
::- ' =: r :i: : -: :::: ;~: : :·' :: -: :Z::· :: ::! -:-': - : : ;: :li--,

XI~ -::S : -: :iw :: : ¢ s
v v0 ·:wor kl,,ng- paper;

-> ' t ' ' r
' _ ' ' -:- ; :.

!
-

i: .; .- j . . - .-

''_'z~a 0'' 0 :;:: :- -.: ;ID 000y f ,

0'4·~~~: II~~~-~;Jt '''/!''t-;''t$ r OF -N -L- --- : :

:: ; - ' . , - , - ' , -;

*~~~~~--i-: s4~is;~5- 0000S~~- i::: 00 f t X00 S t

·-.-·.· ·.·I· ;: ··...1
r

·::
:·· -.-- -·--r

:·_ · · -- ;I
.-''. ·i ·i

:: -·

r.· ::: ·

1.:
''-·· II .

:.·.��. · · ... ·. · -:·: i-

I...il ;...:

·s ::
�· ·;:.

-
'�" · -1-

:
:· :-·-.�:·

A Fast And Simple Algorithm
for the Maximum Flow Problem

Ravindra K. Ahuja and James B. Orlin

OR 165-87 June 1987
Revised: February 1988

1

A Fast and Simple
Algorithm for the Maximum Flow Problem

Ravindra K. Ahuja' and James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA. 02139, USA

Abstract

We present a simple O(nm + n2 log U) sequential algorithm for the

maximum flow problem on a network with n nodes, m arcs, and integer

arc capacities bounded by U. Under the practical assumption that U is

polynomially bounded in n, our algorithm runs in time O(nm + n 2 log n).

This result improves the previous best bound of O(nm log (n 2 /m)), obtained

by Goldberg and Tarjan, by a factor of log n for networks that are both

non-sparse and non-dense without using any complex data structures.

Subject Classification
484. A Fast and Simple Algorithm for the Maximum Flow Problem

* On leave from Indian Institute of Technology, Kanpur - 208 016 , INDIA

2

The maximum flow problem is one of the most fundamental problems

in network flow theory and has been investigated extensively. This problem

was first formulated by Fulkerson and Dantzig [1955] and Dantzig and

Fulkerson [1956], and solved by Ford and Fulkerson [1956] using their

well-known augmenting path algorithm. Since then, a number of algorithms

have been developed for this problem; some of them are tabulated below. In

the table, n is the number of nodes, m is the number of arcs, and U is an

upper bound on the integral arc capacities. The algorithms whose time

bounds involve U assume integral capacities, whereas others run on

arbitrary rational or real capacities.

Due to
1 Ford and Fulkerson [1956]

2 Edmonds and Karp [1972]
3 Dinic [1970]

4 Karzanov [1974]
5 Cherkasky [1977]
6 Malhotra, Kumar and Maheshwari [1978]

7 Galil [1980]

8 Galil and Naamad [1980]; Shiloach [1978]

9 Shiloach and Vishkin [1982]
10 Sleator and Tajan [1983]
11 Tajan [1984]
12 Gabow [1985]
13 Goldberg [1985]
14 Goldberg and Tarjan [1986]
15 Cheriyan and Maheshwari [1987]
16 Ahuja and Orlin [1987]

17 Ahuja, Orlin and Tarjan [1987]

Running Time
O(nm U)

O(nm2)

O(n2m)

O(n 3)

O(n2ml/2)
O(n3)

O(n5/3m2/3)

O(nm log2 n)

O(n3)

O(nm log n)
O(n3)

O(nm log U)
O(n3)
O(nm log (n2/m))
O(n2ml/2)
O(nm + n2 log U)

(nm log(m n log Ulog+ 2))

Table 1. Running times of the maximum flow algorithms.

Edmonds and Karp [1972] showed that the Ford and Fulkerson [1956]

algorithm runs in time O(nm2) if flows are augmented along shortest paths

from source to sink. Independently, Dinic [1970] introduced the concept of

shortest path networks, called layered networks, and obtained an O(n2m)

algorithm. This bound was improved to O(n3) by Karzanov [1974] who

introduced the concept of preflows in a layered network. A preflow is similar

to a flow except that the amount flowing into a node may exceed the amount

flowing out of a node. Since then, researchers have improved the complexity

of Dinic's algorithm for sparse networks by devising sophisticated data

structures. Among these contributions, Sleator and Tarjan's [1983] dynamic

tree data structure is the most attractive from a worst case point of view.

The algorithms of Goldberg [1985] and of Goldberg and Tarjan [1986]

were a novel departure from these approaches in the sense that they do not

construct layered networks. Their method maintains a preflow, as per

Karzanov, and proceeds by pushing flows to nodes estimated to be closer to

the sink. To estimate which nodes are closer to the sink, it maintains a

distance label for each node that is a lower bound on the length of a shortest

augmenting path to the sink. Distance labels are a better computational device

than layered networks because the labels are simpler to understand, easier to

manipulate, and easier to use in a parallel algorithm. Moreover, by cleverly

using the dynamic tree data structure, Goldberg and Tarjan obtained the best

computational complexity for sparse as well as dense networks. (For

applications of distance labels to augmenting path algorithms, see Orlin and

Ahuja [1987].)

