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ABSTRACT

Frequency Domain Methodology has recently been applied to discrete event
simulations to identify terms in a polynomial model of the simulation output.
The problem of optimally selecting input frequencies is studied in this
paper. This problem can be formulated as a large mixed integer linear program
or as a large set of small lipear programs. A fast algorithm is presented
that closely approximates the optimal solution. The results obtained from the

algorithm are compared to known optimal solutions.



1. INTRODUCTION:

Simulation programs can involve a large number of input factors.
Analyzing such systems can be very difficult. Standard analysis techniques
require a new simulation run for each setting of the input factors. This can
be both expensive and time consuming. We will refer to such procedures as
"run oriented' experiments. An alternative to thié approach was introduced by
Schruben and Cogliano [7] in which the input faétors in a single run are
varied according to specific sinusoidal patterns. Various output spectra can
then be analyzed to obtain information about the sensitivity of the output to
each of the input factors. Such experiments are called ''frequency domain'
simulation experiments. Frequency domain simulation experiments were |
initially introduced as a technique for factor screening. More recently, work
has been done to apply the technique for simulation optimization using
patterns in the simulation output power spectrum [6] as well as by estimating
the sensitivities of the expected simulation output response from spike
heights in the simulation output power spectrum.

In the frequency domain simulation experiments considered in this paper,
input factors are varied according to specific sinusoidal patterns during a
run of a simulation program. Input patterns other than sinusoidals are of
course permissible. The only restriction on these patterns is that they form
a complete orthogonal basis when viewed as a vector in Rn, where n is the
number of observations collected during a run (i.e. the run size). The
following diagram depicts a ''black box' simulation (i.e. we input values into

the simulation (black box) and observe an output value (or values)):
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where xl,xz,...,xp are the input factors and y is the output
response of the simulation. We will assume that y can be modelled as

a polynomial function of the input factors. This function is

sometimes referred to as a meta-model of the simulation response. More
specifically, if y is the simulation response and X{sXgseeesX

p
are the input factors, then the response surface is given by:

q
EW)= Byt T £y (1.1)
J:

where 11,72,...,Tq are possible terms in the polynomial model;
they are products of non-negative powers of
continuous parameters x, (i=1,2,...,p).

51,52,...,5q are real valued coefficients.

An experimental technique for identifying the functional form of E(y)
was presented by Schruben and Cogliano [8]. The technique requires one to
specify k, the degree of the polynomial given by (1.1). One must then select
frequencies at which the inputs can be changed during the running or
execution of the simulation. These frequencies, called driving frequencies,
should be chosen such that all the frequencies which indicate the presence of
terms in the prospective meta-model are as spread out as possible. Such

identifying frequencies will be referred to as term indicator freguencies.

The term indicator frequencies are obtained by standard trignometric



relations between sine, cosine and their powers, as well as from aliasing

(see (1.5)). For example, if a general term in the polynomial model is given

a a a
by T=(X1) 1(X2) 2...(xr) T and we oscillate X5 at frequency ;s for

i=1,2,...,r, then the term indicator frequencies will be Sl$82®...®sk, where
Si=§(ai)wi,(ai-Z)wi,...,(-ai+2)wi,(—ai)wi§, i=1,2,...,r and SiQSj is the

direct sum of sets Si and Sj (i.e. the set of all possible sums si+sj where

SiESi and sjESj). To show this, consider the following term: -

3y v
(x,) ()

We will oscillate factor Xy with frequency 9 and factor X, with
frequency v, (i.e. xl(t)=x1(0)+mlcos(2nm1t),

xz(t)=x2(0)+azcos(2nw2t) where t=0,1,2,...).

The following argument'will still hold if we use sine to oscillate the

factors. Now,

2n4:Imlt —2n4:Iu1t
cos(2nw1t)=(e te )/2. (1.2)

Thus we have

a a
(x) = G (0) M+ (1.3)
a,—1
al(xl(o)) 1 cos(anlt)+
. al—z 2
((al)(al-l)/Z)(xl(O)) cos (Enwlt)+...+
a,~-1 a

1 : 1
al(xl(O))cos (anlt)+cos (anlt).
. k _
Using (1.2), cos (2nw1t) can be computed for k=2,3,...,a

1

Regrouping the terms in the resulting expression gives us



(xl)a1= (cos(2nw1t(a1))+(a1)cos(2nw1t(a1-2))+ (1.4)

...+(a1)cos(2nm1t(—a1+2))+cos(2nw1t(—al)))

a
We get a similar expression for (xz) 2.

Therefore using the trignometric identity
cos(atb)+cos(a-b)=Rcos(a)cos(b)
the set of term indicator frequencies is
Sx @SX .
-1 7R
Note that the term indicator frequencies will not change if the model given
by (1.1) is generalized to contain memory.
For continuous inputs, sinusoidal oscillation patterns can be used. For
discrete or qualitative inputs, ranaomized rectangular oscillation patterns

can be used [6]. The following diagram depicts this for continuous inputs:

xl(t)=x1(0)+alsin(2nw1t)

xa(t)=x?(0)+azsin(2nw2t) > BLACK BOX ~
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t)=x_(0)+o_si »
xp( ) xp( ) ap31n(2nwpt)

where xi(t) are the input factors (i=1,2,...,p) at time t (t>0), o,
(i=1,2,...,p) defines the range over which the inputs are oscillated, called
the amplitude of oscillation, w, are the frequencies at which the inputs are
oscillated (i.e. the driving frequencies) and y is the output response
obtained from the procedure described above. The o, and W, fully define the
input power spectrum. The frequency domain technique allows us to identify

the presence of the Tj in the model, by estimating the output power spectrum



and identifying significant spike heights at the term indicator frequencies
of the Tj (j=1,2,...,9). To be able to get good power spectrum spike height
estimates with reasonable run lengths, an attempt should be made to space the
term indicator frequencies as far apart as possible. It would be optimal to
be able to evenly space these frequencies in the interval (0,.5). Therefore
the criterion for selecting driving frequencies is to attempt to space as
evenly as possible all term indicator frequencies, given k, the assumed upper
bound on the polynomial degree that fits the simulation response. This will
widen the bandwidth and permit the desirable level of power spectrum estimator
variance and bias without excessively long run lengths (see Chatfield [1]
p.141-145).

