
joint and might not be squares. 

(iii) After all the points are covered by resultant figures, we shall pack 
the points in a resultant figure into "bins" such that the weight sum in 
each bin is at most one. The packing can be done arbitrarily as long as in 
the resulting bins there is at most one bin with weight sum less than or 
equal to ?2. 

a 

|A B-|a 

Figure 1. Two G-figures for poinit a are shown with onie veitical edge 
in common and point a located at the top of this edge. 

Part (i) of the above heuristic constructs two (-figures (oriented unit 
squares) for each pivot point. This scheme has the property that if there 
were no constraints on the total weights of points in a bin, the number of 
bins used in the heuristic would be no more than a factor of 2 times the 
minimum possible number of bins. This is easily seen because nIo two pivot 
points in the heuristic can be placed in one bin. The factor of 2 is tight. 
Suppose the heuristic were changed such that only one of these two G-figures 
is constructed at a pivot point, say the one in which the pivot point is at 
the top right-hand corner. Then the ratio of the number of bins used by 
the heuristic divided bv the minimum number of bins would be unbounded. 
This applies whether or not the bins have weight constraints. 

2. ANALYSIS OF THE HEURISTIC 

In this section we shall show that 3.75?< r(G) ?3.8 for H1. (Recall that 
G is a unit square wvith sides parallel to the x- and y-axes.) To derive the 
upper bound, we need some definitions and lemmas. 

Given a resultant figure Y, a pivot point a is said to be near Y if there 
exists a G-figure containing a and having nonempty intersection with Y. 

LEMMA 1. Let a be a pivot point wvith left resultant fJgure A and right resultant 
figure B. Then there are at most 4 other pivot points near A. A similar state- 
ment holds for- B. 

This content downloaded from 128.195.56.100 on Mon, 13 May 2013 15:02:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


764 Chandra et al. 

Proof. Let A', B' be the original figures from which the resultant figures 
A, B are obtained. It suffices to look at the seven G-figures surrounding 
A' and B'. (See Figure 2.) They are labeled Si, *., S7 in a counter- 
clockwise direction. 

By the definition of resultant figures, no pivot points near A can occur 
in S3, S2, SI and B'. Since each G-figure can contain at most one pivot 
point, it follows that there are at most 4 pivot points near A. Note that 
the shape as well as the boundary of the G-figure plays an important role 
here, 

A similar argument applies to B. 

S3 2 S I 

S4 A' B' 

S5 S6 S7 

Figure 2. The seveni G-figures, S1-S7, are shown surrounding A' and B' 
in a counter clockwise direction. 

DEFINITION. We say a resultant G-figure is "light" if the sum of weights of 
points in it is less than or equal to 1; otherwise, it is a "heavy" figure. A 
pivot point is "light" if both its resultant G-figures are light. 

LEMMA 2. Given a, p, let n1 be the number of light resultant G-fgures and 
n2 the number of heavy resultant G-figures. Let m be the total number of bins 
used for heavy figures. Write H =-HI(G, a, p) and 0= M(G, a, p) for short. 
Then 

(i) m>2n2 (1) 

(ii) H=n1+m (2) 

(iii) 0> (nl+n2)/2 (3) 

(iv) O>m/2+max (ni-n2)/2-4n2, 0}. (4) 
Proof. 
(i) It is obvious. 
(ii) It follows from the fact that a light G-figure needs at most one bin 

by definition of the heuristic. 
(iii) Only notice that (nl+n2)/2 is exactly the number of pivot points 

generated by the heuristic and no two such points would be included in 
the same G-figure (hence in the same bin) in any algorithm. Thus (3) 
follows. 
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(iv) In an optimal algorithm, to cover points in all heavy figures one 
needs at least m/2 bins. Also, there are at least max (ni- n2) /2, 0} light 
pivot points. By Lemma 1 at most 4n2 of these light pivot points are near 
the n2 heavy figures. Thus, at least max { (n1-n2)/2-4n2, 0} light pivot 
points are not near any heavy figure. But each of these needs a bin to 
cover it in an optimal algorithm. Thus, 

6>m/2+max {max ((n1-n2)/2, 0)-4n2, 0}, 

which is (4). 

THEOREM 1. For heuristic H1 and oriented unit squares G, r (G) ?3.8. 

Proof. We shall show that the ratio H/I will achieve the maximum value 
3.8 over all real values of n1, n2, m. 