4

For problems with arc capacities polynomially bounded in n, our

maximum flow algorithm is an improvement of Goldberg and Tarjan's

algorithm and uses concepts of scaling introduced by Edmonds and Karp

[1972] for the minimum cost flow problem and later extended by Gabow [1985]

for other network optimization problems. The bottleneck operation in the

straightforward implementation of Goldberg and Tarjan's algorithm is the

number of non-saturating pushes which is O(n3) . However, they reduce the

computational time to O(nm log (n 2 /m)) by a clever application of the

dynamic tree data structure. We show that the number of non-saturating

pushes can be reduced to O(n2 log U) by using excess scaling. Our algorithm

modifies the Goldberg-Tarjan algorithm as follows. It performs log U

scaling iterations; each scaling iteration requires O(n2) non-saturating pushes

if we push flows from nodes with sufficiently large excesses to nodes with

sufficiently small excesses while never allowing the excesses to become too

large. The computational time of our algorithm is O(nm + n 2 log U).

Under the reasonable assumption that U = O(n0 (1)) (i.e., it is

polynomial in n) , our algorithm runs in time O(nm + n 2 log n). On

networks that are both non-dense and non-sparse, i.e., m = 0(nl+) for some

E with 0 < e < 1, our algorithm runs in time O(nm), which improves

Goldberg and Tarjan's bound of O(nm log (n 2 /m)) on such networks by a

factor of log n. Moreover, our algorithm is easier to implement and should

be more efficient in practice, since it requires only elementary data structures

with little computational overheads.

5

1. Notation

Let G = (N, A) be a directed network with a positive integer capacity uij

for every arc (i, j) E A. Let n = I N I and m = I A I . The source s and sink

t are two distinguished nodes of the network. We assume without loss of

generality that the network does not contain multiple arcs and that there are

no arcs directed into the source or directed from the sink. It is also assumed

that for every arc (i, j) e A, an arc (j, i) is also contained in A, possibly with

zero capacity. We further assume that none of the paths from source to sink

has infinite capacity as such a path can be easily detected in O(m) time.

Observe that if the network contains some infinite capacity arcs but no

infinite capacity path, then the capacity of such arcs can be replaced by

I uij . We therefore assume that all arcs have finite capacity.
{(i, j) E A: uij < oo

Let U= max {Usj)
(s, j) E A

A flow is a function x: A R satisfying

Xji - xij = 0 , forall i N-({s,t), (1)
{j: (j, i) E A) {j: (i, j) A)

I Xjt = v, (2)
{j: (j, t) E A)

< Xij Uij , for all (i, j) A , (3)

6

for some v > 0. The maximum flow problem is to determine a flow x for

which v is maximized.

A preflow x is a function x: A - R which satisfies (2), (3), and

the following relaxation of (1):

E i - - xij 0 , for all i E N- {s,t. (4)
(j: (j, i) e A) (: (i, j) A)

The algorithms described in this paper maintain a preflow at each

intermediate stage.

For a given preflow x, we define for each node i E N - (s, t), the

excess

ei = l xji - Xij

{j: (j, i)e A) {j: (i, j) E A)

A node with positive excess is referred to as an active node. We define

the excess of the source and sink nodes to be zero; consequently, these nodes are

never active. The residual capacity of any arc (i, j) E A with respect to a given

preflow x is given by rij = uij - xij + xji . The residual capacity of arc (i, j)

represents the maximum additional flow that can be sent from node i to node j

using the arcs (i, j) and (j, i). The network consisting only of arcs with positive

residual capacities is referred to as the residual network. Figure 1 illustrates

these definitions.

4

2

3

1

a. Network with arc capacities.
Node 1 is the source and node 4 is the
sink. (Arcs with zero capacities are not
shown.)

e3=1

3

2

3

0

I

b. Network with preflow x

c. The residual network with
residual arc capacities

Figure 1. Illustrations of a preflow
and the residual network

7

8

We define the arc adjacency list A(i) of a node i E N as the set of arcs

directed out of the node i, i.e., A(i): = {(i, k) E A: k N). Note that our adjacency

list is a set of arcs rather than the more conventional definition of the list as a set of

nodes.

A distance function d: N-+ Z+ for a preflow x is a

function from the set of nodes to the non-negative integers . We say that a

distance function d is valid if it also satisfies the following two conditions:

C1. d(t) = 0;

C2. d(i) < d(j) + 1, for every arc (i, j) E A with rij >

Our algorithm maintains a valid distance function at each iteration. We also

refer to d(i) as the distance label of node i. It is easy to demonstrate using induction

that d(i) is a lower bound on the length of the shortest path from i to t in the

residual network. Let i = i - i2 - ... -ik - ik+1 = t be any path of length k in the

residual network from node i to the sink. Then from condition C2 we have, d(i) =

d(il) < d(i2) + 1, d(i2) < d(i3) + 1, ... , d(ik) < d(ik+l) + 1 = 1. This yields d(i) < k for

any path of length k in the residual network and, hence, must also hold for the

shortest path too. If for each i, the distance label d(i) equals the minimum length of

any path from i to t in the residual network, then we call the distance label exact.

For example, in Figure 1(c), d = (0, 0, 0, 0) is a valid distance label, though

d = (3, 1, 2, 0) represents the exact distance labels.

An arc (i, j) in the residual network is called admissible if it satisfies

d(i) = d(j) + 1. An arc which is not admissible is called an inadmissible arc.

