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ABSTRACGT

A class of multi-person mathematical optimization problems
is considered and is shown Lo genevate cooperative ganmes wikth
nonenpty coeres. The class ineludes, but Ls nor restricted to,
nuzetrous versions of Network flow prodlems. Tt is shown that for
games generated by Linear Prograoning optimization problems,
optimal dual seolutions correspond to voiats in the core. Alsc a
gpacial wlass of oetwork flow problems for which every poinc in

the ¢ore g¢orressonds to an optimal dual solution 1s exnibiced.






INTRORDUCTION

Neitworkx flow nmodels nave been applied extensively for
analyzinog systems in the areas of communication, transportation,
distribution, integrated production and the liﬁe. in systeas of
this tyoe ong can usually identify certain objeces, not
necassarily physical, which could be described as "flowing”
through the system. For instance, ome @;ay consider a fluid
fiowing in a pipeline network, traffic wmoving or goods being
tranzformed through a transportation netwotrk, currencies being
axchanged through a network of exchange dealers, telephone calls
trtaansoitied through a telephone network, physical "imputs” being
transformed through a production system into “"finished goods™
gte. Typically, the nodes of the network correspond te the
different possible "states” in which the "flow”™ can be found
while the arcs correspoad to the active slements in the systen
which c¢an transform the "flow” fream “"state” to "state’.

Given a systen of this type, one is mnaturally interested in
employing it in the nmost efificient way possible. For instance,
given a Eransportation systen, one likes to find a tramspoctation
pattern wioich maximizes the flow of traffic between two spvecified
terminals or, i1f costs are present, to find & transportatioun
pattern which supports a given  intensity of Ilow at the lowest
possible ecost. Similarly, in production problems with many
alternative paths of production, one would like to find a

production sc¢hedule which maximizes total output {or profits)



without exceeding production ¢apacities and without disturbing
the ordey of opertions in which productien should take place.

This sentimeat 13 amply reflected ia the U.K. literature
coaceraing nectworx flow proebleas. Sriginatiag with the
Pignearing work of Ford and Falkerson, [8], a vast nuonber of
algoritcthms for finding optiomal Tflows have been proeposed ia the
last 25 years. To date, we have available a wide choice of
extremely fast alzorithms for two iuportant versions of such
oodels namely the maxizal flow preblem and the mimicdum cost £low
preblea, [1,5,7,8,10,12,15,21)]. Practical applications of thase
models abound and probleans ipveolviong many thousands of variasles
and constralnts are being solved routinely.

A closer exanination of the above mentioued literature
reaveals, however, one coumon underiying feature. Almost without
egxception, rthese nodels are predicacted on the assuopiion that the
network is fully contrelled by one indiwvidual or by a group of
individusals with idencieal inrcerests. When we apnadlyse networks
ig which warious components are coatrolled by differant
individuwals, with differeat, and possibly conflictiang,
cbjectives, we s0on realize bthat the optigization problem bhecomes
a4 multiperson optimization problea and zame theoretic
considerations arise.

Consider, for example, a baxioum flow problem in a netwoerk
in whieh ares are owned by different iadividuals. We can esasily

ind tne optimal flow in this netwerk by the classical methods,

[

However, to sustain this optimal {low we must secure the

cooperation ©f some critical are owners. Their cooperation can



be secured provided that they get paid "euough”. However the
concept ¢of "enough” requires carefull consideration. A matural
critirion sugzgested by the gawme thoery literature is that the
payeff will be such that no group of owners can generate a higher
payeff for themselves when acting on their owa by asing only
their portiom of the network. In gape theoratic language we
requira the pavefi distribution te be In the core of the
resulting cocperative game. This seems like a2 natural nacessary
condition on the payoff distribution because a coalition of are
owners that can generate more profics for themselves Chan was
allocated to them by the grand cpalirion will tend to break
cooperation and act on their ewn. However, the existence of szuch
a payoff distribution is not an obvious fact. One can easily
generate exazaples of games for whieh the Tequirements sf the
various cealitions are ineconsistent resultiag in an empty core,

The most elementry protlem o analyse is that of a maxioua
flow problem ¢f one conumodity through a anetwork possesing a
single source and a gingle siak. ZEvery arc has a flow capacicy
eonstraiant and is owned by some plaver. A umit flow from source
to sink yields a unit profit., It was shown in Kalai-Zemel [L4]
that for such problems the resulting core is not emoty (for
example payoff distributions that corrvespond to zinimum cuts in
the network are always core allocations).

