EFFECTS OF FALSE AND INCOMPLETE IDENTIFICATION OF DEFECTIVE ITEMS ON THE RELIABILITY OF ACCEPTANCE SAMPLING

Samuel Kotz

University of Maryland College Park, Maryland

Norman L. Johnson
University of North Carolina Chapel Hill, North Carolina

April 1982

ABSTRACT

The effects of false and incomplete identification of nonconforming items on the properties of two-stage acceptance sampling procedures are studied. Numerical tables are presented, and there is some discussion of sensitivity to inspection errors. Methods of taking into account extra costs needed to implement better inspection techniques, when initial grading is inconclusive, are described.

1. INTRODUCTION

Recently, we have considered a number of distributions arising from inspection sampling, when inspection may fail to identify a defective item, or may erroneously classify a nondefective item as 'defective'. (Johnson et al. (1980), Johnson \& Kotz (1981), Kotz \& Johnson (1982a)). Oux interest in these papers was mainly in the distributions (of numbers of items classified as defective) themselves. We now consider some consequences, with special regard to properties of acceptance sampling schemes. Although this is the main purpose of the present paper, we will incidentally encounter some further compound distributions which are of interest on their own account.

We also consider a simple gracing situation, allowing for a possible second inspection when first inspection fails to decide whether an item is or is not defective, and introducin; some cost functions.

We will suppose sampling is carried out, without replacement, from a lot of size N which contains D defective items. The symbol Y (possibly with subscripts) will denote the number of defective items included in andom sample (without replacement) and Z (with subscripts) the nuber of items classified as 'defective' after inspection.

2. SINGLE-STAGE ACCEPTANCE SAMPLING

Single-stage acceptance sampling schemes have the following simple rule:
"If the number of (alleged) defective items in a sample of size \mathbf{n} exceeds a, reject the lot; otherwise accept it."

Formally:
"Refect if $Z>$ a; accept if $Z \leq$ an". $^{\prime \prime}$.

In order to assess the properties of this procedure, we need only the distribution of Z, which was obtained in Johnson $\&$ Kotz (1981) - namely

$$
\begin{equation*}
=\binom{N}{n}^{-1} \sum_{y}\binom{D}{y}\binom{N-D}{n-y} b\left(z ; y, n-y ; p, p^{\prime}\right) \tag{1}
\end{equation*}
$$

Where $p=$ probability that a defective item is detected on inspection and $p^{\prime}=$ probability that a nondefective item is classified as 'defective', and $\max (0, n-N+D) \leq y \leq \min (n, D)$.

In the construction of acceptance sampling schemes (that is, choosing the values of n and a) it is (usually) assumed that inspection is faultless, that is $p=1$ and $p^{\prime}=0$. The values of n and a are then chosen to make

$$
\begin{aligned}
& \operatorname{Pr}\left[Z>a \mid 1,0 ; D_{0}\right] \div \alpha \text { (the 'Producer's Risk') } \\
\text { while } & \operatorname{Pr}\left[Z \leq a \mid 1,0 ; D^{*}\right] \div \beta \text { (the 'Consumer's Risk') }
\end{aligned}
$$

where α, B, D_{0} and D^{*} are parameters chosen in accordance with the specific circunstances.

3. TWO-STAGE ACCEPTANCE SAMPLING

These procedures (see e.g. Dodge \& Romig (1959)) are of form:
"Take a random sample (without replacement) of size n_{1}, and observe the number of apparently defective items, z_{1}.
If $Z_{1} \leq a_{1}$ accept the lot; if $z_{1}>a_{1}^{\prime}$, reject the lot; if
$a_{1}<z_{1} \leq a_{1}^{\prime}$, take a further random sample, from the remaining items
in the lot, of size n_{2} and observe the number of apparently defective items in it, z_{2}.
If $Z_{1}+Z_{2} \leq a_{2}$ accept the lot; if $z_{1}+z_{2}>a_{2}$ reject it."
Formally:
"Accept if $Z_{1} \leq a_{1}$, or if $a_{1}<Z_{1} \leq a_{1}^{\prime}$ and $Z_{1}+Z_{2} \leq a_{2}$; otherwise reject."
(Popular special cases are $n_{2}=n_{1}$, or $n_{2}=2 n_{1}$ and/or $a_{2}=a_{1}^{\prime}$)
To assess the properties of this procedure we need the joint distribution of Z_{1} and Z_{2}. Conditionally on the actual numbers Y_{1}, Y_{2} of defective items in the two samples, z_{1} and Z_{2} are independent, and (for $i=1,2) Z_{i}$ is distributed as the sum of two independent binonial variables with parameters (Y_{i}, p) and ($n_{i}-Y_{i}, p^{\prime}$) corresponding to items correctly and incorrectly classified as defective, respectively. Formally

$$
\begin{equation*}
Z_{i} \mid Y_{1}, Y_{2} \sim \text { Binomial }\left(Y_{i}, p\right) \text { Binomial }\left(n_{i}-Y_{i}, p^{\prime}\right) \tag{2}
\end{equation*}
$$

(* denotes convolution.)