The algorithms discussed in this paper push flow only on admissible arcs.

9

All logarithms in this paper are assumed to be of base 2 unless stated

otherwise.

2. Preflow-Push Algorithms

The preflow-push algorithms for the maximum flow problem

maintain a preflow at every step and proceed by pushing the node excesses

closer to the sink. The first preflow-push algorithm is due to Karzanov [1974].

Tarjan [1984] has suggested a simplified version of this algorithm. The recent

algorithms of Goldberg [1985] and Goldberg and Tarjan [1986] are based on

ideas similar to those presented in Tarjan [1984], but use distance labels to

direct flows closer to the sink instead of constructing layered networks. We

refer to their algorithm as the (distance-directed) preflow-push algorithm. In

this section, we review the basic features of their algorithm, which for the

sake of brevity, we shall simply refer to as the preflow-push algorithm. Here

we describe the 1-phase version of the preflow-push algorithm presented by

Goldberg [1987]. The results in this section are due to Goldberg and Tarjan

[1986].

All operations of the preflow-push algorithm are performed using

only local information. At each iteration of the algorithm (except at the

initialization and at the termination) the network contains at least one active

node, i.e., a non-source and non-sink node with positive excess. The goal of

each iterative step is to choose some active node and to send its excess

"closer" to the sink, with closer being judged with respect to the current

distance labels. If excess flow at this node can not be sent to nodes with

smaller distance labels, then the distance label of the node is increased. The

algorithm terminates when the network contains no active nodes. The

preflow-push algorithm uses the following subroutines:

10

PRE-PROCESS. On each arc (s, j) E A(s), send Usj units of flow. Let

d(s)=n and d(t)=O0. Let d(i)=l1 for each i sort.

(Alternatively, any valid labeling can be used, e.g., the distance label for

each node i * s, t can be determined by a backward breadth first search

on the residual network starting at node t.)

SELECT. Select an active node i .

PUSH(i). Select an admissible arc (i, j) in A(i). Send = min {ei, rij

units of flow from node i to j.

We say that a push of flow on arc (i, j) is saturating if = rij

and non-saturating otherwise.

RELABEL(i). Replace d(i) by min(d(j) + 1: (i, j) e A(i) and rij > 0 }.

This step is called a relabel step. The result of the relabel step is

to create at least one admissible arc on which further pushes can be

performed.

11

The generic version of the preflow-push algorithm is given below.

algorithm PREFLOW-PUSH;

begin

PRE-PROCESS;

while there is an active node do begin

SELECT (let i denote the node selected};

if there is an admissible arc in A(i) then PUSH(i)

else RELABEL(i);

end;

end;

Figure 2 illustrates the steps PUSH(i) and RELABEL(i) as applied

to the network in Figure (a). The number beside each arc represents its

residual capacity. Figure 2(a) specifies the residual network after the

PRE-PROCESS step. The SELECT step selects node 2 for examination. Since

arc (2,4) has residual capacity r2 4 = 1 and d(2) = d(4) + 1, the

algorithm performs a saturating push of value = min(2, 1) units. The

push reduces the excess of node 2 to 1. Arc (2, 4) is deleted from the

residual network and arc (4, 2) is added to the residual network. Since node

2 is still an active node, it can be selected again for further pushes. The arcs

(2, 3) and (2, 1) have positive residual capacities, but they do not satisfy the

distance condition. Hence the algorithm performs RELABEL(2), and gives

node 2 a new distance d'(2) = min {d(3) + 1, d(l) + 1) = min 2, 5) = 2 .

12

d(3) = 1
e3 =4

d(l) =4 d(4) = 0

d(2) = 1

e2=2

(a) The residual network after the pre-processing step.

d(3) = 1

e3 =4

d(l) = 4 d(4) = 0

d(2) = 1
e 2 =1

(b) After the execution of step PUSH(2).

13

d(3) = 1

e3 =4

d(l) =4 d(4) = 0

d(2) = 2
e2 =1

(c) After the execution of step RELABEL(2).

Figure 2. Illustrations of Push and Relabel steps.

The pre-process step accomplishes several important tasks. First, it causes the

nodes adjacent to s to have positive excess, so that we can subsequently execute the

select step. Second, by saturating arcs incident to s, the feasibility of setting d(s) = n

is immediate. Third, since the distance label d(s) = n is a lower bound on the

length of the minimum path from s to t , there is no path from s to t. Further,

since distance labels are non-decreasing (see Lemma 1 to follow), we are also

guaranteed that in subsequent iterations the residual network will never contain a

directed path from s to t, and so there can never be any need to push flow from s

again.

In our improvement of the preflow-push algorithm, we need a few of the

results given in Goldberg and Tarjan [1986]. We include some of their proofs in order

to make this presentation more self-contained.

14

Lemma 1. The generic preflow-push algorithm maintains valid distance labels at

each step. Moreover, at each relabel step the distance label of some node strictly

increases.

Proof. First note that the pre-process step constructs valid distance

labels. Assume inductively that the distance function is valid prior to an

operation, i.e., it satisfies the validity conditions C1 and C2. A push

operation on the arc (i, j) may create an additional arc (j, i) with rji > 0, and

an additional condition d(j) < d(i) + 1 needs to be satisfied. This validity

condition remains satisfied since d(i) = d(j) + 1 by the property of the push

operation. A push operation on arc (i, j) might delete this arc from the

residual network, but this does not affect the validity of the distance function.

