POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: On the one-dimensional space allocation problem

Auteurs:
Authors:
Date: 1978

Type: Rapport / Report

Jean-Claude Picard, & Maurice Queyranne

Référence: Picard, J.-C., & Queyranne, M. (1978). On the one-dimensional space allocation
Citation: ' problem. (Rapport technique n° EP-R-78-48). https://publications.polymtl.ca/5944/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: L
PolyPublie URL: https://publications.polymtl.ca/5944

Version: Version officielle de I'éditeur / Published version

Conditions d Ut'l'sat'onf Tous droits réservés / All rights reserved
Terms of Use:

Document publié chez I’éditeur officiel
Document issued by the official publisher

Institution: Ecole Polytechnique de Montréal

Numeéro de rapport: o o 50 40
Report number:

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/5944/
https://publications.polymtl.ca/5944/

ON THE ONE-DIMENSIONAL
SPACE ALLOCATION PROBLEM

JEAN-CLAUDE PICARD anp Maurice QUEYRANNE

DEPARTEMENT DE GENIE INDUSTRIEL
EcoLe PoLYTECHNIQUE DE MONTREAL

RAPPORT TECHNIQUE NO EP78-R-48
NOVEMBRE 1978.

Ecole Polytechnique de Montreal

Campus de I'Université
de Montréal

Case postale 6079
Succursale A’
Montréal, Québec
H3C 3A7

Do

. 8 DEC 1978

JEAN-CLAUDE PICARD AND Maurice QUEYRANNE

A COHSULTER
SUR PLACE

DEPARTEMENT DE GENIE INDUSTRIEL
ECOLE POLYTECHNIQUE DE MONTREAL

RAPPORT TECHNIQUE NO
NOVEMBRE 1978,

ABSTRACT

The One-Dimensional Sﬁace Allocation Problem arises
when locating rooms along a corridor, when setting books on a
shelf, when allocating information items among the '"cylinders"
of a magnetic disk, or when storing products in certain ware-
houses. The rooms (objects) to be located have a known length
(or width) and, for each pair of rooms, there is a given number
of "trips'" between them; the problem is to find a sequencing of
the rooms which minimizes the total traveled distance. This pa-
per deals first with two particular cases. In the rooted tree
case, previous results obtained by Adolphson and T.C. Hu for the
Linear Ordering Problem are extended and provide efficient solu-
tion methods. In addition, it is shown that most of the assump-
tions made by Adolphson and Hu are necessary, since that relaxing
any of them leads to an NP-complete problem. In the case of inde-
pendent destinations (solved by Bergmans and Pratt when all lengths
are equal), an unimodality property is shown for an optimum solu-
tion, but this is not sufficient to lead to a "good" algorithm
and the problem is shown to be NP-complete. For the general
problem, an exact algorithm using dynamic programming is descri-

bed and computationally tested.

1- INTRODUCTION

In this paper we consider a layout problem which arises in a
variety of contexts. As a prototype example, consider the problem of
designing the physical arrangement of rooms within an hospital department.
In many cases, the available space is approximately rectangular, with one
long edge of the rectangle having windows, and the following design is con-
sidered: set a corridor along the main dimension of the rectangle with
patients rooms on one side of the corridor—-the side with windows-and the
service rooms on the other side. Once this type of ‘arrangement has been
decided, a next step would be to determine an efficient disposition of the
service rooms. One plausible measure of efficiency is the distance trave-
led between these rooms. We intendedly let it undetermined by whom or which
this distance is traveled: according to the activities of the department
and to the objectives retained by the planner, it may be the distance
traveled by the patients, by the nurses or by some other important entity:
wheeling beds or chairs, blood containers. etc... The physical data
concerns the space needed for each service room: since the width of the
rooms will be given for the type of layout we are considering, this infor-
mation will be in the case of rectangular rooms summarized in the length
of the room. The data pertinent to the use of the rooms could be a single
measure of this usage for each room, but, in order to more accurately
represent the system, it appears more advisable to use the traffic, i.e.
the number of trips per day or unit of time, between every pair of rooms.

Thus one could measure the efficiency of a layout by the total traveled dis-

tance, which is defined as the sum, over all pairs of rooms, of the door-to-

door distance of these rooms in the layout, weighted by the traffic between

the rooms. The problem is then to find a sequence of rooms which

minimizes this total traveled distance.

The problem may appear in other contexts, with a very different
interpretation. If we wish to arfange our books on a shelf, we would
like to put together the books which are likely to be used at the same
time; here the "room length" becomes thickness of the books, and the
traffic the frequency (or probability) of picking a given book just after
another one. This naive example cannot be directly extended to a whole
library where the physical distance is no longer measured along one dimen-
sion, but arises again when it is desired to classify the books along one
scale. Assume that we are given a scale from 0 to 10, and we wish to assign
an interval to every subject. The width of the interval must reflect the
importance of the subject and it is desired to have related subjects in
close locations. In this problem, (called the 'linear typological aggre-
gation" in [26]) we are provided with some connectedness measure (see [21] for
a good discussion) which corresponds to the traffic in the hospital example,
and one possible measure of the efficiency of a scale could be the total
weighted distance between all pairs of subjects (in [21] , Morse uses

another measure involving the squared distances).

The book and shelf problem arises in the computer domain when it

is desired to efficiently assign information items to certain types of

memories [24],[23],[11] . For instance, consider the problem of assigning

files to the cylinders of a disk. Assume that every file requires a

given number of cylinders which are to be adjacent, and that the time
necessary to reach a file is proportional to the number of cylinders
between the present location of the read heads and the beginning of the
file. Provided statisties are available for the frequencies of requiring

a file just after another one (traffic), reducing the average access time
is again a layout problem of the type discussed here. While our interest
in the problem came from this memory allocation context, we met it again

in a study of a warehouse layout for a brewery. In this company, the
distribution process has been computerized and one bottleneck has been
identified at the loading of the trucks. One of the solutions which had

to be considered was the following: a forklift carries the different
palettes to a main conveyor which takes them to the trucks. The forklift
operator follows a loading sequence which has been determined by the compute-
rized distribution system. The various palettes are picked at the end of
other conveyors bringing them from the stocking area. Several conveyors
may be assigned to the most frequent types of palettes, and these conveyors,
coming from the same area in the warehouse, are to be adjacent. Given
statistics on the orders,or more precisely on the loading sequences,

the efficiency of the operations is increased when the various types of
palettes are assigned to the conveyors in order to minimize the distance

traveled by the forklift.

The general problem has been defined by Simmons [28] as the
One Dimensional Space Allocation Problem (ODSAP). Several special cases

of ODSAP have been studied and we refer to the recent paper by Chan and

Francis [7] for a good review and bibliography. In the present paper

we have tried to delineate the limits between some solvable cases and
presumably intractable ones. After presenting some mathematical formulations
of the general problem in Section 2, we study in Section 3 the rooted tree
case introduced by Adolphson and Hu [2] and show how the assumptions made

by these authors appear necessary for obtaining an efficient solution method.
In section 4, we show that the case of independent destinations, which is
efficiently solved when all room length are equal [4],[23], [11], becomes also
NP-complete for arbitrary room length. Since the two previous cases, as

well as the general case, are important in practice, we propose an 0 (n2n)
dynamic programming algorithm for solving the ODSAP with n rooms; this algo-
rithm appears to be much more efficient than previously known solution methods.
Due to memory requirements, the dynamic programming approach seems limited

to problems with less than 20 rooms, and we briefly discuss, in the last
section, some other possible, exact or heuristic, approaches for solving

larger problems.