The foint distribution of Y_{1} and Y_{2} is a bivariate hypergeometric with parameters ($n_{1}, n_{2} ; D, N$) and

$$
\begin{align*}
& \operatorname{Pr}\left[Y_{1}=y_{1} ; Y_{2}=y_{2}\right]=\binom{n_{1}}{y_{1}}\binom{n_{2}}{y_{2}}\binom{N-n_{1}-n_{2}}{D-y_{1}-y_{2}} /\binom{N}{D} \tag{3}\\
& \left(0 \leq y_{i} \leq n_{i} ; D-N+n_{1}+n_{2} \leq y_{1}+y_{2} \leq D\right) .
\end{align*}
$$

The unconditional distribution of $\left(z_{1}, z_{2}\right)$ is a mixture of (2) with mixing distribution (3).

Formally, then

$$
\begin{equation*}
\binom{z_{1}}{z_{2}} \sim\binom{\text { Binomial }\left(Y_{1}, p\right) * \operatorname{Binomial}\left(n_{1}-Y_{1}, p^{\prime}\right)}{\operatorname{Binomial}\left(Y_{2}, p\right) * \operatorname{Binomial}\left(n_{2}-Y_{2}, p^{\prime}\right)} \wedge \text { Biv. } \operatorname{Hypg}\left(n_{1}, n_{2} ; D, N\right) \tag{4}
\end{equation*}
$$

(A denotes the compounding operator (e:g. Johnson \& Kotz (1969, p. 184)).)
It would be straightforward to generalize this formula to allow p and p^{\prime} to vary from sample to sample. (see Johnson \& Kotz (1982b)). This will not be done here, as it appears reasonable to suppose p and p^{\prime} are the same for both the first and second sample.

```
Explicitly
```

$$
\begin{align*}
\operatorname{Pr}\left[z_{1}=z_{1},\right. & \left.z_{2}=z_{2} \mid p, p^{\prime} ; D\right]= \\
& \sum_{y_{1} y_{2}} \frac{\left(\begin{array}{l}
n_{1} \\
y_{1}
\end{array}\right]\binom{n_{2}}{y_{2}}\left[\begin{array}{l}
N-n_{1}-n_{2} \\
D-y_{1}-y_{2}
\end{array}\right]}{\binom{N}{D}} b\left(z_{1} ; y_{1}, n_{1}-y_{1} ; p, p^{\prime}\right) b\left(z_{2} ; y_{2}, n_{2}-y_{2} ; p, p^{\prime}\right) \tag{5}
\end{align*}
$$

(Limits for y_{1}, y_{2} as in (3)).
The expected number of items inspected is

$$
n_{1}+n_{2} \operatorname{Pr}\left[a_{1}<z_{1} \leq a_{1}^{\prime}\right] .
$$

This can be ovaluated using the distribution of Z_{1}, which is of the same form as (1), with subscript '1' attached to n and 2 . The probability of acceptance at first sample is

$$
\sum_{2=0}^{n} \sum_{y_{1}} \frac{\left[\begin{array}{l}
n_{1} \tag{5}\\
y_{1}
\end{array}\right]\left[\begin{array}{l}
N-n_{1} \\
D-y_{1}
\end{array}\right] b\left(z_{3} y_{1}, n_{1}-y_{1} ; p, p^{\prime}\right) .}{\left[\begin{array}{l}
N \\
D
\end{array}\right]}
$$

The probability of acceptance at second sample is the sum of probabilities (s) over $a_{1}<z_{1} \leq a_{1}^{1}$ and $z_{1}+z_{2} \leq a_{2}$. The distribution of $z_{1}+z_{2}$ is
$Z_{1}+Z_{2} \sim{ }_{i=1}^{2}$ Binomial $\left(Y_{i}, P\right)_{i=1}^{\dot{*}} \operatorname{Binomial}\left(n_{i}-Y_{i}, P^{\prime}\right) \underset{Y_{1}, Y_{2}}{\wedge} \operatorname{Biv.Hypg}\left(n_{1}, n_{2} ; D, N\right)$
but it is not directly applicable to calculation of this probability. The acceptance probability is calculated directly as the sum of
$\sum_{1}^{a_{1}^{\prime}} a_{1}^{\prime+1}\left(1+a_{2}-2_{1}\right)=\frac{1_{2}}{2}\left(a_{1}^{\prime}-a_{1}\right)\left(2 a_{2}-a_{1}-a_{1}^{\prime}+1\right)$ terms of type (5).
Acceptance probabilities for four sampling schemes, with lot sizes $N=100,200$ and defective fractions $D / N=0.05,0.1,0.2$ are shown in Table 1 for $p=1.00, C .98,0.95,0.90,0.75$ and $p^{\prime}=0.00,0.01,0.02$, $0.05,0.10$. The sampling schemes have $n_{1}=n_{2}$, the common value corresponding to sample size codes D-G of Military Standard 105D for double sampling (see Duncan (1974)).

As is to be expected, the acceptance probability increases as p decreases, and decreases as p^{\prime} increases. The latter effect is relatively greater, for the values of p and p^{\prime} used (which correspond to the situations most likely to be oncountered). For a given defective fraction (D / N) probabilities of acceptance for lot sizes $N=100$ and $N=200$ do not differ much. It is noteworthy that the change with increasing N is sometimes positive and sometimes negative.

