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ﬁhstracg

The problem of determining rates 1is considered for a situation in
which services are purchased in bulk, but they have to be paid for by
a large number of «mall users. The desired rates must be "fair" and they
must cover all costs. The problem is formulated as a non-atomic game
and solved by using the value of the game. In addition to the general
problem, a detailed actual case is presented together with computational

methods and results.




Introduction

The problem of deciding how to divide the costs of services that
are generated and paid for in bulk among many "gmall' or even ninfinitesimal"
users arises frequently in many different areas. Examples are the division
of overhead costs incurred by a large corporation among its subsidiaries,
the assessment of fees or taxes to pay for a municipal service, computer
center costs and the determination of the internal billing rates for
long-distance telephone calls that are placed through WATS (Wide Area
Telecommunication Service) lines.

We show how a typical one of these problems can be formulated as
non-atomic games. We then show how, among the various solution concepts for
the games the Aumann-Shapley value (see Aumann-Shapley [1]) is the one
that best answers the problem, given that the desired rates must satisfy
certain réasonable requirements (including fairmess, efficiency. etc.).

Ve present the general problem jn Section 1. Section 2 presents the
par?icular problem of determining internal telephone billing rates.

Section 3 summarizes the concepts of non-atomic game theory that are
needed, and Section 4 makes the connection between the problem and the

model. Computational methods and results are presented in Section 5.




1. The General Rates Probleém for Service in Bulk.

The general rates problem for services th%t are available in bulk
can be described as follows: There is a group of customers, or consumers
requiring some service. The service cannot be provided to each customer
separately in exactly the amount he needs, but rather is available in bulk.
By that we mean that it can either be supplied in big "chunks'" or that
there is a very high initial fee involved that makes it unprofitable for
any single consumer to purchase that service by himself. However, if the
customers form a coalition, their total demand may be high enough to make
acquiring that service feasible. The quastion that arises now is how to
charge each customer his "fair share" of the costs, given that we have to
recover all of it from users' payments. The problem becomes more
involved if there is more than one type of service, or if there are
different grades of service. In addition, there may be some "overhead"
charges involved that must be paid for by the users. Usually, the overhead,
too, cannot be broken down in such a way as to enable us to determine what
part of it was directly caused by each consumer. Another difficulty may be
presented by the fact that the service required by each customer is
"infinitesimal" and that only a very lérge group of customers could profit by
purchasing the service.

These problems fall naturally into the realm of cooperative game theory.
There, too, we have players (i.e., customers as defined by their service
requirements) who can form coalitions and gain by doing so; different
coalitions may gain more than others. The question there, too, is how to
divide the "benefits of cooperation" among the players. Depending on the

criteria we want our solution to satisfy, we get different solutions. Among




these, there is one that, as will be shown here, is particularly suitable
for the problem at hand, namely, the gglgg_of the game (see Shapley [5] and
Aumann-Shapley [1]). This gives us the unique set of rates that are fair
(in a sense that will be made precise in Section 3), efficient (i.e., total

pevenue = total cost) additive (over coalitions) and linear (over games).

2. The Problem of Internal Telephone Rilling Rates.

Long-distance telephone service for users in the continental U.S.
can be obtained in the following ways:

A. Direct Distance Dialing (DDD), where the call is charged, basically,
by the length of the call and the distance to its destination.

B. Foreign Exchange (FX) lines, where the user has a telphone
connected to an exchange in another area. The charge consists of a monthly fee
for the line rental (related to the distance) plus the regular cost of a

telephone at that foreign exchange.

C. Wide Area Telecommunications Service (WATS). kThe areca of the
continental U.S. outside the user's state is divided into 5 concentric
bands. Band i+l contains band i, i = 1,2,3,4. Band 1 usually contains
just the neighboring states,while band 5 contains all of the continental U.S.
WATS line servicing those bands can be obtained from the phone company
under two different plans. Under both plans the user pays for the time

the lines are used, regardless of the destination of the calls; both plars .

consist of an initial fee - covering an initial amount of time - and an
incremental charge for each hour above the inital allocation. The difference
between the two plans is that one offers a very large initial amount

of time (which is rarely fully used, let alone exceeded) and a small charge




for incremental use, and the other offers a limited initial time but a
higher incremental charge.

