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ABSTRACT 

W e  develop a general framework fo r  t he  study and t h e  control of t h e  
eutrophication process  of (shallow) lakes. The randomness of t h e  environ- 
ment (variability in hydrological and meteorological conditions) is  an  
intrisic character is t ic  of such systems tha t  cannot b e  ignored in t he  
analysis of the  process  or by management in t h e  design of control measures. 
The models t ha t  w e  suggest t ake  into account t h e  stochastic aspec ts  of the  
eutrophication process.  An algorithm, designed to handle t he  resulting sto- 
chastic optimization problem, is described and i ts  implementation is  out- 
lined. A second model, based on expectation-variance considerations, tha t  
approximates t h e  "full" stochastic model can be  handled by s tandard l inear 
or  nonlinear programming packages. A case study il lustrates t h e  approach; 
w e  compare t he  solutions of t h e  stochastic models, and examine the  effect 
t ha t  randomness has  on t h e  design of good management programs. 

Key Words: Lake eutrophication, eutrophication management, stochastic 
programming, recourse  model, water quality management, probabilistic con- 
s t ra ints .  
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STOCHASTIC OPTIMIZATION MODELS FOR LAKE EUTROPHICATION 

MANAGEIIIENT 

b?' 

Ldszld Somly6dy and Roger J-B Wets 

INTRODUCTION 

Yan-made (or  artificial)  eutrophication has been considered as one of 

t he  most serious water quality problems of lakes during the last  10-20 

years.  Increasing discharges of domestic and industrial waste water and 

the intensive use of c rop  ferti l izers - all  leading t o  growing nutrient loads 

of t he  recipients -- can be  mentioned among the  major causes of this 

undesirable phenomenon. The typical symptoms of eutrophication a r e  

among o thers  sudden algal blooms, water coloration, floating water plants 

and debris,  excreation of toxic substances causing taste and odor problems 

of drinking water and fish kills. These symptoms can easily result  in limita- 

tions of water use f o r  domestic, agricultural, industrial o r  recreational 

purposes. 



One of the major features  of artificial  eutrophication is tha t  although 

the consequences appear  within the  lake, the  cause - t he  gradual increase 

of nutrients (various phosphorous and nitrogen compounds) reaching the 

lake - and most of the possible control measures l ie in t he  region. Conse- 

quently, eutrophication management requires  analysis of complex interac- 

tions between the water body and i ts  surrounding region. In the  lake, dif- 

fe ren t  biological, chemical and hydrophysical processes -- all  being time 

and space dependent, furthermore non-linear - are important, while in the 

region one must take  into account human activities generating nutrient resi-  

duals and control measures determining tha t  portion of the  emission which 

reaches the  water body. 

Eutrophication management requires  a sound understanding of all  these 

processes and activities which, in fact,  belong t o  quite diverse disciplines. 

Additionaily, various uncertainties and stochastic features  of t he  problem 

have t o  be also taken into account, f o r  example, the  estimation of loads 

from infrequent observations and the  dependence of water quality on hydro- 

logic and meteorologic factors ,  respectively. The fact  tha t  we a r e  dealing 

with a stochastic environment, i s  especially important f o r  shallow lakes, due 

primarily t o  the absence of thermal stratification which predicates a much 

more definite response t o  randomness as would b e  the  case f o r  deep lakes. 

Models developed with the  aim of analyzing eutrophication can be clas- 

sified into two broad groups: 

(a) Dynamic simulation models (ecological models) which intend t o  

describe the temporal and spatial changes of various groups of 

species and nutrient fractions (algae, zooplankton, phosphorus, 

and nitrogen components, etc.). These models a r e  being designed 



primarily f o r  research  purposes. 

(b) Management optimization models being more applications oriented 

which have as objective of t he  determination of t he  best o r  

"optimal" combination of alternative control measures. 

There is a la rge  l i terature devoted t o  descriptive models (see f o r  

example, Canale, 1976; Scavia and Robertson, 1979; Dubois, 1981; Orlob, 

1983), but only relatively few management models have been proposed 

(Thomann, 1972; Biswas, 1981; Loucks et al. 1981; Bogdrdi et al., 1983). 

Although changes in the  ambient lake water quality should be  an important 

element in decision making, t o  ou r  knowledge, no lake is mentioned in the 

l i t e ra ture  f o r  which a proper  description of t he  in-lake processes has been 

taken into account in t he  management model; i.e., t he  interaction between 

the  models of type (a) and (b) is missing. The reason f o r  this is at least 

threefold: 

(i) Models (a) are too complex t o  be involved directly in optimization 

and no well-based methodology exists in this respect .  

(ii) In general, f o r  management purposes, i t  suffices t o  use some 

aggregated features  of water quality. A s  will be seen, microscopic 

details offered by models (a) can be often ruled out, but i t  is  not 

easy t o  determine tha t  portion of information offered by the 

eutrophication model (a) which should be maintained in o r d e r  t o  

a r r ive  at a scientifically well-based management model. 

(iii) In most of t he  cases,  not enough time and money are available t o  

perform a systematic analysis including the  joint development of 

both models. 



Consequently, there  is a gap between the application of descriptive and 

management models; the objectives of decision models a r e  formulated in 

t e r m s  of nutrient loads r a the r  than of lake water quality, which is only 

acceptable fo r  relatively simple situations. The present paper - after con- 

sidering management goals in Section 1 - offers an approach which allows 

the combined use of descriptive, simulation and management optimization 

models. This is discussed in Section 2. The derivation of the aggregated 

lake and planning type nutrient load models t o  be used in the  management 

model is the subject of Section 3. Both models a r e  stochastic, special 

emphasis is given t o  shallow lakes. Section 4 discusses fur ther  elements of 

the management model (cost functions, constraints, etc.). Alternative 

management models a r e  formulated in Sections 5 and 6. Two of them were 

implemented: a "true" stochastic model (which uses a s  the  starting point of 

the iterative solution procedure the corresponding deterministic model) 

and a linear programming approach capturing stochastic features of the 

problem through expectation and variance. Sections 6 and 7 give details of 

these models. Finally, in Section 8 the  methods developed a r e  used pri- 

marily for  Lake Balaton that plays the role of a major case study. 

1. MANAGEMENT GOALS AND OBJECTIVES 

A s  mentioned in the  Introduction, artificial eutrophication leads t o  

water quality changes which then restr icts  the use of water. The objective 

of a manager when considering an eutrophication problem very much 

depends on the features of the  particular system. In most of the cases, how- 

ever,  the wish of managers can be formulated in quite general t e r m s .  The 

basis for  this is the definition of trophic classes. 



Trophic state classification is  the subject of limnology. In pract ice  

four  major classes: oligotrophic, mesotrophic, eutrophic and hypertrophic 

categories are used (OECD, 1982), where oligotrophic indicates relatively 

"clean" water, while hypertrophic r e f e r s  to a lake r ich  in nutrients and an 

advanced s tage of eutrophication. To specify t rophic  classes,  water quality 

components (concentrations of phosphorus and nitrogen fractions,  oxygen 

content, algal biomass, etc., see f o r  example, OECD, 1982) are applied as 

indicators. Based on observations and studies performed on many shallow 

and deep lakes t rophic  classes are specified quantitatively by cer ta in  

ranges of t he  indicators. One of t he  m o s t  widely used indicator is  t he  annual 

mean or annual peak chlorophyll-a concentration, (Chl-a), a measure of 

algal biomass. The chlorophyll content affects t he  color  of water and thus 

i t  character izes  f o r  example t h e  recreat ional  value of t h e  lake. In t e r m s  of 

concentration (Chl -a),,, t he  ranges of classes oligotrophic ... hypertrophic 

are as follows: 0-15, 10-25, 25-75 and 75- (see OECD, 1982). 

A s  these classes are closely related to the  use of water, decision mak- 

ers' objective is  often to shift  a lake, say, f r o m  hypertrophic t o  an  oligo- 

t rophic  state and water quality goals are specified accordingly. Note that  

t he  definition of t rophic  classes (with fixed boundaries) is  not unambiguous, 

which is  certainly not a surpr i se  as the  trophic changes are caused by com- 

plex ecological processes. Still, however, decision makers requi re  guide- 

lines easy t o  understand and apply, and in this  sense t he  use of t rophic  

state classification is  inevitable in eutrophication management. 

For  many lakes t he re  is  a spatial variation in t he  water quality. The 

type of water usage can also be  different in one area of t he  lake than in 

others ,  e.g., agricultural,  recreational o r  industrial. For this reasons the  



objective of management can be  different fo r  different segments o r  basins 

of t he  water body. Thus spatial segmentation is a major component of 

management. Similarly, t he  decision makers should decide how important 

t he  random fluctuations in water quality (from year  t o  year)  are as com- 

pared t o  expectations. Would he  f o r  instance be  satisfied with drast ic  

reduction in t he  "average" water quality without excluding the  occurence of 

extreme situations o r  r a t h e r  would he p re fe r  t o  achieve a modest improve- 

ment in t he  mean provided tha t  he is now able t o  limit t he  range of possible 

fluctuations? Moreover, how would he  judge the  situation if fluctuations 

also strongly vary in space? 

Simultaneously with developing his judgement on the  lake basins and 

management goals, the  decision maker has t o  perform a careful analysis as 

t o  where (and when) he  can control nutrient loads in t he  watershed tha t  

determine the  trophic state of t he  lake? How effective are the  control 

measures, what are the  costs, benefits and associated constraints? How 

would a control measure taken in a subwatershed of a basin influence the  

water quality of all the  basins (including both expectations and variances)? 

Finally, how would he  select among alternative combinations of projects? 

The methodology developed in t he  next sections is aimed at answering such 

questions, and thus provide technical support t o  t he  decision process. 

2. THE APPROACH 

The approach t o  eutrophication and eutrophication management is 

based on the  idea of decomposition and aggregation (Somly6dy, 1982 and 

1983a). The f i r s t  s tep  is t o  decompose the  complex system into smaller, 

t ractable  units forming a hierarchy of issues (and models), such as 



biological and chemical processes in the lake, sediment-water interaction, 

water circulation and m a s s  exchange, nutrient loads, watershed processes 

and possible control measures; influence of natural, noncontrollable 

meteorological factors,  etc.  One can make detailed investigations of each 

of these issues. This step is followed by aggregation, the aim of which is t o  

preserve and integrate only the issues that a r e  essential for  the higher 

level of the analysis and hierarchy, ruling out the  unnecessary details. In 

this way a sequences of corresponding detailed and aggregated (mainly 

descriptive type) models are developed. Only aggregated models a r e  cou- 

pled in an on-line fashion (the approach is off-line for  the detailed models) 

thus allowing their incorporation in a management optimization model a t  the 

highest stratum of the hierarchy. The procedure for  deriving the eutrophi- 

cation management optimization model (EMOM) is illustrated in Figure 1 (for 

further  details, see Somlybdy, 1983b; and Somlyddy and van Straten, 1985) 

and consists of four stages: 

Phase 1 

This is  the  development phase of the dynamic, descriptive lake eutro- 

phication model (LEM) which has two sets of inputs: controllable inputs 

(mainly artificial nutrient loads) and noncontrollable inputs (meteorological 

factors,  such as temperature, solar radiation, wind, precipitation). The 

output of the model is  the  concentrations vector y of a number of water 

quality components as a function of time (on a daily basis) t , and space r :  

y (t  , r ) .  LEM is calibrated and validated by relying on historical data; the 

inputs of LEM are the recorded observations. Because of methodological 

and computational difficulties on one hand, and uncertainties in knowledge 
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and observational data  on the  o ther  hand, most of the  models are not "con- 

tinuous" in space, but r a t h e r  they describe the  average water quality of 

lake segments (basins)  having differing characteristics.  For details, 

r eade r s  are re fe r r ed  t o  the  l i terature on ecological modeling (e.g, 

Somlyddy and van Straten,  1985). 

Phase 2 

In o r d e r  t o  apply LEM at a la te r  s tage f o r  solving the  management 

problem, two important s teps must be taken: 

(i) A decision has t o  be made as t o  the  kinds of loads and meteorologi- 

cal  inputs t o  be  used in planning scenarios. For r i ve r  water qual- 

ity planning problems deterministic "critical" scenarios can be 

generally used, but f o r  lake eutrophication problems (especially 

f o r  shallow water bodies), t he  inputs should be  considered sto- 

chastic functions. In Figure 1 NLMPl and METG indicate models 

which generate  the  loads and meteorological fac tors  in a random 

fashion based on the  analysis of historical data. The proper  time 

scale of NLMPl and METG should be  established in Phase 1 ;  i t  gen- 

erally suffices t o  use a month as a basis (Somlybdy, 1983b). 

(ii) The planning type nutrient load model (NLMPl) incorporates 

aggregated control variables, f o r  deriving the '  loads of individual 

lake basins ( 1  S i S N). They are used t o  determine classes of 

aggregate load scenarios with different expectations and fluctua- 

tions f o r  each individual basin, but they do not express  t he  way in 

which a scenario i s  actually realized in the  watershed, 



The LEM can then be run systematically under stochastic inputs with dif- 

ferent control variable vectors zi yielding the  stochastic vectors y i ( t )  
Pw 

that describe the  temporal changes in various water quality components for  

the basins (1 S i S N) (in contrast to the  y i  ( t )  of Phase 1 which a r e  deter- 

ministic and noncontrolled). These changes are of interest fo r  understand- 

ing the eutrophication process, but for  decision making purposes, various 

indicators that express the global behavior of the  system can be used (see 

Section 1). 