During a relabel step, the new distance label of node i is d'(i) = min{d(j) + 1:

(i, j) e A(i) and rij > 0) , which is again consistent with the validity

conditions. The relabel step is performed when there is no arc (i, j) e A(i)

with d(i) = d(j) + 1 and rij > . Hence, d(i) < min {d(j) + 1: (i, j) e A(i) and

rij > 0O = d'(i) , thereby proving the second part of the lemma.

Lemma 2. At any stage of the preflow-push algorithm, for each node i with

positive excess, there is a directed path from i to node s in the residual

network.

Proof. By the flow decomposition theory of Ford and Fulkerson [1962],

any preflow x can be decomposed with respect to the original network G

into the sum of non-negative flows along (i) paths from s to t, (ii) paths

from s to active nodes, and (iii) flows around directed cycles. Let i be an

15

active node relative to the preflow x in G. Then there must be a path P from

s to i in the flow decomposition of x, since paths from s to t and flows

around cycles do not contribute to the excess at node i. Then the reversal of P

(P with the orientation of each arc reversed) is in the residual network, and

hence there is a path from i to s in the residual network. ·

Corollary 1. For each node i e N, d(i) < 2n.

Proof. The last time node i was relabeled, it had a positive excess, and hence

the residual network contained a path of length at most n- 1 from i to s. The

fact that d(s) = n and condition C2 imply that d(i) < d(s) + n - 1 < 2n.

Lemma 2 also implies that a relabel step never minimizes over an empty set.

Corollary 2. The number of relabel steps is less than 2n 2

Proof. Each relabel step increases the distance label of a node by at least

one, and by Corollary 1 no node can be relabeled more than 2n times.

Corollary 3. The number of saturating pushes is no more than nm .

Proof. Suppose that arc (i, j) becomes saturated at some iteration (at

which d(i) = d(j) + 1). Then no more flow can be sent on (i, j) until flow is

sent back from j to i, at which time d'(j) = d'(i) + 1 d(i) + 1 = d(j) + 2; this

flow change cannot occur until d(j) increases by at least 2. Thus by

Corollary 1, arc (i, j) can become saturated at most n times, and the total

number of arc saturations is no more than nm. (Recall that we assume that

(i, j) and (j, i) are both in A, so the number of arcs in the residual network

is no more than m .)

16

Lemma 3. The number of non-saturating pushes is at most 2n2m.

Proof. See Goldberg and Tarjan [1986]. -

Lemma 4. The algorithm terminates with a maximum flow.

Proof. When the algorithm terminates, each node in N - s, t has zero

excess; so the final preflow is a feasible flow. Further, since the distance

labels satisfy conditions C1 and C2 and d(s) = n , it follows that upon

termination, the residual network contains no directed path from s to t.

This condition is the classical termination criterion for the maximum flow

algorithm of Ford and Fulkerson [1962] .

The bottleneck operation in many preflow based algorithms, such as the

algorithms due to Karzanov [1974], Tarjan [1984], and Goldberg and Tarjan

[1986], is the number of non-saturating pushes. A partial explanation of why

the number of non-saturating pushes dominates the number of saturating

pushes is as follows: The saturating pushes cause structural changes -- they

delete saturated arcs from the residual network. This observation leads to a

bound of O(nm) on the number of saturating pushes --no matter in which

order they are performed. The non-saturating pushes do not change the

structure of the residual network and seem more difficult to bound. Goldberg

[1985] showed that the number of non-saturating pushes is O(n3) when nodes

are examined in a first-in-first-out order. Goldberg and Tarjan [1986] reduced

the running time of their network flow algorithm by using dynamic trees to

reduce the average time per non-saturating push. Cheriyan and Maheshwari

[1987] showed that the number of non-saturating pushes can be decreased to

O(n2 m1 / 2) if flow is always pushed from a node with highest distance label,

and they showed that this bound is tight. In the next section, we show that by

17

using scaling, we can dramatically reduce the number of non-saturating pushes

to O(n2 log U) . We have recently discovered a new scaling algorithm which

further reduces the number of non-saturating pushes to O(log log U . This

result is presented in Ahuja, Orlin and Tarjan [1987].

3. The Scaling Algorithm

Our maximum flow algorithm improves the generic preflow-push

algorithm of Section 2 by using "excess scaling" to reduce the number of non-

saturating pushes from O(n2m) to O(n2 log U). The basic idea is to push

flow from active nodes with sufficiently large excesses to nodes with

sufficiently small excesses while never letting the excesses become too large.

The algorithm performs K = Flog Ul + 1 scaling iterations. For a

scaling iteration, the excess-dominator is defined to be the least integer A that

is a power of 2 and satisfies e i < A for all i N. Further, a new scaling

iteration is considered to have begun whenever A decreases by a factor of 2.

In a scaling iteration we guarantee that each non-saturating push sends at

least A/2 units of flow and that the excess-dominator does not increase. To

ensure that each non-saturating push has value at least A/2 , we consider

only nodes with excess more than A/2; and among these nodes with large

excess, we select a node with minimum distance label. This choice ensures

that the flow will be sent to a node with small excess. We show that after at

most 8n2 non-saturating pushes, the excess-dominator decreases by a factor

of at least 2, and a new scaling iteration begins. After at most K scaling

iterations, all node excesses drop to zero and we obtain a maximum flow.