2- SOME FORMULATIONS OF THE ONE DIMENSIONAL SPACE ALLOCATION PROBLEM (ODSAP).

The following developments will be put in terms of rooms and
lengths. Consider n rooms Tis Toseees T3 let Ei denote the length of

the room o and w,. the number of trips from room r, to room rj (traffic

ij
intensity). Let m = (w(1), m(2),..., T(n)) denote a permutation of the

room indices; i.e. the first (leftmost) room is rﬂ(l),

: -1 :
the second room is rﬂ(z)and so on. Denote by T the inverse of

. ’ itk 4 . i
this permutation: m "~ (i) is the position of r, in the permutation .

i

Consider a permutation T and two distinct rooms r

i and rj: the distance

between r, and r,with respect to this permutation, assumed to be taken

i 3
between their centers, is equal to the half-length of Tos plus the lengths

Ek of all rooms r, which are between r, and rj in m, plus the half-length

k
of r,:
]
a%i,1,m =-—%- g, +3 e, + -%-t. (2-1)
keB(1,3,m) 4
where B(i,j,m) = {k: W—l(i) <3n_l(k) <:W_1(j)} 1€ ﬂ—l(i) <:W-l(j)

fk: 7 <r i <r i@y} i v i) < vl

is the set of indices of the rooms between ri and rj in T (as usually, a

sum over an empty set of indices is assumed to be zero).

The One Dimensional Space Allocation Problem (ODSAP) is the

problem of finding a permutation T which minimizes the weighted sum of the
distances between all pairs of rooms, i.e.

(ODSAP) Min z(m) =X Z wi,dc(i,j,n) (2-2)
i i j#Ai J

A first remark [28] allows us to get rid of the half room lengths.
Defining

d(i’j’ﬂ) = 2 (2_3)
keB(i,j,m)

it appears that

z(m) =% 2

1 A

Yy d(i,j,m) + K (2-4)

T X omw (L + L)
i 73

i §# 2 43

where K

is a constant, independent of m. In the following, we will always
consider this formulation, in which the distances are taken between the
closest walls of the rooms. In particular, the distance between adjacent

rooms is zero.

An immediate consequence follows: consider a room r, and all

of the permutations in which r, is in first position: Zi does not appear

i
in the cost z(m) of any such permutation m (in other words their costs
remain the same when Ki is changed to any arbitrary value). This remark

will be extended to provide a basis to a dynamic programming approach

described in section 5.

Another simple remark concerns the symmetry of the solutions

to the problem. Let m

be the symmetric of m, i.e.
m (t) = m(n-t+1) for all t=1,..., n
Then clearly z(m) = z(m). 1In other words, we can exchange the right and the

left hand sides in our definition. Hence, we could somewhat simplify the

problem by only considering, for instance, the permutations in which

i _1(1) <§—%— n, i.e. room T, is in the leftmost side of the corridor.
This remark will be applied in order to reduce the computational require-
ments of the solution method. However, we might also be interested in ins-
tances of ODSAP in which no such symmetry is allowed: assume for instance
that the corridor has one dead end, and all the patients arrive from the
other end. This situation may be modelled by adding a dummy room ro with
the restraint that this room must be in the first positicn; this room r,
represents the initial location of the patients entering in the corridor;
as pointed out above, the length Ko is essentially unimportant, and the
entries Voi have an immediate interpretation. The situation in which there

is some flow of patients through both ends of the corridor might be modelled

by a similar device.

A third simple remark deals with an immediate symmetry in the
objective function. Since d(i,j,m) = d(j,i,m) for all pairs i,j and all
permutations, the objective function may be restated as:

z(m) = z Z (w, . +w)d(isj’ﬂ) (5)
i1 M
In lieu of the natural ordering of the indices, one could also use the per-

mutation T to distinguish between the couples (i,j) and (j,i):

5% . .
z(m) = = 2 Wy meay), miey) e <’n(t),ﬂ\u),n) (6)

By developping the expression of d(m(t),m(u),m), one obtains
n-1 n u-1
zm =2 2 Gy, ,me)? 2 b

t=1 u=t+l vepsl V) (M

(as a convention, we set a sum to zero when its argument is empty).

There is another possible formulation for the objective function,

which could be called "length-directed'": by regrouping all the occu-

rences of £ (in (7), it comes:
n-1") v-1 n
2(M =2, L6 ;1 T Vi mw M e (8)

This formulation (8) will prove useful for some particular cases of

ODSAP, see section 4.

The ODSAP can be formulated as an integer programming problem.
Love and Wong [18] give such a formulation, together with some (decep-
tive) computational results with a standard integer programming code.

We propose a more natural formulation of ODSAP as a Cubic Assignment

Problem: for all i and t, define a 0-1 variable X which is equal to ome
if and only if room r, is assigned to the tth position. Clearly there
must be exactly one room per position, and one position for every room;

the following formulation of the ODSAP follows from (7):

n-1 n n u-1
2z >
m}i{“ £l Bet+l T-1 ?#1 T L Eabi,j iy
subject to % X =1 for all t
% Ry ™ 1 for all i
xit =0or 1l for all i,t.

We call this a '"Cubic Assignment Problem" since it appears as a

“generalization of the Linear and the Quadratic Assignment Problems [10],[16], [17]

involving products xitxjuxkv of three variables. Such a problem appears

as even more difficult than the Quadratic Assignment Problem (QAP).
In the conclusion, we point out that even a Linear Assignment Rela-
xation of ODSAP is much more difficult to solve than the corresponding
relaxation [10], [16] of QAP. On the other hand, the ODSAP has
properties which may be derived from its single-dimensionality, and

which do not hold for 2-dimensional or general QAP.

An interesting location problem closely related to the ODSAP
is the one-dimensional version of the QAP of the Koopmans-Beckman type
[17] : given n points (locations) Pl’ P2, oT5: ofs Pn with coordinate al, a2,
R an on a line, and given n activities and a matrix W of traffic inten-
sities between activities, find a one-to-one assignment of the activities

to the locations in order to minimize the total weighted distance. This

problem, which we call the Generalized Linear Ordering Problem (GLOP) can be

stated in the following QAP format:

min ? w,, 2 Z la_-a_ |
j 1] t u

8ot § Xy ™ 1 for all t

% Xip = 1 for all i
L_- x,,=0 or 1 for all i,t.
It

This problem seems to have received little attention in the literature,
while it shares with ODSAP many properties owing to its single dimensiona-

lity.

The Linear Ordering Problem (LOP) [2] is at the "intersection"

of ODSAP and GLOP: it is defined as an ODSAP with all

rooms having the same length, say unity, or equivalently as a GLOP

with the location being regularly placed, say at coordonates 1, 2, ..., n.
The LOP has been proven to be NP-complete [9], hence it follows that

both ODSAP and GLOP are NP-complete. As a consequence, we can estimate
that the existence of a '"'good" algorithm is unlikely for this whole

class of problems. The following developments will explore the limits
between tractable and untractable cases of ODSAP and will provide solution

methods for the general problem.

