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PRODUCTION CONTROL IN MULTI-STAGE SYSTEMS
WITH VARIABLE YIELD LOSSES

ABSTRACT

Many manufacturing processes involved in the fabrication and assembly of
"high tech" components have highly variable yields, complicating the planning
and control of production. We develop a procedure which determines optimal
input quantities at each stage of a serial production system in which process
yields at each stage of production may be stochastic. The procedure is applied
to an example in the manufacture of a light-emitting diode (LED) display using
actual yield data. We also provide a brief analysis of quantifiable savings

obtained by reducing the variability of the yield at one production stage.



PRODUCTION CONTROL IN MULTI-STAGE SYSTEMS WITH VARIABLE YIELD LOSSES

1.0 INTRODUCTION

Many manufacturing processes involved in the fabrication of "high-tech"
components have highly variable yields, complicating the planning and control of
production. Specific examples include wafer fabrication and microelectronic
assembly. Similar problems also arise in chemical and other process industries.
In many instances, the processes are intrinsically variable and the short term
objective is simply to deal with the variability as well as possible. Over the
longer horizon, management may be interested in assessing the economic benefits
of improved equipment or process controls to improve the yield rate
distribution.

A few early papers addressing the problem of controlling production systems
with uncertain yields focus on systems in which the yield is observed only after
production of the entire order is completed. In these models (e.g., Giffler
(1960) and Levitan (1960)), the entire production process is viewed as a single
stage and the objective is to find a reject allowance which optimizes the
tradeoff between shortages and overages. Klein (1966) and White (1967)
investigate other single-stage situations in which inspection may be done for
sub-batches. They demonstrate that‘optimal sub-batch sizes can be found for
single stage production systems using linear programming.

In simulation studies of single-stage systems, Whybark and Williams (1976)
found that safety stock is a more effective and efficient buffer against
quantity uncertainties (including stochastic yields) than safety time. Other
recent work on production control in systems with uncertain yields (e.g.,
Porteus (1986), Sepehri, Silver, and New (1986), and Lee and Rosenblatt (1986))
is also limited to single-stage systems. Wagner (1980) points out a need for

methods to handle stochastic aspects of multi-stage systems, including yields,



and suggests that they be developed with a view toward "more realistic
approaches, better approximations, and clearer insights about design and
decision tradeoffs."

We describe and formulate a single-period production control problem in
general serial systems with stochastic yields in the next section. It bears
some resemblance to a problem addressed by Beebe, et al. (1968) in the
manufacture of transistors. There, the critical decisions were the amounts of
impurities to add to pure crystal in order to achieve a desired resistivity.
The resistivity actually achieved was random due to a variety of factors.

We then develop a relatively simple procedure to determine optimal input
quantities‘for each process stage. The procedure is applied to a light-emitting
diode (LED) fabrication facility using scaled actual data. We then provide
results of a brief analysis of the economic impact of changes in the yield
variability at one production stage. Finally, we discuss directions for future

research.
2.0 PROBLEM DEFINITION AND FORMULATION

The system under study is an N-stage serial production environment in which
the yield at each process stage may be stochastic. We assume that the yield
rate probability distribution functions at the various stages are mutually
independent and that each has a range whose endpoints are greater than zero and
less than.or equal to 1. Throughout the paper, we use the term yield rate to
refer to the fraction of acceptable parts. We assume that the yield rate
distributions are invariant with the size of the input batch (i.e., no economies
or diseconomies of scale). The p.d.f. of the yield rate at stage n is denoted

as fn(q,



We assume that there is a single product and that the product has a fixed or
predetermined routing through the production facility which can be represented
conceptually as a serial system. There is a single known requirement or demand
for the finished product, D, to be satisfied, and the problem is one of
determining the optimal input quantity at each process stage so as to minimize
total cost.