Experience has shown (OECD, 1982; Somlyl&y, 1983b) that  because of 

the  cumulative nature of eutrophication, the indicators primarily depend on 

the annual average nutrient load with the (annual) dynamics of secondary 

importance, at least fo r  lakes whose retention time is not too small. This 

means that time can be disregarded and w e  can work with (vector-) indica- 

tors,  s*, that  a r e  derived from the concentration vectors 

(3, ( t) ,  1 S i S N). This also implies that  the LEM can be used in an off-line 
N 

fashion. 

There are various ways in which the  LEM can be involved in the optimi- 

zation model, and implications and conclusions requires careful analysis. 

For example, the  xi indicators obtained from systematic computer experi- 

ments can be stored as a function of the  corresponding aggregated control 

vectors. These form a "surface" on which the "optimal" solution is built 

later. The other  possibility, that  w e  follow here, is  to parametrize the  

* Note that the number of indicators i s  generally less than that of the water quality com- 
ponents, and often a single (scalar) indicator i s  employed (see later). 



outputs of LEM (obtained under various control vectors & ) and to  a r r ive  at 

an analytical expression which then can be included in the optimization 

model. This is  the LEMP model, cf. Figure 1. 

As indicated in Figure 1, the  success of this procedure is  not a pr ior i  

obvious and depends mainly on the complexity and major features of the sys- 

tem.  Still, observations and model results have shown for  several lakes that 

a linear relationship holds between the indicator (e.g., ((Chl-a),,) and the 

annual average phosphorus load (OECD, 1982; Somlybdy, 1983b; Lam and 

Somlybdy, 1983). Van Straten (1983) has proven analytically by using a sim- 

plified LEM, that  fo r  nutrient limited, turbid shallow lakes the maximum 

algal level is practically proportional to  the phosphorus load. Based on 

these findings, w e  assume that  an  analytically expression, moreover a linear 

model, can be used as LEMP fo r  a large variety of water bodies. 

LEMP is an aggregated version of the LEM that  can be employed 

directly f o r  planning purposes. I t  describes approximately the  indicators 

5 as a function of the nutrient load, including stochastic variability. LEMP 

is connected to  a nutrient load model, NLMP2, which includes the control 

variables, zil (1  5 I 5 NLf ; 1 5 i 5 N). Compared with NLMP1, the NLMPZ 

model exhibits th ree  significant differences: 

(i) i t  covers only that  pa r t  of the load that  is  thought t o  be controll- 

able on the  basis of available, realistic measures; 

(ii) i t  contains more details about the  subwatersheds of each basin 

(location of pollution discharges and control measures, etc.); and 

(iii) i t  is aggregated with respect  to  time; as for  LEMP the annual 

average load can generally be used. 



The coupled N L M P 2 - L E M P  mode l s  a r e  then put through an optimization 

procedure, which generates (depending on the formulation of EMOM,  the 

Eutrophication Management- Optimization Model) for  example, "optimal" 

values for  the control variables, zit,  the associated indicators ?';, and- 

say-the total annual costs, TAC, needed fo r  carrying out the  project o r  

fixed by budgetary considerations. 

Phase 4 

In the course of this procedure various simplifications and aggrega- 

tions a r e  made without a quantitative knowledge of the  associated e r ro r s .  

Accordingly, the last step in the analysis is validation. That is, the L E M  can 

be run with the "optimal" load scenario as indicated in Figure 1 by the 

dashed line, and the 5 "accurate" and "approximate" solutions can be 

compared. 

3. FORMULATION OF THE STOCHASTIC MODELS LEKP AND NUiP2 

The modeling procedure w a s  outlined in Section 2 in general terms. 

Here we continue the discussion detailing assumptions and limitations. The 

reason for  these is threefold: 

- All  the models used in the field of eutrophication a r e  system 

specific; 

- Consequently our  objective cannot be more than to capture some 

of the  major features of eutrophication management problems; 

and 

- W e  wish to  avoid generalization beyond our  experiences. 



The major assumptions we make a r e  as follows: 

(i) the lake is shallow, the water quality of which is vertically uni- 

form: 

(ii) the lake can be subdivided into basins which are sequentially con- 

nected, see Figure 2; 

(iii) the  lake is phosphorus limited (like most water bodies) and thus 

nutrients o ther  than P (phosphorous) are not involved in the 

analysis; 

(iv) a single water quality indicator, the (Chla),,, concentration is 

used fo r  defining trophic s tate  and the  goal of management (see 

Section 1); 

(v) as discussed before linear relationship holds for  individual basins 

between (Chl-),,, and P load; 

(vi) short  t e r m  (a f e w  years) management is considered, that  is  the  

renewal processes in the lake and its sediment layer following 

external load reduction, and the  scheduling of the  investments are 

out of the  scope of the present effort; 

(vii) only certain types of P sources and associated control alterna- 

tives are taken into account. 

A t  the end of this section, w e  w i l l  show that  some of these conditions can be 

relaxed if needed, and in fact the models t o  be introduced have a broader 

range of applicability than suggested by the  above assumptions. 



3.1. Aggre~ated Lake Eutrophication model (LE W) 

Based on Section 2, the assumptions made and the insight gained from 

the study on Lake Balaton (Section 8), the short  term response of water 

quality to  load reduction can be written as follows (Somlybdy, 1983b): 

where the elements of the N-vector represent the (to be controlled) 

3 water quality in the N basins - in t e r m s  of (Chl-a),,, [mg/m I - and Y, 

refers to  the (noncontrolled) nominal state; E is  expectation. In the equa- 

tion, the N-vector 4 expresses the change in load due t o  control 

where the elements of L are the annual mean volumetric biologically avail- 

able P load, BAP [mg/m3d] in each basins (LJ = LJa/h. here  L_P is  the 

"absolute" load [mg/d] and Vi is the volume [m33). The BAP load covers the 

P fractions that can be taken up directly by algae and thus determine the 

short term response of the water body. Stochastic variables and stochastic 

parameters are bold faced. The random N-vector lt;l represents the  random 

changes of water quality caused by noncontrollable meteorological factors. 

Finally the elements of the square NxN-matrix D and the vector d are 

derived from the analysis and simulation in Phase 2 (see Figure 1). 

The elements of matrix D are the reciprocals of lumped reaction rates. 

The main diagonal comprises primarily the effect of biological and biochem- 

ical processes, while the other  elements refer to  those of interbasin 

exchange due to  hydrological throughflow and mixing. These elements 

express that due to  water motion a control measure taken on subwatershed 



of basin i will affect the  water quality of other  basins. A s  will be seen in 

Section 8, the diagonal elements dii of the matrix D (the slopes of linear 

load response relationships) are such that (Chl-a),,, does not necessarily 

approach zero (o r  a relatively small  value) if Li goes to 0. The reason is 

that  (Chl-a),,, is  linearly related t o  the sum of external and internal loads. 

The internal load is the P release of the sediment (a consequence of P accu- 

mulation during preceding years  and decades) which practically cannot be 

controlled. Since external and internal loads are coupled (a reduction in 

external load generates a time-lagged reduction in the internal load) the 

long-term improvement of water quality is generally la rger  than given by 

Equation (3.1). The memory effect and renewal of sediment are however 

poorly understood (see f o r  example, Lijklema et al,  1983), this is one of the 

reasons why w e  concentrate on short-term control. Note that  due to the 

definition of AL,, (3.1) also yields the random variations of water quality in 

the (noncontrolled) nominal state. The charac ter  of slopes di is similar to  

that  of the diagonal elements dii  , the t e r m  di zui hLI expresses a change, 

linear in hLNf, in the  random component of the water quality indicator in 

basin i. Of course, the  effect of the random fluctuations E~ caused by 

meteorology decreases if the sum of external and internal loads diminishes. 

This also means that  with new control measures the water quality of a lake 

may approach a "new equilibrium" via m a j o r  fluctuations, as observed in 

nature. 

In view of (3.1) water quality varies randomly fo r  th ree  reasons: 

(i) random changes in meteorological factors  (primarily solar  radia- 

tion and temperature) (the distributions of the UJ~, typically 



skewed, are obtained in Phase 2 of the procedure (Figure 1 ) and 

can generally be  approached by three-parameter gamma distribu- 

tions); 

(ii) stochastic changes and uncertainties in the  loads (see below); and 

(iii) the  combined effect of climatic and load factors. 

Relation (3.1) gives the  aggregated lake eutrophication model. The 

model takes into account on a macroscopic level the  effect of biological and 

biochemical processes, interbasin mass exchanges, the  sediment further- 

more the influence of stochastic factors and uncertainties. 

3.2 Nutrient  Load Model (NTXP2) 

W e  consider three  P sources as indicated in Figure 2: 

(i) direct  sewage P load, LS; 

(ii) indirect sewage P load when the recipient is  a tributary of the 

lake, LSN (both LS and LSN can be considered biologically avail- 

able and deterministic); and 

(iii) tributary load t o  which contribute various point sources (sewage 

discharges) and non-point sources of the  watershed. 

The biologically available portion of the tributary load is 

La =L& + b(LT -&J,), (3.3) 

where L& is  the  dissolved reactive P load, LT total P load and b availability 

rat io of the particulate (not dissolved) P load (the difference of kT and 

L&), b is  a%out 0.2. 
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FIGURE 2. Development of models LEMP and NLMPZ. 

Now, let  us consider the  basic control options from the  above P loads: 

(i) and (ii)P precipitation by sewage treatment plants, and 

(iii) pre-rersevoir systems established on r ive r s  before they enter  the 

lake. These consist of two par t s  (Figure 2): the removal of parti- 

culate P through sedimentation in the f i r s t  segment, and the  remo- 

val of dissolved P (benthic eutrophication in reed-lakes, sorption, 

etc.) in the  second par t .  The corresponding control variables are 

z s , x ~ , z p ,  and zg as indicated in Figure 2. All  of them can be 



thought as removal coefficients, with 

where r  - and r +  a r e  lower and upper limits respectively, and if 

z = 0, no action is  taken. 

Now consider the  simple situation given in Figure 2 fo r  the i th  basin of 

the  lake. The original, uncontrolled load, Li can be expressed as follows: 

where La is the portion of the load that  is beyond the  controls considered 

(e.g., atmospheric pollution); f o r  the sake of simplicity, w e  drop the  index 

i from the r ight  hand side of Equation (3.5). The controlled load of the 2-th 

basin is 

where r t  is the retention coefficient. The expression (1 - r t )  replaces a 

r iver  P tmnspor t  model and i t  defines that  portion of P that  reaches the 

lake from an indirect sewage discharge at a given point on the tributary 

( r t  = 0 means no retention). I t  is apparent from Equation (3.6) that  the tri-  

butary load can be controlled by P precipitation and/or pre-reservoirs. 

The latter influence linearly both expectation and variance of ki, while P 

precipitation only influences the expectation, thus the re  is an obvious 

trade-off between these alternatives. With equations (3.5) and (3.6) w e  can 

now obtain hNi (recall  that  bL1 = ALL/Q):  



Terms @ and @ express reduction in the expectation of the  r ivers  dis- 

solved P load; term @ represents the effects of the fluctuations of the L_D 

load: term @ gives the modification in the particulate P load of the  river,  

while term @ exhibits influence of direct sewage control. If we set all the 

control variables x t o  zero in Equation (3.7), w e  obtain the fluctuations in 

the original, noncontrolled load, the  expectation of which is  zero. 

Equation (3.7) is nonlinear in the control variables because of the pro- 

duct term XD m xm. which may cause difficulties when this relation is used in 

an optimization scheme. Several possibilities a r e  available t o  overcome 

this nonlinearity. For example, a new variable 

can be introduced, a linear function of XD and XSN, which is  then included in 

the  constraint equation, see e.g.,Loucks et al., 1981. In such a case the 

optimization requires a parametric analysis involving this variable. 

Another possibility is  offered by the surface dependent character  of 

the  P removal in the  pre-reservoir (second element). Generally, fo r  a reed 

lake one cannot estimate more than the  P removal p e r  unit of surface-area, 

independent of the  inflow concentration. Under this approximation, how- 

ever,  XD can be defined in terms of the  original uncontrolled load of the 



inflow (in contrast  t o  the  the  conventional definition: actual inflow minus 

outflow divided by t h e  actual inflow) as a variable which i s  not influenced by 

indirect sewage control. The pr ice f o r  such a n  elimination of nonlinearity 

is twofold: 

(i) An upper  limit should be  specified f o r  zg which states tha t  no 

more nutrients can be removed than those tha t  reach  the  lake via 

the  part icular  t r ibutary.  In terms of expectations t h e  constraint 

equation can b e  written as 

(we note tha t  in a more precise sense the  above condition should 

actually be  fulfilled f o r  all t he  realizations of Ld). 

(ii) A new variable z$ should be introduced with zg 5 z$ t o  t ake  into 

account the  fac t  tha t  the impact of t h e  reservoi r  on the  fluctua- 

tion (Equation (3.7): term @ is  not res t r ic ted  by the  (physical) 

constraints introduced by (3.9). 

For a more general situation than illustrated in Figure 2, when the  i t h  

lake basin is fed by N i  di rec t  sewage discharges (1  < n 5 N1) and N2 tribu- 

ta r ies  (1 s m S N2), each with 4 indirect sewage discharges (1 9 1 S M,), 

Equation (3.7) becomes: 



Equation (3.10) is actually the  final NLMP2 model except  tha t  w e  have not 

yet discussed the  derivation of the stochastic load components kT and La, 

which is in itself a difficult problem because insufficient (infrequent) obser- 

vations, shor t  historical data,  and ou r  lack of understanding (see e.g. 

Haith, 1982; Beck, 1982). Since the  annual means are used f o r  I,T and La 

and the  dynamics are less important, the  recommendation is t o  derive the 

loads from a regression type analysis as functions of the major hydrologic 

and watershed parameters ( e r r o r  terms should also be included). 