In this paper we study broad generalizations of the zpaximal
flow problen wanich posses this property. The resulting class of
problens contaips varioas natwork flow problems invelviag, for

instance, costs (profits) on the iadividual ares, aultiple



gources and sinks, wulti-comamodity flows, networks with losses
and galns, networks with productioa nodes, =tc. In addition,
various types of other optimization problems which are not
related ro petworks are alsoe covered. A similar appreach ¢f this
type was taken earllaer ipm OUwen [lb], Ieniishi {13] and Billera
[3). However the famwily of oprimization problems and the
resulting gazmes are diffearent there. Also, simultaneous and
independently of osur work, Dubey and Shapley i(7a] have develaped
a different set of sufficient conditions Eor opiiwmization
problems to guarantez that they gensrate pgames with non-empty
cores. rany oi the exaaples of games wich thig property can be
shown to it into both models (the BDubey-3hapley nodel as well as
ours). Thus it seems that bBoth ooedels are very gensaral.

The ovganizatioa of the paper is as follows. In section IT
wa Introduce some concepis from Game Theory, and examine the
notion of totally balaunced gaames. In section III we discuss a
class of cptimization problems which vield gawes having tnis
Propercy. In section IV we discuss an econonic #2xample - The
Shapley - Shubik Marker Games., In section V we discuss gaues
arising from certain types of liaear prograzning problems, which
includes a large variety oI network flow preoblems as well as
ather types of problems. In seccion VI we discuss a cercain
class of network flew problems for which the coere of the
regulting games can be fully described in terws of eoptimal dual

prices., We conclude the paper with a few 2xamples.



I1,. Concepts from Game Theory

Let & = {l,+..n} (o > 0) be a set of players. A& coalition
copsists of any non enpty subset of ¥. We denote the set of all

coaglitions of ¥ by €4 Am 2 - person cooperative gaug with

sidevayaments (a2 game f£for short) Is a function ¥ frou the set of

cpalitions to the set of real auwmbers., For a coalition

5 e C, ¥{5) may be thought of as the wvalue {(monetacy or
otherwise) that the copalition 5 can generate for its nembers if
it operates or its own. For example, in the naximal flow problen
described eavlier, ¥{5) may stand for the @maxiwmum flow that 5 can
sustain using only its portion of the network.

For a game V, the core of V is defined by

COoRE (v) = { x e 2%: L x, = ¥(N), L, x, » V(3} for every SeC}
iex £ {ed 71

4 point io the core corrssponds to a distributicn of the
total profits {or costs) to the different players of the zane.
Tre constraints imposed on CORE {V) ensure that no coalition
would have an facencive to split from the graod c¢oalitien, N, and
de better on its own. Thus, for an allocation of ¥{(¥} to belong
te CORE {(¥) iIs a necessary condition for long term coopertion
between the players. Attewmptiagz to implement profit
distributivoas whieh violates some of the core constrainis is
likely, in the leonp run, to result in some coalition brearing
cogperation.

ino general, a game V wmay or wmway not have a non empty core.

In light of the discussion of the procediag pavagraph, it is



apparent that establishing whether or =gt CURE (V) = ¢ is of

considerable practical relevance. Horeover, given that CORE (V)
# 9 we would obviously iike tfo find one or several points which
belong to this set., Both thaze issuss can be serctfled by solving

the following, typically huge, linear program:

E. C.

(2) - .
i a v 5 C
sig xJ {3) for every £

It is guite obvious that CORE (V) £ ¥ 1f and only if the
optimal solution of (1) and (2) is egual te V{N), in which case
any optiamal solution to rhis progran lies in CORE LV
Alternatively, taking the liﬁear prograoning dual of (1) - (2} we

get an equivalenr necessary and sufficent coalition for CORE (V)#

whiech i3z basgsed on the concept of balanced sets. if B = (51...5kj

i3 a eollection of cralitioms and A = {Al...lk} is a set of non

negative real nuzbers such that for every i g ¥ z AJ = 1, then
J:iESJ

we rcall such a 3 3 balaanced collection. The set of coeffients A

is refered to in Ehis case as balancing weights., We call a gane

¥ balanced if, for every balanced eollecticon 3 and every

correspoading set of balancing weights A we have

I AV (5.) <V (¥).
i i

SiEB



doadareva, {4j, using the duality theory of linear prograaming,

and Shnasley, [13], proved the Iollowing:

Thaeorem 1 A gawme has a non enpty coeve If and oaly If it is
balanced.