We assume that the finished product requirements have been specified so that
the capacity limitations of any batch processes are likely to be satisfied by the
optimal input quantities. (Our approach can be generalized to capacity
constrained situations with little difficulty, however). We further assume that
setup costs, if any, are either sunk costs by virtue of the fixed routing, or
are considered outside this framework, perhaps to specify the requirement (or
lot size), D, if a "make to plan" policy is followed.

The flow of items in the system can be represented diagrammatically as
shown in Figure 1. The stages are numbered so that the stage of production to
be performed first is denoted as stage N, while the final stage of production is
referred to as stage 1. The decision at stage n, n=1 to N, is the input

quantity at stage n, which we denote as u The input to stage n is obviously

n*
constrained by the output of stage n+1, which, in turn, depends upon the input at
stage n+2, ete. The output of stage n is ¥Yn = PpYps where Pp denotes the actual
(random) yield fraction at stage n. There is a yield loss of (1-pn)un and an
overage quantity of (yn-un_1)+. where (*)* indicates the positive part. At the
final stage of production, the shortage quantity is (D-y1)+. We assume that
initial inventory of all semi-finished items is zero. Later in the paper we
explain how the approach can be generalized to accommodate positive initial

inventory.

FIGURE 1



Costs to be included are (1) w, = marginal production cost per unit of
input at stage n (material, ;abor, and inspection), (2) h, = net cost of
disposing a unit produced at stage n but not used at stage n-1 (overages), where
stage n = 0 corresponds to finished product demand, and (3) ® = shortage cost
for each unit of unsatisfied demand.

All of these costs reflect cash flows. Therefore, the net cost of
disposing an unused unit is typically the cost of removing each unit of overage
from the production facility, less the salvage value if it can be sold. Hence,
hn can be negative, reflecting the cash inflow arising from the net salvage
value. Similarly, the shortage cost reflects lost revenue, plus any additional
shortage penalties.

We assume that all defective units are disposed at no additional cost. It
is also assumed that = > |h1|. If hy is positive, this condition implies that
one would prefer to hold a unit of the finished product in inventory rather than
to incur a shortage. If h, is negative, this condition simply requires that the
shortage cost (lost revenué) be at least as large as the net salvage value. All
other parameters and costs are assumed to be non-negative, and the integrals of

fn(ﬁ are assumed to exist and to be continuous and twice differentiable.
3.0 SOLUTION APPROACH

Let yy,1 denote the available input (raw material) for production stage N.

We might formulate the problem as:

N
minimize ECL Dwquy + hpyy (Vpeg=u) ]+ hy(yy=D)* + w0y "}, (1)
Ugyeeeyl n=1
1 N
SUbJeCt to O i un i yn*1' n = 1-,..0’N,

Yn-pnu-nl n'1’o.-,N'

where P, has density £,(*).



This formulation of the problem requires that the decision variables, Ups
be selected before the y,,y values are known. It therefore does not take
advantage of the dynamic nature of the problem. In reality, one does not need
to specify u, until Yn+1 is known. The dynamic programming formulation given
below reflects the dynamic nature of the problem.

Let Cn(yn+1) = expected cost of operating the system optimally from stage n
through stage 1, given that the output from stage n+i1 is Ype1» D = 1 to N. Then
CN(YN+1) represents the minimum total cost of operating the system.

Clearly at each stage we must have u, < ¥,.4 (i.e.,, input cannot exceed

output of the preceding stage). Therefore, we can write the dynamic

programming recursion relationships as:

Cn¥psr) = min {wnun+hn+1(yn*1-un)+E[Cn_1(pnun)]}, ns=2toN, (2)
0 <up < Ypag
and
Cilyp) =  min  {wquy+hy E(yq=D)*+ hy(y,=uy) + v E(D-y)*}. (3)
0 <up L2 |
To simplify the presentation, let
Bn(unl¥ne1) = Waun * Bpuq(ypaq = up) + E [Cpy(ppup) ], n=2,...,N, ()
81(U1|y2) = W1U1 + h2(Y2"u1) + h1E(p1U1'D)+ + NE(D-p1u1)+. (5)
and

u,* = optimal value of uj.