The main advantage of the frequency domain method is that it reduces the
number of simulation runs necessary to screen factors. Keeping these run
lengths short makes this technique even more attractive.

The problem discussed in this paper is the selection of driving
frequencies such that the term indicator frequencies are maximally spaced
(i.e. the minimum spacing between all the term indicator frequencies is
maximized). Because we can sample the output response at only discrete times,
certain frequencies can not be distinguished. This causes some of the
frequencies to be folded or aliased onto other frequencies. All frequencies

can be aliased into the interval [0,.5]. This alias rule is as follows:

If w is a term frequency, then if <0, @ become -w
if 0<w<.5, w is unchanged (1.5)
if .5<w<l., © becomes 1-w
if w1, & becomes w-1

These rules are repetitively applied until w is in the interval [0,.5].



Section 2 defines the problem and gives a mixed integer linear program
formulation which solves it. Section 3 gives a reformulation of the problem
as an exponential number (in p and k) of linear programs, each with a
polynomial number (in p and k) of constraints using the concept of term
indicator frequency ordering. Section 4 gives an algorithm which approximates
the optimal solution. Examples are given throughout which help to clarify the
concepts and ideas presented. Tables of optimal and near optimal driving
frequencies are included in Appendix 3 for those interested in conducting

frequency domain simulation experiments.



2. PROBLEM STATEMENT:

The problem addresses in this report is to select a set of input
frequencies such that indicator frequencies for §erms in the polynomial model
given by (1.1) are as widely spaced as possible. We want to select a set of
driving frequencies which maximizes the minimum space between the term
indicator frequencies.

The problem can be stated explicitly as follows:

Let w ,...,mp be the driving frequencies for the

1%
polynomial model (without loss of generality, because
of aliasing we can assume 0<u1<w2<...<wp<.5).

Le§ Q=3n:n is a potentially distinct term indicator frequency for the
polynomial model, including the endpoints at 0 and .5% (we
denote v=cardinality(®) (i.e. the number of elements in )).

Given a~boﬁhd, k, on the degree of the meta-model, our problem is

to find

¥ = Maximize Minimizeélni—njl: ni,njER, i,j=1,2,...,v, iZj¢ (R.1)

W, 00500,
1>%o> ’p

We call gk the optimal spacing for a given polynomial model.

Notice that term indicator frequencies for even (odd) powers of an input
factor are a proper subset of the indicator frequencies for the highest order
even (odd) power term. The frequency 0 is also a term indicator frequency for
any term which is an even power of an input. If frequency 0 is included in
the set @ for every such term, then }k=0 for all k>1. TQ avoid this
difficulty, we will exclude frequency 0 as such a term indicator frequency.
We also consider only indicator frequencies of the highest order even power

(and the highest order odd power) for each input in the prospective meta-
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model. The inclusion of lower order powers would necessarily make gk=0.

A mixed integer linear program has been formulated by Cogliano [R] to
solve the frequency selection problem. The constraints in the program are
determined by the differences between all the term indicator frequencies for
the model (1.1). Since it is not always clear whether these differences are
positive or negative, absolute values of these differences are required. It
is the need for these absolute values which creates the need for the 0-1
integer variables. Without the absolute values, the problem could be
formulated as a linear program. The number of constraints in the mixed
integer linear program is at least 0((p)2k) where p is the number of driving
frequencies and k is the degree of the polynomial one is willing to assume
fits the simulation response. We obtained this number by observing that,

given p and g, there are

k-1 r . T p
v=pk+X T 23 )( ) +2
r=1 j=1 i+

term indicator frequencies (See Appendix 1). By taking all possible
differences between these term indicator frequencies, it is straightforward

to show that the number of constraints in the mixed integer linear program is
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of the order given above. The program is as follows:
Maximize Z

Subject to Zg Ini - njl (.2)

ni,njEQ, for all i#j, i,j=1,2,...,v

ngig.ﬁ for w, through wp

1

where 9 to wp represent driving frequencies for p

factors and the n; represent term indicator frequencies for

the prospective polynomial response model (1.1) of order k.

The following example demonstrates this mixed integer linear program:

Example 2.1:

Let p=2, k=2.

Therefore, we need two driving frequencies (say wl,wz)

(Without loss of generality, we will assume 0<w, <0,<.5,

172
due to the effect of aliasing)
The term indicator frequencies will be:
wy @y 2&1 2&2 wz+w1 Qo0 -

The mixed integer linear program is as follows:
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Maximize Z

Subject to ¥y >Z 1 -20, 27 1+ ©,- szl\Z

wg >7 1 -3, 27 11~ Zwl 2wzl>Z

2&1 >7 .5 wl >Z [1- 3w1— wzl>é

2w2 2Z .5 -0y YA 11 —SQZI/Z

1+ w2 >Z .o+ wl wg >Z (1 —4@2 Y/

- w1+ wa >Z |- 2&1 wztzz [ 1+ m1—3w2|>z

- m1+202 >Z - 3m1 wzlzz 11+2u1—2w2I/Z

-2w1+2w2 >Z ti—4w1 1 >Z A 1—3w2!>Z

1—2w1 >Z 11— zwl wzlzz I.5-2w1 122

1- W= 0 >Z |1—3u1 122 1.5 —szlzz

1 - 0y >7 1= 1—2wzl>Z | .5- ©,~ wzlzz
0<w1<w23.5

The solution to the mixed integer linear program gives us the
driving frequencies ©, =(R2/14) and v, =(3/14), with
spacing (1/14). The term indicator frequencies are:
Wy -w —(1/14) 0, =(2/14) W, =(3/14)
* * L3
Roy =(4/14) v, 0, =(5/14) Ru, =(6/14)

Solving the above mixed integer linear program can be quite difficult
unless a small number of driving frequencies are desired (the above example
for p=k=2 has 27 constraints containing 15 variables, of which 12 are integer
(0-1). In general, for k=2 and p arbitrary, the mixed integer linear program

will contain (p4+6p3~p2+9p+3)/3 constraints containing (p4+6p3—p2+12p+6)/6

3. 2+6p)/6 are integer (0-1)). We conjecture that

variables, of which (p +6p~ -
this problem is NP-Complete ([3]), although this has not been demonstrated.
If that is the case, an algorithm which can approximate the optimal solution

in a polynomial number of steps in p and k would be desired.
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3. PROBLEM ANALYSIS:

The mixed integer linear program presented in Section 2 gives us one
formulation which can solve the frequency selection problem. We now present a
second formulation of the problem.