Let V be a gane with n ﬁlayers, and 5 £ €C a coalition. We
denote by v tae |$j players zame obtained by restricting V to
coalitions T 3. {?S is the restrictiom of cthe funetion V¥ ta
ES}- We Wwill be concerned Inm this paper with the faaily of

highly stable games for which
CORE {vbJ # 9§ for every S g C.
applying Theorem 1 we get that a gaame belong to this fapily, 1ff

gdach of ivts subgaames, V7, 5 g € iz balanced. Games with this

property are called totally balanced zames.

III. Optiomizaticn Problems Regulring in Totally Balanced Ganes

in this section we describe a general class of mathezatical
optimization probleas with the property that the coopgrative
zames Induced by them ave totally balanced.

Verbally, the ganmes may be described as follows. Every
player coatrols & set of variables. Every coalitien has a
feasible set constraiaing the variables of its wmenbers. Dencte
this feasible sat by ¥%, There is a comamon objective functicn
which is used by all covalitions. The value of a coalition 5,

¥{5), will be the maxilsoum of the objective function over the



feasible set of 5, Y3,

Formally, for every player i ¢ W we lat di be a positive

th

ioteger dencting the number of variables under i conktrel. Let

d g gt Al Let D I I
= d Alsa, Le =

11 LeO i R T2 Sy S
set of variables under i's contrel. For every coealitien § let

&Y = {y = Rd: FJ = 0, for J = 125 Di}- Ia other words R® 1s the

i £1-ie

d } be tpe
2

1

Subspace that 2ssignes value gero to variables which are not in

. ,d
's coentrol. For a point ¥y € R let ?S

projection on R”. Let ¥ = {YS} be a collections of sets in

e C
d 5 )

5
7. We ¢call the collecrion Y,

be ics orthogoenal
% with the property thart Y
balanced f{see Billera aad Bixby [2] for difiaitions and
references) if for every balanced collection of coalitions B =
(51...SRJ Wwith balancing set of weizhts X = (li.,.kk} and for
every collection of feasible poin s {yl,...yk] wikth Y, € ySi, ong

has izlliyia ¥"., The collection Y is called totally balanced if

the same property holds for the vestriction of Y to the subsets

=

of eévery coaliticon § £ C.
daving defined the feasible set for an opticization problem

we now define the objective function. Let £ bYe a real wvalued

funceion on RY9, £ is called super balaaced If for every balanced

colleccicon & = {Sl...sk) with balancing set of weights X = (Al...lk}
and for every &ollection of feasible peints [yl..-yk} with ¥y € Rbl

yi} - E ki f{yi}. £ is called totally super

gne nas f {izl X 1)

i

balanced if Ethe same property holds for every restricticon of the

set of players. Finally, f is called {rotally) bounded on Y if

suqu Lv) {supr(y} for every T e G} is firnite.
yeY' ye¥
Define the game asociated with pair (Y,f) by



v{s) = sup £(y)
eY
Lemza L If X ig totally balanced aad f is totally bounded and
tocally super blanced on Y then the gane Induced by (¥,f) is

tetally balanced.,

Proof We show that the ioduced game, ¥, is balanced. The
totally balanced part is proved in the same way. Let 3 =
(31,52,.-.,Sk} be a balanced ecollection of coalitioms witCh
balancing welghts {11, lz,...,lk). Let ¢ > 0 be arbitrary. We
will show tnat _§, A, V(S ) ~ k e < V(). For every 1,

1
l &« i & k, there is a V; € YSI with f{yi} » U{SiJ - £+ CLonsider

[ oy

: i -
= i L)
Y El Jl..b'i E T . t(,'-?) » 1 .JL[-[}".}c Therefore

i
v > £y > E A Vs - el > £ A (s - ke

i=]
Remark l. The reader who is familiar with che theory of
coopartative games without side payments will neotice that this
lenma can be easily formulated for such games. This can be done

by considering n ¢bjective funcbions uj,lz,sssl representing che

jul

-

utilities of the n players with properties similar ro f above to
induce torally balanced games without side payment {see Billera-

Bixby [2]}.