Observations and careful analysis of the composition of the  load (point 

vs non-point source contributions) and watershed are required f o r  such a 

procedure. In general LT and La have (positive) lower bounds and can be 

characterized by strongly skewed distributions. V e r y  often they can be 

expressed as simple functions of the annual mean streamflow ra t e s ,  &, the  

statistics of which are generally known from much longer records  than 

those available f o r  loads. This way the  basic stochastic influence of hydro- 

logic regime can be  involved. In many cases,  annual means of and Q are 

estimated from scarce observations. The uncertainty associated can be 

investigated from a Monte Carlo type analysis o r  basic statistical considera- 

tions (Cochran, 1962: SomlyWy and van Straten,  1985). Taking into account 



all these factors ,  t he  loads can have r a t h e r  complex distributions composed 

of various normal, log-normal, gamma,. . . distributions. 

The model LEMP will be  used together with NLMPZ given by Equation 

(3.10) as major components of t he  eutrophication management-optimization 

model, EMOM. Let us note tha t  after introducing (3.8) o r  (3.9) into NLMPZ, 

the  water quality indicator will be  expressed by t h e  coupled model NLMP2- 

LEMP as a l inear  function of t h e  decision variables, z t l .  

To conclude this section, we r e tu rn  to  assumptions (i)-(vii) and check 

the i r  "rigour" in t h e  light of t he  knowledge gained in this  section: 

(i) shallowness is  not restr ic t ive from the  point of view of using 

NLMPZ; 

(ii) non-sequential connection of the  basins would simply involve a 

change in t he  s t ruc tu re  of D; 

(iii) P is practically t he  only element t o  be  controlled even in cases  

when e.g., nitrogen i s  limiting algal growth (OECD, 1982; Herodek, 

1983); and 

(vi) short-term management basically determines t h e  long-term 

behavior of t he  lake water quality, thus t he  resul ts  h e r e  have 

strong implications f o r  long-term management; 

(vii) controls disregarded h e r e  (e.g., sewage diversion) have similar 

features  from a methodological viewpoint than those handled in 

t h e  present  paper .  
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4. CONTROL VARIABLES, COST FUNCTONS AND CONSTRAINTS 

We now consider the  management options tha t  a r e  available t o  control 

the eutrophication process and the restrictions tha t  limit t he i r  choice. 

4.1. C o n t r o l  V a r i a b l e s  

We already touched upon some of the  decision variables as removal 

rates of sewage treatment plants and reservoirs .  Here we give a more 

detailed discussion of possible control variables, including the i r  charac ter  

and associated bounds. 

Sewage Treatment 

(i) If we consider artificial eutrophication as a problem of the  lake- 

watershed system and w e  are not interested in the  details of t he  engineering 

design of each treatment plant, zs and z~/v should b e  handled as real-valued 

variables; otherwise all the  elements of the  technological process of all the  

plants should have been taken into account with the  aid of f0,11 variables. 

Lower bounds f o r  zs and XSN often exist, since in many countries the  

effluent P concentration is fixed by standards (between 0.5-2 g/m3) speci- 

fied by environmental agencies. 

(ii) Because of historical reasons - at least in developed countries - 
P precipitation (chemical treatment) is going t o  be  realized in existing 

plants designed originally f o r  biological treatment. If t he  efficiency of h e  

biological treatment is unsatisfactory, which is often the  case, i t  should b e  

upgraded p r io r  to introducing chemical treatment. If decision variable 

associated t o  upgrading i s  z,, this type of treatment plant management can 
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be  taken into account by the  condition 

sgn zu 2 sgn zs, 

if z, is  a real-valued variable. 

(iii) If t he  problem incorporates not only decision about P precipita- 

tion and the  associated upgrading, but also the  design of t he  sewer network, 

this would again lead t o  a n  engineering type planning task (e.g., Kovdcs et 

al ,  1983) tha t  differs from o u r  present considerations. If, however, w e  

wanted t o  involve sewer network design in the eutrophication management in 

a simple way, t he  network of the  subregions could be ordered  so  as t o  

correspond t o  treatment plants and handled similarly as explained in item 

(ii), after introducing decision variables zm. 

(iv) Finally, a rough picture on the  spatial  distribution of treatment 

plants can be  obtained defining corresponding f 0 , l j  variables (0 means 

again no action). 

(i) A s  indicated in Section 3, basic P removal processes are surface 

dependent, thus control variables zg and zp specify the  size of reservoirs .  

Lower bounds are generally given by the  smallest reasonable retention time 

tha t  corresponds t o  a given size. 

(ii) Variables ZD and zp must often be  handled as 10,1{ variables. 



4.2. Cost Functions 

Costs and cost functions a r e  discussed in the  same order  as decision 

variables above. 

Sewage Weatment 

(i) The costs of P precipitation (including investment and operation 

costs being site specific) grow exponentially with increasing removal rates 

and decreasing effluent concentrations (see e.g., OECD, 1982; Monteith et 

al., 1980; Schiissler, 1981). The most straightforward method to  approach 

this type of cost functions is piecewise linearization (see e.g., Loucks et al., 

1981) which requires the introduction of dummy variables. 

(ii)-(iv) They are fixed costs. 

Pre-reservoirs 

Cost functions of reservoir  systems are strongly depending on which 

process determines primary P removal, construction and operation condi- 

tions. Very often not enough knowledge is  available to  define a cpst func- 

tion other  than linear and usually running costs can be neglected o r  can be 

assumed to  be compensated by the benefits of the reservoirs  (e.g., utiliza- 

tion of harvested reeds). A s  a summary, w e  can conclude that  costs can be 

expressed as piecewise linear functions of the decision variables, an impor- 

tant feature from the  viewpoint of building up the management model EMOM. 



4.3. Constraints 

A s  we already discussed most of the physical, technological and logical 

constraints - cf. (3.4), (3.8), (3.9), (4.1) and (4.2) and related explanations 

- we consider here  only the budgetary constraint which is perhaps the most 

important one. 

In order  t o  select among management alternatives of different invest- 

ment costs (IC), and operational, maintenance and repai r  costs (OC), the 

total annual cost (TAC) t e r m  is used 

TAC = C OC1 + C al ICl 

where al is the capital recovery factor that depends on the discount rate 

and the lifetime of the project (see e.g.. Loucks et al., 1981). This factor 

can be different for  "small" and "large" projects (e.g., introduction of P 

precipitation in treatment plants and creation of reservoirs of considerable 

size, respectively) as fo r  '7arrge " investments governments of ten guarantee 

finance a t  low ("pure") interest rates. For this reason, as pointed out by 

Thomann (1972), al should be considered as a model parameter of a certain 

range and its influence on model performance should be tested. 

In most cases the TAC is  limited by budgetary considerations 

TAC S fl  (4.4) 

o r  reexpressing this in t e r m s  of the control variables 

This constraint, which involves the piecewise linear functions cil, can be 

replaced by a linear constraint by substituting x $ ,  x i  ... for  the variable 
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ztl , each z& corresponding t o  a piece of linearity of cil . 

5. FORMULATION OF TEIE EUTROPEFTCATION HANGEBIENT OPTIMIZATION 
YODEL: EMOH 

A s  already indicated in Section 1 ,  t he re  are a number of variants avail- 

able in the  building of the  management optimization model t ha t  allow us t o  

capture the stochastic features  of the  water quality management problem. 

The NLMP2-LEMP model yields the  following description of t he  eutrophica- 

tion process: 

z = E  fzo! + %  -((D + d ~ )  UN. (3.1) 

& = E  IkoI - k ,  (3.2) 

where f o r  the  sake of convenience, the  water quality indicator is denoted by 

y, and f o r  i = 1 ,..., N, 

La,i  = bpi + a(L,~ , i  - L4,t ) + Ls,~ + LsN,~ + L x , i  (3.5) 

the  last relation being valid under some additional constraints, see (3.9) and 

the  related comments. Substituting, regrouping terms and renumbering 

(reindexing) t he  control variables, we obtain an  affine relation f o r  the  



water quality indicators y i  (1 S i S N) of the type 
N 

y = cz - h  
N 

N (5.1) 

where kt incorporates all the noncontrollable factors that affect the water 

quality zi in basin i ,  and the random coefficients associated t o  the z- 

variables in (3.10) determine the entries of the random matrix through 

the transformation: ( D  + dzu)ALN. To simplify the presentation of what fol- 

lows, w e  string the decision variables in an n-vector (xi, . . . , z,), each zj 

corresponding to  a specific control measure affecting the  load in some 

basin i . is thus a N X n-matrix and is an N-vector. We also write 

for  the preceding equation, the  notation y(z ,ul) is used t o  stress the depen- 
N 

dence of the water quality indicators y i  (1 S i S N) on the decision vari- 
N 

ables z and on the existing environmental conditions, denoted by w (con- 

trollable and noncontrollable) determining the entries of T and h  . 

The distribution function Gy (z , -) of the random vector y ( z ,  *) depends 

on the choice of the control measures x i ,  ... ,z,. W e  could view our objec- 

tive as finding z *  that  satisfies the  constraints and such that  for  every 

other  feasible z 

i.e., such that for  all z E R~ 

prob. [ y ( z S ,  -1 < z ]  r p r o b .  [ y ( z ,  m) < z ]  . 

If such an z*  existed it  would, of course, be the "absolute" optimal solution, 

since it  guarantees the  best water quality whatever be the  actual realiza- 

tion of the random environment. There always exists such a solution if 



there  are no budgetary limitations: simply build all possible projects to  

their  physical upper bounds ! If this were the  case, there  would be no need 

fo r  this analysis and i t  is precisely because there  are budgetary limitations 

that  w e  are led t o  choose a restricted number of treatment plants and/or 

pre-reservoirs, and unless the problem is very unusual, there  will be no 

choice of investment program that  wi l l  dominate all other  feasible programs 

in terms of the preference ordering suggested by (5.3). 

W e  are thus forced t o  examine somewhat more carefully the  objectives 

w e  want t o  achieve. We could, somewhat unreasonably, see the goal as 

bringing the water quality indicator t o  a near  zero level (depending on the  

internal load) in all basins. This would ignore the  individual characteristics 

of each basin, as wel l  a s  the  user-oriented cri ter ia ,  a s  f o r  example recrea-  

tional versus agricultural. A much more sensible approach, as discussed in 

Section 1, is t o  choose the control measures so  as t o  achieve certain 

desired trophic states. Let 

be water quality goals expressed in terms of the selected indicator, 

(Chla),,,, each yi corresponding t o  the  particular use of basin i . The 

sensitivity of the solution t o  these fixed levels yi would have t o  be a pa r t  of 

the overall analysis of the system. W e  a r e  thus interested in the  quantities: 

C Y ~ ( ~ ,  w )  - 7 i I +  for  i = 1, ..., N ,  

that  measure the  deviations between the realized water quality and the 

fixed goals y i ,  where [@I + denotes the nonnegative pa r t  of @: 



The vector 

is random with distribution function G ( z ,  0) defined on R ~ ,  and the problem 

is again t o  choose among all feasible control measures z l, . . . , z, , i.e., that 

satisfy all technological and budgetary constraints, a program z s  that gen- 

erates the "best" distribution G ( z  s ,  e) by which once could again mean 

for  all 2 E A s  already mentioned earlier, such an z s  exists only in 

very unusual circumstances, and thus we must find a way to  compare the dis- 

tribution functions that  takes into account their  particular characteristics 

but leads t o  a measure that can be expressed in t e r m s  of a scalar func- 

tional. 

5.1. The f irs t  possibility would be t o  introduce a pure re l iab i l i ty  cri- 

terion,  i.e., t o  fix, in consultation with the  decision maker, certain reliabil- 

ity coefficients to  guide in the choice of an investment program. More 

specifically we would fix 0 < a S 1, so that among all feasible z w e  should 

res t r ic t  ourselves to  those satisfying 

where 7 = ( 7 1 , . . . , y , ~ .  O r  preferably, if w e  take into account the  fact that  

each basin should be dealt with separably, w e  would fix the reliability coef- 

f icients at ,  i = 1 ,... ,m Z,  and impose the  constraints 

prob. [ y i ( z ,  0) < yi] r at ,  i = 1 ,..., mo. (5.5) 

The scalars a o r  ( a i ,  i = l , , . . ,mz)  being chosen sufficiently large so  that  

we would observe the unacceptable concentration level only on r a r e  



occasions. In terms of the distribution function G ,  these constraints 

become 

for  (5.4), and 

Gi(z,O) 2 at fo r  i = 1 ,..., N ,  (5.7) 

fo r  (5.5) where the Gi ( z ,  *) are the marginal distributions of the  random 

variables [ y i  ( z  , 0) - y i  ] +. In  the parlance of stochastic optimization models 

these are probab i l i s t i c  (or chance) cons t ra in ts ;  one refers t o  (5.4) as a 

j o i n t  probabilistic constraint. To find a measure fo r  comparing the  distri- 

butions f G ! z ,  0). z feasible j w e  have a simple accept/reject criterion, 

namely if a t  0 G ( z ,  0) is ei ther  la rger  than o r  equal t o  a ,  o r  f o r  each 

i = 1,  ..., N, Gi ( z  , 0) is  la rger  than o r  equal t o  a t ,  the investment program z 

is acceptable and otherwise i t  is rejected. This means that w e  "compare" 

the  possible distributions f G ( z  , a), z feasible j at 1 point, but w e  do not con- 

sider any systematic ranking. Assuming w e  opt f o r  the more natural separ- 

able version of the  probabilistic constraints (5.5), w e  would rely on the  fol- 

lowing model for  the  policy analysis: 

find z E Rn such that  
- 

r j  s zj  s ff+, j =I ,... , n  , 

CT=l aijzj bi * i =I, ... ,m , 
I I 

prob [zj'=l t i j  (W )zj - hi (W ) < 7i 1 2 a t ,  1 51, ... ,N, 
and z = z.j?=l cj ( z j  ) is minimized 

where as before the  vector r - and r + are upper and lower bounds on z ,  the  

inequalities EGl aij z j  S bi describes the technological constraints, 



including (3.9), and fo r  every j 

is the cost function associated to  project j ,  see (4.5). The overall objec- 

tive would thus be t o  find the  smallest possible budget that would guarantee 

meeting the present goals yi at least a portion at of the time. 