We note that g4(u;|y,) is a function only of uy. Also g,(uy|y,.q) is a
function of Upn which affects only downstream stages n-1,...1. Therefore, we
can determine u,* from equation (3), and successively determine un* given y .,
for n = 2,..., N in sequence from equation (2). We next demonstrate that the

form of the optimal policy does, in fact, have a "single critical number" at



each stage, and that these values exist.
3.1 STRUCTURE OF THE OPTIMAL POLICY

We shall show that there exist 31""'SN such that the optimal production
decisions satisfy
Yner  1f Ypay <5y

u;a n'1’.oo’ No

Sn otherwise,

In words, this states that the optimal policy has a single critical number
for each stage (Sn)' which is independent of the output of the preceding stages.
Two conditions on costs are required for the theorem which follows to hold.

For notational simplicity, let Eh denote E(pn). The conditions are:

Condition I: For alln =1, ..., N,

Wn * NpPp > hpyy
Condition II: For alln =1, ..., N,

n-1 J _ n _
- hn*"l + Jzo[wn-‘j it pn_i”] < I py o

i=1 i=1

The first condition ensures that it is less expensive to dispose an item at one
stage than to process it at the next stage and to dispose the expected output
of the item at that stage. Stating this in terms of the net salvage values |
(when the hn values are negative), we could rewrite condition I as:

“Aneq > “hppp = Wy
This states that the cash inflow from salvaging at stage n+1 exceeds the
expected cash inflow from salvaging at stage n, less the cost of processing at

stage n. If this condition is not satisfied, it would be optimal to set U =



Ynetr i.e, to input all available units. Condition II essentially ensures that
it is profitable to produce the product.

We next present the main result of the paper:
Theorem 1: If conditions I and II hold, then there exists a unique set of
finite values Sy, Sy,...,Sy such that Sy > Sy_4 > ... > Sy, and such that the
optimal production decisions satisfy

Yner 1 Ypap < 5y

u¥ =
' S otherwise

n

Proof: The proof consists of two parts. In the first part we establish (for
all cases) the optimality of the critical number policy and the relationship
among the Sn values. We also prove uniqueness and existence of Sn assuming that

Sn-1 is positive. In part two, we show that the uniqueness and existence

results are valid even when Sn—1 is zero.

Part 1: First, we establish that the critical number policy given by the Sns is
optimal, and that Sn is unique if Sn_1 > 0. We then show that conditions I and
II are sufficient for the existence of a finite value of Sn if Sn-1 > 0. We
also demonstrate that the values of Sn’ if they exist, have-the property that SN
> SN-1 2 e 2 S1. Details of several lemmas needed for the proof appear in

the Appendix.

We will prove optimality of the critical number policy by induction.
Consider n=t. Then we have
Cylyy) = Min  gy(uqg]yy)
0Lu1 Y2

Consider g,(uq|y,) as defined in (5).



Clearly, the first derivative with respect to u; is

D/U1 1
Wy =hy = @ [ P1f1(py)dpy + hy [ P1f4(py)dp, (6)

py=0 py=D/u,
Moreover, the second derivative with respect to u, is
(v + hy)(D2/u)t(D/uy) > 0

Hence, the u: that minimizes 31(u1|y2) is the value of u; which equates
the expression in (6) to zero.

Let S, be the value of Uy which satisfies this first order condition. By
the convexity of 31(u1|y2), if y, < 84, then u: = ¥, whereas if y, > Sy, then
u: = S1. The expected cost of using Uy =¥, is simply 31(y2|y2), and the
expected cost of using u; = Sy is g(S;]|y,).

