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ABSTRACT

This paper presents several relationships between the notion of associated random vari-
ables and notions of stochastic ordering which have appeared in the literature over the years.
More concretely, the discussion centers around the following question: Under which conditions
does the association of the IR-valued RV’s {Xj,..., X, } imply a possible ordering in some
stochastic sense between the IR"-valued RV X := (Xi,...,X,) and its independent version
X := (X1,..-,Xn)? Some of the results in that direction are as follows: (i) These IR"-valued
RV’s are comparable in either one of the orderings <, <. and <., iff they are identical in
law, and (ii) If the RV’s {Xj,..., X} are associated, certain comparison properties hold for
the stochastic orderings <p, <k and <, defined in Stoyan [8, p. 27]. Strengthening of result
(i) leads to the following results on the stochastic ordering properties of IR™-valued RV’s X
and Y with identical mean: (j) The RV’s X and Y are comparable for <,; iff they are identical
in law, and (jj) If X <p Y (resp. X <k Y) , then X and Y are comparable for <.; (resp.
<¢v) iff they are identical in law. These and related results are given direct applications to

queueing theory and to the assymptotics of associated random variables.
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1. INTRODUCTION

As amply demonstrated in the literature on system reliability, the notion of associated
random variables is a useful one for establishing bounds on the maximum and minimum of
correlated random variables. This paper explores possible relationships of this concept to
various notions of stochastic ordering which have been given in the literature over the years.
The need for establishing such connections suggested itself naturally in the work on Fork-Join
systems reported by the authors in [1], where several upper bounds on the system response time
statistics were obtained through a variety of methodologies. More concretely, the discussion

centers around the following question (Q), where

(Q) Under which conditions does the association of the IR-valued RV’s {X1, ..., X, } imply
a possible ordering in some stochastic sense between the IR™-valued RV X := (X3,...,X,) and

its independent version X := (X1,..., Xn)?

In the process of answering this question, several results were obtained that indicate
how multi-dimensional probability distributions are determined by conditions on their one-

dimensional marginal distributions in the event of stochastic comparisons.

A few words on the notation and terminology used throughout this paper: For any two
vectors z and y in IR™, the ordering = < y is interpreted componentwise and is thus equivalent
to z; < y; for all 1 < 7 < n. A mapping f : IR™ — IR is then said to be monotone non-
decreasing (resp. non-increasing) if £ < y in IR™ implies f(z) < (resp. >)f(y); this notion
of monotonicity is equivalent to componentwise monotonicity. A mapping f : IR" — IR is
convez whenever f(Az + (1 — A)y) < Af(z) + (1 — A)f(y) for all X in the interval [0,1] and
every pair of vectors z and y in IR™. In contrast with the notion of monotonicity introduced

earlier, this notion of convexity does not reduce to componentwise convexity.

All the random variables (RV) considered in this paper are defined on some fixed prob-
ability triple (Q, 7, P). Equality in distribution (or in law) between two IR™-valued RV’s is
denoted by =,;. The definitions of the various stochastic orderings used here are recalled
when needed and the reader is invited to consult the monographs by Ross [6] and Stoyan 8]

for additional information.

Following Barlow and Proschan [3], the IR-valued RV’s {Xj,..., X} are said to be asso-
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ciated if
E[f(X)g(X)] = E[f(X)]E[g(X)] (1.1)
for all monotone non-decreasing mappings f,g : IR® — IR for which the expectations

E[f(X)], Elg(X)] and E[f(X)g(X)] exist. The following elementary property of associated
RV’s [4, Thm. 5.1, pp. 1472] provided the initial impetus for the work reported here.