- 10 -

3- THE ROOTED TREE CASE

In this section, we consider cases in which the trip matrix W has
the following property: the first column is zero and every other column
has exactly one non-zero element which is located above the main diagonal.
For an illustration, think of the following process: a test performed in
a room of the corridor determines in which room the patient will be moved,
another test is applied in this room and so on until a diagnosis is completed.
Here we specify that the patients must check-in first in room rl and that
any other room may receive patients from only one given other room. We ob-

serve that this situation is more likely to arise when modeling a search

among information items than actual clinical diagnosis.

Associated with the matrix W is a directed graph with nodes
representing the rooms and arcs corresponding to every non-zero entry in
W. The above condition on W is clearly equivalent to the following defini-
1 there is no arc with head r and

exactly one arc with head rj for all j > 1. The unique room T, such that

tion of a rooted tree, with root r

there exists an arc (ri,rj) is called the predecessor of rj and will be
denoted by p(rj). A characteristic property of a rooted tree is that there

is a unique path from the room r, to a given node; in other words, if two

1
patients are in the same room, they have visited exactly the same rooms,

and in the same order, since they checked in.
This problem has been studied by Adolphson and Hu [2] when all

the lengths are equal, and we will extend their results to the case of

arbitrary positive lengths. We state additional assumptions pertaining

= 11 =

to the model of Adolphson and Hu:
Al: the root r must be located in the first position.

A2: the patients will stay in the last room they visit; in other
words, we do not take into account their journey after this
point.

A3: the predecessor of r, (j>l) must be located between the root
r, and r,. J
1 3
These three assumptions will be discussed later in this section. For a

room rj (3>1) the entry w may be interpreted as the number of

p(3)]
patients which visit rj. According to this interpretation, it seems
natural to impose the following condition

= E w for j > 1 (3-1)

Wiy .
p(3)] jk
In case of strict inequality, the difference may be interpreted as the

number of patients which will stay in rj. The following theorem shows

that under this condition (3-1), the assumption A3 can always be verified.

THEOREM I:

If assumptions Al and A2 are verified and if the matrix W
satisfies condition (3-1), then there exists an optimum permutation
which verifies assumption A3.

The proof of this proposition is given in Appendix.

Figure 2 gives an example of matrix W which does not satisfy
condition (3-1) and the corresponding rooted tree. When all room lengths
are equal, one can verify (by simple enumeration) that the optimum permu-

tation is (1,3,2,4,5), which does not satisfy assumption (3-1).

- 12 -

5

rl 1 0
1
r2 0 0 2 1 0
r, 0 0 0 0 0 2 1
r, 0 0 0 0 1 Qi:)
rg 0 0 0 0 0 ‘ 1
s

Figure 2: A matrix W and its associated rooted tree.

In [2, p. 419] Adolphson and Hu give an O(nlogn) algorithm for solving
the Optimal Linear Ordering Problem (OLOP). It is not difficult to see
that their problem is equivalent to ODSAP. Indeed, with each node j in

their rooted tree are associated a weight and a length which correspond

to the entries wp(j)j and Kj in our problem. If y (m) denotes the objec~-

tive function value of an arbitrary solution m in the OLO problem ,
that is,
™~ (3)

y(m =Zw_ ... £ (t)
3 POI e teana T

then the value z(m) of the corresponding solution in the ODSA problem
(with center-to-center distances) differs from y(m) by a constant, independent
of m:

- 1 ”
z(m) = y(m + §>1 (wp(j)j E wjk)!,j

= 13 =

Hence, the Adolphson and Hu's algorithm solves the rooted tree ODSAP

under assumptions Al, A2 and either A3 or (3-1). Adolphson and Hu noted that
the rooted tree ODSAP (under assumptions Al, A2 and A3) is closely related
to the following one-machine scheduling problem: given n jobs Ji(i=1,...,n)
with processing times Py and deferral rates Vs and a rooted tree with the
jobs as nodes (plus an additional root), find a sequence T of these jobs

on a single machine which satisfies the precedence relation induced by this
rooted tree (assumptions Al and A2), and minimizes the total cost

f viFi(ﬂ) where Fi(ﬂ) is the completion time of job Ji in the sequence T,
i.e. the total processing time of all jobs requered before Ji’ including

Ji itself. The algorithm by Adolphson and Hu solves the problem by scanning
the nodes (jobs) of the tree from the leaves to the root. In [1], Adolphson
proposed an other O(nlogn) algorithm, which scans the jobs in nonincreasing

order of the ratios Vi/pi; this algorithm could also be applied to our problem

as well as other algorithms by Garey [8] and Horn [12].

Now, consider variations of the assumption A2. 1If the patients
go back to the registration desk (rooms rl) after their diagnostic is
completed and we want to take also in account this part of their trip, we
obtain the assumption A2 :

A2’ : all the patients must go back to room r; after their

diagnostic is completed.

Of course, this assumption makes sense only if condition (3-1) is satis-

fied; otherwise there would be some '"magic' creation of patients in the

process and we do not intend to study such systems. Before stating the main

- 14 -

result for this problem, we have to introduce another condition,
now on the length of the rooms: we will say that condition (3-2) is
satisfied if the length of any room rj with j#1 and p(j)#1, is not
smaller than the length of the room to be visited before:
for all j#l i)#1 L. 2L .
i¢ p()#1=> 3 (1)

This could be interpreted by considering that the tests become more

(3-2)

and more complicated, and thus require larger rooms, as the diagnosis

progresses; or, equivalently, the simplest tests, those which require
small rooms, are performed first. In particular, condition (3-2) is

met when all room lengths are equal, i.e. in the OLO problem.

THEOREM 2
If assumptions Al and A2’ are verified, if the matrix W satisfies
condition (3-1) and if the lengths Kj satisfy condition (3-2) then
there exist an optimum permutation for the rooted tree ODSAP which-

verifies assumption A3.

The proof of this proposition is given in Appendix.

2
1
2

Figure 4 gives an instance of ODSAP with a matrix W satisfying condition

7

FIGURE 4.

‘G

(3-1), but with lengths which do not satisfy condition (3-2). It appears
immediately that the optimum solution of ODSAP under assumptions Al and A2’

is given by the permutation (1,3,2,4), which does not verify assumption A3.
For a solution satisfying assumptions Al and A3, it is not difficult to see

that its objective value under assumption A2’ is exactly twice its value

under assumption A2. Hence a rooted tree ODSAP under assumptions

- 15 =

Al, A2’ and either A3 or (3-1) and (3-2) can be solved using the
O(nlogn) algorithm by Adolphson and Hu [2] On the other hand, the
rooted tree ODSAP becomes trivial under assumptions Al, A3 and A2/

all the patients must go to the rightmost end of the corridor when their
diagnostic is completed. In this case, each patient must travel at
least the whole length of the corridor and any permutation which satisfy

assumption A3 will be optimal.