Now suppose that the theorem is true for some stage n-1. The expected cost

of using the optimal decision rules for stages n-1, n-2, ..., 1 is

8n-1(¥pl¥p) 1f ¥, < Spoq
Cn—1(yn) =

8n-1(Sp-1¥n) 1 ¥4 > Spqe
Let us now consider stage n, given output Y+ from stage n+1,

Cal¥nsr) = Min {wpup * Npyq(ypeq = up) + EC 4 (Ppu,) 1B

0<un<¥n+1

The expression in braces on the right hand side of the expression above can

be written as

S._1/
Yalup) = wpup + hpyq(¥paq = up) + 8n-1(Ppln | Ppun )t (py ) dpy
Py=0
1
+ 8n-1(Sn~1/Pnlin)f4(Py)dpy.

J
Pp=Sp-1/up



Let g;l(xlx) = J8n(x[x)/ dx,
8n(Sy %) = 9 8y(S,1%)/0 %,
sg(xlx) - azgn(xlx)/)x2

gn(Sy|x) = 928, (sy[x)/ ) x2
The first derivative of Yn with respect to Up is

] [Sn-1/un ]
Yplup) =Wy = hyy ' 8n-1(pn“nIpnuh)pnfn(pn)‘:lpn

+ Jf | 811 (Sp—1 | Pty )Pl (P AP, (7
Pn=Sn-1/Un

All other terms cancel. The last term can be simplified by using Lemma 1, so
]
Yp(u,) becomes

Sn-l/un '
Wp " Py 8n-1(Pnln|Pnln )Pnfn (Py)dpy

Pp=0

1
+ [ hnPnfn(Py)dpy (8)

J Pn=Sp-1/Un

The second partial derivative of Yn is

n Sp=1/n "
nlup) = J © " 81 (Prn[Paun)PALH (P, (9)

Pp=0
since all other terms cancel by Lemma 2. Using the result of Lemma 3, it can be
shown that Y;(un) >01f S,_q > 0. Hence, Y (u,) is strictly convex inuy for n
= 15..yN. Let S, be the value of u, which equates Yr’x(“n) to 0. By the

convexity of Y,(u,), the optimal policy has the critical number form, and by its



strict convexity, the values of S , n = 1,...,N are unique.

We next show that sn exists and is finite when Sp-1 2 0. Let gn(sn) -
Y}(Sp).  Now
n-1 J _ n _
£a(0) = I [Wwp.y T Ppoysqd =hppq =7 T py, by Lemma 4.
n 420 n-j L= n=-i {1 i

Therefore, if condition II holds, En(O) £ 0. Also, from equation (8)

lim g (S,) = w, = ho,y +hy En

Sp=->"
Therefore, if condition I holds, then Sl_i_l_:;>. £n(Sy) > 0. By the strictly

n

increasing property of En(Sn) when Sn-1 > 0, there must exist a finite sn that
satisfies £,(S,) = 0.

To establish that SN 2 SN-1 2w 2 S1 » we make the observation that, for
any n, if S, < S,_q, then an(sn) has the same value as En(Sn-Sn_1). Therefore,

it Sl,1 <S we simply set Sn-1 = Sn' This proves the first part of the

n-1?

theorem for all n.

Part 2: We shall show that a finite, unique Sn exists even when Sn—1 =0, If

S = 0, then from (9) Yl','l(un) =0 for all positive values of u,, S0 Yr'l(un) is

n-1
linear over this domaim. By condition I, we have from (8) that Yi(u,) > 0 for
all positive Une Now consider what happens at u, = 0. We have from (9) and
Lemma 3 that Yj(0) > 0. Thus, Y, is strictly convex at u, = 0, and is linearly
increasing for all positive upe It is theréfore optimal to set Sn = 0. By
induction, it is also optimal to set S,,y,..,Sy to zero. Observe that the

optimal values exist and are unique and finite. This proves the second part of

the theorem for all n. o

10



We next examine solution characteristics when either of the two conditions
is not satisfied. If condition I is not satisfied at some stage n, then for
that stage, Siig)w £,(S8,) < 0.  This implies that £,(S,) < 0 for all Sp 20
since £,(S,) is increasing for all value of S,. Hence, for this stage, from
equation (8), we have Y;(un) = E,(uy) <0, for all u, > 0, so that we can always
reduce Yn(un) by increasing u,. As a result, the optimal value of uy is y,.q
which is the largest available quantity. In other words, the entire output of
stage n+1 should be input to stage n. This implies that we must redefine