Lemma 1. If the RV’s {Xi,...,X,} are associated, then the inequalities

P[X;>a;, 1<i<n]|>[[P[Xi>ai] (1.2a)
=1
and
Pl X;<by,1<i<n]>][P[Xi<b;] (1.20)
=1

hold true for all a = (a1,...,an) and b= (by,...,b,) tn IR™

An alternative and useful way of expressing (1.2) is obtained as follows: The IR-valued

RV’s {X1, ..., Xn} are said to form independent versions of the RV’s {Xj, ..., X, } if
(i) The RV’s {X1,..., Xn} are mutually independent , and
(ii) For every 1 < ¢ < n, the RV’s X; and X; have the same probability distribution.
With this notion, Lemma 1 takes the following form

Lemma 1bis. If the RV’s {Xj,...,X,} are associated, then the inequalities
P[Xi>a;, 1<i<n|>P[X;>a; 1<i<n] (1.3a)

and

P[X;<by,1<i<n]|>P[X;<b;, 1<i<n] (1.3b)

hold true for all a and b in IR™.

Upon specializing (1.3) with ¢; = +++ = an = @ and by = --- = b, = b, it is plain that
when the RV’s {X;, ..., X,,} are associated, the inequalities

P| min X;>a]>P| min X;>a] (1.4a)
1<i<n 1<:<n
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and

P| @?gan" <b]>Pi 1rélf'5)(nXi <b] (1.4b)

hold true.

Following Stoyan [8], with minor variations in the notation and terminology, the IR"-
valued RV Y is said to be stochastically larger than the IR™-valued RV X if and only if the
inequality

E[f(X)] < E[£(Y)] (1.5)
holds for all monotone non-decreasing mappings f : IR™ — IR for which the expectations
exist; this is denoted in short by X <,; Y. For the special case n = 1, the inequality X <, Y
holds if and only if

P[X >t]| < P[Y > (1.6)

for all ¢t in IR,

With this notation, it is now easy to conclude that when the RV’s {Xj, ..., X,,} are asso-

ciated, the inequalities (1.4) are equivalent to the order relations

min X; < in X; )
1<i<n =0 155 (1.7a)
and
X; < X;. )
0% Xi <o max X (1.75)

These properties (1.7) above already explain the usefulness of the notion of association of RV’s
in a wide variety of situations, for they suggest a natural way of generating computable bounds
for the statistics on the maximum and minimum of the RV’s {Xj,..., X,.}. These statistics
are typically very difficult to compute in the presence of inter-variable correlations , as is the

case in many stochastic models of interest [1] .

2. THE RESULTS

At this stage, the reader might wonder in view of (1.7) whether the property that the
RV’s {X1,..., Xn} are associated, implies a possible ordering in some stochastic sense for the
IR"-valued RV’s X := (X1, ..., X») and X := (X1, ..., Xp,). For instance, is it possible under
some conditions that X <, X, a fact which would be compatible with (1.70)? The main
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results along these lines are negative for all three orderings <., <.; and <.,. This is the basic

content of Theorems 1 and 2 below.

Theorem 1. Assume the IR-valued RV’s {X1,...,X,} to be associated, with corresponding
independent versions {X1,...,Xn}. Under the foregoing assumptions, the statements (i)-(it1)

below are equivalent, where
(i) The RV’s X and X are comparable for the stochastic ordering <,
(ii) The RV’s {Xi,...,Xn} are mutually independent, and
(iii) The RV’s X and X coincide in law.

A proof for Theorem 1 is provided in Section 4. This result is not as surprising as it may
initially appear. Indeed, if the RV’s X and X were comparable, say X <,; X, then elemen-
tary properties of the stochastic ordering <,; readily imply the inequality minj<;<n X; <s¢
minj<;<n X, since the mapping IR™ — IR : £ — minj<i<n Z; is monotone non-decreasing.
The fact that the RV’s {Xj,..., X} are associated now implies via (1.7a) that the equality
minj<i<n Xi =¢t MiN1<i<n X; must hold, thus adding plausibility to Theorem 1.

A first extension of Theorem 1 is given in Theorem 2 below where it is shown that the

stochastic ordering <,; in the statement (i) can be replaced by a weaker ordering condition.