Bemark 2. The convetrse of lemwma 1 1s also rrue. This was first
established by Shapley-Shubik [19] {see section 1V below). It

also follows from the results of Kalai-Zemel [14].



I¥. An Economic¢ Example: Shapley — Shubik Market Ganmes

The fellowing gzames where discussed in shapley - Shubik
[19]. Using the tevainology of lemma 1, they can be described as
follows.

We assuae that all the di's of the plavers are identical and
equal ¢. ¢ may be thought of as the nuaber of conmodities that

are traded In Some market. With each player 1 ¢ § we associate
i pair (wi,ui}. W

i
g1l

i is a point in the non-nagative orthant of

and represents the initial 2mounts that plaver L hoelds of
the various cougdities. Ui R{l} + & which is councave and
continuous, pDay be thought of 22 fhe uctility or the monetary gain
that player i can get out of a given bundle. For every

) - i
y € R we define f{y) = igl ui(y J. In other words the value of
an allocation ¥ is the suw of the walues that the individual

players have for it. For every coalltion 5 we define yS by

5 5 _ ) o
Y {?={Ylf}r2:---,}'u)ER - §€SF i_ EESJ ial'ld }T i ﬂ fli}'f.‘ i_l ,z,...,n}-

It is easy to check that (Y,f) satisfies the assuaptions of lemna
I aud thus the induced oarket game is teotally balanced and nas
non empty &cores for all its subgames. Shapley and Shuebik, [19],
have established alsc the converse of this statement i.e. that
every totally balaunced game cao be geaerated by a pair (Y,f)

arising from a market game of this type.



Iy, Lingar Prograouing Gaazes

We noew turn our attention to a special class of optimization
problems, whiceh can be expressed as linear pregrans and which
satisfy the counditions of leasa 1. This class includes, among
cther prebleoms, all the generalizations of network flow probleas
reffered toe in the introduction. Thus, it will be shown tiat the
games associared with such optmization problens are totally
halanced. Morsover, the limear natuve of the representation of
such games leads to a natural and coaputationally feasgible
procedure to identify some points which are known to be in the
core.

e define the oprimizatioen problem as follows. For each
player i e § le: di dencte the dimeasion of the space oi

variables comnctrolled by this player. Let d = igi di' Let also
d

ci £ R 1 pe an arhbitrary profit (or cost 4if the entries are

¥

negative) vector for player i. Let A; aad B; be two arbitrary

matrices asscclated with this player of dimensions @, X di, and

o X di respectively, with n,, 1 e ¥ , and o arbitvary
o,
aonnegative integers. Finally, for each i & ¥, let bi e R T

an arbitrary wvector oi right hand sides. For every ccalition

be

5 £ € we let

.
{3) v($) = max ,I_ ¢ =
1ES
- o
< 3
(4) At it ar b’ for every i ¢ S,
(5) £, B x' §r @



For 8 = N one can think of problem {3} — {(5) as a problew of
decentralizarion with the different plavers serving as
subsidiaries or subcontractors. Such probleas are apenable to
solution by warious deconpesition techaiques (e.g. Dantzig -
Wolfa, [6]) which stress the flow of inforwation and contrel
between the main organization and the individual sub unics, i.e.
the players. We note that numergus versions of network flow
problea conform to ihis format. In the simplest versions of such
problems, the coanstaints (4) corraspond to the iandiwvideal are
capacity coastraints while (3) represents the requirement that
Elow be conserved at each intermediate note. Obviocusely, the
formulation (3} - (5) alleows for significant genralizatiocn of
such coastraints. In the rest of this section we Testrict our
attention to optimization problems which yield
V(is) ¢ @, for $ ¢ ¢, and V{¥)} » ==, It is a simple makker to

establish the following:

Theores 1 The game V derived frow the optimization problem (3} -

{53) is totallvy balanced.

froof We show that the zame sacisfy Che conditions ¢f Lemma 1.
The objective function is a sum of linear functions and therefore
tetally super balaunced. The assumption on the boudedness of
¥(5), § £ C iumply that £ iz totally bounded as well. To show
that the Tfeasible Teglons are tetally balanced, we note that
showing balancenesss iz enouph, since the problem restricted to

supcealitions of any coalition 5 ¢ € has the saoe structure as



the priginal problem.