Yn(yn+1) accordingly. We can then proceed as before to solve for Sn+1 using

Yn+1

= 0, Thus, whenever condition I is not satisfied, we set Sn = o, and
proceed as before.
If condition II is not satisfied at some stage n, then for this stage we

havesiig_:)OEn(Sn) > 0, which implies that En(Sn) >0 for all S, > 0.

Therefore, for this stage, from (8) we have Y;(un) = En(un) > 0, for

all u, 2 0. As a result, the optimal value of up is 0, irrespective of the
value of Yn+1* In other words, it is not profitable to process any unit from
stage n onward. In this case, the solution to the original problem should be
not to produce the product at all.

It is now evident that conditions I and II are conditions which ensure that
the Sns are positive and finite. However, the methodology can be applied (with
appropriate modifications) even when the conditions do not apply. To find the
critical numbers, we simply solve 331(S1|y2)/J Sy = 0 for Sy and E(S)) = 0, n =

2y+.+sN, recursively for Sy,...,Sy, by equating the expression in (8) to zero.
3.2 CASE OF POSITIVE INITIAL INVENTORY
If the initial inventory of any semi-finished part or the finished product

is positive, the procedure still can be applied with minor modifications. Let

n



In denote the inventory of items which have completed stage n but not stage n-1.

Then we can rewrite the dynamic programming recursion relations as:

0SunSYn+1*In+1 __—
ns= goee

and

C1(y2 + Iz) = min {W1U1 + hz (y2 + 12 - U1) + h1 E(y1 + I1 - D) *
0uYo*1;

+ T E(D - I, - y)")

Let yn' =¥, * In for all n. By substituting yn' for Yn throughout the
analysis, it can be shown that relationships and results established earlier
hold even when In > 0 for some or all n. To solve for the optimal values of Sn'
n =1,.N, the following equations should be used instead of gKS,IyZ) = 0 and
En(Sn) =0

(p-1,)*/s
chy-a [0 T bt (pdpy +hy [ £,(py)dpy = O
Wy s hp=w P1t1iPyldpy * 1y P114ipPy/dpy

Jp4=0 Jpy=(D-1,)/8

1 1 1 1
and
+

(Sn_1 - In) /Sn '

n -

e f 8n-1(50-11PnSy)Pnfn(Py)dP,y = O
Jpn'(sn-1'1n)+/sn '
Observe that thesg equations use D-I1 rather than D and Sn-l - In rather than
Sn—1 to find S1 and Sn—1 respectively. Thus, the net "requirement" (for either
finished product demand or the target input quantity for the appropriate
successor stage) is used instead of the gross requirement. The optimal critica!

number for stage n, Sn' is defined in the same way as before. However, it may

be supplied from two sources: existing inventory at stage n+1 (In+1) and the

12



output of stage n+! which is Yn+1 = Pn+1 “n+1f The sequential procedure
described above can still be used.

The only special cases that need to be considered are: (i) I; > D and (ii)
In > Sn-1' In the former case, nothing needs to be produced, and S1 = 0, which
implies Sn =0 for n = 2,...,N by part 2 of Theobem 1. Inthe latter case,
there is sufficient input to stage n-1, so Sn = 0 i{s optimal, and SJ =0 for j =
n+1,..,N as well (also by Theorem 1).