18

In order to select an active node with excess more than A/2 and with a

minimum distance label among such nodes, we maintain the lists

LIST(r) = {i N : e i > A/2 and d(i) = r) for each r = 1,...,2n-1.

These lists can be maintained in the form of either linked stacks or linked

queues (see, for example, Aho, Hopcroft and Ullman [1974]), which enables

insertion and deletion of elements in O(1) time. The variable level indicates

the smallest index r for which LIST(r) is non-empty.

As per Goldberg and Tarjan, we use the following data structure to

efficiently select the eligible arc for pushing flow out of a node. We maintain

with each node i the list, A(i), of arcs directed out of it. Arcs in each list can

be arranged arbitrarily, but the order, once decided, remains unchanged

throughout the algorithm. A special arc named null is appended to the end

of each list. Each node i has a current arc (i, j) which is the current candidate

for pushing flow out of i. Initially, the current arc of node i is the first arc in

its arc list. This list is examined sequentially, and whenever the current arc

is found to be inadmissible for pushing flow, the next arc in the arc list is

made the current arc. When the arc list has been completely examined, the

null arc is reached. At this time, the node is relabeled and the current arc is

again set to the first arc in the arc list.

The algorithm can be formally described as follows:

algorithm MAX-FLOW;

begin

PRE-PROCESS;

K:= 1+ logul ;

for k: = 1 to K do begin

A = 2K-k

for each i e N do if ei > A/2 then add i to LIST(d(i));

level: = 1;

while level < 2n do

if LIST(level) = o then level: = level + 1

else begin

select a node i from LIST(level);

PUSH/RELABEL(i);

end;

end;

end;

19

20

procedure PUSH/RELABEL(i);

begin

found: = false;

let (i, j) be the current arc of node i;

while found =false and (i, j) * null do

if d(i) = d(j) + 1 and rij > 0 then found:= true

else replace the current arc of node i by the next arc (i, j);

if found = true then begin (found an admissible arc})

push min e i , rij, A - ej} units of flow on arc (i, j);

update the residual capacity rij and the excesses e i and ej;

if (the updated excess) e i < A/2 , then delete node i from LIST(d(i));

if j s or t and (the updated excess) ej > A/2 , then add node j to

LIST(d(j)) and set level: = level - 1;

end

else begin finished arc list of node i}

delete node i from LIST(d(i));

update d(i): = min(d(j) + 1 ; (i, j) A(i) and rij > 0);

add node i to LIST(d(i)) and set the current arc of node i to the

first arc of A(i);

end;

end;

21

4. Complexity of the Algorithm

In this section, we show that the distance-directed preflow-push algorithm

with excess scaling correctly computes a maximum flow in O(nm + n2 log U)

time.

Lemma 5. The scaling algorithm satisfies the following two conditions:

C3. Each non-saturating push from a node i to a node j sends at

least A/2 units of flow.

C4. No excess increases above A (i.e., the excess-dominator does not

increase subsequent to a push).

Proof. For every push on arc (i, j) we have ei > A/2 and ej < A/2, since

node i is a node with smallest distance label among nodes whose excess is more

than A/2, and d(j) = d(i) - 1 < d(i) by the property of the push operation. Hence,

by sending min ei, rij, A - ej) > min {A/2 , rij) units of flow, we ensure that

in a non-saturating push the algorithm sends at least A/2 units of flow.

Further, the push operation increases the excess at node j only. Let e'j be the

excess at node j after the push. Then e'j = ej + min ({ ei, rij, A - ej) < ej + A - ej

< A. All node excesses thus remain less than or equal to A .

While there are other ways of ensuring that the algorithm always

satisfies the properties stated in the conditions C3 and C4, pushing flow

from a node with excess greater than A/2 and with minimum distance

among such nodes is a simple and efficient way of enforcing these conditions.

With properties C3 and C4, the push operation may be viewed as a

kind of "restrained greedy approach." Property C3 ensures that the push

22

from i to j is sufficiently large to be effective. Property C4 ensures that the

maximum excess never exceeds A during an iteration. In particular, rather

than greedily getting rid of all its excess, node i shows some restraint so as to

prevent ej from exceeding A. Keeping the maximum excess lower may be

very useful in practice as well as in theory. Its major impact is to

"encourage" flow excesses to be distributed fairly equally in the network. This

distribution of flows should make it easier for nodes to send flow towards the

sink. This may also be important because of the following consideration:

suppose several nodes send flow to a single node j creating a large excess. It is

likely that node j would not be able to send the accumulated flow closer to

the sink, in which case its distance label would increase and much of its excess

would have to be returned. This phenomenon is prevented by maintaining

condition C4.

Lemma 6. If each push satisfies conditions C3 and C4, then the number

of non-saturating pushes per scaling iteration is at most 8n 2 .

Proof. Consider the potential function F = , ei d(i)/A.
iEN

The initial value of F at the beginning of A-scaling phase is bounded by 2n2

because ei is bounded by A and d(i) is bounded by 2n. When the

algorithm examines node i, one of the following two cases must apply:

Case 1. The algorithm is unable to find an arc along which flow can be

pushed. In this case no arc (i, j) satisfies d(i) = d(j) + 1 and rij > 0 and the

distance label of node i goes up by £ > 1 units. This increases F by at most

e units. Since the total increase in d(i) throughout the running of the

23

algorithm for each i is bounded by 2n, the total increase in F due to

relabelings of nodes is bounded by 2n2 in the scaling phase (Actually, the

increase in F due to node relabelings is at most 2n2 over all scaling phases).