We now proceed to discuss the assumptions Al and A3 and

show that the rooted tree ODSAP becomes NP-complete when any of these
assumptions is relaxed. To this purpose, we introduce an instance of the
rooted tree ODSAP, which has applications in the assignment of disk
cylinder to files in some operating systems: assume a disk contains
several files, one of which, called the VTOC (Volume Table Of Content),
keeping the address (position) of all the files in this disk; every
request for a file is processed in the following way: the read head is
positionned to the VTOC which is searched for the address of the desired
file; then the head is moved to this position and the file is read. Given
the number of cylinders required for each file and statistics for the fre-
quency of calls to each file, the problem is to allocate the cylinders to
the files in order to minimize the average access time. Here, we make
the following simplifications:

- each file requires an integer number of cylinders, which

must be adjacent

- the access time is mainly determined by the physical moving

of the head between cylinders.

- 16 -

In addition we note that the VTOC usually uses one cylinder so that
the total displacement between two accesses to the VIOC is roughly
equal to the distance (number of cylinders) between the VTOC and the

farmost end of the file (see Figure 5)

- : 7'V$OC , .
-fi_read__’move =g
—move back—
e——move——>

read—-—>
&———move back—°

FIGURE 5: Distances for the VIOC problem

It appears that this problem is an instance of the rooted tree ODSAP

in which the rooted tree has a particularly simple structure: one root
(the VTOC) and all the other nodes (the files) attached to it; hence the
assumption A3 is always verified. But here we do not impose the assumption
Al: it is clear that the VTOC must be located somewhere '"in the middle"

of the cylinders. The objective function uses the "extreme' distances and
assumption A2 by an argument similar to the one used in the previous
section, it is clear that we can reduce to either center-to-center or
closest-walls distances; also, as noted above, the objective function under
assumption A2 is equal to the half of its value under assumption A2’ .
(Note alsothat asumption A2’/ has less meaning here, since it implies

that the root (VTOC) will be located at one end, reducing to the previous

problem).

The VTOC problem will be shown to be equivalent to the following

two-machines scheduling problem: given two parallel identical machines

= 17 =

and n jobs Ji (i=1l,...,n) with processing times Py and deferral rate Vi
assign each job to one machine and find the sequences on these machines
in order to minimize the total cost % viFi’ where Fi is the completion
time of job Ji’ that is the total processing times of all jobs processed

before Ji (including J, itself) an the same machine as Ji' The equi-

i
valence with the VTOC problem can be seen by identifying files with

jobs, lengths (number of cylinders) Ki with processing times P, number

of calls Wi with deferral rates A and considering as processed on the
first machine the set of jobs corresponding to files located before the
VTOC, and on the second machine those located after the VIOC, the first
job on a machine corresponds to the file closest to the VTOC and so on.
Note that the objective function in the scheduling problem is equal to the

objective function in the VTOC problem under assumption A2, that is the

half of its value under the more natural assumption A2’ .

A well-known result in Scheduling Theory (e.g. Theorem 2.4
in [3]) implies that in an optimum solution, the jobs must be processed,
on each machine, according to a non-increasing order of the ratios

v./iii 3, pp. 119-120}. It follows that an optimum solution to the
i :

VTOC problem must possess the following unimodality property: the sequence

of the ratios W]i/ﬂi must be unimodal, first non-decreasing up to the

VTOC, then non-increasing. This property reduces the number of solutions
to be considered from n! to 2n—l. When all the deferral rates (frequencies)
are equal, the problem can be efficiently solved using a simple dispatching

rule (see [3, pp. 118-119]); a similar dispatching rule also applied

when all the processing times (lengths) are equal. However for general

w T -

deferral rates, the problem has been shown to be NP-complete, see
[6], [5]. According to this equivalence and since the VIOC problem
is an instance of the rooted tree ODSA, we obtain the following
theorem:

Theorem 3 The following rooted tree ODSAP's under assumptions

(i) A3 and A2

(i1) A3 and A2’

(idid) A2

(iv) A2/

are NP-complete.

I

This theorem shows that it is unlikely that the approach of Adolphson
and Hu could be extended, except perhaps for very particular cases which

would not include the VTOC problem, without the assumption Al.

Now, we restore assumption Al for the remainder of this section
and discuss the assumption A3: |
Theorem 4: The rooted tree ODSAP under assumptions Al and A2 is NP-complete
Proof: it is clear that this problem is in NP. To prove it is NP-complete,
we exhibit a reduction from the rooted tree ODSAP under only assumption A2
(proven NP-complete by Theorem 3) to the present problem: consider an
instance of the rooted tree ODSAP with r rooms (including the roots rll an
integer matrix W and integer lengths Ki; define another rooted tree ODSAP
by adding a dummy root r, with an arbitrary length Ko’ such that p(1) = 0
and define Vo1 to be small enough, specifically:

3 2
“o1 <1/i§1 1

(In order to insure the new matrix to be integer, it is for instance suffi-

- 19 -

cient to multiply W by 2§£i and to set W _=1). There is a one-to-one

ol
correspondence between solutions to the original problem and solutions to
the associated problem we have constructed which verify assumption Alj;
their objective functions values, under assumption A2, differ only by
Vo1 times the distance between the leftmost end of the corridor and the
center of r1 (see Figure 5 for an example of this reduction). Since in
the original problem, a non-optimal solution must have an objective func-
tion value at least one unit greater than the optimum and Vo1 is small
enough, it follows that an optimum solution to the associated problem
must be also optimum for the original problem. Hence, if we had an
efficient algorithm for solving the rooted tree ODSAP under assumptions

Al and A2, we could use it, through this reduction, to solve any instance

of the NP-complete rooted-tree ODSAP under assumption A2 only.

P NS
13
34 Y35 Y67
FIGURE 5: An example of the o, T, Ty (T r.
reduction used in the
proof of theorem 4. T >
ol

- 20 -

As it was shown by theorem 1, a rooted tree ODSAP under assumptions
Al and A2 can be efficiently solved when condition (3-1) holds; for the
general case, the problem becomes NP-complete. Hence, it does not seem

that the approach of Adolphson and Hu could be extended without assumption A3.

Finally, we leave as an open question the status of the rooted
tree ODSAP under assumptions Al and A2’, when condition (3-1) or condition
(3-2) does not hold. However, in sight of the previous theorems, we

strongly suspect it is again an NP-complete problem.

= 3 =

4- INDEPENDENT DESTINATIONS

Consider the particular case of the ODSAP in which n
nonnegative numbers Py» pz,...,pn are given such that
(ODSAPID) wij = pipj for all i, j. (4-1)

This case is named the case of independent destinations according to the

following interpretation: consider that pj represents the probability
that the room j will be the next destination of a trip, this probability
being, independent from the rooms visited before j. This defines a Markov
chain and (assuming all 1 positive) the steady-state probabilities are
equal to Py for state (room) i and the transition probabilities are equal
to P, pj for the transition from state i to state j. Note that the
logical constraint

n

2 p. =1

i
i=1
can be derived from (2-1) by a simple global rescaling the wij/s.

If, in addition to (2-1), all room lengths are equal, the
resulting Linear Ordering Problem can be solved by an ordering algorithm
with a running time in O(n logn): after sorting the rooms in a nondecrea-
sing order of the pi/s, alternately assign them to the leftmost and the
rightmost free position. The procedure, due to Bergmans [4] and Pratt [23]

produces an alternating order (see [7]) with respect to the pi/s,

that is an order T verifying

< o

Pr) Pr(n) = Pr(2) . Pr(n-1)

< < <
Pra) ~Pry " Pren-1) P2y e
(this last condition would be satisfied when exchanging "leftmost"

AR

and"rightmost" in the above description).