Thus, there are minor computational differences between the case with

positive initial inventories and the case without initial inventories and only

minor modifications to the procedure are required.
4,0 COMPUTATIONAL RESULTS

For most commonly observed yield rate distributions, it is not possible to
obtain a closed form solution for any of the Sns. The solution procedure
requires a search in conjunction with numerical integration. However, in many
real-world applications historical yield data are available and empirical
distributions can be used rather than fitted distributions. Moreover, since the
relevant cost functions are convex, the first derivatives are non-decreasing,
making bisection or Fibonacci search effective search procedures.

Actual yield rate data were obtained for the three major stages of
production for a light-emitting diode (LED) fabrication facility. The
fabrication proeess is depicted in Figure 2. The die attach process involves
placement of LED chips into appropriate locations within a frame or base. These
LED chips are then electrically connected in the wire bond process. Finally, a
reflecting cavity is cast around each LED display to enclose it and to provide
appropriate diffusion and reflection. There are several other steps in the

production process but they have been omitted because their yield rates are

13



essentially 100%. The scaled yield rates are reflected in histograms in Figure 3.
Variable production costs (scaled to preserve confidentiality) are $0.82, $0.63,
and $1.45, at stages 1, 2, and 3, respectively. The shortage cost is $5.29,
which is the selling price per unit less other variable production expenses.
The variable production costs include inspection costs as indicated in Table 1.
The plant produces three shifts per day, seven days a week, so the actual
problem involves multiple periods. In order to reflect this as accurately as
possible within the context of a one-period problem, we let the L values
represent the opportunity cost of producing a unit in this period rather than next
period (dhe to discounting effects). We assumed that other inventory holding
costs were negligible. Similarly, we let w be the opportunity cost of selling a
unit in the next period rather than this period. We used a discount rate of 30%.

per year. The production requirement for one shift is 7000 units; we therefore

let D = T000.

FIGURES 2 AND 3 AND TABLE 1

To find S1 we need to solve:

D/S 1
- hy - 7f 1 £.(p,)dp, + h, | £,(pqy)d 0
w4 2 Ll P14{pyJdpy 1 P1T4ipy)dpy =

which is the first order necessary condition for the one-stage cost function.
Observe that we only need to find the ratio D/S1. or the appropriate fractile of
the yield distridbution. For the given data, we obtain 81* = 7857,

Now, given S1, we solve for S, using the first order condition for the two-
stage cost function:

$4/5;

Wy =
2= h3 +w Paf 5(p,)dp,

Pz'o

14



$4/S, 1
1/52
+h ( P1£1(P1)PoE,(P5)dpydp
1 J 1£1(P1)Pof2(p2)dpydp,
P1=0  "py=D/p3S,
S4/S, D/p,S
1/52 252
- P121(p1)pofo(po)dpydps
p2-0 p1-0 .

1
+ h2 p2f2(92)dp2 =0

P2=51/8;

which was obtained from equation (7) by substituting for g,'. We obtain a
solution Sy* = 9481,
Finally, we solve for S3 in the first order condition for the three-stage

cost function:

$,/53 1
w3 + WZ r p3f3(p3)dp3 + h3 { p3r3(p3)dp3
p3-0 P3-52/S3
32/33 1
+ h2 f [ szz(pz)p3f3(p3)dp2dp3

p3'0 Jp2-81/p383

S,/S S,/paS 1
2 1
+ 3 [ 373 '[ Wy + hy [ D1f1(P1)dP1
p3-0 p2-0 ‘ p1’D/p2p383
Dy/psp4S
1/P2F3°3
f P1£1(py)dpy | Pafa(pa)P3f3(p3)dpodp3=0

91'0

which was derived by recursively substituting for gz'and then g,h The solution

for 33* is 10,000. Substituting for S* in the (true) total cost function, we

obtain a cost of $27,970, given D=7000.