To that end, recall that the IR™-valued RV Y is said to be larger than the IR™-valued
X in the stochastic convez (resp. concave) increasing order if (1.5) holds for all monotone

non-decreasing convez (resp. concave) mappings f : IR® — IR for which the expectations

exist; this is denoted in short by X <.; Y (resp. X <co Y).

Theorem 2. Assume the IR-valued RV’s {X1,...,Xn} to be associated and to have finite

mean. Under the foregoing assumptions, the statements (1)-(11i) below are equivalent, where
(i) The RV’s X and X are comparable for the stochastic ordering <.; (resp. <cv),
(ii) The RV’s {Xi,...,Xn} are mutually independent, and
(ili) The RV’s X and X coincide in law.

Note that whenever the RV’s {Xj, ..., X,,} are associated, so are the RV’s {Xiysen Xix 1
with 1 < 41 <12 < ... < 1 < n for every 2 < k < n. Theorems 1 and 2, for the orderings <,
<,; and <., respectively, thus state that no subvector of X is comparable to the corresponding

subvector of X, unless the involved components are already mutually independent.
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Despite these negative results, it is noteworthy that the association of the RV’s
{X1,...;, X} implies certain comparison properties for the stochastic orderings <p and <k
for IR™-valued RV’s defined in Stoyan [8, p. 27]. More precisely, the IR"-valued RV Y is said
to be greater than the IR™-valued RV X in the orders <p and <f, respectively, if and only if
the inequalities

P[X;<a;, 1<i<n]>P]¥;<a;, 1<i<n] (2.1)
and

P[X:i>by, 1<i<n]<Pl¥i>b, 1<i<n] (2.2)

hold for all @ and b in IR™, respectively. This is denoted in short by X <p Y and X <g Y,
respectively, and as pointed out in [8, Prop. 1.10.1, p.27] and in [5, Thms 2 and 3, pp.
1314-1315|, the former is equivalent to

E []j[l P (X,-)] >E [f[ g (Y,.)] (2.3)

for every collection {g1,...,gn} of monotone non-increasing mappings IR — IR, whereas the

latter is equivalent to
B[ x| 2 B[] £0%) (2.4
i=1 i=1

for every collection {fi,..., fn} of monotone non-decreasing mappings IR — IR. It is easy to

see from these characterizations that X <, Y implies both X <p ¥V and X <g Y.
A simple rephrasing of the inequalities (1.3) now leads to the following comparison results.

Theorem 3. Whenever the IR-valued RV’s {X1,..., Xy} are associated, both inequalities
X SD —X and X— .<_K X (2.5)

hold true.
Owing to Theorem 3, if the associated RV’s {X1, ..., X»} are all non-negative, then spe-
cializing (2.3) to the negative exponentials g; : IR — IRy : t — e~ %t with 0 < s; for all

1 <1 < n, readily gives

E[exp(— En: s.,'X,;)] > E[exp(— zn: 857.,')] = ﬁ E[exp(—s,-Xi)]. (2.6)
i+1 =1 =1

=
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This remark can be generalized as follows [8, Defn. 1.8.1, p. 22].
Corollary 8.1. If the RV’s {X},...,X,} and {Y1,...,Y,} are all non-negative with X <p Y,

then for any a = (ay,...,a,) tn IR}, the inequality

n n
Z a; X; <, Z a;Y; (2.7)
=1 =1

holds with <y, denoting the stochastic order on one-dimensional distributions induced by the

Laplace transform.

In particular, if ¢; = --- = a5, = 1, the inequality

S X< Y ¥ (2.8)
t=1 1=1

holds. Therefore, with Y = X, (2.8) asserts that the sum of associated non-negative RV’s is
smaller in the ordering < than the corresponding quantity for their independent version, a

fact very much in the spirit of (1.7).

The remaining of this section is devoted to the discussion of several extensions of Theorems
1 and 2. Theorem 2 admits a first strengthening in the form of Theorem 2bis whose proof is

delayed to Section 4.