- 32 -

For the general ODSAPID with arbitrary room lengths, we

obtain some insight into the solution structure:

THEOREM 4:

There is an optimum solution to ODSAPID which satisfies the

following unimodality property: There is an index q such that, for all

fs 1 €{1; suny 1}
. . < . . <
(i) (i) <m()Sq implies pi/ﬁi pjlﬂj

s . . < . <
(ii) (i) <7()Sq implies pi//@i pj/ﬂj

Proof:

Let T be an optimum permutation and consider the unique

index q such that

1
z <Kzp<Z2Z
.y Pr(r) ~3 °F ¥, Py. (i)
n
= X
where P %1 P,

We will show (i) by an adjacent pairwise exchange:
suppose the set{I = m(i) <m(q)} is not in nondecreasing order of the number

pilﬁi; then consider two elements i in position r and j in position r+l such

/

and the permutation

that pi/ﬁi >’pj/£ deduced from m by exchanging

A
i and j, that is

m (1) = r+l

w/(j) =r

' (k) = m(k) for all k¥i, j
hem z’) = zm +pl. (T p - p)

+ p £ (X P~ z p)
It vy>r1 YV u<r u

=z(m) + (piﬂj - pjfii) (ui rpu - v2> r+1p")

Since r < q-1, £ p < %P
u<r®

NI
la<}

and z p =
v>r+].v

and since, by assumption pi/»ﬁi > P /Zj it follows that

3
z(m') < z(m)
a contradiction with the assumption of T being optimal.

The relation (ii) is proven by a symmetric argument. #

In sight of this result, it might be reasonable to expect that an ordering
approach would solve the ODSAPID. The following theorem indicates that this
is unlikely:
Theorem 5: The ODSAPID with arbitrary probalities Py and lengths Ki is
NP-complete.
The proof of Theorem 5 is given in appendix 3.

A particular case of ODSAPID, defined by

Py = 1/n for all i=1l, ..., n

is easily solved by an ordering procedure (Property 4 of [7]). We give here
a simpler proof than that of [7], by using the relation (8): it comes

n
z(m) = sz Kﬂ) (v-1) (n-v)

It is well known that a problem of minimizing, over all the permutations

- 2% «

T, the quantity

z(m) =v§? zﬂ(v)av

is solved by an ordering procedure which matches the Lj's in a non-
increasing order with the av's in a nondecreasing order (this is
readily established by a simple adjacent pairwise exchange argu-
ment). Since here

a = (v-1)(n-v) = a for v=1,...,n

n-v+1l

and a <a for u<v <

n
u v ’

Nl =

it follows that any permutation T in generalized alternating order

[7] of the Zj's, i.e. verifying

max (Kﬂ(k)’ tﬂ(n-k+1)) < min (tﬂ(k+l)’ zﬂ(n—k)) for all k <

is optimal.

- J5 =

S o

5- A DYNAMIC PROGRAMMING APPROACH TO THE GENERAL PROBLEM.

The computational performance of exact solution
methods for the general ODSAP has been so far very decepti-
ve: the algorithms of Simmons [28] and Love and Wong [18]
have been unable to optimally solve an ll-room problem within

rather large time and core limits. In contrast, the dynamic

programming algorithm to be presented below solves optimally any
ll-room problem in less than a second and within less than 100 K of
memory on an IBM 360/75. Since our first computational experiments
(1976), the same method has been independently discovered by B. Harris
(1977, private communication) and Z.Drezner (1978, private communica-
tion from R. Francis). The algorithm presented here is an extension
of an algorithm devised by Held and Karp [14] for the Linear Ordering
Problem (see also [29]). The present algorithm could be developped

using Held and Karp's formalism, but we prefer a simple presentation.

Consider a subset S of N = {1,2,...,n}, with s elements
(1 < s <n) to be located in the s first positions. The cost z(m)
of any permutation with m(i)€S for all i=1,...,s can be decomposed as

s-1 s

z(m)=2

) §=U+l wTT(U)TT(V) d(ﬂ(u) ’TT(V) s“)

s n
D
+ §=l V=s+1 wTT(U)TT(V) d(m(u) ,TT(V) ,TT)
n-1 n
* Eail B Swte) dteta) e,
Let us denote by P the point between S and §, that is the rightﬁost
end of the last room in S and also the leftmost end of the first

room in S. If the first room starts at the abscissa 0, then P is

= 9B =

located at the abscissa £(S)= %é independendly of the arrangement

_ S Zi’
within S and within S. Then we can split the distance between a room

in S and a room in S as:

d(m(u), m(v), m = d(m(w),P,m) + d(P,m(v),m)
for all uv=1l,...,s, all v=s+l,...,n

and z(m) becomes

s-1 s
z(w>=2 Z ¥y d LT L™+ W 2 d(Tw),P,m)
u=1 \v=u+l

n-1 n
" Z: Z W ey (ry d T (0 ,’n(v)+’n)+wﬂ(u)’Sd(P,Tr(u),Tr)>
u=s+l \v=u+l

where, for a subset A of N and i€N-A we note

Win~ %EA Yij

Then z(m) is decomposed in a term which depends only on the arrangement
within S, and a term which depends only on the arrangement within S. If
T is an optimum permutation, then for any s=1,...n the arrangement of the
first rooms must be an optimum permutation to a 'special' ODSAP with s+1
elements, the s first elements being m(1),...,m(8) with their own lengths

Ei and interactions wij and 2 "artificial" (s+1) element which we denote

S, with an arbitrary length (see first remark in section 2) and iteractions
LA with the s first elements and which must be located in last position.

Of course, the same is true, mutatis mutandis, for S.

The above observation is the key of the development of the
dynamic programming algorithm. Consider any subset SSN and denote by
f(S) the value of the special ODSAP defined above. Clearly, we have
the boundary conditions

£({i}) =0
and f(N)

z(m*) where T* is an optimum ODSAP solution.

For any S such that 2 < |S|< n-1, there must be an element of S in

- 27 -

s-th position and the above decomposition still holds, yielding the

recurrence relation

f(S) = min {%(S—{i} +£i (WS—{i}’ 5{}

i€S

where for two disjoint subset A and B of N, we note

ap = E:: 2::

i€eA jeB

Then ODSAP can be solved in O(Zn) applications of the
recurrence relation, provided that the subsets S are generated in an
order compatible with the inclusion relation. We have written a code
DYNSA1l which perfoms this task by using 2n+n2+5n+cst memory locations,
each subset S= {1 2,...1 } being unamblgnous by represented by its
binary expansion 2 +212 4 +...4278 =4 and generated in ascending order
of these numbers. While the application of the recurrence relation seems
to require 0(n32n) operations at first glance, this number is cut down
to 0(n2"™ in DYNSAl. Such a performance has been announced by Lawler {17]
for the Held and Karp's dynamic programming algorithm applied to the
Linear Ordering Problem. Since there is no other precision in Lawler's
paper, we give a detailed description of our algorithm along with a proof
of the 0(n2n) behavior. The code DYNSAl has less than 100 FORTRAN statements,
including input and output (68 statements perform the optimization) and a

copy of it can be obtained from the authors.