The following que;%ions arise:

(i) Vhich, if any, of these services should be bought?
(ii) If any scrvices are bought, how to allocate the charges to the users.

Question (i) was addressed by Heath, Lampell and Prabhu in [21.

There, a queueing model was built of a telephone system and a computer

code was written that generates the optimal (least;cost) line configuration
for a given demand, using a Branch and Bound algorithm. If the demand

is, indeed, not high enough to justify any WATS or IX lines, the solution
will be the O configuration.

The telephone system considered included a computerized device that can
route each call coming into it onto the best sequence of WATS or FX lines.
For example, if the incoming call has an area code that is within WATS
band 3, the device will try to place it on a WATS 3 line. Falling that
WATS &4 and WATS 5 will be tried, and finally - if all that fails due to
unavailability of free lines - the call will be sent DDD. The device also
provides security checks to prevent unauthorized users from placing a call
and a detailed bookkeeping information - who called, where to, how long
the call lasted, etc.

Notice, however, that this further complicates question (ii),
since the charges involved with the device are mainly fixed - rental,
maintenance, operator's salary - and are not directly associated with
the calls. Hence, these costs, too, cannot be divided among the calls
in any straightforward manner.

At first, it seems that some of the cost incurred can be directly

attributed to the individual calls. For example, message units for calls



using FX lines or the incremental charges for calls that cause these charges
are such costs. However, for the former the qﬁestioh of allocating
overhead expenses remains unsolved while for the latter, the question is
even more complicated since the timing of calls accumulates on a monmtly
basis, the first few calls to use the line will utilize the initial time
included in the initial fee and will not incur any incremental charges,
and all the incremental charges will be incurred by calls placed later in
the month. But, is it indeed right to charge those calls differently?
The answer seems to be no.

The client imposed the following constraints on the rates:
A. Since the client was mandated to break even in this operation, the
rates must exactly cover theexpenéesincurred in providing the telephone
services,
B. The rates must be "fair", or "symmetric" since calls are charged to
different accounts and budgets (such as Research Grants, administrative
funds, etc.), and all must be charged the same rates. That is, in short,
two calls made to the same destination during the same period in the day
must be charged the same rate regardless of their purpose, the account

they will be charged to or the person or office that placed them.

3. Non-Atomic Games and Their Values.

The subject of non-atomic games and their values was extensively
studied by Aumann and Shapley [1]. We will introduce here the main
notions and results of this theory that are relevant to our discussion here.
All definitions are as they appear in [1].

Let (I,C) be a measurable space, where I is a set and C is a



g - field of measurable subsets of I. The members of I are called

players and the members of C coalitions. A game Vv on I 1s a

real-valued set function on C satisfying v(¢) = 0. A game v is
monotonic if for all S,T€ C, S T = v(8) ¢ v(T). A game ¥V is

of bounded variaticn if it is the difference between two monotonic games.

The space of all games of bounded variation is called BV.

If Q is any space of games, Q+ denotes the cone of the monotonic
members of Q. A mapping of Q into BV is called positive if it maps
Q+ into BV+,

The subspace of BV consisting of all bounded, finitely additive set
functions (i.e., the bounded, finitely additive signed me&sures on (1,00
is denoted FA. Denote by NA the space of non-atomic measures on (1,0).
(A measure u is non-atomic if for all S¢€ c, %u(S)l >033 TCS,

T€e L, with 0< ‘H(T)l < h(S)]). Clearly NA C BV. The subspace of
BV spanned by all powers of NA+ measures will be denoted by pNA.