When D is small, variation in p has less effect, because it is only the D defectives that are affected. For converse reasons, variation in P^{\prime} has greater effect when D is small. Effects of changes in p and p^{\prime} become more narked as the sample size increases.

Roughly speaking, it appears that values of p as low as 95 do not have drastic effect on acceptance probability, but values of p^{\prime} even as small es 1\% do have a noticeable effect.

4. COST CONSIDERATIONS IN GRADING INDIVIDUAL ITEMS

The topic of grading was discussed by Kotz and Johnson (1982). This differs from acceptance sampling in that we are primarily concerned with the classification assigned to each item individually, rather than using the apparent total number of defective items in a sample as a criterion for accepting or rejecting the lot from which it was drawn.

The simplest possible situation to consider is when a single individual is chosen at random and assigned to one of two classes "defective" or "nondefective". (This decision is restricted to the particular item at hand it is not extended to the whole lot.) A natural extension is obtained by allowing for the possibility that on first inspection, no clear decision will be reached - but that this can be resolved, one way or the other, by a second more careful (and probably more efficient and more costly) inspection.

We now introduce π, π^{\prime} to denote the probability of no decision on first inspection for a defective, nondefective item respectively. Also let P_{E}, P_{E}^{\prime} (E for "expensive") denote the probability that a defective, or nondefective item respectively is classified as 'defective' at the second inspection. Then the probability of a defective item being correctly classified is ($p+\pi p_{E}$), and the probability of a nondefective being incorrectly classified as defective is ($p^{\prime}+\pi^{\prime} p_{E}^{\prime}$). (Note that all the formulae in Section 2 and 3 are still applicable, with p replaced by $\left(p+\pi p_{E}\right)$ and p^{\prime} by $\left(p^{\prime}+\pi^{\prime} p_{E}^{\prime}\right)$.)

Some new points arise if cost is taken into consideration. If c_{1} is the cost of the first inspection and c_{2} that of the second, the expected cost of inspection for an individual chosen at random from a lot of N items, of which D are defective, is

$$
\begin{equation*}
C=c_{1}+\left\{\frac{D}{N} \pi+\left(1-\frac{D}{N}\right) \pi^{\prime}\right\} c_{2} \tag{7}
\end{equation*}
$$

If p denotes the cost of failing to detect a defective item, and ρ^{\prime} the cost of classifying a nondefective item as 'defective' then the expected cost of the procedure, per item is
$R=c_{1}+\left\{\frac{D}{N} \pi+\left(1-\frac{D}{N}\right) \pi^{\prime}\right\} c_{2}+\left(1-p-\pi p_{E}\right) \frac{D}{N} \rho+\left(p^{\prime}+\pi^{\prime} p_{E}\right)\left(1-\frac{D}{N}\right) \rho^{\prime} \quad$.
If there is some choice in regard to the amount of effort devoted to second inspections, we say be able to regard p_{E} and p_{E}^{\prime} as functions of c_{2}. We would expect p_{E} to increase and p_{E}^{\prime} to decrease with c_{2}. We would also expect to have

$$
c_{2}>c_{1}, \quad p_{E}>p \text { and } p_{E}^{\prime}<p^{\prime}
$$

If we also able to give reasonably relevant values to ρ and ρ° we can try to minimize R by appropriate choice of c_{2}, by using the value of c_{2} satisfying

$$
\begin{gather*}
\frac{\partial R}{\partial c_{2}}=0, \quad \text { that is } \\
\frac{D}{N} \pi+\left(1-\frac{D}{N}\right) \pi^{\prime}=\rho \pi \frac{D}{N} \cdot \frac{\partial p_{E}}{\partial c_{2}}+\rho^{\prime} \pi^{\prime}\left(1-\frac{D}{N}\right) \frac{\partial p_{E}^{\prime}}{\partial c_{2}} \tag{9}
\end{gather*}
$$

If $\partial p_{E} / \partial c_{2}>0$ and $\partial p_{E}^{\prime} / \partial c_{2}<0$, as is to be expected, this equation can have no more than one root in c_{2}.

The possibility of using this approach may be rather difficult in practice. In particular, assessment of values of ρ and ρ^{\prime} requires a very considerable knowledge of the likely financial effects of misclassification. Cenerally, p will reflect the adverse results of accepting a defective item which will comonly have high variability consequent on the actual effects of fadlure when (and if) it occurs. On the other hand, ρ ' corresponds to the loss incurred to the producer by rejecting an itee which is really saṭisfactory, and is likely to be less variable.

In this section our aim has been to alert practitioners to the existence of rather straightforward procedures, which, coupled with adequate practical experience can yield helpful results in a variety of applications.

ACKNOWLEDGEMENT

Samuel Kotz's work was supported by the U.S. Office of Naval Research under Contract N00014-81-K-0301. Norman L. Johnson's work was supported by the National Science Foundation under Grant MCS-8021704.