It is possible to reduce the execution time of DYNSAl by about
one-half by restricting consideration to subsets with at most _i
elements, due to the symmetry of the objective function, and byzapplying
the relation

£(N) = min {£(5)+£(5)|s< N, [s|= [g] }

- 28 -

We have modified DYNSAl into DYNSA2, which uses the same number of
memory locations and 143 FORTRAN statements for the optimization. We
have run both codes on the CDC Cyber 173 of Université de Montréal,
under compile FTN, opt=2 within only 130K of core, on problems with
n=10 to 14 (a problem with n=15 requires about 190K). The solutions
times are given in Table 1.

The space requirements are the bottleneck for such an
algorithm: a run on an 18-room problem would require about 77
seconds but 1110K of memory, i.e. more than one megabyte. We are
currently working on analgorithm which would require about (n$l) + O(nz)
memory locations, where m = L%(n—lﬂ . Such an algorithm is expected to
solve a 1l6-room problem within 130K and an 18-room problem within 400K.
By using auxilliary storage, it might be possible to handle problems
with one additional room. However it seems unlikely that a dynamic
programming approach would allow exact solution of problems with more

than 20 rooms within reasonable time and memory requirements.

Number Solution times CDC Cyber 175, sec.

of rooms DYNSA1 DYNSA2
10 .19 .11
11 41 .29
12 .87 .51
13 1.85 1.29
14 392 2.24

TABLE 1: Solution Times for dynamic programming

algorithms.

- 29 -

CONCLUSION

The main results of this paper have shown a remarkable increase in diffi-
culting when generalizing the Optimal Linear Ordering Problem the One-Dimen-
sional Space Allocation Problem. The mere consideration of the lengths of
the items to be located has made unapplicable most of the known solution
procedure which efficiently solved particular cases of the OLOP. Few
exceptions can be found inthe paper by Chan and Francis [7]. On the other
hand, it has been shown that Held and Karp's dynamic programming method
can be extended to the ODSAP, providing a reliable solution procedure

for problems with about 15 items. Since most practical applications of
the ODSAP model are bound to involve larger problems to be solved, it
appears mnecessary to extend the solution capability beyond the present
level. We have identified two ways in that direction. Exact solution
of larger ODSAP's could be obtained by branch-and-bound provided that an
efficient bounding scheme is devised. We note that the Linear Assignment
bound [1d, [16] , which is basically one of the few available for an exact
solution to the Quadratic Assignment Problem cannot even be applied to the
ODSAP, since the computation of every entry in the assignment matrix requi-
res the solution of a problem similar to the 2-machines job scheduling
problem mentionned in section (a lower bound could be derived from an
heuristic solution with performance guarantee, e.g. [27, but we did not
investigate this any further). If a satisfactory bounding scheme can be

provided it is possible that a branch-and-bound algorithm implementing

- 30 -

it could benefit from using dominance tests such as in [2] and dynamic
programming for fast screeming of the lower levels of the enumeration tree.
It is still conceivable that a procedure combining branch-and-bound and
dynamic programming, such as [19 , performs quite well if efficient storing
and addressing techniques are provided for handling the subsets generated

by the procedure.

Approximate soiutions of rather large ODSAP's can be obtained using either
constructive, improvement or hybrid heuristic methods. Several constructive
heuristics can be derived from the solution procedures which work for parti-
cular cases. An example is an alternating order (see Section 4) using some
reasonable estimate (e.g. the geometric means of the rows of the matrix W)

for the probabilities used in the case of independent destinations; another
example is the Adolphson-Hu procedure applied to a related ODSAP which retains
only the maximum weighted tree of the matrix W of the original given ODSAP,
with possibly several trial roots. Improvement heuristics in the spirit of
Reiter and Sherman [25], using adjacent pairwise exchanges, insertions, segment
insertions or swapping can also be used to improve given solutions. It is
expected that hybrid schemes, applying improvement procedures to the solutions
generated by constructive methods, produce the best solutions, perhaps at the
expense of much computing time. One major issue concerning practical applica-
tion of heuristics is to determine a trade-off between the value of the solution
produced and the computing requirements to obtain it. At the present time this

can be resolved by extensive computational comparisons and evaluations. Other

< B

avenues which currently receive more and more attention, concern the
performance guarantees and the probabilistic analysis of heuristics, good
examples of which being in the studies of a two-dimensional extension of

the ODSAP [15] and of a dynamic version of the ODSAP [20].

- 32 -

ACKNOLEDGEMENTS

The authors gratefully acknoledge a motivating

correspondence with Professor Britton Harris, University of

Pennsylvania and the encouragements from Professor Richard L.

Francis, University of Florida, to write this paper. The

research of the second author was motivated, five years ago,

by Professors Claude Delobel and Michel Sakarovitch, Univer-

sity of Grenoble, and was supported by the National Research

Council of Canada, Grant A-4592.

- 32 A -

APPENDIX 1: Proof of Theorem 1.

Consider anoptimum permutation T which does not verify assumption
A3 and let rj be the first (i.e. leftmost) room in 7 which is located before

(i.e. the left of)some room in the path from r

tor,. Then r, is located
i h| |

before rp(j)' Let r, be the first room located after rj, with its predecessor

k

located before rj; this is well defined since there is at least one room with

this property on the path from ry to rj. Then consider the permutation T

deduced from T by inserting r. just before rj; that is, if rj is in position

k

p and o in position q (q~>p) in T, then:
m (t) = r1T(t) if t <p or t<gq
* m(q) = k if t=p
m(t-1) if p<t <gq
See Figure 1. ~
1 p ptl q
B s VL,
:
1 P p+1l
g & ~ s W
-]

Figure 1: Permutation 7 and m’
used in the proof of
Theorem 1.

= 33 —

Denote by S the set of indices of rooms which have been moved to the
right, that is s = {j, m(p+1), ..., m(q-1)}
and L their total length

L= X Eh = Kj + £ +

£
hes TT(Q'l)

m(p+l) Taees

We evaluate the new center-to-center distances dc(p(h), h, ﬂ’), as defined

by (2-1):

(1) for all fooms r, in positions t<p, r (

h p(h) is before T and nothing

has been changed, so

d(p(h),h,7) = d%(p(h),h,m)

(ii) for the room o p(k) is in a position t < p, then

aCpk),k,m) = d(pk), k,m - L

(iii) for the rooms r in S with p(h) # k, rp(h) is located after rh and has

been either moved to the right (if p(h)€S) or not moved at all, so

d€(p),h,m) < da%(p(h),h,m)

(iv) for the rooms r, in S with p(h) = k

a®,h,m) < dx,h,m) + L

(v) for the rooms r, in positions t > q with p(h) #k, r

h has been

p(h)

either not moved or moved to the right, so

a(p(h) ,h,m)< d%(p(h) ,h,m)

- 34 -

(vi) for the rooms rh in positions t > q with p(h) = k then

a®,h,m) = d%(k,h,m + L

/1y < - =
Hence z (1) < z(m) (wp(k)k iwkh) L
and using (3-1)

z(n') < z(m)

Since m is assumed to be an optimum permutation, we have constructed another
optimum permutation m in which the p first rooms are located after their
predecessor. By applying this construction at most n-1 times we obtain an

optimum permutation which satisfies assumption A3. i

- 35 -

APPENDIX 2: Proof of Theorem 2.