Ler {51,...5k) andg {Al...lk} be a balanced set of cpalitions
and rthe corresponding weights. For L = l,...k, consider tha
optimization problem defined with respect to Si- Let ®y be a
feasible solution to this problem, We assume that toe x;'s are
augmented by zeros s0 that they all belong to RY. Consider the
vecrol x = igl Ai X, We have to show that x satisfies {4} - (35)
with repect to § = X. 3ut this is manifest: each, x; satisTies
constraints (5) by our assumption, and therefore so0 does ® which

is a limear combination of the Xg - also each x. satisfies {(4)

i
for atl j e Si' Let xi £ x§ be the coaponent of X, which
corresponds to player j. By the assumption of balanceness, x iz
a4 convex combination of the set {xg i j = Si} thus, xj satisfiies
(4).

The procef of Theorem 1 iz non <¢onstructive in mature. It
asserts that CORE (V) 7 P but deoes not indicate how a point in
this set c¢an be found. Theorez 2 below adresses itself to this
igsue. It establishes a conopection bhetween scme points in CUORE
(V) and the eptimal dual solutiocns to problea {3) — {3 defined
with respect to N,

Theorem 2 Ler {u,w) be an optimal dual selutica to (3) - (3},
defined war.t, N, with u = {ui: ieg N). Let x = {xi: ie N) be
given by x, = ul w1, Then x & GORE (V).

1

Progf We first note that

g <, =, % ui bi = o b= V()



as ir should. Cousider a evalition 5 g €. Lat u5 = {ui: ieg 35).
It can be easily verified that (us, w) 1z a feasible dual

solution for (3} ~ (5) defined w.r.t. 5., Thus, by the weak

duality theorem of linear programming

u”- be o2 V{5).

Theorem 2 ensbles us fto compute points ia the core of the
gaoe V without having to compute first the 2" constants
Vv{s), 5 & C. {The first example of such efficiency was
demonstrated for assignwmen: games by Shapley-shubik [20i,) 1In
addition, the allocations suggested in Theorem 2 lend themselves
to econonie interpreration ¢onsistent wWith traditicual L.p.
ianterpretations of shadow prices.

Is the coavevse of theorem 2 true? The following councer-
exanple settles this question In the negative. However, in
section ¥V, we i[dencify a class of network ganes for which every

core allacation corresponds to an optimal dual vactor.

Example I <Consider the network of Figure 1 where each are is

iabled by its index, f(a lerter), and its capacity.




For zach § £ & [fa, B, e,}, let ¥{5) be the naximal flow froa s

to t through CLhe astwork centaliaing the ares of 5 only.

Jbviously

v(i) = 0O i = a,b,c,
Via,b) = ¥{a,c) = 1}
¥i{b,c) = 0

via,b,c,) = 2

The maxinal flow problem on this network has twe extrene optimal
dual soluticns, corresponding to the two minimal cuts of the

network. These yield the two core allocations

xl = 2, xl = (0, xl a
a

2 2 _ z2 _
Xy o, Xy = i, X, = 1

which i3 also a corsg allocatien, doss not correspoad te a dual

gpiimal solution. This is not entirely surprising since the

relation betweenr the game ¥ and the optimization proeblen which

vield this game is not one Lo one. A given gaoe may have several



linear programuing represeantations, each possibly yvielding a

different optimal duwal set. In the following section we present
a certalin staadarized set of cptimization problems for which this
diserepency deoes not arise., Another class of problems with this

property was given in Shapley aad Shubik, [20].

V. Simple NetworTks

Consider a4 direcred network ¢ = G(E,L) with one source and
cne sink, 5 and £ respectively. For j £ L let U g be the capacity

cf thisz edge and €5 the ass¢clated objective value coefficient.

We do not impose any conditien oa the sign of ¢ It practical

3"
applicaticons one may expect some conponents to be negative
refleckting the coest of flow, while others are positive to account
for the associated revenuas. Fiﬁally, for each 4arc
j &l let o, e XN be the identity of the player which coatrols
)

tnis arc.

The network G defimes 2 game V Iin & matural way. For each
5 £ L depocte by GS the network restricted ro arcs wh;se OWnAars
belong Eo 5. V(S} can be defined then as the value of the osptimal
{i.e. maxinal with respect o c5= {ci: i 2 8)) 5 o £ flow in
Gs. It iz & s$imple matter to observe that the standard arc—flow
Formulation of this preblem, in whien the variables correspond to
the flows on the individual arecs, satisfies the conditicns of
Theorem 2.