We shall minimize O/H subject to (1) to (4). Equation (4) can be re- 
written as 

6>m/2+(nr-9n2)/2, for ni1?>9n2 (5) 

0>m/2, for n1?< 9n2. (6) 

Substituting n1 = H-m in (3), (5) and (6), we have 

O>H/2-m/2+n2/2 (7) 

G>H/2-9n2/2 for m+9n2?H (8) 

0>m/2, for m+9n2> H. (9) 

Solving the linear inequalities (1), (7), (8), we see that O/H has mini- 
mum value 5/19. The same result holds if we solve the linear inequalities 
(1), (7), (9). Consequently, -r(G) < 19/5:= 3.8. 

THEOREM 2. For heuristic H1 and oriented unit squares G, r(G) > 3.75. 

Proof. We shall construct a family of examples, such that the lower 
bound of H/I approaches 3.75. Take 5 unit squares with sides parallel 
to the x- and y-axes as in Figure 3. X represents a set of 8 arbitrarily close 
points with weight 2E each, where E>O is an arbitrarily small number. 
Each of A, B, C, D, represents a set of 2 arbitrarily close distinct points 
with weight / - e each. Each of E, F, G, H represents a set of 2 points 
with weight e each. Furthermore, A, E can be covered by a unit square, 
so can B, F; C, G; D, H respectively. But F, G, and G, H cannot be covered 
by unit squares. If the heuristic is applied to this set of points and weights, 
one of the points in X will be a pivot point with Si its left resultant figure. 
As a result of packing within this figure, in the worst case one may end 
up with 8 bins with weight 11~+ E each, namely, om point from X and one 
point from A, B, C, or D constitute one bin. By appropriately arranging 
the positions of points in E, F, G, H, each point may need one bin with a 
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766 Chandra et al. 

total of 8 bins. Thus H = 16. On the other hand, one can clearly group A, E 
in one bin, and similarly for the pairs B, F; C, G and D, H. For X, another 
bin is needed. Thus, 0 < 5 and H/0> 3.2. 

To improve this lower bound, we take an exact copy of the configuration 
in Figure 3 except in the weight: E is now replaced by Ei= ME. Put this 
new configuration to the upper right-hand side of the old configuration 
such that the left-most point in F coincides with X. Eliminate this point 
from the combined figure (but keep the original X). Therefore, the new F 
consists of the set X of 8 points with weight 2E each and another point 
with weight El. Repeat the same process by adding a new configuration 
with new weights (Ei+l = 16E) to the upper right-hand side of the current 
figure. 

S2 Si X 

*E *A 

B C D 

OF *G H* 

S3 S4 S5 

Figure 3. A typical configuration of five squares used in the proof of 
Theorem 2. 

If we now consider a typical configuration of five squares as in Figure 3, 
the heuristic may yield 8 bins for the square Si, 2 bins for each of S2, 
S4, S5 but 1 bin for F since one of the points in F is being taken care of 
by a lower left-hand square. The total is 15. On the other hand, one can 
put A, E; B, F; C, G; D, H in 4 bins and X will be taken care of by an 
upper right-hand square. Thus in the limit H/I? 3.75. 

The heuristic H1 used a particularly simple algorithm to pack points in 
a resultant figure into bins (step (iii) of H1). If we use an optimal packing 
at this step, the modified heuristic still cannot guarantee using less than 
3 times the minimum number of bins for the overall problem. This can be 
seen by modifying the construction in the proof of Theorem 2 as follows: 
A, B, C, D represent one point each with weight 1-2c; E, F, G, H represent 
a set of 2 points each with weight e; and X represents 2 points with weight 
3E each. This configuration is repeated with weights adjusted accordingly 
as in the proof of the theorem. 

3. GENERALIZATION TO ARBITRARY FIGURES 

In this section we still assume s= 1 but generalize the previous results 
to more general geometric figures. Let G be an arbitrary bounded convex 

This content downloaded from 128.195.56.100 on Mon, 13 May 2013 15:02:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Bin Packing in Computer Network Design 767 

figure. The heuristic is still the same but with different parameters, namely, 
points will be processed from top to bottom and from left to right. If a 
point is picked as a pivot point, a G-figures will be generated covering at 
least the pivot point. After removing the area already covered, we repeat 
the process. We require that one bin be used even if a resultant G-figure 
is empty. Eliminating this restriction, however, would not change our 
upper bound, nor our lower bound for a = 1. 

Now in addition to a, two parameters are needed: A, the maximum 
number of pivot points near a resultant G-figure other than the one that 
generates the G-figure, and -y, the maximum number of pivot points cover- 
able by a G-figure (a pivot point A is "near" a resultant G-figure if there 
is a point B in the resultant G-figure such that it is possible to place a 
G-figure overlapping both A and B). In the previous case, a =2, f=4, 
-Y=1. 