If one could select driving frequencies such that all the term indicator
frequencies (after aliasing) are evenly spaced in the interval (0,.5) cycles
per observation or unit of time the problem would be solved. When we say that
the set of term indicator frequencies are evenly spaced, we include the
endpoints 0 and .5 as part of that set. However, these frequency endpoints
are not considered true term indicator frequencies; they are included in the
set of term indicator frequencies for spacing requirements only. If we
exclude the endpoint .5, it will widen the spacing, since the constraints of
the mixed integer linear program described in Section 2 will be defined using
one less frequency. However, unless otherwise stated, we will assume that
this endpoint is included as part of the set of frequencies which we are
attempting to space out. This is a reasonable assumption to make since the
power spectrum spike heights at the endpoint frequency can contain
information which is of no value to us. If this frequency is not included
when we attempt to space out all the indicator frequencies, it's spike height
may distort neighboring frequency spike heights which are not sufficiently
apart to ensure their independence. (see Jenkins and Watts [4] p.R86).

Even spacing is never feasible except for very small problems. The only
cases we have found where even spacing can be achieved are when the response
is linear or there are only 2 factors (i.e. p=2) and the degree of the
polynomial is arbitrary. In the first case, the p driving frequencies are

wi=i/(2p+2), i=1,2,...,p, where the spacing between the term indicator
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frequencies, which happen to be just the driving frequencies, is 1/(2p+2). In
the second case, the two driving frequencies are w1=k/(2k(k+1)+2) and
w2=(k+1)/(2k(k+1)+2), where the spacing between the term indicator
frequencies is 1/(Rk(k+1)+2) (see Appendix 2 for a proof of this result). Let
us examine this special case of even spacing for p=R and k=3.
Example 3.1:

Let p=2,k=3.

Let 0<w1<02<.5 represent the driving frequencies.

Therefore, the term indicator frequencies are

ST Zwl 2&2 Wy—Wy wz+w1

3w1 302 2w2~w1 201~w2 2w1+w2 2w2+w1.

If w1=k/(2k(k+1)+2)=3/26 and w2=(k+1)/(2k(k+1)+2)=4/26,

then the term indicator frequencies are:

02-w1=1/26 2wl—w2=2/26 w1=3/26 w2=4/26
2w2~w1=5/26 201=6/26 w2+w1=7/26 2w2=8/26
301=9/26 2w1+w2=10/26 2w2+w1=11/26 2w2=12/26.

The term indicator frequencies are evenly, or perfectly

spaced in the interval [0,.5].

The relative positions of the term indicator frequenciés in the interval
(0,.5) can be quite arbitrary. There is no obvious way of predicting these
positions, such that the minimum spacing can be increased or even shown to be
optimal. We define an ordering of the term indicator frequencies as the
sequence in which these frequencies fall into the interval [0,.5]. We will
assume that for a particular sét of driving frequencies, the ordering will
not change if the driving frequencies are permuted among the different

factors.
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To demonstrate some orderings, suppose there are two factors and the
degree of the polynomial is assumed to be k=2. Let w0 and @y represent the
driving frequencies of these two factors. The term indicator frequencies can
easily be shown to be 01, mz, 2&1, 2&2, w2+w1, w2~w1 (we will assume, without
loss of generality, w1<m2). If (.) represents an aliased term, then some

possible orderings are:

wz-wl wl w2 2@1 w2+u1 2@2
) 2&1 0y=0) Oy Ot (2&2)
0,=0 (2&2) (w2+w1) (2&1) w v,

For the case of p=2 and k arbitrary, one can observe that the term
indicator frequencies position themselves in a predictable pattern, by
inserting new term indicator frequencies in specific positions as k
increases. No such pattern seems to exist for p>2. The number of possible
orderings of v term indicator frequencies can also grow to be quite large
(i.e. O(Zvv!/p!) since the v term indicator frequencies can be permuted in
any order (v!), each term indicator frequency can be represented by itself or
its alias (2'), and the p driving frequencies cannot be shuffled or permuted
to yield a new ordering (1/p!)). These orderings have an important role in
solving the frequency selection problem. To see this, let us define a locally
optimal solution, with respect to a particular ordering, to be a set of
driving frequencies such that no changes can be made in any of the driving
frequencies without decreasing the minimum spacing. Therefore, each ordering
has a locally optimal solution. The mixed integer linear program (2.2)
selects the best such local solution, hence is solving a global optimization

problem. The following summarizes this:
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A set of driving frequencies is said to be locally optimal with
respect to an ordering of term indicator frequencies if a small
change in any or all of the driving frequencies results in a decrease
in the minimum spacing of the indicator frequencies. The local

optimum which has the largest minimum spacing is the optimal solution.

Let us look at the following examples of different locally optimal
solutions for different orderings:
Example 3.2:
Let p=3 k=R.

Consider the following orderings:

wl 2&1 W, w2~ol wz 02+w1
Wy, Oy Watw, 2&2 (2w3) Wyt
TA] 2&1 Wy=0 W, m2+w1 Wg—0,
2&2 0g=0 g Wate, (2w3) wgta,

The first ordering has a locally optimal solution, with
driving frequencies given by: w1=1/28 w2=5/28 w3=8/28.
The term indicator frequencies are:
w1=(1/28) 2w1=(2/28) ws-w2=(3/28) w2—01=(4/28)
w2=(5/28) 02+w1=(6/28) 03—w1=(7/28) w3=(8/28)
w3+w1=(9/28) 2m2=(10/28) (2w3)=(12/28) A
which gives a spacing of (1/28).