REFERENCES

1. Dodge, H.F. and Romig, H.G. (1959) Sampling Inspection Tables, Wiley, New York. (Second Edition)
2. Duncan, A.J. (1974) Quality Control and Industrial Statistics, R.D. Irwin, Homewood, Ill. (Fourth Edition).
3. Johnson, N.L. and Kotz, S. (1969) Distributions in Statistics - Discrete Distributions, Wiley, New York.
4. Johnson, N.L. and Kotz, S. (1981) Faulty Inspection Distributions Some Generalizations. Institute of Statistics Nimeo Series ${ }^{W} 1335$, University of North Carolina at Chapel Hill. (To be published in Proc. of ONR/ARO Reliability Workshop, April 1981).
5. Johnson, N.L. and Kotz, S. and Sorkin, H.L. (1980) Faulty Inspection Distributions, Common. Statist. A9, 917-922.
6. Kotz, S. and Johnson, N.L. (1982a) Errors in Inspection and Grading: Distributional Aspects of Screening and Hierarchal Screening, Institute of Statistics Nimeo Series \#1385, University of North Carolina at Chapel Hill: (to appear in Commar. Statist. Al1 (1982)).
7. Kotz, S, and Johnson, NL. (1982b) Some Distributions Ariaing in Ahitistage Samping with Inspection Errors, subnitted for publication.

$6809^{\circ} 0$	992100	SE64＊0	$9+18^{\circ} 0$	05E8＊ 0	$6809^{\circ} 0$	082L ${ }^{\circ}$	6S64．0	SLI8＊0	2888 ${ }^{\circ}$	S $L^{\circ} 0$
T0zS ${ }^{\circ} 0$	8889 ${ }^{\circ}$	$6604^{\circ} 0$	EEEL＇0	T9S1＊0	L6IS＊0	E6E9 0	8ITL＇0	SSEL＇0	$685 L^{\circ} 0$	06．0
T16＊＊0	$6809^{\circ} 0$	L089＊0	\＆ $\mathrm{OLC}^{\circ} \mathrm{O}$	LLZL＇0	$9680^{\circ} 0$	$6809{ }^{\circ} 0$	1289 0	E901 ${ }^{\circ}$	E0EL＇0	$56^{\circ} 0$
Cst60	$6065^{\circ} 0$	$6299^{\circ} 0$	L989 ${ }^{\circ} \mathrm{O}$	\＄014．0	12600	$9065^{\circ} 0$	0ヶ99 ${ }^{\circ} 0$	7889 ${ }^{\circ} 0$	92TL＇0	$86^{\circ} 0$
5291＊0	$6825^{\circ} 0$	$6059{ }^{\circ} 0$	$6769^{\circ} 0$	L869＊0	S09b＊	ヤ8LS 0	8159＊0	E9L9 ${ }^{\circ} 0$	LOOL＇0	$00^{\circ} 1$
$\overline{06}=0^{\prime} 002=N$					$\overline{02}=\mathrm{a}^{\mathbf{2}} 00 \mathrm{I}=\mathrm{N}$					
$6766^{\circ} 0$	$6006{ }^{\circ} 0$	1876．0	$9096{ }^{\circ} 0$	¢126．0	0964＇0	0806 0	LOS6 ${ }^{\circ}$	£ $296{ }^{\circ} 0$	TヤC6＊	S $L^{\circ} 0$
9tS $L^{\circ} 0$	$8698^{\circ} 0$	8ヶ26．0	L0ヶ6．0	8ES6＊0	6SSL＇0	92L8 0	S826．0	0t¢6＊0	6L56＊	$06^{\circ} 0$
LOt $L^{\circ} 0$	$9858{ }^{\circ} 0$	1916．0	EZE6＊0	6976 0	OZもぐ0	$9198^{\circ} 0$	1026．0	99E6＊0	－156\％	S6．0
EZE100	L158＊0	$9016^{\circ} 0$	¢LZ6＊ 0	SZヶ6．0	9EEL＇0	$8758^{\circ} 0$	8t16 0	6IE6 ${ }^{\circ} 0$	ELb6 ${ }^{\circ}$	$86^{\circ} 0$
$9926^{\circ} 0$	$0478{ }^{\circ} 0$	$8906{ }^{\circ}$	0ヵ26 0	S6E6 ${ }^{\circ}$	6LZL＇0	2058 ${ }^{\circ}$	2II6 ${ }^{\circ}$	9826 ${ }^{\circ} 0$	Stt6 ${ }^{\circ}$	00＊
$02=0 \cdot 002=N$					$\overline{0 T}=\mathrm{O}^{\text {c }} 00 \mathrm{OL}=\mathrm{N}$					
SEL8 ${ }^{\circ} 0$	$6 L 56{ }^{\circ} 0$	$5986{ }^{\circ} 0$	£266＊0	£966 0	t＋ $28^{\circ} 0$	$2656{ }^{\circ} 0$	$\angle L 86^{\circ} 0$	tE66＊0	ヶL66 ${ }^{\circ}$	SL＇0
$0458{ }^{\circ} 0$	1876 6°	$2186^{\circ} 0$	5886 ${ }^{\circ} 0$	$8866^{\circ} 0$	2858 ${ }^{\circ} 0$	$0056{ }^{\circ} 0$	て886＊ 0	ع066＊ 0	SS66．0	06.0
STS8 ${ }^{\circ}$	$97+6^{\circ} 0$	26L6．0	$0<86{ }^{\circ} 0$	$8 \mathrm{8} 66^{\circ} 0$	$9258{ }^{\circ} 0$	L976＊0	SI86＊	［686＊ 0	$\angle 866^{\circ} 0$	S6．0
$8258{ }^{\circ} 0$	Sで6＊0	08L6 ${ }^{\circ}$	$0986{ }^{\circ} 0$	I266 0	£678 ${ }^{\circ} 0$	Lヤヤ6＊	6086 ${ }^{\circ} 0$	E886 ${ }^{\circ} 0$	て766＊0	$86^{\circ} 0$
SSt8＊ 0	0176＊0	2LL6＊ 0	t $5866^{\circ} 0$	LI66＊	$0 \angle 78^{\circ} 0$	££ $66^{\circ} 0$	96L6 ${ }^{\circ}$	8L86＊ 0	$6866^{\circ} 0$	00＊
$I=0{ }^{6} 002=N$										
OT ${ }^{\circ}$	$50^{\circ} 0$	$20^{\circ} 0$	10\％	0	$01^{\circ} 0$	$50^{\circ} 0$	$20 \% 0$	10\％	$0=\mathrm{d}$	d