The proof is similar to the proof of theorem 1, except that we have to

take also into account the trips back to r

1° So, consider the permutations

m and 7 as defined in the proof of theorem 1 and the six cases (i)-(vi):

in cases (i), (v) and (vi) this distance back to r, has not been modified.

1

case (ii): r, and all the rooms to be visited before r, are in the p first

positions, hence the trip back to r

whose diagnostic is completed in r

k k

1 has been reduced by L for all patients

K

case (iii) and (div):

(a) for all rooms r, in S such that room r, has not to be visited

(b)

(c)

h k
before T (that is k # p(h) and k # p(p(h)) and so on), there

is one room, among those to be visited before r, , which is located in

h’
position t>q ; for all the patients whose diagnostic is completed
in r

h? the total distance traveled has not been lengthened.

for all rooms rh in S such that room rk has to be visited before rh

and some room rg to be visited between T, and T is located in position

t > q, the total distance traveled by those patients finishing in T,

has not been lengthened.

¢

for all rooms in S such that room rk has to be visited before rh and

all rooms to be visited between rk and N are in S, it follows from

the definition of T, that these rooms are located, in T, between

T, and r and in reverse order (see Figure 3); let re denote the room

- 36 -

which is visited just after r, and before Ty (it may be r, itself); it

h h

can be verified that the total distance traveled by a patient finishing in

Ty has been reduced by the distance between the center of r

end of S, but also augmented by the half length of r

£ and the rightmost

" From condition (3-2)
it follows that this cannot be an augmentation (the inverse situation in which
condition (3-2) is not verified, is pictured in Figure 3).

By summing over all the patients, it follows that m 'is not worse than T,

and the proof is completed as in theorem 1. i

1
n [s Vi~

e >

P o & P Py

. - g @ —@

S
A
' = T

w 1 Tk j rh %tp (h)m r,
» g
<& - - 7S

FIGURE 3: Permutation m and m and the total
distance traveled by a'batient finishing

in T used in the proof of Theorem 2.

- 37 -

APPENDIX 3: Proof of Theorem 5.

Let us first state the ODSAP with independent destinations and arbitrary

room lengths (hereafter ODSAPID) in a decision problem format:

Input: positive sequences (pl’pz,... pn) and (ﬂl, 22, - En);

positive integer W.

Property: there is a permutation T of {, 2, ..., n} such that

n-2 n v-1
u=1l v=u+2 t=u+l

In order to prove theorem 5, we note that this problem is in NP and we show
that a known NP-complete problem can be reduced to it. Consider the PARTITION

problem [13]:

Input: positive sequence (cl, Chs voes cn)

Property: there exist a subset I § {1, 2, «.s5 0} such that

z g z ¢

i€ 1 igr *

To every instance of this problem, defined by a sequence (Cl’ Cos wees cn)

we associate an instance of ODSAPID with n+l rooms, defined by ODSAPID1

pi=£i=ci for all i=1, ..., n

Let N={1, 2, ..., n}

Lemma 1l: all permutations T have the same cost for ODSAPID1.

Proof: for a permutation T

n-2 n v-1
z(m)= Z z c_ . (uwec _(v) Z G
gl ey T L pagdl, TLLED
= X c; . = cl(N)

{1,3,k}eP, (V) 13

where Pk(S) is the set of all subsets with k elemerits of a set S and

= 38 =

ck(S) = X c i
{11,12,...,1k}6Pk(S) 1 2 k

Then z(m) is independent of T it

We now define ODSAPID2 by adding a new room n+l

with =2 and £n+l=l

pn+l

Consider a permutation m and let p=m(n+l) and

I

il m (1) <p}

I

il m (1) >»p}
(one of these sets may possibly be empty).

and consider the following decomposition

z(m) = c. (I) + Z c,e, 24 2)
3 {1,3}ep, (1) +d kel X
+ 2 Z c.c,

ier je1 4

+ 2 _g.e, €2+ E_ Ck)
(1,3)€P, (1) 3 keI
+ c3(i) (A-1)

The first (last) element represents the interaction within I (resp I). The
« ther elements represent the remaining interactions, decomposed, as in rela-

tion 8, along the length of the rooms in I, of nt+l and of the rooms in I

respectively.

= §0 -

The use of c(I) and c(I) in (A-1) is justified by the above lemma 1.

It follows
z(m) = Z c C.C + X c,c
{i,j,k}€P3(N) J {1,1)ep, (@)
+ X c,c + X - Sicj
{1,3}er, (1) {1,j}ep, ()

= ¢, N+ 2c, (N) - Z 2 c.c,
3 2 i€l jeI * 3

Then z(T) is minimized when 2 Z c c, is maximized, that is for a
i€l je1 1J .

subset I such that cl(I) is as close as possible to 3 cl(N). By setting

W= c3(N)+2c2(N) - % (cl(N))2 it follows that PARTITION has a solution if

and only if ODSAPID2 has a solution for this value of W. i

- 40 -

APPENDIX 4: An O(n 2n) version of

the dynamic programming algorithm.

A subset S = {i N is} of N will be represented by a simple list

0 i2’
(il, 12’ v is) and its address is a = p(il) + p(iz) + ... + p(is)
where the numbers p(i) = Zi—l can be precomputed. Hence the address of
every subset S—{ik} (i€S) is simply a—p(ik).

If we define, for a given subset S

w(i,) = z Wy for all k=1, ..., s

K jE€S J

s
and w= 2 w (ik)
k=1

the recurrence relation could be rewritten as

f(a) = min {£Ga-p(1)) + &, (w - w(1,)): k=1, ..., s}
k=1, .sen 8 k

This minimum is computed in 0(s) operations, provided the entries Q(ik)

are available. Hence, in order to prove the 0(n2n) behavior, it suffices

to show how the subsets S are generated and the values G(ik) updated in

0(n2n) operations.

The subsets S are generated in DYNSAl according to the order of their addresses,

which is precisely the lexicographic order, by the following algorithm:

Step 0 (initialization)
set f(l)e— 0
a¢e—2

ke—1

= B s

Step 1 (generate singleton k)
ké&—k+l
iir—-k
initialize w(k)
s€&—1
set f(a)é—0
k€—1

a g&—atl

Step 2 (add the element k to the current subset)
s &——s+l
ig—-k
compute w(k), update w(j) for j€S (j#k) and compute w

compute f(a) using recursion formula

Step 3 (termination test)
if (a=2n—1) go to step 7 %
ag—atl
k€e—1

Step 4 (is k the last element in S?)

if (is # k) go to step 2

Step 5 (delete the last element in S)
if (8=1l) go to step 1
S é&— s-1
ké&— k+l

go to step 4.

- &3 =

In order to justify this algorithm we first assume that the elements il,
i., «.., 1 of S are ordered such that i.>i,> ...>1i .

2 s 1 2 s

If the last element is is not 1, then the next subset in the lexicographic
order is simply obtained by adding 1 to S. In the other case, we '"delete"
this last element is=l (that is we move backward this pointer s) and we

check if the now last element is 2. If it is not, then the next subset is
obtained by adding 2, otherwise we keep going backward in S while incrementing

k, and still comparing iS/=1 (s' is the decremented value of the pointers).