W e  did not pursue this approach because i t  did not a l l o w  us  t o  distin- 

guish between situations where w e  almost m e t  the  preset  goals yi and those 

that  generate "catastrophic" situations, i.e., when some of the  values of the 

(pi ( x  ,w ), i = 1 ,... ,N) would exceed by f a r  (yi, i = 1,  . . . , N) and f o r  pur- 

poses of analysis of this eutrophication model this is  a serious shortcoming. 

Let us also point out that the re  are also major technical difficulties that  

would have to  be overcome. Probabilistic constraints involving &fine func- 

tions with random coefficients are difficult t o  manage. W e  have only very 

limited knowledge about such constraints, and then only if the  random coef- 

ficients ((ti, hi (a)) are jointly normally distributed, cf. Section 1 of 

Wets, 1983a f o r  a survey of the  available results and the  relevant refer- 

ences. Since in environmental problems the coefficients are generally not 

normally distributed random variables w e  could not even use the  f e w  results 

that are available, except possibly by replacing the  probabilistic con- 

straints by approximates ones using Chebyshev's inequality, as suggested by 

Sinha, cf. Proposition 1.26 in Wets, 1983a. 

5.2. A second possibility is  to  recognize the  fact  that one should dis- 

tinguish between situations that barely violate the desired water quality o r  

levels (yi, i = 1 ,  ..., N) and those that deviate substa.ntially from these 

norms. This suggests a formulation of our  objective in terms of a 



penalization that would take into account the observed values of 

[vi (z ,w ) - yi ] + fo r  i = , . - . ,N. We expect such a function 

q :  R~ 4 R  

t o  have the following properties: 

(i) 4' is nonnegative, 

(ii) q ( z )  = 0 if zi 5 0 i = l? . . . .N , 

(iii) 4' is separable, i.e., q ( z )  = zrZl qi (zi). 

This last property comes from the fact that  the  objectives fo r  each basin 

are o r  may be different and there  are essentially no "joint rewards" t o  be 

accrued from having given concentration levels in neighboring basins, the 

interconnections between the  basins being already modeled through the  

Equation (3.1). A more sophisticated model, would still work with separate 

penalty functions ql(z . . - . 'PN(zN)] but instead of simply summing these I 
penalties, would treat them as multiple objectives. A solution t o  such a 

problem would eventually assign specific weights t o  each basin, making i t  

equivalent t o  an optimization problem with single objective function. W e  

shall assume that  these weighting factors  have been made available t o  o r  

have been discovered by the  model builder, and have been incorporated in 

the functions qi themselves; note however that the  methodology developed 

here  would apply equally we l l  to  a multiple objective version of the model. 

In addition, t o  (i)-(iii) w e  would expect the  following properties: for  

i = l , - - .  ,N, 

(iv) qi is differentiable, with derivative qi. 



(v) +; is  monotone increasing, i.e., +* is  convex, 

(vi) +; ( z t  ) > 0 whenever zt > 0, 

- relatively small if zt i s  "close" t o  0,  

- leveling off when zt is  much "larger" than 0. 

A couple of possibilities, both with Ot ( z * )  = 0  if z f  5 0, are 

+*(z*)  = p* 2: If Z* P O  , 

with pi > 0, 

+ * ( z t )  = pt(ez' - z t  - 1 )  if zi 20 , 

also with pi > 0. 

A s  w e  see,  t h e r e  is a wide variety of functions tha t  have the  desired 

propert ies ,  what i s  at s take  h e r e  is t he  creation of a (negative) utility func- 

tion tha t  measures t he  socio-economic consequences of the  deterioration of 

the  environment. W e  found tha t  the  following class of functions provided a 

flexible tool f o r  t he  analysis of these factors.  Let 8 :  R -, R+ be  defined by 

This i s  a piecewise linear-quadratic-linear function. The functions 

(+*, i = 1, ... , N )  are defined through: 

O r ( Z r )  = Q* ei 8 ( e c i z t )  f o r  = 1, ..., N ,  (5.10) 

where qt and et are positive quantities tha t  allow us t o  scale each function 

+* in t e r m s  of slopes and the  range of i t s  quadratic component. By varying 

the  parameters et and qt w e  are able  t o  model a wide range of preference 

relationships and study the  stability of t he  solution under perturbation of 

these scaling parameters.  



FIGURE 3. Criteria functions. 

The objective i s  thus to find a program that in the average minimizes 

the penalties associated with exceeding the desired concentration levels. 

This leads us to the following formulation of the water quality management 

problem: 



find z E Rn such tha t  

rj- s zj s rj+ , 

and 2 = E [z!=l qi ei 6 ( e P [ y i  (w ) - 7i 1) is minimized 1 
where B is the  available budget. This type of stochastic optimization prob- 

lem goes under the  name of s tochast ic  program wi th  recourse: a decision 

z (the investment program) must be  chosen before w e  can observe the  out- 

come of the  random events (the environment modeled h e r e  by the  random 

quantities tij(w),hi (w)) at which t i m e  a recourse  decision is selected so  as 

t o  make up whatever discrepancies t he re  may be; the  variables yi are just 

measuring the  difference between zj tijxj and hl . One refers t o  (5.11) as 

a program with  s imple recourse in that  the  recourse  decision is uniquely 

determined by the  first-stage decision z and the  values taken on by the  ran- 

dom variables. 

It  is  very important t o  note that  no attempt has been made at combining 

budgetary considerations and the  penalty functions tha t  measure the  devia- 

tions from the  desired concentration levels in a single objective function, 

although t h e r e  are financial considerations tha t  may affect  t he  choice of 

t he  coefficients qi and ei of the  penalty terms. In o u r  approach w e  handle 

these two criteria separately,  w e  rely on a (discrete) parametric analysis 

of the solution of (5.11) as a function of B,  the available budget. An essen- 

tially equivalent approach would have been t o  formulate (5.11) as a multiob- 

jective program, one objective corresponding t o  the penalizations terms. 

the  o the r  t o  t he  cost function. 



In terms of the distribution functions f G ( z ,  a), z feasible1 the entire 

'tail" of the distributions enters  into the comparison not just the value of 

G ( z ,  *) at 0, as w a s  the  case in model (5 .8)  with probabilistic constraints. 

Indeed, the objective function can now be expressed as: 

5.3. A third possibility is t o  essentially ignore the  stochastic aspects 

of the eutrophication model and replace the  random variables that  appear  

in the formulation of the  water quality management problem by fixed quanti- 

ties. This would lead us t o  the following de terminis t i c  op t imiza t ion  prob- 

lem: 

find z E Rn such tha t  

rj- s zj  s r; j = 1 ,  . . .  ,n , 

C?=I % j z j  bi i = 1 ,  - ,m , 

C&1 c j ( z j )  S B 

Cj%1 tij z j  -vi = & i = l ,  . . -  N ,  

and r = x:=, pi ei B [ei-l[yi  - T ~ ] ]  is minimized. 

The choice of the  paramaters f i j  and & is left  t o  the model builder. One 

possibility is t o  choose 

i.e., replace the  random quantities by the i r  expectations. Without accept- 

ing the  solution of (5 .12) ,  w e  could always use i t  as pa r t  of an initialization 

scheme fo r  solving the  stochastic optimization problem (5.11),  and this is  

actually how the algorithm proceeds, see Section 7. 



5.4. A fourth model - in which reliability considerations again occupy 

a central role but in which the shapes of the distribution functions 

)Gi ( x ,  a ) ,  i = 1, ..., m2j play a much more important role than just their 

values at one point - allows for  variables concentration levels. Again let 

( a i , i  =1, , N )  be scalars that correspond t o  desired reliability level. 

The objective is t o  find an investment program x such that  

but now the ( v i ,  i = 1, ..., N )  are also decision variables that w e  like t o  

choose as  low a s  possible. There is a variety of ways measuring "as low as  

possible", for  example by minimizing 

where the qi are nonnegative scalars that assign different importance t o  

meeting the desired water quality goals ( y i ,  i = 1, ..., N) in the various 

basins, o r  by minimizing 

max v i  (5.15) 
i 

i.e., by bringing the overall concentration level as f a r  down as possible (at . 

least a certain portion of the time determined by the a; s), o r  by minimizing 

as in model (5.11) the function 

which penalizes the deviations from yi in a nonlinear manner, cf. Figure 3, 

o r  still to  handle the  minimization of the  ( v i ,  i = 1, ..., N )  as  a multiple objec- 

tive optimization problem, each coordinate of v corresponding t o  an  objec- 

tive that w e  seek to minimize. 



We shall he re  formulate ou r  optimization problem in terms of the  objec- 

tive (5.14) but of course any of the other  variants could o r  should also be 

considered. The optimization problem again involves probabilistic con- 

s t raints  but i t s  s t ruc ture  now resembles much more the  stochastic program 

with recourse (5.11) than the  f i r s t  model (5.0) involving probabilistic con- 

straints.  We obtain 

find z E Rn such tha t  (5.17) 
- 

r j  4 z j  4 r t ,  j =I ,... ,n 

C?=l aij zj bi i = I ,  ... ,m 
C?=l cj  (4) 4 B 

1 
prob. ~ ~ & l t i j ( w ) z j - h i ( w ) - v i < O  J + a i ,  i = l ,  .... N 

and z = EL1 qi [ v i  - yi ] + is  minimized . 

A t  this point i t  may be  worthwhile t o  observe tha t  (5.14) i s  just a limit case 

of (5.16).  Recall tha t  the  range over  which qi ei 8 (ei-'(* - y i ) )  i s  quadratic 

i s  [O,ei],  cf. Figure 3 .  If we shrink this interval t o  1 point, we are let  with 

t he  piecewise linear function gi [ a  -yi I+. 

A s  f o r  o u r  ea r l i e r  models, w e  should study the  solution as a function of 

8, the  available budget. However, solving (5.17) presents  all t he  technical 

challenges mentioned in connection with the f i r s t  model (5.8)  involving pro- 

babilistic constraints, t he  presence of the  ( v i  , i = 1. .... m2) has in no way 

simplified the  problem. W e  do not know of any d i rec t  method f o r  solving 

(5.17). One possibility is t o  find an  approximation of (5.17) tha t  could be  

handled by available l inear o r  nonlinear programming techniques. We 

r e tu rn  t o  this in the  next section. 



6. EXOY: AN EXPECTATION-VARIANCE MODEL 

In the formulation of the  eutrophication management optimization model 

(EMOM) the  objective has  always been chosen s o  as t o  measure in the  most 

realistic fashion possible the  deviations of t he  observed concentrations 

indicators from the  water quality goals. This led us t o  t he  stochastic pro- 

gram with recourse model (5.11) with the  associated solution procedure t o  

be discussed in Section 7 .  Here w e  introduce a line* programming model 

(Somly6dy, 1983b) tha t  is based on expectation-variance considerations 

(for t he  water quality indicators). The justification of t he  model relies on 

the  validity of cer tain approximations and thus in some situations one 

should accept  t he  so-generated optimal solution with some circumspection. 

However, as shall be  argued, its solution always points in t he  r ight  direction 

and is usually far superior  t o  tha t  obtained by solving a "deterministic" 

problem such as (5.12). In t he  Lake Balaton case study the  resul ts  fo r  both 

this  expectation-variance model and the  stochastic programming model 

(5.11) lead t o  remarkably similar investment decisions as shown by the  

analysis of t he  resul ts  in Section 8. 

A s  a s tar t ing point f o r  the construction of this model, le t  us consider 

t he  following objective function: 

where, as in Section 5 yi (z ,w ) is the  water quality level characterized by 

the  selected indicator in basin i given the  investment program z and the  

environmental conditions w ,  7( t he  goal set f o r  basin i and qi a weighting 

fac tor  associated t o  basin i .  The objective being quadratic in t he  area of 



interest ,  and the  distribution functions Gi (z  ,*) of the  yi  (z  ,*) not being too 

f a r  from normal, one should be able t o  recapture  the  essence of i ts  effect 

on the  decision process  by considering just expectations and variances. 

This observation, and the  "soft" charac te r  of the  management problem 

which in any case means tha t  t he re  is a large degree  of flexibility in the 

choice of the  objective, suggest tha t  w e  could substitute 

f o r  (6.1): where 8 i s  a positive scalar (usually between 1 and 2.5), 

- 
yo, = E{yoi j i s  the  expected nominal state of basin i ,  and u denotes stan- 

dard deviation, 

Since f o r  each i =I, . . ,N, the y i  are affine (linear plus a constant term) 

with respect  t o  z , the  expression f o r  

as a function of z i s  easy t o  obtain from equations (3.1) and (3.10). The kj  

a r e  the  expectations of the  coefficients of the  z j  and the  4, the  expecta- 

tion of the  constant term. Unfortunately the  same does not hold fo r  the 

standard deviation a(yi  (z  ,*) - c,). Equations (3.1) and (3.10) suggest tha t  

where ail i s  the  p a r t  of the  standard deviation tha t  can be  influenced by the 

decision variable z l ;  f o r  example, the standard deviation of the  t r ibutary 

load LND. Cross terms are f o r  all practical purposes i r relevant  in this situa- 



tions since the  total  load in basin i is essentially the  resul t  of a sum of the  

loads generated by various sources tha t  a r e  independently controlled. This 

justifies using 

instead of (6.2) as a n  objective f o r  the optimization problem. This function 

i s  convex and differentiable on R? except at z = 0, and conceivably one 

could use a nonlinear programming package t o  solve the  optimization prob- 

lem : 

find z E Rn such tha t  
- r j  s z j  s r,+ j =1, ... ,n 
C?=l W Z j  bi i=1, , m 

CYZl cj  (4) S 8 
I 

and z = CrZ1 qi hj zj  + Q [~j'=~ ofj 

Assuming tha t  t he  cost  functions have been linearized, i.e. with each c j  

piecewise linear,  t he  MINOS package would be an  excellent choice since the  

solution is clearly bounded away from 0. 