Theorem 2bis. Assume the IR™-valued RV’s X and Y to have finite identical means, namely
E[X;|=ElYi, 1<i<n (2.9)

and to satisfy the stochastic ordering relation
X<pY (resp. Y <g X). (2.10)

Under these conditions, the statements (i) and (i) below are equivalent, where
(i) The RV’s X and Y are comparable for the stochastic ordering < (resp. <cv); and

(ii) The RV’s X and Y coincide n law.

That Theorem 2bis contains Theorem 2 can be seen as follows: Assume the RV’s

{X1,+++,Xn} to be associated and to have finite mean. By Theorem 3, the pair of RV’s
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X and Y = X satisfy the assumptions of Theorem 2bis, and Theorem 2 is obtained from it as
an immediate corollary. It should be emphasized that the situation covered by Theorem 2bis is
more general in several ways. Indeed, comparison in the stochastic ordering <.; (resp. <) is
assumed between two IR"-valued RV’s X and Y with the RV Y not necessarily an independent
version of the RV X; the RV’s {X},--., X, } may not be associated and the condition that X
and Y have the same one-dimensional marginal distributions is replaced by the condition that

X and Y have the same mean.

The last results of this section are given in Theorems 4 and 4bis below, and consitute a

strengthening of Theorem 1.

Theorem 4. Assume the IR™-valued RV’s X and Y to have finite tdentical means, namely
E[X)|=ElY)], 1<i<n (2.11)
Under this condition, the equality in law
X=uY (2.12)
holds if and only if the RV’s X and Y are comparable for the stochastic ordering <, ,t. e.,
X<gqY or Y <uX (2.13)

holds.

Proof. In order to prove the result, it is clearly sufficient to show that (2.13) implies (2.12)

under the assumption (2.11). If X <,; Y, then necessarily X <p Y and X <.; Y, and the

conclusion (2.12) follows from Theorem 2bis. |
Theorem 4 is to Theorem 1 for the ordering <,; what Theorem 2bis is to Theorem 2 for

the orderings <.; and <.,, under the finite mean condition. This last technical restriction is

now removed.

Corollary 4.1. Assume the IR™-valued RV’s X and Y to have the same one-dimensional

marginal distributions, namely

X;=aY; 1<1<n. (2.14)

Under this condition, the equivalence in law (2.12) holds if and only if the RV’s X and Y are

comparable for the stochastic ordering <.



Proof. Again, it suffices to show that (2.13) implies (2.12) under the assumption (2.14). To
that end, consider the mapping ¢ : IR — (—%,%) : ¢ — Arctg z, and define the IR"-valued

RV’s X and ¥ componentwise by
X;=9(X;) and ¥;=¢(¥) (2.15)

for all 1 < ¢ < n. It is plain that the bounded RV’s {5(1, .- ,Xn} and {¥i,- ,?n} all have
a finite mean, a property which the original RV’s may not have possessed. Moreover, the

condition (2.11) is automatically satisfied for the IR™-valued RV’s X and Y as a consequence

of (2.14).

Since the mapping ¢ is monotone increasing, comparability of the RV’s X and Y under
the ordering <,: implies comparability of the RV’s X and ¥ under the same ordering. A direct
application of Theorem 4 yields the equality X =4 f/, a fact which is clearly equivalent to
X =4 Y due to the strict monotonicity of the mapping . 0

It is also possible to give a direct proof of Corollary 4.1 through an argument by induction
on the dimension n. The case n = 2 follows readily from a remark by Riischendorf in [7,
Thm. 3, p. 344] which contains a strengthened version of Corollary 4.1 when n = 2. Another
version of this result was also given by Mosler [5, Thm. 6, p. 1316].