3+w2=(13/28),

The second ordering has a locally optimal solution, with
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driving frequencies given by: w1=1/32 w2=4/32 w3=10/32.
The term indicator frequencies are:

w1=(1/32) 2w1=(2/32) wz—w1=(3/32) w2=(4/28)
‘w2+m1=(5/32) w3~w2=(6/32) 2w2=(8/32) 03—w1=(9/32)

m3=(10/32) w3+w1=(11/32) (2w3)=(12/32) © w2=(14/32),

3+
which gives a spacing of (1/32).

Suppose we are given an ordering of the term indicator frequencies. We
would like to find a set of driving frequencies which maximizes the minimum
spacing between the resulting term indicator frequencies, where the relative
position of the term indicator frequencies in the interval [0,.5] is fixed by
the ordering. We will include 0 and .5.

We solve for these driving frequencies by solving a linear program which
maximizes the minimum spacing between all the terms, subject to the
constraint that the ordering of the terms does not change (this linear
program is a simplification of (2.2), where the fixed ordering eliminates
most of the constraints, including the 0-1 integer variables, making the
number of constraints polynomial, instead of exponential, in p and k. The
program is linear since only the distance between adjacent terms must be
maximized, as determined by the ordering. This implies that there will be
only O(v) constraints in the linear program, where v is the number of term
indicator frequencies). |

To illustrate this, consider the following example:

Example 3.3:

Let p=3, k=2.
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Let wl,wz,and Wq represent the driving frequencies.
Let the order of the terms be as follows:
©, Zwl 0,0, w, RO (2w3)
Oy=0, R0, Wa=0, 0g Ogte, (w3+w2)
where ( ) means that the term has been aliased (we can choose  an
ordering arbitrarily. This particular ordering will yield a local
optimum near the theoretical upper bound for the maximum of the
minimum spacing of the terms).
To obtain the driving frequencies, we need to solve the

following linear program:

Maximize Z

Subject to
©, >Z Swy= 0y 27
—3w1+ Wq >Z : 1w1-202+ g >Z
1- w,- w2-2w3 2Z 1- wl— w2—203 >Z
-1 - w2+3u3 >Z -.9 + w2+ w3 >Z
wlzo wzzo w320

where the first constraint is.a result of [01]—[0], [2@1]-[w1],
[wz]—[w2~w1], [w2+w1]—[wz], [w3]—[w3—w1] and

[03+wl]—[03]. The second constraint is a result of [wz—wl]-[Zwl].
The third constraint is a result pf [(ng)]—[w2+m1]. The fourth
constraint is a result of [w3—w2]—f(2w3)]. The fifth constraint is
a result of [sz]-[ws—ng. The sixth constraint is a result of
[03-w1]-[2w2]. The seventh constraint is a result of
[(w3+w2)]-[w3+w1]. The eighth constraint is a result of
[-51-[(0g+0,)].

The solution is Z*=1/28 with ®1*=1/28, w2*=4/28, w3*=11/28.

This spacing is optimal for the ordering given.
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Let us consider another ordering:
Example 3.4:
Wy W=, ] oA Wy g
2w1 w2+w1 2&2 w3+m1 ws+w2 2w3

To obtain the driving frequencies, we need to solve the following
linear program:

Maximize Z

Subject to :
- w1+ wz >Z .5 —2m3 >7
w1—2m2+ w3 pyA wl >0
2w1 - 03 > Z wz >0
- w2~ w3 > Z w3 >0

The solution is Z =1/30 with 9 =4/30, ¥y f5/30, Wq =7/30.
This spacing is optimal for the ordering given but is worse than

the spacing found for the previous ordering.

By looking at other orderings of the terms, one can obtain results which
are locally optimél for each such ofdering. To find the global optimum, one
would have to consider every possible ordering, since each may yield a
different locally optimal spacing. Since there are Zvv!/p! possible
orderings, where v is the number of term indicator frequencies, the work
involved to find the global optimum would be exponential in p and k. We have
observed that many of the orderings will yield zero as the solution to the
linear program described above. It is not clear whether there are an
exponential or polynomial number of orderings (in p and k) which yield
positive optimal spacing or whether there is an easy way to identify and

eliminate these zero spacing orderings.
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4. THE ALGORITHM:

¥We have two formulations of our problem. One involves solving a mixed
integer linear program, with a polynomial number of constraints. The other
involves solving an exponential number of simple linear programs. Neither of
these methods can be used to solve the problem very quickly or easily. It is
clear that a heuristic which obtains reasonable results, in a polynomial
number of operations (in p and k), would be an important step towards
obtaining driving frequencies for frequency domain simulation experiments.

In this section we present an algorithm which obtains a local optimum to
the problem. The algorithm is polynomial in the number of factors p and the
degree of the polynomial k. A simple illustrative example follows the formal
algorithm presentation.

It is clear from Cramer's Rule [5] that since the mixed integer linear
program has only integer coefficients for all its variables, then the
solution it finds will be rational (i.e. can be represented as fractions with
integer numerators and denominators). Therefore, we can form a one-to-one
relationship between the optimal driving frequencies and a set of integers.
These integers, which represent the numerators of the fractions, together
with a common integer denominator, will completely.define the driving

frequencies. We will call these integer numerators driving integers or

driving numerators (analogously we will have term indicator integers or term
indicator numerators). Our only constraint is that the term indicator
integeré for the different terms in the model do not coincide.

Our algorithm attempts to find, in sequence, p driving integers. It does
this by first arbitrarily choosing a driving integer, say hl’ which will

represent the numerator of the first driving frequency. To obtain the second
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driving integer h2’ the algorithm considers subsequent integers greater than
h1 until one is found such that the updated set of term indicator integers
contains no duplicate integers. This process is repeated until p driving

integers (hl’h hp) have been selected.