We can go one s tep  fu r the r  in simplifying the  problem t o  be solved, 

namely by replacing the  term. 

in the  objective, by the  l inear (inner) approximation 

On each axis of Ry , no e r r o r  is introduced by relying on this  l inear  approx- 

imation, otherwise w e  are over-estimating the  effect a cer tain combination 

of the  z j 's  will have on the  variance of the  concentration levels. Thus, at a 



given budget level w e  shall have a tendency to start projects  tha t  affect 

more strongly the  variance if w e  use the  l inear approximation, and this is 

actually what w e  observed in pract ice (see Section 8). Assuming the  cost 

functions c j  are piecewise linear,  w e  have t o  solve the  l i n e a r  program: 

find z E Rn such tha t  (6.7) 
- 

rj s zj s r;, j = l , - a .  ,n 

C?=l qjzj  S bi 1 
i =I, - . ,m 

CT=1 c j  (z j  ) S B 
N and t = Ci qi CT=l ( h j  + 8 q j ) 4  is minimized. 

W e  r e f e r  t o  this  problem as the  (linearized) expectation-variance model 

(see also Somlybdy, 1983b; and Somlyddy and van Straten,  1985). 

For the  sake of illustration, let us consider t he  i - t h  basin of Figure 2 

and suppose tha t  t he re  i s  no m a s s  exchange with neighboring basins. Then 

from equations (3.1) and (3.7), recalling tha t  & = ha/ h, w e  obtain 

To obtain a linear form in the  z j ,  w e  proceed as indicated in Section 3, see 

equation (3.9). To derive the  remaining term in the  objective of (6.7) we 

only need t o  consider the  controllable portion of the  variance of 

- 
gt ( z  ,=) - yo(, w e  rewri te  (3.1) as follows 

- 
VJz,=) -Yof =zf  -(dii + d f ~ f )  &L& 

Let us write 

from which w e  obtain 



I 
$ ( A w ~ )  N = d:( 1 + d: uyt [ ~ ( f & ~ )  + E ' I ~ & ~  1, (6.8) 

Now from equations (3 .5) ,  (3.6) and (3.7) w e  have that  

This would lead t o  an expression fo r  u(Ay i )  that  would be  nonlinear in the  x 
N 

variables. To avoid the  nonlinearities w e  specify ua ( b y i )  and ua (A&,) as 
N 

t he  linear combination of t h e  additive terms in (6.8) and (6.9) 

N 

1 ' (6.10) ua(AWi): = diCua(&&)  + diuEt (ua(A&Ni) +EfUNiLilll 

and 

Note tha t  in equations (6 .8)  and (6.9) all the  coefficients are positive and 

the  behavior of the  "new" ua is similar to the  standard deviations as defined 

through (6.8) and (6.9).  Substituting (6.11) in (6.10) yields. 

Collecting terms w e  obtain the  coefficients uij  t ha t  appear  in the  objective 

of the  linear program (6.7).  (A more detailed, but similar, derivation also 

yields the  expression fo r  the  standard derivation when the re  is mass 

exchange between neighboring basins). 



The arguments tha t  we have used t o  justify the  expectation-variance 

model are mostly of a heuristic nature,  in tha t  they rely on a good under- 

standing of t he  problem at hand and "engineering" intuition. In the  formula- 

tion of t he  EMOM models ,  in Section 5, the  objective has usually been formu- 

lated in terms of finding control measures such tha t  t he  observed concen- 

tration levels (water quality indicators) are not too far from pre-set goals 

(given trophic states).  If by 'hot too far" w e  mean tha t  

should be as small as possible, w e  could also reformulate t he  problem, in 

terms of t he  nominal concentration levels. Indeed, with 

- 
A:* - - 3 f  

where as in Section 3: zot denotes the  nominal state in basin i. Then 

instead of minimizing (6.12), w e  could maximize 

and this should give about the  same results.  This is actually t he  motivation 

behind the  formulation of (6.7), see Figure 4. 

There is however another  approach tha t  does not rely s o  extensively 

on heuristic considerations, which leads us t o  t he  model (6.6), i.e., the  non- 

l inear version of the  expectation-variance model. The fourth model, 

described in Section 5, which integrates both reliability considerations and 

penalties f o r  fixing the  reliability levels, led us t o  the  nonlinear program 



find z E Rn such tha t  (5.17) 

r j -szj  s r f ,  j = 1 , .  . - ,n, 
CT=l ~ f j  zj bi i = 1 ,  . . .  , m 

CT=l c j  (xj ) s 8 
I I prob. [ C T = l t i j ( ~ ) z j  - h i ( w ) - y i  < O l + a i ,  i=l: .- .N 

and z = ELl qi [wi - yi ]+ is  minimized . 

Because these probabilistic constraints are very difficult t o  handle, w e  may 

consider finding an  approximate solution by replacing the  probabilistic 

constraints by 

where 

and f o r  j =O,.. ,n and k =O ,... ,n 

If t he  random variables t y  (a), j=O, ..., n are jointly normal, then the  res- I I 
trictions generated by the  deterministic constraints (6.14) are exactly the  

same as those imposed by the  probabilistic constraints, but in general they 

are more restr ic t ive,  cf. Propositions 1.25 and 1.26 in Wets, 1983a. Without 

going into the  details, w e  can see tha t  (6.14) is obtained by applying 

Chebyshev's inequality and this, in general, determines an  upper  bound f o r  

t he  probabilistic event 



FIGUP& 4. Objective of expectation-variance model. 

So if we can justify a near  normal behavior f o r  the random variable (for 

fixed x ) 

we can use the constraints (6.14) instead of the probabilistic constraints to  

obtain an approximate solution of (5.17). Note that  in this setting, 'hear 

normalitp" of the y i  (x ,*) is a much more natural, and weaker, assumption 
N 

than normality of the Lij. Assuming that  we proceed in this fashion, w e  

obtain the nonlinear program: 



find z E Rn such tha t  

rj- s zj s rj+, j=o, . .  - . n 
C;=1 %j zj bi * i=1 ,  - - ,m 

C&1 cj (4 ) 5 B 
and 

I 
2 = CIN.1 qi  [Cf=o & j X j  

I + (1  -ai ) -2 C h o  peO uijk zj z k  )% - yi j + i s  minimized 

where r{ = ro+ = 1. W e  have eliminated the variables (p i ,  i =1, - . . ,N) 

from the  formulation of the  problem by using the  fact  tha t  the optimal y; 

can always be chosen s o  tha t  (6.14) is satisfied with equality. Moreover, if 

the  desired concentration levels yi are low enough, then w e  know that  the 

optimal solution will always have y; > yi and thus w e  can rewri te  (6.15) as 

follows: 

find z E Rn such tha t  
- 

r j  s zj 5 7;: j =O, ..., n 

cfnLl aij zj 5 bi , i = I ,  ..., m 

Cr"=l cj (zj)  s B 
and 

i 
2 = C&l p., [C?=O &j zj 

1 + ( 1  -ai ) -2 (C?=, Cr=, uijk zj zk)%-yi is minimized. 

The objective of this  optimization problem is sublinear, i.e., convex and 

positively homogeneous. Assuming tha t  the  cost functions c, are linear,  o r  

more realistically have been linearized, see Section 4.3, w e  are thus con- 

fronted with a nearly l inear  program that  w e  could solve by specially 

designed subroutines (nondifferentiability at 0), o r  by a linearization 

scheme that  would allow us t o  use l inear programming packages. Now 



observe that the nonlinear program (6.16) is exactly of the same type as 

(6.6) if w e  make the following adjustments: 

(i) in the  objective of (6.16) replace the covariance term 

z&o xt=o uijk xk xj by the sum of the  variances xFZi uij, zp; 

and 

(ii) if fo r  all i =1, ..., N ,  the ai a r e  the same set 8 = (l-ai )-I, other- 

wise we replace Q by 8 = (l-ai )* in (6.6). 

To justify (i),  w e  appeal t o  (6.4). 

In the derivation that  led us from (5.17) t o  (6.16), w e  stressed the fact 

that the solution of (6.16) and thus equivalently of (6.6), would be feasible 

fo r  the  original program (5.17), and that in fact i t  would more than meet the  

probabilistic constraints specified in (5.17). The fur ther  linearization of 

the objective bringing us from (6.6) t o  (6.7) overstresses (possibly only 

slightly) the role that the variance will play in meeting the prescribed reli- 

ability levels. In terms of model (5.17), w e  can thus view the  solution of 

(6.7) as a "conservative" solution that overestimates the  importance t o  be 

given to the stochastic aspects of the problem. In that  sense, the solution 

of (6.7), especially in comparison to that of the  deterministic problem 

(5.12). always indicates how w e  should adjust the  decisions so  as to  take into 

account the stochastic features of the  problem. 

In our analysis (see Section 8), w e  have used the linear programming 

version (6.7) of this expectation-variance model; the  wide availability of 

reliable linear programming packages makes it  easy to  implement, and thus 

an attractive approach, provided one keeps in mind the  reservations 

expressed earl ier .  



7. S O L W G  EMOM: STOCHASTIC YERSION 

W e  outline he re  a method f o r  solving the  "full" stochastic version of 

the  eutrophication management optimization model (5.11). W e  recognize 

(5.11) as a stochastic program with simple recourse,  with technology matrix 

T and r ight  hand sides h stochastic. When only h is stochastic and the  

objective function (recourse cost function) is piecewise linear,  efficient 

procedures are available f o r  stochastic programs with simple recourse,  cf. 

Wets, 1983b (implemented by Kahlberg and Kusy, 1976); f o r  a r e p o r t  on 

numerical experimentation with this code, see Kusy and Ziemba, 1983; and 

Nazareth, 1984; f o r  a different algorithmic approach and a progress  r epo r t  

on i t s  implementation. But h e r e  w e  have t o  deal as with nonlinear (convex) 

recourse  costs. In o r d e r  t o  deal with this class of problems, a new pro- 

cedure was developed which exploits the  propert ies  of a dual associated t o  

problem (5.11). 

Replacing the  budget constraint by the  equivalent l inear system, cf 

(4.5) and the  related discussion, substituting cj + rj- f o r  z j  , defining 

and dropping the  -, w e  obtain a version of (5.11) t ha t  f i ts  into the  following 

class of problems: 

find z E Rn such that  

and z = ZG1 [ c j x j  + ]  + E { qf e 0 [ef'vf (w ) 
j  



t o  which one refers  as quadra t i c  stochastic programs w i t h  simple 

recourse. Here m ,  = N ,  c j  = d j  = 0 ,  and the system 

(CTzl a f j  S bf , i =l, ... ,m l )  has been expanded (ml  > m )  t o  include the 

budgetary constraints. The 8 function is  defined by (5.9). For problems of 

this type, in fact with this application in mind, an algorithm is  developed in 

Rockafellar and Wets, 1983, which relies on the properties of a dual prob- 

l e m  which can be associated t o  (7.1). In particular it  is  shown that the fol- 

lowing problem: 

find y E RT and z (e): Q -. measurable such that (7.2) 

O S z f ( w ) s q i ,  i =I, - . ,m2 

ei 
and CFA~ y i  bi - CT2: E + - 

2% 

-xI;L=l rj  d j  8 (dj-l uj  ) is maximized , 

is dual to the original problem, provided that fo r  i =l ,..., m 2 ,  the ei and qi 

are positive (and that is  the case here)  and for  j = 1, ... ,n , the d j  > 0 which 

is  not the case. This can be taken ca re  of in two different manners. 

First, one should observe that the Duality Theorem proved in Rockafel- 

lar and Wets, 1983, remains valid fo r  d j  = 0 provided that the function 

u j  + r j d j e ( d j - l u j )  

be replaced by 

uj -. rj O - ( u j )  

when d j  = 0 ,  where 



(the function r j  Q '(4 i s  the  limit of the  collection rj d j  8 (dj-I m) as d j  tends 

t o  zero). The same proof applies. An algorithm f o r  solving this problem - 
i.e.. (6.1) but with r j  d, Q (d;' wj),  replaced by r j  Bm(wj) in the  objective 

- could be constructed along the  same lines as those of the  method t o  b e  

described h e r e  below. The basic difference being that  Q " i s  not differenti- 

able  and that  needs t o  b e  handled appropriately. 