Theorem 4bis. Assume the IR?-valued RV’s X = (X1,X2) and Y = (Y1,Y2) to have the

same one-dimensional marginal distributions, namely
X1=s Y7 and X; =475 (2.16)
Under this condition, the equivalence in law
X=aY (2.17)
holds if and only if both inequalities
X<gY and X<pVY (2.18)

hold.

A comparison of the assumptions of Theorems 4 and 4bis naturally suggests the following

question: Assume the RV’s X and Y to have the same one-dimensional marginal distributions
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as in Theorem 4. For n = 2, Theorem 4bis provides a strengthening to Theorem 4, since
the condition (2.11) of Theorem 4, originally given in the ordering <,:, implies the weaker
condition (2.18) in the orderings <p and <k. It is then tempting to ask whether Theorem
4bis holds true for all n > 2, and not merely for n = 2 as shown here. As to the writing of

this paper, this is still an open question.

3. APPLICATIONS
Several interesting consequences of Theorems 1-4 are now presented in this section.
Bounds for Fork-Join queues

The first application is given in the context of Fork-Join (FJ) queue models which arise in
many application areas, including flexible manufacturing and parallel processing. As discussed
in [1], a K-dimensional FJ queue is a queueing system operated by parallel K servers with
synchronized arrival streams. Each server is attended by a buffer of infinite capacity and
individually operates according to the FIFO discipline. Customers arrive into the system in
bulks of size K and are processed according to the following discipline: Upon arrival, a bulk of
size K, bringing customers to the K servers, is immediately split and each one of the customers
composing it is allocated to exactly one server (the so-called Fork primitive). As soon as all
the K customers constituting a bulk have been serviced, the bulk is immediately recomposed

(the so-called Join primitive) and leaves the system at once.

In this section only, the k-th component RV of any IR¥-valued RV is denoted by the
same symbol as this RV but superscripted by k. The probability triple (2, ¥, P) is assumed
to simultaneously carry the sequences {741} and {0,}$ of IR -valued and IR -valued

RV’s,respectively.

The FJ queue of interest is then generated by the constituting sequence

(OpyTnt1, M =0,1, ) (3.1)

in the following way: the RV’s {r,,}$° model the interarrival times of bulk customers, in that

arrivals to the queues are taking place along the time sequence {A,}§° defined by

n

Anp1= ) Tmi1 n =0,1...(3.2)

m=0
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with Ap = 0. The customers which arrive at the k-th queue at such times are called type k
customers hereafter. The n-th customer of type k brings an amount of processing time o to
be executed by the k-th server.

Consider the sequence of IRf -valued RV’s {W,, }&° generated componentwise by the re-
cursions

WE =Wtk -]t 1<k<K, n=0,1,...(3.3)

with Wy = 0. The RV W represents the waiting time of the n-th customer of type k, whereas
its response time is the RV R¥ given by

RE:=wkiok, 1<k< Kk n=0,1,..(3.4)
The system response times for the n-th bulk customer is denoted by T}, and is given by

T, = lg}casxx Rk, n=0,1,..(3.5)

The difficulty of analyzing these queueing systems with synchronization comes from the

fact that these K parallel channels are not independent even under standard renewal assump-
tions because of their common arrival pattern. It is this very lack of independence that makes
the computation of the joint statistics of the RV’s {Rk}5°,1 < k < K, and thus of {T,,}&,
extremely hard. In view of these difficulties, the authors in [1] have used stochastic ordering
methods to derive several computable bounds on these statistics. The main results are sum-
marized in the next three propositions, where for sake of simplicity, the constituting sequence
(3.1) is assumed to satisfy the standard renewal assumptions, i. e., the sequences {r,}3°,

{02}, -+ {0E}° form mutually independent renewal sequences.