Let G be the group of automorphisms of (I,C). (I.e., the
one-to-one mappings of I onto itself that are measurable in both
divections). Fach 6 € G induces a linear mapping 6, of BV dnto
itself defined by (8,v)(S8) = v(6S) for all S¢€ C. A subspace Q of
BV is called symmetric if 8,0 =0Q for all p €6,

We now come to the definition of value. Let Q be a symmetric
subspace of BV. A value on Q is a positive linear mapping ¢ from
Q into FA that satisfies the following axioms:

Al. The efficiency axiom: (¢v)(I) = v(I) Vv v € Q.

A2. The symmetry axiom. ¢8, =6,V © € G.

The major result which concerns us here is given by the following

theorem ([1], p. 23, theorem B):




There is a unique value ¢ on pNA. Furthermore, let n be a
vector of measures in NA, and let f be continuously differentiable on

0. Then fou € pNA and, vhen R

f

the range R of 1y with £(o0)

has full dimension,

n
(3.1) ¢{Ffou)(s) = }

1
n.(s) [ £, (tu(1))dt,
37705 73

j=1

where fj denotes Bf/axj.

4, The Telephone Game.

We now show how the theory of non-atomic games enables us to solve
the rates problem. We have a monthly collection of calls which we denote
by I (and which is the underlying space). Each calling instant is thus
a "player"; We now break down this collection according to the time of
day during which the calls were placed, their destination and the type
of day on which they were made (business day - called High-Use Day - or
weekend). If we have k different destinations (number of WATS bands and
FX lines, etc., in the system), we then have n = 24 xkx 2 different "types"
of calls. We now define n measures on I, uj, j=1l,...,n, vwhere for
any subset of calls SCI uj(S) is the total number of minutes of
telephone calls of type J in the subset S. For example, u23(S) may
measure the total number of minutes of telephone calls in S that were
placed during the month to WATS band 3, between 2 and 3 a.m., on a business
day. VWe let = (p ,...,un) be the vector of the measures.

1

Given a certain load X on the system, X = (x ..,xn) we can use

1°°

the optimization routine (see [2]) to find the least-cost configuration to
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service that load. We denote the cost of this configuration (including
any ‘'overhead") by f(xl,...,xn). Now ﬁe have a game v cu I, defined
by v = fop that is, for each S CI we have v(S) = £(¥(8)), which is
the minimal cost of servicing the demand for phone calls represented
by S.

We now want a solution to this game that will enable us to determine
the right price to charge for each minute of phéne call of each of‘our n
types. We note that, indeed, the Shapley value is the right solution. The
efficiency axicm AL i8 exactly the requirement that total revenue equal
total costs; the symmetry axiom is the "fairness" condition.

The value is uniqué if we agree to add to these requirements the
linearity condition. This condition means here that if we could
break thecosts into their various components such as line rental, maintenance,
taxes, employees' salaries, etc. and then assign each minute of phone
call‘ifs "fair share" of these costs, then these shares‘would add up to exactly
the charge foﬁ that minute of phone call if we combined all these expenses
together at the outset. This seems a very reasonable assumption to us,
and it was indeed introduced.

Let us now examine carefully the formula for the value, as given by

(3.1). Ve have for any S €I that

£.(tu(I))dt

D Moy fot

n
$(Fou)(8) = § u.(8)
j=1J

Now, ¢(fouj(S) represents the part of the total cost of the system that
must be borne by S. We notice that if S consists only of all the

calls of one type, say type k, then we will have that

uj(s) =0 unless j = k.
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so, $(fon)(s) = uK(S) f fK(tu(I))dt,
0

and this is the cost that must be borne by all the calls of type k.

Since uk(S) is the total number of minutes of phone calls of type k in

the month,

1
r = [ £ (tu(I))dt

k 0

is the rate, per minute, that must be charged to those calls; and for any
S c I, we see from (3.1) that the value of this coalition S - which here
means its share of the costs - is exactly the sum over j = 1l,...,0,
of the amount of calls of type j 1m that coalition of calls times r.,
so the rj's are indeed rates. It was these rj‘s that were computed
and proposed as the right rates to be charged to the various types of calls.