Second, to introduce in the  objective of (5.11) an artificial perturba- 

tion of the  objective tha t  would result  in a problem of type (7.1) with the 

prescribed properties.  In the  algorithm to be described such quadratic 

terms are added in a most natural fashion. The overall s t rategy i s  that  of 

t he  proximal point algorithm, studied by Rockafellar, 1976. W e  generate a 

sequence of feasible solutions f x  ', v = 1 ,  - - of (6.1) with each x v  the  

(unique) optimal solution of (7.1) where c j  and d j  a r e  replaced by 

and 

d," = d j  + p, r j  ; 

t he  scalars p, r 0 with p, > 0. Since f o r  each v, d r  > 0 (the rj >O and 

p, > 0), w e  can apply the  Duality Theorem of Rockafellar and Wets, 1983 (as 

stated), the  dual being exactly (7.2) with c j  and d j  replaced by c y  and djv 

for j = 1, ..., n .  This dual problem is then solved and the  (optimal) multi- 

pliers associated t o  the  equations 

give us x V  the  optimal solution of problem (7.1) with the adjusted coeffi- 

cients c," and d,". W e  then generate c,"+I and d,"+l and again the  resulting 



dual is solved. W e  repeat  this until an e r r o r  bound (involving the evaluation 

of the objective function at zV) is below a preset level. A detailed descrip- 

tion of the method (in a somewhat more general setting), i ts convergence 

and various e r r o r  bounds can be  found in Rockafellar and Wets, 1985. 

Every iteration of the algorithm, from z t o  z + l, involves the  solu- 

tion of a problem of type (7.2). which can almost be viewed as a nonstochas- 

t ic  problem except fo r  the simple constraints 

The method that w e  use relies on a finite element representation of the zi (a) 

functions, that is chosen s o  that the above constraints a r e  automatically 

satisfied. Let til (a), I = 1, ..., L be a finite collection of functions such that  

for  all 2 , 

If this collection of functions is rich enough, o r  if chosen s o  that the 

optimal z;(*) that  is  par t  of an optimal solution of (7.2), lies close t o  their  

linear span, w e  write 

where the Ail are weights associated t o  the functions til (a) such that  

Cf=l Ail = 1, 2 for  all I . 

The generated functions zi(*) a r e  always between 0 and qi and the  con- 

straints (7.4) can be ignored. With the substitution (7.5), the  dual problem 

(7.2) becomes a f in i t e  d imensional  quadratic program 



find y El?:' and f o r i = l  ..... m 2 .  I=1. ... L ,  A ,  a such tha t  (7.6) 

= cj - zF=l ai j  yi - xf=l Ail Gl , j =1, .... n and 

and 

+ zT=l r j  d j  f3 (dl-'uj ) is  minimized 

where 

The only question is t o  know if t he  collection ( ( i l (* ) ,  I = I ,  ..., L j is rich 

enough t o  yield a solution of (7.1) by solving (7.6). This is resolved in the  

following fashion. Let (y^, z^(*)) with 2(*) = EL1 xil til (*) be t h e  solution 

generated by solving (7.6). This is a feasible solution of (7.2), but not 

necessarily a n  optimal solution. W e  then solve the  following problems: f o r  

i = 1, ..., m2 

I I find E argmin C(y^,O 10 r < r pi 1 I (7.7) 

c. 
where 9(y^,*) is  t h e  objective function of (7.2) obtained by setting y = y .  

This is a very simple optimization problem, in f ac t  i ts  solution is given by 

the  formula: f o r  i = 1, ..., m2 
\ 

where f are the  multipliers associated t o  the  equation (7.3), f o r  t h e  optimal 



solution (y^ ,XI) of (7.6) and O ' is  the  (particularly simple) derivative of 8. If 

w e  add these functions t o  those used t o  represent  z (a), by solving the  aug- 

mented problem (7.6) with L + 1 ,  instead of L ,  w e  are guaranteed t o  obtain 

an  improved solution of (7.2) unless (y^ ,z^(a)) i s  already optimal f o r  (7.2). 

For fu r the r  details, including a n  analysis of the  convergence r a t e ,  consult 

Rockafellar and Wets, 1985. 

An experimental version of this algorithm w a s  implemented at IIASA by 

A. King (and is available through IIASA as p a r t  of a collection of codes f o r  

solving stochastic programs), see King, 1985. W e  start the  procedure by 

- A - 
solving the  deterministic problem (5.12) with Li = hi and t f j  = t f j .  This 

gives us a vector  x with v = 1 that  is used t o  define the  vectors  c V  and d V, 

and f o r  i=1, . . . .m2: 

In addition t o  this function tl, w e  also include in o u r  s tar t ing collection of 

finite elements t" = 0 and to = q .  The optimal solution of t he  quadratic 

program (7.6) and the  associated multipliers are then used t o  generate  

through (7.8) a new function (leading up t o  a l a rge r  version of (7.6)) o r  

the  solution is recognized as optimal (or  more exactly &-optimal). In this 

latter case, w e  use the  (optimal) value of the  multipliers zV+l associated t o  

t he  equations tha t  define u,, j = 1, . . ,n as t h e  s tar t ing point of a new 

major cycle, redefining cVfl and dV+' and proceeding from t h e r e  as indi- 

cated above. The algorithm is stopped when the  gap, between the  objective 

of the  original problem (7.1) evalued at z = xV+' and the  objective of i ts  

dual evaluated at y and zV+'(a) obtained from the  (last) solution of (7.6), 

is  sufficiently small. 



The distribution of the random elements ti, (-1 and hi (*I is  replaced by a 

discrete distribution obtained from the output of NLMP2 and LEMP by s a m -  

pling. For a number of reasons including numerical stability considerations 

and the  speed-up of the  computation, i t  is  recommended t o  start with a rela- 

tively small sample increasing its size only fo r  verification purposes. W e  

have observed that  a relatively s m a l l  sample, about 50, will give surpris- 

ingly good results. 

To solve the  quadratic program (6.6) w e  used MINOS (Murtagh and 

Saunders, 1983). Much could be  done t o  improve the  performance of that 

pa r t  of the  algorithm, a specially designed quadratic programming subrou- 

tine should be able t o  exploit not only the  structure of this quadratic pro- 

gram but also the  fact that  when introducing an additional finite element w e  

can use the previous solution t o  simplify the search f o r  a new basis, etc.  



8. APPLICATION TO LAKE BALATON 

8.1. Background for Lake Balaton 

8-1.1. Description of the lake. its watershed and possible control 
measures 

Lake Balaton (Figure 5), one of the largest shallow lakes of the world, 

which is  also the center  of the most important recreational a r e a  in Hun- 

gary, has recently exhibited the unfavorable signs of artificial eutrophica- 

tion. An impression of the major features of the lake-region system, of the 

main processes and activities, about the underlying research, data availa- 

bility and control alternatives can be gained from Figure 5 and Table 1 (for 

details, see Somlyddy e t  al, 1983; and Somlyddy and van Straten, 1985). 

Four basins of different water quality can be distinguished in the lake (Fig- 

ure  5) determined by the increasing volumetric nutrient load from east t o  

west* (the biologically available load, BAP, is about ten times higher in 

Basin I than in Basin IV,  Table 1, line 7). The latter is associated t o  the 

asymetric geometry of the system, namely the smallest western basin drains 

half of the total watershed, while only 5% of the catchment a r e a  belongs t o  

the larger  basin (Table 1, lines 2 and 4). 

Based on observations for  the period 1971-1982 the average deteriora- 

tion of water quality of the  entire lake is about 20% (in terms of Chl-a). 

According to  the  OECD classification, the  western pa r t  of the lake is in a 

hypertrophic, while the eastern portion of i t  is in an eutrophic stage (Table 

1, line 9). 

The absolute loads are roughly equal f or  the  four basins 





TABLE 1. Major features of the lake and its watershed. 

Basin 
2 Watershed a r e a  [km 1 

U s e  of the  watershed 

Lake surface a r e a  [km 2 

Volume [106m31 

Depth [m] 

BAP load [mg/m3dl 

Climatic influences 

Water quality 
3 

(Chi a),,, [mg/m 1 

10. Sediment 

11. Data 

12. Research 

13. Models developed 

14. Methodologies 

15. Measures of short-term control 

16. Policy making 

I TI 111 IV Whole lake 

2750 1647 534 249 5180 

agriculture and intensive tourism (main season: 
July and August) 

no stratification; large fluctuation in tempera- 
ture (up to  25-28%); 
2-month ice cover; strong wind action 

(a) 75 38 28 20 late seventies 
(b) 150 90 60 35 1982 
hyper-eutrophic state; P limitation till the end 
of the seventies; large year-to-year fluctuation 
in Chl-a depending on meteorology and hydrolo- 
gy; 20% per  year  increase in Chl-a during 
1971-1982; marked longitudinal gradient 

internal load nowadays is roughly equal t o  the  
external BAP load 

long hydrological and wheater records; regu- 
lar water quality and load survey since 1971 
and 1975, respectively 

increasing activity in Hungary in various insti- 
tutes during the past 30 years; joint study of 
TIASA, the  Hungarian Academy of Sciences and 
the Hungarian National Water Authority, 1978- 
1982, see Somlyddy et al. (1983). 

various alternative models fo r  the  components 
indicated in Figure 1, see Somly6dy e t  al. 
(1983) 

OD and PDE models, regression analysis, Kal- 
man filtering, t i m e  series  analysis, Monte Carlo 
simulations, uncertainty analyses, optimization 
techniques 

P precipitation on existing treatment plants; 
pre-reservoirs 

Government decision in 1983: P control is be- 
ing under realization 



The lakes' to ta l  P, LT is in an average 315t / yr (the BAP load is 

170t / y r ) ,  but depending on the  hydrologic regime i t  can  reach  550t / yr. 

53% of LT is  c a r r i ed  by t r ibutar ies  (30% of which is of sewage origin - 
indirect load, see e.g., the  largest  city of the  region, Zalaegerszeg in Fig- 

u r e  5 ) ,  17% is associated t o  d i rec t  sewage discharges ( the recipient is  the  

lake). Atmospheric pollution if responsible f o r  8% of t he  lake 's  TP load and 

the  rest is formed by d i r ec t  runoff (urban and agricultural) .  Tributary load 

increases from east t o  west, while the  change in the  d i rec t  sewage load goes 

in the  opposite direction. The sewage contribution (direct and indirect 

loads) t o  LT is  30%, while about 52% t o  LBRP (the load of agr icul tural  origin 

can be  estimated as 47 and 33%, respectively) suggesting the  importance of 

sewage load from the  viewpoint of the sho r t  t e r m  eutrophication control. 

Figure 5 indicates a lso t he  loads of sewage discharges and t r ibutar ies  which 

were involved in t he  management optimization model. These cover  about 85% 

of the  nutrient load* which w e  consider controllable on the  sho r t  t e r m  (e.g. 

atmospheric pollution and d i rec t  runoff are excluded). 

Control a l ternat ives  are sewage treatment (upgrading and P precipita- 

tion) and the  establishment of pre-reservoirs  as indicated in Figure 5 (see 

e.g. t he  Kis-Balaton r e se rvo i r  system planned f o r  a surface a r e a  of about 

75 km2). Besides Hungarian r e sea rch  activities, the  problem of Lake Bala- 

ton was studied in t he  framework of a four-year cooperative r e sea rch  pro- 

ject on Lake Balaton involving the  International Institute f o r  Applied Sys- 

t e m s  Analysis, IIASA (Laxenburg, Austria), the  Hungarian Academy of Sci- 

ences, and the  Hungarian National Water Authority (Somlybdy, 1982 and 

* The rest represented by several small creeks and sewage outlets were neglected for the 
sake of simplicity. 



1983a; Somly6dy et al, 1983). The development of the management model t o  

be discussed he re  formed a pa r t  of the  Case Study. The results achieved 

were then utilized in 1982* in the policy making procedure associated with 

the  Lake Balaton water quality problem which was completed by a govern- 

mental decision in 1983 (Ldng, 1985). 

8.1.2. Specification of elements of EBIOBI for Lake Balaton 

(a) Lake eutrophicat ion model, L E W  

Starting from a four-compartment, four-box dynamic phosphorus cycle 

model (van Straten, 1981), LEM, the aggregated model LEMP of a s tructure 

defined by Equation (3.1) was derived by a systematic analysis a s  described 

in Section 2. A s  seen from Figure 6, illustrating the deterministic version 

of LEMP, the = (Chl-a)ma,~i indicators (1 S i S 4) are really linearly 

dependent on the sum of the external and internal loads (see also line 10  in 

Table 1). The matrix D takes a specific bloc-diagonal s tructure in this case, 

since neighboring basins a r e  only related in a unidirectional way from west 

t o  east,  which indicates that  any management actions performed on the 

eastern subwatersheds have no effect on water quality of the  western basins 

(dii range between 20 and 35, while elements related to  interbasin 

exchange a r e  smaller by an order  of magnitude). 

A t  t h a t  t ime only t h e  results of t h e  expectation-variance model were available, the 
development of which was the fastest. 



LYp (mg/m3d) 
l nternal load 

L;,, (mg/m3d) 
External load 

FIGURE 6. Aggregated lake eutrophication model: deterministic version of 
LEM?. 

The stochastic version of LEMP w a s  derived from a Monte-Carlo type 

usage of LEM under synthetic time ser ies  generated by models METG and 

NLMPl (Figure 1). The analysis has shown that  in the  non-controlled case 

(Chl-a),, fo r  Basin I can range between 30 and 90 mg/m3 (i40X around the  

mean) depending solely on meteorological factors; a strikingly wide domain. 

Such fluctuations can mask the  effect of considerable load reductions. The 

sensitivity of t h e  o ther  basins in the  lake is smaller: t he  coefficients of 

variation of (Chl-a),,, f o r  Basin I1 ... IV are 10, 6 and 5% (it i s  13% f o r  

Basin I). 

If stochastic variations in loads are also taken into account, t h e  coeffi- 

cient of variation f o r  Basin I goes t o  20% and the  extreme value of 

(Chl-a),, can reach  150 mg/m3*. Upper extremes fo r  subsequent basins 

are 60, 35 and 25 mg/m3, respectively. A s  apparent  from Figure 7, 

* A value observed in 1982 (Table 1, line 9) when the prognosis was already available. 



referring to  Basin I under pre-reservoir control, linearity is preserved a s  

before, and not only fo r  the  mean, but also for  statistical properties of the 

typically skewed distributions (standard deviations and extreme values). 