Theorem 5. Let the RV’s {R¥1%° and {T,}$ be defined through (8.8)-(8.5) for the consti-
tuting sequence

(s Etnt1], n=0,1, ) (3.6)

instead of (3.1) .Under the foregoing assumptions the RV’s {RL,--- ,RE} are mutually inde-

pendent for all n = 0,1... and the inequalities

R <ei Rn n = 0, 1, (37)



and
T,<:T, n=0,1,...(3.8)
hold.
Theorem 6 below provides upper bounds when the input process is divisible in the sense

that the following conditions (D.1)-(D.2) are satisfied by the renewal sequence {741 }§°, where

(D.1) There exists a sequence {Tny1}° of IRf-valued RV’s such that

K
1 .
Tn+l = K E ,’f.H n=0,1,..(3.9)
k=1

where the K sequences {71,  }$°, «--, {FK |} of i.i.d. IR -valued RV’s are mutually
independent and statistically indistinguishable; and
(D.2) The families of RV’s {Tpn41} and {0,}§° are mutually independent.
For 1 < k < K, let {RF}$° be the response times in a GI/GI/1 queue with interarrival

sequence {7F, 1} and service times {o%}5°, and define the RV T, by

T, =  ax RE, n=0,1,..(3.10)

Theorem 6. Under the foregoing assumptions, the RV’s {R,IL, R R,If} are mutually indepen-

dent for all n =0, 1..., and the inequalities
Rn <ei Rn n=20,1, (311)

and

Tn <ei T, n =0, 1, .(312)

hold.

The association of some key RV’s is now used to provide improved upper bounds on the
statistics of the system response times {T},}$°. In agreement with the notation of Section 1, the
RV’s {RL,--- , RE} denote independent versions of the RV’s {R},---,RE}foralln=0,1,...
Theorem 7. Under the foregoing assumptions, the RV’s {R},--- ,R,If} are assoctated for all

n=0,1,.., and consequently

Ty, <ot Tn = lrgr}caéxKI_Z—E. n=0,1,..(3.13)
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The proofs of Theorems 5-7 are available in [1], together with several other more general
results. In view of the developments of Section 2, several remarks are in order on Theorems
5-7. It can be shown that T, <. T, foralln =0,1,---, i. e., Theorem 7 is an improvement on
the upper bound provided by Theorerm 6 for the system response times statistics. However,
Theorems 1 and 2 show that the bounds obtained in Theorems 5 and 6 are the only ones that
hold in the vector sense. More precisely, there is no possible vector ordering relation between

R, and R, like (3.7) or (3.11), under either one of the orderings <,: and <,; .
Bounds on the tail behavior of the maximum of associated RV’s
The tail behavior of an IR-valued RV X is said to be ezponentially bounded of parameter
a > 0if
PIX > t] = o(e™™) (3.14)

when t goes to +oo. It is then natural to say that the RV X has an ezponentially bounded tail

behavior if its tail behavior is ezponentially bounded for some parameter a > 0.

Theorem 8. Assume the IR-valued RV’s {X;,---,X,} to be associated. The tail behavior of
the RV max;<i<n X; 18 ezponentially bounded if and only if the RV’s {Xy,---, Xy} all have
an ezponentially bounded tail behavior. If the RV X; has an exzponentially bounded tail of
parameter o; for all 1 <1 < n, then the RV maxi<i<n X; has an exponentially bounded tail

of parameter oo = miny <;<n ;.

Proof. These results are immediate consequences of the inequalities

’ , — . < ]
P[X; > {] < P max X > t]<1- ] PIX: <t (3.15)

=1

for all £ in IR and all 1 < ¢ < n. The first inequality follows from the fact that X; <
max;<i<n Xi for all 1 < ¢ < n, whereas the second one is a mere rephrasing of (1.7b). A
A fact on monotone functions

An interesting and somewhat unexpected by-product to the comparison results obtained
so far is now given. Denote by M, (resp. M;}) the collection of all monotone non-decreasing
mappings IR™ — IR (resp. IR™ — IR.). Moreover, let P denote the collection of product-

form elements in M; with factors in MY, i. e., an element f of M; belongs to P, if and only
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f it has the form
f=1I# (3.16)
i=1

with f; in M{ for all 1 <¢ < m.
Theorem 9. The collection of mappings P;5 cannot generate the collection M through

(positive) linear combinations and through limiting operations .