9182\％ 0	66tro 0	E8ts．0	IEss＊0	L885．0	LLLて＊ 0	$0910 \cdot 0$	ssts＊0	60ss．0	2L85．0	SLO
066t＊0	sots．0	Sb6E．0	－szto	sLst．0	£ $¢ 6 \mathrm{~T}^{\circ} \cdot 0$	teos．0	$8 \angle 88^{\circ} 0$	$6817 \cdot 0$	sist． 0	${ }^{06} \cdot 0$
$85 \angle 10$	18L2．0	$8955 \cdot 0$	098\％ 0	99t＊ 0	$969 \mathrm{t}^{\circ} 0$	zolz＇0	$888{ }^{\circ} 0$	$18 \angle 8.0$	$0600^{\circ} \cdot$	56.0
$6291 \cdot 0$	$8652 \cdot 0$	Esse．0	ヤ¢92．0	6268．0	t9st．0	stsz．0	ャ928．0	$9 \mathrm{tss} \cdot 0$	¢t8E．0	86.0
Losi＇0	1882＊0	£tz\％ 0	L8¢¢．0	sLLE＇0	08tT ${ }^{\circ} 0$	จ6Ez＇0	Ozte．0	£6£\％ 0	¢89\％${ }^{\circ}$	00° I
$\overline{0 ¢}=\mathbf{O} \cdot 002=\mathrm{N}$					$\overline{02}=0 \cdot 001=N$					
โtzs＊0	£EzL．0	9958．0	S0L8．0	St06．0	0szs．0	$8 \mathrm{OLL} \cdot 0$	L008．0	$95 \angle 8.0$	9206．0	$5 L^{\circ} \mathrm{O}$
L09t＊0	9959	592L\％	t¢L8．0	E0s8．0	E8St ${ }^{\circ}$	2LS9．0	9085 ${ }^{\circ} 0$	8618.0	2L58．0	06.0
20tt＊ 0	0ヶE9．0	2sst．0	1062．0	E1E8．0	pLEt．0	2¢¢9．0	065 $L^{\circ} 0$	v662 ${ }^{\circ}$	£858．0	56.0
1827＊0	2029．0	zzto ${ }^{\circ}$	9182．0	5618．0	6 tzb 0	£029＊0	$85 D L^{\circ} 0$	$898 L^{\circ}$	s928．0	86°
202ヶ＊0	－ti9．0	te¢ $\iota^{\circ} 0$	TELL＇0	Stis ${ }^{\circ}$	4910．0	0159	695 $\iota^{\circ} 0$	28L1．0	＊818．0	$00 \cdot$ T
$02=0 \cdot 002=\mathrm{N}$						$\overline{0} \mathbf{0}=0 \cdot 00 t=N$				
＋299．0	St98．0	¢0s6．0	1026．0	0586.0	$\angle \angle 99 \cdot 0$	8998.0	6556.0	6816．0	$\angle 886.0$	SL ${ }^{\circ}$
1t¢9．0	Sct8．0	8286.0	5956.0	bSL6．0	¢ $¢ ¢ 9 \cdot 0$	$90+8.0$	$6 L \Sigma 6 \cdot 0$	0296．0	1286．0	06.0
$6279{ }^{\circ}$	1828.0	9976．0	¢156．0	$91 / 6.0$	0¢Z9．0	STE8．0	0zE6．0	S 296.0	0826.0	56.0
$2919{ }^{\circ}$	เ278．0	t2z6．0	1886．0	$2696 \cdot 0$	£99900	6528.0	£826．0	$9 \downarrow 56.0$	0966.0	86.0
8159	5818.0	L616．0	6556.0	S 296.0	＜tI9．0	1zz8．0	8586.0	Lzs6．0	$\angle \rightarrow \angle 6.0$	$00 \cdot 1$
$\overline{01}=0 \cdot 002=\mathrm{N}$						$\overline{s=0} 00 \mathrm{~T}=\mathrm{N}$				
01×0	50．0	$20 \% 0$	10%	0	$0{ }^{\circ} 0$	50．0	$20 \cdot 0$	10．0	$0=$ d	d