Case 2. The algorithm is able to identify an arc on which flow can be

pushed and so it performs either a saturating or a non-saturating push. In

either case, F decreases. A non-saturating push on arc (i, j) sends at least A/2

units of flow from node i to node j and since d(j) = d(i) - 1, this decreases F

by at least - units. As the initial value of F for a scaling phase plus the

increases in F sum to at most 4n2 , this case can not occur more than 8n2

times. U

Theorem 1. The scaling algorithm performs O(n2 log U) non-saturating pushes.

Proof. The initial value of the excess-dominator A is 2r1og U 1 2U . By

Lemma 6, the value of the excess-dominator decreases by a factor of 2 within

8n 2 non-saturating pushes and a new scaling iteration begins. After 1 + Flog U1

such scaling iterations, A < 1; and by the integrality of the flows e i = 0 for all

i E N - s, t}. The algorithm thus obtains a feasible flow, which by Lemma 4

must be a maximum flow.

Theorem 2. The complexity of the maximum flow scaling algorithm is

O(nm + n2 log U) .

24

Proof: The complexity of the algorithm depends upon the number of

executions of the while loop in the main program. In each such execution

either a PUSH/RELABEL(i) step is performed or the value of the variable

level increases. Each execution of the procedure PUSH/RELABEL(i) results

in one of the following outcomes:

Case 1. A push is performed. Since the number of saturating pushes is

O(nm) and the number of non-saturating pushes is O(n2 log U) , this case

occurs O(nm + n2 log U) times.

Case 2. The distance label of node i goes up. By Corollary 1, this outcome

can occur O(n) times for each node i and O(n2) in total.

Thus the algorithm calls the procedure PUSH/RELABEL(i) O(nm + n2 log U)

times. The effort needed to find an arc to perform the push operation is 0(1) plus

the number of times the current arc of node i is replaced by the next arc in A(i).

After IA(i) I such replacements for node i, Case 2 occurs and distance label of

node i goes up. Thus, the total effort needed is 2n I A(i) I = O(nm)
iEN

plus the number of PUSH/RELABEL(i) operations. This is clearly

O(nm + n 2 log U).

Now consider the time needed for relabel operations. Computing the

new distance label of node i requires examining arcs in A(i). This yields a total

of I 2n A(i) I = O(nm) time for all relabel operations. The lists LIST(r)
iE N

are stored as linked stacks and queues, hence addition and deletion of any

25

element takes 0(1) time. Consequently, updating these lists is not a bottleneck

operation.

Finally, we need to bound the number of increases of the variable level.

In each scaling iteration, level is bounded above by 2n -1 and bounded below

by 1. Hence its number of increases per scaling iteration is bounded by the

number of decreases plus 2n . Further, level can decrease only when a push is

performed and in such a case it decreases by 1. Hence its increases over all

scaling iterations are bounded by the number of pushes plus 2n(1 + Flog Ul),

which is again O(nm + n2 log U) . ·

5. Refinements

As a practical matter, several modifications of the algorithm might

improve its actual execution time without affecting its worst case complexity.

We suggest three modifications:

1. Modify the scale factor.
2. Allow some non-saturating pushes of small amount.
3. Try to locate nodes disconnected from the sink.

The first suggestion is to consider the scale factor. The algorithm in the

present form uses a scale factor of 2, i.e., it reduces the excess-dominator by a

factor 2 in each scaling iteration. In practice, however, some other fixed integer

scaling factor >2 2 might yield better results. The excess-dominator will then be

the least power of that is no less than the excess at any node, and property C3

becomes

26

C3'. Each non-saturating push from a node i to a node j sends at least

A/[3 units of flow.

The scaling algorithm presented earlier can easily be altered to

incorporate the [scale factor by letting LIST(r) = {i e N: e i >A/P and d(i) = r }.

The algorithm can be shown to run in O(nm + [3n 2 logo U) time. From the

worst case point of view any fixed value of is optimum; the best choice for

the value of in practice should be determined empirically.

The second suggestion focuses on the non-saturating pushes. Our

algorithm as stated selects a node with e i > A/2 and performs a saturating or

a non-saturating push. We could, however, keep pushing the flow out of this

node until either we perform a non-saturating push of value at least A/2 or

reduce its excess to zero. This variation might produce many saturating

pushes from the node and even allow pushes after its excess has decreased

below A/2. Also, the algorithm as stated sends at least A/2 units of flow

during every non-saturating push. The same complexity of the algorithm is

obtained if for some fixed r 1, one out of every r 1 non-saturating

pushes sends at least A/2 units of flow.

The third suggestion recognizes that one potential bottleneck in

practice is the number of relabels. In particular, the algorithm "recognizes"

that the residual network contains no path from node i to node t only when

d(i) exceeds n- 2. Goldberg [1987] suggested that it may be desirable to

occasionally perform a breadth first search so as to make the distance labels

27

exact. He discovered that a judicious use of breadth first search could

dramatically speed up the algorithm.