YRRy
The final stage of the algorithm is to select an integer denominator.
This will completely define all the driving frequencies, hence all the term
indicator frequencies. The algorithm selects this integer denominator by
first looking at the integer B=20ard(Vp)+2 as a possible candidate, where Vp
is the set of term indicator integers resulting from the driving integers
hl’hz""’hp' If the set Vp(B)=§V/BE[O,.5]: VEVp, B a positive integer?{ has
no duplicate elements, then this is the set of driving frequencies. If Vp(B)
has one or more duplicate elements, then B is increased by one until no
duplicate elements remain. Note: If
minZ|.5~V|:VEVP(B)§<min§|V1-V2[:V1,VZEVP(B)§, then it may be desireable to

increase B further, especially if one wants to space the term indicator

frequencies away from .5.

The following terms are defined for a given k:

hieg1,z,...§ represents the ith driving integer (i.e. the numerator of
the ith driving frequency) (i=1,2,...,p)
o represents the ith driving frequency (ngig.5 for all i=1,2,...,p)
Vi=§(V531,2,...§: ¥ is a term indicator integer obtained from the
driving integers hl"”’hi) (i=0,1,...,p)¢, (VO=¢)
BE{1,2,...¢ is a positive integer such that wi=hi/B for i=1,2,...,p

(i.e. the common denominator which defines the relationship
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between the driving integers and the driving frequencies)

The algorithm is as follows.

ALGORITHM

STAGE 0O: Set k,p to their given values for the problem.

STAGE 1: Arbitrarily choose an integer h1
(in practice, h1 should be chosen to be at most one
half the number of element in Vp. This will give the
algorithm a reasonable chance to fill the integers from
1 to cgrd(Vp) with the remaining p-1 driving integers).

V1 is the set of term indicator frequencies determined by hl'

For i=2 to p,
Solve: hi= Min h
such that Vi has no duplicate integer elements

(once hi is obtained, Vi is easily enumerated)

STAGE 2: Solve: B= Min B
such that BzZoard(Vp)+2 and there are no

duplicate elements in the set Vp(B), where
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v/B where VEVpand 0<V/B<.5
Vp(B)= 1-v/B vwhere VEVpand .5<V/B<1.0
v/B-1 where VEVpand 1.0<V/B

and all elements of Vp(B) must lie in (0,.5).
Note: If it is desireable to space the term
indicator frequencies away from .5, then one

can solve the following program:

B= Min B
such that BzEcardinality(Vp)+2, there are
" no duplicate elements in the set Vp(B),
LB/ZJEVP(B) and all elements of Vp(B)

must lie in (0,.5).
Set o= hi/B for i=1,2,...,p and stop.
5. AN EXAMPLE:

The operation of the algorithm can best be understood by working through
an example. Suppose we have a quadratic response (k=2). As previously
outlined, the basic strategy in stage 1 is to start with a positive integer
hl’ which will be the numerator for the first driving frequency, and
eliminate from consideration 2h1 corresponding to the quadratic term
associated with the first frequency. The smallest candidate for the second
numerator is h1 plus the smallest integer not eliminated; call this number
h,. Now compute 232 and h,th corrseponding to quadratic and interaction
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terms, respectively. If these are all distinct, then Ez is accepted as a
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numerator and now called simply hz. The numbers 2h2 and hzih1 are eliminated
from further consideration. If there is confounding with 232 and Ezthl, then
Ez is replaced by h1 plus the next largest integer not eliminated for hl'

This is continued until a numerator has been selected for each factor. If

k>2, then there will be more term indicator integers which can be confounded,
hence it will be necessary to perform more checking to ensure that all the
term indicator integers are distinct.

We will consider a prospective quadratic response model in three factors
(i.e. k=2 and p=3). Start with h1=1 so that V1=§1,2§ are eliminated from
consideration (h1=1 is the term indicator integer for Xy and 2h1=2 is the term
indicator integer for x?). The smallest candidate for h2 is now 1+3=4. This
numerator adds 8 (quadratic), 3 and 5 (interaction) to the list of term
indicator integers, which is now V2=31,2,3,4,5,8§. Finally, the smallest
candidate for the third numerator, h3, is 4+6=10, since 6 is the smallest
number not eliminated. The term indicator integers added by 10 are
$10,20,6,14,9,11%, so the final list is V3=§1,2,8,4,5,6,8,9,10,11,14,20§ (see
Table 1). The driving integers are §1,4,10}. Note: optimal numerators would
result if the third numerator had been chosen to be 11 instead of 10,
resulting in the term indicator integefs 11,2,3,4,5,7,8,10,11,12,15,223.

Stage 2 is finding the smallest integer denominator, B, corresponding to
the numerators obtained in stage 1 such that the indicator frequencies hi/B
are all less than .5. Clearly a denominator which is feasible is one obtained
by adding 2 to twice the largest term indicator integer. However, this is
usually not best for a given set of numerators. Stage 2 attempts to exploit
the aliasing effect to reduce the size of the denominator. For a second
degree model, the largest term indicator integer corresponds to the quadratic

term of the largest driving integer. A small denominator will result if it
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can be aliased to a small number. This corresponds to finding a point to
"fold" the numerators about so that all term indicator integers larger than
the fold point fall on vacant numbers (i.e.integers which are not term
indicator integers).To illustrate stage 2 for the example above, first try to
alias 20 to 7 (see figure 1). This corresponds to a fold about 13%, and 14 is
also aliased to 13. The denominator corresponding to this is 20+7=27, and the
bandwidth is 1/54. This is the distance from 13/27 to 1/2. The next integer
we can alias 20 to is 12, resulting in a fold point of 16 and a denominator
of 32 (see figure 2). The bandwidth for this denominator is 1/32. Thus, the
driving frequencies are §1/32,4/32,10/32¢ and the term indicator frequencies
are $1/32,2/32,3/32,4/32,5/32,6/32,8/32,9/32,10/32,11/32,12/32,14/32%. The
best denominator corresponding to optimal numerators §1,4,11% is 28, obtained
by the fold point of 14.