$9850{ }^{\circ} 0$	1921＊0	Eヶ61＊0	8272＊0	$\operatorname{LtS2} 0$	$\angle \square S 0^{\circ} 0$	E8II 0	0¢81 0	S0I2．0	¢1ヵで0	S $L^{\circ} 0$
1080\％	1890．0	L801 ${ }^{\circ} 0$	c921＊0	\＆9tT 0	$6920^{\circ} 0$	$9090{ }^{\circ} 0$	$8960{ }^{\circ} 0$	82IT＊0	ItEI＊O	$06^{\circ} 0$
$2720^{\circ} 0$	ISSO＊	\＄880 ${ }^{\circ} 0$	OEOT 0	$8611^{\circ} 0$	$6020^{\circ} 0$	$\angle L T 0^{\circ} 0$	$6960^{\circ} 0$	$6680^{\circ} 0$	8t01＊0	56.0
1120＊0	E8t0 0	6L20＇0	$6060{ }^{\circ} 0$	0901＊0	$0810^{\circ} 0$	てTも0＊0	$\angle 990^{\circ} 0$	$1810^{\circ} 0$	2160 0	$86^{\circ} 0$
$2610^{\circ} 0$	てゆ $0^{\circ} 0$	¢TL0 0	$9880^{\circ} 0$	SL60＇0	2910 ${ }^{\circ}$	2LE0＊0	S090＊	$60 \angle 0^{\circ} 0$	0ع80＊ 0	00＊ 1
$\overline{0 t}=0{ }^{\circ} 002=N$					$\overline{0 Z}=\mathrm{a}^{\prime} 00 \mathrm{I}=\mathrm{N}$					
9802．0	くとな＊＊	7685 0	SES9 ${ }^{\circ} 0$	781200	L861＊ 0	$0800^{\circ} 0$	2L8S ${ }^{\circ} 0$	LES9＊0	812100	S $L^{\circ} 0$
ztst．0	Z82E 0	¢S85＊ 0	6Sts ${ }^{\circ} 0$	$9609^{\circ} 0$	SLtI＇0	98IE 0	LLL＊ 0	Z0ヶ5 ${ }^{\circ}$	$6909^{\circ} 0$	$06^{\circ} 0$
00tI 0	£20¢ 0	EZS＊＊0	OIIS＊0	£ $1 / 5^{\circ} 0$	LZ\＆I＇0	ャT62．0	かてカ＊＊	6205 0	6L95 0	$56^{\circ} 0$
OZE1 0	－ $182^{\circ} 0$	6Z\＆＊＊0	E06t＊ 0	LISS＊ 0	カカてI＊	LSLて＇0	くなも＊＊	L08t 0	9tヵS ${ }^{\circ} 0$	$86^{\circ} 0$
892t＊0	8LLて＇0	202＊＊	89L＊＊	－LES ${ }^{\circ}$	16It＊0	ss9て＊0	1806 0	199＊＊	Z625＊0	$00^{\circ} 1$
$0 Z=0^{\prime} 00 Z=N$										
¢くtE＊ 0	9989＊0	¢1t8 ${ }^{\circ} 0$	TL68 0	LEヤ6＊0	$97 \square \Sigma^{\circ} 0$	$0<69^{\circ} 0$	$\checkmark \angle カ 8^{\circ} 0$	SSO6．0	$\varepsilon \square 56{ }^{\circ} 0$	S ${ }^{\circ}{ }^{\circ} 0$
¢808 ${ }^{\circ}$	LE6S 0	St66 0	S958 ${ }^{\circ}$	9116＊	OヤOE 0	6Z6S 0	¢108 0	$6998{ }^{\circ} 0$	LS26＊ 0	06．0
$6962^{\circ} 0$	L9LS 0	08LL＇0	LTカ8 0	£668 0	0162＇0	LVLS 0	8ち8 ${ }^{\circ} 0$	SZS8＊0	£ $\dagger 16^{\circ} 0$	S6．0
$9882^{\circ} 0$	9S95＇0	6L9 ${ }^{\circ} 0$	SZE8 0	St68 ${ }^{\circ}$	カ\＆82＊0	8¢95 ${ }^{\circ}$	$\angle も L L^{\circ} 0$	SEt8 0	T $106{ }^{\circ} 0$	$86^{\circ} 0$
8282＇0	98Ss ${ }^{\circ} 0$	I1910	¢978 ${ }^{\circ}$	2988 ${ }^{\circ}$	E8Lて＊0	S9S5 ${ }^{\circ}$	8L9 ${ }^{\circ} 0$	$\downarrow \angle \Sigma 8^{\circ} 0$	I206＊0	$00^{\circ} \mathrm{T}$
		$=0{ }^{1} 00$	N				$\bar{S}=$	＇001 $=$		
OI＇0	S0＇0	$20^{\circ} 0$	$10^{\circ} 0$	0	OT＇0	So 0	$20^{\circ} 0$	$10^{\circ} 0$	$0=$ d	d