We have similar results as before. Proofs are given in the appendix. 

LEMMA 2'. 

(i) m> 2n2 

(ii) H= ni+m 

(iii) 0> (nl+n2)/olay 

(iv) 6?m/2-max { (nj-n2)/a-y - [(aO+ a-2)/a-yln2, O}. 

THEOREM 1 . Tr(G)?_ 2+ay--y/(3+1). 

The dominating term is wy. Since the case a = 1, -y = 1 simultaneously is 
impossible, a = 2, -y = 1 or a = 1, 'y = 2 are the minimal values. Our previous 
case belongs to the former and we shall exhibit a case for the latter at the 
end of the section. 

THEOREM 2'. r(G) ?max {2+a- (a+5)/(f+2), aoy}. 

We shall next present some examples for illustration. 
(1) Let G be a unit square with sides parallel to the x- and y-axes. 

Let a = 1 and let the mid-point of the top horizontal edge be a pivot point. 
Then=14,y=2. 2.625<r(G)<3.87. 

(2) Let G be a unit circle. Let a= 1 and let the center of the circle be a 
pivot point. Then A = 18, -y =5. 5< r (G) < 6.74. 

(3) Let G be an oriented unit square. Let a= 1 and let the top left 
corner of G be the pivot point. Then -y = oo and r(G) = oo. 

(4) Let G be a unit circle. Let a= 2. The centers of the two circles are 
at the same y-coordinate and separated by one unit on the x-coordinate. 
The pivot point is the intersection of these two circles that has the larger 
y-coordinate. Then it can be shown that y = 2. Hence 4 ?Tr (G) < 6. 
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4. GENERALIZATION TO THE MULTI-DIMENSIONAL CASE 

In this section we generalize the results of Sections 1 and 2 to the multi- 
dimensional case (the dimension s is an arbitrary integer > 1), but retain 
the requirement that G-figures be oriented unit squares, i.e., unit squares 
with sides parallel to the x- and y-axes. 

The heuristic H8 is the same as that in Section 1 except that (iii) is 
changed to (iii') below. 

(iii') After all the points are covered by resultant figures, pack the 
points in a resultant figure arbitrarily into "bins" provided that: 

(a) if the weight vectors of the points in a bin are pi= (Pi,, pis), 
1 i<k, then the weight vector of the bin is defined as b= (b1, ,) b=.)= 
(Z Pii, .. * Z Pi.) and we require that it satisfy the constraint bj< 1, 

(b) there are no two bins with weight vectors b = (b, *, bs) and 
b'= (b1', ., bs') such that bj+bj' <1, 1 < j _ s. 

The algorithm (iii') for multi-dimensional bin packing (without geo- 
metric constraints) is known to use bins no more than s+1 times the 
minimum possible number of bins [7]. On the other hand, no algorithm is 
known that is guaranteed to use less than s times the minimum possible. 

We can show that the above heuristic for multi-dimensional bin pack- 
ing with geometric constraints is guaranteed to use no more than s+2.8 
times the minimum possible number of bins. We have the following theo- 
rem. (See the appendix for proof.) 

THEOREM 3. For heuristic H8 and oriented unit squares G, 

s+2.75? _r(G) < s+2.8. 

5. CONCLUDING REMARKS 

In this paper we propose and analyze a simple heuristic for the bin- 
packing problem with geometric constraints. An interesting prob]em re- 
maining is to find better approximation algorithms for this problem. It 
seems that the emphasis should be placed on the allocation of points to 
figures rather than the bin-packing aspect since, as demonstrated at the 
end of Section 2, even optimal packing does not help much. Another area 
of interest is to consider other models that may reflect more accurately 
the geographic constraints in processor allocation problems. 

APPENDIX 
LEMMA 2'. 

Proof. To prove (iv), only note that the number of light pivot points is 
bounded by max ( [n1- (a- 1)n2]/ax, 0) and thus 

0 > m/2+max I [max ([n1- (a-i )fn2]/a, 0) - on2]fy, 0 . 
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THEOREM 1. 

Proof. Similar to Theorem 1. 

THEOREM\ 2'. 

Proof. We can repeat essentially the construction in the first part of the 
proof of Theorem 2 and obtain the lower bound 2+a-(a+5)/(3+2). 
In Figure 4(a), let X be a point with weight e. Each of Ai is a set of 3 
points, of which 2 points have weight (1 E)/2 each and the third has 

x 
*B1 *A 

*B2 *.A2 G *BBW 

(a) 

c,. G ) 
C2. 