To the best of the authors’ knowledge, there does not seem to be any direct proof in the

literature for establishing this result.

Proof. Let {X;, -, X,} be a set of associated RV’s with the property that the RV X is not
identical in law with the independent version X. Note that Fork-Join queue systems provide

a rich class of examples of such non-trivial collections of associated RV’s.

Therefore, Theorem 3 asserts that X <x X or equivalently that
E[f(X)] < E[f(X)] (8.17)

for every mapping f in P;f. On the other hand, it follows from Theorem 1 that the RV’s X
and X are not comparable under the ordering <,; since not identical in law, and a simple
argument by contradiction readily shows that there must exists an element g in M} (and not
merely in M,,) such that

Elg(X)] > E[g(X)]. (3.18)
Details are left to the interested reader and the proof of Theorem 9 is now completed upon
combining (3.17) and (3.18). |
4. PROOFS
Auxiliary results

The following technical facts will be used in the proofs of Theorems 1 and 2bis.

Proposition 1. The inequalities (1.8) hold in equality form for all a (resp. b) in IR™ if and
only if the RV’s {X1,...,Xn} are mutually independent.

Proposition 2. If the non-negative RV’s X and Y have finite identical means, then the
ordering X <. Y holds if and only if the tnequality

BIh(X)] < E[h(Y)] (4.1)
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holds for all convex mappings h: IRt — IR.

Proposition 1 is a simple rephrasing of the notion of independence and is given for easy
reference. The characterization of the ordering <.;, given in Proposition 2, can be found in

Corollary 8.5.2 of [6, p. 271].

Note that the ordering <.; has the anti-symmetry property on the collection of finite mean
probability distributions with support in IR (8, p. 8]. Therefore, strict inequality in (4.1) for
some conver mapping h : IRT — IR leads to the conclusion that the RV’s X and Y do not
coincide in law, and consequently there must exist at least one convex non-decreasing mapping

h: IRt — IR for which the expectations exist and which gives (1.4) in strict inequality form.
Proof of Theorem 1

Since the RV’s {X}, ..., X,,} are associated, it follows readily from Lemma 1bis and Propo-
sition 1 that the statements (ii) and (iii) are equivalent, and it thus suffices to show that (i)
and (ii) are equivalent. Note that if (ii) holds, then by (iii), the RV’s X and X are trivially
comparable for the stochastic ordering <,; owing to its antisymmetry property and (i) thus
holds. The proof of the second equivalence will be completed if (i) is shown to imply (ii). Al-
though this last implication is an immediate consequence of Corollary 4.1, a direct argument
of independent interest is now provided.

Assume that the RV’s X and X are comparable for the stochastic ordering <,;, say X <,:
X for the sake of discussion. This implies that X <x X whereas the assumed association of
the RV’s {Xi,..., X,,} implies X <k X by Theorem 3. Therefore, X =g X or equivalently
(1.3b) holds with equality for all b = (by,---,b,) in IR", and the conclusion X =,; X is
immediate. In the event the RV’s X and X were comparable for the stochastic ordering <,
with X <,: X, a similar argument using the first inequality in (2.5) would yield the result.

O

Proof of Theorem 2bis.

It is plain that X <p Y if and only if =Y <g —X, whereas the comparability of the
RV’s X and Y under the ordering <.; is equivalent to the comparability of the RV’s —X and
—Y under the ordering <.,. Consequently, it is sufficient to prove the part of Theorem 2bis

related to the ordering <; for the part related to the ordering <., will follow by changing X
(resp. Y) in —X (resp. —Y).
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Condition (ii) readily implies (i) and the proof of Theorem 2bis will be completed if it

can be shown that (i) implies (ii). This will be done in two steps.

Step 1: The desired implication is first established in the particular case where the RV’s
{X1, .., Xn} and {Y7,..., Y} are all non-negative.