0	O1＊0	S0＇0	$20^{\circ} 0$	$10^{\circ} 0$	$0=$ d

8780＊0	－112＊0	6LEE ${ }^{\circ} 0$	2688 ${ }^{\circ}$	Stoto 0	59L0＊0	5961＊0	こてZき＊0	$96 \angle E^{\circ} 0$	をZを＊＊0	SL＇0
$2980^{\circ} 0$	8101＇0	8LLI＇0	91120	00s $2^{\circ} 0$	1620 0	6780 0	をEST0	6b81＊0	くIてZ＊	$06^{\circ} 0$
$9970^{\circ} 0$	－LL0＇0	68ET＊0	6991＊0	266T＊	8020＊0	£190 ${ }^{\circ}$	8EII ${ }^{\circ} 0$	L8ET＊	E891＊0	S6．0
$0220^{\circ} 0$	E590\％	$8811^{\circ} 0$	sett：0	七2LI＊0	2910＊0	86ヶ0 ${ }^{\circ}$	0ヶ60 0	ESII 0	LOtI 0	$86^{\circ} 0$
8610 ${ }^{\circ}$	1850＇0	$4901{ }^{\circ} 0$	\＄621＊0	09ST＊	$6 ¢ 10^{\circ} 0$	ZEt0 0	E280 ${ }^{\circ}$	\＆TOT＊	IヶてT＊	$00^{\circ} 1$
$\overline{06}=0{ }^{6} 002=N$					$\overline{02}=0 \cdot 001=N$					
815E ${ }^{\circ}$	02L9 0	LS58 ${ }^{\circ} 0$	SE06 0	$6176{ }^{\circ} 0$	09ヤE＊ 0	99L9＊0	ع0L8 ${ }^{\circ} 0$	2026＊0	26S6．0	SL＇0
ES92＊0	L8S5 ${ }^{\circ}$	EE9100	IS28．0	$86 \angle 8{ }^{\circ} 0$	8ZSて＊0	28S5＊0	ع6LL＇0	$6978^{\circ} 0$	t906．0	$06^{\circ} 0$
0LE2＊0	\＄025＊0	082100	tE6L＇0	0¢S8 ${ }^{\circ}$	86°＊$^{\circ}$	TLIS＊0	0\＆もぐ0	9S18＊0	$9188^{\circ} 0$	S6．0
0こで＊	$9260^{\circ} 0$	090 ${ }^{\circ} 0$	E\＆LL＇0	SSE8 ${ }^{\circ} 0$	$8802^{\circ} 0$	ちこ6t＊0	00Zぐ0	1561＊0	$6698{ }^{\circ} 0$	$86^{\circ} 0$
Eごでo	\＄28＊ 0	It69＊	ヤ6S ${ }^{\circ} 0$	ZEZ8＊0	S86I＊0	6SL6＊	ItOL＇0	808 $6^{\circ} 0$	0ES8 ${ }^{\circ}$	00＇${ }^{\text {I }}$
$\overline{0 Z}=0^{6} 002=N$					$0 \mathrm{~T}=\mathrm{a}^{6} 00 \mathrm{~T}=\mathrm{N}$					
88L5 ${ }^{\circ} 0$	$2168{ }^{\circ}$	－2860	$6866^{\circ} 0$	$8866^{\circ} 0$	98L5 ${ }^{\circ}$	$1868{ }^{\circ} 0$	S $2866^{\circ} 0$	0266 0	0000 ${ }^{\text {1 }}$	S6．0
6225＊0	$0558{ }^{\circ} 0$	S0L6 ${ }^{\circ}$	$0886{ }^{\circ} 0$	$0<66^{\circ} 0$	てZZS＊	2598＊ 0	L6L6 ${ }^{\circ}$	カ七66＊0	$6666^{\circ} 0$	$06^{\circ} 0$
St05＊0	LI78 0	SS96＊0	¢ 5866°	$0966^{\circ} 0$	ZEOS 0	0¢58 ${ }^{\circ} 0$	S9L6＊	こと66＊0	$8666^{\circ} 0$	$56^{\circ} 0$
SE6t＊0	bEE8 0	2296＊0	9¢86 ${ }^{\circ}$	ES66 ${ }^{\circ}$	$8160^{\circ} 0$	SSt8 ${ }^{\circ}$	ctL6 ${ }^{\circ}$	S266＊0	$8666^{\circ} 0$	$86^{\circ} 0$
2986 ${ }^{\circ} 0$	8L28 ${ }^{\circ}$	$6656{ }^{\circ} 0$	ع286 ${ }^{\circ}$	$8 ヤ 66^{\circ} 0$	て $78 t^{\circ} 0$	$1068^{\circ} 0$	82L6 0	$6166^{\circ} 0$	$8666^{\circ} 0$	00＇1
		$=0{ }^{\circ}$	\bar{N}				$\mathrm{S}=$	${ }^{3} 001=N$		
$0{ }^{*} 0$	50.0	$20^{\circ} 0$	10.0	0	$0{ }^{\circ} 0$	$50^{\circ} 0$	$20^{\circ} 0$	$10^{\circ} 0$	$0=1$	d