Basin I 

1 '  
/ l 6 O 1  

3: mean; 2 and 4: * standard deviation; 1 and 5: extremes; E 
is the  operator  of expectation. 

FIGURE 7. Aggregated lake eutrophication model: stochastic version. 

The analysis outlined here  led t o  the  specification of Equation (3.1) for  

Lake Balaton; for  details the reader  is refer red  t o  Somlyddy (1983b) and 

SomlyCldy and van Straten (1985). 



(?I) Nutrient Load model, N L M R  

The nutrient load model f o r  Lake Balaton can b e  derived on the  basis of 

Figure 5 from relation (3.10). The t r ibutary loads, LT and La are computed 

from regression models (Somly6dy and van Straten,  1985) 

where Q is t he  stream flow ra t e ,  & is  t he  residual, and the  variable # 
N 

accounts f o r  the  influence of infrequent sampling (#-  is  t he  lower bound). 

The most detailed data  set including 25 years  long continuous records  f o r  Q 

and 5 years  long daily observations f o r  the  loads w a s  available f o r  the  Zala 

River* (Figure 5) draining half of t he  watershed and representing practi- 

cally t he  total  load of Basin I. For the  Zala River Lp was found t o  have a 

normal distribution, while QN was approached by a lognormal distribution. 

The time s tep  of t he  original model employed in NLMP 1 (Figure 1 )  w a s  a 

month and tha t  of the aggregated version used in NLMPZ a year .  The loads 

of o ther  t r ibutar ies  w e r e  established on the  basis of much more scarce 

observations. For  modeling the  uncertainty component of #, f i r s t  a Monte- 
N 

Carlo analysis w a s  performed on the  Zala River data  by assuming various 

sampling strategies.  Subsequently, t he  conclusions were extended t o  the  

o ther  r ivers  and the  parameters  of the  (assumed) gamma distributions of # 
N 

were estimated. 

I t  should b e  noted tha t  t he  nonlinearity related to the  product terms 

(zD axrn) in NLMPZ w a s  handled in both ways, see (3.8) and (3.9), indicated 

in Section 3 in the  expectation-variance model, while through t h e  constraint 

equation (3.9) in o the r  management models discussed in Section 5. 

* I t s  annual load estimated from daily data can be considered accurate. 



(c) Cbntrol var iables a n d  cost funct ions 

A l l  the  optimization models implemented use real-valued control vari- 

ables. Integer { O , l j  variables for  the two reservoir systems (see Figure 5) 

were also used by simply fixing the  variable values a t  0 o r  1 a s  pa r t  of the 

input. The elaboration of cost functions was based on analyzing a variety of 

technological process combinations (leading to  different removal efficien- 

cies) for  treatment plants included in the  analysis (Figure 5). A s  an exam- 

ple, the  cost function for  the largest treatment plant, Zalaegerszeg (see 

Figure 5) the  capacity of which is  Q, = 1 5 0 0 0 m 3 / d ,  is  given in Figure 8*. 

Three groups of expenses are illustrated in the  figure: 

( i  Investment cost required for  upgrading biological treatment; 

(ii) Investment cost of P precipitation which increases rapidly with 

increasing requirements. The use of piecewise linear cost func- 

tions required the  introduction of th ree  dummy variables for  each 

treatment plants. 

(iii) Running cost 

Roughly U S  81 is equivalent t o  50 Forints (Pt). 



FIGURE 8. Costs of sewage treatment (Zalaegerszeg) . 
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For pre-reservoirs linear cost functions of the surface area (and con- 
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8.2. Results of the expectation-variance model 

In o rde r  to  gain an  impression of the charac ter  of the problem and the 

behavior of the solution, f i rs t  w e  specify a "basic situation" (which is close 

t o  the  r ea l  case) having the following features and with the  following 

assumptions (Somlyddy , 1983b): 

(i) control variables a r e  continuous; 

(ii) no effluent standard prescription is given; 

(iii) no P retention takes place in r ivers  ( r p  = 0, see  Equation 

(3.10)); 

(iv) the capital recovery factor  is equal f o r  all the  projects, 

a~ = a = 0.1 and 

(v) equal weighting is adopted (see qi and 6 in Section 6). 

With these assumptions optimization w a s  performed under different 

budgetary conditions (TAC S @ = 0.5-25.10'~t / yr ) .  Statistical parame- 

t e r s  (expectation, standard deviation and extremes) of the water quality 

indicators gained from Monte Carlo procedure* a r e  illustrated in Figure 9 

f o r  the  Keszthely basin as a function of the  total annual cost, TAC **. 

In Figure 10, w e  record the  changes in the  two major control variables 

(zml and zDi) associated t o  the  treatment plant of Zalaegerszeg and the  

reed  lake segment of the  Kis-Balaton system (see Figure 5). There is a sig- 

nificant trade-off between these two variables. For decision making pur- 

poses, i t  is  important t o  observe that  there  are four ranges of possible 

values of @ (the budget), in which the  solution has different characteristics. 

* 1000 simulations were performed in each case. 
** Running cost i s  about ten times larger than TAC. 



Expectation varianat model, Eq. (6.7) 
X Stochastic model with recourse, Eq. (5.1 1) 

y, = (48,28,24, 181, i = ( 1  ,..., 4) 
e .=5.0 ,  qiSlO.O, i = ( 1 ,  ..., 4) 

Basin I 

95% confidence level 

. . -. 

min {Y 
%x A 

0 
.a 
c. v w dylT b 

10 20 0 > TAC [lo7 Ftlyr] 

FIGURE 9. Water quality indicator (Chl -a),,, as a function of the total an- 
nual cost. 

- Expectation variance model 

- Stochastic model with recourse 

Basin I --- ei = 5.0, qi = 1.0, i = ( 1  ,..., 4) 

-- 

Typical 
domains 0 0 0 

- 
4 > TAC 

FIGURE 10. Change of major decision variables. 



(i) In the  range of 6 = 0.5-5.10~- / yr,  i t  appears that  sewage 

treatment can be intensified and ter t iary treatment introduced. 

Expectation of the  concentration levels will  decrease consider- 

ably, but not the  fluctuations. Under very s m a l l  costs (4.3.107rt  

investment costs, IC) i t  turns out that only the sewage of Zalae- 

gerszeg (Figure 5) should be treated. Under increasing budget, 

potential treatment plants are built, going from west to  east. 

(ii) If /3 is between 5.10~ and 10.10~FY / yr ,  the effectiveness of 

sewage treatment cannot be increased fur ther  but reservoir sys- 

t e m  are still too expensive. 

(iii) A t  about /3 = 15.1o7FY / yr the solution is a combination of terti- 

a r y  treatment and reservoirs. Fluctuations in water quality are 

reduced by the latter control alternatives. 

(iv) Finally around /3 = 20.10~- / y r ,  tertiary treatment is dropped in 

regions where reservoirs can be built. A f t e r  constructing all the 

reservoirs no fur ther  water quality improvement can be achieved. 

Concerning the model sensitivity on major parameters, the following conclu- 

sions can be drawn (for details see Somlyddy, 1983b; and Somlyddy and van 

Straten ,1985): 

(i) Fixed water quality standard not reflecting the  properties of the 

system (spatial non-uniformities) can result in a strategy far from 

the optimal one, since the distribution of a portion of the budget is 

a p r i o r i  determined by the pre-set standard. 

(ii) Under increasing P retention in r ivers  the improvement in water 

quality is less remarkable in the  budget range 0-10.10'rt / yr 



than in the basic case. The worst - nevertheless nearly unrealis- 

t ic - situation is  if all the phosphorus was removed along the 

r iver  and still treatment has t o  be performed: the  budget should 

be partially allotted for  investments having no influence on the 

lake's load. 

(iii) If only deterministic effects are considered (8 = O), reservoir  

projects enter  the  solution under much larger  budget values, see 

Section 8.4. 

(iv) If the  capital recovery factor is  s m a l l e r  fo r  reservoir  projects 

than fo r  sewage treatment plants, see  Section 4.3, reservoir  pro- 

jects start t o  be feasible at smaller budgets. E r r o r s  in the effi- 

ciency o r  in costs of reservoirs cause similar shifts in the solu- 

tion. 

(v) When selecting properly the  model parameters, the  combination of 

the absolute load reductions for  the four basins is maximized by 

the model (as i t  is suggested most frequently in the  literature, see 

the Introduction). Since, however, the absolute loads alone do not 

reflect the  spatial changes in water quality, the  policy drastically 

differs from the  optimal one. 

Subsequently w e  give the  "realistic" solution fo r  the Lake Balaton 

management problem by using 

- actual retention coefficients (ranging between 0.3 - 0.5) 

- upper limits 0.9 fo r  the P removal rate of reservoirs; and 

- fixed variables f0,0.9] fo r  the  Kis-Balaton reservoir  system. 



Figure l l * ,  which r e f e r s  again t o  t he  Keszthely bay, shows remarkable 

differences as compared t o  Figure 9. First  of all the  drast ic  effect of 

reservoirs  upon expectation but even s tronger  upon fluctuation of water 

quality is  stressed. Reservoirs en t e r  t h e  solution between 15.10~ and 

17.5.10~m / yr total annual cost resulting in a reduction in t h e  mean 

( C h l a ) , , ,  concentration from about 55 t o  35 mg/m and in t he  extreme 

values from more than 100 to about 60 mg/m 3. 

0 ExpecUtiomnunw tmcbl 

X Stochastic model wlth ncwm 

7, = (48.28.24.18). i = (1 ,..., 4) 

ei = 5.0, qi = 10.0, i = (1 ,..., 4) 
- 

1 From dytumic lake eutrophiution model 

i Hypertrophic 

Eutrophic 

I 1 I Mezotrophic 

I I I 
Oligotrophic 

0 10 20 
,3 > TAC 110' Ft/yrl 

4: expectation; 3 and 5: 2: 95% confidence level; 1 and 6: 
extremes. 

FIGURE 11. Solutions of EMOM f o r  lake Balaton, Basin I. 

* In t h e  Figure f standard dev ia t ion  and t h e  upper 95% confidence level a r e  a l s o  i l lus tra t -  
ed  ( the  d i s tr ibut ions  a r e  bound towards  m a l l  5 concentrat ions  and t h e  lower 95% confi-  
dence l e v e l  v a l u e s  a r e  c l o s e  t o  t h e  minimum). 



While Figure 9 offers  several solutions fo r  a decision maker depending 

on the budget available, on the  basis of Figure 11, only two feasible alterna- 

tives come to  mind: 

(i) If total annual cost of about 2.5.107m / yr is available, all the 

sewage projects can and should be realized (going from w e s t  t o  

east). Through this alternative the expectation of 

XI = (Chla),, is reduced to about 55 mg/m (ter t iary treatment 

affects the water quality at a slightly smaller extent than in the 

basic case due to  P retention of tributaries) but still extremes 

la rger  than 110 mg/m can occur (hypertrophic domain according 

to  the  classification of OECD, 1982). Further  increase in the  

budget (up to 1 0 . 1 0 7 ~  / y r )  has no impact on water quality (under 

the  alternatives included in the analysis). 

(ii) If budget around 20.107Ff / yr is given (not only the  Kis-Balaton, 

but) all the  reservoirs  can be established and te r t ia ry  treatment 

can be realized f o r  direct  sewage sources. The m e a n  (Chla),,, 

concentration is  about 35 mg/m while the  maximum about 60 mg/m 

(eutrophic stage). 

In Figure 11 the  resul ts  of a detailed simulation model f o r  t w o  optimal 

solutions (TAC = 2.5.107R and 2 0 . 1 0 ~ ~ )  a r e  also given. The agreement 

between the  calculated concentration indicators suggests tha t  the  aggre- 

gated lake eutrophication model is  quite appropriate f o r  our present pur- 

pose (Figure l ,  Phase 4). . 

Figure 12 compares the  typically skewed probability density functions 

of t w o  considerably different solutions ( 8  = 2 . 5 . 1 0 ~ ~  and 2 0 . 1 0 ~ ~  



respectively) f o r  four  basins: derived from Monte Carlo simulations (the 

non-controlled state is  also given in this figure). A l s o  from this  figure w e  

can conclude that  t e r t i a ry  treatment is  more effective than reservoi rs  

(when both alternatives are available) f o r  controlling t h e  m e a n  concentra- 

tion, but fluctuation can be  controlled by reservoi rs  only. In t h e  case @ 
(6 = 2 .5 .107r t /y r )  Basin I remains hypertrophic,  Basins I1 and I11 

eutrophic, whilst Basin IV mesotrophic. In t he  second situation 

(6 = 20.107rt / y r )  t h e  spatial  differences and stochastic changes are much 

smaller: Basin I...III are eutrophic and Basin IV mesotrophic (the long-term 

improvement of water quality is  certainly l a rge r  than the  sho r t  term one 

discussed here) .  

From all what w e  learned through t h e  management model, i t  follows tha t  

in o r d e r  t o  realize t h e  optimal shor t  term strategy of eutrophication 

management 

- t e r t i a ry  treatment of d i rec t  sewage discharges should be  intro- 

duced (from west to east); 

- depending on t h e  budget available t e r t i a ry  treatment of indirect 

sewage discharges of pre-reservoirs (again from west to east)  

should be  realized. 