An alternative approach is to keep track of the number nk of nodes

whose distance is k. If nk decreases to 0 after any relabel for some k, then

each node with distance greater than k is disconnected from the sink in the

residual network. (Once node j is disconnected from the sink, it stays

disconnected since the shortest path from j to t is nondecreasing in length.)

We would avoid selecting such nodes until all nodes with positive excess

become disconnected from the sink. At this time, the excesses of nodes are

sent back to the source. This approach essentially yields the two phase

approach to solve the maximum flow problem as outined in Goldberg and

Tarjan [1986] . The first phase constructs a maximum preflow which is

converted to a maximum flow in the second phase.

6. Future Directions

Our improvement of the distance directed preflow-push algorithm has

several advantages over other algorithms for the maximum flow problem.

Our algorithm is superior to all previous algorithms for the maximum flow

problem under the reasonable assumption that U is polynomially bounded

in n. Further, the algorithm utilizes very simple data structures which

makes it attractive from an implementation viewpoint.

Our algorithm is computationally attractive from a worst-case

perspective even if U is not O(n°(1)); that is, if the arc capacities are

exponentially large numbers. In this case, the uniform model of

computation, in which all arithmetic operations take O(1) steps, is arguably

28

inappropriate. It is more realistic to adopt the logarithmic model of

computation (as described by Cook and Reckhow [1973]) which counts the

number of bit operations. In this model, most arithmetic operations take

O(log U) steps rather than O(1) steps. Using the logarithmic model of

computation and modifying our algorithm slightly to speed up arithmetic

operations on large integers, we claim that our algorithm would run in

O(nm log n + n2 log n log U) time. The corresponding time bound for the

Goldberg-Tarjan algorithm is O(nm log (n 2 /m) log U). Hence, as U

becomes exponentially large, our algorithm becomes more and more

attractive relative to the Goldberg-Tarjan algorithm. Our results in the

logarithmic model of computation will be presented in a future paper.

Our algorithm is a novel approach to combinatorial scaling algorithms.

In the previous scaling algorithms developed by Edmonds and Karp [1972],

Rock [1980], and Gabow [1985], scaling involved a sequential approximation

of either the cost coefficients or the capacities and right-hand-sides. (e.g., we

would first solve the problem with the costs approximated by C/2T for some

integer T. We would then reoptimize so as to solve the problem with C

approximated by C/2T-1, and then reoptimize for the problem with C

approximated by C/2T- 2 , and so forth.) Our scaling method does not fit into

this standard framework. Rather, our algorithm works with true data, relaxes

the flow conservations constraints and scales the maximum amount of

relaxation. The recent cost scaling algorithm of Goldberg and Tarjan [1987] for

the minimum cost flow problem is similar in nature -- this algorithm scales

the relaxation of the complementary slackness conditions.

The scaling algorithm for the maximum flow problem can be improved

further by using more clever rules to push flow or by using dynamic trees. We

29

describe such improvements in Ahuja, Orlin and Tarjan [1987]. We show that by

using a larger scale factor and pushing flow from a node with highest distance label

among nodes having sufficiently large excess, the algorithm runs in
C(n 2 og U"

nm + log log U) time (Assume that U > 4.). Use of the dynamic tree data

structure further improves the complexity of this algorithm to

O(nm logm log log U +2)

We have also undertaken an extensive empirical study to assess the

computational merits of the preflow-push algorithms versus the previous best

algorithms, those of Dinic and Karzanov. Our experiments so far suggest that

preflow-push algorithms are substantially faster than Dinic's and Karzanov's

algorithms.

Our algorithms and those due to Goldberg and Tarjan suggest the

superiority of distance label based approaches over the layered network based

approaches. The improvements we have obtained do not seem to be possible

for the algorithms utilizing layered networks. The distance labels implicitly

store dynamically changing layered networks and hence are more powerful.

We show the use of distance labels in augmenting path algorithms, capacity

scaling algorithms and for unit capacity networks in Orlin and Ahuja [1987].

The maximum flow problem on bipartite networks is an important

class of the maximum flow problem (see Gusfield, Martel and

Fernandez-Baca [1985]). The bipartite network is a network G = (N, A) such

that N = N 1 u N 2 and A C N1 x N 2 . Let n = I N1 1 and n 2 = IN2 1 . For

cases where n1 < < n 2, our maximum flow algorithm can be modified to run
2

in O(njm + n 1 log U), thus resulting in significant speedup over the original

30

algorithm. Our results on bipartite network flows will appear in a future

paper jointly with C. Stein and R. Tarjan.

Our maximum flow algorithm is difficult to make "massively parallel"

since we push flow from one node at a time. Nevertheless, with d = Frm/ni

parallel processors we can obtain an O(n2 log Ud) time bound. Under the

assumption that U = O(n(0(1)), the algorithms runs in O(n2 log n) time, which

is comparable to the best available time bounds obtained by Shiloach and

Vishkin [1982] and Goldberg and Tarjan [1986] using n parallel processors.

Thus, our algorithm has an advantage in situations for which parallel

processors are at a premium. Our work on the parallel algorithms will also

appear in a future paper.

Acknowledgements

We wish to thank John Bartholdi, Tom Magnanti, and Hershel Safer

for their suggestions which led to improvements in the presentation. This

research was supported in part by the Presidential Young Investigator Grant

8451517-ECS of the National Science Foundation, by Grant AFOSR-88-0088

from the Air Force Office of Scientific Research, and by Grants from Analog

Devices, Apple Computer, Inc., and Prime Computer.