15



We next examine the effect of "improved" yield rate distributions on the
total cost of producing the batch. This may be of .concern when there are
opportunities to purchase new equipment or to make the investments to improve
the yield (e.g., process controls) and the justification for the purchase
depends, in part, on a reduction of the variable cost per unit. Suppose the LED
fabrication facility under consideration has opportunity to purchase die attach
equipment which provides an improved yield distribution as depicted in Figure 4.
The average yield is the same as for the current equipment, but the variance is
reduced. For the new yield distribution, the optimal policy is S1 = 7857, Sy =
9481, S3 = 10054, with a total cost of $27849. With a three-shift, five day per
week operation, the annual savings would be over $90,000. If the yield rate in
die attach were perfectly deterministic with the same averages as before, we
would obtain S, * = 7857. S,* = 9481, S3* = 10116, with a total cost of $27,712.
Of the total cost, $20,300 represents the minimum variable production costs

necessary to satisfy demand (i.e., L $2.90 multiplied by 7000 units). The

n
remaining $7400 or more is attributable to yield losses and yield variability,
i.e., more than $1 per unit on an item whose gross margin before yield-related

costs is only $2.39. It is evident that a reduction of the yield variance may

make an important contribution to the economic viability of new equipment.
FIGURE §

Observe that finding Sn involves solving a first order condition with
n-tuple integrals (n+1 in the case of uncertain demand). The computational
complexity of the solution procedure thus increases exponentially with the
number of stages. However, for most systems with empirical yield rate
probability mass functions with a moderate number of (less than ten) support
points, up to 10 stages can conceivably be handled. The solution procedure is

also affected by the magnitude of D, and we found this to be much more critical

16



in our test problems with only three stages. If, however, one is willing to
sacrifice a little with regard to optimality by considering a limited number of
input batch sizes at each stage (e.g.,, multiples of a dozen or a hundred) rather
than all possible integers, computation time can be reduced dramatically.
Nevertheless, the test problems in our study were solved very quickly even on a

micro-computer.
5.0 SUMMARY AND CONCLUSIONS

We have developed an approach for production control in serial production
systems in which the yield at each stage may be stochastic. A procedure is
developed and is shown to provide optimal solutions for any N-stage system. We
also illustrate how the procedure can be used by way of an example using scaled
actual data from an LED fabrication facility.

The viability of this type of procedure for fairly general yield
distributions and fhe sequential nature of the décision-making procedure indicate
that extensions to more complex production environments may be possible. 1In
addition, further research needs to be done to incorporate pther realistic
factors, such as setup costs, demand uncertainty, possible rework, multiple

production batches at a stage, and multiple periods, into the current model.
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TABLE 1

COST DATA
Variable Production Inspection Cost/
Cost/Unit Unit
Die Attach 1.40 0.05
Wire Bond 0.55 0.08
Cast and Post Cast 0.72 0.10

18

Total Production
and Inspection
Cost Per Unit

$1.45
$0.63
$0.82
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APPENDIX

The proofs in the appendix derive largely from the first order necessary

conditions for the one- and n-stage problems:

D/u 1

1
p1=0 p1'D/U1
and
rsn-1/uT1 ] ( .
Wp < Ppa * j €n-1(Pnin|Pntn)Pnfn (Py)dpy
Pp=0
1 1
+ [ 8n1(Sp1 Ppin) Pafa(Pp)dpy = 05 n=2,.0,Ne (A-2)
Pn=Sp-1/uy
where
Sn-1/Yn+1
80 (Pn¥n+1|Pn¥ne1) = Wy Ypay * ] 8n-1(Pp¥n+11Pn¥n+) £n(pyldpy
Pn=0
1
+ r 8n-1 (sn-1|pnyn+‘|) fn(pn)dpn, n= 2,.--,N,
Pn=Sn-1/Yn+1
Bn(Snl¥nat) = Gip = Mpyq)Sp + hpyq¥nay
Sp-1/8, 1
* f 3n-1€?nsn|pnsn)fn(pn)dpn + 8-1(Sp-11PpSp)f Py )dpy s
Pp=0 Pn=Sp-1/Sn

ns= 2,.0.No
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Lemma 1: g;(snlyn+1) =h . n=1, ..., N.