For fur ther  details of t h e  management s t rategy worked out f o r  Lake Balaton 

and o the r  management models not discussed in this  paper ,  t he  r eade r  is  

r e f e r r e d  to Somlyddy (1983b) and Somlyddy and van St ra ten  (1985). 
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FIGURE 12. Probability density functions for two different situations 
(from 1000 Monte Carlo simulations). 

( 1 )  0 = 2.5. lo7 Ftlyr 
Basin IV 

f Basin I I I 

Basin I I 



8.3 Results of the Stochastic Recourse Model 

A s  seen from Table 1 (line 9). the  nominal s tate  of water quality is  given 

by the  indicator vector YOi = (75,38,28,20), (i  =(I,. . . ,4)). Goa l s  were speci- 

fied by yi  = (48,28,24,18) expressing the desire that Basin I should be 

shifted to  the  eutrophic, and other  segments to  the  mesotrophic state (see 

Figure l l ) ,  but without forcing a completely homogeneous water quality in 

the  entire lake on the short  term, which would be unrealistic. 

The definition of these goals, however, means that  the improvement 

intended to  be achieved is  quite uniform fo r  the four basins in a relative 

sense: as compared to the  maximal possible reduction in the water quality 

indicator on the short  t e r m  (see Figure 6). w e  plan 50-60% improvement fo r  

Basins I, 11, and 111. Basin IV (with 20%) is the only exception as its water 

quality is presently quite good, but this segment plays a secondary role 

from the viewpoint of the  management problem. 

Other parameters of the objective function (see (5.11) and Figure 3). 

ei and q i ,  w e r e  selected uniformly for  the four basins: ei = 5 and 

qi = 10, i =1, . - ,4. This corresponds, in the region zi S 5, to  a "variance 

formulation" of the objective function (being similar to  (6.1)) as q / 2e = 1. 

With these parameter values, the  quadratic portion of the utility function is  

predominant in Basins 11, 111, and IV, while fo r  Basin I the upper linear por- 

tion of the utility functional is  also of importance. 

Results of the stochastic optimization model with recourse are also 

illustrated in Figures 9-11, in comparison with that of the  expectation- 

variance model. A s  seen from Figures 9-11, the two models produce practi- 

cally the same results in terms of the water quality indicator (including also 



i ts  distribution). With respec t  t o  details t he re  a r e  minor deviations. 

According t o  Figure 10,  the  expectation-variance model gives more 

emphasis t o  fluctuations in water quality (see also fu r the r  on) and conse- 

quently t o  reservoi r  projects,  than the  stochastic recourse model (with the  

parameters specified above), and this is in accordance with the  remarks 

made in Section 6, i.e., t he  ro le  of the  variance is overstressed in the  

expectation-variance model. 

From this  quick comparison of the  performances of the  two models, we 

may conclude tha t  the  more precise stochastic model  validates the  use of 

the  expectation-variance model in the  case of Lake Balaton. 

For a more systematic comparison of the  two models, the  difference in 

the  objective functions should be kept  in mind: the  stochastic model has 

more parameters than the  expectation-variance model. In par t icular ,  the  

exclusion of the  water quality goal from the expectation-variance model 

version plays an important role; the goal can be included only indirectly by 

modifying the  weighting fac tors  in (6.7). Figure 1 0  il lustrates clearly tha t  

the  prescription of the  goal close t o  the  lowest realizable value f o r  Basin I 

(see Figure 6, 90% of the  possible improvement in the  sho r t  term) leads t o  a 

s tronger  emphasis on reservoi rs  as compared, not only t o  t h e  original case,  

but also t o  the  results of the  expectation-variance model. The fas te r  

increase in z~~ (as a function of 8, see  Figure 10)  is associated with a 

decrease in zml - as expected - in addition t o  smaller budget allocations 

f o r  the  o ther  basins. Depending on the  value of yl, in t he  range (35, 48), 

the  solutions lay in the  shadowed areas indicated in Figure 1 0  and the  solu- 

tion of the  expectation-variance model is located in the "center" of these 

domains. 



A s  mentioned before,  the  expectation-variance model gives more 

weight t o  variance than the  stochastic recourse model and f o r  computa- 

tional justification w e  compared curves (A) and (B) in Figure 10. The 

rationality f o r  this  comparison is tha t  in lack of water quality goals and 

with equal weighting, t he  expectation-variance model follows t o  some extent 

the  principle of "equal relative" water quality improvement in all basins 

(other fac tors  - e.g. t he  distribution of costs f o r  basins - play also impor- 

tan t  roles), and in this  sense i t s  solution can best  be compared t o  solution 

(B) of the  stochastic method. 

Further discussion on the  ro le  of parameters yf ,ef and qf , and on the 

comparison of t he  deterministic model (5.12) and the  stochastic model is 

given in the  subsequent section. 

8.4 Comparison of the Deterministic and Stochastic Solutions 
-- Sensitivity Analysis 

In o rde r  t o  gain experience with systems different from Lake Balaton, 

w e  changed some of the  parameters of the Balaton problem and continue our  

presentation on the  application of EMOM with this  modified example. W e  call 

the  hypothetical water body: Lake Alanton. 

Lake Alanton differs from Balaton in the following respects:  

(i) The volume of Basin IV i s  only 6 0 - 1 0 ~ m ~  (see Table 1 ,  line 5); 

(ii) Two d i rec t  sewage loads are increased in t he  region of Basin IV 

(see Figure 5)  t o  50 and 70 kg/d, resulting in the  same absolute 

BAP load than tha t  of Basin I (the volumetric load is however 

l a rge r  due to (i); 2.3 mg/m3/d, see Table 1 ,  line 7); 



(iii) The nominal water quality indicator and the slope of the response 

line was modified for  Basin IV in such a manner, that response 

lines of Basins I and IV coincide (see Figure 6); 

(iv) Cost functions of the two treatment plants were modified (they 

became similar t o  the one illustrated in Figure 9). 

A s  a consequence of these changes, the  water quality of Lake Alanton is 

approximately equally "bad" a t  i ts  two ends. Still, however, an important 

difference exists between Basins I and IV: the load of Basin I is governed by 

"stochastic" tributary load, while that  of Basin IV, is given by "determinis- 

tic" sewage discharges. This way the  low water quality of Basin I is associ- 

ated with large fluctuations (as seen in previous Sections), but randomness 

is of secondary importance for Basin IV. 

The longitudinal distribution of the water quality is now quite different 

from that  of Lake Balaton, and a manager may have the  intention t o  estab- 

lish a uniform quality by control decisions. Accordingly we fixed the goals 

to 71 = 30 mg/m3 i =I. . . ,4, and maintained the same parameter values as 

used in Section 8.3. Results for  the "basic situation" (Section 8.2) a r e  given 

in Figures 13  and 14. 

From Figure 1 3  the same conclusions can be drawn for  Basin I than , 

from Figure 9. The only difference is  that  at a fixed budget the water qual- 

ity improvement is  slightly smaller than for Lake Balaton as a pa r t  of the 

budget is utilized for Basin IV. A s  seen f r o m  the figure, P precipitation is  an 

effective tool for improving the water quality of Basin IV: the concentra- 

tion (Chla),, is  reduced from 80 to about 40 mg/m3 already a t  a budget of 

2 . 5 . 1 0 ' ~  / yr. The increase of @ results in nearly no further  change and 
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FIGURE 13. Lake Alanton: water quality indicator as a function of t h e  to- 
tal annual cost. 
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FIGURE 14. Lake Alanton: major decision variables. 
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FIGURE 15. Sensitivity with respect  to water quality goals. 



the  fluctuations also remain approximately constant, nevertheless s m a l l  in 

comparison t o  Basin I. 

In Figure 14, xss belongs t o  the  largest treatment plant in the  region of 

Basin IV. The cha rac t e r  of xD1(@) and xsN1(@) gained from the  stochastic 

m o d e l  i s  the  same as f o r  Lake Balaton (Figure l o ) ,  while xsq is practically 

constant above @ = 2.5.107R / yr . The most important conclusion of this 

figure can be  drawn from the  comparison of the  stochastic and deterministic 

solutions: the  deterministic quadratic model (5.12) excludes (incorrectly) 

t he  reed-lake p a r t  of the  largest  reservoi r  project  even under the  la rger  

budget values, which is a consequence of neglecting the  random elements of 

the  problem. The (Chl-a),,, concentration is reduced on a n  average t o  

about 40 mg/m3; however, extreme values still can exceed 100 mg/m3; as 

contrasted t o  the  solution of the  stochastic m o d e l  when the  maximum is  

about 60 mg/m3 This example shows clearly if t he  analyst is not able t o  

recognize the  stochastic features  of the  problem, the  control s t rategy 

worked out may lead t o  serious failures. 

The sensitivity of t he  solution with respect  t o  t he  water quality goals i s  

illustrated in Figure 15 refer r ing  t o  a typical budget 1 5 . 1 0 ~ ~  / yr. From 

the  analysis performed and the  figure, t he  following conclusions can be 

drawn: 

(i) If t he  goal is set unrealistically f a r  from the  nominal value and 

from the  values which can be  realized by t h e  available control 

measures (e.g. 0 o r  200 mg/m3 in this  case),  the  penalty function 

has nearly no influence and thus the  solution i s  equivalent t o  t he  

deterministic one (xD1 = 0); 



(ii) The solution is quite sensitive on the  choice of t he  y i .  The vari- 

able z~~ has a maximum at about 40 mg/m3. If t he  goals uniformly 

3 o r  individually f o r  Basins I and IV are close t o  75-80 mg/m the  

corresponding major decision variables. are close to zero (no 

action is taken). 

In summary, w e  can state tha t  the  water quality goal has  a major influ- 

ence on the  solution, i t  forces  indeed the  solution towards the  desired lev- 

els of water quality in t he  different lake basins. This fea ture  is the primary 

advantage of t he  stochastic model with recourse as contrasted to the 

expectation-variance model f o r  the  Lake Balaton case  and i t s  variant Lake 

Alanton. 

A s  t o  t he  ro le  of the  o the r  parameters of t h e  penalty function of t he  

stochastic model is concerned, the  systematic analysis performed did not 

lead t o  unambiguous conclusions. For both examples, Lake Balaton and Lake 

Alanton, the  influence of ei and qi is  of secondary importance as compared 

t o  t he  effect of yi . In general, i t  can be said tha t  t h e  influence is minor f o r  

small and large budgets. In the  middle budget range i t  is  difficult t o  

separa te  the  impact of ei and q i ,  especially because it strongly depends 

also on the  prese t  goals y i ,  and the  stochastic fea tures  of the water quality 

f o r  the  different basins. 

The experience gained in the  frame of t he  present  study suggests t he  

choice of a piecewise linear-quadratic utility function with q  / 2 e  = 1 as a 

f i r s t  step, see (5.9) and Figure 3, and t o  perform a thorough sensitivity 

analysis on the  parameters  y i ,  ei and qi in t he  subsequent steps.  



W e  complete this section with t he  following conclusions: 

(i) The stochastic optimization model with recourse  justified the  

applicability of the  much simpler expectation-variance model f o r  

Lake Balaton; 

(ii) Deterministic version of t he  stochastic objective function and the  

solution of t he  corresponding deterministic quadratic optimization 

problem leads t o  strikingly different and incor rec t  management 

s t ra tegy as compared t o  t h e  stochastic model; 

(iii) The major parameter  of t he  stochastic optimization model with 

recourse  is  t he  water quality goal prescr ibed f o r  different basins. 

The inclusion of t he  goal in t he  objective function is  t he  primary 

advantage in comparison with t he  expectation-variance model. 

The advantage of t he  latter model is, of course,  simplicity and fas t  

implementation; 

(iv) Fur ther  experimentation i s  needed in t h e  selection of parameters  

ei and qi (in t he  objective function of t he  stochastic model). 

In this pape r  w e  deal t  with t he  development and application of stochas- 

t i c  optimization models f o r  Lake eutrophication management. W e  considered 

primarily shallow lakes which are strongly influenced by hydrologic and 

meteorologic fac tors  and thus stochasticity should be  a key component of 

water quality control. 

Major elements of t he  study performed are as follows: 



(i) Identification of important s teps of eutrophication management in 

practice, 

(ii) Based on the  principle of decomposition and aggregation, an 

approach is presented how t o  develop a eutrophication manage- 

ment optimization model, EMOM, which preserves the  scientific 

details of diverse in-lake and watershed processes needed at the  

decision-making level. The procedure combines simulation and 

optimization in the  framework of EMOM. 

(iii) W e  describe the  proposed stochastic, planning type lake eutrophi- 

cation and nutrient load models, LEMP and NLMP2, respectively, 

which are major components of EMOM. 

(iv) W e  discuss control variables, cost  functions and various con- 

s t raints  t o  be  used in EMOM. 

(v) Alternative management optimization models are formulated which 

use the same LEMP, NLMP2, control variables etc., and differ pri- 

marily in the objective function and solution technique to  be  

adopted. Three of them were selected fo r  implementation: a full 

stochastic model, an expectation-variance model, and the  deter- 

ministic (quadratic) version of the full stochastic method. For the  

f i r s t  one a new stochastic programming procedure had t o  be  

developed, while fo r  the o ther  two standard packages could be 

employed. The objective function of t he  full stochastic model has 

one more parameter as compared t o  the  expectation-variance 

model: including the  possibility of selecting the  water quality goal 

t o  be achieved by the  management, which makes this model espe- 



cially attractive. 

(vi) Application to  Lake Balaton. This p a r t  of the study had a direct  

impact on the  policy making procedure performed in Hungary in 

1982 which ended up with a government decision in 1983. 

(vii) Comparison of the  two stochastic models, furthermore determinis- 

t ic and stochastic approaches on the example of Lake Balaton and 

on a modified, hypothetical system (the comparison w a s  associated 

with a detailed sensitivity analysis). 
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