31

REFERENCES

Aho, A.V., J.E. Hopcroft and J.D. Ullman. 1974. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA.

Ahuja, R.K., J.B. Orlin, and R.E. Tarjan. 1987. Improved Time
Bounds for the Maximum Flow Problem. Research Report, Sloan
School of Management, M.I.T., Cambridge, MA. 02139.

Cheriyan, J., and S.N. Maheshwari. 1987. Analysis of Preflow Push
Algorithms for Maximum Network Flow. Technical Report, Dept. of
Computer Science and Engineering, Indian Institute of Technology,
New Delhi, INDIA.

Cherkasky, RV. 1977. Algorithm for Construction of Maximal Flow
in Networks with Complexity of O(V2 dIE) Operation, Mathematical
Methods of Solution of Economical Problems 7, 112-125 (in Russian).

Cook, S.A., and R.A. Reckhow. 1973. Time Bounded Random
Access Machines . J. of Comput. System Sci. 7, 354 - 375.

Dantzig, G.B., and D.R. Fulkerson. 1956. On the Max-Flow Min-Cut
Theorem of Networks. Linear Inequalities and Related Systems, edited
by H.W. Kuhn and A.W. Tucker, Annals of Mathematics Study 38,
Princeton University Press, 215-221.

Dinic, E.A. 1970. Algorithm for Solution of a Problem of Maximum
Flow in Networks with Power Estimation, Soviet Math. Dokl. 11,
1277-1280.

Edmonds, J., and R.M. Karp. 1972. Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput
Mach. 19, 248-264.

Ford, L.R., and D.R. Fulkerson. 1956. Maximal Flow through a
Network. Can. J. Math. 8, 399-404.

Ford, L.R., and D.R Fulkerson. 1962. Flows in Networks. Princeton
University Press, Princeton, New Jersey.

Fulkerson, D.R., and G.B. Dantzig. 1955. Computations of Maximum
Flow in Networks. Naval Res. Log. Quart. 2, 277-283.

32

Gabow, H.N. 1985. Scaling Algorithms for Network Problems. J. of
Comput. System Sci. 31, 148-168.

Gabow, H.N., and RE. Tarjan. 1987. Faster Scaling Algorithms for
Graph Matching. Research Report, Computer Science Dept.,
Princeton University, Princeton, New Jersey.

Galil, Z. 1980. An O(V5/ 3 E2 /3) Algorithm for the Maximal Flow
Problem, Acta Informatica 14, 221-242.

Galil, Z. and A. Naamad. 1980. An O(VE log2 V) Algorithm for
the Maximum Flow Problem. J. Comput. System Sci. 21, 203-217.

Goldberg, A.V. 1985 . A New Max-Flow Algorithm. Technical Report
MIT/LCS/TM-291 , Laboratory for Computer Science, M.I.T.,
Cambridge, MA.

Goldberg, A.V. 1987. Efficient Graph Algorithms for Sequential and
Parallel Computers. Ph.D. Dissertation, Laboratory for Computer
Science, M.I.T., Cambridge, MA. Available as Tech. Rep.
MIT/LCS/TR-374.

Goldberg, A.V., and R.E. Tarjan. 1986. A New Approach to the
Maximum Flow Problem. Proceedings of the Eighteenth Annual
ACM Symposium on the Theory of Computing, 136-146. (to appear in
J. of ACM.)

Goldberg, A.V., and R.E. Tarjan. 1987. Solving Minimum Cost Flow
Problem by Successive Approximation. Proceedings of the Nineteenth
Annual ACM Symposium on the Theory of Computing, 7-18.

Gusfield, D., C. Martel, and D. Fernandez-Baca. 1985. Fast Algorithms for
Bipartite Network Flow. Technical Report No. YALEV/DCS/TR-356,
Dept. of Computer Science, Yale University, Yale.

Karzanov, A.V. 1974. Determining the Maximal Flow in a Network
by the Method of Preflows, Soviet Math. Dokl. 15, 434-437.

Malhotra, V.M., M. Pramodh Kumar, and S.N. Maheshwari. 1978.
An O(I V 13) Algorithm for Finding Maximum Flows in Networks.
Inform. Process. Lett. 7, 277-278.

Orlin, J.B., and R.K. Ahuja. 1987. New Distance-Directed Algorithms
for Maximum Flow and Parametric Maximum Flow Problems. Sloan
W.P. No. 1908-87, Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, MA. 02139.

33

Rock, H. 1980. Scaling Techniques for Minimal Cost Network Flows,
Discrete Structures and Algorithms, Ed. V. Page, Carl Hanser,
Miinchen, 181-191.

Shiloach, Y., 1978.
Technical Report
University, CA.

An O(nI log2 (I)) Maximum Flow Algorithm.
STAN-CS-78-702, Computer Science Dept., Stanford

Shiloach, Y., and U. Vishkin. 1982. An O(n2 log n) Parallel Max-Flow
Algorithm. J. Algorithms 3, 128-146.

Sleator, D.D., and RE. Tarjan. 1983. A Data Structure for Dynamic
Trees, J. Comput. System Sci. 24, 362-391.

Tarjan, R.E.
Algorithm,

1984. A Simple Version of Karzanov's Blocking Flow
Oper. Res. Lett. 2 , 265-268.