In order to show that (i) implies (ii), the RV’s X and Y are assumed to be comparable
under the ordering <.; without being identical in law for otherwise, the result would be trivially
true. This last assumption, the ordering X <p Y and Corollary 3.1 combine to imply the
existence of s # 0 in IRY} such that the strict inequality

Elexp(— Z 8:X;)] > Elexp(— 2_: 8iY3)] (4.2)

holds. With the RV’s U and V defined by

U:= zn:s,-Xi and V:= Xn:siYi, (4.3)
=1 =1

the inequality (2.6) takes the form
BIh(U)] > BIA(Y) (4.9

where the mapping h : IRT — IR : t — exp(—t) is clearly convexz.

Since the RV’s X and Y are assumed comparable under <., so are the RV’s U and V
and direction of the comparison must necessarily be the one between the RV’s X and Y. To
determine the direction of this comparison, note that the RV’s U and V are non-negative ,
with identical and finite means by virtue of (2.9). Consequently, Proposition 2 asserts that

V <o (resp. >¢) U if and only if the inequality
E(V)] < (resp. >)EIR(D)] (4.5)

holds for all convez mappings h : IRt — IR for which the expectations exist. The strict

inequality (4.4) and the remarks following Proposition 2 now imply that necessarily

V S ct U3 (4'6)
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with the RV’s U and V not coinciding in law.

The comparability of the RV’s X and Y in the stochastic ordering <.;, previous remarks

and the inequality (4.6) lead to the conclusion that the inequality
Y <uX (4.7)
must hold. In turn this implies that the relation

max (Y, - b,) Sc,,; max (Xi - bi)- (4.8)

1<iln 1<i<n

holds for all b = (by,*--,by,) in IR™, since the mapping IR™ — IR : £ — maxj<i<n(z; — b;) is

convex and monotone non-decreasing.

On the other hand, the relation X <p Y readily implies via (2.1) that

P[ max (Xi~b) <t]2P[ max (¥;—b;)<t] (4.9)

for all t in IR and all b in IR™. This last family of inequalities is equivalent to

b)) > b
112?5)(7» (Y — b;) >4¢ 112?gxn (X; — b;) (4.10)

and since the ordering <,; is stronger than the ordering <;, the inequality

lrélf,sxn (Yi — bs) >cs 1??%7; (Xi — bs). (4.11)

immediately follows for all b in IR™. Upon combining (4.8) and (4.11), the equality

Joax. (Vi — b;) =4t Jax. (X; — bi). (4.12)

is obtained for all b in IR™, or equivalently X =, Y, a conclusion which contradicts the
assumption that (ii) does not hold. In short, (i) implies (ii) and the proof of Theorem 2bis is
now complete in the case of non-negative RV’s.

Step 2: To treat the case of general IR™-valued RV’s, consider the mapping ¢ : IR — IRT
given by

_ Jexp(z) ifz<0;
¢($) - {ZX-E(]. if T _>_ 0 (4'13)
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and define the IR"-valued RV’s Xand Y componentwise by

Xi=¢(X;) and Y;=¢(¥:) (4.14)
for all 1 <4 < n. The finite mean assumption on the RV’s {Xj,---,X,} (resp. {¥1,-:+,Yn})
implies that the RV’s {5(1, e ,X’n} (resp. {171, e ,17,,}) also have finite mean. The mapping
¢ being monotone increasing and convex, it is easy to check that the relation X <p Y implies
the relation X <p Y and that the RV’s X and Y are comparable in the stochastic ordering <.;
whenever the RV’s X and ¥ are assumed comparable in this ordering. Under the comparability
condition (i), the first part of the proof immediately implies that the RV’s X and Y coincide
in law, but this is equivalent to the RV’s X and Y coinciding in law since the mapping ¢ is
strictly monotone, thus invertible. In other words, (i) implies (ii) and the proof of Theorem

2bis is completed. a
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