At the first occurence of a negative answer we know that the last elements

of S were is/+1 = k-1
*s' 42 s
i =1

and the next subset is obtained by setting is/+l = k in step 2. This also
proves inductively that the elements of the subsets are listed in decreasing
order of their indices. On the other end, if S is exhausted before a negative
answer occurs, then we had S = {s, s-1,...,1} and the next subset is the
singleton' {s+1}. For our purposes it is clear that this generation process
requires at most 0(s) operations per subset, hence is at most 0(n2n). However,

it is not difficult to show that it is actually an 0(2n) algorithm.

It remains to show how the computation of w (k) is performed in 0(s) opera-

tions within each step. Before applying the algorithm, we compute

w (1) = 2 w(i,j) for all d=l, ..e3 N
» Rkt
4y - i1 . .
and Wl(J,i) = wk,i) - w(j,i) for all i=2, ..., n

k=1
and all j=1, ..., i-1

o 48 -

In step 1, for S= {k}, clearly w (k) = wo(k). In step 2, assume the
entries w (i) have been computed for the set S, and the next set S’ is
obtained by deleting the last (k-1) elements of S and adding k in position

s (s’ 2 2) then the new values w /(i) can be obtained as

_ g’ -1
w/k) =w (k) - Z wik, i)
o =1 j
k-1
and w/({i)=w (i) +Z w(u,i,) - w(k,i,)
3 e] 3

=w (ij) +wl(k,ij).

then all the w / (i) can be updated in 0(s’) operations.

In order to preserve space, note that w, uses the lower triangular part of an

1
array, and that, since w is assumed to be symmetric, it may use the upper
triangular part of the same array. Note also that we do not record which
subset defines the minimum in the recurrence relation, in order to save one

9" array. Once f(N) has been computed, the optimal solution can be retrieved

by an 0(n2) backtracking classical in dynamic programming.

The code DYNSA2 differs from DYNSAl in that additional tests are introduced
to avoid generating subsets with more than r% n | elements. The relation

/ from w are accordingly modified in these cases. The optimum

defining w
value f(N) is obtained by the relation f(N)=min{f(S)+f(Eb: |S]| = r% nl}

and two backtracking steps are necessary to construct the whole optimal

solution.

Listings of codes DYNSA1 and DYNSA2 are available from the authors upon

request .

= bl =

REFERENCES

D.L. ADOLPHSON, '"Single Machine Job Sequencing with Precedence
Constraints", SIAM J. Comput. 6, 40-54 (1977).

D. ADOLPHSON and T.C. HU, "Optimal Linear Ordering', SIAM J.
Appl. Math. 25, 403-423 (1973).

K.R. BAKER,'"Introduction to Sequencing and Scheduling) Wiley,
New York, N.Y., 1974.

P.P. BERGMANS, "Minimizing Expected Travel Time on Geometrical
Patterns by Optimal Probability Rearrangements",
Information and Control. 20, 331-350 (1972).

P. BRUCKER, J.K. LENSTRA and A.H.G. RINNOOY KAN, "Complexity
of Machine Scheduling Problems", Report R75-15,
Graduate School of Management, Delft, The Netherlands
(1975).

J. BRUNO, E.G. COFFMAN Jr. and R. SEHTI, "Scheduling Independent
Tasks to Reduce Mean Finishing Time'", Comm. ACM 17,
382-387 (1974).

A.W. CHAN and R.L. FRANCIS, '"Some Layout Problems on the Line with
Minimum-Separation Constraints", to appear in Opns. Res.

M.R. GAREY, "Optimal Task Sequencing with Precedence Constraints",
Discrete Math. 4, 37-56 (1973).

M.R. GAREY, D.S. JOHNSON and L. STOCKMEYER, "Some Simplified NP-Com-

plete Graph Problems", Theoretical Comp. Sc. 1, 237-267
(1976) .

= 45 =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19‘

20.

D.D.

W.A.

R.M.

R.M.

R.L.

R.E.

GILMORE, "Optimal and Sub-optimal Algorithms for the
Quadratic Assignment Problem', SIAM J. Appl. Math.
10, 305-313 (1962).

GROSSMAN and H.F. SILVERMAN, '"Placement of Records on a
Secondary Storage Device to Minimize Access Time,"
J. ACM. 20, 429-438 (1973).

HORN, '"Single-Machine Job Sequencing with Treelike Preceden-

ce Ordering and Linear Delay Penalties", SIAM J. Appl. Math.,

23, 189-202 (1972).

KARP, "Reducibility Among Combinatorial Problems ", Complexi-
ty of Computer Computation, (ed. by R. E. Miller and J.W.
Thatcher), Plenum Press, New York, N.Y., 85-103, 1972.

KARP and M. HELD, '"Finite-State Processes and Dynamic Pro-
gramming', SIAM J. Appl. Math., 15, 693-718 (1967).

KARP, A.C. MCKELLAR, and C.K. WONG, '"Near-Optimal Solutions
to a 2-Dimensional Placement Problem'", SIAM J. Comp., &4
No. 3, 271-286 (1975).

LAWLER, "The Quadratic Assignment Problem', Management Sc.,
9, 586-599 (1963).

LAWLER, 'The Quadratic Assignment Problem: A Brief Review"
in Combinatorial Programming: Methods and Applications
(ed. by B. Roy), D. Reidel Publishing Co., Boston, Mass.,
351-360, 1975.

LOVE and J.Y. WONG, "On Solving a One-Dimensional Space
Allocation Problem with Integer Programming', INFOR 14,
139-143 (1976).

MARSTEN and T.L. MORIN, "A Hybrid Approach to Discrete
Mathematical Programming', Math. Programming 14, 21-40
(1978).

MCKELLAR and C.K. WONG, '"Dynamic Placement of Records in
Linear Storage', J. ACM 25, 421-434 (1978).

= kB =

210

22,

23.

24,

25.

26.

27.

28.

29.

P.M. MORSE, "Optimal Linear Ordering of Information Items",
Opns Res. 20, 741-751 (1972).

J.C. PICARD and M. QUEYRANNE, "The Time-Dependent Traveling Sa-
lesman Problem and Application to the Tardiness Problem
in One-Machine Scheduling", Operations Research 26,

86-110 (1978).

V.R. PRATT, "An NlogN Algorithm to Distribute N Records in a
Sequential Access File'", Complexity of Computer Com-
putation, ed. by R.E. Miller, and J.W Thatcher), Plenum
Press, New York, N.Y., 111-118, 1972.

C.V. RAMAMOORTHY and P.R. BLEVINS, "Arranging Frequency Dependent
Data on Sequential Memories', Proc. AFIPS 1971 SJCC 38,
545-556 (1971).

S. REITER and G. SHERMAN, ''Discrete Optimizing', Journal SIAM 13,
864-869 (1965).

D. ROMERO, "Variations sur 1l'effet Condorcet'", Thése Doct. 3e Cycle,
Université de Grenoble, France (1978).

S.K. SAHNI, "Algorithms for Scheduling Independent Tasks', J. ACM
23, 116-127 (1976).

D.M. SIMMONS, 'One-Dimensional Space Allocation: An Ordering
Algorithm", Opns. Res. 17, 812-826 (1969).

D.M. SIMMONS, "A Further Note on One-Dimensional Space Allocation',
Opns. Res. 19, 249-240 (1971).

AT

Belted 1.

o

S
SURPLAC

= —
— Shm— ——

E ke J

= SEE "= - S e G- . .

(— T | J

&=]

S ——

- - g

Y

T