Wa call the network G sizmple, if u = 1 for every, j e L aund

if eaech are ig owaed by a different plaver, i.e. wa can idencify



the set of arcs witn tne set of plavers., We will restrict gut
attention in this section to games resulting from such RRLWOTRs.
Let P = (py-++py} be the set of all simple paths from s to t

on G, each regarded as a subset of edges i.e. a coalition, For

Pa g .0bviocusly V{p) = max {o,cp} for every

1€p i
p & P and V{({i} > 0 for every i e H.

each p e ¥ lete

Thus, every % ¢ CORE (V) wmust satisiy:

(03 (g ¥y 0T V{N)}

7 P

(7)) idp X, 2 c p e P
{8) x, » 4 ie H.

The following proposition asserts that for simple networks Cthe

converse of this statement i3 also true

Proposition ! Let ¥ be the gdanme associates with a siople network

G. Than
CORE (V) = {x | x satisfies (6}, {7 and (38)}

Proof UWe have to show that JES xj > V{5) for every cpalition
3 ¢ C. Let yS = {yﬁ: 1 & 5) be an optimal scluiilon which yields
the value ¥{(S5), and such that yi E {U,l}5 The fact that such an
integral valued scolution exists follows from the fact tnat the

underlyiag matrtix is unimodular. It follows ifmpediately that the

noen zero elements of ys defione a collection of edge-wise



disjoints pathes P' P from s to t such that the edges of these

pathes belong to 5. Hence,

S P .

i Tpkpr © X

pér 3Ep 5 ¢ sEs %
BEematk 3 Propositien | lies art the heart of the special behavior

1 - =

(3D jés cjy
of siople networks. The reader may wish to verify that che
proposicion does anot held for aetworks which are net slmple such

as the oue of Example 1.

Rezark 4 An alternmative representation of the core is as the
optimal set of the linear progran ain jéﬁ xj subject to (7)) and
{8). This represeantation yields the following conplemesatary

slackness conditions:

{a) 1f there exists any optimal flow f with fj = 0 for sone j; g N
then Xy ® } in any core allocarion x
{b) If there exists any optimal flow , f, with fJ = 1 for all
the atcs o0f a given path p, then jEp Kj = ¢f in EVELY COTe
allocation x.
Proposition 1 iz of little use from an algorithaile pofint of
view since the cacdinality of P i3 typiecally huge. Proposition 2
below can serve as a practilcal basis for deciding, for a givea
X € Rn, whether or noet x e CORE (W).
For x € R™ let G* be the network obtalned from G by

replacing ¢ with ¢ - =.

Proposition 2 Let f be any optimal flow on G and let




X € RE satisfylgﬁ = V{¥). Themn =x g CORE (¥} if and only if £

is optimal for ¢* with optimal value .

Proof We first note that changes in the objective function leave
i feaszible., Its wvalue with respact to the new objective fuanection
is

Efc—=%)

1l
(]
Fn

~~
=
|
I
—

U
L |
3

1
[
Fh
b

it
=5
—
=4
e

1
- |
Hh

"

assume that x € CORE (¥). Then, by the cooplementary slackuess

condition {a) of Remark 2 xj >0 = f = 1., Thus

To complete the proof we norte, that if £ and % are such that
the value of f w.r.t. network G* is zero, f is oprimal in this

network iff for every path p e P

p
I x, » ¢ for evar e P
Jep ] y B

Usiang, proposition 1, we noece that the last conditions holds
iff = £ CORE (V).

We finelly come to the main theorem of this section. It

states that for simple networks, every core azllocation



corresponds to an optioal dual selution for the correspondiag

optimization problem. We recall the arc-flow formulation of this

prablen:
(s Hax L. e, £

4 JEX i i
{10} S.E. fj <1l 3e &

1 - £, = H £ wifh s # £ L.
(11) jEIN fj jEGUTi 3 0 for svery 1 e wifh s i t
{12) i =0 je ¥

where, for each node i, we denote by I1i; and OUT; the set of
edges coming iante and going out of i respectively. The linear

programming dual of (9) - (11} is

13} nmin iy uJ

S.t.
(14) By % g% Iﬁiwi - i|EEOUTiHi > <y e N
(15) a; * 0 J e w
Theorea 3 Let u £ CORE (V). Then, there axists w = {wi: ie B}
such that (u,w) is an optimal solution for (13} - {I13).