If the algorithm starts with a numerator other than 1 then there are
other possibilities. If the algorithm starts with numerator 2, then driving
integers of §2,3,10% result, with term indicator integers as in figure 3. The
best fold for these term indicator integers is at 144 and the denominator is
R9, only slightly worse than the optimal denominator of 28. Some starting
values require no fold. If the algorithm starts at 4, then $4,5,7} are the
driving integers, 14 is the largest term indicator integer, and the
denominator is 30 (see figure 4).

The algorithm may be modified to allow skipping eligible driving
integers. For example, if the second eligible driving integer is chosen at
each step, then (starting at 1) the resulting driving integers are §1,5,83%.
Folding at 14 yields a denominator of 28, the optimal denominator (see figure
5). This variation in the algorithm can greatly improve the spacing between

the resulting term indicator frequencies.
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Appendix 3 gives sets of driving frequencies for various number of
factors for a prospective quadratic response model. The frequencies for.2 to
7 factors are optimal, assuming a full model (all terms present). The
frequencies for 8 to 21 factors are not necessarily optimal, but are the best
available at present. The table gives numerators and denominators separately,
and for the factors with optimal spacing, all known alternative sets of
frequencies are given. For example, if £here are 5 factors, the experimenter
may choose driving frequencies $1/69,4/69,13/69,19/69,29/69¢,
$4/69,5/69,7/69,20/69,26/69%, or $2/69,5/69,11/69,25/69,26/69%. These are the
only ones with optimal spacing; the choice of any other driving frequencies

results in a narrower bandwidth.
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Table 1 Algorithm for Frequency Selection,

First Numerator = 1

Step Liﬂé;r éuadratic Interaction

1 1 R

R 4 8 3 5

3 10 R0 6 9 11 14
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Denominator = 32 by Folding at 16.
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Figure 3

Starting Algorithm with Numerator

Denominator
Bandwidth = 1/29

29 by Folding at 14X
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Figure 4 Starting Algorithm with Numerator = 4
No Folding is Required
Denominator =

30, Bandwidth = 1/30.
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Figure 5 Driving Numerators = §1,5,8%
Denominator = 28 by Folding at 14

Bandwidth = 1/28 (Optimal).
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A summary of the 2 stages for the above example is given below:

STAGE 1:

We arbitrarily chose h1=1.

Theretore, V1=§1,2§.

i=R:

i=3:

STAGE 2:

If hy=2, V2=§1,2,2,4,1,3§ which has duplicate elements.

If h2=3, V2=§1,2,3,6,2,4§ which has duplicate elements.

If h, =4, V2=§1,2,4,8,3,5§ which has no duplicate elements.

R

Therefore, h,=4 and V2=§1,2,3,4,5,8§.

p

If h3=5, V3=§1,2,3,4,5,8,5,10,4,6,1,9§ which has

duplicate elements.

If h3=6, V3

duplicate elements.

=$1,2,3,4,5,8,6,12,5,7,2,10% which has

If h3=7, V3=§1,2,3,4,5,8,7,14,6,8,3,11§ which has

duplicate elements.

If h.=8, V3=§1,2,3,4,5,8,8,16,7,9,4,12§ which has

3

duplicate elements.

If h3=9, V3=§1,2,3,4,5,8,9,18,8,10,5,132 which has

duplicate elements.
If h3=10, V3=§1,2,3,4,5,8,10,20,9,11,6,15§ which has
no duplicate elements.

Therefore, h,=10 and V3=§1,2,3,4,5,6,8,9,10,11,14,20§.

3
For B=max$R1,26%=26,
V3/26= $1,2,3,4,5,6,8,9,10,11,14,20¢/26 which has duplicate

elements since 20/26 is aliased to 6/26.
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V3(27)= $1,2,3,4,5,6,8,9,10,11,14,203/27 which has no duplicate
»elements if it is not desireable 'to space the term
indicator frequencies away from .5 (see the note in stage 2
of the algorithm description in Section 3). If it is
desireable to space away from .5, then |R7/2]=13 which
is the alias of 14.

V3/28= $1,2,3,4,5,6,8,9,10,11,14,203/28 which has duplicate
elements since 20/28 is aliased to 8/28.

V3/29= $1,2,3,4,5,6,8,9,10,11,14,203/29 which has duplicate
elements since 20/29 is aliased to 9/29.

V3/30= $1,2,3,4,5,6,8,9,10,11,14,203/30 which has duplicate
elements since 20/30 is aliased to 10/30.

V3/31= $1,2,3,4,5,6,8,9,10,11,14,208/31 which has duplicate
elements since 20/31 is aliased to 11/31.

V3/32= $1,2,3,4,5,6,8,9,10,11,14,20¢/32 which has no duplicate.

Therefore, (ml,wz,w3)=(1/32,4/32,10/32) or
(wl,wz,w3)=(1/27,4/27,10/27) depending on whether full

spacing is desired at the endpoints.

In the above example, it is not clear that the global optimum has indeed
been reached. The minimum spacing for these driving frequencies is 1/32. If
the 12 term indicator frequencies could be evenly spaced, the minimum spacing
would be 1/26.

The algorithm is an easy method to obtain driving frequencies which
appear to be close to optimal. Variations in the algorithm, such as forcing

certain minimum jumps in driving integers at any point in stage 1, rather
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than for just the first driving integer, can greatly increase the minimum
spacing. Appendix 3 gives for quadratic and cubic response models (k=2 and
k=3) the largest spacings we have found using this variation. We have proven,
using direct enumeration and by solving the mixed integer linear program in
Section 2, that the spacings, for p=2 up to p=7 are all optimal (solutions to
the mixed integer linear program were obtained using MPSX on the Cornell
Supercomputer). We believe that the spacings for p=8 and 9 may be optimal,
though this has not been proven. We also believe that the spacings for p=10
up to 21 can still be improved. Appendix 3 contains the driving frequencies
which yield the best available spacings for p=R up to p=21, for k=2, and for
p=R up to 11, for k=3. Appendix 3 also gives the minimum spacing necessary to
set the run length and spectralrestiﬁation window [7].