We first note that

8n(Spl¥ne1) = (Wp = Mpyy)Sp + hp ¥y

S._1/8
n-1/*n .
+ ’ 8n-1(pnsn|pnsn)fn(pn)dpn

J

Pp=0

1
+ 8n-1(sn-1|pnsn)fn(pn)dpn

Pn=Sp-1/Sp

It is clear that

8;‘(y“+1 ) = hn+1 ’ ns= 2.0.-0' N-

Moreover,

g1(S511y2) = 381(S41y2)/d v,

= h, (from equation (5)).

Hence, we have, in general,

|
8 (Spl¥net1) = Npaqs n=1, ..., N @O

For alln=_1,...., N,

0 8n(SplSp)7d 8y = np,g
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Proof':

We havé

8y (Va1 [¥ne1) = ¥n¥nes

S,_1/Y
n-1"7n+1
* 8n-1(Pn¥n+1[Pn¥n+1)fn(Pp)dp,
Pp=0 |
1
| 8n-1(Sn-1Pn¥n+1)En(py)dpy

Pn=Sn-1/¥n+1

Differentiating this with respect to Ynetr We get

' Sn—l/yn+1 '
8n Vet |¥ney) = vy + | 8n-1(Pn¥n+1 |Pp¥n+1)Pnfn(Py)dpy
Pp=0
1
+h | Pnfn(Py)dp, (A-3)

Pn=Sn-1/Yn+1
Hence, from equations (7) and (A-3), we have
]
8n (SplSy) = hyyqe O

We can now use Lemma 2 to establish:
Lemma 3:
For all ns= 1..0..".

"

Proof: Differentiating equation (A-3) with respect to y,,i, we get

S._1/Y
" n-1"n+1 n 2
8 (Yna1[Ynar) = | 8n-1(Pn¥n+1Pn¥ne1 Pofn(Py)dpy

Pp=0

- g 2 3
8n-1(Sn-1Isn-1)(sn-1/yn+1)fn(sn-1/yn+1)
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2 3
t (S /YRe)En(Spaq/Yp4aq)

S._1/y
n=1"7n+1t » 2
- | 81-1 (Pn¥n+1[Pn¥ner)Ppfs(pp)dpy

Pp=0

The last equality results from Lemma 2.
Now p, > 0 and fn(pn) 2> 0, so we need only to establish that g; (y2|y2) >0

to prove that g; (yn+1|yn+1) > 0 for all n. From equation (5) we have

P1=D/¥2 P1=0
. 1 D/y2
81(Y2|Y2) =Wyt h1 [ P1f1(P1)dp1 -n P1f1(P1)dp1 (A-4)
P1=D/¥; Pq=0

81 (¥olyy) = ny(0%7y,3)e,(D/y,) + 7(D2/y,3)2,(D/y,) > 0 since 7 > |n,| by

assumption. o

Finally, we first state and prove a lemma regarding the form of

g'(0) which is useful in proving the second part of Theorem 1.
n

Lemma U:

For all n=t1,..., N,

. | n; C J n
g.(0]0) = " lwpey M ppogeql=m I p
n _ 4=0 ‘n J {1 n-i+1 (=1 i

where, for simplicity of presentation, we define the expectation of P, as

n= | Pnfn(Pn)dpp
Pp=0

b
and we use the convention 1Ea =1 i{f a>b.
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Proof:
We will prove the Lemma by induction. From equation (A-4), for n=1 we have,
g1(0[0) = wy - T ,
so the Lemma is true for n=1.

Suppose the Lemma is true up to n. From equation (A-3), we have

1 n-1 J n -
] . - -
8ne1 na2l¥pe2=0) = Wpyy + | zo [Wh-3 M Pp-gerd = 7 (L Pt Prvtfnet (et )dPng
, - |
E J  _ n+1 _
= W +1- i P +2= -7 I Py »
jmo MY, et f=1

30 the Lemma is true for n + 1, and therefore for all n. o
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