Cp 

(b) 
Figure 4. Illustration of proof of Theorem 2. 

weight e. Each of BX is a point with weight e. They are positioned such 
that one of the points in X is a pivot point in the heuristic and { A i}, 1 < i < f, 
are all contained in one of the resultant G-figures generated. Furthermore, 
Bi are positioned such that for each i, Ai, Bi can be covered by a G-figure 
and each Bi is a pivot point. 

In the worst case the heuristic will use 23 bins for the points A j, an 
additional a -1 bins for the pivot X, and aof bins for the pivots Bi. Thus, 
H=2fl+a-fl-+-a-1. On the other hand, 0<+2. Thus r(G)>a+2- 
(at+5)/(03+2) . 

On the other hand, as in Figure 4(b), suppose X, Cl, C2, *, and C,_1 
are all points with weight e each. If appropriately positioned, each of 
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these sets can contain a pivot point, yet all can be covered by one G-figure. 
Thus X a-y and 0= 1. It follows that r(G) _ ay. 

THEOREM 3. 

Upper bound. Let ni, n2 and m be defined as in Lemma 2. Let 
H=H8(G, a, p) and 0=M(G, a, p). As before, 

m=2n2 (1) 

H=n1+m (2) 

0? (n1+n2)/2 (3) 

0 6m/(s+1) +max { (n1-n2)/2-4n2, 0}. (10) 

Equation (10) follows from the result in [7] that if step (iii') in heuristic 
H, packs the points into, say, k bins, an optimal packing requires at least 
lc/(s+1) bins. As in the proof of Theorem 1, we can solve (1), (2), (3), 
(10) to obtain H/O<s+14/5=s+2.8. 

Lower bound. This is obtained by generalizing the construction used in 
the proof of Theorem 2 to s ?2. For any B>0 we construct the following 
example, for which H/IO s+2.75-6. 

Let k be a natural number such that 

k> (4s-46+3)/166, (11) 

and let e be a positive real number such that ' 
<?sl[(4s2+5s)k+l]. 

There are 8ks+151k+4s+5 points 

Aij, B3j, Cij, Dij 1 <i<s+1, 1 <j<k 

1ijjy Gij, Hij i=1, 2, 1<j<k 

Fij li<i4s+5, 0<j?Ic 

located at the following coordinates 

Aij is at (1.8j-0.9, 1.3j-0.2) 

Bij is at (1.8j-0.9, 1.3j-0.4) 

Cij is at (1.8.j-0.7, 1.3j-0.4) 

Dij is at (1.8 j-0.6, 1.3j-0.4) 

Eij is at (1.8J-1.8+0.1i, 1.3j-0.2) 

Fij is at ( 1.8], 1 .3j) 1 _i_4s+4 

Fij is at (1.8j+0.1, 1.3j) i=4s+5 

G., is at (1.8j-0.7+0.li, 1.3j-1.3) 

fij is at (1.8j+0.4+0.li, 1.3j-1.3). 
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The weight vectors of the points are as follows (e denotes E (482+5s)j): 
Aij, B j, Cij, Dij have weights (( 1-E)/2, 0, * , 0) for i= 1 2. 
A j, Bij, Cij, D%j have wveights (E/s, E/s, , I1- .,WEs) for 3 < i? s+ 1, 

where all elements are E/s except the i- 1 which is 1- e. 

Eij, Gijy Hijy have weights (W-/(2s), , E/(2s) ) for i- 1, 2. 
Fij have weights (e, -7. , c) for 1<i?4s+5. 

The heuristic applied to this set of points has pivot points Elj, Flj, G13J 
Hij for all j. The bins are packed as follows. One bin is used for each Eij, 
F4+5, j, Gi1 and Hij. In addition, one bin is used for each of the following 
pairs: Aij and Fij, Bij and Fis+s?1j, Cij and Fi+2s+2,j DIij and Fi+3?+3 j. 
Finally, one bin is used for all Fj,0, 1_5i_4s+4, for a total of H=4sk+ 
llk+2 bins. The optimal way to pack the same set is to use for each j, 
one bin for all points Aij, Eij, 1_!i<s+1, one bin for Cij, Gij, one for 
Dij, H,j, and one for all points Bij, Fi, j-1 1?i?s+l, 1?i'?4s+5. 
Finally, one bin is used for all Fj,k, 1<i_4s+5, for a total of 0=4k+1 
bins. Thus H/6=(4sk+11k+2)/(4k+1)_s+2.75-a from (11). 
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