$8780^{\circ} 0$	－IIZ0	6LEE 0	こ68E ${ }^{\circ} 0$	Sttt＊＊	S920＊0	S961 ${ }^{\circ}$	こてZ\＆${ }^{\circ} 0$	$9 \nabla \angle E^{\circ} 0$	£てを＊＊0	S $L^{\circ} 0$
2980＊0	8101＊0	8LLI 0	9112＊0	00S2＊0	โ620＊0	$6780^{\circ} 0$	tEST＊	6ヤ81 0	くさてて＊0	06.0
$9920{ }^{\circ} 0$	\＄ $620^{\circ} \mathrm{O}$	68ET＊0	6991＊0	2661＊0	1020＊0	£ $190^{\circ} 0$	8EIT＊	L8ET＊	5891＊0	$56^{\circ} 0$
$0270^{\circ} 0$	ES90＊0	88T100	SEtL：0	カZLT＊0	2910＊0	$8670^{\circ} 0$	0ヵ60＊0	ESIT＊	LOtT 0	$86^{\circ} 0$
£610 ${ }^{\circ}$	18S0 ${ }^{\circ} 0$	$4901{ }^{\circ} 0$	b621＊0	09SI＊ 0	6¢10 0	2¢ $50^{\circ} 0$	£280 ${ }^{\circ}$	\＆IOT ${ }^{\circ}$	IもてI＊0	$00^{\circ} \mathrm{I}$
$\overline{0 t}=0^{\prime} 002=N$					$\overline{02}=0{ }^{\text {c }} 00 \mathrm{~T}=\mathrm{N}$					
8ISE ${ }^{\circ}$	02L9 0	LS58＊ 0	SE06＊0	$6176{ }^{\circ} 0$	09ヵ¢ 0	99／9 0	20L8 ${ }^{\circ} 0$	E026 0	26S6 ${ }^{\circ}$	SL＊0
EE9200	L8SS ${ }^{\circ}$	ES9100	TS28 ${ }^{\circ} 0$	$86 \angle 8^{\circ} 0$	82Sて＊0	28SS＊ 0	E6LL＇0	$6978^{\circ} 0$	$9006^{\circ} 0$	06＊0
0LEて＊0	カ025＊0	0826＊0	¢E6L＊0	0¢58 ${ }^{\circ} 0$	8ヤてて＊ 0	TLIS＊	OET $L^{\circ} 0$	$9518{ }^{\circ} 0$	$9788^{\circ} 0$	56.0
02て2＊0	9L6t＊	090 ${ }^{\circ} 0$	EELL＇0	SSE8 ${ }^{\circ} 0$	$880{ }^{\circ} 0$	¢26t＊	OOZL＇0	TS64＊0	$6798^{\circ} 0$	$86^{\circ} 0$
E212＊0	t28＊＊	I169＊0	¢651＊0	Z228＊0	S86I ${ }^{\circ}$	6SLb＊	ItOL＇0	808 ${ }^{\circ} 0$	0\＆58＊0	00＊
$\overline{02}=0^{\prime} 002=N$					$0 \mathrm{O}=0{ }^{\circ} 00 \mathrm{I}=\mathrm{N}$					
E8L5 ${ }^{\circ}$	2168＊0	－286 ${ }^{\circ}$	6866＊0	$8866^{\circ} 0$	98LS ${ }^{\circ}$	1868 ${ }^{\circ} 0$	S $286{ }^{\circ} 0$	0L66＊0	0000° I	SL＊0
622s ${ }^{\circ}$	0S58 ${ }^{\circ} 0$	S0L6 0	0886 ${ }^{\circ} 0$	0266＊ 0	てZてS＊	ZS98＊0	L6L6 0	ヤヤ66＊0	$6666^{\circ} 0$	06．0
Stos ${ }^{\circ} 0$	Ltセ8 0	SS96＊ 0	¢586 ${ }^{\circ} 0$	$0966{ }^{\circ} 0$	2805＊0	0¢S8＊ 0	S9L6＊	こ\＆66＊0	$8666^{\circ} 0$	$56^{\circ} 0$
SE6t 0	¢EE8 ${ }^{\circ} 0$	22960	$9886{ }^{\circ} 0$	ES66＊ 0	$8166^{\circ} 0$	¢St8 ${ }^{\circ}$	¢ヤC6 0	S266＊0	$8666^{\circ} 0$	$86^{\circ} 0$
298＊＊	$8128^{\circ} 0$	$6656{ }^{\circ} 0$	E286 ${ }^{\circ} \mathrm{O}$	$8 \pm 66^{\circ} 0$	278＊＊	10\＄8 0	82L6 0	$6166^{\circ} 0$	$8666^{\circ} 0$	$00^{\circ} 1$
		$=0^{\circ} 0$	\bar{N}				S＝	＇00t $=$		
$01^{\circ} 0$	$50^{\circ} 0$	20.0	$10^{\circ} 0$	0	O1＇0	S0＇0	20.0	10\％	$0=1$	d

$$
S=Z_{E} \cdot \square={ }_{1} \cdot I=I_{E}: 0 Z=Z_{u}=I_{u}
$$