It is often the case that low indicator frequencies are required. If
driving frequencies are desired with the added constraint that all term
indicator frequencies lie in the interval [0,5], where 0<5<.5, then the
integer numerators given in Appendix 3 can be used with the integer
denominator B=2hp/6 for k=2, and B=3hp/6, for k=3, to space the term
indicator frequencies in this new interval. One could also modify the last
stage of the algorithm to incorporate this constraint in selecting the
integer denominator B, such that an attempt is also made to evenly space the
term indicator frequencies in [0,3&].

It may also be possible to modify the algorithm such that all term
indicator frequencies fall into prespecified parts of the interval [0,.5].
This would give a possible way of dealing with gain or memory in a system, by
restricting all term indicator frequencies to parts of the interval [0,.5]
where the gain or memory effect is approximately the same (note: some care

should be taken when specifying these subintervals, since one can specify
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parts of the interval [0,.5] where it is impossible for all the term
indicator frequencies to be forced to lie).

The algorithm can also be modified for problems where only interaction
terms, or any subset of polynomial terms, are assumed to be present. For
example, after performing an initial run to screen out insignificant terms,
the algorithm can'be modified to select driving frequencies such that only -~
term indicator frequencies of the significant terms must be evenly spaced in
the interval [0,.5]. This would tend to widen the spacing between the term
indicator frequencies, hence ultimately reduce the run size n for a desired
variance level of the spectral estimators.

The examples given above demonstréte some of the ways in which the
algorithm can be modified. As frequency domain simulation experiments become
more widely implemented, more sophisticated modifications to the frequency
selection algorithm should be developed to handle their driving frequency and

term indicator frequency requirements.
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APPENDIX 1:

We will prove by induction on p and k that there are

k-1 r A p
v(p,K)=pk + = T 29(C )( ) +2

r=1 j=1 J jt1
term indicator frequencies which need to be spaced. Note that the R
added to the end of the formula for v(p,k) corresponds to the endpoint

frequencies 0 and .5. Therefore, it is sufficient to prove this formula

for v(p,k)-1.

Let p=k=1.

Clearly, there is only one term, which agrees with n(1,1)=1.

Let us fix p and perform the induction on k. We notice that

p+z 27C ()
=t 3

terms will be added if we increase k by one, where the first value
represents terms with only one element (i.e. of the form (k+1)wi,
where i=1,2,...,p, and Wy is the driving frequency for the ith

factor) and the second value represents terms with between 2 and k+1

elements.

Therefore, we have

k .k p k r . T p
v(p,k) +p+ 2 23 )( ) =p@&) + = = 23C I )
j=1 j in r=1 j=1 i j#1

= v(p,k+1) as desired.
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Let us fix k and perform the induction on p. We notice that

k-1 r . T D
k+ = = 235C ) )
r=1 j=1 Jj Jj

terms will be added if we increase p by one, where the first value

represents terms with only one element (i.e. of the form (j)wp+1,

th

where j=1,2,...,k, and is the driving frequency for the p+1

pti

factor) and the second value represents terms with between 2 and k

elements.

Therefore, we have

k-1 r . T P k-1 r . r ptil
v(p.k) +k+ £ = 23 YO HY=@+tDk+z = 23C YO )
r=1 j=1 j j r=1 j=1 i jtt

v(p+1,k) as desired.

Since the order in which we increase p and k does not affect the

number of terms, simultaneous induction on p and k is not necessary.
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APPENDIX R2:

We will prove that for p=R and k arbitrary, the driving
frequencies w1=k/(2k(k+1)+2) and w2=(k+1)/(2k(k+1)+2) evenly

space all term indicator frequencies in the interval [0,.5].

First, we will prove by induction on k, that the number of term

indicator frequencies is k(k+1).

For k=1, there are 2=1(2) term indicator frequencies.
Assume there are kl(k1+1) term indicator frequencies, for some
k=k1. If we add a degree to our polynomial model given by (1.1)

.(i.e. k=k1+1), then we will add 2k,+R2 term indicator frequencies

1
((k+1)01,(k+1)02, and lei(k+1—K)w2 for K=1,2,...,k). Therefore,
there will be k}(k1+1)+2(k1+1)=(k1+2)(k1+1) term indicator
frequencies for k=k1+1.

Therefore, we have proven by induction on k that there are k(k+1)

term indicator frequencies for k>2 and p=2.

Without loss of generality, we will only consider the numerators
of ©, and wz'and prove that the k(k+1) term indicator integers

will be the integers 1 to k(k+1), with no aliasing required.

Let h1 be the integer numerator of 9 and h2 be the integer
numerator of 0, (h1<h2). The largest term indicator integer will
be k(h2)=k(k+1). Therefore, h2=k+1. The second largest term

indicator integer must be (k-l)h2+h1=k(k+1)—1. This implies h1=k.
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We will now show that all the term indicator integers obtained
from h1=k and h2=k+1 exactly cover all the integers from 1 to

k(k+1) exactly once, with no aliasing required.

If j is even, there are 2j jth degree term indicator integers.
They are §jk,jk+1,...,jk+j3us(j-2)k-1,(j-R)k+(j-1)}
U (G- k-2, (j-2)k+(j-2)§
u...
UsRk-((j/2)-1),2k+((j/2)+1)}
u$(j/2)3
Then we have j+1 odd, hence there are 2j+2 jth degree term
indicator integers.
They are §(j+1)k,(j+1)k+1,...,(j+1)k+(j+1)3
U3 ((G-Dk-1, (G-Dk+(3)$
u$ (G-3k-2, (j-3)k+(j-18
u...
U§3k-((3/2)-1),3k+(((j+R)/2)+1)§
uik-((3)/R),k+((j+2)/2)3%

Therefore, for j=1, we have the term indicator integers $k,k+13.
For j=2, we have the term indicator integers §2k,2k+1,2k+2,1%.
If we order these, we get §1,k,k+1,2k,2k+1,2k+2%.