Notice that these rates depend on the behaviour of the function f on
the diagonal {tu(I)jo <t <1}, i.e., on the cost of servicing a
uniformly shrinking load. This means that v, is exactly the average of
the marginal costs for calls of type k when the system is enlarged
uniformly from 0 to wu(I). .

Note: The theorem quoted above, and formula (3.1), were stated for a

function f satisfying certain regularity conditions. Our cost function,
however, does not satisfy these regularity conditions precisely. So the
theory had to be extended to cover that case. This was done and will

appear elsewhere (see Raanan [4]).

5. The Rates.

During the first phase of the project, a number of computer codes

were written [2]. Among those were programs that were designed to perform
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the following tasks:

A. TFor a given monthly load, calculate the optimal WATS and FX line
configuration. This program will be referred to as the optimizing
routine.

B. Given a configuration of WATS and FX lines and a monthly load, compute
the cost of servicing that load using the given configuration. This
program will be referred to as the cost—éalculation routine.

We recall that we needed to compute rj, j =1,...,n where

r., =

5 fj(tu(l))dt

O Sy et

vhere fj = afVaxj. We know that when t = 0, no WATS or FX lines are
needed. We also found out that when t = 1, it was optimal to have a

number of WATS and FX lines. Define to as follows:

ty = min{t|0 < t < 1 and for the load tu(I) it is
optimal to have at least 1 WATS or FX line

together with the computerized devicel}.

We can now rewrite rj:

%

r. = [ £.(tu(I))dt +
o 3

l
. d
5 EEACTCHLE

o

The reason for this breakdown is that for 0 <t 5-t0 there are no WATS

or FX lines so all calls are sentDDD. Since fj is the marginal cost of a

call of type 3, fj(tu(I)) will be equal to the DDD cost for calls of type
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So, the first step was to calculate to. For this purpose, the
voverhead" costs were added to the costs of the optimal configuration for
a load of tu(I) and this was compared with the DDD cost of that load,
for various values of t. Once 1T, Wwas known, the process continued,
as follows:

t was varied from t, to 1 in fixed increments At. TFor each
such t the optimal configuration for a load of tu(I) was calculated.
Next, a modified cost-calculating routine produced the numerical partial
derivatives and these were integrated from t, to 1. Then, the DDD
rates were multiplied by T, and added to the integrals, thus producing
the rates as shown in Table I. These rates, however have the undesired
property that, although they are theright rates to use, they are different
for almost every hour during the working hours. To remedy this, weighted
averages of the rates rj -- weighted by the loads uj - were calculated.
We noticed that the usage - and the rates - were Very close for the time
pericds between 8 and 9 a.m. and between 12 nocn and 1 p.m., so those were
averaged. The rcst of the business-day rates were close, so’the rates for
the periods of between 9am. and 12 ncon and 2 to 5 p.m. were averaged.
For the remaining period, that between 1 and 2 p.m., the rate was taken to
be the arithmetic average of the 12 to 1 p.m.rate and the 2 to 5 p.m.
rate following the rates in Table I. These new rates are presented in

Table II. For comparison, Table III gives the DDD rates for the hours of

the business day (8 a.m. to 5 p.m.) for the various WATS bands and FX lines,
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6. Sumnary.

We have presented here a new method for determining equitable rates for
2 large class of problems using the concept of the value of an associated
game., While the value of a game has been used to determinz rates in a
situation involving finitely many players and a special cost structure
(see Littlechild and Owen [3]), the present work represents (to our
knowledge) the first application of the value of a non-atomic game for this
purpose. In the problem considered here, the non-atomic nature of the
game is inherent; the "players" represent instants of telephone calls for
which a continuous model is most appropriate.

The methods presented here should be widely applicable to similar
problems such as (time of day) pricing of utilities such as electricity,
steam, water, and so on. In such problems the service is provided in
continuously varisble amounts and the costs involve both large fixed
costs and non-linear varisble costs.

The rates developed by this procedure have, with minor modifications,

been adopted for use at Cornell University.
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