Proegf u e CORE (V) implies that jgﬁ a; = W{N¥) and ny a0, 1 e H.

Hence, all we have to show Iis that there exisis w such that (14)

is satisfied, Consider the network G". By propesition 3, the



optimal value for the optimal flow problem on this network is
0. Let (u'w') be any dual solution with respect o this

network. Then

Z u' =0
jed 3
and

which 1mply that u} = 0, j € N« By the dual feasibility of this

solution we have Lthat

3 - ap - . s
il_‘]% Iﬁidi ilgEﬂUTidi » l'-'-:j uj:- J E d
which in turn implies that
s wl - 1 .
u.] liﬁzlﬁi”i liEEDUTiWi CJ

i.e. that (u,w'} is the regquired duzl optimal solution.

We <onjecture that Theorsz 3 c¢an serve as a practical basis
for calculating the nucleclus (see Schmeidler [l7a]} of thae game
V. If the obijective function of problem (93 - (11} is ta
naximize flow (i.e. cj'n 1 j= GUTS, cj = ) otherwise) then
theorem 3 simplifies to
Theerem 4 Let & be a simple network such that for each coalition
8, V{8) 1is equal to the naxizal 5 to t flow possible using the

arcs of S5 only. Then the extreme peints of CORE (V) are

arecisely the points x = {xj: ] & ¥} such that



1 if 3 8 K
£ 0=
3 g ostherwise
where K is 4 minimpal s to t cut din G.
The proof of theorem 4 follows immediately from theorem 3
angd from the fact that the aminimal cuts of G constitute the
gxtrenae dual solutions o the wmaximum flow prowlem on this

network,. For details gee Ford and Fulkersoa, (9] and Fulkerson

ile6].

¥VI. Exanoples

We conclude the paper with a few examples.

Example 2 Consider the network Gz of Figure 2, where agala each
arc is labeled by its name {a lecter) and ics capacity. If each
arc iz owned by a different plaver, the network is simple.
Conzider the game defiaed by the max flow problem on this
network. By Theoreams 3 or 4, we note that the unique peint in
CORE (V) corresponds to the unique mimimal cut iam G;. This peint

is zZiven by

Example 3 To ses the complications which arise when the network
is aovt siwple, consider the network G3 of Figure 3, which is
gbtained by letting one player, say a, control the cthree arcs
a,b,c, of Ga, {or equivalently, replacing these 3 arcs by a

unigue are of capacity 3). Amgain examine the gaximal flow



praoblem on GE' The unigue nimimun c¢ut in G3 sonsilsts, as
previcusely, of the arcs d, and e, This yield the corse

allocarion

However, 3 additional ewxtreue poiats of CORE (V) are

X, = 2 Xg = X, = 0
X, = 1 Xg = ¥V, K, = o
X, = 1 g = 0, %, =1

Cores of network games exhibit certain non nmonotooicilties
with respect to the game data. The following two gxamples

deponstrate thisz behaviocr.

Example 4 Consider the network G, of Figure 4, obtained fron Gy
by increasing to 2 the capaecity of are d. This increase, however,
not be in the interest of player d as the followiomg allocation

X, = Xy T x, = 1, XKy = %, = 0

a =

belongs to the core of the new game.

may



Example 5 Consider aetwerk G5 of Figure 3. Let all the per unit

cost on the ares be U except for €, aad C, which are set to 2.

a

Consider the gane obtained from thnis network L[f we wvalue each
unit of flow from source to sink at one anit. {This ran bs

dachieved, say, by setting ¢, = -2, ey = B, . =0, cg = L, e, =

a =)

=

1-2 = -1). The optimal flow in this network is through the path
t,c,d and vields an objective function of |. The extreme points

of CORE (V) are given by

X, = 1, xj =0 j# b
£ =1 x, = @ j#c
c d

%4 xj o A d

How let us increase the value of a unit of flow froa s Eo b fo
4y A pew optimal solution for the problem untilizez rhe paths 3

- d and b - ¢. The unigque poiant in the core is now

K, = x, =2, x. = 0, i b, d

Thus, the increase in the per unit revenue Is detrimental from

the poiat of wiew of plaver <.



c,l a,1

Figure 2 Gz
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