For j=3, we have the term indicator integers 3§3k,3k+1,3k+2,3k+3,
k+2,k-1¢. If we order these, we get
$1,k-1,k,k+1,k+2,2k,2k+1,2k+2, 3k, 3k+1, 3k+2, 3k+3%.

For j=4, we have the term indicator integers §4k,4kt+1,4k+2,4kt3,
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4k+4,2k+3,2k-1,2%. If we order these, we get
$1,2,k-1,k,k+1,k+2,2k-1,2k,2k+1,Rk+2,2k+3, 3k, 3k+1, 3k+2,3k+3, 4k,

4k+1,4k+R,4k+3,4k+45%.

If we continue in this manner, we get for k even, the term
indicator integers $1,2,...,(k/2),k-(k/2)+1,k-(k/R)+2,...,k+(k/R),
2k-(k/2)+1,Rk-(k/R)+2,...,2k+(k/2),...,k(k+1)$ which is exactly
the integers from 1 to k(k+1).

Similarly, for k odd, we get the set of term indicator iqtegers
to be exactly the integers from 1 to k(k+1).

Therefore, if h1=k and h_,=k+1, the resulting term indicator

P
integers are exactly the integers from 1 to k(k+1), where each
indicator integer appears exactly once. This implies that

u1=h1/(2k(k+1)+2) and wz=h2/(2k(k+1)+2) are driving frequencies

which result in the term indicator frequencies being evenly spaced

in [0,.5].
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APPENDIX 3:
The following list of driving frequencies yield the best available

spacings for quadratic response models (k=R):

# of Factors (p) Driving Frequencies Minimum Spacing
2 (1,4)/14 (2,3)/14 : 1/14
3 (1,5,8)/28 (1,4,11)/28 (3,4,13)/28 1/28
(3,5,12) /28 (8,9,13)/28 (9,11,12)/28

4 (1,4,10,17)/46 (6,8,9,13)/46 (2,3,11,18) /46 1/46
(4,5,7,20)/46 (3,5,12,16) /46 (2,9,10,15) /46
. (1,6,16,19)/46

5 (1,4,13,19,29)/69 (4,5,7,20,26)/69 (2,5,11,25,26) /69 1/69

6 (1,11,28,31,35,49)/103 (3,4,13,28,40,42) /103 1/103

(4,9,10,21,37,44)/103 (6,32,40,42,43,47)/103
(8,15,18,20,29,42) /103 (10,12,15,21,28,29)/103
(11,27,35,36,48,50) /103 (16,23,24,43,45,49)/103
(R0,24,30,42,45,47) /103
(1,4,19,31,44,53,60)/130 (4,7,9,24,30,49,59)/130 1/130
(1,9,14,21,40,46,57)/130 (1,7,18,22,27,57,60)/130
(2,3,12,29,37,50,57)/130 (7,9,17,20,32,6R,63)/130
(3,7,19,28,30,43,48) /130 (1,10,16,29,34,37,41)/130
(3,8,10,27,41,42,63)/130 (2,17,22,23,30,33,59)/130
(6,9,19,20,36,41,43)/130 (6,31,40,47,51,61,64)/130
(3,21,41,49,50,54,64)/130 (10,11,36,44,49,51,63)/130
(8,33,47,48,51,53,60)/130 (11,16,17,20,46,59,61)/130
(10,11,18,23,37,53,62) /130 (19,29,30,33,54,56,61)/130
(11,14,23,24,29,31,50)/130 (21,27,34,51,56,59,60)/130
(12,17,21,27,40,47,58) /130 (31,32,38,40,43,53,57) /130
(20,33,37,42,43,58,61) /130 (23,28,38,47,49,50,63)/130
8 (10,16,29,33,38,40,41,75)/168  1/168
9 (8,30,33,39,40,44,57,59,94) /209  1/R09
10 (10,12,13,27,31,59,65,94,101,110) /268  1/268
, (2,15,22,33,47,56,75,83,121,126) /268
11 (19,21,22,26,32,46,55,105,117,135,166) /340  1/340
12 (27,44,56,57,59,63,77,102,124,150,155,219) /448 1/448
13 (29,37,39,43,44,55,64,77,96,166,208,211,257) /565  1/565
14 (29,42,53,57,62,63,65,79,109,140,210,242,269,310) /675  1/675
15 (20,28,32,41,42,47,58,65,145,176,179,222,247,298,342) /780  1/780
16 (29,38,46,48,49,53,71,83,110,176,217,
223,302,358,372,427) /942  1/942
17 (37,46,63,66,67,73,78,91,122,160,16%,
239, 309,325,377,430,495) /1052 1/1052
18 (37,53,78,86,87,89,93,107,117,155,190,
' 236,255,318,377,453,475,574) /1208 1/1208
19 (18,38,42,45,47,53,70,86,96,163,197,
218,299,300,372,429,469,589,620) /1398 1/1398
20 (15,29,37,40,41,46,64,100,148,167,195,
257,291,329,382,447,535,608,705,707) /1588 1/1588
21 (31,32,48,57,59,67,71,100,113,206,R21, ‘
266,315,389,407,493,570,576,716,767,774) /1834 1/1834
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The following list of driving frequencies yield the best available

spacings for cubic response models (k=3):

# of Factors (p) Driving Frequencies Minimum Spacing
R (2,5)/26 (3,4)/R6 ' 1/26
3 (3,5,22)/70 (4,9,15)/70 1/70

(5,8,17)/70 (15,18,23)/70
4 (17,20,21,32) /152 1/152
5 (R7,37,45,48,97) /319 1/319
6 - (25,34,37,39,159,192) /600 1/600
7 (10,14,23,68,143,219,336) /1023 1/1023
8 (10,16,17,72,142,227,462,575) /1801 1/1801
9 (10,14,23,68,143,219,336,687,923) /2808 1/2808
10 (15,16,19,40,122,251,402,711,1165,1314)/4097 1/4097
11 (2,5,21,55,130,287,455,788,1160,1515,1769) /5522 1/5522
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